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Henselian division algebras and reduced
unitary Whitehead groups for outer forms
of anisotropic algebraic groups of the type A,

V. 1. Yanchevskii

Abstract. Some results on the structure of involutorial (that is, having
an involution) Henselian tamely ramified division algebras are obtained.
These results are then used to derive formulae for the computation of the
reduced unitary Whitehead groups for outer forms of anisotropic algebraic
groups of type A,.
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§ 1. Introduction and statements of the main results

Let K be an (infinite, for simplicity) field. Among the first important examples
of infinite projectively simple (that is, containing no noncentral simple subgroups)
groups provided by a linear algebra are the special linear groups SL,(K), n > 1
(more generally, the special linear groups SL;" (D) over division rings; see [1] and [2]).
These groups arise as the kernels of the determinant homomorphism of the general
linear group GL, (K), the group of nondegenerate K-linear automorphisms of the
n-dimensional K-vector space V,,(K). They can also be defined as the derived sub-
groups GL,,(K)’ of the groups GL, (K) (in what follows, for an arbitrary group G
we denote by G’ the derived subgroup of G). Other examples of this kind can
be obtained with the use of classical linear groups. For example, suppose that
char K # 2 and the space V,,(K) is equipped with a nondegenerate skew-symmetric
bilinear form f: V,,(K)xV,,(K) — K (which means that f(v,w) = — f(w, v) for any
pair v,w € V,,(K)). Let Sp,,(K) be the symplectic group of the form f (see [1]-[3]):

Sp,,(K) = {s € GL,(K) | f(s(v), s(w)) = f(v,w) for any pair v,w € V,,(K)}.

Then Sp,,(K) is again a projectively simple group (see [1], Theorem 5.2). Note that
Sp,,(K) = Sp,,(K)" (this follows from [1], Theorem 5.1).

Leaving aside other examples of infinite projectively simple groups related to
classical groups, we note that the range of such examples was significantly extended
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by passing to semisimple linear algebraic groups, which gave rise to a number of
interesting conjectures and results (particularly, in the arithmetic theory of alge-
braic groups). This approach has allowed distinguishing the general properties that
characterize the phenomenon of projective simplicity. The definitions of all notions
used in this paper (such as simple connectedness, simplicity, isotropy, parabolic
subgroup and others) can easily be found in [4]-[7].

Let G be a simple linear algebraic group defined over a field K, which is not
assumed to be algebraically closed, and G be the group of K-rational points of G.
Consider in turn the cases when G is isotropic over K and when G is anisotropic.
Recall that the group G is anisotropic if it has no proper parabolic subgroups
defined over K. Here, a parabolic subgroup is a subgroup that contains some Borel
subgroup. Denote by G;r( the normal subgroup of G generated by the rational
(over K) elements of the unipotent radicals of K-defined parabolic subgroups. In
this situation Tits established in 1964 the following important fact.

Theorem 1 (see [8]). Suppose that K contains at least four elements. Then any
subgroup of G ¢ normalized by the group G, is either central in G or contains G}.
In particular, G} is projectively simple.

Thus, there arises a new class of projectively simple groups. It is natural to think
of the structure of the group G as known if Gg = G}L(. By the time Theorem 1
was proved this equality had already been known to hold for some special groups G
and many fields K, so the following conjecture looked quite reasonable.

Conjecture (Kneser-Tits). For a K-simple simply connected group G that is
isotropic over the field K, the equality G}; = Gk holds.

The Kneser-Tits conjecture is obviously true in the case when the field K is
algebraically closed. Note also that E. Cartan proved this conjecture in the case
when K = R and G is a simple, simply connected algebraic group. For a long
time it was generally believed that the Kneser-Tits conjecture is true, since it was
confirmed in a number of special cases. However, Platonov [9] showed in 1975
that this conjecture is false in general. As a result, Tits introduced the Whitehead
groups W (K,G) = Gg /G of reductive algebraic K-groups (further advances in
this subject are presented in [10] and [11]).

As before, let G be a simply connected K-simple algebraic group. Then G
belongs to one of the following classes: A,,, B,, Cn, D,, Fg, E7, Eg, Fy and Gs.
Among the groups of these types the most interesting ones (and hardly amenable
to investigation) are groups of type A4,. In particular, the groups Gk of K-rational
points of simply connected groups of this type are exhausted by the following list
(see [7], §2.3, Propositions 17 and 18).

1) Inner forms: SL,,(D) = {a € My, (D): Nrdy, (py(a) = 1}, where M, (D)
is the algebra of m x m K-matrices whose entries belong to the central division
K-algebra D of index d and Nrdyy,, (p): My, (D) — K is the reduced norm mapping
and n =md — 1.

2) Outer forms: SU,(D, f) = {u € Uyn(D, f): Nrdp, (py(u) = 1}, where D
is a division algebra of index d endowed with a unitary involution 7 (that is,
with a nontrivial restriction to the centre of D). Here K coincides with the field
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of 7-invariant elements of the centre of D, f is a nondegenerate m-dimensional
Hermitian form, U,,(D, f) is the unitary group of the form f and n =md — 1.

If the group G is an inner form of type A,, and it is K-isotropic, then it follows
from the condition of K-isotropy that m > 2. Consider the subgroup SL. (D)
of the group Gk = SL,,(D) which is generated by the transvections, that is, by
those matrices that, in a suitable basis of the space V,,(K), have the form of an
elementary matrix (see [1]). Since each elementary matrix is unipotent (and, more-
over, lies in the unipotent radical of a suitable parabolic subgroup), SL;} (D) is
contained in G.. Moreover, the group SL;’ (D) is a normal subgroup of GL,,(D),
and therefore G} = SL; (D) by Theorem 1. Hence the group G /G is isomor-
phic to SL,,(D)/SL;} (D). Now with the use of the Dieudonné determinant (see [1]
and [2]) we conclude that the group SL,,(D)/SL: (D) is isomorphic to the reduced
Whitehead group SK;(D) = SLy(D)/D*' of the algebra D. If G is an outer form
of type 4, then G = SU,, (D, f) for an appropriate nondegenerate m-dimensional
Hermitian form over D with involution 7, whose restriction to the centre of D is
nontrivial, and K coincides with the subfield of 7-invariant elements of the centre
of D. The condition that G is K-isotropic means that the form f is isotropic,
and in this case the group G} coincides with the subgroup TU,,(f) generated
by the unitary transvections (see [2]); moreover, in almost all cases it coincides
with the derived subgroup of the group U,, (D, f). Now with the use of the Wall
norm (see [2]) we obtain an isomorphism of the quotient group SU,, (D, f)/ TU,,(f)
onto the reduced unitary Whitehead group SUK; (D) = ¥//%, where ¥ is the sub-
group of D* generated by the T-invariant elements and ¥’ consists of elements with
T-invariant reduced norms. This group is called the reduced unitary Whitehead
group for the algebra D. In fact, it depends only on the restriction 7|x. Details
can be found in [12].

There is a significant number of publications devoted to the computation of these
groups (see [9], [10] and [12]-]29]).

Note that the inner forms of anisotropic groups of type A, are related to the
groups SK;(D). As for outer forms of anisotropic groups, these are always uni-
tary groups related to the anisotropic forms f. In this situation it is most impor-
tant to consider first of all the groups SUy (D, f)/U1(D, f)’. Although the first
works on this subject date back to the early 2000s, such groups remains hardly
tractable for investigation, and only a few basic results concerning these groups
are known so far. Since such groups play the key role in this work, the following
definition is quite important.

Definition 1. The group
SUK™ (D, 7) = SU(D, f)/U(D, f)

is called the special unitary Whitehead group of the anisotropic form f (by analogy
with the reduced isotropic Whitehead groups SK; (D) and SK; (D, 7)).

1. For quaternion division algebras possessing unitary involutions Sury [30]
derived explicit formulae for the computation of the groups SUK}"(D, 7).

2. In [31] Sethuraman and Sury proved that for the special symbol algebras D
the group SUK}"(D, 7) is infinite.
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3. In [32] this author showed that there exists an epimorphism of the group
SUK{" (D, 7) onto SUK;(D, 7), which made it possible to solve the problem of
nontriviality of the group SUK{"(D, ) in the general case under the condition that
the groups SUK; (D, 7) are nontrivial. Moreover, this relation shows that the group
SUK{" (D, 1) is infinite, provided that the groups SUK; (D, ) are too.

No significant results on the problem of the projective simplicity of outer forms
of anisotropic groups of type A, have been obtained to date; therefore, the com-
putation of the groups SUK{"(D,7) can be considered as an important step in
gathering information for further studies on this problem.

Note that the first fundamental results related to the computation of nontrivial
reduced Whitehead groups were obtained in the framework of the class of Henselian
division algebras and were based on the idea of reducing the problem of the compu-
tation of these groups to determining certain special subgroups of the multiplicative
groups of their residue algebras.

The structure of finite-dimensional general Henselian algebras was first described
by Platonov and Yanchevskil in [33]-[35]. A complete and extended proof of their
results can be found in [36].

The purpose of this work is to derive formulae for the computation of reduced
anisotropic unitary Whitehead groups SUK{" (D, 7) for Henselian algebras D using
the idea of reduction mentioned above. The paper consists of two parts. In the
first we establish a number of results on the structure of Henselian involutive divi-
sion algebras. Some of these results can be formulated in terms of graded algebras
(see [23]). However, we prefer remaining within the framework of Henselian sit-
uation, hence it seems appropriate to use the Henselian language here. In the
second part we use the results obtained to describe the reduced anisotropic unitary
Whitehead groups SUK{" (D, 7) for Henselian algebras D.

To formulate our results we need the following definitions.

In what follows Z(R) denotes the centre of the ring R and Cr(.S) is the centralizer
of the subring S of R. If S C Z(R), then R is called an S-algebra. It is assumed
that all rings have identity elements and that 1g = 1g if S is a subring of R.
Moreover, homomorphisms map the identity elements to each other. The kernel
of a homomorphism f is denoted by Ker(f). By R* we denote the multiplicative
subgroup of the ring R. If a € R*, then we denote by i, the inner automorphism of
the ring R defined by the formula 7' = a~!ra for any r € R. Occasionally, for the
convenience of references i, will mean the automorphism defined by the formula
ria = ara=! for r € R (however, it is always clear from the context which particular
interpretation is meant). For a subalgebra E of a division algebra D we denote the
dimension of D as a left vector space over E by [D : E]|. All algebras below are
assumed to be finite-dimensional.

Given a field K and a finite-dimensional central simple K-algebra A, we denote
the class of A in the Brauer group Br(K) by [A]. By Wedderburn’s theorem
A =2 M, (D) for a K-central division algebra D, where M, (D) is the algebra of
n X n matrices over D. The division algebra D is uniquely determined up to
K-isomorphism and is called the underlying division algebra of A. Given K-algebras
A and B, we write A ~ B if their underlying algebras are K-isomorphic to each
other. By definition the index ind A of the algebra A coincides with /[D : K], the
degree deg A is n-ind A, and the exponent exp A of the algebra A is the order of [4]



1100 V. 1. Yanchevskit

in Br(K). Moreover, we set
D(K) ={D: D is a central division K-algebra and [D : K] < co}.

For any field extension F'//K and any D € D(K) we denote the underlying algebra
of the F-algebra D ® x F' by Dp € D(F). It is known that if K C F C D, then
Dp = Cp(F). Denote by Br(F/K) the kernel of the homomorphism of extension
of scalars Br(F') — Br(K).

For any subextension L/K of the algebra D € D(K) the following formula is
valid: ind D = ind Cp(L)[L : K]*.

Definition 2. A wunitary involution of the algebra D € D(K) is an antiautomor-
phism 7 of D of order two that has a nontrivial restriction to K. For the field
k={a€ K |a" =a} K is a quadratic Galois extension. In this case 7 is called
a K /k-involution and the set of K/k-involutions of the algebra D is denoted by

IHVK/k(D)

Assume that the algebra D has a unitary involution 7 and k = {a € K | a™ = a}.
In this case we write 7 € Invg (D). Let Nrdp: D — K denote the reduced norm
mapping of D. The unitary group U(D,7) of the algebra D (with respect to 7)
is U(D,7) = {d € D* | d"d = 1}, and the special unitary group SU(D,7) is its
subgroup U(D, 1) N SL(D), where SL(D) := SL; (D). Moreover, given a finite field
extension L/K, we denote the group {I € L* | Ny, k(l) = 1} by SL(L/K). If,
in addition, the extension L/K has an automorphism 7 of order two such that
K™ = K, then we denote the subgroup {l € L* | I"l = 1} by U(L,7) and the
subgroup U(L,7) N SL(L/K) by SU(L, 7).

We also need some background on division algebras with valuations. Let D €
D(K). A waluation v of D is a function v: D* — T (here I" is a totally ordered
Abelian group in additive notation) with the following properties: for all a,b € D*

(i) v(ab) = v(a) + v(b);

(i1) v(a+b) = min(v(a),v(d)) if b # —a.

Given a valuation v of D, one can define

e the valuation ring Vp = {d € D* | v(d) > 0} U {0};

e the valuation ideal Mp = {d € D* | v(d) > 0} U {0} (the unique two-sided
maximal ideal of the ring Vp);

o the group of v-units Up = Vp \ Mp = V} and its subgroup 1 + Mp =
{I1+m|me Mp};

o the Vi /Mk-algebra D=Vp /Mp of the valuation v, and the group of values
FD = U(D*)

More generally, given an arbitrary subset S C Vp, we denote by S the set
of images of the elements of S under the canonical homomorphism (reduction or
residue homomorphism) from Vp to D.

Since V5 = Vp and M], = Mp, along with the involution 7 we can define its
reduction 7: D — Dj; here we have (d + Mp)T™ = d”™ + Mp for any d € Vp.

If £ is a K-subalgebra of the K-algebra D with a valuation (D,v), then the
restriction v|g of the valuation v to E* is a valuation of E. In this case the ram-
ification index of the algebra D over E is defined as the index [I'p : I'g| of the
subgroup I'g in I'p.
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For d € D* the inner automorphism iy maps Vp to Vp and Mp to Mp. There-
fore, iy induces a K-automorphism D. When restricted to Z(D), it reduces to
a K-automorphism denoted below by 4. Finally, the mapping d — iy defines
a homomorphism «a: D* — Gal(Z(D)/K). For u € Up the automorphism i,
acts as the conjugation by @, so that u € Ker(a). Moreover, K* C Ker(a).
Since D*/Up K* =2 T'p /T i, the mapping « induces a well-defined homomorphism
Op: 'p/Tx — Gal(Z(D)/K) acting by the formula v(d) — ig4, where v(d) =
’U(d) +I'k.

The following inequality is well known:

[D:El>[D:E]-[I'p:TEg (1.1)

By the Ostrowski-Draxl theorem (see [21]) we have [D: K] = ¢"[D: K] - |I'p : Tk,
where ¢ = char(D) for char(D) # 0, ¢ = 1 for char(D) = 0, and r is a nonnega-
tive integer. The algebra D is said to be defectless over K (with respect to v) if
[D:K] <ocand [D: K| =[D: K|-|I'p: Tkl and it is said to be unramified
over K if [D : K] = [D : K| < oo and Z(D) is separable over K. The term
‘defectless (unramified) algebra D’ means a ‘defectless (respectively, unramified)

algebra over Z(D)’. It is evident that when char(D) = 0 or char(D) 1 [D : K],
the algebra D is defectless. The algebra D € D(K) is said to be totally rami-
fied it [D : K] = [I'p : T'x]. Finally, the algebra D/K is called immediate if
[D:K}-|FD:FK|:1.

It is known that the reduction (residue) homomorphism defines an epimorphism
p of the group I'p /T onto the group of K-automorphisms of the centre Z(D) of
the residue algebra D (see [36]).

The reduction homomorphism and the homomorphism 6p are associated with
the so-called reduction defect \p (Ap = ind D/ind D[Z(D) : K]). By abusing
notation slightly, below we omit the subscript D and write A instead of Ap. Recall
that a reduction is said to be tame if the extension Z(D)/K is separable and
char(K) does not divide the order of Ker(fp).

Our main interest is in weakly ramified algebras.

Definition 3. Let K be a Henselian field and let D € D(K). An algebra D is said
to be weakly ramified if (i) char(K) = 0 or (ii) char(K) # 0, and D is defectless and
has a tame reduction. In what follows the set of weakly ramified over K division

algebras is denoted by TR(K).

Remark 1. It follows immediately from the definition (see also [36], Lemma 6.1) that
the elements of Br(K) represented by weakly ramified central division K-algebras
form a subgroup of Br(K). Moreover, if the algebra A belongs to TR(K) and L/K
is an extension of the field K, then A, € TR(K).

The following property of weakly ramified algebras is quite important.

Lemma 1. Let D € TR(K) and D = Dy ®k Dy, where Dy and Ds are central
K-algebras of coprime indices. Then Dy, Dy € TR(K).

Proof. If char K = 0, then this result follows directly from the definition of weakly
ramified algebras. And if char K # 0, then it follows from Lemma 6.1, (i), in [36],
since the indices of D; and Dy are coprime.
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For D € TR(K) the ramification index of D over K, which is defined as the
index of the group 'k in I'p, is the product of the upper ramification index, which
coincides with A%, and the lower index, which coincides with [Z(D) : K] (see [33]).

All the notation introduced above is also applicable to the case of an algebra D
with unitary involution 7 for a Henselian field k, since if k£ has a Henselian valua-
tion vy, then it extends uniquely to a valuation vk of the field K and a valuation
vp = v of the algebra D € D(K) by the following rule: for any d € D* put
vp(d) = n~lug(Nrdp(d)), where n = ind D. Thus, SL(D) is contained in Up,
and therefore the reduction homomorphism is defined on SL(D) (see [37]).

As mentioned already, the second part of this work is devoted to deriving for-
mulae for the computation of the groups SUK{"(D,7) in terms of subgroups of
the multiplicative group of the residue algebra D". The main assertion related
to the computation of the groups SUK?" (D, 7) is formulated in terms of the follow-
ing groups:

SL*(D) = {d € SL(D) | N,z (Nrdp5(d)) = 1}
SU“(D,T ={d e SU(D,7) | NZ(D)/K(Nrd =1}
SUK;{ (D, 7) =W/U( )

Ex = C\(K) N Ny p) i o Nrdp(D)™ .

Here C)\(K) is the group of Ath roots of unity belonging to the field K.

At the end of this work we consider several important examples of the compu-
tation of the groups SUK{" (D, ) for some special algebras D and D, and special
groups of values I'p.

The following theorem provides the main tool for computing SUK}"(D, 7).

Theorem 2. Let D € TR(K), assume that chark # 2, and let T € Invg /i (D),
where k is Henselian. Then in the notation introduced above the following commuta-
tive diagram holds, in which the sequences in both rows and in the column are exact:

1

1 —> E—SU"(D,7)/(U(D,T)) SUKY(D,7) —— 1, (1)

1 E SUK?"(D,7) —— SU(D, 7)/U(D,7) — 1. 2)
Ex
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Here E = ((1 + Mp) N SU(D,7))U(D, ) /U(D,7)". In addition, the following
sequences are also exact:

1 — SUK2(D,7) — SUKY(D, 1) — Nrd5(U(D, 7)) N Nrd(SL(D, 7)) — 1, (3)

1 — SUK®(D,7) — SU(D, 7)/U(D,7)’ — SU(D, 7)/SU(D,7) — 1. (4)

The proof of Theorem 2 is presented in § 6.

Remark 2. The exact sequences mentioned in the theorem and relating the sub-
groups of the groups D* and D" are realized by means of the reduction homomor-
phism, and the homomorphisms involved in these exact sequences are also induced
by this homomorphism and can easily be recovered from the context; for brevity
we leave it to the reader to describe these homomorphisms.

Thus, the problem of the computation of the above-mentioned groups
SUK{"(D, 1) is reduced to the computation of the subgroups D" and the group FE,
which is evidently isomorphic to ((1+Mp)NSU(D, 7))/ (U(D, 1) N(1+Mp)). It is
clear that the last group is trivial when ((1+ Mp) NSU(D, 7)) C U(D, 7)". If this
condition is satisfied, then we say that the group SU(D, 1) satisfies the congruence
theorem or that the group SU(D, 7) has the congruence property.

Remark 3. Note that similar assertions also hold for the groups SL,,(D) and the
groups SU,, (D, f) of isotropic forms f (see [22] and [23]).

Below the congruence theorem is established for one-dimensional anisotropic
forms f under some special, little restrictive assumptions.

More exactly, in what follows an important role will be played by the so-called
cyclic involutions accompanied by unitary elements (cf. Definition 5).

Definition 4. Given a cyclic extension L/K of degree n with group Gal(L/K),
a central K-algebra A is said to be cyclic over the extension L/K if it contains
L as a maximal subfield. In this case there exists an element u € A* such that
the inner automorphism %, induces on L a generator ¢ € Gal(L/K). Then u" is
contained in K and the algebra A is usually denoted by (L, o, a), where a = u".
We shall also use the notation (L,o,u) for the algebra A.

Definition 5. A unitary K/k-involution 7 of the algebra D € D(K) is said to be
cyclic (and is denoted by 7p) if D = (L,o,u), L" =Land L, ={l€ L |I" =1} is
cyclic over k. A cyclic involution 77, is called an involution accompanied by a unitary
element if there exists an element v € U(D,7r) such that the automorphism o
coincides with the inner automorphism i, as restricted to the field L. Below we
denote such an involution by 77 (u) and call it an involution of the form 7 (u).

Using this notation we can formulate the following important theorem.

Theorem 3. Let D € TR(K) and 7 € Invg (D). Then the group SU(D,T) has
the congruence property in the following two cases:
(i) D is a field;
(ii) D is not a field, (ind D,chark) = 1 (provided that chark > 0) and 7 is
accompanied by a unitary element.

The proof is presented in §7.
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It turns out that the class of involutions of the form 77, (u) is rather wide. For
instance, we show below that the set of cyclic K/k-involutions 77, of an algebra D
with a fixed field L always contains an involution of the form 77 (u). Moreover, for
an arbitrary involution 77, (u) we derive conditions for its ‘duplication’.

Not every K/k-involution of the algebra D has the form 7. (u) (neither is it
cyclic, see [38]). However, there always exists a regular central extension N of the
centre K such that the involution 7 is extended to a unitary involution 7z(v) for
an appropriate field E C D ® g N and an element v € U(D ®x N, 75 (v)).

Recall the following definition.

Definition 6. Let €, be a primitive nth root of unity in the field K. For arbi-
trary a,b € K* let A(a,b; K,¢,) denote the K-algebra generated by the elements i
and j satisfying the relations i" = a, j = b and ij = ¢,ji. Such algebras are
conventionally referred to as symbol algebras.

In our proof of the main result we use the following involutive analogue (Theo-
rem 9) of a theorem of Draxl [21].

Let K/k be a weakly ramified extension, let the algebra D € TR(K) be totally
ramified (D # K), and let 7 € Invg (D). Then there exists a positive integer r
such that D has the form D = Dy Qg - -- @k D,., where D; is an appropriate tensor
product of T-invariant symbol algebras A(aij, bij, K, €, ), whose exponents coincide
with their indices (1 < i < r,j € Z) and the corresinondmg canonical generators
are T-invariant, and the p; are the prime divisors of the index ind D. In particular,
the algebra D is the product of its T-invariant primary components.

The author dedicates this article to the memory of Academician A.N. Parshin.

§ 2. Unitary involutions of division algebras

In this section we describe special unitary involutions of division algebras D.

For any N C D and any mapping u: N — N let N, = {n € N | n* = n}.
In particular, S;(D) = {s € D | s7 = s}. A criterion for the set Invg (D)
being nonempty consists in the following: Invg /(D) is nonempty if and only if the
class of the algebra D in the Brauer group of the field K belongs to the kernel of
the corestriction homomorphism corg i : Br(K) — Br(k). If Invg/,(D) # @ and
7 € Invg (D), then all other elements p € Invg (D) have the form y = 7ig,
for s, € S,.(D).

The criterion formulated above yields a necessary and sufficient condition for the
existence of K /k-involutions in special cyclic algebras.

Theorem 4 (Albert, [39]). Let K/k be a quadratic separable extension with a non-
trivial k-automorphism 7, E/k be a cyclic Galois extension, which is linearly dis-
joint from K over k, and let L = E ®;, K. Then the algebra A = (L,0,a) ((o) =
Gal(L/K)) has a K/k-involution extending id @ 7 if and only if (E/k,(o|r),aa™)
is a trivial k-algebra (that is, aa”™ € Ng/p(E*)).

The following assertion also proves to be rather useful.

Theorem 5 (Kneser, [40]). Let D € D(K), 7 € Invg (D), and let A be a K-sub-
algebra with a unitary involution pa such that pa|lg = T|ix. Then there exists an
involution p € Inv (D) such that p|a = pala.
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An important role in what follows is played by a certain special class of cyclic
K /k-involutions.

The importance of the class of cyclic involutions is explained by the following
lemma due to Sury.

Lemma 2. Let D € D(K) be an algebra of an odd prime index with an involu-
tion 7, and let d € SU(D,7) andd ¢ K. If T = Tx(a), then d = yay~ta~! for some
ye D" anda € U(D,7)NK(d).

Remark 4. For cyclic involutions 7, in the case of odd ind D denote by § some
generator of the Galois group Gal(L/k) and set o = §2. It is evident that o is
a generator of the Galois group L/K and o|r, is a generator of Gal(L./k).

Remark 5. Algebras with cyclic involutions do exist. Indeed, let L/k be a cyclic
extension of degree 2n, where n is odd and greater than 1, and let u be a generator
of the Galois group. Set 7 to be equal to u™ and o to be equal to u2. Let a € K,
a,a?,...,a" ' ¢ Ny g(L*) and aa”™ € Np,_/i. Then D = (L, 0,a) is a division alge-
bra with a unitary K/k-involution. Moreover, by Theorem 5 the K/k-involution 7
of the field L extends to a cyclic involution 77, of the algebra D.

Lemma 3. Let D € D(K) be an algebra of odd index n with a cyclic involution Tr,.
Then there exists an element uw € D such that u|;, generates the group Gal(L/K)
and u™P ¢ U(K, 11|Kx).

Proof. Since there exists an involution 7, the algebra D has the form D = (L, 0, a).
Then D = (L,0?,a?) because n is odd. Since D has a unitary K/k-involution, the
following relations hold (see Theorem 4):

2a27'

aa” = Np_;p(x and a = NLT/k<X)2,

where x € L;. Denote by b the value of Ni,_/,(x). Then
a®b ' =a"% and (a0 1) = (a*p 1)L

Thus, the element a?b~! is unitary and D = (L,02,a?) = (L,0%, a?b™!), since
b= Np_/k(x) = Np/k(x). It follows from the last representation of D that it has
an element u such that u™ = a?b~! € U(K, 7) and the restriction of i, to the field L
coincides with ¢. The proof is complete.

In view of Lemma 3 it is natural to pose the following question: can the ele-
ment u always be chosen in U (D, 71,)? This leads to considering involutions of the
form 77, (u), where u € U(D,71) (see Definition 5).

Note that the existence of an involution of the form 7., (u) does not depend on
the choice of a generator of the group Gal(L/K).

Since cyclic involutions 77, (u) play an important role below, let us give a criterion
for the existence of involutions py,(u) for a fixed cyclic involution 7p,.

Lemma 4. Let D € D(K) be a cyclic algebra (L,o,7) with a cyclic involution
T =1L, and let T € D be such that ir|p, = o and ['irdD — ~  Then the algebra D
has a cyclic K/k-involution py, of the form pr(u) with the same restriction to L
as 7 if and only if pp, = 7iq, a € L,, and for an appropriate l € L*

a=® ‘a=(TT7)"'Np,p_(1). (2.1)
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Proof. We set xp = I'T” and show that xr € L,. Denote a primitive element L,
over k by . Then I'"'a2' = z° by the hypotheses of the lemma. Applying 7
to both sides of this relation we obtain I'"z"I'"" = x°7 = z°. Note that, as
o and 7 commute and x is fixed under the action of 7, this chain of equalities
yields the relation I'"zI'"7 =x?. With regard to what we said above, we obtain
I'T™z(I'T7)~! = 2, which yields I'T™ = xr € L, and since the element I'T'" is fixed
by the action of 7, we have xr € L.. It is evident that I'™ = I'"1yr.

Since I'™ = I'"!xr, equality (2.1) can be written in the following equivalent
form: a7 'a = XFlNL/L, (I71). Let pr, = Ti, (note that the restriction of 4;r to L
coincides with 7). In view of the relation I'™ = I'"!yp and the equality a = a =
Xt Npjz, (I71) we have la=® 'axrl” = 1. Further, note that la=° axpl™ =
ITa='Ttaxrl™ = (IT)a"'T'!xral™. Since I'T™ = xr, the last expression can
be written as (II')a~'T'"al™, which coincides with the product [I'(IT')*L. Since we
have started from the equality la‘“ilaXFlT = 1, the above computations show that
IT € U(D, ur,), which means that the involution pj, has the form pp (IT).

Conversely, suppose that the algebra D has an involution pr(u), where py, is
a cyclic K /k-involution whose restriction uy, to L coincides with 7|, and ueU(D, uy).
It is evident that py = 7i, for an appropriate a € L,. Next, as 7 and py have the
same restriction to L, we can assume that a”~ = [T" for some [ € L. In this notation,
since a*Z = a, the element II" obeys the relation (II')(I')*= = 1. For the left-hand
side of the last equality we have (I[')(IT)*t = (IT)a"'(Il')7a = (IT)a 'T71"a =
(IT)a='T'"al™. Further, taking the relation '™ = I'"!yp into account we have
(I)a~'T~1yral™, which means that {(Ta~'T~Yaxrl™ = la=° ayrl”. Turning
back to the equality (II')(IT')*2 = 1 we obtain a=° axp = {~*~". Thus,a™° a=
XleL/LT (I=1). The proof is complete.

It turns out that each involution 71 (v) generates a whole class of similar involu-
tions.

Proposition 1. If 7 =71, (v), then Tiy—ry—1 = Typ4-1(gvg~"), where g € D*.

Proof. First note that the field gLg~" is Tig—r
riant, we have

g—1-invariant. Indeed, as L is 7-inva-

(gLg™ ") o = gg"g TL7g"g gt = gLg .

Moreover, gvg~! € U(D,Ti,~4-1), since v € U(D,7) and

TL 7 —
97 Tg 1

(9vg™") t=g97g v gTg g = (gugT) T

By hypothesis, for any [ € L we have v~!lv = [°. Carrying over the generator o
to the extension gLg~! gives the generator & of the Galois group Gal(gLg~!/K)
that sends each element glg~! € Gal(gLg~'/K) to gl°g~!. Thus, to complete
the proof of the proposition it remains to show that (gvg=!)~1(glg~!)(gvg~!) =

(glg_l)g. The proposition is proved.

Proposition 2. Fiz an involution T = 7 of the form 7r(u). Let p € Invg /(D)
be such that p|;, = 7 (u)|r. It is clear that pu = 71 (u)ia, where a € L,. If the index
of D is odd, then the cyclic involution p has the form 71.(v) if and only if a = cb™b
for somecek and b e L.
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Proof. Indeed, if a required v does exist, then, as the restrictions i,|;, and i,|f,
coincide, the element v has the form wz, where z € L. Since v € U(D,pu),

we have (uz)™ = z7lu™! @ 12"u"a = z7!'u~!, and since a,z € L, we have

a'27u"a = "o 'wla = z !, which yields 27z = v la 'ue = a % =
(a=)7(a=*)~*. We apply the mapping Ny x to both sides of the last equality
and obtain Ny, x(2)Np x(2)" = 1. Hence, by Hilbert’s Theorem 90 we have
z = 971, where 6 is the generator of the group Gal(L/k) and b € L. We can
assume that @ = o7. Then (t/~1)(t?~1)™ = (o7t~ H)(t°t~") = ()7 (t7TH)~L =
(a=1)7(a=t)~1. This suggests the relation (at™™!)?(at™™!)~! = 1, which in turn
yields at™! = ¢ € K. Since a and t"*! belong to L*, we have ¢ € k. Putting
b=1t"! we obtain a = cbb”.

Conversely, let a = ¢b™b, where ¢ € k and b € L. Then 7i, = Tigprp = Tippr,
hence Tiy- has the form 7,7,-1(bub™!) in view of the above proposition. Since
b€ L, we have bLb~! = L and 7i, has the form 77 (v), where v = bub~!. The proof
is complete.

The following proposition is an adapted version of an observation made by Sury.

Proposition 3. Let 11, be a cyclic involution of an algebra D € D(K) of odd index
(char k # 2). If T, has the form 7 (u), then (SU(D,7)N(L\ K)) cU(D, 7).

Proof. Consider the field K(d), where d € SU(D,7) N (L \ K). Then Nrdp(d) =
Np/k(d) = 1. By Hilbert’s Theorem 90

d=0""

for some b € L and o = i,|r. Since the group Gal(L/k) is Abelian, o commutes
with 7, and therefore b=7b = d= = d™ = (b°b~1)7 = (b7)?(b7)~ L. This yields the
relation (bb7)? = bb”, which means that bb™ € K. As bb™ is 7-invariant, we have
bb™ = X € k, or, which is the same, A = I3 — al3 for some I;,ly € L,. Moreover,
since the cyclic K-algebra (K, 7|k, ) is a matrix algebra over K, the quadratic
form 22 — ay? is isotropic over K, which means that there exist ¢;, ¢ € K such that
t2 — at3 = \. Then it is easily seen that for t = t; + \/aty we have bt=1 € U(1, L).
Since the automorphism ¢ is induced by the restriction of the inner automorphism
specified by the unitary element u, we have d = u=!(bt~1)u(bt =)=, which gives
d € U(D,7)". The proof is complete.

For a division algebra with a unitary involution 7 the following theorem estab-
lishes the existence of a regular extension of its centre such that the resulting divi-
sion algebra has a unitary involution that extends the involution 7 of the original
algebra and has a special form.

Theorem 6. Let D € D(K) and 7 € Invg,(D), and assume that chark # 2.
Then there exist a reqular extension N/K and an extension of T to an involution
T of the algebra Dy = D @k N such that:

1) Dy is a cyclic division algebra;

2) T has the form 7 (u) for appropriate L C Dy and w € U(Dy,T).

Proof. Let n = ind D. By [41], Lemma 2.9, there exists a tower of extensions
k C R C T such that T'/k is a finitely generated purely transcendental extension and
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T/R is a cyclic Galois extension of degree n. Put F = KR and E = KT, and let
A = (E(w)/F(w),o,w) be a cyclic F(w)-algebra, where o is a generator of the
Galois group of the extension E(z)/F(z), z is a variable that is transcendental
over F and w = (1+ zy/a)/(1—zy/a). Tt is easily seen that both the exponent and
index of this algebra are equal to n. Since F(z) = F(w), A can be represented in
the following form: (E(z)/F(z),0,w).

Further, note that A ~ A ®p(.) D;‘EZ) ®p(z) Dr(z), where the algebra Don(Z) is
anti-isomorphic to the algebra Dp(.).

Let M be the function field of the Severi-Brauer variety SB(A ®p(.) D?(Z)).
Then A®p) M ~ Dp(,) ®p(z) M. Since deg(A R F(z) M) = deg(DF(Z) R F(z) M),
we have A QF(2) M = DF(z) QF(2) M.

Further, let 4 = 7|k. Then the automorphism p can be extended to an isomor-
phism between M and another regular extension of K, which we denote by M,,.
Consequently, we have the following commutative diagram:

K——M

K——M,

Denote the free compositum M M, of the fields M and M), over K by IV, and the
natural extension of the automorphism y to N by zi. Let Q = T /1, (N) be the trans-
fer of the field N under the restriction of scalars K/k (that is, @ is the subfield
of elements of N that are invariant under fi). As the extension N/K is regular
(see [42]), the algebra Dy has the same index and exponent as Dy, moreover, Dy
is a cyclic algebra with the unitary involution 7 defined by

T(d@n) =7(d) @ p(n),

where d € D and n € N. Thus, 7 is an extension of the involution 7 to the alge-
bra Dy. Note that the involution 7 has the form 77, (u), since Dy contains a cyclic
extension (F(z)N)/F(z)N and an element w such that ¢ = i,, and w™ = w~!. The
proof of the theorem is complete.

In conclusion of this section we formulate a lemma that enables reducing many
proofs of results on involutions 77, (u) to the case of algebras of primary indices.

Lemma 5. Let D € D(K) and 7 (u) € Invg (D). Let pi™* - - pYe be the canonical
representation of the integer ind D. Then D is the tensor product over K of algebras
Dy, ..., D, where each D; has the primary index p;" and can be represented in the
form (L, u'™ D/p;? ), where L; is the extension of the field K induced by the p; -part
of the extension L, /k. In particular, the algebra D can be represented in the form
D =D,; ®k T;, where

S S X
= @ Dyl =P ([T o, (0 ).
=1 =15
The proof of this lemma goes by direct computation based on the form of the
algebra D and the involution 7, (u).

Note also that the algebras D; are 77, (u

3 X . .
ind D/p;* ) invariant.
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§ 3. Henselian finite-dimensional central division algebras

Below we need some notation and facts concerning finite-dimensional central
simple algebras over Henselian fields.
The following well-known theorem often proves to be very useful.

Theorem 7 (Skolem-Noether). Let D € D(K), and let A and B be K-isomorphic
K -subalgebras of D. Then there exists an inner automorphism of the algebra D
that extends the K-automorphism between the algebras A and B.

We will also often use the following theorem from [36].

Theorem 8. Assume as above that F' is a Henselian field and D is a division
algebra over F. If E is an F-subalgebra of the algebra D and the extension Z(E)/F
is separable, then D contains an unramified lift of the algebra E/F (this means that
D contains an F-subalgebra E, unramified over F', with the residue algebra E)

The notion of an inertia algebra plays an important role in what follows.

Definition 7. Let D € D(F) and let Z(D)/F be a separable extension. Then the
unramified lift of the extension D/F' is called an inertia algebra of the algebra D.

Let us turn to the case of weakly ramified algebras. Clearly, the notion of
a weakly ramified structure generalizes a similar notion for field extensions. It is
easily seen that each weakly ramified central division algebra D has a maximal
weakly ramified subfield. In turn, this fact readily yields the following

Proposition 4. Suppose that D € TR(K). Then Nrdp(l + Mp) = 1 + Mk.
Moreover, (1 + Mg)™ = (1 + Mg), provided that char(K) = 0 or m is coprime
to char(K) in the case when char(K) # 0.

The residues (reductions) of the reduced values of elements of Vp in weakly
ramified algebras are computed in the following way.
Proposition 5. Let d € Vp. Then Nrdp(d) = NZ@)/?(Nrdﬁ(d))A.
Lemma 6. Let E be a weakly ramified extension of a field F. Then the equality
Ker(Ng/r)|(14mp) = (1 + Mg)™"" holds, where (1) = Gal(E/F).

Proof. By Hilbert’s Theorem 90, for any a € Ker(Ng,p)(E*) we have a = b !,
where b = t®u, u € Ug, a € Z and v(t) + I'p is a generator of the group I'g/TF.
Note that the element t can be taken equal to either 1 or +/f, where f is an
appropriate element of F' such that v(f) € Tg\T'r. In the case when ¢t = 1 we have
@ =7u""", which means that "' = 1. Hence @ € F, and therefore u = ¢(1+m),
where ¢ € F* and m € Mp. This gives a € (1 + Mg)™ L.

It remains to consider the case of a weakly totally ramified extension F/F'. In this
case (v/f)T = —V/f. Then for odd a we have a = —1(1 +m)™~!, where m € Mg.
However, the characteristic char F is distinct from 2, and therefore @ # 1. Hence
«a € 27, which reduces this case to the case when ¢ = 1. Thus, we have estab-
lished the inclusion Ker(Ng/r)|1+mp) C (1 + Mpg)™t. The reverse inclusion
(1+Mg)™tcC Ker(Ng/r)|(140mp) is evident. The proof is complete.

The last proposition has the following consequence.

Corollary 1. The relation SL(D) = {d € D | NZ(f)/f(Nrdﬁ(g)A) =1} holds.
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§ 4. Henselian involutorial tamely
totally ramified central division algebras

The main result of this section consists in the description of the structure of
weakly totally ramified (that is, weakly ramified and totally ramified) Henselian
division algebras D having unitary involutions. Note that in this case D = K. To
obtain such a description we need the following preliminary assertions.

Lemma 7. Let D € D(K), let T € Invg;, for a Henselian field k, and let g € D*.
Then g™ = ug, where u € Up.

Proof. It is easily seen that Nrdp(¢9™) = (Nrdp(g))™. Set ¢ = Nrdp(g). Then
vi(c) = vr(c™). Consequently, vx(Nrdp(g)) = vk ((Nrdp(g))™). This gives
vp(g) =vp(g™), which yields vp(g”~!)=0. Hence g7~ € Up. The proof of the
lemma is complete.

For the reader’s convenience we present here the following well-known lemma.
Recall that . denotes a primitive eth root of unity in the field K.

Lemma 8. Let k be a Henselian field, and let the integer e be coprime to char k
for chark #£ 0. If K = k(e.) is a quadratic extension of the field k, then K/k is an
unramified Galois extension.

Lemma 9. Let the algebra D € TR(K) be totally ramified and the element b € D
be such that vp(b®) € Tk for some e coprime to char k. Then there exist mx € K*
andm € Mg ey such that b = g (1+m)°. Moreover, if K /k is weakly ramified, D
has a unitary K/k-involution T and b® is a T-invariant element, then m € My ey,
so that g € k*.

Proof. The proof of the first part of the lemma is presented in [21]. Now let b° be
a 7-invariant element, and let vp(b°) € T'k. Then b® = mxu for some appropriate
elements 7 of K and u of Uy ye).

If the extension K/k is unramified, then without loss of generality we can assume
that mx is an element of k*, which means that the element W[_(lbe is 7T-invariant.
In view of this we can conclude that @ is 7-invariant. We consider its inverse image
z in k and obtain b° = mx2(1 + q), where ¢ € M 4ey. As beﬂ';{lz_1 is T-invariant,
the same is true of 1+ ¢. Since D € TR(K), the field k(b°) contains 1+ m, an eth
root of 1+ q.

In the case of a totally ramified extension K/k, for any Il € K \ k we have
O = ér/au, where u € Uy, 0, € k, K = k(y/a) and /o' = —/a. Since the
extension K /k is totally ramified, we can assume without loss of generality that
u =1+ p, where p € M. As the element b° is 7-invariant, by the first part of the
lemma we obtain I} (1 +m7)¢ = Ik (1 + m)°. Since Ilx = dx/a (1 + p), we have
—8ky/a (14p7)(14+m7)° = §y/@ (1-4m)°. Then —(1+p7)(1+m™)° = (14+p) (1-m)e.
Passing to residues in the last equality leads to a contradiction since chark # 2
(recall that the extension K/k is weakly totally ramified). Consequently, mx € k*
and ﬂ'I}lbe is a 7-invariant element. Thus, m € My e), as required. The proof is
complete.
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Proposition 6. Let D € TR(K) be a totally ramified algebra, let T € Invg /(D)
and e = exp(I'p/T'k). Then there exist elements s € S;(D) and g € D such that
s¢,g° € K, the orders of the elements vp(s) + 'k and vp(g) + Tk are equal to e,

[s,9] = gsg~1s~! is a primitive eth root €. of unity and

I'p/Tk =Tk(g)/Tk ®Teopxs)/Tk- (4.1)

Proof. First of all, note that under the hypotheses of the proposition, by Theo-
rem 3.10 in [33] we have e, € K. Let us establish the existence of nonzero s € S; (D)
with the property that vp(s) + I'x € I'p/I'k is an element of order e. Let z € D*
be such that vp(z) + 'k is an element of order e. Set s = z if x € S;(D). Oth-
erwise, if chark # 2 and 27 = zu, v € Up (Lemma 7), then at least one of the
elements 1 —u or 1+ w is invertible in Vp. Then we set s =2 +x for 1 +u € Up
and s = xy/a (1 — u) otherwise, where, as usual, K = k(y/a), a € Uy. Finally,
in the case when chark = 2, since the algebra D is tamely and totally ramified,
the index e is odd. Then set s = xx”. Without loss of generality we can assume
that in all cases s € Vpp (for this it suffices to consider s~! instead of s if necessary).

Now, from Lemma 2 in [2] we obtain s¢ = 7x (1 + m)¢ for appropriate elements
7k of K and m of Mgse). Taking now the element s(1 4 m)~! instead of s we
conclude that s¢ € K and K(s)/K is a cyclic extension of degree e since ¢, € K.

Denote by ¢ a generator of the Galois group K(s)/K such that s¥ = se.. By
the Skolem-Noether theorem there exists an element g € D such that gsg~! = s%.

Since the group I'p /T'k has exponent e, we have vp(g°) € T'k. Then from [21],
Lemma 2, we obtain g° = mx (1 +m)® for some 7x € K and m € M 4e). Taking
now g(1+m)~! instead of g we can assume that ¢¢ € K and K(g)/K is a cyclic
extension of degree e. Without loss of generality let g € Vp.

To establish equality (4.1) let us show that the intersection of the groups
I'k(g)/Tk and T'cp (k(s)) /T k coindides with T'x. Assume the opposite. Then for
an appropriate positive integer m we have ¢™ = ¢(1+ q), where ¢ € Cp(K(s)) and
q € Mp. Note that g™sg~™ = se™. On the other hand g"sg™™ = (1+¢)s(1+q)~ !,
so that s (14¢q) = (1+¢)s, which implies that se”* 4 se.q = s+¢s. Consequently,
s(elr — 1) = gs — seeq. If €l # 1, then the left-hand side of the last equation has
valuation vp(s), whereas a nonzero element with valuation greater than vp(s) is on
the right-hand side. The contradiction obtained means that m is a multiple of e.
Thus, FK(g)/FK N FCD(K(S))/FK =Tk.

For reasons of dimension, the order of the group I'p/I'yx is the product
of the orders of I'(4)/T'x and I'c, (i (s))/Tk. Since I'(5)/T'k and I'g () /T i have
the same order, in view of the equality I'x(4)/I'x N e, (k(s))/Tx = 'k we can
conclude that I'p /T'x = 'k g)/ Tk © T'cp(k(s))/T k- The proof of the proposition
is complete.

The following assertion is an analogue of Draxl’s theorem in [21] in the case of
algebras with unitary involutions.

Theorem 9. Let K/k be a weakly ramified extension and the algebra D € TR(K)
(D # K) be totally ramified, and let T € Inv /(D). Then D = D1®g - - Qg D, for
some positive integer T, where D; is an appropriate tensor product of T-invariant
symbol algebras A(a;j,bi;, K, Ep'?‘j), 1<i<r,j € Z, whose exponents are equal
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to their indices, the corresponding canonical generators are T-invariant, and the p;
are the prime divisors of the index ind D. In particular, D is the product of its
T-1nvariant primary components.

Proof. Denote e = exp(I'p/T'k) and let the elements s € S;(D) and g € D be
chosen as in Proposition 6. Thus, ¢¢ € K and K(g)/K is a cyclic extension of
degree e.

Let us show that the element g can be chosen 7-invariant. Suppose that g™ # g.
If g = —g, then instead of g we consider the element dg € S, (D), where § € K
and §7 = —¢§. Thus, we assume below that g7 # +g.

We set g™ = ug and show that u € Cp(K(s)). We have

T T -1

97959 g7 =g7sg Tee = (97 sg) e = se, e, (4.2)

1 (T—‘rl).

which means that (g7g)s(g7g) ' =se_ "e.. This yields the relation usu™!=se.
Asu € Up and the algebra D is totally ramified, we can assume that u = (1+m)ug,

where m € Mp and ug € Ux. Then s 'usu™' € 14 Mp. Consequently,

2 = se2 and (97¢g)s(g7g)"" = se,

ec "M =1, that is, 7 = 1. Since g%sg™
we have u € Cp(K(s)).

In view of equality (4.1) in Proposition 6, the order of the element vp(g+¢7)+T'k
is the least common multiple of the orders of vp(g) + ' and vp(1 4+ u) + Tk €
Cep(r(s))- Now it follows from the definition of e that the order of the element
vp(g 4+ g7) + 'k equals e. Therefore, we can assume that g € S;(D). Note also
that vp(g©) € T'k, since the exponent of the group I'p /T'k equals e.

By Lemma 9 and in view of the inclusion g € S.(D) it follows that ¢g¢ =
(1 4+ m)® for appropriate elements 7, € k and m € Mj(4ey. Since the elements
of k(¢®) commute with s, 1 +m also commutes with s. Moreover, 1+ m commutes
with g, because it is an element of k(g¢). Now going over from g to g(1 +m)~! we
can assume that ¢¢ € k and K(g)/K is a cyclic extension of degree e.

Consider the K-subalgebra A of the algebra D generated by the elements s and g.
It is easily seen that A coincides with the symbol algebra A(s¢, ¢¢, K,e.). Each
a € A has the form Zl,'r‘ cl’rslgr7 where ¢;, € K, hence its 7-image a” coincides
with Zlﬂ, cZTgTsl. Since ¢ . € K and powers of s and g commute up to powers of the
root €., we have a” € A. Thus, the algebra A is 7-invariant. If A coincides with D,
then D is a 7-invariant symbol algebra. Otherwise D = A @ Cp(A). Tt is clear
that ind Cp(A) < ind D. Repeating the above argument for the algebra Cp(A) we
arrive at the conclusion that D can be represented in the form of tensor products
of T-invariant symbol algebras over K whose canonical generators are 7-invariant.
Now, to complete the proof of the theorem it suffices to take the following two
remarks into account.

(i) Let D = A(a,b,K,emyn), where m and n are coprime, and let ¢ and j be
T-invariant canonical generators of the algebra A.

Then K (@™, ™) = A(a,b, K, e ), K(i",j") = A(a,b, K,el..), the elements i,
4™ and @™, j™ are T-invariant canonical generators of the first and second algebra,
respectively, and D = A(a,b, K,el,) @k A(a,b, K, 7).

(i) Assume that the algebra A = A(a, b, K, ¢,) is weakly totally ramified over K.
Then its exponent coincides with the index. To prove this it is sufficient to make
use of Proposition 6.9 in [36]. The proof of the theorem is complete.
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The above proof suggests the following

Corollary 2. There exist no weakly totally ramified noncommutative division alge-
bras with unitary involutions such that chark = 2 and the extension K/k is not
unramified.

Proof. Since K/k is not unramified, by Lemma 8 for e = exp(I'p/I'x) we have
€e € k, in which case, as shown in the proof of the theorem, ind D is 2-primary.
On the other hand, since D € TR(K) and char k = 2, in view of Theorem 9 ind D is
odd. This completes the proof of the corollary.

It turns out that the indices of the algebras D in Theorem 9 depend essentially
on the form of the extension K/k.

Corollary 3. Let D be the algebra considered in Theorem 9 and p be an odd prime
such that €, € k. Then (ind D,p) = 1.

Proof. Assume that p divides ind D. By Theorem 9 the algebra D can be rep-
resented in the form Dy ® Do, where D5 is T-invariant and the algebra D; has
a p-primary index which coincides with its exponent. Let L be the 7-invariant
maximal subfield in Dy. Then the centralizer Cp(L) is a T-invariant L-algebra iso-
morphic to D1 ® L. It is easily seen that the exponent and index of the last alge-
bra are equal to each other and to the index of Dy. Thus, Cp(L) is a symbol algebra
A(a1,b1, L,epn), where a1, by € LE. Then the p"~'th tensor power of this algebra is
Brauer equivalent to the 7-invariant symbol algebra A(a1,b1, L, ;). On the other
hand A(a1,b1,L,ep) = A(a1,b1,Lr,€p) @r. L. Since A(aq,b1,L;,€p) is T-invariant
and the restriction of 7 to L, is the identity map, we have exp A(a1,b1, Lr,ep) = 2,
which contradicts the fact that the algebra A(aq,b1, L,ep) has an odd index. The
proof is complete.

Next, there is another corollary.

Corollary 4. Let the algebra D be the same as in Theorem 9, and let char k # 2
and eraqinapy € k (here rad(ind D) is the set of all prime divisors of ind D).
Then ind D is 2-primary. In particular, if 7 is a cyclic involution, then ind D
s 2-primary.

Proof. Assume that ind D has an odd prime divisor. Take an appropriate
2-primary power of the algebra D and assume without loss of generality that ind D
is odd. Consequently, rad(ind D) is also odd, and therefore by Corollary 3 we
have (ind D, p) = 1 for any divisor p € rad(ind D), since €,4q(inda ) € k. The con-
tradiction obtained means that the original algebra D is an algebra of a 2-primary
index. The proof of the corollary is complete.

Corollary 5. Let the algebra D be the same as in Theorem 9. If K = k, then D
is the product of T-invariant quaternion algebras D1, ..., D, , where D; = A; @ K
and the A; are quaternion T-invariant k-algebras (cf. Lemma 8).

Proof. Since D € TR(K) and the algebra D is totally ramified, we have z, € K
(see [33]), which means that e, € k in view of Lemma 8. By Theorem 9 each algebra
Alaij, b, K, €, ) can be written as a tensor product of a central k-algebra E;; with

canonical 7-invariant generators and an extension K/k. Then the algebras E;; are
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T-invariant and exp E;; = ind E;;. Since the restriction of 7 to £ is the identity map,
the algebra E;; has an exponent and an index equal to 2. The proof is complete.

From the last corollary we easily derive the following.

Corollary 6. In the above notation, for K = k there exist no nontrivial weakly
totally ramified algebras D/K whose indices are not 2-primary.

Proof. In the case when K = k, by Corollary 5 the algebra D is a product of
quaternion algebras, which contradicts the condition that the index of D is not
2-primary. The proof is complete.

The proof of Theorem 9 suggests the following description of weakly totally
ramified division algebras.

Corollary 7. Let the algebra D be as in Theorem 9, and let the index of D be
coprime to chark. Then D is a radical K -algebra, which means that it has a finite
system of generators over K which consists of T-invariant radicals (recall that an
element A is called a K -radical if A™ € K ; T-invariance means that AT = A).

§ 5. Henselian weakly ramified division
algebras having unitary involutions

The main object of investigation in this section is a weakly ramified division
algebra having unitary involutions. We assume below that k is a Henselian field,
K/k is a quadratic separable extension, D € TR(K) and 7 € Invg/,(D) (so that

The structure of such K-algebras D can explicitly be described in terms of inertia
algebras and generators with simple defining relations.

First, consider the case of unramified algebras D. The following assertion holds.

Lemma 10. Let the algebra D be unramified over K and indD # 1. If
Invg (D) # @, then either the exponent of D equals 2 or K/k is unramified.

Proof. Assume that the exponent of the algebra D is distinct from 2 and either
K =k or K/k is purely inseparable. Then the restriction 7|7 is the identity map.
Since the reduction 7 is an involution of the algebra D with trivial restriction to K
and ind D # 1, the exponent of D equals 2. As soon as the algebra D is unramified
over K, it has the same exponent as D. This contradicts our assumption, and so

either exp D = 2 or K/k is unramified. The proof of the lemma is complete.
For algebras of odd indices we have the following.

Corollary 8. Let the algebra D be unramified over K, and let ind D be odd. If
D # K, then the extension K/k is unramified.

Now let us describe the relation between the sets Invg /(D) and Invg /E(E)~
To do this, note that we can introduce the following equivalence relation on the set
Invg/,(D): two involutions f1, fo € Invg /(D) are said to be equivalent (f1 ~ fo)
if and only if their reductions f; and fo coincide.

The equivalence classes with respect to this relation are as follows.

Lemma 11. For fi, fo € Invg (D) (chark # 2) the equivalence fi ~ fo holds if
and only if there exists an element m € (1 + Mp) NSy, (D)K such that fo = fiim,.
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Proof. First we show that f; ~ fo if and only if there exists an element m €
(14+ Mp)N (S, (D) U Ky, (D))K such that fo = fiiy,, where Ky (D) = {d € D:
d™ = —d}. According to the above definition, f; ~ fo if and only if f; = fo. Since
fif2 is a K-automorphism whose restriction to D is the identity map, by [43],
Theorem 1, there exists an element m € (1 4+ Mp) such that fo = fii,,. On the
other hand, since f; and f5 are K/k-involutions, we have 4,, = i; for an appropriate
t € Sy, (D) U Ky, (D), which yields the relation m = st, where s € K. Note that
K¢, (D) = /a Sy, (D), where K = k(y/a), a € k. Then by what we proved above
we have m € (Sy, (D) U +/a Sy, (D))K, that is, m € Sy, (D)K.

Conversely, if fo = fiim, then fi = fo, that is, fi ~ fo. The proof is complete.

Remark 6. The claim of Lemma 11 can be refined in some special cases.

Suppose that chark # 2 and I'x = T'x. Note that Ky, (D) = /a Sy, (D) for
some a € Up. Taking the equality Ky, (D) = /a Sy, (D) into account we obtain
(St (D)U Ky, (D))K = Sf, (D)K. Thus, we can assume that fo = fii,, = fiis,
where m € 1+ Mp and s* = s. The fact that the automorphisms i,, and is
coincide implies the equality st = m for an appropriate ¢ € K. Since I'yk = I,
we can assume that ¢t = mpui for my € k and ug € Ug. In view of the equality
m = st the element s has the form ﬂglus, where us € Up, which yields u] = ug, and
therefore we can assume from the very beginning that s € Up. Then it follows from
the equality sug = m that Sux = 1. Therefore, 5 € K. Moreover, 5 € k. However,
in this case i € k as well. The element ux has the form ux = ug (14 ¢) for some
up € k and ¢ € M. Hence m(1+q)~' € Sy, (D). Therefore, fo = fiimaiq-1 =
fi%smeu,- Thus, in the above definition of the equivalence of two involutions f;
and fs it is sufficient to require that there exist an element m € (1+Mp)N Sy, (D).

Suppose as above that char k # 2 and T, is a subgroup of index 2 in the group
'k and K = k(y/7), where m € k and vi(w) ¢ 2I';. Note that the element
v (v/7) + T is a generator of the quotient group 'k /T';. Since the algebra D/K
is unramified, each element d € D has the form /7 "uqdy, for appropriate elements
uqg € Up, 0y € k and n € Z. If fi ~ fa, then by Lemma 11 there exists an element
m € (14 Mp) NSy, (D)K with the property that fo = fiiy,.

Let m = st, where s € Sy, (D) and t € K. It is easily seen that, as vp(m) =
vp(st) =0, we have s = \/Eﬁusés and t = ﬁ_ﬁutdt for some u, € Up, u; € Uk,
0s,0; € k and § € Z.

Since s € Sy, (D), depending on whether the integer [ is even or odd, the element
us has the property u£1 = tu,. Hence m = st = d;0,urus. Note that ds0:us € Uk,
and, passing to residues, we conclude that w; € K. Since K = k, we have u, =
3k (1+p) for appropriate elements 6y € k and 1+p € 1+ Mp. It is easy to see that
14+pe Sy (D)UKy (D).

Since 45 = 4y, = 914p, where 14+p € (14+Mp)N(Sy, (D)U Ky, (D)), there exists
ne€ (1+Mp)N(Sy(D)U Ky, (D)) such that fo = fii,.

Remark 7. The above considerations show that when chark # 2, our equivalence
relation coincides with the one introduced in [43].

Let us make one more useful observation. Note that when passing to reductions
the equivalence relation induces a mapping pp of the quotient space Invg ,(D):

pp: Invg (D) — Invf/g(ﬁ).
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It is easily seen that pup is injective.
As for the surjectivity of up, under sufficiently weak constraints on the extension
K /k we establish the following theorem, in which we do not assume that char k # 2.

Theorem 10. Let the algebra D be unramified over K and the extension K [k be
not purely inseparable. Then up is a bijection.

Remark 8. This theorem refines Theorem 2 in [43], where the same is proved in the
case when char k # 2. Thus, below we also consider the case char k = 2.

Our proof uses the following two assertions.

Lemma 12. Let D € TR(K). Assume also that D has an involution T and

(7|k) = Gal(K/k). Then for each T-invariant separable extension Z /K the algebra
D contains its unramified T-invariant lift Z/K .

Proof. 1f 7z = K, then we can set Z = K.

Now, let Z #+ K and K, = = k. Define an element ﬁ € Zi in the following way:
if K/k is unramified, then let Zz = k(ﬁ) Otherwise, let %(3)/k be the maximal
separable subextension of the extension Z /k. Let 3 be the inverse image of ﬁ in D
and let

k(B4 p7) if chark # 2,
k(887 if chark = 2.

Evidently, 7|g = id. Let N(FE) be the maximal subfield of F unramified over k.
Since E = N(E), we have Be N(E). Indeed, if chark ;é 2, then B+ 37 =203 €
N(E), and in the case when char k = 2 we have ﬂ2 =68 € N(E) and, moreover,
in this case k(ﬂQ) = %(B), since k(f) is at the same time purely inseparable and
separable over k((32). It is clear that the field k(3) lifts to N(E) as an unramified
extension Z /k. Now set Z = ZK. The proof is complete.

Lemma 13. Let L/K be an unramified extension of Henselian fields with an invo-
lution 7, 7|k # id and k = K,. If chark # 2, then let K = k(\/a), and if
chark = 2, then let K = k(B), where 8 is a root of a polynomial of the form
22+ + b, b € k, which is irreducible over k. Let N/k be the mazimal subex-
tension of L/k unramified over k. Then the following possibilities hold for the
extension L/L,.
(i) If K/k is unramified, then L/L, is unramified too.
(ii) If K/k is weakly totally ramified, then for t|y = id the extension L/L,
is weakly totally ramified. Otherwise L/L, is unramified.
(iil) If K/k is not weakly ramified, then for T|n # id the extension L/L. is
unramified. If T|n =id, then L/L, is not weakly ramified.

The proof of the lemma consists in routine computations in the theory of
Henselian Galois extensions and we leave it the reader as a simple exercise.

Proof of Theorem 10. In view of Remark 8 we can limit our considerations to the
case when chark = 2.

Suppose that the algebra D has a K /k-involution 7. Then the argument of
Theorem 2 in [43], which does not depend on the characteristic of k, immedi-
ately establishes the existence of a K/k-involution o of the algebra D. Since o
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is a K /k-involution, we have 7|z = T|. Therefore, there exists an appropriate
F-invariant element h such that & = 7iy. Consider the field K (h). We can assume

that h ¢ K. Otherwise 7 lifts to an involution ¢. By Lemma 12 there is an unram-
ified lift of the field K (h) to F that does not coincide with K. Now if we show that
the element £ is lifted to a o-invariant element h of F', then the involution O’i;l
is the lift of 7. To establish the existence of such h consider two cases: F'/F}, is not
weakly ramified and F/F, is weakly ramified.

Let F/F, be not weakly ramified. Then by Lemma 13 the involution o acts
trivially on the maximal unramified subextension N/k of the extension F/k. Indeed,
if we assume that o|n # id, then by Lemma 13 the extension F/F, is unramified,
which contradicts our assumption that F/F, is not weakly ramified. Note that, by
the hypothesis of the theorem, K /k is not purely inseparable and N = F5 (smce
N C F5). Hence the separability of the extension F'/K implies the separability of
the extension F/k, which, in turn, yields [F : N] = 1, that is, Fz = N. Therefore,
h € N and denoting the lift of the element I to the field N by h we obtain the
required result.

Now consider the case of a weakly ramified extension F/F,. Let h be the lift
of the element h to the field F. As h is G-invariant, we have h® = h(1 + m).
We apply o to both sides of the last equality and substitute the element h(1 + m)
for h?. Then h = (1 +m)?h(1 4+ m). Note that h and h° commute, so h and
(14+m) also commute. The last equality implies the relation (14+m)?(1+m) =1,
which is equivalent to Np,r, (1+m) = 1. Hence, by Hilbert’s Theorem 90 and the
fact that the extension F/F, is weakly ramified we have 14+ m = (1+ p)?~! for an
appropriate element p € Mp. Taking the element h(1 + p)~! as h we obtain the
required result. Therefore, the mapping up is surjective. The proof is complete.

Now we prove the following refinement of Corollary 8.

Theorem 11. Let D € TR(K) be an algebra of odd index and let T € Invg /(D).
Then D = K if D is a field and K/k is unramified if D is not a field.

The proof of this theorem is based on the following assertions.

Lemma 14. Let D be a totally ramified noncommutative algebra. Then any sub-
field L of the algebra D containing K is totally ramified over K. Moreover, the
centralizer Cp(L) is totally ramified.

Proof. It is sufficient to apply the ‘fundamental inequality’ (1.1) from [36]
and take into account that the algebra D is totally ramified over K.
Indeed, since [D CD( )HCD( ) ][L K] [FD :FCD(L)][FCD(L) ZFL][FL ZFKL
[D : CD(L)] [FD FCD ] [CD( ) ] [FC'D(L) ZFL} and [L : K] 2 [FL : FK],
all inequalities are in fact equahtles as required. The proof is complete.

Lemma 15. Let the algebra D have an odd index and be weakly ramified over K .
Then:
(i) any subfield L/K of D containing K and the centralizer Cp(L) are weakly
ramified over K and L, respectively;
(ii) any T-invariant extension L of the field K is contained in a mazimal T-inva-
riant subfield My, .
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Proof. The proof of (i) is similar to the proof of Lemma 14 and is based on dimension
considerations. Part (ii) is proved using induction on ind D. First, suppose that
ind D is a prime number. Then the claim of the lemma is evidently true. If ind D
is composite, then we consider a noncentral 7-invariant element s and see that
either L(s)/K is maximal (and 7-invariant), or Cp(L(s)) # L(s) and the index of
Cp(L(s)) is less than that of the algebra Cp(L). Repeating this step several times
(if necessary) we obtain a tower of 7-invariant subfields in D, which starts with L
and ends with a maximal 7-invariant subfield. The proof is complete.

Lemma 16. Suppose that the extension K/k is not unramified. If ind D is odd, D
is totally ramified and T € Inv (D), then D = K.

Proof. Assume the opposite. We can assume that D has a p-primary index. Next,
by Theorem 9 we can assume that D is a symbol algebra, say, D = A(a,b, K, epm)
with 7-invariant canonical generators A and B, where ,» € K is a primitive p"'th
root. As D € TR(K) and ind D is primary, we have (chark,p) = 1. If epm ¢ k,
then the extension K/k must be unramified by Lemma 8, which is not the case
by assumption. And if e,m € k, then the central k-algebra (A, B,epm) has an
involution that acts trivially on k, and therefore its index is not greater than 2. On
the other hand, the index of D is odd, which yields D = K. The proof is complete.

Proof of Theorem 11. We can assume that ind D is p-primary, since instead of 7 we
can consider p € Invg /(D) such that the primary components of the algebra D
are p-invariant.

Assume that the extension K/k is not unramified. Then 7| = id. By Corol-
lary 8 we can assume that the K-algebra D is not unramified over K. Since the
degree [Z(D) : K] is odd, we have Tl zm) = id.

First, suppose that D is not a field. Then 7|5 # id, but ﬂz(ﬁ) = id. Therefore,
exp D < 2. On the other hand ind D is odd. Consequently, exp D = 1.

Now suppose that D is a field and ind D = p. If D = Z(D), then by Lemma 16
we have D = K, which contradicts the condition ind D = p. Let D # K. As D/K
is weakly ramified, D is a cyclic extension of degree p of the field K. Let Z(D),
be the maximal subfield of Z(D) separable over k. It is evident that Z(D),/k is
a cyclic extension of degree p. By Theorem 8 Z(D),/k lifts to the k-algebra D as
an unramified 7-invariant cyclic extension X/k. Let 3 be a primitive element of
the extension X /k and f3 be its inverse image in X. Denote by fz(z) the minimal
polynomial of § in the extension X/k. Since at the same time [ is a primitive
element of the extension X K/K, we have 37 = gBg~! for some g € D. Therefore,
B7(g+97) = (g +g7)B3- In the case when g + g7 = 0 we set y = Tig-1. In the
case when g + g™ # 0 we set = Ti(gq4-)-1. Then p € Invg /(D) and p* = f.
Passing to the involution p allows us to assume without loss of generality that the
compositum X K has the form X ®; K and 7|x = id.

Clearly, D is a cyclic algebra with maximal subfield Z = X ®; K. It is evident
that if ¢ is a generator of the Galois group Gal(X/k), then ¢ ®jid is a generator of
the Galois group Gal(Z/K). Let I" € D have the property ir|x = ¢. Set v =TP.
Then D = (Z,¢ ®k id,v). By Theorem 4, for the existence of a unitary invo-
lution that acts trivially on X it is necessary that the identity v = Nx,i(x)
be satisfied for an appropriate x € X. Without loss of generality we can assume
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that v € Vk. Let us show that then v € Mk. Indeed, let ’y € Ug. Then I" € Up
and I~ = 3. Passing to residues rar o = 39 = B7 gives a contradiction,
since D is a field and 3 # 3. Consequently, v € Mg. Note that vg(y) ¢ pI'k.
Indeed, let v (y) = pvk(d) for some 6 € K. Consider the element v6~? € Ukg.
Since D = (Z, p @ id, v6~P), we arrive at the case 7 € Uk, which we have already
considered. As the extension X/k is unramified, we have vg(Nx/x(z)) € pI'k.
Since (2,p) = 1 and vk (y) ¢ pl'k, we obtain vi(yy") = 2vk(y) ¢ pl'k, which
gives a contradiction again. Therefore, there exists no algebra of odd prime index p
with a K/k-involution.

Now we use induction on ind D. Let D be a noncommutative K-algebra of
index p” (r > 1) such that D is a field and suppose that there exist no weakly
ramified algebras of index less than p", r > 1, with commutative residue algebras.
Recall that Z(D) # K. Again, let Z(D), be the maximal separable subextension
of the extension Z(D)/k. Then Z(D),/k is a T-invariant extension. By Lemma 12
as applied to the k-algebra D and extension Z(D),/k, there exists a T-invariant
unramified lift Z of the last extension. Since the degree of Z(D),/k is odd, 7 is the
1dent1ty automorphism of Z(D),/k. Consequently, 7|5 = id. Since the extension
Z /k is unramified, it is Abelian (because the residue field of the field Z is Abelian
over k). Let Z, »/k be a subextension of Z(D),/k such that Zp/k is a cyclic extension
of degree p. Consider the r-invariant unramified lift Z, /k of Z,/k. It is clear that Z
is T-invariant, and therefore by Lemma 12 there exists an unramified 7-invariant
lift Z, of the extension Z,/k. Then the centralizer Cp(Z,K) is T-invariant and
weakly ramified over Z,K, ind Cp(Z,K) = p"~1, and we arrive at a contradiction
with the assumption that » > 1. The proof of the theorem is complete.

In the general case, from Lemma 12 we immediately obtain the following.

Corollary 9. In the algebra D € TR(K) there is an unramified T-invariant lift
Z|K of the field Z(D).

Indeed, in the formulation of Lemma 12 we have Z = Z(D). Since D € TR(K)
the field Z is a separable extension of the field K.
The following result plays a key role in what follows.

Theorem 12. The algebra D has a T-invariant inertia algebra.

Proof. By Corollary 9 the extension Z(D)/K is separable. Let Z be an unram-
ified 7-invariant lift of Z(D)/K, which exists by virtue of Lemma 12. We can
apply Corollary 2.11 in [36] to the 7-invariant algebra Cp(Z). Therefore, Cp(Z) =
I1®zT, where I is an inertia algebra of Cp(Z) and T is a totally ramified Z-algebra.
If T is a field, then T' = Z and the statement of the theorem is true. Let us show
that this condition is satisfied for char k = 2. Indeed, since D € TR(K), the index
of T is odd. Next, it follows from D = I that I has an involution 7. Then I con-
tains a maximal separable T-invariant extension, which can be lifted to a maximal
T-invariant unramified extension L/Z in I by Lemma 12. Consider the extension
Cp(Z) ®z L isomorphic to the L-algebra (I @z L) ®p (T’ ®z L). By [36], The-
orem 3.1, the algebra T  ®z L is totally ramified, has an odd index and has an
involution induced by the natural involution of the algebra Cp(Z) ®z L. By The-
orem 11 we have ind(T ®z L) = 1, which coincides with ind 7.
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Thus, in what follows we can assume that chark # 2 and the algebra T is
noncommutative. In the case when I” = I the theorem is proved. Now suppose
that 1™ # I. Making use of Theorem 10 we lift 7 to an involution of the algebra I,
which can be extended to an involution s of D (Theorem 5). Since s|x = 7|k, we
have s = 7i, for a certain g € S;(D). Then iy|z: Z — gZg~' = gZ7g~ = Z°.
Since I®* = I, we also have Z° = Z, and therefore i,4|z € Gal(Z/K). As 7s = iy,
we have 75 = i,, which yields 4|5 = id € Gal(Z/K). Since the extension Z/K
is unramified, we have Gal(Z/K) = Gal(Z/K). Hence i4|z = idz. Consequently,
g € Cp(Z) and v(g) € I'p.

Let g = un™, where w € Up, n” € T (note that I'r = I'p- ) and v(n) = v(g). Then
for i € I we have i* = gi"g™! = un™i"n " "u"! = u(n"tin)"u"! = wi"u"!. Thus,
since s = 7 and s|; = T4y, we also have 7, = iz = id;. Consequently, u = u,(1+m)
for appropriate u, € Uz and m € Mp. Evidently, we can now assume that u=1+m.
We apply s to both sides of the equality i® = ui"u~!. Then i = (ui"u~1!)*. Since
wiTu=! € I, we have i = (ui"u™!)* = (wiTu=1)™ = (uu~")i(uu"")"!. Thus,
i = (uu"")i(uu"")"! and therefore uu~" € T (because T = Cp(I)).

Suppose that chark # 2. Then u + u” = 2 and so v+ «” € Up. Then u +u™ =
(7! 4+ 1)u, where t = uu~". For i € I we have

=) ) = A DT )T

But (t7! + 1)u = u + u”. Hence

T \ —1
iSZ(u+u7)iT(u+ur)_1=u+u iT(u+u ) .

2 2

It is clear that ((u—l—uT)/Q) =1 Set (u+u")/2 =1+p. Then 1+p €
(14 Mp)N S;(D) and i* = (1 + p)i” (1 + p)~'. Since the extension K/k is weakly
ramified, the extension K(1+p)/k(1+p) is too. Then the element 1+ p is the value
of some element 1+ ¢ € 1+ Mg (14p), which means that 1 +p = (1 +¢)(1 +¢)".
Set J = (1+4¢)"'I(1+gq). Then

JT =1+ I"(14q) " =1+¢)"(1+p) " I*(L+p)(1+q) "= (1+q) " I(1+q).

Hence J is a T-invariant inertia algebra of the algebra D. The proof of the theorem
is complete.

Theorem 12 can be improved by using the following two assertions.
Lemma 17. Let A be a subalgebra of an F-algebra D with involution 7, let A be
an unramified T-invariant division F-algebra, let F' C Z(A) where FT = F, and let
R be a central T-invariant - algebra such that A = R®F , where Lisa separable

extension of the field F. Then there exists an unmmzﬁed T-invariant lift of the
F-algebra R to A.

Proof. By Theorem 8 the algebra A has the form A = R® r L, where R is an
unramified algebra over F' with residue algebra I Rand Lisar- -invariant unramified
extension of the field F'. Suppose that R #+ R. We lift 7 \ R to an involution of
the algebra R, which, in turn, can be extended to an involution s of the algebra A
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by letting it act on L in the same way as 7. Since 5|z(4) = 7|z(4), We have s = Ti,
for some g € A. As the Z(A)-algebra A is unramified, we have g = 7(4)u, where
Tz(4) € Mzay and u € Ua. The rest of the proof repeats the argument in the

proof of Theorem 12. More exactly, for an arbitrary r € R we have

S =grigTl = uw}(A)rTﬂg(TA)ufl = u(ﬂ'g(lA)TwZ(A))Tufl =urTu "t

In view of the equalities 3 = 7 and s|; = 7i,|p We have iy = iz and therefore
the last automorphism is the identity automorphism of the residue algebra of R.
Consequently, u = u;(1 + m) for some w; € Uy, and m € M 4. Now it can clearly be
assumed that u = 1+m. We apply s to both sides of the equality r* = ur™u~! and
obtain 7 = (urTu~1)%. Since ur"u~! € R, we have r = (ur"u=1)% = (urTu=!)T =
(wu=")r(uu=")~1. Thus, r = (uu"")r(uu=")"!, and therefore uu=" € C(R).

Since char Z(A) # 2 and the residue of u + u7 is 2, we have u + u”™ € Uy.
Set t = uu~7. Then u +u”™ = (¢~ + 1)u. Moreover,

= )T D) = T DT (T 1)

but (7! 4+ 1)u = u + u”. Consequently,

T \ —1
Ts:(u—&—uT)rT(u—l—uT)_l:u—i_u TT(U+U > .

2 2

It is clear that ((u+wu7)/2) = 1. Set (u+u")/2 = 1+ p. Then 1 +p €
(14 Ma) N S-(A),

= 1+pr (1+p~"
Since the extension Z(A)/Z(A), is weakly ramified, the extension Z(A)(1 +
p)/Z(A);(1 + p) is too. Then the element 1 + p is the value of some element
14 q € 14+ Mz(ay(14+p), which means that 1 +p = (14 ¢)(1 + ¢)7. Denote the
algebra (14 q)"'R(1 + q) by J. It is 7-invariant:

JT=(1+q) R (1+q) " = (1+q) (1 +p) 'R*1+p)(1+9) " = (1+¢) 'R(1+q).

Hence J is a 7-invariant lift of the algebra Rin A. The proof is complete.

Lemma 18. Let A be an unramified division algebra, let T € Invg /i, (A), and let F
be a T-invariant subfield of the field Z(A). Then for any T-invariant algebra S that
is a subalgebra of A such that Z(g) is a separable extension of the field F, there
exists a T-invariant unramified lift of the algebra S to the algebra A.

Proof. Consider Z(A)Z(S), the Z(A)-linear hull of the field Z(S). Clearly, it is
a T-invariant extension of the field Z(A). Its centralizer in A is also 7-invariant.
Hence CZ(Z(A)Z(g)) = §®Z(§) Z(A)Z(S), which allows us to reduce the proof of
the lemma to an application of Lemma 17. The lemma is proved.

Theorem 13. Each T-invariant K -subalgebra E C D such that the centre Z(E)
of E is separable over K has a T-invariant unramified lift E C D (over K).
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Proof. The proof of the theorem can be reduced to the case when D is an unramified
K-algebra. Indeed, by Theorem 12 the algebra D contains a 7-invariant inertia
algebra I. Denote the Z(I)-linear hull of the algebra FE by E’. Clearly, E’ C I.
Note that Z (E) is a separable extension of the field Z(I) (as the compositum of
the fields Z(E) and Z(I)). Hence Z(I)Z(E') C E' C 1. Now, instead of the
algebra D consider the algebra I, which is unramified over Z(I). First we establish
the existence of an E'-unramified 7-invariant lift of £/ to (Lemma 18) and then the
existence of an E-unramified 7-invariant lift to E’ (Lemma 17). By Lemma 12

there exists a 7-invariant lift of the field Z(I)Z(FE) to I. Hence we arrive at the
case when the K-algebra D is unramified over K.

In view of Lemma 12 the extension Z (E) /K has a 7-invariant unramified lift Z
to the algebra D. By Theorem 8 the algebra E has an unramified lift E /K. Note
that since Z(E™) = Z™ and Z™ = Z, the algebras E and E7 have the same centre.
We assume that E7 # E and lift 7 to an involution of E (see [43]), which, in turn,
can be extended to an involution s of the algebra D (Theorem 5). Since the invo-
lutions s and 7 have the same restriction to K, we have s = 7i, for an appropriate
element g € D. As the algebra D is unramified over K, we have g = mxu, where
mx € K\ Uk and u € Up. The rest of the proof follows the lines of the proofs of
Theorem 12 and Lemma 17. More exactly, for an arbitrary e € E we have

—1 —1 -1

e =geTg = unge n g uTt = u(nlenk) uT! = ueu
Thus, since s = 7 and s|g = Tiy|g, we also have i, = iz = id5. Consequently,
u = u,(1 +m) for some u, € Uz and m € Mp. Now it can obviously be assumed
without loss of generality that © = 1 + m. We apply s to both sides of the
equality e®* = ue™u~! and obtain e = (ue"u~!)*. Since ue’u"! € E, we have
e= (ue"u=1)® = (ueTu") " = (uu"")e(uu")"!. Using the same argument as in
the proof of Lemma 17 we obtain uu™" € Cp(E). Moreover, it is easily seen that
u+u” € Up. Further, we have (u+u")/2 = 14 p, where 1 +p € (1+Mp)N S (D)
and e* = (1 + p)e” (1 + p)~t. Since the extension K(1 + p)/k(1 + p) is weakly
ramified, 1+ p is the value of some element 1+ ¢ € 1+ M (14,), which means that
1+p=(1+¢q)(1+¢q)7. Denote the algebra (1+q) *E(1+g¢) by J. It is 7-invariant:

JT=(14q) E"(14+q) " = (1+q) " (1+p) "E*(1+p)(1+q) " = (1+¢) 'E(1+q).

Hence J is a 7-invariant lift of the algebra E to D. The proof of the theorem is
complete.

Let I be the 7-invariant inertia algebra of the algebra D. Then the centre Z of
this algebra is T-invariant and (C'p(Z))™ = Cp(Z). Note that the algebra Cp(Z) is
defectless over Z, and therefore by Corollary 2.11 in [36] we have Cp(Z) =T ®z 1,
where T is totally ramified over Z. Since Cp(Z) and I are 7-invariant, T is also
T-invariant (because T'= Cp(I)).

One aim of this section is to carry over to weakly ramified algebras with unitary
involutions the main fact about the structure of a finite weakly ramified extension
of a Henselian field: each extension of this kind can be represented as a tower of
totally ramified (radical) extensions of a maximal unramified subextension.
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To formulate the main theorem about the decomposition into a 7-invariant rad-
ical tower over a T-invariant inertia algebra I we find a system of generators of
the algebra D that are roots of elements of Cp(Z) that generate totally ramified
extensions.

In the general case we also need information about the existence of outer auto-
morphisms of the algebra Cp(Z). Now let us say a few words about generalized
dihedral groups.

Definition 8. Let n be an odd integer greater than 1. A group G of order 2n is
called a generalized dihedral group if it has an Abelian subgroup H of order n and
an element a of order 2 with the defining relations aha=t = h=! for any h € H.

It is easily seen that this definition can be reformulated in the following equivalent
way.

Definition 9. Let n be an odd integer greater than 1. A group G of order 2n
is called a generalized dihedral group if it has an Abelian subgroup H such that
[G : H] =2 and any element of G\ H has order 2.

In this notation the following assertion holds.

Proposition 7. Let Z(D) # K and I be the T-invariant inertia algebra for D.
Then in D there exist an unramified T-invariant Abelian extension Z/K (for exam-
ple, Z = Z(I)) and a system of T-invariant elements {I1y,...,I1.} C Mp such that

(i) Z = Z(D);

(i) Z = Zy x -+ X Z. (the direct compositum of Z1,...,Z, over K), where
Z;/ K is a T-invariant cyclic extension with Galois group generated by i, |z, ,
j=1...,r;

(iii) (7]z, o im,lz,)? = idg,, that is, Gal(Z;/k) is either a generalized dihedral
group, or an Abelian group of exponent 2.

Proof. Since the algebra I is T-invariant and unramified over K, its centre Z(I)
has the same properties. Moreover, Z(I) = Z(D). Set Z = Z(I). It is clear that
ZT = Z. Since the extension Z(D)/K is Abelian and Z/K is its unramified lift
in D, Z/K is also Abelian and its Galois group is the cross product of the cyclic
groups (@;), j = 1,...,r, where (¢;) is the cyclic group generated by ¢;. By
the Skolem-Noether theorem the automorphism ¢; can be extended to an inner
automorphism 7yy;; moreover, replacing ¢; by n (if necessary) we can assume
that Hj € Mp.

Note that II7 = u;Il;, where u; € Up. Replacing II; (if necessary) by an
appropriate element II;v;, where v; € Uy, allows one to assume without loss of
generality that u; + 1 € Up. Indeed, let u; +1 € Mp and let (IL;v;)" = w;II;v;
for any v; € Uz, where w; +1 € Mp. Then UJTH]T- = w;ll;v;. Since H]T- = u;1I;
and vajH;1 = vfj, we obtain viu; = wjvfj. Adding vfj + o7 to both sides of
this equality gives v7 (u; + 1) 4+ v]’ = (w; + 1)v}” + v]. Since u; +1 € Mp and

w; +1 € Mp, we have vfj = v7 + m, where m € Mp. This yields the equality

v; % = ;7. Now let v; € Uz,. Then ;% = v;. Since p; is a nontrivial auto-
morphism of the field Z,, this field contains an element ¥; such that 0; % # o;.
If v; is the inverse image of v; in Z, then we arrive at a contradiction. Hence we
may assume that u; +1 € Up.
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Consider the restriction to Z of the reduction of the involution TZ.H}_'JFH]»‘ Then

Ting 4, |7 = Tlzinr a7 = Tlz i 10,5 = Tz, 7 iy +117)-

Since 4,41l is the identity mapping of Z, the restriction of the reduction

7|71, |7 is an involution in Gal(Z(D)/k), which means that Tl 2 ;) =1
Or T 5)PiT 2(D) = @;1. Hence Gal(Z(D)/k) is either a generalized dihedral group
in case T| 2(D) #* idz(ﬁ)a or an Abelian group of exponent 2.

If K/k is an unramified extension, then 7 # idz(ﬁ), and therefore the Galois
group Gal(Z/k) is a generalized dihedral group, since Z/k is an unramified lift
of Z(D)/k.

If the extension K/k is totally ramified, then Z = Z, x K is the direct composi-
tum of the fields Z,/k and K/k and therefore Gal(Z/k) = Gal(Z,/k) x Gal(K/k)
is again a generalized dihedral group.

Consider the equality szH;1 = 2z¥i, where z € Z. We apply 7 to both sides.
Since Gal(Z/k) is a generalized dihedral group, we have

—1
H;TZTHJT- =2%T ="% = H;lzTHj.

As Z" = Z, we have z = II71L; 110, IT; 7. Thus, II7 = ¢;I1;, where ¢; € Cp(Z)NUp.
It is easily seen that ir, +H;\ z = i1 \ 7z, and thus we can assume without loss of
generality that 117 =TI;.

Let ®; be the subgroup of Gal(Z/K) generated by the ¢;, i € {1,2,...,7}\ {j}.
Denote by Z; the field of invariants of the group ®;. Then Z; /K is a Galois
extension With group (p;]z;). Let us show that Z7 = Z;. For z € Z; and any
g € ®; we have 29 = z. Applying 7 to both sides of the last equality gives
297 = z7. However, g = " --- ¢, where o; = 0. Then 297 = 279 = T
As g runs through the group ®;, so does g~! as well. Hence 27 belongs to the field
of invariants of the group ®;. Consequently, Z7 C Z;. The inverse is evident. The
proof of the proposition is complete.

Lemma 19. Again, let D, 7, I, Z and Iy,...,II, be as in Proposition 7. If
Cp(Z) = T®z I and in|z € Gal(Z/K), then for any j € {1,2,...,7} there
exists a T-invariant element I'; such that I'"i = I and ir,|z = i,|z.

Proof. Let im, |z € Gal(Z/K). Consider the reduction of the involution 7iry;. This
reduction lifts to an involution fi; of the algebra I, which, in turn, can be extended

to a K/k-involution p; of D. Then p; = 7ir;, where I'] = T';. The elements
I'y,..., I possess the required properties. The proof is complete.

Lemma 20. IfCp(Z) =T®zI andir,|z € Gal(Z/K), then there exist T¢;-inva-
riant elements i; € I and t; € T' such that F;j = t;i;.

Proof. Let ir;|z € Gal(Z/K) and I =T (see Lemma 19). Then ipei |z = idz.
Hence iy 5|1 = i, |; for some i; € I. Consequently, Zr . 71|1 = idy, and therefore

F;j = thja where tj S OD( ) =T.
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We show that we can choose t; and i; to be Ty -invariant. Indeed,

- 1ot ) )
ijt; =T = (T9)% =i ¢ and ijt; =T = (I'9) =it}

The last equahty implies that 717 = i; Applying 7 to both sides gives

f’ Tt;pj N However, ©; '7 = 7¢;. Consequently, j%t ! (i;“oj)’lij € Z.
Let z; = (5;% , 0; € Z. Then the elements tjéj and 7;0; are Ty;-invariant.

The proof is complete.

zjt =1

Note that by Theorem 9 any central algebra T" which is totally ramified over Z
has the form T = (Ay,...,A;, Z), where A;, i = 1,...,s, are T-invariant radicals
over Z(I). Then the following assertions hold.

Theorem 14. Let Z(D) # K and let I be a T-invariant inertia algebra of the
algebra D. Then D = (I'y,..., Ty, Ay, ..., Ag, I).

Theorem 15. Let Z(D) # K and let I be a T-invariant inertia algebra of the
algebra D. Then D = (T'y,...,T.,Cp(Z(I))).

Corollary 10. In the notation of Theorem 14 the following equalities hold:
D* = (T T (AP - A I (1 + Mp),
Vp = (D¢ T2 ) (A - AP)Vi(1+ Mp) and Up = Uy (1+ Mp).

These assertions are used to prove a stronger version of Theorem 12.

Theorem 16. Let D € TR(K) be a T-invariant division algebra as in Lemma 12.
Then for any T-invariant subalgebra M in D unramified over K there exists a T-inva-
riant inertia algebra of D containing M .

Proof. Suppose that D is a field. Since D € TR(K) is a 7-invariant algebra and
the extension M/K is unramified, M is contained in a maximal subextension N/K
contained in D and unramified over K, which is an inertia algebra of D (over K).
Finally, note that N™ = N in view of the equality D™ = D. This completes the
proof of the theorem in the case of a commutative algebra D.

Suppose that D is not a field. Let us show that we can limit our considerations
to the case when K = Z(D). Indeed, assume that K is distinct from Z(D).
Consider M Z (D), the compositum of M and Z(D) over K, which coincides with the
Z(D)-linear hull of the field M. Then, as M and Z(D) are 7T-invariant unramified
extensions of K, their compositum has the same properties. Now if we show that
MZ(D) is contained in a 7-invariant inertia algebra of the algebra D, then we can
assume without loss of generality that K = Z(D).

First suppose that D is a field. Note that in the case when D =K we have M =K,
and so the theorem is true in view of Theorem 12. Now suppose that D # K. Then
by the commutativity of D we have D = Z(D), and thus D = Z(I), where [ is
a T-invariant inertia algebra of D. Clearly, Z(I) is a 7-invariant extension of the
field K. By Lemma 12 there exists an intermediate field M (K C M C Z(I)) which

is 7-invariant and unramified over K and M =M. In view of a K-isomorphism
between M and M the fields M and M are K-isomorphic. We can assume that
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M does not coincide with Z (I). Otherwise M is a maximal subfield in D and the
claim of the theorem obviously holds. Let us show that among the K-isomorphisms
between the fields M and M there exists an isomorphism induced by an inner
automorphism of the algebra D and specified by an element of 1+ Mp. Let v € D
be such that the restriction of the automorphism 4, to M induces a K-isomorphism
¢ between M and M. Note that i, also induces an isomorphism of Z(I) onto
vZ(I)v~! which is the lift of p. Let v = guzIl, where g € 1 + Mp and uz € Z(I),
and let IT be an appropriate product of powers of the elements Aq,..., A, and
I'y,...,T, from Theorem 14. In view of the relation vZ(I)v=! = gZ(I)g~! we
obtain the desired K-isomorphism between M and M induced by 4.

Assume that the claim of the theorem does not hold for an algebra M. Then we
can assume that M is not contained in any larger 7-invariant algebra M unramified
over K. This assumption leads to a contradiction. Indeed, define an element
3 e Z(I) as follows. 1f M /M, is unramified, then let Z(I)> = M (8). Otherwise
let M~=(53)/ M+ be the maximal separable subextension of the extension Z(I)/Mx.

It is easily seen that ]\7?(5) is a 7-invariant extension of M+. Denote the inverse
image of 8 in Z(I) by 8 and set

M (B+37) if chark #2,
T\ M.(B-B7) if chark = 2.

It is clear that 7|p = id. Let N(E) be the maximal subfield of E unramified
over M. Since E = N(E), we have 3 € N(E). Indeed, in the case when char k # 2
we have 5+ (7 = 28 € N(E), and in the case when chark = 2 we have 5% =

BB7 € N(E). Moreover, in this case M?(Bz) = JT/[/?(E), since ﬁ?(ﬁ) is at the same

time purely unseparable and separable over M?(§2) Now it is clear that the field

M?(ﬁ) lifts to N (F) as an unramified extension Z(I)T/MT. This yields the relation
Z(I) = 2Z(I), M.

Let 3 be a primitive element of the unramified extension Z(I) /M . Then the
element ('s generates an unramified extension of M of degree [Z(I) : M ]. Put

s = B's + Bia7. Since g € 1+ Mp, we have 5 = 23 and therefore, for chark # 2

the extension M (s) contains the field M(3) as residues. Since M(s) is 7-invariant,
we arrive at a contradiction. And if charE = 2, then instead of the extension
M (s) we take the extension by the element 3% 3%7. Thus, we have dealt with the
case when D is a field.

Now let D be not a field. We demonstrate that the claim of the theorem holds
for algebras with prime indices. Since D is weakly ramified and D is not a field,
D is an unramified algebra. Therefore, it is an inertia algebra of itself because its
index is a prime number. This yields the validity of the theorem.

Let ind D be a composite integer and suppose that the theorem holds for sub-
algebras whose indices divide ind D and are less than ind D. Since the indices of
all subalgebras considered below are divisors of ind D, the last condition reduces
to the assumption that their indices are strictly less than ind D. Now consider the
possible cases for D and M one by one.
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Recall that if Z(M)/K is unramified, then Z(M) = Z(M) and the extension
Z(D)/K is T-invariant and separable. Moreover, if M7 coincides with M, then
Z(M)=Z(M)". Clearly, Z(M) C Cp(M).

Note that M is contained in some inertia algebra A of the algebra D. Indeed,
consider the algebra M C D. In view of Theorem 2.9 in [36] as applied to an
arbitrary inertia algebra J of D and the algebra M, there exists an unramified lift
M C J. By [36], Theorem 2.8, there exists an isomorphism between M and M,
which can be extended to an automorphism ¢ of the algebra D by Theorem 5. Then
J¥ is an inertia algebra of D containing the algebra M, and we have M C J¥.

In the case when A”™ = A the claim of the theorem is proved. Suppose that
AT # A. In view of the inequality [D : K] < co we can assume that the K-algebra
M satisfies the following condition:

(a) there exists no K-subalgebra M of D that is distinct from M, contains M

and is T-invariant and unramified over K.

Further, note that two cases are possible for the fields Z(M) and Z(D):

(1) Z(M)Z(D) = Z(M);

(2) 2(D)Z(M) # Z(M).

Suppose that M is not a field. Then the algebra Cp(M) is noncommutative.
Indeed, if Cp(M) is a field, then Cp(M) = Z(M), since otherwise the centre of
the algebra Cp(Z(M)), which coincides with Cp(M), is also distinct from Z (M),
which is not the case. Hence Cp (M) is not a field.

Consider the centralizer of Cp(Z(M)) and apply Theorem 3.1 in [36] to the alge-
bra D and the unramified extension Z(M)/K. Then we obtain Z(Cp(Z(M))) =
Z(D)Z(M), and by our assumptions we have Z(D)Z(M) # Z(M). On the other
hand, if the algebra Cp(M) were totally ramified over Z(M), then by [36], Propo-
sition 1.4, we would have Cp(Z(M)) = M. Thus, with due regard to the fact that
Cp(M) is T-invariant and noncommutative, by Theorem 12 there exists a 7-invari-
ant inertia algebra I of the algebra C'p (M), which contradicts the maximality of M
in the sense of condition (a) (it suffices to consider the I-hull of the algebra M).

Suppose that M is a field and case (2) takes place. Then the compositum
Z(D)Z(M) over K is separable. Denote a primitive element of this extension by a.
Since Z(M) is a T-invariant extension of K, the Z(M)-algebra Cp(Z(M)) is also
T-invariant. By Lemma 12 there exists an element « of Cp(Z(M)) such that @ = &
and the extension Z(M)(«)/Z(M) is T-invariant and unramified. Since M is a field,
we have Z(M) = M. Thus we have proved the existence of an extension M («) that
contains M strictly and does not coincide with D, which contradicts condition (a)
for M. Hence we are in case (1). Thus, we can assume that Z(M)Z(D) = Z(M).

Let Z C Z(M) be a T-invariant lift of the extension Z(D)/K which is unramified
over K (note that such an extension does exist due to the equality Z(M)Z(D) =
Z(M)). Let us show that Z can be assumed to be equal to K. Indeed, assume
that Z # K. Consider the centralizer Cp(Z). It is easily seen that the Z-algebra
Cp(Z) is a T-invariant central algebra over Z. For this algebra there are a priori
two cases depending on whether Cp(Z) is commutative or noncommutative. In the
first case we note that, since Z C Z(M), we have M C Cp(Z), and Cp(Z),
considered as a K-algebra, is an inertia algebra of D. Thus, we find ourselves in
the framework of the earlier considerations for Z-algebras Cp(Z) and M, where
ind Cp(Z) divides ind D. In the case when Cp(Z) is noncommutative, it can be
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represented in the form Cp(Z) = I ®z T, where I is an inertia algebra of the
algebra Cp(Z) and T is a totally ramified subalgebra of Cp(Z). It is clear that
the index of Cp(Z) divides ind D. In other words, the product of the indices of T
and I divides ind D, which means that either ind I is less than ind D or these
indices coincide. In the latter case D is unramified over K, and we arrive at the
case considered above. If ind I < ind Cp(Z), then, as the index of Cp(Z) is less
than that of D and ind I < ind D, we arrive at the case of subalgebras of smaller
index, when it is sufficient to verify the theorem for divisors with prime indices
(again, we find ourselves in the case of algebras of smaller indices, for which the
inductive hypothesis holds true). Hence we can assume that Z = K.

Note that the theorem is true in the case when chark = 2. Indeed, since
D € TR(K), the index of T" is odd. By Theorem 12 some inertia algebra I of D is
T-invariant. Then D = [ ® ¢ F, where FE is a totally ramified 7-invariant algebra
over K. Now, applying Theorem 11 to E we obtain ind7 = ind ¥ = 1. Hence
the algebra D is unramified, and therefore M is contained in a 7-invariant inertia
algebra of D.

Now suppose that chark # 2. Then by virtue of [36], Corollary 2.11, D is
the tensor product over K of some inertia algebra of D and a totally ramified
central K-algebra. Since all inertia algebras are conjugate, it can be assumed
without loss of generality that D = A @ T', where T is a totally ramified central
K-algebra. Using Theorem 10 we lift 7| to an involution p of A. Now we apply
Theorem 5 to the algebra A with the involution p and the subalgebra M with
the involution 7|y and conclude that there exists a K/k-involution § of A such
that é|ps = 7|am. Applying again Theorem 5 to D with the involution 7 and
the subalgebra A with the involution § we see that there exists a K /k-involution
s: D — D such that s|py = 7|y. Since s|g = 7|k, we have s = 7i, for an
appropriate element g € S, (D). Moreover, vp(g) € I'r.

Now, as in the proof of Theorem 12, let g = un”, where u € Up, n™ € T (note
that '+ = I'z-) and vp(n) = vp(g). Then for a € A we have a® = ga"g™*
unTa™n""u"t = u(n"tan)"Tu! = uwa"u"l. Since 5 =7 and s[4 = Ti,|a, We also
have i, = iz = id3. Consequently, u = u,(1 + m) for some elements u, € Uz
and m € Mp. We can assume that w = 1 + m. Applying s to both sides of
the equality a® = ua’u~! gives a = (ua™u"!)*. Since ua™u=! € A, we have
a= (ua™u1)® = (ua"u" )™ = (uvu"")a(uu"")"L. Hence a = (uu~T)a(uu"T)7L,
and therefore uu™" € T (because T'= Cp(A)). Note that u+ u7 = 2, which yields
u+u” € Up. Set t = uu~". Then u+u™ = (t~1 + 1)u. For any a € A we have
af=@tt+ 1) ettt +1) = ¢+ DuaTu (¢ +1)7L Next, in view of the
equality (t7! + 1)u = u + u” we have

a®=(u+u")a" (u+u")”

l_u—l—uTaT w7
-2 2 '

It is clear that ((u+wu7)/2) = 1. Set (u+u")/2 = 1+p. Then 1 +p €
(1+ Mp) NS, (D) and a®* = (1 +p)a™(1 + p)~L. As the extension K/k is weakly
ramified, the extension K (1 + p)/k(1+ p) is weakly ramified too. Then 1+ p is the
value of some element 14-q € 14 Mg (14p), which means that 1+p = (1+¢)(1+q)".
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Let I = (1+¢) "A(1 +q). Then
I =(14q)7AT(14+q) 7 = (1+¢9)7(14p) A (1+p)(1+¢) 7 = (1+9) ' A(1+q).

Hence I is a 7-invariant inertia algebra of the algebra D.

It follows from what we said above that 1 4+ p commutes with elements of M.
Evidently, all elements of the field K (1 + p) commute with elements of M, so 1+ ¢
also commutes with them. Consequently, (1 + ¢)"'M (1 + q) = M, hence it is
a subalgebra of the 7-invariant algebra I. The proof of Theorem 16 is complete.

Let D € TR(K) and Z be a -invariant lift of Z(D). Then Cp(Z) = T @7 I.
In this notation the following proposition is valid.

Proposition 8. If chark = 2 and the estension Z/Z, is not unramified, then
Ap = 1.

Indeed, recall that the algebra T is T-invariant and weakly totally ramified. Then
the proposition follows from Corollary 2 since Ap = A¢,(z) = A7-
Another relevant assertion looks as follows.

Lemma 21. If chark # 2, while chark = 2, and K/k is not unramified, then
Ap = 1.

Proof. First suppose that Z(D) = K. By [36], Corollary 2.11, we have D = T®x I,
where the algebra T/ K is totally ramified and I is an inertia algebra of D.

If D is a field, then I = K, and therefore D = T'. This means that D is weakly
totally ramified. Hence by Corollary 2 we have D = K, which yields A\p = 1.
If D is not a field, then let E be the maximal subfield of D separable over K.
Consider the maximal separable subextension L /k of the extension E/k and denote
by L the unramified lift of L to the algebra I as a k-algebra. The extension L/k
does not contain K (since K/k is not weakly ramified). Let b be a primitive element
of L/k. Since [K(b) : K] = [k(D) : K], the coefficients of the minimal polynomial of b
over K belong in fact to the field k. Hence b™ = gbg~"' for an appropriate g € D.
Let us show that there exists an involution g that has the same restriction to K
as 7 and satisfies b* = b. Note that b" (g +¢") = (g + ¢7)b. If g+ ¢g" = 0, then
we take yu = 7i /5., where \/a € K and (y/a)” = —y/a (recall that chark # 2).
If g+ g7 #0, then let 4 = 7i(y,4r)-1. In either case the element b is p-invariant,
so the field L is p-invariant.

It is easily seen that KL is a maximal p-invariant subfield of the algebra I.
Indeed, KL is p-invariant, because K and L are p-invariant and their elements
commute. Now, since KL = E is a maximal subfield in I, KL is a maximal
subfield of I (because the algebra I is unramified over K). Thus, KL is a maximal
p-invariant subfield of I. It is clear that Cp(KL) = T ®x KL and Cp(KL) is
a p-invariant weakly totally ramified K L-algebra. Since chark =2 and KL/(KL),
is not unramified, by Corollary 2 we have ind(T® g K L) = 1, which yields ind 7" = 1.

Thus, in this case D = I is an unramified K-algebra and therefore A\p = 1.

Let Z(D) # K. Since the extension Z(D)/K is separable, there exists a maximal
separable subextension L/k of the extension Z(D)/k. Denote the unramified lift
of L to the algebra I as a k-algebra by L. As above, note that K is not contained
in L as the extension L/k is unramified. Using the same argument as above we
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show that there exists a central 7-invariant involution p such that L* = L. This,
in turn, means that the compositum Z of the fields K and L over k is p-invariant
and, moreover, the extension Z/K is unramified and Z = Z(D). Hence Cp(Z) =
T ®z I, where the algebra T'/Z is totally ramified, the algebra I/Z is unramified
and Ap = Acp,(z). The centre Z(Cp(Z)) coincides with Z and we arrive at the
case considered at the beginning of the proof. Hence A\p = A¢,(z) = 1. The proof
of the lemma is complete.

§ 6. The groups U(D, 1), SU(D, 1),
SU’(D, T), U(D, 7)" and their reductions
In this section we describe the structure of the groups SUK{"(D, 7). First we
compute the reductions of the groups U(D, 1), SU(D, 1), U(D,7)" and SU*(D, 1) =
{d € SU(D,7) | N(d) = 1}, where N denotes the composition Ny )% ° Nrdp.
Below D € TR(K), k is a Henselian field, and the extension K/k is weakly rami-
fied (this is so in the case when char k # 2, which we assume below for definiteness).

For brevity we write A instead of Ap.
Note that Z = Z(D). Then the following proposition is valid.

Proposition 9. The equality U(D, 1) = U(D,7) holds and, for N = N7z oNrdg,

SU(D,7) = U(D,7) NSL(D) = {d € U(D,7) | N(d)* = 1}.

Proof. Tt is clear that U(D,7) C U(D,7), and therefore to prove the first
claim of the proposition it is sufficient to establish the inverse inclusion. Let
d € U(D,7) N SL(D) and let d be the inverse image of d in D. Then dd™ = 1 + m,
where m € M (447, . Since K(dd™) = (K(dd"))", the extension K (dd")/K(dd"),
is quadratic and separable. As dd” € 1+ Mg qq-), and since the extension
K(dd™)/k(dd™) is weakly ramified, there exists an element ¢ € 1 + Mg (gq-) such
that Ng(ad-)/K(ddm), (c) = dd”. Hence cc” = dd”™. Consequently, ctd e U(D,T)
and ¢—1d = d. Thus, U(D,7) C U(D, 7), which yields U(D, ) = U(D, 7).

Let us show that SU(D, 1) C U(D,7) NSL(D). To do this, note that U(D,T) C

A

U(D,7) and SL(D) = {d € D | N(d)* = 1} (see, for example, [37]). In the case
when D is a field we have SL(D) = {d € D | Nm/?(cjy‘ = 1}. Taking the residue
d € D of an element d € SU(D, 7) gives the required inclusion.

Let us prove the reverse inclusion SU(D,7) D U(D,7)NSL(D). Suppose that D
is not a field. By Theorem 12 there exists a 7-invariant inertia algebra I of D. Let
Z = Z(I). Then I is at the same time an inertia algebra of Cp(Z). By what
we established above, we have U(I,7|;) = U(D,7). Let b be the inverse image
of d in the group U(I,7|;). Since d € U(D,7)NSL(D), we have Nz i (Nrdg(b)* =
(14+m)7™~1, where m € My. As (A, chark) = 1, we can assume that 1+m = (1+e)?,
e € Mg. Then Ny, i (Nrdz(b)) = (1+€)7~*. Recall that by virtue of Proposition 4
we have Nrdp(1 + Mp) = 1+ Mg. Moreover, the mapping Nz, o Nrd; sends
1+ Mj to 14+ Mp. Let p € M have the property Nz, x(Nrd;(1+p)) = 1+e. Then
b(1+p)'=" € SU(D,7) and b(1 +p)=7 = d. If D is a field, then the argument is
similar. The proof of the proposition is complete.

Proposition 9 suggests a description of the reduction of the group SUY(D, 7).
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Corollary 11. The following equality holds:
SUY(D,7) = {d e UD,7) | N(d) = 1} = U(D,7) N SL*(D).
Here SLY(D) = {d € SL(D) | N(d) = 1}.

Proof. The inclusion SUY(D,7) C {d € U(D,7) | N(d) = 1} follows from the
definition of the group SUY(D, ). Conversely, let d € U(D,7) and N(d) = 1. Then
N(o?)’\ = 1. By Proposition 9, in the group SU(D, 7) we can find an inverse image
of the element d, which belongs in fact to SUY(D, 7). The proof of the corollary is
complete.

Finally, let us establish the following lemma.

Lemma 22. The equality U(D, 1)’ = U(D,7)" holds.

Proof. The inclusion U (D, 7)’ C U(D,7)" is evident. Conversely, let a,b € U(D, 7).
Then by the argument used in the proof of Proposition 9 the elements a and b
have inverse images u,v € U(D,T), respectively. It is clear that wvu=tv=1 €
U(D,7)" and uwou—tv—! = aba~'b~!, which proves the reverse inclusion. The proof
is complete.

Let UK$™(D,7) =U(D,T)/U(D, 7). Then, as above, we obtain UK?"(D, 1)
UK(D,7).

Next, let E = ((1+ Mp)NnSU(D,))U(D,7) /U(D,T).

The group SUK}(D,7) = SU"(D,7)/(U(D,7))" plays an important role below.

Denote E\ = N(SU(D,7)). Then we have the following lemma.

1%

Lemma 23. The following exact sequence holds:

1 — SUKY{(D,7) — SU(D, 7)/(U(D,7)) — E) — 1.

The group E\ is computed in the following way:
(i) Ex =14f K/k is totally ramified;
(ii) if K/k is unramified, then

Ex=C\K)nN(D) 1, (6.1)
where Cy(K) is the group of A\th roots of unity in K.

Proof. Note that U(D,7) C SUY(D,7). Let [a,b], where @, b € U(D,7). By

Proposition 9 the elements @ and b have inverse images a and b in U(D, 7). Then

[a,b] € SU(D, 7). Next, [a, b] = [@,b]. Moreover, N([@,b]) = Nz (Nrdp([d,b])) =

Nz %(1) = 1. Thus, [a,0] € SU”(D,7). By definition SU"(D,7) C SU(D, ).
Thus, we have a sequence of subgroups

U(D,7) C SU°(D,7) C SUD, 7).

Since SUY(D, 7) is the kernel of the restriction of the homomorphism N to SU(D, 7),
we have SU(D, 1)/SUY(D, 1) & E\, which gives the exact sequence of the lemma.
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In the proof of (6.1) we consider two cases:

(i) K/k is totally ramified;

(ii) K/k is unramified.

Case (i). Consider the case of a totally ramified extension K/k. Then for
s € SU(D, 7) we have N (5) = Nz 7 (Nrd5(5)), where we can assume without loss of
generality that s belongs to U (I, 7|;). We use Merkurjev’s formula Nrd; (U (I, 7)) =
Nrd;(I)™~! (see [|44], Proposition 6.1) and obtain Nrd;(s) = Nrd;(i)"~!, where
i € I. Passing to residues gives the equality Nrd;(s) = Nrd5(s) = Nrdg (i)™ !
Applying the homomorphism N /& to the right- and left-hand sides of this equality

gives N (3) = N(7)7~!. Since the restriction of 7 to K is the identity map, we have
N(s) = 1. This yields Ey = 1.

Case (ii) Let ¢ € Cx\(K) N N(D)™"! be a primitive pth root d1v1d1ng A. Then
by the equality (A, chark) =1 the root € has a unique inverse image € in K, which
is a primitive uth root of unity. Note that, since Nf/g(s) =1, we have Ng /(€)=
1+ mg, where myg € Mg . Further, (1 + mg)* = 1, hence in view of the equality
(A,chark) = 1 we obtain mg = 0. Therefore, Nk /() = 1 and so &€ = (u)" .
Denote the composition N, xoNrd; by N. Tt follows from the equality e = N(d)™ !
that € = ]/\7(3)7’1(1 +my), where d is the inverse image of d in I. The last equality
suggests that Ny k(1 +mg) = (1+ng)7"*. Consequently, € = (N(d)(1+nk))" "
It is clear that 14+nx = Nz gk (1+vK), where v € Mz. Because 1/Z is unramified,
this yields 14+ vg € Nrd;(I). Finally, we obtain € = N(z) NZ/K(NrdI( i)™t
for an appropriate ¢ € I. Using Merkurjev’s formula Nrd; ()™~ = Nrd;(U(I, 7|1))
(see [44], Proposition 6.1) we obtain Ny, g (Nrdz(i))™ ' = N/ (Nrd;(u)) for some
u e U(I,7|r) C U(D,T). Note that the above argument is also valid when I is
a field. Then Nrd; is the identity mapplng, and therefore Nrd;(i)™"! = i""! €

U(I,7|r), which means that Nrd;(¢)"~' = Nrd;(u) for v € U(D, 7). In addition,
we have Nrdp(u) = Nz/x(Nrd;(u))* = 1, which means that v € SU(D, 7). This
yields C) (F) N N(E)?il C F,.

Conversely, suppose that e € Ex. Then e = N(3) for an appropriate s € SU(D, 1)
(by Proposition 9). Since e = Nz z(Nrd5(s)), where s € SU(D,7), we have
s € U(D,7) and 5 € U(D,7). Now let u be a preimage of 5 in U(I,7|;). It
follows from Merkurjev’s formula that e € N5 /?(Nrdﬁ(D))?’l. Moreover, e* =
( 7/?(Nrd—(*))?_1))‘ = Nrdp(s) = 1, which means that e € Cy(K). Hence
FE, C C)\( )ﬂN(D)

The proof of the lemma is complete.

For the group SUKY (D, 7) we have the following result.

Proposition 10. The following sequence is exact:
1 — SUK{"(D,7) — SUKY(D, 7) — Nrd5(U(D,7)) N Nrd5(SLY(D)) — 1.
Proof. Note that
Nrd5(U (D, 7) N SLY(D)) = Nrd5(U (D, 7)) N Nrd5(SLY(D)).
Indeed, it is evident that

Nrd5(U (D, 7) N SLY(D)) € Nrd5(U(D, 7)) N Nrd5(SLY(D)).
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Conversely, if d € Nrd(U(D,7)) N Nrdx(SL"(D)), then there exists u € U(D,7)
such that Nrdy(u) = d and N(u) = 1, because d € SL”(D).

Let us also show that the kernel of the restriction of the homomorphism Nrdx
to the group SUY(D,7) is the group SU(D,7). Indeed, by Corollary 11 we have
SU(D,7) € SUY(D, 7). Evidently, SU(D,7) belongs to the kernel. On the other
hand, let d be an element of this kernel. Then Nrd(d) = 1, and since d € SU"(D, 1),
we have d € SU(D, 7). Thus,

SU”(D, )/ SU(D, 7) = Nrd5(SU(D, 7).

In addition, both groups SU"(D, 7) and SU(D,7) contain the commutator subgroup
U(D,T)’, and therefore (see Lemma 22) we have

(SU"(D, 7)/U(D,7))/(SUD,7)/U(D,7)) = Nrd5(SU" (D, 7)).

To complete the proof of the proposition is remains to note that Nrd(SU”(D, 7)) =
Nrd5(U(D,7)) N Nrd5(SLY(D)). The proposition is proved.

Further, since (U(D,7)) € SU(D,7) C SU(D, 1), we have the following evident
short exact sequence:

1 — SU(D,7)/(U(D,7)) — SU(D,7)/(U(D

)/
’
5n) /
9

7)/(U(D,7))") — 1.

-

— (SU(D,7)/(U(D,7))")/(SU(D

From the isomorphism theorem we obtain

(SU(D,7)/(U(D,7))")/(SU(D,7)/(U(D,7))) = SU(D,7)/SU(D,7).

Taking this into account we obtain the following exact sequence:

1 — SUK$*(D,7) — SU(D,)/U(D,7) — SU(D,7)/U(D,7) — 1.

Recall the formulation of Theorem 2.

Let D € TR(K), assume that char k # 2, and let T € Invg (D), where the field k
is Henselian. Then in the notation introduced above the following commutative
diagram holds, in which the sequences in the rows and the column are exact:

1

1 —> E—SU"(D,7)/(U(D,T)) SUKY(D,7) —— 1, (1)

1 E SUK?(D,7) —— SU(D, 7)/U(D,7) — 1, 2)
Ex




1134 V. 1. Yanchevskit

where E = ((1 + Mp) N SU(D,7))U(D,r) /U(D, 7). Moreover, the following
sequences are also exact:

1 — SUK(D,7) — SUK{ (D, 7) — Nrd5(U(D, 7)) N Nrd5(SLY (D, 7)) — 1, (3)

1 — SUK® (D, 7) — SU(D, 7)/U(D,7) — SU(D,7)/SU(D,7) — 1. (4)

Proof of Theorem 2. Consider the homomorphism

7: SU(D,7)/(U(D,7)) — SU(D,7)/U(D,7)’
defined by the following rule: for s € SU(D, 1) let 7(s(U(D,7))") =3sU(D,7)". It is
clear that 7 is onto and its kernel by Lemma 22 coincides with the group E. By the
isomorphism theorem we have £ = ((14+ Mp)NSU(D,7))/((1+ Mp)NU(D,T)).
Thus, we obtain the following exact sequence:

1— (14+ Mp)NSU(D,7))/((1+ Mp) N (U(D,T)))

— SUK{™(D,7) — SU(D,1)/U(D,7) — 1.

Combining all the above and taking due account of the relation SUK{"(D, 7)/E =

SU(D, 7)/U(D,7)’, one easily establishes the validity of Theorem 2.

Remark 9. The group Nrd#(U(D,7)) N Nrd#(SLY(D)) is computed with the use
of the following subgroups of the groups D"

SNedy = Nrdp(D )= and  Sy,q = {z € Nrdp(D") | Nz () € k},
where Z = Z(D).
Proposition 11. The following sequence is exact:
)?71

1 et 1
1= ENrap = ENray — (ENray, — L

(1D = _(qT P _ (vl -1
Moreover, Nrd5(U (D, 7)) N Nrdy(SLY(D)) = (ENrdﬁ) .
Proof. Let us prove that the sequence is exact. The mapping 7 — 1 is a homomor-
phism of the group le\lrdﬁ onto the group (le\kdf)?_l. It is clear that Ker(7—1) =
YNrdy- Indeed, if z € le\lrdﬁ and 27! = 1, then € S=(D), and therefore
r € YNpay. Conversely, if y € Ynya,, then y™ ! = 1 and also Nj/f(y) € k,
since Z/k is a generalized dihedral (or Abelian) Galois extension. This implies the
inclusion y € Ker(7 — 1). Hence (le\lrdﬁ)?_1 = le\jrdB/ENTdﬁ'

In conclusion let us show that Nrdw(U(D, 7)) N Nrd5(SLY (D)) = (E%\]rdﬁ)?fl.
In view of the relations (Ell\lrdﬁ)?*1 C Nrd5(D")™' and Nrd5(U(D,7)) =
Nrdﬁ(ﬁ*)?’l for chark # 2 (see [44], Proposition 6.1) it is sufficient to prove
that (Sy,q, )7 " C Nrdg(SLY(D)).  Let the element ¥ € D be such that
N7 z(Nrd5(7)) € k. Then Nrdj5(Z)7" € (2§,q,)7 "+ Let x be an inverse image
of  in D and consider the element z7~(1 4+ m), where m € Mp. Note that
am=H(1+m) =271 It is clear that N z(Nrdg(27~1(1 +m))) = 1. We show
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that for some m € Mp we have 27 ~!(1+m) € SLY(D). Indeed, N(z7=1(1 + m)) =
N@)™! =1 Consider the chain of equalities Nrdp(z™1(1+m)) =
N(z™1(1+m))*» = 1. Then Nrdp(z™"1(1 +m)) = 1 + p, where p € Mg,
which yields Nrdp(z™~1) = 1+ ¢, where ¢ € Mg. Since D € TR(K), the ele-
ment 1 + ¢ is the reduced value of some element 1 + ¢, where ¢ € Mp. Then
Nrdp(z"1(1 4 ¢)71) = 1. Hence 277 *(1 +¢)~! € SL(D) and it is easily seen that
Nrdz(z7=1(1 4 ¢)=1) = 1, which prove the inclusion (EII\IMB)?_1 C Nrdy(SLY(D)).

Conversely, let y € Nrd5(U(D,7)) N Nrd5(SLY(D)). Then for an appropriate
d € D we have y = Nrdp(d)™!, and since y € Nrd5(SLY(D)), it follows
that 1 = Nf/?(y) = Nz/f(NrdE(d)?il), Hence Nz/f(Nrdﬁ(d)) € k. Then
Nrd5(U(D,7)) N Nrd5(SL”(D)) € (¥},4,,)7 '+ The proof is complete.

It follows from Theorem 2 that the group F is quite important for computations.
The group SU(D, 1) is said to satisfy the congruence property if £ = 1. This is
equivalent to the following condition.

Theorem 17 (congruence theorem). Let D € D(K) be a weakly ramified algebra
and let 7 € Inv e, (D). Then (14 Mp) NSU(D,7) C U(D, )"

Now we focus on several particular cases of Theorem 2.
(i) E = 1. Then Theorem 2 implies that the following sequences are exact:

1 — SUK{™(D,7) — SUKY(D, 7) — Sxya,/Enrdy — 1, (6.2)
1 — SUKJ(D, 1) — SUK{"(D,7) — E) — 1. (6.3)

Consequently, SUK{" (D, 7) is the extension of the Abelian group SUK] (D, 7) by
some subgroup of Ath roots belonging to the field K, and SUK7 (D, 7) is the exten-
sion of the group SUK{"(D,7) by the group Ell\lrdﬁ/ Y Nrdy -

(ii) Ey = 1. In this case the following sequences are exact:

1 — E — SUK{"(D,7) — SUK{(D,7) — 1,
1 — SUK{™(D,7) — SUKY(D, 7) = Sxpa. /Snedyy — 1. (6.5)

(iii) E = E) = 1. Then the following sequence is exact:

1 — SUK{*(D,7) — SUK™(D,7) — Sya,/Enedy — 1. (6.6)

§ 7. Congruence property for the groups SU(D, 7).
The case of commutative residue algebras

Let D € TR(K) (chark # 2), 7 € Invg,(D), and let Z be an unramified
T-invariant lift of the field Z(D). Then Cp(Z) = I @z T, where I is a T-invariant
inertia algebra and the algebra T is totally ramified over Z. Suppose also that D
is a field.

To obtain the main result (Proposition 12) we establish two lemmas. In the first
lemma D is not assumed to be a field.

Lemma 24. Let D € D(K) be a quaternion algebra, let 7 € Inv /(D) and ez € k.
Then (1+ Mp)NSU(D,7) CU(D, 7).
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Proof. Since chark # 2, there exists a quaternion algebra A € D(k) such that
D = A®y K and 7 is induced by the canonical involution on A and a nontrivial
automorphism of the extension K/k (see [39] and [45]).

It was shown in [30] that SU(D, ) coincides with the set {x ® 1 | x € SL(A)}.
By Proposition 1.3 in [30] for the group G = {a € A* | Nrda(a) € Ng/,(K)}, the
surjective homomorphism 7: SU(D,7) — SL(A)/G’ defined by z®1 — xG’ induces
an isomorphism between the groups SU(D, 7)/U(D, )" and SL(A)/G’. Hence, to
establish the congruence property of the group SU(D, 7) it suffices to show that for
any t®1 € SU(D,7)N(1+ Mp) (x € SL(A)) the image 7(z) belongs to G'. This is
evident if x € k. Next, as Nrd4(z) = 1, we have z = b1, where b € k(z) and o
is the generator of the Galois group Gal(k(z)/k). If b € Uys, then b° = b, and
therefore b = ui(1 + p), where up € U, and p € My. Since b ¢ Uy, we have
b= \/aﬁu for some ¢ € My and v € Ug(y). Then bl = (=1)Pu"! = 2 and
u° = (—1)%u. Thus, if the element % is 7-invariant, then u € k. Clearly, we can
assume that b € 1+ Mp. On the other hand, if u™ = —, then the extension k(b)/k
is unramified, and therefore b§ € Up for an appropriate § € k.

Hence z = b°~ !, where b € 1 + M 4. Let o be the restriction of some automor-
phism ¢4, g € A. Then z = gbg~1b~! = gg~?%. Using similar arguments for b we
establish that g € 1 4+ M4.

Since A € TR(k) and the extension K/k is weakly ramified, we have

NI‘dA(1+MA) :1+Mk :NK/k(1+MK)-

Then 1+ M4 C G, hence z = gbg~'b~! € G’. Therefore, x € Kerm = U(D, 1)/,
which yields the congruence property for SU(D, 7). The proof is complete.

Below we also need another lemma.

Lemma 25. Let F be a Henselian field (char F # 2), E be its quadratic weakly
ramified or immediate extension, and let a € (1+Mg)NSL(1, E/F). Thena = b""!
for some b € 1+ Mg and a generator T of the group Gal(E/F).

Proof. First, suppose that E/F' is weakly totally ramified. By Hilbert’s Theorem 90
we have a = ¢™ 1, where ¢ € E. Since the extension E/F is weakly totally ramified,
there exists an element m € My such that vp(7) ¢ 2I'p, and then E = F(y/7). As
the extension is quadratic, we have ¢ = a — 8+/7, where o + 8/ = ¢. We can
assume that o, 3 € Vg. Since [I'g : I'r| = 2, we have v(a) # v(B+y/7), where v is
a valuation of the field E. Let v(a) > v(8+y/m). Then

0= = v VD = (5 1) (ﬁ“ﬁﬂ)l.

Since a/(8y/T) € Mg, we have @ = —1 and thus we arrive at a contradiction,
because @ = 1 and char E/ # 2.
Now suppose that v(a) < v(3+y/7). Then

o= (o~ Bym)(a+fym) = (1 _ 5f> (1+ fff)

Since Bv/7/a € Mg, we have a = b” /b, where b = 1+ 8/7/a € 1 + Mg.

-1
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If the extension E/F is unramified, then ¢ = b"~! by Hilbert’s Theorem 90.
Replacing b (if necessary) by an appropriate element of Vr, we can assume that b

is invertible in V. Passing to residues in the equality a = b" ! gives 1 =b7b = =
575 '. This implies that b € . Let e be an inverse image of b in F. Then
b= e(1+m), where m € Mg, which yields the equality a = (1+m)7~!. The proof
of the lemma is complete.

Recall that the ramification index of e(D/K) is equal to A%r(D/K), where

r(D/K) = [2(D) : K].

Proposition 12. Let D € TR(K), let D be a field and assume that chark # 2.
Then

(1+ Mp)NSU(D,7) CU(D, 7).

Proof. Note that by Theorem 11 the index ind D is 2-primary. Indeed, if ind D is
divisible by an odd integer greater than 1, then D can be written as D1 ® i D, where
ind Dy is odd and ind Dy = 2™. Moreover, D1, Dy € TR(K) and are p-invariant
under an appropriate K /k-involution. Then ind D; = 1 by virtue of Theorem 11.
Recall that chark # 2, and therefore (ind D, chark) = 1.

Let a € (1+ Mp)NSU(D, 7). If a € K, then 1 = '™ P € 1 + My. In this case
a = 1 because (ind D, char k) = 1, and therefore a € U(D, 7)’.

Thus, in what follows we assume that a ¢ K. Let M/K be a subextension of
D/K and M™ =M. Let us show that M contains a cyclic quadratic subextension
L/K such that L™ = L. Since M/K is 2-primary, the general situation reduces to
the following two cases:

(i) M/K is totally ramified;

(i) M # K.

In case (i) let v € T'ps be such that v + ' is an element of order 2 in the group
Ty /Tk and let b € M satisfy vps(b) = . Then the extension K (b)/K (b?) is weakly
totally ramified and vys(b?) € I'c. Hence b® = tu, where u € Vj;. Since M/K is
a totally ramified extension, we can assume that u = 1+m, where m € Mj;. In view
of the condition (ind D, char k) = 1 we can conclude that u = ¢? for an appropriate
c € 1+ M. Considering the element bc~! instead of b from the very beginning,
allows us to assume that b> € K. If b? € k, then L = K (b) is a T-invariant extension
of the field K, and it is cyclic over K. On the other hand, if b*> ¢ k, then consider
the 7-invariant extension K (b"~!). Note that [K(b”!) : K] < 2 due to the choice
of the value of the element u. Moreover, K (b"~!) # K (otherwise K(b)™ = K(b)).
We set L =K(b"1).

Now suppose that M # K. Passing to the maximal unramified subextension
M/K (which is T-invariant since M™ = M), we can assume that M /K is an unram-
ified extension. Since M C Z(D), the extension M/K is Abelian. Then there exists
a cyclic quadratic extension E/K, E C M, which has the form E = K(/3), where
BeK. If 771 =c? c€ K, then K(\/B) is 7-invariant. Let L = K(1/3). In the
case when 377! £ ¢2 we have [K(y/B771) : K] = 2 and (\/B7 1) = /BL-7eh.
Now let L = K(1/37~1). Thus, in this case L is also 7-invariant.

Since K (a)™ = K(a), the above result about the extension M/K is also applica-
ble to the extension K(a)/K. Clearly, L(a)/L(a), is weakly ramified.
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Note that for ind D =2 the proposition was established in Lemma 24. Let ind D
be composite. Suppose that the congruence theorem is valid for K-subalgebras
of the algebra D of 2-primary indices less than ind D, and let us establish the
existence of an element I € (1 + M) NSU(Cp(L), 7|c,(r)) such that Nrdp(l) = 1
and Nrde,()(a) = Nrde,r)(l). For such I we have Nrde,()(al™") = 1 and
L(al™') = L(a). Since ind Cp(L) < ind D and is 2-primary, our assumption is
applicable to the element al™'. Hence al™' € U(Cp(L),7|cp(r))’- Let us show
that [ € U(D,1)".

Let Gal(L/K) = (o). By Theorem 7 there exists g € D such that i4|;, = o, and
we can assume that g7 # —g. Note that L/k is separable. Put L, = k(8). Then
gBg~t = 7. Applying 7 to both sides of the last equality we obtain ¢g=73¢g™ = 5°7.
For the Galois group Gal(L/k) we have Gal(L/k) = C3 x Ca, where C3 is a group of
order 2, which yields 877 = ﬂ"_l = g 'Bg. Hence g"g~' € Cp(L). Consequently,
g™ = cg for some ¢ € Cp(L). Note that o extends to an automorphism of the whole
centralizer C'p(L), since the conjugation by g maps the field L to itself. Consider
the element g" +¢g = (c+1)g. Then (¢7 +g)?> = (c+1)g(c+1)g = (c+1)(c+1)7 g%
Let C = (¢c+ 1)(c +1)° € Cp(L). Then the algebra A = (L(Cg?),9" + g) is
a T-invariant quaternion algebra. If I € (1 + M) NSL(1, D), then

Nrdp(I)Np, x (Nrdoy, 2y (1) = Np e ()P =1 € 1+ M.
It follows from the equality (ind Cp(L),char k) = 1 that N,k (l) = 1. Further,

N k(1) = Nycg2)/k(cq2)(1) = 1.

Otherwise, the fact that the extension L/K is quadratic yields L(Cg?) = K(Cg?),
but this contradicts the fact that g7 +g acts nontrivially on L and trivially on C'g? by
the construction of this element. Hence [ € SU(A, 7|4)N(1+ M), and therefore we
can apply Lemma 24 to the algebra A and the element I, which gives [ € U(D, 1)’

We complete the proof of the proposition by establishing the existence of | with
the indicated properties.

Let M be a maximal subfield of D containing a, and let K(a) C M. Then

Nrde,, ()(@) = Nagy(a) = Niays2(Nar/niay (@) = Niayyz (@) HOL
Since aa™ = 1, we have Ny (q)/1(a), (@) = 1 and by Hilbert’s Theorem 90 we have
a=1t""1andt € L(a). In view of Lemma 25 as applied to the extension L(a)/L(a),
it can be assumed that t € 1+My, ). Since L(a)” = L(a), we have Ny (q),,(t771) =
NL(a)/L(t)T_l. Let e = Np(q)/1(t) and set [ = W@ /er=1 Then [ is the required
element. Indeed,
— — :L(a _1\[M:L(a

Nrde,, (1) (al™") = Niay/n(al ™) = (N 0y (@) Npay/2.(1) 1)[ @)

_ (e‘r—ll—[L(a):L]) [M:L(a)] _ (67'—161—7') [M:L(a)]

)

1
Nrdp(l) = Nayx (1) = Noyx (Nary(l)) = Noyx (Nrde, 0y (1) =
= NL/K(NrdCD(L)(Q)) = NrdD(a) =1.

The proof of the proposition is complete.
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Remark 10. As noted above, each division algebra D € TR(K) (chark # 2) pos-
sessing a unitary K/k-involution has a 2-primary index.

Moreover, the following corollary holds.

Corollary 12. Assume that the algebra D € TR(K) is totally ramified and
(chark # 2). Then the congruence theorem holds for the group SU(D,T).

Indeed, D = K.

Corollary 13. Assume that D € TR(K) (chark # 2) and D has a mazimal totally
ramified extension. Then the congruence property holds for SU(D, T).

Proof. Let L/K be a maximal totally ramified extension of fields in D and let
n=ind D. Then n? = [D : L] - n, and therefore n = [D : L]. On the other hand,
in view of inequality (1.1) we have [D : L][['f, : T'k] < [D : L], which implies that
n = [D : L] < 1, In other words, D is a field and we can apply Proposition 12. The
proof of the corollary is complete.

The following assertion is also valid (including in the case when Ap = 1).

Proposition 13. Assume that D € TR(K), K/k is weakly ramified and, in the
case when chark = 2 and K/k is unramified, let €,0a, € k (rad Ap is the product
of all distinct prime divisors of the integer Ap). Then Ap = 2™.

Proof. Let T be the totally ramified part of the centralizer Cp(Z), where Z/K
is a 7-invariant unramified lift of the extension Z(D)/K. Since A\p = Ar, it is
sufficient to establish that indT is 2-primary. Thus, the proposition holds for
chark # 2, since ind D is 2-primary (as shown in the beginning of the proof of
Proposition 12).

Consequently, it remains to consider the case when chark = 2 and indT is
not 2-primary. Since ind 7" is not 2-primary (for otherwise the proposition is valid
again), T has the form T, ®z T, where ind T, is nontrivial and odd, and ind 7,
is 2-primary in view of the relation Az = Az, - Ar,. To complete the proof of
the proposition we demonstrate that Ay, = 1. Assume the contrary, that is, let
Ar, > 1. Werepresent T}, in the form 7' ®z- - -®z T, where 11, . .., Ts have primary
pairwise coprime indices. As the index Ar, is assumed to be nontrivial, there exists i,
1 <4< s, such that Ay, > 1. Set indT; = p;*. Since €raqr, € k, we have Ep; € k.
Consider the extension k(g;)/k, where ¢; is a primitive exp(I'r, /T z)th root of unity.
Then for an appropriate m the element ;" € k is a primitive p;th root of unity.
Assume that e; ¢ Z;. Then e} = (¢]")7 = ¢; ™, and therefore €2, = 7™ = 1, which
contradicts the fact that €,, is a primitive p;th root of unity, because p; is odd.
Consequently, ¢; € Z.. Therefore, T; = A; ®z, Z, where A, is a T-invariant central
division Z.-algebra. This contradicts the facts that the algebra A; is T-invariant,
the index of A; is odd and the restriction of 7 to Z, is trivial. Consequently,
Ar, = 1. Thus, Ar, = A, Ap, -+ A, = 1. The proof is complete.

§ 8. Congruence property for the groups SU(D, 1)
of unramified algebras with involutions of the form 7 (u)

As above, we assume that char k # 2 and the extension K/k is weakly ramified.
First consider the case of unramified algebras D.



1140 V. 1. Yanchevskit

Lemma 26. Let D € D(K) be an unramified algebra and let 7 = 7, € Invg (D).
Then the representation of the involution 1, in the form 11(u) is equivalent to
the representation of the involution T in the form T4 (v) for some v € U(D,Tf)
(in the case when K/k is totally ramified T4(v), for an appropriate v € U(D,T),
means an involution on D that acts on L as T and is such that i,|t is a generator

of the group Gal(L/k)).

Proof. Let D = (L,o0,u), where {(c) = Gal(L/K). Taking an appropriate element
which is L-proportional to u we can assume that D = (L,7,u). This means that
7 has the form 77(@). Conversely, by the hypothesis of the lemma there exists
v € U(D,T) such that D = (L,7,v), and we can assume without loss of generality
that @ = v. Note that for any [ € L we have u=!'u = [ and v"I["u~" = [°". In view
of the relation o7 = 70 the last equality implies that «"lu~" = [?. This means
that vu™ € L. Moreover, passing to residues gives uu” = 1. Hence uu™ € 1 + M,
and since the element wu” is 7-invariant, it actually belongs to 1 + My, _. As the
extension L/L, is weakly ramified, there exists y € L such that yy” = wu”. This
means that (y~'u)(u"y~") = 1. Passing from u to y~'u we see that the involution
71, has the form 77, (y~'u). The proof of the lemma is complete.

Note that not every cyclic involution 77, has the form 77, (u).

Lemma 27. Let K/k be a weakly ramified extension, D be an unramified K -algebra
and 11, € Invg /(D) be a cyclic involution of the algebra D. Denote by Ly the
extension of K that lies in L and is such that [L : L] = 2. Suppose that La/ Lo, is
totally ramified. Then 11, # 71, (u) for allu € U(D,1r) in the following two cases:
(1) ~1e L3 ;
(2) —1¢ D2.

Proof. First consider case (1), that is, let —1 € L3_. Assume that 7, = 77 (u).
Then ind D is 2-primary by Lemma 10. Since L/K is unramified, L/K is a cyclic
extension with Galois 2-group. As K = k, the extension L/k is a cyclic extension
with Galois 2-group. Consider the extension Ly/Lo,.. Note that the centralizer
Cp(Ls9) is a quaternion Lg-algebra such that the restriction of 7 to this centralizer
is an involution of the form 7 (u). Since Lo/Ly, is totally ramified, it is suffi-
cient to prove the lemma in the case when ind D = 2, K/k is totally ramified and
—1 € k2. Since char k # 2, we can assume that D = (o, 3) ®4 k(y/7), where (a, 3)
is a 7-invariant unramified quaternion k-algebra the restriction of 7 to which is
as follows: /o' = —y/a, VB = —/B, V& = —/7, and © € M, is such that
v (m) ¢ 2I'k. Since the algebra (a, 8) is unramified, we can assume without loss of
generality that o, 3 € Ug and (@, 3) is a division k-algebra. Our aim is to prove that
71, cannot be an involution of the form 77,(u). Assume the opposite: let 77, be a cyclic
involution of the form 77, (u), where u € U(D, 7). Since {1, /a,/B3,/a/3} is the

canonical basis of the quaternion algebra (c, 3), we have /3 _1\/5\/3 = —y/a and
u~ly/au = —/a. This yields \/B_l\/a\/ﬁ = u~ty/au, which, in turn, implies that
uyB ' € k(y/x,/@). This means that uy/B ' = a+ by/a, where a,b € k( /7).
Consequently, since u € U(D, 1), we have 1 = wu™ = —f8(a + by/a)(a™ — b"/«).
Finally, we conclude that —37! = (aa”™ — abb”) + (—ab™ + ba”)\/a. Since
B~ aa™ — abb” € k, the relation —ab” + ba™ = 0 holds. This means that a/b €
S, (D). Tt follows from the above that 37! = (abb”™ — aa™) + (ab™ — ba™)\/a. Note
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that the situation where a is an integer and b is not (or b is an integer and a is not)
cannot occur. In the first case it follows from the previous equality that abb™ is not
an integer, but it is equal to b~! 4 aa”, which is a contradiction. The second case
is considered similarly. Thus, a and b are either integers or not simultaneously.

Consider the case when a and b are integers. Then B_l =abb —aa’. As the
extension k(/7)/k is weakly totally ramified, we have b™ = b. Similarly, a™ = @,
which yields ﬁ_l —ab’—a2. With due regard to the condition —1 € % we obtain
(@, B) = (E,B_l). This means that (@, 3) is not a division algebra, which is not
the case.

Suppose that both ¢ and b are not integers and we have a = u,/(v/7)™ and
b = up/(y/7)", where uq,up € Uy sz Then 871 = auyuj /((v/7)"((v/m)")7) —
uau? [((v/m)™((/m)™)7). If m # n, then we multiply both sides of this equality
by a smaller power of /7 and arrive at the case considered above. Consequently,
it remains to consider the case when m = n. Raising the denominators on both sides

m

of the equality and passing to residues gives g2 — @@, 2 = 0. Thus, @ € EQ, which
contradicts the fact that (@, 3) is a division algebra and completes the consideration
of the case when —1 € Ly2.

Suppose that —1 ¢ D? and D has an involution of the form 7, (u) for u € U(D, 7).
Then 77, (u) can be extended to an involution 77, (7) of the algebra D(i) = D®x K (i),
where i2 = —1, by letting 7 = i. Since —1 ¢ D? and chark # 2, k(i)/k is
unramified and K(4i)/k(4) is totally ramified. Moreover, L ®x K (i) is the maxi-
mal cyclic subfield of this algebra and v ®x 1 € U(D(%),7(¢)). This means that
Tr,i) has the form 77,; (u®g 1). Note that the algebra D(i) is unramified over K (i)
and K(i)/K(i);,(;) is a totally ramified extension. Thus, if we assume that the
extension L(i)2/L(i)2,, ;) is totally ramified, then we find ourselves in the frame-
work of case (1). This yields that there is no involution of the form 77,y (u ®x 1)
on D(i), which is a contradiction. The proof is complete.

The following technical proposition will be used repeatedly both for extensions
of fields K and for extensions of fields K.

Let N/F be a Galois extension of an infinite field F' (char F' # 2) such that the
group Gal(IN/F) is a direct product G x G2 of two groups, where G is Abelian and
G+ is a group of order two. Suppose that G5 = (i) and let 1 = idg ® ;1. Note that
if ¥ = Ng, then N = N, ®p E. Then the following proposition holds.

Proposition 14. Let E = F(\/B). Then the exists a primitive element z
of the extension Ng,/F such that, among the elements of the form v, =

(Q+2vB)/(1 - Z\/B))Wfl7 v € Gal(N/E), there is a primitive element of N/E.

Proof. First of all note that for an arbitrary intermediate subfield L such that
E C L C N and any prime divisor p of degree [L : E] there exists a subextension T,
such that T, C L and [L : T)] = p. Indeed, if G, = Gal(L/E) and G, is a subgroup
of G, of prime order p, then let T}, be the field of invariants of the group G/, in N.
It is easily seen that [N : T,] = p and N/T, is a cyclic extension of degree p.

The element v, can obviously be written in the form

C1—27204 (27 —2)V/[
vz = 1—2728+ (2 —27)VB
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Set A=1—27z8 and B = 27 — z. Then

Blv.) = E<1 . 2B\/B> E<A> E<1M)
A— BB B3 27—z
Assume that for any primitive element z of the extension N,/F the element
(1 —2728)/(2" — z) is not primitive for the extension N/E. Then it belongs to
some field T,,. We restrict our consideration to the case when (y) = Gal(N/T},)
and Ng,/F is cyclic.

Let p = 2. Since 272 = Nyjp,(2) € Ta, we have 1 — 2723 € Ty and therefore
27 — z € T,. Then either z € T5, which is not the case because z is primitive in
the extension N/Ty, or z is a root of an irreducible polynomial of degree 2 with
coefficients in T5. However, in the last case z7 — z cannot belong to T5, because
[N : Ty = 2.

Now suppose that p # 2 and (1 — 27206) /(2" — 2z) € T,,. By our assumptions, for
any m € F the element (1 — (2 +m)7(z +m)B3)/(z” — z) also belongs to T},. Then
so does also the quotient of these two elements. Hence

Y vy
ML +29mB o haris, M
1—27zp3

1—(z+m)”(z+m)ﬂ:1_

T,.
1—27z0 1—2720 ©tp

Similarly, we have (n + 27 + 2)/(1 — 2728) € T), for n € F and n # m. Taking the
quotient of these two elements we obtain (m + 27 + 2)/(n + 27 + z) € T},. Since

m+2z7+z _m—n—&—n—l—z'y—i—z 1y m-—n
n+z27+z n+ 27+ z o n4+z27+z’

we have (m —n)/(n+ 27 + z) € T,, which yields 27 + z € T),. Let 27 = —z + ¢,
t € T,. Then (1 — 27203)/(2Y — z) transforms into (1 — (t — 2)20)/(t — 2z — z) =
(14 228 —t28)/(t — 2z). Since this element belongs to T}, we obtain the equality
t = (1+ 228 —tz8)/(t — 22), where t € T,. This immediately implies that z is
a root of a polynomial of degree 2 with coeflicients in 7},. On the other hand, since
z is a primitive element of the extension N, /F, it is a primitive element of N/E
and, in particular, a primitive element of the extension N/T,. Hence we arrive at

a contradiction, since [N : T),] = p and N = T,(z). The proof is complete.

Corollary 14. Assume that the algebra D € D(K) is unramified, T € Inv g /1 (D)
and D contains a mazimal subfield N satisfying the conditions formulated before

Proposition 14 for F = k, E = K, up = 7|y and 8 = @, where a € Uy and
K = k(V/a). Then there exist an unramified T-invariant lift L of the extension N/k,
an element z € Uy, and v € Gal(L/K) such that ((1+zvVa)/(1 —Eﬁ))7_1 is
a primitive element of the extension N/K .
Proof. Denote the 7-invariant unramified lift of the extension N/k by L/k. By
virtue of the last proposition the extension N/K contains a primitive element of
the form ((1 + tva)/(1 — Z\/E))”’ﬂ where ¢ is some primitive element of the
extension N-/k.

Let z be the inverse image of ¢ in L,. Then the element ((1+E\/5)/(1—2\/5))Vfl
is primitive for the extension N/K. The proof of the corollary is complete.
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If X is the lift of the automorphism ~ to the field L, then the following remark
is valid.

Remark 11. The inclusion

(%)H e SU(D, 7)

holds.

Corollary 15. If A =i,|r, where u € U(D, ), then ((1+ zy/a)/(1 — z\/a))/\_l €
U(D,r).

Proof. We have d = (1 + zy/a)/(1 — zy/a) € U(D, ), which implies that d*~! =
udu=td=! € U(D,7)". The proof is complete.

Let us formulate a sufficient condition for the group SU(D,7) to exhibit the
congruence property.

Proposition 15. Let D € D(K) be an unramified algebra of an odd index and
7L, € Invg (D). Suppose that the involution T = 71 has the form T (u). Then the
group SU(D, 7) has the congruence property.

Proof. Let a € (SU(D,7)N (1 + Mp))\ K. Note that D = (L, 7, %), where () =
Gal(L/K) and u € U(D,7). Also note that 7|z commutes with the elements
of Gal(L/K).

Let N=L E=K,u= 7|y and F = k. By Proposition 14 there exists a prim-
itive element % of the extension L=/k such that dz = (1+zva)/(1- E\/E))’kl is
a primitive element of the extension L/K.

For the lift A of the automorphism @ in L let d. = ((1 + zv/a)/(1 — z\/&))k_l,
where Z = Z. By Lemma 26 there exists an element u € U(D, 7) such that i, |, = A.
Then d, € U(D, 1)’ by Corollary 15.

Denote the field K(d.a) by L'. As d.a = dz is a primitive element of the
extension L/K, we have L' = L. Since D = (I’,5,u), where (¢) = Gal(L'/K),
by the last lemma we have D = (L' 0’ ,u), where (¢/) = Gal(L'/K), o/ = &
and u € U(D, ). Applying Proposition 3 to the last algebra and the element d.a
gives d,a € U(D,7)". Hence a € U(D, 7)’.

Now suppose that a € SU(D,7) N (1 + Mp) N K and let d, be the element
mentioned above. Consider d,a. We have d,a € (L' \ K). Again, d.a € U(D, 1)’
by Proposition 3, which implies that a = (d.a)d;! € U(D,7)". The proof of the
proposition is complete.

We need the following proposition below.

Proposition 16. Let D € D(K) be an unramified algebra of 2-primary indez, let
T € Invg (D), 7 = 70(u), and assume that chark # 2. Then the group SU(D, T)
has the congruence property.

Proof. If D is a quaternion algebra, then SU(D, 7) has the congruence property by
Lemma 24. Suppose that ind D > 2 and that the special unitary groups of cyclic
subalgebras of D with involutions satisfying the hypotheses of the proposition posses
the congruence property.
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By Proposition 14 there exists a primitive element Z of the extension L=/k such
that d = (1+zVa)/(1 - Eﬁ))7_1 is a primitive element of the extension L/K.

Next, let E be a quadratic extension of k£ containing in L.. Let E = E X K.
Then E/K is a T-invariant quadratic extension of K. For the inverse image z of the
element Z in L, let d. = ((1+ zv/a)/(1 — z\/a))”’l, where v is an inverse image
of 7.

gince L= F(CA[) C K(d,), L is a maximal field and the algebra D/K is unrami-
fied, we have K (d,) = L; furthermore, d, € U(D, )" because (14+zy/a)/(1—zy/a) €
U(D,7) and v = iy|, u € U(D, 7).

Next, let a € (1+ Mp)NSU(D,7)\ K and let L' = K(d.a). Since the extension

K(d.)/K is maximal and K(d,) C K(d,a), we obtain L' = L. The identity auto-
morphism of the fields L’ and L is the restriction of the identity automorphism of D.
Denote by ¢ the K-automorphism of D sending L’ to L and such that |37 = id.
Then, since the algebra D is unramified, we conclude from [43] that ¢ = (14 )1,
where m € Mp. Consequently, L' = (1 4+ m)~'L(1 +m). We apply 7 to both
sides of the last equality and obtain L'" = (1 +m)7L™(1 +m)~ 7. Since L' =
K(d,a), the field L' is 7-invariant (in view of the fact that d,a € U(D,7)).
Hence L' = (1 + m)"L(1 + m)~". This implies that (1 + m)"'L(1 + m) =
(14+m)7 L(14+m)~7, which, in turn, yields L = (14+m)(1+m)"L((1+m)(1+m)7) L.
Then the restriction of the automorphism 41 {,,)(14m)~ is an automorphism of L
with an identity reduction. Therefore, (1 +m)(1 +m)” € Cp(L) = L. Note that
(1 4+ m)(1 +m)” € 1+ Mp; hence for an appropriate 1 +p € 1 4+ My we have
(14+m)(14+m)" = N/ (1+p) = (1+p)(1+4p)7, since L/L; is weakly ramified.
Consequently, (1 + p)~1(1 +m) € U(D,7), and we may assume without loss of
generality that (1 +m) € (1 + Mp) NU(D,7) because 1 + p is a central element
of CD (L)

To complete the proof of the proposition we demonstrate that b =
(1+m)~Y(d.a)(1+m) belongs to U(D, 7)". To do this we show that there exists an
element e € (1+ Mg)NSU(Cp(E), T|cp(r)) such that Nrde,, (g (b) = Nrde, (g (€)
and, in addition, Nrdp(e) = 1. For such e we have E(be™!) = E(b) and
Nrdey, (g)(be™!) = 1, which means that be™! € (1+Mc,(5))NSU(Cp(E), T|cp(k))-
Since ind Cp(E) < ind D, we can apply the inductive hypothesis to be~! and
obtain be ™! € U(Cp(E), T|cp(r))'-

Now we establish that e € U(D,7)’, which implies that b € U(D, 7)’.

Let (o) = Gal(E/K). By Theorem 7 there exists an element g € D such that
ig-1lg = 0. Let E. = k(8). Then gBg~' = ¢g°. We apply 7 to both sides of
this equality and obtain g~ "(g™ = (°7. Since Gal(E/k) = Cy x C3, we have
[T = ﬁ”_l = g~ 'Bg. This yields g"g~! € Cp(E). Hence g" = cg for some
¢ € Cp(F). Note that o extends to an automorphism of the whole centralizer
Cp(E), because the conjugation by g maps the field E to itself. We can assume
without loss of generality that g7 # —g. Otherwise, instead of g we can consider
the element ag, where K = k(a). We look at g7 +g = (c+1)g. We have (¢"+g)? =
(c+1Dg(c+1)g = (c+1)(c+ 1)°g% Denote the element (c+ 1)(c+1)° € Cp(E)
by C. Then the algebra A = (E(Cg?),g" + g) is a T-invariant central algebra of
index 2 over K(Cg?). Note that

Ng/x(Nrde, (m)(€)) = Ng i ()4 OPF) =1 € 1+ My.
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Since ind Cp(E) is coprime to chark, we have Ng/i(e) = 1. It is easily seen
that Ng, i (e) = Ngicg?)/Kk(cg?)(€) = 1. Otherwise, since the extension E/K is
quadratic, we have E(Cg?) = K(Cg?), which contradicts the fact that i, , acts
nontrivially on E and trivially on Cg? by the construction of this element. Thus,
e € SU(A,7|a) N (1 + M,), and therefore Lemma 24 applies to the algebra A and
the element e. Hence e € U(D, 7)’.

It remains to prove that there exists an element e with the indicated properties.
Now,

Nrde, () (b) = Ni/2(b) = New)/e(Ni/em) (b)) = Nee) s () EEOL

Since bb™ = 1, we have Ng@)/p@). (b) = 1 and by Hilbert’s Theorem 90 we have
b = t""! where t € E(b). In view of Lemma 25 as applied to the extension
E(b)/E(b)-, we can assume without loss of generality that ¢ € 14 Mpy). Let
r = Nguy/e(t). We set e = EOR/r7—1 and show that e is the required element.
Indeed,
- NI _\[L:E®
Nrde, () (be ™) = Nigqoy (b~ )EEO) = (N 1(0) Ny i (e) ™) )
_ (TT—le—[E(b):E]>[L:E(b)] _ (TT—1T1—T)[L:E(b)] -1

and

Nrdp(e) = N/ (e) = Ng/x (Np/p(e)) = Nk (Nrde, (g (€))
= Ng/k(Nrdey, (g (b)) = Nrdp(b) = 1.

The proof of Proposition 16 is complete.

Theorem 18. Suppose that D € D(K) is an unramified algebra and T = 7 (u)
is a cyclic involution in Invg (D). Then the group SU(D,T) has the congruence
property. In particular, the assumptions of the theorem are satisfied when D is
a quaternion algebra unramified over K.

Proof. As above, we note that the element a € (1 + Mp) NSU(D,7) N K belongs
to U(D, ).
Now let a € (SU(D,7)N (1 + Mp)) \ K. Note that D = (L,5,u), where (5) =
Gal(L/K). Moreover, the restriction 7|7 commutes with all elements of Gal(L/K).
Let N=L, E =K, u = 7|z and F = k. By Proposition 14 there exists
a primitive element Z of the extension L-/k such that for some v € Gal(L/K) the
element dz = ((1—1—5\/5)/(1—5\/5))7_1 is a primitive element of the extension L/K.
For the lift of the K-automorphism 7 to a K-automorphism X of the field L
set d, = ((1+ z/a@)/(1 - z\/a)))\_l, where Z = Z. By Lemma 26 there exists an
element w € U(D, 7) such that i,|, = A\. Then d, € U(D,7)" by Corollary 15.
Denote the field K (d,a) by L'. Since d,a = ds is a primitive element of L/K,
we have I’ = L. Consequently, D = (L’,5,u) and by Lemma 26 we have D =
(L', o', u), where (¢') = Gal(L'/K) and v € U(D, 7). Applying Proposition 3 we
obtain d,a € U(D,7)’. Hence a € U(D,7)". The proof is complete.
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§ 9. Congruence property for the groups SU(D, 7). The mixed case

Let D € TR(K) and assume that chark # 2. The main result of this section is
Theorem 3. We recall its formulation.
Let 7 € Invg (D). Then the group SU(D, T) has the congruence property in the
following two cases:
(i) D is a field;
(ii) D is not a field (if chark > 0, then (ind D, chark) = 1) and the involution 7
18 cyclic and accompanied by a unitary element.

Remark 12. In case (i) Theorem 3 has already been established (see Proposition 12).
We preface the proof of Theorem 3 in case (ii) by the following lemma.

Lemma 28. Assume that D obeys the conditions of case (ii) and I is a T-invariant
inertia algebra of D. Then 7|5 is a cyclic involution of I accompanied by a unitary
element and having the form (7|1)r and L/Z(I) is an appropriate T-invariant cyclic
extension of the field Z(I). In this case there exists | € (1 4+ M) N SU(D, 1) such
that L = K(I) and 1 € U(D, 7).

Proof. It is clear that both in the case when chark = 0 and in the case when
k has a positive characteristic, in view of the condition (ind D,chark) = 1 all
K-extensions containing in D are weakly ramified.

Let I be a 7-invariant inertia algebra of D. It follows from the hypothesis of
the lemma that 7|; = (7|7); (u), where L is an appropriate cyclic extension of the
field Z(T) and @ € U(T, 7|;). Denote the unramified 7-invariant lift of the extension
L/Z(I) by L/Z(I). Then 7|; is a cyclic involution of (|;). However, in this case,
in view of conditions (ii) and Lemma 26 the involution 7|; has the form (7|;)r(u)
for an appropriate u € U(I,7|r).

Let us show that there exists an element ! mentioned in the formulation of the
lemma. It is easily seen that there exists a primitive 7-invariant element s € Uy, such
that L = K (5). Denote a primitive element of the extension L+/Z(I)- by s and
a primitive element of Z(I)?/E by s3. Let s1 be the inverse image of 57 in L and s be
the inverse image of §3 in Z(I). Then s; + s and s + s are 7-invariant primitive
elements in L and Z(I), respectively. Note that there exists an element ¢ € k such
that §7 + ¢S5 is a primitive element of Z/F Let

5 = (s1 4+ 87) + 2c(s3 + 53),

where c is the inverse image of the element ¢ in k. In view of the condition char k # 2
and the equality (ind D,chark)=1, the element s is as required. In the case of
a totally ramified extension K = k(y/7), m € My, let I’ = (1 4+ /7s)/(1 — /7s).
Then I € U(D,7). Set I = (™X/Nrdp(l’))~!l'. Then it is clear that | €
(14+ M) NSU(D, 7). In the case when K/k is unramified, for ¢ € Uy such that
G# kand ¢ = —qweset I’ = (1+7gs)/(1—mqs). Then, as in the case of a totally
ramified extension K/k, we show that I’ € U(D, 7). Let I = (™%/Nrdp(l'))~11'.
Then [ is again the desired element.

Now denote by N a cyclic 7-invariant extension of the field K of prime degree
which is contained in Z(I) if Z(I) # K, while in the case when Z(I) = K let N be
a cyclic extension of Z(I) of prime degree that is contained in L.
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Note that L is a maximal subfield in D and

Nrde,, vy (1) = Npyn(1) = Nnay v (No v (1) = Nyayv (DENOL

Since II” = 1, we have Ny(y/n@),(l) = 1 and by Hilbert’s Theorem 90 [ = ¢t"~ !,
t € N(I). Since the extension N(I)/N(l), is weakly ramified, we can assume with-
out loss of generality that ¢t € 1 + My(. Since N(I) is a 7-invariant field, we
have Ny n({#"') = Nyayn ()7, Note that [N(I) : N] divides the index
of the algebra D, which is coprime to chark. We take m = Ny@y/n(t) and
c= WON/m™1 € 1 + My and show that ¢ satisfies the following conditions:

Nrdey, (v (le™) = Nyayn (e HENOL = (Ny gy v (O Nyay v (e))
77167[N(l):N])[L:N(l)] _ (m771m177)[L=N(l)]

[L:N ()]

=(m (9.1

la
NI‘dD(C) = NL/K(C) = NN/K(NL/N(C)) = NN/K(NrdC'D(N)(C))
= NN/K(NI'dCD(N)(l)) = NTdD(l) =1.

Thus, Nrde,(v)(lc™!) = 1 and Nrdp(c) = 1. Taking these two equalities into
account, the proof of the lemma is completed as follows. If Ic™! and c belong
to U(D, ), then the same is true of I. To prove the lemma we use induction
on ind D. When ind D is a prime number, Theorem 3 holds true and the lemma
holds too. Now let ind D be distinct from a prime. Consider the algebra D’ =
Cp(N) and the element I’ = [c~!. By the inductive hypothesis Theorem 3 holds
true for D', whose index is less than ind D; hence, in particular, le=* € U(D’,7|p/)".
Now, to complete the proof of the lemma is suffices to show that ¢ € U(D, )’

Let (o) = Gal(N/K). Recall that N/k is a separable extension because char k # 2
and ind D and char k are coprime. Then there exists g € D such that ig-1|n = 0.
Let N, = k(3). Then gBg~' = 5. We apply 7 to both sides of this equality:
g "Bg™ = 7. Since Gal(N/k) is either a generalized dihedral group or a direct
product of groups of order 2, we have 377 = 5‘771 = g~ Bg. It follows from this that
g"g~! € Cp(N). Hence g" = rg for some r € Cp(N). Note that o can be extended
to an automorphism of the whole centralizer C'p(INV), since the conjugation by ¢
maps the field N to itself. Consider the element g™ + g = (r + 1)g. Note that
(9" + 9P = (r+1glr +1)g--(r+1)g = (r + )(r + 1) (r + 1)7" g7, Let
r # —1. Denote the element (r41)(r41)7 - (r+1)°" € Cp(N) by R. Consider
the 7-invariant ramified algebra A = (N(RgP), g™ +g) of prime index that is central
over K(Rg?). (If r = —1, then let A = (NK(¢?),g).) Note that ¢ € SU(A,7|4) N
(1+M4). Indeed, first of all, let us show that Ny (gge)/ i (rgr)(c) = 1. To do this we
establish the equality Ny/x(c) = 1. From (9.1) we obtain Ny, g (Nrde,,(n)(c)) = 1,
and since Nrde, (nv)(I) = Nrde, (v (c), we have Ny x(Nrde, (ny(c)) = 1, which
yields (Ny/x(c))m462(N) =1 € 14+ Mg. In view of the equality (ind Cp(N),
chark) = 1 we have Ny x(c) = 1. Moreover, it follows from ¢ = ““"V/er—1
that NN = ¢7=1 Then (Nn/n, (e)INO:N = 1 € 1 + My,. Consequently,
Nn/n, (c) = 1, which means that ¢ € U(D, 7). Thus, ¢ € SU(A,7|4) N (1 + My).
Note also that the algebra A is ramified over K (RgP) (over K (g”), respectively), and
therefore by Proposition 12 (for ramified algebras of prime index) the congruence
theorem holds for the algebra A and the element c¢. Hence ¢ € U(D, 7)". The proof
is complete.
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Proof of Theorem 3. First recall Remark 12. Let a € (1+Mp)NSU(D, 7). Ifa € K
and n = ind D, then a™ = 1, which means that a is an nth root of unity. Then it
follows from (ind D, char k) = 1 that a = 1. The case when char k = 0 is considered
similarly. Thus, we assume below that K(a) # K.

In the proof of the theorem we can restrict our considerations to the case when
a has the property K (a) # K. Indeed, if the extension K(a)/K is totally ramified,
then consider a 7-invariant inertia algebra I containing the element ! mentioned
in Lemma 28. Note that a = (al)l™!, where al € SU(D,7) and K (al) contains
K(1) and therefore K (al) = K(I) = L. Thus, if we prove that al € U(D,7)’, then
a = (al)l™! will imply that a € U(D,7)’. Hence we can assume without loss of
generality that K(a) # K.

Let us show that when the extension K(a)/K is unramified, we can assume
without loss of generality that Z(D) # K. Indeed, if Z(D) = K, then, since
K (a)/K is unramified (by Theorem 16) there exists a 7-invariant inertia algebra I
containing K (a). By assumption D = I ® x T, where T is a weakly totally ramified
algebra. Since Nrdp(a) =1 and

1 = Nrdp(a) = (Nrdz(a))*?,

it immediately follows from the coprimality of ind D and char k that Nrd;(a) = 1,
and therefore a € U(I,7|;)’, because I is an unramified Z(I)-algebra.

Thus, if K(a)/K is unramified, then we can assume that Z(D) # K. To prove
the theorem in this case we use induction on ind D. As above, let a € (SU(D,7) N
(1+ Mp)) \ K. It is easily seen that the theorem holds in the case when D has
a prime index.

Let I be a T-invariant inertia algebra such that K(a) C I, which exists because
the field K(a) is 7-invariant. Denote by N/K an unramified 7-invariant cyclic
extension of prime degree which is contained in Z(I). Then the element a € Cp(N)
commutes with the elements of N. Since Nrdp(a) = 1 and (ind D, chark) = 1, we
obtain Nk (q)/k(a) = 1 (recall that a € 14+ Mp). This implies that Ny q)/n(a) = 1.
Consider the centralizer Cp(N). Note that ind Cp(N) < ind D and 7|¢,, (n) satis-
fies again a condition similar to condition (ii) in Theorem 3. If we assume that our
assertion holds for algebras of index less than ind D, then it follows from the above
that a € U(D,7)".

Now we prove the theorem in the case when K (a) is ramified over K. We use
induction on ind D. If ind D is a prime number, then by Proposition 12 the group
SU(D, 7) has the congruence property. Suppose that ind D is not a prime. Denote
the maximal 7-invariant unramified extension K contained in K (a) by N,. Then
N,/K(a) is a totally ramified extension. Consider the centralizer C'p(N,) and
note that N, # K, because otherwise we arrive at the situation where K(a)/K is
a totally ramified extension, which we considered above. Since N, is 7-invariant, we
have Cp(N,)” = Cp(N,). Moreover, ind Cp(N,) < ind D and Nrd¢,, (n,)(a) = 1.
The last equality follows from the fact that a € 1 + Mp and

Nrdp(a) = Ny, xk (Nrdo, (w,) (@) = (NrdD(a))[N“:K] =1.

Since [N, : K] divides ind D and therefore is coprime to chark, we have
Nrde,(n,)(a) = 1. Applying now the inductive hypothesis to Cp(N,) and the

element a we obtain a € U(D,7)’.
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§ 10. Special cases of the computation of the groups SUK{" (D, 7)

In conclusion consider several examples of the computation of the groups
SUK{™(D, 7).

We assume below that D € TR(K), chark # 2 and k is Henselian.

For unramified algebras D the following theorem is valid.

Theorem 19. Suppose that the algebra D is unramified. — Then the groups
SUK{™(D,7) and SUK{*(D,7) are isomorphic if the involution T has the form
7(u), where u € U(D, 7).

The last condition holds for quaternion algebras D.

Proof. Since the algebra D is unramified, we have A\p = 1, and since the column
of the diagram in Theorem 2 is exact, we have SUK} (D, ) = SU(D,7)/U’. Note
that in our case Nrd5(SL"(D)) = 1, and therefore it follows from the exactness of
the sequence (3) in Theorem 2 that the groups SUKY (D, 7) and SUK{"(D,7) are
isomorphic, which yields that the sequence

1 — E — SUK{*(D,7) — SUK{*(D,7) — 1

is exact. Thus (see Theorem 3), if the involution 7 has the form 7, (u) for u€ U(D, 7),
then E = 1. This implies that SUK{" (D, 7) = SUK{"(D, 7). In the case when D is
a quaternion algebra the condition concerning the involution 7 holds by to a result
due to Albert [39]. The proof of the theorem is complete.

We assume below that the algebra D has a nontrivial ramification.
For commutative algebras D the following theorem holds.

Theorem 20. Let D be a field. Then E =1 and the following sequence is exact:
1 —{z€ 7| Ng (%) €k}/Zr — SUK{™(D,7) — Ex — 1.
In particular, if Ex = 1, then SUK{™(D, 1) = Ell\lrdf/ENrdﬁ'

Proof. By Proposition 12 we have E = 1. First of all, note that SUK{"(D,7) =
SU(D,7) = 1 since Nrd = idy. Hence, taking the relation SUK*(D,7) = 1
and the exact sequence (6.2) into account, we obtain SUKY (D, 1) & Zl{lrdﬁ/ YNrdy-
In view of this isomorphism, taking the sequence (6.3) into account we conclude
that the following sequence is exact:

1—{z€Z| Ny %) €k}/Z; — SUK(D,7) — Ex — 1.
The proof is complete.

Now consider the case when the upper ramification index of the algebra D is
trivial.

Theorem 21. If A =1, then the following sequence is exact:

1 — SUK{"(D,7) — SUK"(D,7) — Sya/Enedy — 1.
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Proof. Suppose that A = 1. Then E) = 1. Since, in addition SUK{"(D, 1) =
SUK7 (D, ), it follows from the exactness of the sequence (6.5) that the following
sequence is also exact:

1 — SUKY™(D,7) — SUKY" (D, 7) — Syya/Enedy — 1.

The proof is complete.
Now we consider special fields .

Proposition 17. Let k be a field such that dimk < 1 (see [46], Ch. 2, §3). Then
the following sequence is exact:

1 — SL(Z/K))/(SL(Z/K)) N Z%) — SUK™(D, 7) — E — L.

Proof. Since dimk < 1, for any L of finite degree of k the Brauer group Br(L) is
trivial, and therefore D is a field. Hence the group E is trivial. As shown above,
in this case the following sequence is exact:

1= Ypq /Sneay — SUK (D, 7) = Ex — 1.

The proof is complete.

Thus, the group SUK{*(D, 7) is an extension of &, 4/ YNrdy; by the subgroup
FE), of the group of Ath roots of unity belonging to the field K. Consider the group
le\frdﬁ/ ENrdﬁ. Note that ENrd6 coincides with the multiplicative group Z= of the

field Z= and Xy, = Z~SL(Z/EK). Consequently,
Shea,/Snidy = (Z2 SL(Z/K)) /72,
which implies that
Shea,/Sxay = SL(Z/K))/(SL(Z/K)) N Z5)

by the isomorphism theorem for groups.

Now consider the case of finite k. Since computations for the groups SUK{" (D, 7)
are closely related to the groups E, E) and Ell\frdﬁ/ENrdﬁ7 which are defined in
terms of the residue algebras D, we preface these computations by a description of
the structure of D. Since dimk < 1, we have D = Z. Let us show that the degree
[Z : K] is not greater than 2. Namely, we show that if [Z : K| # 1, then [Z : K| = 2.
In the case when [Z : K| # 1 we can apply Proposition 7 to the algebra D. Let
us show that there are no generalized dihedral groups among the groups Gal(Z;/k)
listed in the formulation of Proposition 7.

Suppose that the extension K/k is unramified. Then Z/k is also unramified.
This implies that Gal(Z/k) = Gal(Z/k). By Proposition 7 Gal(Z/k) is a direct
product of groups Gal(fj /k), which are either generalized dihedral groups or groups
of exponent 2. Suppose that, among the groups Gal(Z;/k), 1 < j < r, there is
a group Gal(Z,,/k) that is a generalized dihedral group. On the other hand, since
k is finite, this group must be cyclic. Hence there are no dihedral groups among

the groups Gal(Z,/k).
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Now suppose that K/k is totally ramified and Gal(Z;,/k) is a generalized dihe-
dral group. Then Gal(Z;,/K) has an odd order. By Theorem 13 there exists
a T-invariant unramified lift N/k of the extension Z;, /k to Z;, /k. Since Z;,/k is
a Galois extension, N/k is a Galois extension too. Now it is easily seen that Z; /k
is isomorphic to (N ®j K)/k, and therefore Z;,/k is Abelian. This means that
there are no generalized dihedral groups among the groups Gal(Z;/k).

Hence all groups Gal(Z;/k) have exponent 2. Since Z = Z; X --- X Z, by
Proposition 7 and Gal(Z/K) is a subgroup of the Galois group Gal(Z/k), this
group also has exponent 2. The extension Z/K is unramified, so Gal(Z/K) is
a group of exponent 2. Assume that r > 1. Then Gal(Z/K) contains a subfield
that is a direct compositum of quadratic extensions Q; and Q. As the field k is
finite, the field @1 x Q2 contains divisors of zero, which is impossible. Therefore,
r=1. Thus, [Z : K| = 2.

As a result, D is a field such that [D : K] < 2.

Now consider the groups SUK;"(D, 7). Note that E = 1, because D is a field.
As concerns the group F), below we consider the cases of a totally ramified and an
unramified extension K/k separately.

Let K/E be totally ramified. In this case Ey = 1 (Lemma 23). Let K/k be an
unramified extension. Since D has a unitary involution, we have D = D; ®; K,
where D; is an appropriate quaternion k-algebra. Note that D; contains no unram-
ified quadratic extensions over k. Otherwise the algebra D; XEK has divisors of
zero. Hence D = Z = K. We show that in this case we also have £y = 1. In view
of the relation D = Z = K, (6.1) assumes the form Ey = Cy(K) N K

To apply Theorem 2 we also need to compute the groups SUK;"(D,7) and
SNrdy/ENrdy- Since D is a field, we have SUK}"(D,7) = SU(D,7) = 1.

Consider the groups 3y,q_/Inway - First suppose that D = Z = K. Then
le\“dﬁ ={z € Z| Nj/?(z) € k} = Z- and YNrd, = Z7. This implies that
le\lrdﬁ = Z=, which coincides with YNrdy - Hence le\hdﬁ/ YNrdy = 1. As noted
above, in the case when [Z : K| = 2 the extension K/k must be totally ramified.
In this situation the group le\lrdﬁ coincides with Z~ since K = k, and Y Nrd
coincides with Z7. Hence S,q_/Sxra, =Z /2.

Applying Theorem 2 to the case when K/k is a totally ramified extension we
obtain SUK{"(D, 7) = ZII\Irdﬁ/ENrdﬁ' Finally,

, 1 if Z=K
SUK™(D,r) =4, _, 27
Z |Zz if[Z:K]=2.
Consider the case of an unramified K/k. Then the following sequences are exact:
—7-1

1 — SUK}(D,7) — SUK*(D,7) - CA(K)N K~ —1

and
1eﬂmKaﬂazh%mM%ﬁL

Since D = Z = K, the same arguments as in the case of totally ramified K /k prove
that SUKY (D, 1) & le\frdﬁ/ENrdf' Finally, SUK{ (D, 7) = 1. Thus, SUK{"(D, 1) &

C,\(F) ﬂ??il.
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The following proposition summarizes the above discussion.

Proposition 18. Let k be a finite field, chark # 2, and assume that a central

algebra D € TR(K) has a unitary involution 7. Then the group SUK{"(D,T) can

be computed in the following way: if K/k is totally ramified, then always [Z : K| < 2
and

SUK2™(D, 7) = {1* _. 1i=k

7z |Z= if

whereas if K/k is unramified, then SUK{"(D,7) = Cy\(K) N K

Remark 13. The above argument can also be used in the case of an infinite field k.
For example, if & is the field of formal power series in one variable with coefficients in
an algebraically closed field of characteristic 0, then very much the same argument
as in the case of a finite field & produces similar final results on the computation of
SUK{"(D, 7) in this case.

Remark 14. Note that if k is a local field (a finite extension of the field of p-adic
numbers or the field of formal power series in one variable with finite field of con-
stants), then the computation of the group SUK}" (D, 7) can be reduced to the case
considered above. Indeed, since k is a Henselian ﬁeld with finite residue field, the
algebra D has a Henselian valuation with finite residue field (namely, a valuation
composed of the original valuation and the valuation of the field k).

Consider another example, where k is a real closed field. In this case the argu-
ment is similar to the reasoning carried out above, so we present only the formula-
tions and sketches of proofs of the corresponding assertions. First we describe the
algebras D

Proposition 19. Let k be real closed. Then the structure of the residue algebra D
is as follows.
1. If D is not a field, then Z = K.
2. If D isa field, then D = 7 and the following possibilities hold for the fields
Z K and k:

K =k;
K =k;
K #k.

\H\II

The proof is evident since k is real closed and the extensions K /k, Z /k and D/k
are finite.

Consider the groups SUK}" (D, 7). We make use of Theorem 2.

It turns out that for all algebras listed above we have E = 1. In case 1 we have
E =1 by Theorem 18, while in all other cases D is a field and the result that £ = 1
follows from Proposition 12.

For all algebras listed above, except the ones in case 2,iii), we have E) = 1, since
in all these cases the extension K/k is totally ramified. In case 2, iii) the composition
of homomorphisms N /K © Nrdy is the identity homomorphism. Bearing in mind
that 3 =1 for s € SU(D, 1), this gives E\ = 1 in this case too.
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Now we compute the groups SUK" (D, 7). If D is not a field, then the algebra D
contains a quaternion k-algebra A such that D = A ®EF and the restriction of 7
to A is the standard quaternion conjugation. Note that U(D,7) = {u € D |
uwu” = 1}. On the other hand the equation uu™ = 1 is equivalent to Nrdg(u) = 1.
Hence SU(D,7) = SL1(D). By definition we have

SUK¥(D,7) = SU(D,7)/U(D,7)" = SL1(D)/SL1(D)’.
Moreover,
D' cSLy(Dy.
Indeed, for a,b € D"
[a,b] = [Nrd5(a) " a, Nrd(b) " 1b].

Since the group SK;(D) is trivial, it follows from the inclusion D' C SLi(D) that
the group SUK{"(D,7) is trivial. -

Suppose that D is a field. Then U(D,7)" = 1. Therefore, in all remaining
cases we have SUK{"(D,7) = SU(D,7). Let s € SU(D,7), which means that
Nrdg 7 (s) = 1. Since D = Z, we have s = 1. Thus, SUK]"(D,7) = 1 in all cases.

Let us co:npute the groups le\lrdﬁ/ YNrdy, in cases 1)—2,iii) of Propositioan.

Case 1. D is not a field. In this case the reduced values of the elements in D are
zeros of the quadratic form x3 + 23 + 23 4 7 in the variables x1, o, 3, 24 over K
and, since K = k, of the quadratic form in these variables over k. This implies that
le\hdﬁ = YNrdy, Which means that ElNrdE/ YNrd 18 trivial.

Case 2,1). Nrdy = id, and since Z = K = k, we have le\lrdﬁ =% . This means
that Nrd (D7) also coincides with k" B

Case 2,ii). In this case the fact that the element z € Z belongs to E%Wdﬁ means
that Nf/f(z) € k, since K = k le\hdﬁ coincides with Z . The group YNrdo
coincides with Z—. Hence Ell\Trdﬁ/ZNiiﬁ =N A VAS

Case 2,iii). In this case for z € Z we have Nrd5(z) = 2, therefore, the con-
dition that z belongs to the group le\frdﬁ means that z belongs to k. Note that
Nrd5(D): = 7;. Consequently, le\lrdﬁ/ZNrdﬁ = 7*/7; which in view of the
equality Z = K implies that the groups le\hdﬁ /ENrd; and K" /k are isomorphic.

The results obtained above, in combination with Theorem 2, establish the fol-
lowing proposition.

Proposition 20. Suppose that k is real closed. Then the group SUK{™(D,T) is
trivial, except for the cases 2,il) and 2,iii), where it is isomorphic to 7*/7;
and F*/E* , respectively.

Consider one more important example of the field k.

Proposition 21. Let k be an extension of an algebraically closed field with tran-
scendence degree 1. Then SUKY (D, 1) = le\lrdﬁ/ih\m5 and the following sequence
18 exact:

1 — SUKJ(D,7) — SUK{"(D,7) — E\ — 1,
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where
1 if K/k is totally ramified,
B 1 if K/k is unramified, X is odd,
A =

T

1 if there exists no element s € SU(D,T) such that Nz 7(5) = —1,
Z/2 otherwise.

heorem 2 allows one to obtain simple formulae in the case of a field k of algebraic

numbers and algebras D of odd indices, which we do not present here because their
proofs are exceedingly lengthy.

T

he author is profoundly grateful to the referee, who read the preliminary version

of the paper attentively and made a lot of useful comments.
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