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Henselian division algebras and reduced
unitary Whitehead groups for outer forms

of anisotropic algebraic groups of the type An
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Abstract. Some results on the structure of involutorial (that is, having
an involution) Henselian tamely ramified division algebras are obtained.
These results are then used to derive formulae for the computation of the
reduced unitary Whitehead groups for outer forms of anisotropic algebraic
groups of type An.
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§ 1. Introduction and statements of the main results

Let K be an (infinite, for simplicity) field. Among the first important examples
of infinite projectively simple (that is, containing no noncentral simple subgroups)
groups provided by a linear algebra are the special linear groups SLn(K), n > 1
(more generally, the special linear groups SL+

n (D) over division rings; see [1] and [2]).
These groups arise as the kernels of the determinant homomorphism of the general
linear group GLn(K), the group of nondegenerate K-linear automorphisms of the
n-dimensional K-vector space Vn(K). They can also be defined as the derived sub-
groups GLn(K)′ of the groups GLn(K) (in what follows, for an arbitrary group G
we denote by G′ the derived subgroup of G). Other examples of this kind can
be obtained with the use of classical linear groups. For example, suppose that
char K ̸= 2 and the space Vn(K) is equipped with a nondegenerate skew-symmetric
bilinear form f : Vn(K)×Vn(K) → K (which means that f(v, w) = −f(w, v) for any
pair v, w ∈ Vn(K)). Let Spn(K) be the symplectic group of the form f (see [1]–[3]):

Spn(K) =
{
s ∈ GLn(K) | f(s(v), s(w)) = f(v, w) for any pair v, w ∈ Vn(K)

}
.

Then Spn(K) is again a projectively simple group (see [1], Theorem 5.2). Note that
Spn(K) = Spn(K)′ (this follows from [1], Theorem 5.1).

Leaving aside other examples of infinite projectively simple groups related to
classical groups, we note that the range of such examples was significantly extended
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by passing to semisimple linear algebraic groups, which gave rise to a number of
interesting conjectures and results (particularly, in the arithmetic theory of alge-
braic groups). This approach has allowed distinguishing the general properties that
characterize the phenomenon of projective simplicity. The definitions of all notions
used in this paper (such as simple connectedness, simplicity, isotropy, parabolic
subgroup and others) can easily be found in [4]–[7].

Let G be a simple linear algebraic group defined over a field K, which is not
assumed to be algebraically closed, and GK be the group of K-rational points of G.
Consider in turn the cases when G is isotropic over K and when G is anisotropic.
Recall that the group G is anisotropic if it has no proper parabolic subgroups
defined over K. Here, a parabolic subgroup is a subgroup that contains some Borel
subgroup. Denote by G+

K the normal subgroup of GK generated by the rational
(over K) elements of the unipotent radicals of K-defined parabolic subgroups. In
this situation Tits established in 1964 the following important fact.

Theorem 1 (see [8]). Suppose that K contains at least four elements. Then any
subgroup of GK normalized by the group G+

K is either central in G or contains G+
K .

In particular, G+
K is projectively simple.

Thus, there arises a new class of projectively simple groups. It is natural to think
of the structure of the group GK as known if GK = G+

K . By the time Theorem 1
was proved this equality had already been known to hold for some special groups G
and many fields K, so the following conjecture looked quite reasonable.

Conjecture (Kneser-Tits). For a K-simple simply connected group G that is
isotropic over the field K, the equality G+

K = GK holds.

The Kneser-Tits conjecture is obviously true in the case when the field K is
algebraically closed. Note also that É. Cartan proved this conjecture in the case
when K = R and G is a simple, simply connected algebraic group. For a long
time it was generally believed that the Kneser-Tits conjecture is true, since it was
confirmed in a number of special cases. However, Platonov [9] showed in 1975
that this conjecture is false in general. As a result, Tits introduced the Whitehead
groups W (K, G) = GK/G+

K of reductive algebraic K-groups (further advances in
this subject are presented in [10] and [11]).

As before, let G be a simply connected K-simple algebraic group. Then G
belongs to one of the following classes: An, Bn, Cn, Dn, E6, E7, E8, F4 and G2.
Among the groups of these types the most interesting ones (and hardly amenable
to investigation) are groups of type An. In particular, the groups GK of K-rational
points of simply connected groups of this type are exhausted by the following list
(see [7], § 2.3, Propositions 17 and 18).

1) Inner forms: SLm(D) = {a ∈ Mm(D) : NrdMm(D)(a) = 1}, where Mm(D)
is the algebra of m × m K-matrices whose entries belong to the central division
K-algebra D of index d and NrdMm(D) : Mm(D) → K is the reduced norm mapping
and n = md− 1.

2) Outer forms: SUm(D, f) = {u ∈ Um(D, f) : NrdMm(D)(u) = 1}, where D
is a division algebra of index d endowed with a unitary involution τ (that is,
with a nontrivial restriction to the centre of D). Here K coincides with the field
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of τ -invariant elements of the centre of D, f is a nondegenerate m-dimensional
Hermitian form, Um(D, f) is the unitary group of the form f and n = md− 1.

If the group G is an inner form of type An and it is K-isotropic, then it follows
from the condition of K-isotropy that m ⩾ 2. Consider the subgroup SL+

m(D)
of the group GK = SLm(D) which is generated by the transvections, that is, by
those matrices that, in a suitable basis of the space Vn(K), have the form of an
elementary matrix (see [1]). Since each elementary matrix is unipotent (and, more-
over, lies in the unipotent radical of a suitable parabolic subgroup), SL+

m(D) is
contained in G+

K . Moreover, the group SL+
m(D) is a normal subgroup of GLm(D),

and therefore G+
K = SL+

m(D) by Theorem 1. Hence the group GK/G+
K is isomor-

phic to SLm(D)/ SL+
m(D). Now with the use of the Dieudonné determinant (see [1]

and [2]) we conclude that the group SLm(D)/ SL+
m(D) is isomorphic to the reduced

Whitehead group SK1(D) = SL1(D)/D∗′ of the algebra D. If G is an outer form
of type An, then G = SUm(D, f) for an appropriate nondegenerate m-dimensional
Hermitian form over D with involution τ , whose restriction to the centre of D is
nontrivial, and K coincides with the subfield of τ -invariant elements of the centre
of D. The condition that G is K-isotropic means that the form f is isotropic,
and in this case the group G+

K coincides with the subgroup TUm(f) generated
by the unitary transvections (see [2]); moreover, in almost all cases it coincides
with the derived subgroup of the group Um(D, f). Now with the use of the Wall
norm (see [2]) we obtain an isomorphism of the quotient group SUm(D, f)/ TUm(f)
onto the reduced unitary Whitehead group SUK1(D) = Σ′/Σ, where Σ is the sub-
group of D∗ generated by the τ -invariant elements and Σ′ consists of elements with
τ -invariant reduced norms. This group is called the reduced unitary Whitehead
group for the algebra D. In fact, it depends only on the restriction τ |K . Details
can be found in [12].

There is a significant number of publications devoted to the computation of these
groups (see [9], [10] and [12]–[29]).

Note that the inner forms of anisotropic groups of type An are related to the
groups SK1(D). As for outer forms of anisotropic groups, these are always uni-
tary groups related to the anisotropic forms f . In this situation it is most impor-
tant to consider first of all the groups SU1(D, f)/U1(D, f)′. Although the first
works on this subject date back to the early 2000s, such groups remains hardly
tractable for investigation, and only a few basic results concerning these groups
are known so far. Since such groups play the key role in this work, the following
definition is quite important.

Definition 1. The group

SUKan
1 (D, τ) = SU1(D, f)/U1(D, f)′

is called the special unitary Whitehead group of the anisotropic form f (by analogy
with the reduced isotropic Whitehead groups SK1(D) and SK1(D, τ)).

1. For quaternion division algebras possessing unitary involutions Sury [30]
derived explicit formulae for the computation of the groups SUKan

1 (D, τ).
2. In [31] Sethuraman and Sury proved that for the special symbol algebras D

the group SUKan
1 (D, τ) is infinite.
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3. In [32] this author showed that there exists an epimorphism of the group
SUKan

1 (D, τ) onto SUK1(D, τ), which made it possible to solve the problem of
nontriviality of the group SUKan

1 (D, τ) in the general case under the condition that
the groups SUK1(D, τ) are nontrivial. Moreover, this relation shows that the group
SUKan

1 (D, τ) is infinite, provided that the groups SUK1(D, τ) are too.
No significant results on the problem of the projective simplicity of outer forms

of anisotropic groups of type An have been obtained to date; therefore, the com-
putation of the groups SUKan

1 (D, τ) can be considered as an important step in
gathering information for further studies on this problem.

Note that the first fundamental results related to the computation of nontrivial
reduced Whitehead groups were obtained in the framework of the class of Henselian
division algebras and were based on the idea of reducing the problem of the compu-
tation of these groups to determining certain special subgroups of the multiplicative
groups of their residue algebras.

The structure of finite-dimensional general Henselian algebras was first described
by Platonov and Yanchevskĭı in [33]–[35]. A complete and extended proof of their
results can be found in [36].

The purpose of this work is to derive formulae for the computation of reduced
anisotropic unitary Whitehead groups SUKan

1 (D, τ) for Henselian algebras D using
the idea of reduction mentioned above. The paper consists of two parts. In the
first we establish a number of results on the structure of Henselian involutive divi-
sion algebras. Some of these results can be formulated in terms of graded algebras
(see [23]). However, we prefer remaining within the framework of Henselian sit-
uation, hence it seems appropriate to use the Henselian language here. In the
second part we use the results obtained to describe the reduced anisotropic unitary
Whitehead groups SUKan

1 (D, τ) for Henselian algebras D.
To formulate our results we need the following definitions.
In what follows Z(R) denotes the centre of the ring R and CR(S) is the centralizer

of the subring S of R. If S ⊆ Z(R), then R is called an S-algebra. It is assumed
that all rings have identity elements and that 1S = 1R if S is a subring of R.
Moreover, homomorphisms map the identity elements to each other. The kernel
of a homomorphism f is denoted by Ker(f). By R∗ we denote the multiplicative
subgroup of the ring R. If a ∈ R∗, then we denote by ia the inner automorphism of
the ring R defined by the formula ria = a−1ra for any r ∈ R. Occasionally, for the
convenience of references ia will mean the automorphism defined by the formula
ria = ara−1 for r ∈ R (however, it is always clear from the context which particular
interpretation is meant). For a subalgebra E of a division algebra D we denote the
dimension of D as a left vector space over E by [D : E]. All algebras below are
assumed to be finite-dimensional.

Given a field K and a finite-dimensional central simple K-algebra A, we denote
the class of A in the Brauer group Br(K) by [A]. By Wedderburn’s theorem
A ∼= Mn(D) for a K-central division algebra D, where Mn(D) is the algebra of
n × n matrices over D. The division algebra D is uniquely determined up to
K-isomorphism and is called the underlying division algebra of A. Given K-algebras
A and B, we write A ∼ B if their underlying algebras are K-isomorphic to each
other. By definition the index ind A of the algebra A coincides with

√
[D : K], the

degree deg A is n · ind A, and the exponent exp A of the algebra A is the order of [A]
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in Br(K). Moreover, we set

D(K) = {D : D is a central division K-algebra and [D : K] < ∞}.

For any field extension F/K and any D ∈ D(K) we denote the underlying algebra
of the F -algebra D ⊗K F by DF ∈ D(F ). It is known that if K ⊂ F ⊂ D, then
DF

∼= CD(F ). Denote by Br(F/K) the kernel of the homomorphism of extension
of scalars Br(F ) → Br(K).

For any subextension L/K of the algebra D ∈ D(K) the following formula is
valid: ind D = indCD(L)[L : K]2.

Definition 2. A unitary involution of the algebra D ∈ D(K) is an antiautomor-
phism τ of D of order two that has a nontrivial restriction to K. For the field
k = {a ∈ K | aτ = a} K is a quadratic Galois extension. In this case τ is called
a K/k-involution and the set of K/k-involutions of the algebra D is denoted by
InvK/k(D).

Assume that the algebra D has a unitary involution τ and k = {a ∈ K | aτ = a}.
In this case we write τ ∈ InvK/k(D). Let NrdD : D → K denote the reduced norm
mapping of D. The unitary group U(D, τ) of the algebra D (with respect to τ)
is U(D, τ) = {d ∈ D∗ | dτd = 1}, and the special unitary group SU(D, τ) is its
subgroup U(D, τ) ∩ SL(D), where SL(D) := SL1(D). Moreover, given a finite field
extension L/K, we denote the group {l ∈ L∗ | NL/K(l) = 1} by SL(L/K). If,
in addition, the extension L/K has an automorphism τ of order two such that
Kτ = K, then we denote the subgroup {l ∈ L∗ | lτ l = 1} by U(L, τ) and the
subgroup U(L, τ) ∩ SL(L/K) by SU(L, τ).

We also need some background on division algebras with valuations. Let D ∈
D(K). A valuation v of D is a function v : D∗ → Γ (here Γ is a totally ordered
Abelian group in additive notation) with the following properties: for all a, b ∈ D∗

(i) v(ab) = v(a) + v(b);
(ii) v(a + b) ⩾ min(v(a), v(b)) if b ̸= −a.
Given a valuation v of D, one can define

• the valuation ring VD = {d ∈ D∗ | v(d) ⩾ 0} ∪ {0};
• the valuation ideal MD = {d ∈ D∗ | v(d) > 0} ∪ {0} (the unique two-sided

maximal ideal of the ring VD);
• the group of v-units UD = VD \ MD = V ∗

D and its subgroup 1 + MD =
{1 + m | m ∈ MD};

• the VK/MK-algebra D = VD/MD of the valuation v, and the group of values
ΓD = v(D∗).

More generally, given an arbitrary subset S ⊂ VD, we denote by S the set
of images of the elements of S under the canonical homomorphism (reduction or
residue homomorphism) from VD to D.

Since V τ
D = VD and Mτ

D = MD, along with the involution τ we can define its
reduction τ : D → D; here we have (d + MD)τ = dτ + MD for any d ∈ VD.

If E is a K-subalgebra of the K-algebra D with a valuation (D, v), then the
restriction v|E of the valuation v to E∗ is a valuation of E. In this case the ram-
ification index of the algebra D over E is defined as the index |ΓD : ΓE | of the
subgroup ΓE in ΓD.
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For d ∈ D∗ the inner automorphism id maps VD to VD and MD to MD. There-
fore, id induces a K-automorphism D. When restricted to Z(D), it reduces to
a K-automorphism denoted below by id. Finally, the mapping d 7→ id defines
a homomorphism α : D∗ → Gal(Z(D)/K). For u ∈ UD the automorphism iu
acts as the conjugation by u, so that u ∈ Ker(α). Moreover, K∗ ⊆ Ker(α).
Since D∗/UDK∗ ∼= ΓD/ΓK , the mapping α induces a well-defined homomorphism
θD : ΓD/ΓK → Gal(Z(D)/K) acting by the formula v(d) 7→ id, where v(d) =
v(d) + ΓK .

The following inequality is well known:

[D : E] ⩾ [D : E] · [ΓD : ΓE ]. (1.1)

By the Ostrowski-Draxl theorem (see [21]) we have [D : K] = qr[D : K] · |ΓD : ΓK |,
where q = char(D) for char(D) ̸= 0, q = 1 for char(D) = 0, and r is a nonnega-
tive integer. The algebra D is said to be defectless over K (with respect to v) if
[D : K] < ∞ and [D : K] = [D : K] · |ΓD : ΓK |, and it is said to be unramified
over K if [D : K] = [D : K] < ∞ and Z(D) is separable over K. The term
‘defectless (unramified) algebra D’ means a ‘defectless (respectively, unramified)
algebra over Z(D)’. It is evident that when char(D) = 0 or char(D) ∤ [D : K],
the algebra D is defectless. The algebra D ∈ D(K) is said to be totally rami-
fied if [D : K] = [ΓD : ΓK ]. Finally, the algebra D/K is called immediate if
[D : K] · |ΓD : ΓK | = 1.

It is known that the reduction (residue) homomorphism defines an epimorphism
θD of the group ΓD/ΓK onto the group of K-automorphisms of the centre Z(D) of
the residue algebra D (see [36]).

The reduction homomorphism and the homomorphism θD are associated with
the so-called reduction defect λD (λD = indD/ ind D[Z(D) : K]). By abusing
notation slightly, below we omit the subscript D and write λ instead of λD. Recall
that a reduction is said to be tame if the extension Z(D)/K is separable and
char(K) does not divide the order of Ker(θD).

Our main interest is in weakly ramified algebras.

Definition 3. Let K be a Henselian field and let D ∈ D(K). An algebra D is said
to be weakly ramified if (i) char(K) = 0 or (ii) char(K) ̸= 0, and D is defectless and
has a tame reduction. In what follows the set of weakly ramified over K division
algebras is denoted by TR(K).

Remark 1. It follows immediately from the definition (see also [36], Lemma 6.1) that
the elements of Br(K) represented by weakly ramified central division K-algebras
form a subgroup of Br(K). Moreover, if the algebra A belongs to TR(K) and L/K
is an extension of the field K, then AL ∈ TR(K).

The following property of weakly ramified algebras is quite important.

Lemma 1. Let D ∈ TR(K) and D = D1 ⊗K D2 , where D1 and D2 are central
K-algebras of coprime indices. Then D1, D2 ∈ TR(K).

Proof. If char K = 0, then this result follows directly from the definition of weakly
ramified algebras. And if char K ̸= 0, then it follows from Lemma 6.1, (i), in [36],
since the indices of D1 and D2 are coprime.
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For D ∈ TR(K) the ramification index of D over K, which is defined as the
index of the group ΓK in ΓD, is the product of the upper ramification index, which
coincides with λ2

D, and the lower index, which coincides with [Z(D) : K] (see [33]).
All the notation introduced above is also applicable to the case of an algebra D

with unitary involution τ for a Henselian field k, since if k has a Henselian valua-
tion vk, then it extends uniquely to a valuation vK of the field K and a valuation
vD = v of the algebra D ∈ D(K) by the following rule: for any d ∈ D∗ put
vD(d) = n−1vK(NrdD(d)), where n = ind D. Thus, SL(D) is contained in UD,
and therefore the reduction homomorphism is defined on SL(D) (see [37]).

As mentioned already, the second part of this work is devoted to deriving for-
mulae for the computation of the groups SUKan

1 (D, τ) in terms of subgroups of
the multiplicative group of the residue algebra D

∗
. The main assertion related

to the computation of the groups SUKan
1 (D, τ) is formulated in terms of the follow-

ing groups:

SLv(D) =
{
d ∈ SL(D) | NZ(D)/K(NrdD(d)) = 1

}
;

SUv(D, τ) =
{
d ∈ SU(D, τ) | NZ(D)/K(NrdD(d)) = 1

}
;

SUKv
1(D, τ) = SUv(D, τ)/U(D, τ)′;

Eλ = Cλ(K) ∩NZ(D)/K ◦NrdD(D)τ−1.

Here Cλ(K) is the group of λth roots of unity belonging to the field K.
At the end of this work we consider several important examples of the compu-

tation of the groups SUKan
1 (D, τ) for some special algebras D and D, and special

groups of values ΓD.
The following theorem provides the main tool for computing SUKan

1 (D, τ).

Theorem 2. Let D ∈ TR(K), assume that char k ̸= 2, and let τ ∈ InvK/k(D),
where k is Henselian. Then in the notation introduced above the following commuta-
tive diagram holds, in which the sequences in both rows and in the column are exact:

1

��
1 // E // SUv(D, τ)/(U(D, τ))′ // SUKv

1(D, τ)

��

// 1, (1)

1 // E // SUKan
1 (D, τ) // SU(D, τ)/U(D, τ)′

��

// 1. (2)

Eλ

��
1
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Here E = ((1 + MD) ∩ SU(D, τ))U(D, τ)′/U(D, τ)′ . In addition, the following
sequences are also exact:

1 → SUKan
1 (D, τ) → SUKv

1(D, τ) → NrdD(U(D, τ)) ∩NrdD(SLv(D, τ)) → 1, (3)

1 → SUKan
1 (D, τ) → SU(D, τ)/U(D, τ)′ → SU(D, τ)/ SU(D, τ) → 1. (4)

The proof of Theorem 2 is presented in § 6.

Remark 2. The exact sequences mentioned in the theorem and relating the sub-
groups of the groups D∗ and D

∗
are realized by means of the reduction homomor-

phism, and the homomorphisms involved in these exact sequences are also induced
by this homomorphism and can easily be recovered from the context; for brevity
we leave it to the reader to describe these homomorphisms.

Thus, the problem of the computation of the above-mentioned groups
SUKan

1 (D, τ) is reduced to the computation of the subgroups D
∗

and the group E,
which is evidently isomorphic to ((1+MD)∩SU(D, τ))/(U(D, τ)′∩(1+MD)). It is
clear that the last group is trivial when ((1 + MD) ∩ SU(D, τ)) ⊂ U(D, τ)′. If this
condition is satisfied, then we say that the group SU(D, τ) satisfies the congruence
theorem or that the group SU(D, τ) has the congruence property.

Remark 3. Note that similar assertions also hold for the groups SLm(D) and the
groups SUm(D, f) of isotropic forms f (see [22] and [23]).

Below the congruence theorem is established for one-dimensional anisotropic
forms f under some special, little restrictive assumptions.

More exactly, in what follows an important role will be played by the so-called
cyclic involutions accompanied by unitary elements (cf. Definition 5).

Definition 4. Given a cyclic extension L/K of degree n with group Gal(L/K),
a central K-algebra A is said to be cyclic over the extension L/K if it contains
L as a maximal subfield. In this case there exists an element u ∈ A∗ such that
the inner automorphism iu induces on L a generator σ ∈ Gal(L/K). Then un is
contained in K and the algebra A is usually denoted by (L, σ, a), where a = un.
We shall also use the notation ⟨L, σ, u⟩ for the algebra A.

Definition 5. A unitary K/k-involution τ of the algebra D ∈ D(K) is said to be
cyclic (and is denoted by τL) if D = ⟨L, σ, u⟩, Lτ = L and Lτ = {l ∈ L | lτ = l} is
cyclic over k. A cyclic involution τL is called an involution accompanied by a unitary
element if there exists an element u ∈ U(D, τL) such that the automorphism σ
coincides with the inner automorphism iu as restricted to the field L. Below we
denote such an involution by τL(u) and call it an involution of the form τL(u).

Using this notation we can formulate the following important theorem.

Theorem 3. Let D ∈ TR(K) and τ ∈ InvK/k(D). Then the group SU(D, τ) has
the congruence property in the following two cases:

(i) D is a field;
(ii) D is not a field, (ind D, char k) = 1 (provided that char k > 0) and τ is

accompanied by a unitary element.

The proof is presented in § 7.
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It turns out that the class of involutions of the form τL(u) is rather wide. For
instance, we show below that the set of cyclic K/k-involutions τL of an algebra D
with a fixed field L always contains an involution of the form τL(u). Moreover, for
an arbitrary involution τL(u) we derive conditions for its ‘duplication’.

Not every K/k-involution of the algebra D has the form τL(u) (neither is it
cyclic, see [38]). However, there always exists a regular central extension N of the
centre K such that the involution τ is extended to a unitary involution τE(v) for
an appropriate field E ⊂ D ⊗K N and an element v ∈ U(D ⊗K N, τE(v)).

Recall the following definition.

Definition 6. Let εn be a primitive nth root of unity in the field K. For arbi-
trary a, b ∈ K∗ let A(a, b; K, εn) denote the K-algebra generated by the elements i
and j satisfying the relations in = a, jn = b and ij = εnji. Such algebras are
conventionally referred to as symbol algebras.

In our proof of the main result we use the following involutive analogue (Theo-
rem 9) of a theorem of Draxl [21].

Let K/k be a weakly ramified extension, let the algebra D ∈ TR(K) be totally
ramified (D ̸= K), and let τ ∈ InvK/k(D). Then there exists a positive integer r
such that D has the form D = D1⊗K · · ·⊗K Dr , where Di is an appropriate tensor
product of τ -invariant symbol algebras A(aij , bij , K, ε

p
αj
i

), whose exponents coincide
with their indices (1 ⩽ i ⩽ r , j ∈ Z) and the corresponding canonical generators
are τ -invariant, and the pi are the prime divisors of the index ind D . In particular,
the algebra D is the product of its τ -invariant primary components.

The author dedicates this article to the memory of Academician A. N. Parshin.

§ 2. Unitary involutions of division algebras

In this section we describe special unitary involutions of division algebras D.
For any N ⊂ D and any mapping µ : N → N let Nµ = {n ∈ N | nµ = n}.

In particular, Sτ (D) = {s ∈ D | sτ = s}. A criterion for the set InvK/k(D)
being nonempty consists in the following: InvK/k(D) is nonempty if and only if the
class of the algebra D in the Brauer group of the field K belongs to the kernel of
the corestriction homomorphism corK/k : Br(K) → Br(k). If InvK/k(D) ̸= ∅ and
τ ∈ InvK/k(D), then all other elements µ ∈ InvK/k(D) have the form µ = τisµ

for sµ ∈ Sµ(D).
The criterion formulated above yields a necessary and sufficient condition for the

existence of K/k-involutions in special cyclic algebras.

Theorem 4 (Albert, [39]). Let K/k be a quadratic separable extension with a non-
trivial k-automorphism τ , E/k be a cyclic Galois extension, which is linearly dis-
joint from K over k , and let L = E ⊗k K . Then the algebra A = (L, σ, a) (⟨σ⟩ =
Gal(L/K)) has a K/k-involution extending id ⊗ τ if and only if (E/k, ⟨σ|E⟩, aaτ )
is a trivial k-algebra (that is, aaτ ∈ NE/k(E∗)).

The following assertion also proves to be rather useful.

Theorem 5 (Kneser, [40]). Let D ∈ D(K), τ ∈ InvK/k(D), and let A be a K-sub-
algebra with a unitary involution µA such that µA|K = τ |K . Then there exists an
involution µ ∈ InvK/k(D) such that µ|A = µA|A .
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An important role in what follows is played by a certain special class of cyclic
K/k-involutions.

The importance of the class of cyclic involutions is explained by the following
lemma due to Sury.

Lemma 2. Let D ∈ D(K) be an algebra of an odd prime index with an involu-
tion τ , and let d ∈ SU(D, τ) and d /∈ K . If τ = τK(d) , then d = yay−1a−1 for some
y ∈ D∗ and a ∈ U(D, τ) ∩K(d).

Remark 4. For cyclic involutions τL, in the case of odd ind D denote by δ some
generator of the Galois group Gal(L/k) and set σ = δ2. It is evident that σ is
a generator of the Galois group L/K and σ|Lτ

is a generator of Gal(Lτ/k).

Remark 5. Algebras with cyclic involutions do exist. Indeed, let L/k be a cyclic
extension of degree 2n, where n is odd and greater than 1, and let µ be a generator
of the Galois group. Set τ to be equal to µn and σ to be equal to µ2. Let a ∈ K,
a, a2, . . . , an−1 /∈ NL/K(L∗) and aaτ ∈ NLτ /k. Then D = (L, σ, a) is a division alge-
bra with a unitary K/k-involution. Moreover, by Theorem 5 the K/k-involution τ
of the field L extends to a cyclic involution τL of the algebra D.

Lemma 3. Let D ∈ D(K) be an algebra of odd index n with a cyclic involution τL .
Then there exists an element u ∈ D such that u|L generates the group Gal(L/K)
and uind D ∈ U(K, τL|K).

Proof. Since there exists an involution τL, the algebra D has the form D = (L, σ, a).
Then D = (L, σ2, a2) because n is odd. Since D has a unitary K/k-involution, the
following relations hold (see Theorem 4):

aaτ = NLτ /k(χ and a2a2τ = NLτ /k(χ)2,

where χ ∈ Lτ . Denote by b the value of NLτ /k(χ). Then

a2τ b−1 = a−2b and (a2b−1)τ = (a2b−1)−1.

Thus, the element a2b−1 is unitary and D = (L, σ2, a2) = (L, σ2, a2b−1), since
b = NLτ /k(χ) = NL/K(χ). It follows from the last representation of D that it has
an element u such that un = a2b−1 ∈ U(K, τ) and the restriction of iu to the field L
coincides with σ. The proof is complete.

In view of Lemma 3 it is natural to pose the following question: can the ele-
ment u always be chosen in U(D, τL)? This leads to considering involutions of the
form τL(u), where u ∈ U(D, τL) (see Definition 5).

Note that the existence of an involution of the form τL(u) does not depend on
the choice of a generator of the group Gal(L/K).

Since cyclic involutions τL(u) play an important role below, let us give a criterion
for the existence of involutions µL(u) for a fixed cyclic involution τL.

Lemma 4. Let D ∈ D(K) be a cyclic algebra (L, σ, γ) with a cyclic involution
τ = τL , and let Γ ∈ D be such that iΓ|L = σ and Γind D = γ . Then the algebra D
has a cyclic K/k-involution µL of the form µL(u) with the same restriction to L
as τ if and only if µL = τia , a ∈ Lτ , and for an appropriate l ∈ L∗

a−σ−1
a = (ΓΓτ )−1NL/Lτ

(l). (2.1)
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Proof. We set χΓ = ΓΓτ and show that χΓ ∈ Lτ . Denote a primitive element Lτ

over k by x. Then Γ−1xΓ = xσ by the hypotheses of the lemma. Applying τ
to both sides of this relation we obtain ΓτxτΓ−τ = xστ = xσ. Note that, as
σ and τ commute and x is fixed under the action of τ , this chain of equalities
yields the relation ΓτxΓ−τ = xσ. With regard to what we said above, we obtain
ΓΓτx(ΓΓτ )−1 = x, which yields ΓΓτ = χΓ ∈ L, and since the element ΓΓτ is fixed
by the action of τ , we have χΓ ∈ Lτ . It is evident that Γτ = Γ−1χΓ.

Since Γτ = Γ−1χΓ, equality (2.1) can be written in the following equivalent
form: a−σ−1

a = χ−1
Γ NL/Lτ

(l−1). Let µL = τia (note that the restriction of ilΓ to L

coincides with σ|L). In view of the relation Γτ = Γ−1χΓ and the equality a−σ−1
a =

χ−1
Γ NL/Lτ

(l−1) we have la−σ−1
aχΓlτ = 1. Further, note that la−σ−1

aχΓlτ =
lΓa−1Γ−1aχΓlτ = (lΓ)a−1Γ−1χΓalτ . Since ΓΓτ = χΓ, the last expression can
be written as (lΓ)a−1Γτalτ , which coincides with the product lΓ(lΓ)µL . Since we
have started from the equality la−σ−1

aχΓlτ = 1, the above computations show that
lΓ ∈ U(D,µL), which means that the involution µL has the form µL(lΓ).

Conversely, suppose that the algebra D has an involution µL(u), where µL is
a cyclic K/k-involution whose restriction µL to L coincides with τ |L and u∈U(D,µL).
It is evident that µL = τia for an appropriate a ∈ Lτ . Next, as τ and µL have the
same restriction to L, we can assume that aµL = lΓ for some l ∈ L. In this notation,
since aµL = a, the element lΓ obeys the relation (lΓ)(lΓ)µL = 1. For the left-hand
side of the last equality we have (lΓ)(lΓ)µL = (lΓ)a−1(lΓ)τa = (lΓ)a−1Γτ lτa =
(lΓ)a−1Γτalτ . Further, taking the relation Γτ = Γ−1χΓ into account we have
(lΓ)a−1Γ−1χΓalτ , which means that l(Γa−1Γ−1)aχΓlτ = la−σ−1

aχΓlτ . Turning
back to the equality (lΓ)(lΓ)µL = 1 we obtain a−σ−1

aχΓ = l−1l−τ . Thus, a−σ−1
a =

χ−1
Γ NL/Lτ

(l−1). The proof is complete.

It turns out that each involution τL(v) generates a whole class of similar involu-
tions.

Proposition 1. If τ = τL(v), then τig−τ g−1 = τgLg−1(gvg−1), where g ∈ D∗ .

Proof. First note that the field gLg−1 is τig−τ g−1-invariant. Indeed, as L is τ -inva-
riant, we have

(gLg−1)τig−τ g−1 = ggτg−τLτgτg−τg−1 = gLg−1.

Moreover, gvg−1 ∈ U(D, τig−τ g−1), since v ∈ U(D, τ) and

(gvg−1)τig−τ g−1 = ggτg−τv−1gτg−τg−1 = (gvg−1)−1.

By hypothesis, for any l ∈ L we have v−1lv = lσ. Carrying over the generator σ
to the extension gLg−1 gives the generator σ̃ of the Galois group Gal(gLg−1/K)
that sends each element glg−1 ∈ Gal(gLg−1/K) to glσg−1. Thus, to complete
the proof of the proposition it remains to show that (gvg−1)−1(glg−1)(gvg−1) =
(glg−1)σ̃. The proposition is proved.

Proposition 2. Fix an involution τ = τL of the form τL(u). Let µ ∈ InvK/k(D)
be such that µ|L = τL(u)|L . It is clear that µ = τL(u)ia , where a ∈ Lτ . If the index
of D is odd, then the cyclic involution µ has the form τL(v) if and only if a = cbτ b
for some c ∈ k and b ∈ L.
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Proof. Indeed, if a required v does exist, then, as the restrictions iv|L and iu|L
coincide, the element v has the form uz, where z ∈ L. Since v ∈ U(D,µ),
we have (uz)τia = z−1u−1, a−1zτuτa = z−1u−1, and since a, z ∈ L, we have
a−1zτuτa = zτa−1u−1a = z−1u−1, which yields zτz = u−1a−1ua = a−σa =
(a−1)σ(a−1)−1. We apply the mapping NL/K to both sides of the last equality
and obtain NL/K(z)NL/K(z)τ = 1. Hence, by Hilbert’s Theorem 90 we have
z = tθ−1, where θ is the generator of the group Gal(L/k) and b ∈ L. We can
assume that θ = στ . Then (tθ−1)(tθ−1)τ = (tστ t−1)(tσt−τ ) = (tτ+1)σ(tτ+1)−1 =
(a−1)σ(a−1)−1. This suggests the relation (atτ+1)σ(atτ+1)−1 = 1, which in turn
yields atτ+1 = c ∈ K. Since a and tτ+1 belong to L∗τ , we have c ∈ k. Putting
b = t−1 we obtain a = cbbτ .

Conversely, let a = cbτ b, where c ∈ k and b ∈ L. Then τia = τicbτ b = τibbτ ,
hence τibbτ has the form τbLb−1(bub−1) in view of the above proposition. Since
b ∈ L, we have bLb−1 = L and τia has the form τL(v), where v = bub−1. The proof
is complete.

The following proposition is an adapted version of an observation made by Sury.

Proposition 3. Let τL be a cyclic involution of an algebra D ∈ D(K) of odd index
(char k ̸= 2). If τL has the form τL(u), then (SU(D, τ) ∩ (L \K)) ⊂ U(D, τ)′ .

Proof. Consider the field K(d), where d ∈ SU(D, τ) ∩ (L \ K). Then NrdD(d) =
NL/K(d) = 1. By Hilbert’s Theorem 90

d = bσ−1

for some b ∈ L and σ = iu|L. Since the group Gal(L/k) is Abelian, σ commutes
with τ , and therefore b−σb = d−1 = dτ = (bσb−1)τ = (bτ )σ(bτ )−1. This yields the
relation (bbτ )σ = bbτ , which means that bbτ ∈ K. As bbτ is τ -invariant, we have
bbτ = λ ∈ k, or, which is the same, λ = l21 − αl22 for some l1, l2 ∈ Lτ . Moreover,
since the cyclic K-algebra (K, τ |K , λ) is a matrix algebra over K, the quadratic
form x2−αy2 is isotropic over K, which means that there exist t1, t2 ∈ K such that
t21 − αt22 = λ. Then it is easily seen that for t = t1 +

√
αt2 we have bt−1 ∈ U(1, L).

Since the automorphism σ is induced by the restriction of the inner automorphism
specified by the unitary element u, we have d = u−1(bt−1)u(bt−1)−1, which gives
d ∈ U(D, τ)′. The proof is complete.

For a division algebra with a unitary involution τ the following theorem estab-
lishes the existence of a regular extension of its centre such that the resulting divi-
sion algebra has a unitary involution that extends the involution τ of the original
algebra and has a special form.

Theorem 6. Let D ∈ D(K) and τ ∈ InvK/k(D), and assume that char k ̸= 2.
Then there exist a regular extension N/K and an extension of τ to an involution
τ̃ of the algebra DN = D ⊗K N such that:

1) DN is a cyclic division algebra;
2) τ̃ has the form τL(u) for appropriate L ⊂ DN and u ∈ U(DN , τ̃).

Proof. Let n = ind D. By [41], Lemma 2.9, there exists a tower of extensions
k ⊂ R ⊂ T such that T/k is a finitely generated purely transcendental extension and
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T/R is a cyclic Galois extension of degree n. Put F = KR and E = KT , and let
A = (E(w)/F (w), σ, w) be a cyclic F (w)-algebra, where σ is a generator of the
Galois group of the extension E(z)/F (z), z is a variable that is transcendental
over F and w = (1+ z

√
α)/(1− z

√
α). It is easily seen that both the exponent and

index of this algebra are equal to n. Since F (z) = F (w), A can be represented in
the following form: (E(z)/F (z), σ, w).

Further, note that A ∼ A ⊗F (z) Dop
F (z) ⊗F (z) DF (z), where the algebra Dop

F (z) is
anti-isomorphic to the algebra DF (z).

Let M be the function field of the Severi-Brauer variety SB(A ⊗F (z) Dop
K(z)).

Then A⊗F (z) M ∼ DF (z) ⊗F (z) M . Since deg(A⊗F (z) M) = deg(DF (z) ⊗F (z) M),
we have A⊗F (z) M ∼= DF (z) ⊗F (z) M .

Further, let µ = τ |K . Then the automorphism µ can be extended to an isomor-
phism between M and another regular extension of K, which we denote by Mµ.
Consequently, we have the following commutative diagram:

K

µ

��

// M

µ

��
K // Mµ

Denote the free compositum MMµ of the fields M and Mµ over K by N , and the
natural extension of the automorphism µ to N by µ̃. Let Q = TK/k(N) be the trans-
fer of the field N under the restriction of scalars K/k (that is, Q is the subfield
of elements of N that are invariant under µ̃). As the extension N/K is regular
(see [42]), the algebra DN has the same index and exponent as DM , moreover, DN

is a cyclic algebra with the unitary involution τ̃ defined by

τ̃(d⊗ n) = τ(d)⊗ µ̃(n),

where d ∈ D and n ∈ N . Thus, τ̃ is an extension of the involution τ to the alge-
bra DN . Note that the involution τ̃ has the form τL(u), since DN contains a cyclic
extension (E(z)N)/F (z)N and an element w such that σ = iw and wτ̃ = w−1. The
proof of the theorem is complete.

In conclusion of this section we formulate a lemma that enables reducing many
proofs of results on involutions τL(u) to the case of algebras of primary indices.

Lemma 5. Let D ∈ D(K) and τL(u) ∈ InvK/k(D). Let pα1
1 · · · pαs

s be the canonical
representation of the integer ind D . Then D is the tensor product over K of algebras
D1, . . . , Ds , where each Di has the primary index pαi

i and can be represented in the
form ⟨Li, u

ind D/p
αi
i ⟩, where Li is the extension of the field K induced by the pαi

i -part
of the extension Lτ/k . In particular, the algebra D can be represented in the form
D = Di ⊗K Ti , where

Ti =
s⊗

j=1,j ̸=i

Dj , τL(u) = τLi
(uind D/p

αi
i )⊗K

( s∏
j=1,j ̸=i

⊗KτLj
(uind D/p

αj
j )

)
.

The proof of this lemma goes by direct computation based on the form of the
algebra D and the involution τL(u).

Note also that the algebras Di are τLi(u
ind D/p

αi
i )-invariant.
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§ 3. Henselian finite-dimensional central division algebras

Below we need some notation and facts concerning finite-dimensional central
simple algebras over Henselian fields.

The following well-known theorem often proves to be very useful.

Theorem 7 (Skolem-Noether). Let D ∈ D(K), and let A and B be K-isomorphic
K-subalgebras of D . Then there exists an inner automorphism of the algebra D
that extends the K-automorphism between the algebras A and B .

We will also often use the following theorem from [36].

Theorem 8. Assume as above that F is a Henselian field and D is a division
algebra over F . If Ẽ is an F -subalgebra of the algebra D and the extension Z(Ẽ)/F

is separable, then D contains an unramified lift of the algebra Ẽ/F (this means that
D contains an F -subalgebra E , unramified over F , with the residue algebra Ẽ ).

The notion of an inertia algebra plays an important role in what follows.

Definition 7. Let D ∈ D(F ) and let Z(D)/F be a separable extension. Then the
unramified lift of the extension D/F is called an inertia algebra of the algebra D.

Let us turn to the case of weakly ramified algebras. Clearly, the notion of
a weakly ramified structure generalizes a similar notion for field extensions. It is
easily seen that each weakly ramified central division algebra D has a maximal
weakly ramified subfield. In turn, this fact readily yields the following

Proposition 4. Suppose that D ∈ TR(K). Then NrdD(1 + MD) = 1 + MK .
Moreover, (1 + MK)m = (1 + MK), provided that char(K) = 0 or m is coprime
to char(K) in the case when char(K) ̸= 0.

The residues (reductions) of the reduced values of elements of VD in weakly
ramified algebras are computed in the following way.

Proposition 5. Let d ∈ VD . Then NrdD(d) = NZ(D)/K(NrdD(d))λ .

Lemma 6. Let E be a weakly ramified extension of a field F . Then the equality
Ker(NE/F )|(1+ME) = (1 + ME)τ−1 holds, where ⟨τ⟩ = Gal(E/F ).

Proof. By Hilbert’s Theorem 90, for any a ∈ Ker(NE/F )(E∗) we have a = bτ−1,
where b = tαu, u ∈ UE , α ∈ Z and v(t) + ΓF is a generator of the group ΓE/ΓF .
Note that the element t can be taken equal to either 1 or

√
f , where f is an

appropriate element of F such that v(f) ∈ ΓE \ΓF . In the case when t = 1 we have
a = u τ−1, which means that u τ−1 = 1. Hence u ∈ F

∗
, and therefore u = c(1+m),

where c ∈ F ∗ and m ∈ MF . This gives a ∈ (1 + ME)τ−1.
It remains to consider the case of a weakly totally ramified extension E/F . In this

case (
√

f)τ = −
√

f . Then for odd α we have a = −1(1 + m)τ−1, where m ∈ ME .
However, the characteristic char F is distinct from 2, and therefore a ̸= 1. Hence
α ∈ 2Z, which reduces this case to the case when t = 1. Thus, we have estab-
lished the inclusion Ker(NE/F )|(1+ME) ⊂ (1 + ME)τ−1. The reverse inclusion
(1 + ME)τ−1 ⊂ Ker(NE/F )|(1+ME) is evident. The proof is complete.

The last proposition has the following consequence.

Corollary 1. The relation SL(D) = { d̃ ∈ D | NZ(D)/K(NrdD(d̃)λ) = 1 } holds.
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§ 4. Henselian involutorial tamely
totally ramified central division algebras

The main result of this section consists in the description of the structure of
weakly totally ramified (that is, weakly ramified and totally ramified) Henselian
division algebras D having unitary involutions. Note that in this case D = K. To
obtain such a description we need the following preliminary assertions.

Lemma 7. Let D ∈ D(K), let τ ∈ InvK/k for a Henselian field k , and let g ∈ D∗ .
Then gτ = ug , where u ∈ UD .

Proof. It is easily seen that NrdD(gτ ) = (NrdD(g))τ . Set c = NrdD(g). Then
vK(c) = vK(cτ ). Consequently, vK(NrdD(g)) = vK((NrdD(g))τ ). This gives
vD(g) = vD(gτ ), which yields vD(gτ−1) = 0. Hence gτ−1 ∈ UD. The proof of the
lemma is complete.

For the reader’s convenience we present here the following well-known lemma.
Recall that εe denotes a primitive eth root of unity in the field K.

Lemma 8. Let k be a Henselian field, and let the integer e be coprime to char k
for char k ̸= 0. If K = k(εe) is a quadratic extension of the field k , then K/k is an
unramified Galois extension.

Lemma 9. Let the algebra D ∈ TR(K) be totally ramified and the element b ∈ D
be such that vD(be) ∈ ΓK for some e coprime to char k . Then there exist πK ∈ K∗

and m ∈ MK(be) such that be = πK(1+m)e . Moreover, if K/k is weakly ramified, D
has a unitary K/k-involution τ and be is a τ -invariant element, then m ∈ Mk(be) ,
so that πK ∈ k∗ .

Proof. The proof of the first part of the lemma is presented in [21]. Now let be be
a τ -invariant element, and let vD(be) ∈ ΓK . Then be = πKu for some appropriate
elements πK of K and u of UK(be).

If the extension K/k is unramified, then without loss of generality we can assume
that πK is an element of k∗, which means that the element π−1

K be is τ -invariant.
In view of this we can conclude that u is τ -invariant. We consider its inverse image
z in k and obtain be = πKz(1 + q), where q ∈ MK(be). As beπ−1

K z−1 is τ -invariant,
the same is true of 1 + q. Since D ∈ TR(K), the field k(be) contains 1 + m, an eth
root of 1 + q.

In the case of a totally ramified extension K/k, for any ΠK ∈ K \ k we have
ΠK = δk

√
α u, where u ∈ UK , δk ∈ k, K = k(

√
α) and

√
α

τ = −
√

α. Since the
extension K/k is totally ramified, we can assume without loss of generality that
u = 1 + p, where p ∈ MK . As the element be is τ -invariant, by the first part of the
lemma we obtain Πτ

K(1 + mτ )e = ΠK(1 + m)e. Since ΠK = δk
√

α (1 + p), we have
−δk

√
α (1+pτ )(1+mτ )e = δk

√
α (1+m)e. Then−(1+pτ )(1+mτ )e = (1+p)(1+m)e.

Passing to residues in the last equality leads to a contradiction since char k ̸= 2
(recall that the extension K/k is weakly totally ramified). Consequently, πK ∈ k∗

and π−1
K be is a τ -invariant element. Thus, m ∈ Mk(be), as required. The proof is

complete.
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Proposition 6. Let D ∈ TR(K) be a totally ramified algebra, let τ ∈ InvK/k(D)
and e = exp(ΓD/ΓK). Then there exist elements s ∈ Sτ (D) and g ∈ D such that
se, ge ∈ K , the orders of the elements vD(s) + ΓK and vD(g) + ΓK are equal to e,
[s, g] = gsg−1s−1 is a primitive eth root εe of unity and

ΓD/ΓK = ΓK(g)/ΓK ⊕ ΓCD(K(s))/ΓK . (4.1)

Proof. First of all, note that under the hypotheses of the proposition, by Theo-
rem 3.10 in [33] we have εe ∈ K. Let us establish the existence of nonzero s ∈ Sτ (D)
with the property that vD(s) + ΓK ∈ ΓD/ΓK is an element of order e. Let x ∈ D∗

be such that vD(x) + ΓK is an element of order e. Set s = x if x ∈ Sτ (D). Oth-
erwise, if char k ̸= 2 and xτ = xu, u ∈ UD (Lemma 7), then at least one of the
elements 1− u or 1 + u is invertible in VD. Then we set s = xτ + x for 1 + u ∈ UD

and s = x
√

α (1 − u) otherwise, where, as usual, K = k(
√

α), α ∈ Uk. Finally,
in the case when char k = 2, since the algebra D is tamely and totally ramified,
the index e is odd. Then set s = xxτ . Without loss of generality we can assume
that in all cases s ∈ VD (for this it suffices to consider s−1 instead of s if necessary).

Now, from Lemma 2 in [2] we obtain se = πK(1 + m)e for appropriate elements
πK of K and m of MK(se). Taking now the element s(1 + m)−1 instead of s we
conclude that se ∈ K and K(s)/K is a cyclic extension of degree e since εe ∈ K.

Denote by φ a generator of the Galois group K(s)/K such that sφ = sεe. By
the Skolem-Noether theorem there exists an element g ∈ D such that gsg−1 = sφ.

Since the group ΓD/ΓK has exponent e, we have vD(ge) ∈ ΓK . Then from [21],
Lemma 2, we obtain ge = πK(1 + m)e for some πK ∈ K and m ∈ MK(ge). Taking
now g(1 + m)−1 instead of g we can assume that ge ∈ K and K(g)/K is a cyclic
extension of degree e. Without loss of generality let g ∈ VD.

To establish equality (4.1) let us show that the intersection of the groups
ΓK(g)/ΓK and ΓCD(K(s))/ΓK coindides with ΓK . Assume the opposite. Then for
an appropriate positive integer m we have gm = c(1 + q), where c ∈ CD(K(s)) and
q ∈ MD. Note that gmsg−m = sεm

e . On the other hand gmsg−m = (1+q)s(1+q)−1,
so that sεm

e (1+q) = (1+q)s, which implies that sεm
e +sεeq = s+qs. Consequently,

s(εm
e − 1) = qs − sεeq. If εm

e ̸= 1, then the left-hand side of the last equation has
valuation vD(s), whereas a nonzero element with valuation greater than vD(s) is on
the right-hand side. The contradiction obtained means that m is a multiple of e.
Thus, ΓK(g)/ΓK ∩ ΓCD(K(s))/ΓK = ΓK .

For reasons of dimension, the order of the group ΓD/ΓK is the product
of the orders of ΓK(s)/ΓK and ΓCD(K(s))/ΓK . Since ΓK(s)/ΓK and ΓK(g)/ΓK have
the same order, in view of the equality ΓK(g)/ΓK ∩ ΓCD(K(s))/ΓK = ΓK we can
conclude that ΓD/ΓK = ΓK(g)/ΓK ⊕ ΓCD(K(s))/ΓK . The proof of the proposition
is complete.

The following assertion is an analogue of Draxl’s theorem in [21] in the case of
algebras with unitary involutions.

Theorem 9. Let K/k be a weakly ramified extension and the algebra D ∈ TR(K)
(D ̸= K) be totally ramified, and let τ ∈ InvK/k(D). Then D = D1⊗K · · ·⊗K Dr for
some positive integer r , where Di is an appropriate tensor product of τ -invariant
symbol algebras A(aij , bij , K, ε

p
αj
i

), 1 ⩽ i ⩽ r , j ∈ Z, whose exponents are equal
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to their indices, the corresponding canonical generators are τ -invariant, and the pi

are the prime divisors of the index ind D . In particular, D is the product of its
τ -invariant primary components.

Proof. Denote e = exp(ΓD/ΓK) and let the elements s ∈ Sτ (D) and g ∈ D be
chosen as in Proposition 6. Thus, ge ∈ K and K(g)/K is a cyclic extension of
degree e.

Let us show that the element g can be chosen τ -invariant. Suppose that gτ ̸= g.
If gτ = −g, then instead of g we consider the element δg ∈ Sτ (D), where δ ∈ K
and δτ = −δ. Thus, we assume below that gτ ̸= ±g.

We set gτ = ug and show that u ∈ CD(K(s)). We have

gτgsg−1g−τ = gτsg−τεe = (g−1sg)τεe = sε−τ
e εe, (4.2)

which means that (gτg)s(gτg)−1 =sε−τ
e εe. This yields the relation usu−1 =sε

−(τ+1)
e .

As u ∈ UD and the algebra D is totally ramified, we can assume that u = (1+m)uK ,
where m ∈ MD and uK ∈ UK . Then s−1usu−1 ∈ 1 + MD. Consequently,
ε
−(τ+1)
e = 1, that is, ετ

e = ε−1
e . Since g2sg−2 = sε2

e and (gτg)s(gτg)−1 = sε2
e,

we have u ∈ CD(K(s)).
In view of equality (4.1) in Proposition 6, the order of the element vD(g+gτ )+ΓK

is the least common multiple of the orders of vD(g) + ΓK and vD(1 + u) + ΓK ∈
ΓCD(K(s)). Now it follows from the definition of e that the order of the element
vD(g + gτ ) + ΓK equals e. Therefore, we can assume that g ∈ Sτ (D). Note also
that vD(ge) ∈ ΓK , since the exponent of the group ΓD/ΓK equals e.

By Lemma 9 and in view of the inclusion g ∈ Sτ (D) it follows that ge =
πk(1 + m)e for appropriate elements πk ∈ k and m ∈ Mk(ge). Since the elements
of k(ge) commute with s, 1 + m also commutes with s. Moreover, 1 + m commutes
with g, because it is an element of k(ge). Now going over from g to g(1 + m)−1 we
can assume that ge ∈ k and K(g)/K is a cyclic extension of degree e.

Consider the K-subalgebra A of the algebra D generated by the elements s and g.
It is easily seen that A coincides with the symbol algebra A(se, ge, K, εe). Each
a ∈ A has the form

∑
l,r cl,rs

lgr, where cl,r ∈ K, hence its τ -image aτ coincides
with

∑
l,r cτ

l,rg
rsl. Since cτ

l,r ∈ K and powers of s and g commute up to powers of the
root εe, we have aτ ∈ A. Thus, the algebra A is τ -invariant. If A coincides with D,
then D is a τ -invariant symbol algebra. Otherwise D = A ⊗K CD(A). It is clear
that ind CD(A) < ind D. Repeating the above argument for the algebra CD(A) we
arrive at the conclusion that D can be represented in the form of tensor products
of τ -invariant symbol algebras over K whose canonical generators are τ -invariant.
Now, to complete the proof of the theorem it suffices to take the following two
remarks into account.

(i) Let D = A(a, b,K, εmn), where m and n are coprime, and let i and j be
τ -invariant canonical generators of the algebra A.

Then K⟨im, jm⟩ = A(a, b,K, εm
mn), K⟨in, jn⟩ = A(a, b,K, εn

mn), the elements im,
jm and in, jn are τ -invariant canonical generators of the first and second algebra,
respectively, and D = A(a, b,K, εm

mn)⊗K A(a, b,K, εn
mn).

(ii) Assume that the algebra A = A(a, b,K, εq) is weakly totally ramified over K.
Then its exponent coincides with the index. To prove this it is sufficient to make
use of Proposition 6.9 in [36]. The proof of the theorem is complete.
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The above proof suggests the following

Corollary 2. There exist no weakly totally ramified noncommutative division alge-
bras with unitary involutions such that char k = 2 and the extension K/k is not
unramified.

Proof. Since K/k is not unramified, by Lemma 8 for e = exp(ΓD/ΓK) we have
εe ∈ k, in which case, as shown in the proof of the theorem, ind D is 2-primary.
On the other hand, since D ∈ TR(K) and char k = 2, in view of Theorem 9 ind D is
odd. This completes the proof of the corollary.

It turns out that the indices of the algebras D in Theorem 9 depend essentially
on the form of the extension K/k.

Corollary 3. Let D be the algebra considered in Theorem 9 and p be an odd prime
such that εp ∈ k . Then (ind D, p) = 1.

Proof. Assume that p divides ind D. By Theorem 9 the algebra D can be rep-
resented in the form D1 ⊗K D2, where D2 is τ -invariant and the algebra D1 has
a p-primary index which coincides with its exponent. Let L be the τ -invariant
maximal subfield in D2. Then the centralizer CD(L) is a τ -invariant L-algebra iso-
morphic to D1⊗K L. It is easily seen that the exponent and index of the last alge-
bra are equal to each other and to the index of D1. Thus, CD(L) is a symbol algebra
A(a1, b1, L, εpn), where a1, b1 ∈ L∗τ . Then the pn−1th tensor power of this algebra is
Brauer equivalent to the τ -invariant symbol algebra A(a1, b1, L, εp). On the other
hand A(a1, b1, L, εp) = A(a1, b1, Lτ , εp)⊗Lτ

L. Since A(a1, b1, Lτ , εp) is τ -invariant
and the restriction of τ to Lτ is the identity map, we have exp A(a1, b1, Lτ , εp) = 2,
which contradicts the fact that the algebra A(a1, b1, L, εp) has an odd index. The
proof is complete.

Next, there is another corollary.

Corollary 4. Let the algebra D be the same as in Theorem 9, and let char k ̸= 2
and εrad(ind D) ∈ k (here rad(indD) is the set of all prime divisors of ind D).
Then ind D is 2-primary. In particular, if τ is a cyclic involution, then ind D
is 2-primary.

Proof. Assume that ind D has an odd prime divisor. Take an appropriate
2-primary power of the algebra D and assume without loss of generality that ind D
is odd. Consequently, rad(indD) is also odd, and therefore by Corollary 3 we
have (ind D, p) = 1 for any divisor p ∈ rad(indD), since εrad(ind D) ∈ k. The con-
tradiction obtained means that the original algebra D is an algebra of a 2-primary
index. The proof of the corollary is complete.

Corollary 5. Let the algebra D be the same as in Theorem 9. If K = k , then D
is the product of τ -invariant quaternion algebras D1, . . . , Dr , where Di = Ai ⊗k K
and the Ai are quaternion τ -invariant k-algebras (cf. Lemma 8).

Proof. Since D ∈ TR(K) and the algebra D is totally ramified, we have εe ∈ K
(see [33]), which means that εe ∈ k in view of Lemma 8. By Theorem 9 each algebra
A(aij , bij , K, ε

p
αj
i

) can be written as a tensor product of a central k-algebra Eij with
canonical τ -invariant generators and an extension K/k. Then the algebras Eij are
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τ -invariant and exp Eij = indEij . Since the restriction of τ to k is the identity map,
the algebra Eij has an exponent and an index equal to 2. The proof is complete.

From the last corollary we easily derive the following.

Corollary 6. In the above notation, for K = k there exist no nontrivial weakly
totally ramified algebras D/K whose indices are not 2-primary.

Proof. In the case when K = k, by Corollary 5 the algebra D is a product of
quaternion algebras, which contradicts the condition that the index of D is not
2-primary. The proof is complete.

The proof of Theorem 9 suggests the following description of weakly totally
ramified division algebras.

Corollary 7. Let the algebra D be as in Theorem 9, and let the index of D be
coprime to char k . Then D is a radical K-algebra, which means that it has a finite
system of generators over K which consists of τ -invariant radicals (recall that an
element ∆ is called a K-radical if ∆n ∈ K ; τ -invariance means that ∆τ = ∆).

§ 5. Henselian weakly ramified division
algebras having unitary involutions

The main object of investigation in this section is a weakly ramified division
algebra having unitary involutions. We assume below that k is a Henselian field,
K/k is a quadratic separable extension, D ∈ TR(K) and τ ∈ InvK/k(D) (so that
InvK/k(D) ̸= ∅).

The structure of such K-algebras D can explicitly be described in terms of inertia
algebras and generators with simple defining relations.

First, consider the case of unramified algebras D. The following assertion holds.

Lemma 10. Let the algebra D be unramified over K and ind D ̸= 1. If
InvK/k(D) ̸= ∅, then either the exponent of D equals 2 or K/k is unramified.

Proof. Assume that the exponent of the algebra D is distinct from 2 and either
K = k or K/k is purely inseparable. Then the restriction τ |K is the identity map.
Since the reduction τ is an involution of the algebra D with trivial restriction to K
and ind D ̸= 1, the exponent of D equals 2. As soon as the algebra D is unramified
over K, it has the same exponent as D. This contradicts our assumption, and so
either exp D = 2 or K/k is unramified. The proof of the lemma is complete.

For algebras of odd indices we have the following.

Corollary 8. Let the algebra D be unramified over K , and let ind D be odd. If
D ̸= K , then the extension K/k is unramified.

Now let us describe the relation between the sets InvK/k(D) and InvK/k(D).
To do this, note that we can introduce the following equivalence relation on the set
InvK/k(D): two involutions f1, f2 ∈ InvK/k(D) are said to be equivalent (f1 ∼ f2)
if and only if their reductions f1 and f2 coincide.

The equivalence classes with respect to this relation are as follows.

Lemma 11. For f1 , f2 ∈ InvK/k(D) (char k ̸= 2) the equivalence f1 ∼ f2 holds if
and only if there exists an element m ∈ (1 + MD) ∩ Sf1(D)K such that f2 = f1im .
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Proof. First we show that f1 ∼ f2 if and only if there exists an element m ∈
(1 + MD) ∩ (Sf1(D) ∪ Kf1(D))K such that f2 = f1im, where Kf1(D) = {d ∈ D:
dτ = −d}. According to the above definition, f1 ∼ f2 if and only if f1 = f2. Since
f1f2 is a K-automorphism whose restriction to D is the identity map, by [43],
Theorem 1, there exists an element m ∈ (1 + MD) such that f2 = f1im. On the
other hand, since f1 and f2 are K/k-involutions, we have im = it for an appropriate
t ∈ Sf1(D) ∪ Kf1(D), which yields the relation m = st, where s ∈ K. Note that
Kf1(D) =

√
α Sf1(D), where K = k(

√
α), α ∈ k. Then by what we proved above

we have m ∈ (Sf1(D) ∪
√

α Sf1(D))K, that is, m ∈ Sf1(D)K.
Conversely, if f2 = f1im, then f1 = f2, that is, f1 ∼ f2. The proof is complete.

Remark 6. The claim of Lemma 11 can be refined in some special cases.
Suppose that char k ̸= 2 and ΓK = Γk. Note that Kf1(D) =

√
α Sf1(D) for

some α ∈ Uk. Taking the equality Kf1(D) =
√

α Sf1(D) into account we obtain
(Sf1(D) ∪ Kf1(D))K = Sf1(D)K. Thus, we can assume that f2 = f1im = f1is,
where m ∈ 1 + MD and sf1 = s. The fact that the automorphisms im and is
coincide implies the equality st = m for an appropriate t ∈ K. Since ΓK = Γk,
we can assume that t = πkuK for πk ∈ k and uK ∈ UK . In view of the equality
m = st the element s has the form π−1

k us, where us ∈ UD, which yields uτ
s = us, and

therefore we can assume from the very beginning that s ∈ UD. Then it follows from
the equality suK = m that s uK = 1. Therefore, s ∈ K. Moreover, s ∈ k. However,
in this case uK ∈ k as well. The element uK has the form uK = uk(1 + q) for some
uk ∈ k and q ∈ MK . Hence m(1 + q)−1 ∈ Sf1(D). Therefore, f2 = f1im(1+q)−1 =
f1isπkuk

. Thus, in the above definition of the equivalence of two involutions f1

and f2 it is sufficient to require that there exist an element m ∈ (1+MD)∩Sf1(D).
Suppose as above that char k ̸= 2 and Γk is a subgroup of index 2 in the group

ΓK and K = k(
√

π), where π ∈ k and vk(π) /∈ 2Γk. Note that the element
vK(

√
π) +Γk is a generator of the quotient group ΓK/Γk. Since the algebra D/K

is unramified, each element d ∈ D has the form
√

π
n
udδk for appropriate elements

ud ∈ UD, δk ∈ k and n ∈ Z. If f1 ∼ f2, then by Lemma 11 there exists an element
m ∈ (1 + MD) ∩ Sf1(D)K with the property that f2 = f1im.

Let m = st, where s ∈ Sf1(D) and t ∈ K. It is easily seen that, as vD(m) =
vD(st) = 0, we have s =

√
π

β
usδs and t =

√
π
−β

utδt for some us ∈ UD, ut ∈ UK ,
δs, δt ∈ k and β ∈ Z.

Since s ∈ Sf1(D), depending on whether the integer β is even or odd, the element
us has the property uf1

s = ±us. Hence m = st = δsδtutus. Note that δsδtut ∈ UK ,
and, passing to residues, we conclude that us ∈ K. Since K = k, we have us =
δk(1+ p) for appropriate elements δk ∈ k and 1+ p ∈ 1+MD. It is easy to see that
1 + p ∈ Sf1(D) ∪Kf1(D).

Since ist = ius
= i1+p, where 1+p ∈ (1+MD)∩ (Sf1(D)∪Kf1(D)), there exists

n ∈ (1 + MD) ∩ (Sf1(D) ∪Kf1(D)) such that f2 = f1in.

Remark 7. The above considerations show that when char k ̸= 2, our equivalence
relation coincides with the one introduced in [43].

Let us make one more useful observation. Note that when passing to reductions
the equivalence relation induces a mapping µD of the quotient space InvK/k(D):
µD : InvK/k(D) → InvK/k(D).



1116 V. I. Yanchevskĭı

It is easily seen that µD is injective.
As for the surjectivity of µD, under sufficiently weak constraints on the extension

K/k we establish the following theorem, in which we do not assume that char k ̸= 2.

Theorem 10. Let the algebra D be unramified over K and the extension K/k be
not purely inseparable. Then µD is a bijection.

Remark 8. This theorem refines Theorem 2 in [43], where the same is proved in the
case when char k ̸= 2. Thus, below we also consider the case char k = 2.

Our proof uses the following two assertions.

Lemma 12. Let D ∈ TR(K). Assume also that D has an involution τ and
⟨τ |K⟩ = Gal(K/k). Then for each τ -invariant separable extension Z̃/K the algebra
D contains its unramified τ -invariant lift Z/K .

Proof. If Z̃ = K, then we can set Z = K.
Now, let Z̃ ̸= K and Kτ = k. Define an element β̃ ∈ Z̃ in the following way:

if K/k is unramified, then let Z̃τ = k(β̃). Otherwise, let k(β̃)/k be the maximal
separable subextension of the extension Z̃/k. Let β be the inverse image of β̃ in D
and let

E =

{
k(β + βτ ) if char k ̸= 2,

k(ββτ ) if char k = 2.

Evidently, τ |E = id. Let N(E) be the maximal subfield of E unramified over k.
Since E = N(E), we have β̃ ∈ N(E). Indeed, if char k ̸= 2, then β + βτ = 2β̃ ∈
N(E), and in the case when char k = 2 we have β̃2 = β β

τ ∈ N(E) and, moreover,
in this case k(β̃2) = k(β̃), since k(β̃) is at the same time purely inseparable and
separable over k(β̃2). It is clear that the field k(β̃) lifts to N(E) as an unramified
extension Ẑ/k. Now set Z = ẐK. The proof is complete.

Lemma 13. Let L/K be an unramified extension of Henselian fields with an invo-
lution τ , τ |K ̸= id and k = Kτ . If char k ̸= 2, then let K = k(

√
α), and if

char k = 2, then let K = k(β), where β is a root of a polynomial of the form
x2 + x + b, b ∈ k , which is irreducible over k . Let N/k be the maximal subex-
tension of L/k unramified over k . Then the following possibilities hold for the
extension L/Lτ .

(i) If K/k is unramified, then L/Lτ is unramified too.
(ii) If K/k is weakly totally ramified, then for τ |N = id the extension L/Lτ

is weakly totally ramified. Otherwise L/Lτ is unramified.
(iii) If K/k is not weakly ramified, then for τ |N ̸= id the extension L/Lτ is

unramified. If τ |N = id, then L/Lτ is not weakly ramified.

The proof of the lemma consists in routine computations in the theory of
Henselian Galois extensions and we leave it the reader as a simple exercise.

Proof of Theorem 10. In view of Remark 8 we can limit our considerations to the
case when char k = 2.

Suppose that the algebra D has a K/k-involution τ̃ . Then the argument of
Theorem 2 in [43], which does not depend on the characteristic of k, immedi-
ately establishes the existence of a K/k-involution σ of the algebra D. Since σ
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is a K/k-involution, we have σ|K = τ̃ |K . Therefore, there exists an appropriate
σ-invariant element h̃ such that σ = τ̃ ih̃. Consider the field K(h̃). We can assume
that h̃ /∈ K. Otherwise τ̃ lifts to an involution σ. By Lemma 12 there is an unram-
ified lift of the field K(h̃) to F that does not coincide with K. Now if we show that
the element h̃ is lifted to a σ-invariant element h of F , then the involution σi−1

h

is the lift of τ̃ . To establish the existence of such h consider two cases: F/Fσ is not
weakly ramified and F/Fσ is weakly ramified.

Let F/Fσ be not weakly ramified. Then by Lemma 13 the involution σ acts
trivially on the maximal unramified subextension N/k of the extension F/k. Indeed,
if we assume that σ|N ̸= id, then by Lemma 13 the extension F/Fσ is unramified,
which contradicts our assumption that F/Fσ is not weakly ramified. Note that, by
the hypothesis of the theorem, K/k is not purely inseparable and N = Fσ (since
N ⊂ Fσ). Hence the separability of the extension F/K implies the separability of
the extension F/k, which, in turn, yields [F : N ] = 1, that is, Fσ = N . Therefore,
h̃ ∈ N and denoting the lift of the element h̃ to the field N by h we obtain the
required result.

Now consider the case of a weakly ramified extension F/Fσ. Let h be the lift
of the element h̃ to the field F . As h̃ is σ-invariant, we have hσ = h(1 + m).
We apply σ to both sides of the last equality and substitute the element h(1 + m)
for hσ. Then h = (1 + m)σh(1 + m). Note that h and hσ commute, so h and
(1 + m) also commute. The last equality implies the relation (1 + m)σ(1 + m) = 1,
which is equivalent to NF/Fσ

(1 + m) = 1. Hence, by Hilbert’s Theorem 90 and the
fact that the extension F/Fσ is weakly ramified we have 1 + m = (1 + p)σ−1 for an
appropriate element p ∈ MF . Taking the element h(1 + p)−1 as h we obtain the
required result. Therefore, the mapping µD is surjective. The proof is complete.

Now we prove the following refinement of Corollary 8.

Theorem 11. Let D ∈ TR(K) be an algebra of odd index and let τ ∈ InvK/k(D).
Then D = K if D is a field and K/k is unramified if D is not a field.

The proof of this theorem is based on the following assertions.

Lemma 14. Let D be a totally ramified noncommutative algebra. Then any sub-
field L of the algebra D containing K is totally ramified over K . Moreover, the
centralizer CD(L) is totally ramified.

Proof. It is sufficient to apply the ‘fundamental inequality’ (1.1) from [36]
and take into account that the algebra D is totally ramified over K.
Indeed, since [D : CD(L)][CD(L) : L][L : K] = [ΓD : ΓCD(L)][ΓCD(L) : ΓL][ΓL : ΓK ],
[D : CD(L)] ⩾ [ΓD : ΓCD(L)], [CD(L) : L] ⩾ [ΓCD(L) : ΓL] and [L : K] ⩾ [ΓL : ΓK ],
all inequalities are in fact equalities, as required. The proof is complete.

Lemma 15. Let the algebra D have an odd index and be weakly ramified over K .
Then:

(i) any subfield L/K of D containing K and the centralizer CD(L) are weakly
ramified over K and L, respectively;

(ii) any τ -invariant extension L of the field K is contained in a maximal τ -inva-
riant subfield ML .
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Proof. The proof of (i) is similar to the proof of Lemma 14 and is based on dimension
considerations. Part (ii) is proved using induction on ind D. First, suppose that
ind D is a prime number. Then the claim of the lemma is evidently true. If ind D
is composite, then we consider a noncentral τ -invariant element s and see that
either L(s)/K is maximal (and τ -invariant), or CD(L(s)) ̸= L(s) and the index of
CD(L(s)) is less than that of the algebra CD(L). Repeating this step several times
(if necessary) we obtain a tower of τ -invariant subfields in D, which starts with L
and ends with a maximal τ -invariant subfield. The proof is complete.

Lemma 16. Suppose that the extension K/k is not unramified. If ind D is odd, D
is totally ramified and τ ∈ InvK/k(D), then D = K .

Proof. Assume the opposite. We can assume that D has a p-primary index. Next,
by Theorem 9 we can assume that D is a symbol algebra, say, D = A(a, b,K, εpm)
with τ -invariant canonical generators A and B, where εpm ∈ K is a primitive pmth
root. As D ∈ TR(K) and ind D is primary, we have (char k, p) = 1. If εpm /∈ k,
then the extension K/k must be unramified by Lemma 8, which is not the case
by assumption. And if εpm ∈ k, then the central k-algebra ⟨A, B, εpm⟩ has an
involution that acts trivially on k, and therefore its index is not greater than 2. On
the other hand, the index of D is odd, which yields D = K. The proof is complete.

Proof of Theorem 11. We can assume that ind D is p-primary, since instead of τ we
can consider µ ∈ InvK/k(D) such that the primary components of the algebra D
are µ-invariant.

Assume that the extension K/k is not unramified. Then τ |K = id. By Corol-
lary 8 we can assume that the K-algebra D is not unramified over K. Since the
degree [Z(D) : K] is odd, we have τ |Z(D) = id.

First, suppose that D is not a field. Then τ |D ̸= id, but τ |Z(D) = id. Therefore,
exp D ⩽ 2. On the other hand ind D is odd. Consequently, exp D = 1.

Now suppose that D is a field and ind D = p. If D = Z(D), then by Lemma 16
we have D = K, which contradicts the condition ind D = p. Let D ̸= K. As D/K
is weakly ramified, D is a cyclic extension of degree p of the field K. Let Z(D)s

be the maximal subfield of Z(D) separable over k. It is evident that Z(D)s/k is
a cyclic extension of degree p. By Theorem 8 Z(D)s/k lifts to the k-algebra D as
an unramified τ -invariant cyclic extension X/k. Let β̃ be a primitive element of
the extension X/k and β be its inverse image in X. Denote by fβ(x) the minimal
polynomial of β in the extension X/k. Since at the same time β is a primitive
element of the extension XK/K, we have βτ = gβg−1 for some g ∈ D. Therefore,
βτ (g + gτ ) = (g + gτ )β. In the case when g + gτ = 0 we set µ = τig−1 . In the
case when g + gτ ̸= 0 we set µ = τi(g+gτ )−1 . Then µ ∈ InvK/k(D) and βµ = β.
Passing to the involution µ allows us to assume without loss of generality that the
compositum XK has the form X ⊗k K and τ |X = id.

Clearly, D is a cyclic algebra with maximal subfield Z = X ⊗k K. It is evident
that if φ is a generator of the Galois group Gal(X/k), then φ⊗k id is a generator of
the Galois group Gal(Z/K). Let Γ ∈ D have the property iΓ|X = φ. Set γ = Γp.
Then D = (Z, φ ⊗K id, γ). By Theorem 4, for the existence of a unitary invo-
lution that acts trivially on X it is necessary that the identity γγτ = NX/k(x)
be satisfied for an appropriate x ∈ X. Without loss of generality we can assume
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that γ ∈ VK . Let us show that then γ ∈ MK . Indeed, let γ ∈ UK . Then Γ ∈ UD

and ΓβΓ−1 = βφ. Passing to residues Γ β Γ
−1

= βφ = β
φ

gives a contradiction,
since D is a field and β ̸= β

φ
. Consequently, γ ∈ MK . Note that vK(γ) /∈ pΓK .

Indeed, let vK(γ) = pvK(δ) for some δ ∈ K. Consider the element γδ−p ∈ UK .
Since D = (Z, φ⊗K id, γδ−p), we arrive at the case γ ∈ UK , which we have already
considered. As the extension X/k is unramified, we have vK(NX/k(x)) ∈ pΓK .
Since (2, p) = 1 and vK(γ) /∈ pΓK , we obtain vK(γγτ ) = 2vK(γ) /∈ pΓK , which
gives a contradiction again. Therefore, there exists no algebra of odd prime index p
with a K/k-involution.

Now we use induction on ind D. Let D be a noncommutative K-algebra of
index pr (r > 1) such that D is a field and suppose that there exist no weakly
ramified algebras of index less than pr, r > 1, with commutative residue algebras.
Recall that Z(D) ̸= K. Again, let Z(D)s be the maximal separable subextension
of the extension Z(D)/k. Then Z(D)s/k is a τ -invariant extension. By Lemma 12
as applied to the k-algebra D and extension Z(D)s/k, there exists a τ -invariant
unramified lift Ẑ of the last extension. Since the degree of Z(D)s/k is odd, τ is the
identity automorphism of Z(D)s/k. Consequently, τ |Ẑ = id. Since the extension
Ẑ/k is unramified, it is Abelian (because the residue field of the field Ẑ is Abelian
over k). Let Z̃p/k be a subextension of Z(D)s/k such that Z̃p/k is a cyclic extension
of degree p. Consider the τ -invariant unramified lift Zp/k of Z̃p/k. It is clear that Z̃p

is τ -invariant, and therefore by Lemma 12 there exists an unramified τ -invariant
lift Zp of the extension Z̃p/k. Then the centralizer CD(ZpK) is τ -invariant and
weakly ramified over ZpK, ind CD(ZpK) = pr−1, and we arrive at a contradiction
with the assumption that r > 1. The proof of the theorem is complete.

In the general case, from Lemma 12 we immediately obtain the following.

Corollary 9. In the algebra D ∈ TR(K) there is an unramified τ -invariant lift
Z/K of the field Z(D).

Indeed, in the formulation of Lemma 12 we have Z̃ = Z(D). Since D ∈ TR(K)
the field Z̃ is a separable extension of the field K.

The following result plays a key role in what follows.

Theorem 12. The algebra D has a τ -invariant inertia algebra.

Proof. By Corollary 9 the extension Z(D)/K is separable. Let Z be an unram-
ified τ -invariant lift of Z(D)/K, which exists by virtue of Lemma 12. We can
apply Corollary 2.11 in [36] to the τ -invariant algebra CD(Z). Therefore, CD(Z) =
I⊗Z T , where I is an inertia algebra of CD(Z) and T is a totally ramified Z-algebra.
If T is a field, then T = Z and the statement of the theorem is true. Let us show
that this condition is satisfied for char k = 2. Indeed, since D ∈ TR(K), the index
of T is odd. Next, it follows from D = I that I has an involution τ . Then I con-
tains a maximal separable τ -invariant extension, which can be lifted to a maximal
τ -invariant unramified extension L/Z in I by Lemma 12. Consider the extension
CD(Z) ⊗Z L isomorphic to the L-algebra (I ⊗Z L) ⊗L (T ⊗Z L). By [36], The-
orem 3.1, the algebra T ⊗Z L is totally ramified, has an odd index and has an
involution induced by the natural involution of the algebra CD(Z)⊗Z L. By The-
orem 11 we have ind(T ⊗Z L) = 1, which coincides with ind T .
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Thus, in what follows we can assume that char k ̸= 2 and the algebra T is
noncommutative. In the case when Iτ = I the theorem is proved. Now suppose
that Iτ ̸= I. Making use of Theorem 10 we lift τ to an involution of the algebra I,
which can be extended to an involution s of D (Theorem 5). Since s|K = τ |K , we
have s = τig for a certain g ∈ Sτ (D). Then ig|Z : Z → gZg−1 = gZτg−1 = Zs.
Since Is = I, we also have Zs = Z, and therefore ig|Z ∈ Gal(Z/K). As τs = ig,
we have τs = ig, which yields ig|Z = idZ ∈ Gal(Z/K). Since the extension Z/K
is unramified, we have Gal(Z/K) ∼= Gal(Z/K). Hence ig|Z = idZ . Consequently,
g ∈ CD(Z) and v(g) ∈ ΓT .

Let g = unτ , where u ∈ UD, nτ ∈ T (note that ΓT = ΓT τ ) and v(n) = v(g). Then
for i ∈ I we have is = giτg−1 = unτ iτn−τu−1 = u(n−1in)τu−1 = uiτu−1. Thus,
since s = τ and s|I = τiu|I , we also have iu = iu = idI . Consequently, u = uz(1+m)
for appropriate uz ∈ UZ and m∈MD. Evidently, we can now assume that u=1+m.
We apply s to both sides of the equality is = uiτu−1. Then i = (uiτu−1)s. Since
uiτu−1 ∈ I, we have i = (uiτu−1)s = (uiτu−1)τiu = (uu−τ )i(uu−τ )−1. Thus,
i = (uu−τ )i(uu−τ )−1 and therefore uu−τ ∈ T (because T = CD(I)).

Suppose that char k ̸= 2. Then u + uτ = 2 and so u + uτ ∈ UD. Then u + uτ =
(t−1 + 1)u, where t = uu−τ . For i ∈ I we have

is = (t−1 + 1)−1is(t−1 + 1) = (t−1 + 1)uiτu−1(t−1 + 1)−1.

But (t−1 + 1)u = u + uτ . Hence

is = (u + uτ )iτ (u + uτ )−1 =
u + uτ

2
iτ

(
u + uτ

2

)−1

.

It is clear that
(
(u + uτ )/2

)
= 1. Set (u + uτ )/2 = 1 + p. Then 1 + p ∈

(1 + MD) ∩ Sτ (D) and is = (1 + p)iτ (1 + p)−1. Since the extension K/k is weakly
ramified, the extension K(1+p)/k(1+p) is too. Then the element 1+p is the value
of some element 1 + q ∈ 1 + MK(1+p), which means that 1 + p = (1 + q)(1 + q)τ .
Set J = (1 + q)−1I(1 + q). Then

Jτ = (1+ q)τIτ (1+ q)−τ = (1+ q)τ (1+p)−1Is(1+p)(1+ q)−τ = (1+ q)−1I(1+ q).

Hence J is a τ -invariant inertia algebra of the algebra D. The proof of the theorem
is complete.

Theorem 12 can be improved by using the following two assertions.
Lemma 17. Let A be a subalgebra of an F -algebra D with involution τ , let A be
an unramified τ -invariant division F -algebra, let F ⊂ Z(A), where F τ = F , and let
R̃ be a central τ -invariant F -algebra such that A = R̃⊗F L̃, where L̃ is a separable
extension of the field F . Then there exists an unramified τ -invariant lift of the
F -algebra R̃ to A.

Proof. By Theorem 8 the algebra A has the form A = R̂ ⊗F L, where R̂ is an
unramified algebra over F with residue algebra R̃ and L is a τ -invariant unramified
extension of the field F . Suppose that R̂τ ̸= R̂. We lift τ | R̃ to an involution of
the algebra R̂, which, in turn, can be extended to an involution s of the algebra A



Henselian division algebras 1121

by letting it act on L in the same way as τ . Since s|Z(A) = τ |Z(A), we have s = τig
for some g ∈ A. As the Z(A)-algebra A is unramified, we have g = πZ(A)u, where
πZ(A) ∈ MZ(A) and u ∈ UA. The rest of the proof repeats the argument in the
proof of Theorem 12. More exactly, for an arbitrary r ∈ R̂ we have

rs = grτg−1 = uπτ
Z(A)r

τπ−τ
Z(A)u

−1 = u(π−1
Z(A)rπZ(A))τu−1 = urτu−1.

In view of the equalities s = τ and s|R̂ = τiu|R̂ we have iu = iu and therefore
the last automorphism is the identity automorphism of the residue algebra of R̂.
Consequently, u = ul(1 + m) for some ul ∈ UL and m ∈ MA. Now it can clearly be
assumed that u = 1+m. We apply s to both sides of the equality rs = urτu−1 and
obtain r = (urτu−1)s. Since urτu−1 ∈ R̂, we have r = (urτu−1)s = (urτu−1)τiu =
(uu−τ )r(uu−τ )−1. Thus, r = (uu−τ )r(uu−τ )−1, and therefore uu−τ ∈ CA(R̂).

Since char Z(A) ̸= 2 and the residue of u + uτ is 2, we have u + uτ ∈ UA.
Set t = uu−τ . Then u + uτ = (t−1 + 1)u. Moreover,

rs = (t−1 + 1)−1rs(t−1 + 1) = (t−1 + 1)urτu−1(t−1 + 1)−1,

but (t−1 + 1)u = u + uτ . Consequently,

rs = (u + uτ )rτ (u + uτ )−1 =
u + uτ

2
rτ

(
u + uτ

2

)−1

.

It is clear that
(
(u + uτ )/2

)
= 1. Set (u + uτ )/2 = 1 + p. Then 1 + p ∈

(1 + MA) ∩ Sτ (A),
rs = (1 + p)rτ (1 + p)−1.

Since the extension Z(A)/Z(A)τ is weakly ramified, the extension Z(A)(1 +
p)/Z(A)τ (1 + p) is too. Then the element 1 + p is the value of some element
1 + q ∈ 1 + MZ(A)(1+p), which means that 1 + p = (1 + q)(1 + q)τ . Denote the
algebra (1 + q)−1R̂(1 + q) by J . It is τ -invariant:

Jτ = (1+q)τ R̂τ (1+q)−τ = (1+q)τ (1+p)−1R̂s(1+p)(1+q)−τ = (1+q)−1R̂(1+q).

Hence J is a τ -invariant lift of the algebra R̃ in A. The proof is complete.

Lemma 18. Let A be an unramified division algebra, let τ ∈ InvK/k(A), and let F

be a τ -invariant subfield of the field Z(A). Then for any τ -invariant algebra S̃ that
is a subalgebra of A such that Z(S̃) is a separable extension of the field F , there
exists a τ -invariant unramified lift of the algebra S̃ to the algebra A.

Proof. Consider Z(A)Z(S̃), the Z(A)-linear hull of the field Z(S̃). Clearly, it is
a τ -invariant extension of the field Z(A). Its centralizer in A is also τ -invariant.
Hence CA(Z(A)Z(S̃)) = S̃⊗Z(S̃) Z(A)Z(S̃), which allows us to reduce the proof of
the lemma to an application of Lemma 17. The lemma is proved.

Theorem 13. Each τ -invariant K-subalgebra Ẽ ⊂ D such that the centre Z(Ẽ)
of Ẽ is separable over K has a τ -invariant unramified lift Ê ⊂ D (over K ).
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Proof. The proof of the theorem can be reduced to the case when D is an unramified
K-algebra. Indeed, by Theorem 12 the algebra D contains a τ -invariant inertia
algebra I. Denote the Z(I)-linear hull of the algebra Ẽ by Ẽ′. Clearly, Ẽ′ ⊂ I.
Note that Z(Ẽ′) is a separable extension of the field Z(I) (as the compositum of
the fields Z(Ẽ) and Z(I)). Hence Z(I)Z(Ẽ′) ⊂ Ẽ′ ⊂ I. Now, instead of the
algebra D consider the algebra I, which is unramified over Z(I). First we establish
the existence of an E′-unramified τ -invariant lift of Ẽ′ to I (Lemma 18) and then the
existence of an Ê-unramified τ -invariant lift to E′ (Lemma 17). By Lemma 12
there exists a τ -invariant lift of the field Z(I)Z(Ẽ) to I. Hence we arrive at the
case when the K-algebra D is unramified over K.

In view of Lemma 12 the extension Z(Ẽ)/K has a τ -invariant unramified lift Z

to the algebra D. By Theorem 8 the algebra Ẽ has an unramified lift E/K. Note
that since Z(Eτ ) = Zτ and Zτ = Z, the algebras E and Eτ have the same centre.
We assume that Eτ ̸= E and lift τ to an involution of E (see [43]), which, in turn,
can be extended to an involution s of the algebra D (Theorem 5). Since the invo-
lutions s and τ have the same restriction to K, we have s = τig for an appropriate
element g ∈ D. As the algebra D is unramified over K, we have g = πKu, where
πK ∈ K \ UK and u ∈ UD. The rest of the proof follows the lines of the proofs of
Theorem 12 and Lemma 17. More exactly, for an arbitrary e ∈ E we have

es = geτg−1 = uπτ
Keτπ−τ

K u−1 = u(π−1
K eπK)τu−1 = ueτu−1.

Thus, since s = τ and s|E = τiu|E , we also have iu = iu = idE . Consequently,
u = uz(1 + m) for some uz ∈ UZ and m ∈ MD. Now it can obviously be assumed
without loss of generality that u = 1 + m. We apply s to both sides of the
equality es = ueτu−1 and obtain e = (ueτu−1)s. Since ueτu−1 ∈ E, we have
e = (ueτu−1)s = (ueτu−1)τiu = (uu−τ )e(uu−τ )−1. Using the same argument as in
the proof of Lemma 17 we obtain uu−τ ∈ CD(E). Moreover, it is easily seen that
u + uτ ∈ UD. Further, we have (u+uτ )/2 = 1+p, where 1+p ∈ (1+MD)∩Sτ (D)
and es = (1 + p)eτ (1 + p)−1. Since the extension K(1 + p)/k(1 + p) is weakly
ramified, 1+ p is the value of some element 1+ q ∈ 1+MK(1+p), which means that
1+p = (1+q)(1+q)τ . Denote the algebra (1+q)−1E(1+q) by J . It is τ -invariant:

Jτ = (1+q)τEτ (1+q)−τ = (1+q)τ (1+p)−1Es(1+p)(1+q)−τ = (1+q)−1E(1+q).

Hence J is a τ -invariant lift of the algebra Ẽ to D. The proof of the theorem is
complete.

Let I be the τ -invariant inertia algebra of the algebra D. Then the centre Z of
this algebra is τ -invariant and (CD(Z))τ = CD(Z). Note that the algebra CD(Z) is
defectless over Z, and therefore by Corollary 2.11 in [36] we have CD(Z) = T ⊗Z I,
where T is totally ramified over Z. Since CD(Z) and I are τ -invariant, T is also
τ -invariant (because T = CD(I)).

One aim of this section is to carry over to weakly ramified algebras with unitary
involutions the main fact about the structure of a finite weakly ramified extension
of a Henselian field: each extension of this kind can be represented as a tower of
totally ramified (radical) extensions of a maximal unramified subextension.
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To formulate the main theorem about the decomposition into a τ -invariant rad-
ical tower over a τ -invariant inertia algebra I we find a system of generators of
the algebra D that are roots of elements of CD(Z) that generate totally ramified
extensions.

In the general case we also need information about the existence of outer auto-
morphisms of the algebra CD(Z). Now let us say a few words about generalized
dihedral groups.

Definition 8. Let n be an odd integer greater than 1. A group G of order 2n is
called a generalized dihedral group if it has an Abelian subgroup H of order n and
an element a of order 2 with the defining relations aha−1 = h−1 for any h ∈ H.

It is easily seen that this definition can be reformulated in the following equivalent
way.

Definition 9. Let n be an odd integer greater than 1. A group G of order 2n
is called a generalized dihedral group if it has an Abelian subgroup H such that
[G : H] = 2 and any element of G \H has order 2.

In this notation the following assertion holds.

Proposition 7. Let Z(D) ̸= K and I be the τ -invariant inertia algebra for D .
Then in D there exist an unramified τ -invariant Abelian extension Z/K (for exam-
ple, Z = Z(I)) and a system of τ -invariant elements {Π1, . . . ,Πr} ⊂ MD such that

(i) Z = Z(D);
(ii) Z = Z1 × · · · × Zr (the direct compositum of Z1, . . . , Zr over K ), where

Zj/K is a τ -invariant cyclic extension with Galois group generated by iΠj |Zj ,
j = 1, . . . , r ;

(iii) (τ |Zj
◦ iΠj

|Zj
)2 = idZj

, that is, Gal(Zj/k) is either a generalized dihedral
group, or an Abelian group of exponent 2.

Proof. Since the algebra I is τ -invariant and unramified over K, its centre Z(I)
has the same properties. Moreover, Z(I) = Z(D). Set Z = Z(I). It is clear that
Zτ = Z. Since the extension Z(D)/K is Abelian and Z/K is its unramified lift
in D, Z/K is also Abelian and its Galois group is the cross product of the cyclic
groups ⟨φj⟩, j = 1, . . . , r, where ⟨φj⟩ is the cyclic group generated by φj . By
the Skolem-Noether theorem the automorphism φj can be extended to an inner
automorphism iΠj ; moreover, replacing φj by φ−1

j (if necessary) we can assume
that Πj ∈ MD.

Note that Πτ
j = ujΠj , where uj ∈ UD. Replacing Πj (if necessary) by an

appropriate element Πjvj , where vj ∈ UZ , allows one to assume without loss of
generality that uj + 1 ∈ UD. Indeed, let uj + 1 ∈ MD and let (Πjvj)τ = wjΠjvj

for any vj ∈ UZ , where wj + 1 ∈ MD. Then vτ
j Πτ

j = wjΠjvj . Since Πτ
j = ujΠj

and ΠjvjΠ−1
j = v

φj

j , we obtain vτ
j uj = wjv

φj

j . Adding v
φj

j + vτ
j to both sides of

this equality gives vτ
j (uj + 1) + v

φj

j = (wj + 1)vφj

j + vτ
j . Since uj + 1 ∈ MD and

wj + 1 ∈ MD, we have v
φj

j = vτ
j + m, where m ∈ MD. This yields the equality

vj
φj = vj

τ . Now let vj ∈ UZτ
. Then vj

φj = vj . Since φj is a nontrivial auto-
morphism of the field Zτ , this field contains an element ṽj such that ṽj

φj ̸= ṽj .
If vj is the inverse image of ṽj in Zτ , then we arrive at a contradiction. Hence we
may assume that uj + 1 ∈ UD.
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Consider the restriction to Z of the reduction of the involution τiΠτ
j +Πj

. Then

τiΠτ
j +Πj

|Z = τ |Z iΠτ
j +Πj

|Z = τ |Z i(uj+1)Πj Z
= τ |Z(iΠj

|Z iuj+1|Z).

Since iuj+1|Z is the identity mapping of Z, the restriction of the reduction
τ |Z iΠj

|Z is an involution in Gal(Z(D)/k), which means that (τ |Z(D) φj)2 = 1
or τZ(D)φjτZ(D) = φ−1

j . Hence Gal(Z(D)/k) is either a generalized dihedral group
in case τ |Z(D) ̸= idZ(D), or an Abelian group of exponent 2.

If K/k is an unramified extension, then τ ̸= idZ(D), and therefore the Galois
group Gal(Z/k) is a generalized dihedral group, since Z/k is an unramified lift
of Z(D)/k.

If the extension K/k is totally ramified, then Z = Zτ ×K is the direct composi-
tum of the fields Zτ/k and K/k and therefore Gal(Z/k) = Gal(Zτ/k)×Gal(K/k)
is again a generalized dihedral group.

Consider the equality ΠjzΠ−1
j = zφj , where z ∈ Z. We apply τ to both sides.

Since Gal(Z/k) is a generalized dihedral group, we have

Π−τ
j zτΠτ

j = zφjτ = zτφ−1
j = Π−1

j zτΠj .

As Zτ = Z, we have z = Πτ
j Π−1

j zΠjΠ−τ
j . Thus, Πτ

j = cjΠj , where cj ∈ CD(Z)∩UD.
It is easily seen that iΠj+Πτ

j
|Z = iΠj |Z , and thus we can assume without loss of

generality that Πτ
j = Πj .

Let Φj be the subgroup of Gal(Z/K) generated by the φi, i ∈ {1, 2, . . . , r} \ {j}.
Denote by Zj the field of invariants of the group Φj . Then Zj/K is a Galois
extension with group ⟨φj |Zj ⟩. Let us show that Zτ

j = Zj . For z ∈ Zj and any
g ∈ Φj we have zg = z. Applying τ to both sides of the last equality gives
zgτ = zτ . However, g = φα1

1 · · ·φαr
r , where αj = 0. Then zgτ = zτg−1

= zτ .
As g runs through the group Φj , so does g−1 as well. Hence zτ belongs to the field
of invariants of the group Φj . Consequently, Zτ

j ⊆ Zj . The inverse is evident. The
proof of the proposition is complete.

Lemma 19. Again, let D , τ , I , Z and Π1, . . . ,Πr be as in Proposition 7. If
CD(Z) = T ⊗Z I and iΠj |Z ∈ Gal(Z/K), then for any j ∈ {1, 2, . . . , r} there
exists a τ -invariant element Γj such that IiΓj = I and iΓj

|Z = iΠj
|Z .

Proof. Let iΠj |Z ∈ Gal(Z/K). Consider the reduction of the involution τiΠj . This
reduction lifts to an involution µ̂j of the algebra I, which, in turn, can be extended
to a K/k-involution µj of D. Then µj = τiΓj

, where Γτ
j = Γj . The elements

Γ1, . . . ,Γr possess the required properties. The proof is complete.

Lemma 20. If CD(Z) = T ⊗Z I and iΓj |Z ∈ Gal(Z/K), then there exist τφj-inva-
riant elements ij ∈ I and tj ∈ T such that Γej

j = tjij .

Proof. Let iΓj |Z ∈ Gal(Z/K) and IiΓj = I (see Lemma 19). Then i
Γ

ej
j
|Z = idZ .

Hence i
Γ

ej
j
|I = iij

|I for some ij ∈ I. Consequently, i
Γ

ej
j i−1

j
|I = idI , and therefore

Γej

j = ijtj , where tj ∈ CD(I) = T .
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We show that we can choose tj and ij to be τφj-invariant. Indeed,

ijtj = Γej

j = (Γej

j )φ−1
j = i

φ−1
j

j t
φ−1

j

j and ijtj = Γej

j = (Γej

j )τ = iτj tτj .

The last equality implies that iτj tτj = i
φ−1

j

j t
φ−1

j

j . Applying τ to both sides gives

ijtj = i
φ−1

j τ

j t
φ−1

j τ

j . However, φ−1
j τ = τφj . Consequently, t

τφj

j t−1
j = (iτφj

j )−1ij ∈ Z.
Let zj = δ

τφj−1
j , δj ∈ Z. Then the elements tjδ

−1
j and ijδj are τφj-invariant.

The proof is complete.

Note that by Theorem 9 any central algebra T which is totally ramified over Z
has the form T = ⟨∆1, . . . ,∆s, Z⟩, where ∆i, i = 1, . . . , s, are τ -invariant radicals
over Z(I). Then the following assertions hold.

Theorem 14. Let Z(D) ̸= K and let I be a τ -invariant inertia algebra of the
algebra D . Then D = ⟨Γ1, . . . ,Γr, ∆1, . . . ,∆s, I⟩.

Theorem 15. Let Z(D) ̸= K and let I be a τ -invariant inertia algebra of the
algebra D . Then D = ⟨Γ1, . . . ,Γr, CD(Z(I))⟩.

Corollary 10. In the notation of Theorem 14 the following equalities hold:

D∗ = (Γα1
1 · · ·Γαr

r )(∆β1
1 · · ·∆βs

s )I∗(1 + MD),

VD = (Γα1
1 · · ·Γαr

r )(∆β1
1 · · ·∆βs

s )VI(1 + MD) and UD = UI(1 + MD).

These assertions are used to prove a stronger version of Theorem 12.
Theorem 16. Let D ∈ TR(K) be a τ -invariant division algebra as in Lemma 12.
Then for any τ -invariant subalgebra M in D unramified over K there exists a τ -inva-
riant inertia algebra of D containing M .

Proof. Suppose that D is a field. Since D ∈ TR(K) is a τ -invariant algebra and
the extension M/K is unramified, M is contained in a maximal subextension N/K
contained in D and unramified over K, which is an inertia algebra of D (over K).
Finally, note that Nτ = N in view of the equality Dτ = D. This completes the
proof of the theorem in the case of a commutative algebra D.

Suppose that D is not a field. Let us show that we can limit our considerations
to the case when K = Z(D). Indeed, assume that K is distinct from Z(D).
Consider MZ(D), the compositum of M and Z(D) over K, which coincides with the
Z(D)-linear hull of the field M . Then, as M and Z(D) are τ -invariant unramified
extensions of K, their compositum has the same properties. Now if we show that
MZ(D) is contained in a τ -invariant inertia algebra of the algebra D, then we can
assume without loss of generality that K = Z(D).

First suppose that D is a field. Note that in the case when D=K we have M =K,
and so the theorem is true in view of Theorem 12. Now suppose that D ̸= K. Then
by the commutativity of D we have D = Z(D), and thus D = Z(I), where I is
a τ -invariant inertia algebra of D. Clearly, Z(I) is a τ -invariant extension of the
field K. By Lemma 12 there exists an intermediate field M̃ (K ⊂ M̃ ⊂ Z(I)) which
is τ -invariant and unramified over K and M̃ = M . In view of a K-isomorphism
between M and M̃ the fields M and M̃ are K-isomorphic. We can assume that
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M̃ does not coincide with Z(I). Otherwise M is a maximal subfield in D and the
claim of the theorem obviously holds. Let us show that among the K-isomorphisms
between the fields M̃ and M there exists an isomorphism induced by an inner
automorphism of the algebra D and specified by an element of 1 + MD. Let v ∈ D
be such that the restriction of the automorphism iv to M̃ induces a K-isomorphism
φ between M̃ and M . Note that iv also induces an isomorphism of Z(I) onto
vZ(I)v−1 which is the lift of φ. Let v = guZΠ, where g ∈ 1 + MD and uZ ∈ Z(I),
and let Π be an appropriate product of powers of the elements ∆1, . . . ,∆s and
Γ1, . . . ,Γr from Theorem 14. In view of the relation vZ(I)v−1 = gZ(I)g−1 we
obtain the desired K-isomorphism between M̃ and M induced by ig.

Assume that the claim of the theorem does not hold for an algebra M . Then we
can assume that M is not contained in any larger τ -invariant algebra M̂ unramified
over K. This assumption leads to a contradiction. Indeed, define an element
β̃ ∈ Z(I) as follows. If M̃/Mτ is unramified, then let Z(I)τ = M̃(β̃). Otherwise
let M̃τ (β̃)/M̃τ be the maximal separable subextension of the extension Z(I)/M̃τ .
It is easily seen that M̃τ (β̃) is a τ -invariant extension of M̃τ . Denote the inverse
image of β̃ in Z(I) by β and set

E =

{
M̃τ (β + βτ ) if char k ̸= 2,

M̃τ (β · βτ ) if char k = 2.

It is clear that τ |E = id. Let N(E) be the maximal subfield of E unramified
over M̃τ . Since E = N(E), we have β̃ ∈ N(E). Indeed, in the case when char k ̸= 2
we have β + βτ = 2β̃ ∈ N(E), and in the case when char k = 2 we have β̃2 =

β β τ ∈ N(E). Moreover, in this case M̃τ (β̃2) = M̃τ (β̃), since M̃τ (β̃) is at the same
time purely unseparable and separable over M̃τ (β̃2). Now it is clear that the field
M̃τ (β̃) lifts to N(E) as an unramified extension Z(I)τ/M̃τ . This yields the relation
Z(I) = Z(I)τM̃ .

Let β̃ be a primitive element of the unramified extension Z(I)/M̃ . Then the
element βig generates an unramified extension of M of degree [Z(I) : M̃ ]. Put
s = β̃ig + β̃igτ . Since g ∈ 1 + MD, we have s = 2β̃ and therefore, for char k ̸= 2
the extension M(s) contains the field M(β̃) as residues. Since M(s) is τ -invariant,
we arrive at a contradiction. And if char k = 2, then instead of the extension
M(s) we take the extension by the element β̃ig β̃igτ . Thus, we have dealt with the
case when D is a field.

Now let D be not a field. We demonstrate that the claim of the theorem holds
for algebras with prime indices. Since D is weakly ramified and D is not a field,
D is an unramified algebra. Therefore, it is an inertia algebra of itself because its
index is a prime number. This yields the validity of the theorem.

Let ind D be a composite integer and suppose that the theorem holds for sub-
algebras whose indices divide ind D and are less than ind D. Since the indices of
all subalgebras considered below are divisors of ind D, the last condition reduces
to the assumption that their indices are strictly less than ind D. Now consider the
possible cases for D and M one by one.
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Recall that if Z(M)/K is unramified, then Z(M) = Z(M) and the extension
Z(D)/K is τ -invariant and separable. Moreover, if Mτ coincides with M , then
Z(M) = Z(M)τ . Clearly, Z(M) ⊂ CD(M).

Note that M is contained in some inertia algebra A of the algebra D. Indeed,
consider the algebra M ⊂ D. In view of Theorem 2.9 in [36] as applied to an
arbitrary inertia algebra J of D and the algebra M , there exists an unramified lift
M̃ ⊂ J . By [36], Theorem 2.8, there exists an isomorphism between M̃ and M ,
which can be extended to an automorphism φ of the algebra D by Theorem 5. Then
Jφ is an inertia algebra of D containing the algebra M , and we have M ⊂ Jφ.

In the case when Aτ = A the claim of the theorem is proved. Suppose that
Aτ ̸= A. In view of the inequality [D : K] < ∞ we can assume that the K-algebra
M satisfies the following condition:

(a) there exists no K-subalgebra M̂ of D that is distinct from M , contains M
and is τ -invariant and unramified over K .

Further, note that two cases are possible for the fields Z(M) and Z(D):
(1) Z(M)Z(D) = Z(M);
(2) Z(D)Z(M) ̸= Z(M).
Suppose that M is not a field. Then the algebra CD(M) is noncommutative.

Indeed, if CD(M) is a field, then CD(M) = Z(M), since otherwise the centre of
the algebra CD(Z(M)), which coincides with CD(M), is also distinct from Z(M),
which is not the case. Hence CD(M) is not a field.

Consider the centralizer of CD(Z(M)) and apply Theorem 3.1 in [36] to the alge-
bra D and the unramified extension Z(M)/K. Then we obtain Z(CD(Z(M))) ∼=
Z(D)Z(M), and by our assumptions we have Z(D)Z(M) ̸= Z(M). On the other
hand, if the algebra CD(M) were totally ramified over Z(M), then by [36], Propo-
sition 1.4, we would have CD(Z(M)) = M . Thus, with due regard to the fact that
CD(M) is τ -invariant and noncommutative, by Theorem 12 there exists a τ -invari-
ant inertia algebra I of the algebra CD(M), which contradicts the maximality of M
in the sense of condition (a) (it suffices to consider the I-hull of the algebra M).

Suppose that M is a field and case (2) takes place. Then the compositum
Z(D)Z(M) over K is separable. Denote a primitive element of this extension by α̃.
Since Z(M) is a τ -invariant extension of K, the Z(M)-algebra CD(Z(M)) is also
τ -invariant. By Lemma 12 there exists an element α of CD(Z(M)) such that α = α̃
and the extension Z(M)(α)/Z(M) is τ -invariant and unramified. Since M is a field,
we have Z(M) = M . Thus we have proved the existence of an extension M(α) that
contains M strictly and does not coincide with D, which contradicts condition (a)
for M . Hence we are in case (1). Thus, we can assume that Z(M)Z(D) = Z(M).

Let Z ⊂ Z(M) be a τ -invariant lift of the extension Z(D)/K which is unramified
over K (note that such an extension does exist due to the equality Z(M)Z(D) =
Z(M)). Let us show that Z can be assumed to be equal to K. Indeed, assume
that Z ̸= K. Consider the centralizer CD(Z). It is easily seen that the Z-algebra
CD(Z) is a τ -invariant central algebra over Z. For this algebra there are a priori
two cases depending on whether CD(Z) is commutative or noncommutative. In the
first case we note that, since Z ⊂ Z(M), we have M ⊂ CD(Z), and CD(Z),
considered as a K-algebra, is an inertia algebra of D. Thus, we find ourselves in
the framework of the earlier considerations for Z-algebras CD(Z) and M , where
ind CD(Z) divides ind D. In the case when CD(Z) is noncommutative, it can be
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represented in the form CD(Z) = I ⊗Z T , where I is an inertia algebra of the
algebra CD(Z) and T is a totally ramified subalgebra of CD(Z). It is clear that
the index of CD(Z) divides ind D. In other words, the product of the indices of T
and I divides ind D, which means that either ind I is less than ind D or these
indices coincide. In the latter case D is unramified over K, and we arrive at the
case considered above. If ind I < ind CD(Z), then, as the index of CD(Z) is less
than that of D and ind I < ind D, we arrive at the case of subalgebras of smaller
index, when it is sufficient to verify the theorem for divisors with prime indices
(again, we find ourselves in the case of algebras of smaller indices, for which the
inductive hypothesis holds true). Hence we can assume that Z = K.

Note that the theorem is true in the case when char k = 2. Indeed, since
D ∈ TR(K), the index of T is odd. By Theorem 12 some inertia algebra I of D is
τ -invariant. Then D = I ⊗K E, where E is a totally ramified τ -invariant algebra
over K. Now, applying Theorem 11 to E we obtain ind T = indE = 1. Hence
the algebra D is unramified, and therefore M is contained in a τ -invariant inertia
algebra of D.

Now suppose that char k ̸= 2. Then by virtue of [36], Corollary 2.11, D is
the tensor product over K of some inertia algebra of D and a totally ramified
central K-algebra. Since all inertia algebras are conjugate, it can be assumed
without loss of generality that D = A ⊗K T , where T is a totally ramified central
K-algebra. Using Theorem 10 we lift τ |A to an involution µ of A. Now we apply
Theorem 5 to the algebra A with the involution µ and the subalgebra M with
the involution τ |M and conclude that there exists a K/k-involution δ of A such
that δ|M = τ |M . Applying again Theorem 5 to D with the involution τ and
the subalgebra A with the involution δ we see that there exists a K/k-involution
s : D → D such that s|M = τ |M . Since s|K = τ |K , we have s = τig for an
appropriate element g ∈ Sτ (D). Moreover, vD(g) ∈ ΓT .

Now, as in the proof of Theorem 12, let g = unτ , where u ∈ UD, nτ ∈ T (note
that ΓT = ΓT τ ) and vD(n) = vD(g). Then for a ∈ A we have as = gaτg−1 =
unτaτn−τu−1 = u(n−1an)τu−1 = uaτu−1. Since s = τ and s|A = τiu|A, we also
have iu = iu = idA. Consequently, u = uz(1 + m) for some elements uz ∈ UZ(A)

and m ∈ MD. We can assume that u = 1 + m. Applying s to both sides of
the equality as = uaτu−1 gives a = (uaτu−1)s. Since uaτu−1 ∈ A, we have
a = (uaτu−1)s = (uaτu−1)τiu = (uu−τ )a(uu−τ )−1. Hence a = (uu−τ )a(uu−τ )−1,
and therefore uu−τ ∈ T (because T = CD(A)). Note that u + uτ = 2, which yields
u + uτ ∈ UD. Set t = uu−τ . Then u + uτ = (t−1 + 1)u. For any a ∈ A we have
as = (t−1 + 1)−1as(t−1 + 1) = (t−1 + 1)uaτu−1(t−1 + 1)−1. Next, in view of the
equality (t−1 + 1)u = u + uτ we have

as = (u + uτ )aτ (u + uτ )−1 =
u + uτ

2
aτ

(
u + uτ

2

)−1

.

It is clear that
(
(u + uτ )/2

)
= 1. Set (u + uτ )/2 = 1 + p. Then 1 + p ∈

(1 + MD) ∩ Sτ (D) and as = (1 + p)aτ (1 + p)−1. As the extension K/k is weakly
ramified, the extension K(1 + p)/k(1 + p) is weakly ramified too. Then 1 + p is the
value of some element 1+q ∈ 1+MK(1+p), which means that 1+p = (1+q)(1+q)τ .
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Let I = (1 + q)−1A(1 + q). Then

Iτ = (1+q)τAτ (1+q)−τ = (1+q)τ (1+p)−1As(1+p)(1+q)−τ = (1+q)−1A(1+q).

Hence I is a τ -invariant inertia algebra of the algebra D.
It follows from what we said above that 1 + p commutes with elements of M .

Evidently, all elements of the field K(1 + p) commute with elements of M , so 1 + q
also commutes with them. Consequently, (1 + q)−1M(1 + q) = M , hence it is
a subalgebra of the τ -invariant algebra I. The proof of Theorem 16 is complete.

Let D ∈ TR(K) and Z be a τ -invariant lift of Z(D). Then CD(Z) = T ⊗Z I.
In this notation the following proposition is valid.

Proposition 8. If char k = 2 and the extension Z/Zτ is not unramified, then
λD = 1.

Indeed, recall that the algebra T is τ -invariant and weakly totally ramified. Then
the proposition follows from Corollary 2 since λD = λCD(Z) = λT .

Another relevant assertion looks as follows.

Lemma 21. If char k ̸= 2, while char k = 2, and K/k is not unramified, then
λD = 1.

Proof. First suppose that Z(D) = K. By [36], Corollary 2.11, we have D = T⊗K I,
where the algebra T/K is totally ramified and I is an inertia algebra of D.

If D is a field, then I = K, and therefore D = T . This means that D is weakly
totally ramified. Hence by Corollary 2 we have D = K, which yields λD = 1.
If D is not a field, then let Ẽ be the maximal subfield of D separable over K.
Consider the maximal separable subextension L̃/k of the extension Ẽ/k and denote
by L the unramified lift of L̃ to the algebra I as a k-algebra. The extension L/k
does not contain K (since K/k is not weakly ramified). Let b be a primitive element
of L/k. Since [K(b) : K] = [k(b) : k], the coefficients of the minimal polynomial of b
over K belong in fact to the field k. Hence bτ = gbg−1 for an appropriate g ∈ D.
Let us show that there exists an involution µ that has the same restriction to K
as τ and satisfies bµ = b. Note that bτ (g + gτ ) = (g + gτ )b. If g + gτ = 0, then
we take µ = τi√α g, where

√
α ∈ K and (

√
α)τ = −

√
α (recall that char k ̸= 2).

If g + gτ ̸= 0, then let µ = τi(g+gτ )−1 . In either case the element b is µ-invariant,
so the field L is µ-invariant.

It is easily seen that KL is a maximal µ-invariant subfield of the algebra I.
Indeed, KL is µ-invariant, because K and L are µ-invariant and their elements
commute. Now, since KL = Ẽ is a maximal subfield in I, KL is a maximal
subfield of I (because the algebra I is unramified over K). Thus, KL is a maximal
µ-invariant subfield of I. It is clear that CD(KL) = T ⊗K KL and CD(KL) is
a µ-invariant weakly totally ramified KL-algebra. Since char k = 2 and KL/(KL)µ

is not unramified, by Corollary 2 we have ind(T⊗KKL) = 1, which yields ind T = 1.
Thus, in this case D = I is an unramified K-algebra and therefore λD = 1.
Let Z(D) ̸= K. Since the extension Z(D)/K is separable, there exists a maximal

separable subextension L̃/k of the extension Z(D)/k. Denote the unramified lift
of L̃ to the algebra I as a k-algebra by L. As above, note that K is not contained
in L as the extension L/k is unramified. Using the same argument as above we
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show that there exists a central τ -invariant involution µ such that Lµ = L. This,
in turn, means that the compositum Z of the fields K and L over k is µ-invariant
and, moreover, the extension Z/K is unramified and Z = Z(D). Hence CD(Z) =
T ⊗Z I, where the algebra T/Z is totally ramified, the algebra I/Z is unramified
and λD = λCD(Z). The centre Z(CD(Z)) coincides with Z and we arrive at the
case considered at the beginning of the proof. Hence λD = λCD(Z) = 1. The proof
of the lemma is complete.

§ 6. The groups U(D, τ ), SU(D, τ ),
SUv(D, τ ), U(D, τ )′ and their reductions

In this section we describe the structure of the groups SUKan
1 (D, τ). First we

compute the reductions of the groups U(D, τ), SU(D, τ), U(D, τ)′ and SUv(D, τ) =
{d ∈ SU(D, τ) | N(d) = 1}, where N denotes the composition NZ(D)/K ◦NrdD.

Below D ∈ TR(K), k is a Henselian field, and the extension K/k is weakly rami-
fied (this is so in the case when char k ̸= 2, which we assume below for definiteness).
For brevity we write λ instead of λD.

Note that Z = Z(D). Then the following proposition is valid.

Proposition 9. The equality U(D, τ) = U(D, τ) holds and, for N = NZ/K ◦NrdD ,

SU(D, τ) = U(D, τ) ∩ SL(D) = {d̃ ∈ U(D, τ) | N(d̃)λ = 1}.

Proof. It is clear that U(D, τ) ⊆ U(D, τ), and therefore to prove the first
claim of the proposition it is sufficient to establish the inverse inclusion. Let
d̃ ∈ U(D, τ) ∩ SL(D) and let d be the inverse image of d̃ in D. Then ddτ = 1 + m,
where m ∈ MK(ddτ )τ

. Since K(ddτ ) = (K(ddτ ))τ , the extension K(ddτ )/K(ddτ )τ

is quadratic and separable. As ddτ ∈ 1 + MK(ddτ )τ
and since the extension

K(ddτ )/k(ddτ ) is weakly ramified, there exists an element c ∈ 1 + MK(ddτ ) such
that NK(ddτ )/K(ddτ )τ

(c) = ddτ . Hence ccτ = ddτ . Consequently, c−1d ∈ U(D, τ)
and c−1d = d̃. Thus, U(D, τ) ⊆ U(D, τ), which yields U(D, τ) = U(D, τ).

Let us show that SU(D, τ) ⊂ U(D, τ)∩ SL(D). To do this, note that U(D, τ) ⊂
U(D, τ) and SL(D) = {d̃ ∈ D | N(d̃)λ = 1} (see, for example, [37]). In the case
when D is a field we have SL(D) = {d̃ ∈ D | N

Z(D)/K
(d̃)λ = 1}. Taking the residue

d ∈ D of an element d ∈ SU(D, τ) gives the required inclusion.
Let us prove the reverse inclusion SU(D, τ) ⊃ U(D, τ)∩SL(D). Suppose that D

is not a field. By Theorem 12 there exists a τ -invariant inertia algebra I of D. Let
Z = Z(I). Then I is at the same time an inertia algebra of CD(Z). By what
we established above, we have U(I, τ |I) = U(D, τ). Let b be the inverse image
of d̃ in the group U(I, τ |I). Since d̃ ∈ U(D, τ)∩SL(D), we have NZ/K(NrdI(b))λ =
(1+m)τ−1, where m ∈ MK . As (λ, char k) = 1, we can assume that 1+m = (1+e)λ,
e ∈ MK . Then NZ/K(NrdI(b)) = (1+e)τ−1. Recall that by virtue of Proposition 4
we have NrdD(1 + MD) = 1 + MK . Moreover, the mapping NZ/K ◦ NrdI sends
1+MI to 1+MK . Let p ∈ MI have the property NZ/K(NrdI(1+p)) = 1+e. Then
b(1 + p)1−τ ∈ SU(D, τ) and b(1 + p)1−τ = d̃. If D is a field, then the argument is
similar. The proof of the proposition is complete.

Proposition 9 suggests a description of the reduction of the group SUv(D, τ).
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Corollary 11. The following equality holds:

SUv(D, τ) = {d̃ ∈ U(D, τ) | N(d̃) = 1} = U(D, τ) ∩ SLv(D).

Here SLv(D) = {d ∈ SL(D) | N(d) = 1}.

Proof. The inclusion SUv(D, τ) ⊆ {d̃ ∈ U(D, τ) | N(d̃) = 1} follows from the
definition of the group SUv(D, τ). Conversely, let d̃ ∈ U(D, τ) and N(d̃) = 1. Then
N(d̃)λ = 1. By Proposition 9, in the group SU(D, τ) we can find an inverse image
of the element d̃, which belongs in fact to SUv(D, τ). The proof of the corollary is
complete.

Finally, let us establish the following lemma.

Lemma 22. The equality U(D, τ)′ = U(D, τ)′ holds.

Proof. The inclusion U(D, τ)′ ⊆ U(D, τ)′ is evident. Conversely, let a, b ∈ U(D, τ).
Then by the argument used in the proof of Proposition 9 the elements a and b
have inverse images u, v ∈ U(D, τ), respectively. It is clear that uvu−1v−1 ∈
U(D, τ)′ and uvu−1v−1 = aba−1b−1, which proves the reverse inclusion. The proof
is complete.

Let UKan
1 (D, τ) = U(D, τ)/U(D, τ)′. Then, as above, we obtain UKan

1 (D, τ) ∼=
UKan

1 (D, τ).
Next, let E = ((1 + MD) ∩ SU(D, τ))U(D, τ)′/U(D, τ)′.
The group SUKv

1(D, τ) = SUv(D, τ)/(U(D, τ))′ plays an important role below.
Denote Eλ = N(SU(D, τ)). Then we have the following lemma.

Lemma 23. The following exact sequence holds:

1 → SUKv
1(D, τ) → SU(D, τ)/(U(D, τ))′ → Eλ → 1.

The group Eλ is computed in the following way:
(i) Eλ = 1 if K/k is totally ramified;
(ii) if K/k is unramified, then

Eλ = Cλ(K) ∩N(D)τ−1, (6.1)

where Cλ(K) is the group of λth roots of unity in K .

Proof. Note that U(D, τ)′ ⊆ SUv(D, τ). Let [ã, b̃], where ã, b̃ ∈ U(D, τ). By
Proposition 9 the elements ã and b̃ have inverse images a and b in U(D, τ). Then
[a, b] ∈ SU(D, τ). Next, [a, b] = [ã, b̃]. Moreover, N([ã, b̃]) = NZ/K(NrdD([ã, b̃])) =

NZ/K(1) = 1. Thus, [ã, b̃] ∈ SUv(D, τ). By definition SUv(D, τ) ⊂ SU(D, τ).
Thus, we have a sequence of subgroups

U(D, τ)′ ⊆ SUv(D, τ) ⊂ SU(D, τ).

Since SUv(D, τ) is the kernel of the restriction of the homomorphism N to SU(D, τ),
we have SU(D, τ)/SUv(D, τ) ∼= Eλ, which gives the exact sequence of the lemma.
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In the proof of (6.1) we consider two cases:
(i) K/k is totally ramified;
(ii) K/k is unramified.
Case (i). Consider the case of a totally ramified extension K/k. Then for

s ∈ SU(D, τ) we have N(s) = NZ/K(NrdD(s)), where we can assume without loss of
generality that s belongs to U(I, τ |I). We use Merkurjev’s formula NrdI(U(I, τ |I)) =
NrdI(I)τ−1 (see [44], Proposition 6.1) and obtain NrdI(s) = NrdI(i)τ−1, where
i ∈ I. Passing to residues gives the equality NrdI(s) = NrdD(s) = NrdD(i)τ−1.
Applying the homomorphism NZ/K to the right- and left-hand sides of this equality
gives N(s) = N(i)τ−1. Since the restriction of τ to K is the identity map, we have
N(s) = 1. This yields Eλ = 1.

Case (ii) Let ε ∈ Cλ(K) ∩ N(D)τ−1 be a primitive µth root dividing λ. Then
by the equality (λ, char k) = 1 the root ε has a unique inverse image ε̂ in K, which
is a primitive µth root of unity. Note that, since NK/k(ε) = 1, we have NK/k(ε̂) =
1 + mK , where mK ∈ MK . Further, (1 + mK)λ = 1, hence in view of the equality
(λ, char k) = 1 we obtain mK = 0. Therefore, NK/k(ε̂) = 1 and so ε̂ = (û)τ−1.
Denote the composition NZ/K◦NrdI by N̂ . It follows from the equality ε = N(d)τ−1

that ε̂ = N̂(d̂)τ−1(1+mK), where d̂ is the inverse image of d in I. The last equality
suggests that NK/k(1+mK) = (1+nK)τ−1. Consequently, ε̂ = (N̂(d̂)(1+nK))τ−1.
It is clear that 1+nK = NZ/K(1+vK), where vK ∈ MZ . Because I/Z is unramified,
this yields 1 + vK ∈ NrdI(I). Finally, we obtain ε̂ = N̂(i)τ−1 = NZ/K(NrdI(i))τ−1

for an appropriate i ∈ I. Using Merkurjev’s formula NrdI(I)τ−1 = NrdI(U(I, τ |I))
(see [44], Proposition 6.1) we obtain NZ/K(NrdI(i))τ−1 = NZ/K(NrdI(u)) for some
u ∈ U(I, τ |I) ⊂ U(D, τ). Note that the above argument is also valid when I is
a field. Then NrdI is the identity mapping, and therefore NrdI(i)τ−1 = iτ−1 ∈
U(I, τ |I), which means that NrdI(i)τ−1 = NrdI(u) for u ∈ U(D, τ). In addition,
we have NrdD(u) = NZ/K(NrdI(u))λ = 1, which means that u ∈ SU(D, τ). This
yields Cλ(K) ∩N(D)τ−1 ⊂ Eλ.

Conversely, suppose that e ∈ Eλ. Then e = N(s) for an appropriate s ∈ SU(D, τ)
(by Proposition 9). Since e = NZ/K(NrdD(s)), where s ∈ SU(D, τ), we have
s ∈ U(D, τ) and s ∈ U(D, τ). Now let u be a preimage of s in U(I, τ |I). It
follows from Merkurjev’s formula that e ∈ NZ/K(NrdD(D))τ−1. Moreover, eλ =

(NZ/K(NrdD(s))τ−1)λ = NrdD(s) = 1, which means that e ∈ Cλ(K). Hence
Eλ ⊂ Cλ(K) ∩N(D)τ−1.

The proof of the lemma is complete.

For the group SUKv
1(D, τ) we have the following result.

Proposition 10. The following sequence is exact:

1 → SUKan
1 (D, τ) → SUKv

1(D, τ) → NrdD(U(D, τ)) ∩NrdD(SLv(D)) → 1.

Proof. Note that

NrdD(U(D, τ) ∩ SLv(D)) = NrdD(U(D, τ)) ∩NrdD(SLv(D)).

Indeed, it is evident that

NrdD(U(D, τ) ∩ SLv(D)) ⊆ NrdD(U(D, τ)) ∩NrdD(SLv(D)).
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Conversely, if d ∈ NrdD(U(D, τ)) ∩ NrdD(SLv(D)), then there exists u ∈ U(D, τ)
such that NrdD(u) = d and N(u) = 1, because d ∈ SLv(D).

Let us also show that the kernel of the restriction of the homomorphism NrdD

to the group SUv(D, τ) is the group SU(D, τ). Indeed, by Corollary 11 we have
SU(D, τ) ⊆ SUv(D, τ). Evidently, SU(D, τ) belongs to the kernel. On the other
hand, let d be an element of this kernel. Then NrdD(d) = 1, and since d∈SUv(D, τ),
we have d ∈ SU(D, τ). Thus,

SUv(D, τ)/ SU(D, τ) ∼= NrdD(SUv(D, τ)).

In addition, both groups SUv(D, τ) and SU(D, τ) contain the commutator subgroup
U(D, τ)′, and therefore (see Lemma 22) we have(

SUv(D, τ)/U(D, τ)′
)
/
(
SU(D, τ)/U(D, τ)′

) ∼= NrdD(SUv(D, τ)).

To complete the proof of the proposition is remains to note that NrdD(SUv(D, τ)) =
NrdD(U(D, τ)) ∩NrdD(SLv(D)). The proposition is proved.

Further, since (U(D, τ))′ ⊂ SU(D, τ) ⊂ SU(D, τ), we have the following evident
short exact sequence:

1 → SU(D, τ)/(U(D, τ))′ → SU(D, τ)/(U(D, τ))′

→ (SU(D, τ)/(U(D, τ))′)/(SU(D, τ)/(U(D, τ))′) → 1.

From the isomorphism theorem we obtain

(SU(D, τ)/(U(D, τ))′)/(SU(D, τ)/(U(D, τ))′) ∼= SU(D, τ)/ SU(D, τ).

Taking this into account we obtain the following exact sequence:

1 → SUKan
1 (D, τ) → SU(D, τ)/U(D, τ)′ → SU(D, τ)/U(D, τ)′ → 1.

Recall the formulation of Theorem 2.
Let D ∈ TR(K), assume that char k ̸= 2, and let τ ∈ InvK/k(D), where the field k

is Henselian. Then in the notation introduced above the following commutative
diagram holds, in which the sequences in the rows and the column are exact :

1

��
1 // E // SUv(D, τ)/(U(D, τ))′ // SUKv

1(D, τ)

��

// 1, (1)

1 // E // SUKan
1 (D, τ) // SU(D, τ)/U(D, τ)′

��

// 1, (2)

Eλ

��
1
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where E = ((1 + MD) ∩ SU(D, τ))U(D, τ)′/U(D, τ)′ . Moreover, the following
sequences are also exact:

1 → SUKan
1 (D, τ) → SUKv

1(D, τ) → NrdD(U(D, τ)) ∩NrdD(SLv(D, τ)) → 1, (3)

1 → SUKan
1 (D, τ) → SU(D, τ)/U(D, τ)′ → SU(D, τ)/ SU(D, τ) → 1. (4)

Proof of Theorem 2. Consider the homomorphism

π : SU(D, τ)/(U(D, τ))′ → SU(D, τ)/U(D, τ)′

defined by the following rule: for s ∈ SU(D, τ) let π(s(U(D, τ))′) = sU(D, τ)′. It is
clear that π is onto and its kernel by Lemma 22 coincides with the group E. By the
isomorphism theorem we have E ∼= ((1 + MD)∩ SU(D, τ))/((1 + MD)∩U(D, τ)′).
Thus, we obtain the following exact sequence:

1 → ((1 + MD) ∩ SU(D, τ))/((1 + MD) ∩ (U(D, τ))′)

→ SUKan
1 (D, τ) → SU(D, τ)/U(D, τ)′ → 1.

Combining all the above and taking due account of the relation SUKan
1 (D, τ)/E ∼=

SU(D, τ)/U(D, τ)′, one easily establishes the validity of Theorem 2.

Remark 9. The group NrdD(U(D, τ)) ∩ NrdD(SLv(D)) is computed with the use
of the following subgroups of the groups D

∗
:

ΣNrdD
= NrdD(D

∗
)τ and Σ1

NrdD
= {z ∈ NrdD(D

∗
) | NZ/K(z) ∈ k},

where Z = Z(D).

Proposition 11. The following sequence is exact:

1 → ΣNrdD
→ Σ1

NrdD

τ−1−−→ (Σ1
NrdD

)τ−1 → 1.

Moreover, NrdD(U(D, τ)) ∩NrdD(SLv(D)) = (Σ1
NrdD

)τ−1 .

Proof. Let us prove that the sequence is exact. The mapping τ − 1 is a homomor-
phism of the group Σ1

NrdD
onto the group (Σ1

NrdD
)τ−1. It is clear that Ker(τ −1) =

ΣNrdD
. Indeed, if x ∈ Σ1

NrdD
and xτ−1 = 1, then x ∈ Sτ (D), and therefore

x ∈ ΣNrdD
. Conversely, if y ∈ ΣNrdD

, then yτ−1 = 1 and also NZ/K(y) ∈ k,
since Z/k is a generalized dihedral (or Abelian) Galois extension. This implies the
inclusion y ∈ Ker(τ − 1). Hence (Σ1

NrdD
)τ−1 ∼= Σ1

NrdD
/ΣNrdD

.
In conclusion let us show that NrdD(U(D, τ)) ∩ NrdD(SLv(D)) = (Σ1

NrdD
)τ−1.

In view of the relations (Σ1
NrdD

)τ−1 ⊂ NrdD(D
∗
)τ−1 and NrdD(U(D, τ)) =

NrdD(D
∗
)τ−1 for char k ̸= 2 (see [44], Proposition 6.1) it is sufficient to prove

that (Σ1
NrdD

)τ−1 ⊆ NrdD(SLv(D)). Let the element x̃ ∈ D be such that
NZ/K(NrdD(x̃)) ∈ k. Then NrdD(x̃)τ−1 ∈ (Σ1

NrdD
)τ−1. Let x be an inverse image

of x̃ in D and consider the element xτ−1(1 + m), where m ∈ MD. Note that
xτ−1(1 + m) = x̃τ−1. It is clear that NZ/K(NrdD(xτ−1(1 + m))) = 1. We show
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that for some m ∈ MD we have xτ−1(1+m) ∈ SLv(D). Indeed, N(xτ−1(1 + m)) =
N(x̃)τ−1 = 1. Consider the chain of equalities NrdD(xτ−1(1 + m)) =
N(xτ−1(1 + m))λD = 1. Then NrdD(xτ−1(1 + m)) = 1 + p, where p ∈ MK ,
which yields NrdD(xτ−1) = 1 + q, where q ∈ MK . Since D ∈ TR(K), the ele-
ment 1 + q is the reduced value of some element 1 + c, where c ∈ MD. Then
NrdD(xτ−1(1 + c)−1) = 1. Hence xτ−1(1 + c)−1 ∈ SL(D) and it is easily seen that
NrdD(xτ−1(1 + c)−1) = 1, which prove the inclusion (Σ1

NrdD
)τ−1 ⊆ NrdD(SLv(D)).

Conversely, let y ∈ NrdD(U(D, τ)) ∩ NrdD(SLv(D)). Then for an appropriate
d ∈ D we have y = NrdD(d)τ−1, and since y ∈ NrdD(SLv(D)), it follows
that 1 = NZ/K(y) = NZ/K(NrdD(d)τ−1), Hence NZ/K(NrdD(d)) ∈ k. Then
NrdD(U(D, τ)) ∩NrdD(SLv(D)) ⊆ (Σ1

NrdD
)τ−1. The proof is complete.

It follows from Theorem 2 that the group E is quite important for computations.
The group SU(D, τ) is said to satisfy the congruence property if E = 1. This is
equivalent to the following condition.

Theorem 17 (congruence theorem). Let D ∈ D(K) be a weakly ramified algebra
and let τ ∈ InvK/k(D). Then (1 + MD) ∩ SU(D, τ) ⊂ U(D, τ)′ .

Now we focus on several particular cases of Theorem 2.
(i) E = 1. Then Theorem 2 implies that the following sequences are exact:

1 → SUKan
1 (D, τ) → SUKv

1(D, τ) → Σ1
NrdD

/ΣNrdD
→ 1, (6.2)

1 → SUKv
1(D, τ) → SUKan

1 (D, τ) → Eλ → 1. (6.3)

Consequently, SUKan
1 (D, τ) is the extension of the Abelian group SUKv

1(D, τ) by
some subgroup of λth roots belonging to the field K, and SUKv

1(D, τ) is the exten-
sion of the group SUKan

1 (D, τ) by the group Σ1
NrdD

/ΣNrdD
.

(ii) Eλ = 1. In this case the following sequences are exact:

1 → E → SUKan
1 (D, τ) → SUKv

1(D, τ) → 1, (6.4)

1 → SUKan
1 (D, τ) → SUKv

1(D, τ) → Σ1
NrdD

/ΣNrdD
→ 1. (6.5)

(iii) E = Eλ = 1. Then the following sequence is exact:

1 → SUKan
1 (D, τ) → SUKan

1 (D, τ) → Σ1
NrdD

/ΣNrdD
→ 1. (6.6)

§ 7. Congruence property for the groups SU(D, τ ).
The case of commutative residue algebras

Let D ∈ TR(K) (char k ̸= 2), τ ∈ InvK/k(D), and let Z be an unramified
τ -invariant lift of the field Z(D). Then CD(Z) = I ⊗Z T , where I is a τ -invariant
inertia algebra and the algebra T is totally ramified over Z. Suppose also that D
is a field.

To obtain the main result (Proposition 12) we establish two lemmas. In the first
lemma D is not assumed to be a field.

Lemma 24. Let D ∈ D(K) be a quaternion algebra, let τ ∈ InvK/k(D) and ε2 ∈ k .
Then (1 + MD) ∩ SU(D, τ) ⊆ U(D, τ)′ .
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Proof. Since char k ̸= 2, there exists a quaternion algebra A ∈ D(k) such that
D = A ⊗k K and τ is induced by the canonical involution on A and a nontrivial
automorphism of the extension K/k (see [39] and [45]).

It was shown in [30] that SU(D, τ) coincides with the set {x ⊗ 1 | x ∈ SL(A)}.
By Proposition 1.3 in [30] for the group G = {a ∈ A∗ | NrdA(a) ∈ NK/k(K)}, the
surjective homomorphism π : SU(D, τ) → SL(A)/G′ defined by x⊗1 7→ xG′ induces
an isomorphism between the groups SU(D, τ)/U(D, τ)′ and SL(A)/G′. Hence, to
establish the congruence property of the group SU(D, τ) it suffices to show that for
any x⊗1 ∈ SU(D, τ)∩ (1+MD) (x ∈ SL(A)) the image π(x) belongs to G′. This is
evident if x ∈ k. Next, as NrdA(x) = 1, we have x = bσ−1, where b ∈ k(x) and σ

is the generator of the Galois group Gal(k(x)/k). If b ∈ UA, then b
σ

= b, and
therefore b = uk(1 + p), where uk ∈ Uk and p ∈ MA. Since b /∈ UA, we have
b =

√
q βu for some q ∈ Mk and u ∈ UK(x). Then bσ−1 = (−1)βuσ−1 = x and

uσ = (−1)βu. Thus, if the element u is τ -invariant, then u ∈ k. Clearly, we can
assume that b ∈ 1+MD. On the other hand, if u τ = −u, then the extension k(b)/k
is unramified, and therefore bδ ∈ UD for an appropriate δ ∈ k.

Hence x = bσ−1, where b ∈ 1 + MA. Let σ be the restriction of some automor-
phism ig, g ∈ A. Then x = gbg−1b−1 = gg−ib . Using similar arguments for b we
establish that g ∈ 1 + MA.

Since A ∈ TR(k) and the extension K/k is weakly ramified, we have

NrdA(1 + MA) = 1 + Mk = NK/k(1 + MK).

Then 1 + MA ⊂ G, hence x = gbg−1b−1 ∈ G′. Therefore, x ∈ Ker π = U(D, τ)′,
which yields the congruence property for SU(D, τ). The proof is complete.

Below we also need another lemma.

Lemma 25. Let F be a Henselian field (char F ̸= 2), E be its quadratic weakly
ramified or immediate extension, and let a ∈ (1+ME)∩SL(1, E/F ). Then a = bτ−1

for some b ∈ 1 + ME and a generator τ of the group Gal(E/F ).

Proof. First, suppose that E/F is weakly totally ramified. By Hilbert’s Theorem 90
we have a = cτ−1, where c ∈ E. Since the extension E/F is weakly totally ramified,
there exists an element π ∈ MF such that vF (π) /∈ 2ΓF , and then E = F (

√
π). As

the extension is quadratic, we have cτ = α − β
√

π, where α + β
√

π = c. We can
assume that α, β ∈ VE . Since [ΓE : ΓF ] = 2, we have v(α) ̸= v(β

√
π), where v is

a valuation of the field E. Let v(α) > v(β
√

π). Then

a = cτ−1 = (α− β
√

π)(α + β
√

π)−1 =
(

α

β
√

π
− 1

)(
α

β
√

π
+ 1

)−1

.

Since α/(β
√

π) ∈ ME , we have a = −1 and thus we arrive at a contradiction,
because a = 1 and char E ̸= 2.

Now suppose that v(α) < v(β
√

π). Then

a = (α− β
√

π)(α + β
√

π)−1 =
(

1− β
√

π

α

)(
1 +

β
√

π

α

)−1

.

Since β
√

π/α ∈ ME , we have a = bτ/b, where b = 1 + β
√

π/α ∈ 1 + ME .
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If the extension E/F is unramified, then a = bτ−1 by Hilbert’s Theorem 90.
Replacing b (if necessary) by an appropriate element of VF , we can assume that b

is invertible in VE . Passing to residues in the equality a = bτ−1 gives 1 = bτ b
−1

=
b

τ
b
−1

. This implies that b ∈ F . Let e be an inverse image of b in F . Then
b = e(1+m), where m ∈ ME , which yields the equality a = (1+m)τ−1. The proof
of the lemma is complete.

Recall that the ramification index of e(D/K) is equal to λ2
Dr(D/K), where

r(D/K) = [Z(D) : K].

Proposition 12. Let D ∈ TR(K), let D be a field and assume that char k ̸= 2.
Then

(1 + MD) ∩ SU(D, τ) ⊆ U(D, τ)′.

Proof. Note that by Theorem 11 the index ind D is 2-primary. Indeed, if ind D is
divisible by an odd integer greater than 1, then D can be written as D1⊗KD2, where
ind D1 is odd and ind D2 = 2m. Moreover, D1, D2 ∈ TR(K) and are µ-invariant
under an appropriate K/k-involution. Then ind D1 = 1 by virtue of Theorem 11.
Recall that char k ̸= 2, and therefore (ind D, char k) = 1.

Let a ∈ (1 + MD) ∩ SU(D, τ). If a ∈ K, then 1 = aind D ∈ 1 + MK . In this case
a = 1 because (ind D, char k) = 1, and therefore a ∈ U(D, τ)′.

Thus, in what follows we assume that a /∈ K. Let M/K be a subextension of
D/K and Mτ = M . Let us show that M contains a cyclic quadratic subextension
L/K such that Lτ = L. Since M/K is 2-primary, the general situation reduces to
the following two cases:

(i) M/K is totally ramified;
(ii) M ̸= K.
In case (i) let γ ∈ ΓM be such that γ + ΓK is an element of order 2 in the group

ΓM/ΓK and let b ∈ M satisfy vM (b) = γ. Then the extension K(b)/K(b2) is weakly
totally ramified and vM (b2) ∈ ΓK . Hence b2 = tu, where u ∈ VM . Since M/K is
a totally ramified extension, we can assume that u = 1+m, where m ∈ MM . In view
of the condition (ind D, char k) = 1 we can conclude that u = c2 for an appropriate
c ∈ 1 + MM . Considering the element bc−1 instead of b from the very beginning,
allows us to assume that b2 ∈ K. If b2 ∈ k, then L = K(b) is a τ -invariant extension
of the field K, and it is cyclic over K. On the other hand, if b2 /∈ k, then consider
the τ -invariant extension K(bτ−1). Note that [K(bτ−1) : K] ⩽ 2 due to the choice
of the value of the element u. Moreover, K(bτ−1) ̸= K (otherwise K(b)τ = K(b)).
We set L = K(bτ−1).

Now suppose that M ̸= K. Passing to the maximal unramified subextension
M/K (which is τ -invariant since Mτ = M), we can assume that M/K is an unram-
ified extension. Since M ⊆ Z(D), the extension M/K is Abelian. Then there exists
a cyclic quadratic extension E/K, E ⊆ M , which has the form E = K(

√
β), where

β ∈ K. If βτ−1 = c2, c ∈ K, then K(
√

β) is τ -invariant. Let L = K(
√

β). In the
case when βτ−1 ̸= c2 we have [K(

√
βτ−1) : K] = 2 and (

√
βτ−1)τ =

√
β1−τεm

2 .
Now let L = K(

√
βτ−1). Thus, in this case L is also τ -invariant.

Since K(a)τ = K(a), the above result about the extension M/K is also applica-
ble to the extension K(a)/K. Clearly, L(a)/L(a)τ is weakly ramified.
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Note that for ind D=2 the proposition was established in Lemma 24. Let ind D
be composite. Suppose that the congruence theorem is valid for K-subalgebras
of the algebra D of 2-primary indices less than ind D, and let us establish the
existence of an element l ∈ (1 + ML) ∩ SU(CD(L), τ |CD(L)) such that NrdD(l) = 1
and NrdCD(L)(a) = NrdCD(L)(l). For such l we have NrdCD(L)(al−1) = 1 and
L(al−1) = L(a). Since ind CD(L) < ind D and is 2-primary, our assumption is
applicable to the element al−1. Hence al−1 ∈ U(CD(L), τ |CD(L))′. Let us show
that l ∈ U(D, τ)′.

Let Gal(L/K) = ⟨σ⟩. By Theorem 7 there exists g ∈ D such that ig|L = σ, and
we can assume that gτ ̸= −g. Note that L/k is separable. Put Lτ = k(β). Then
gβg−1 = βσ. Applying τ to both sides of the last equality we obtain g−τβgτ = βστ .
For the Galois group Gal(L/k) we have Gal(L/k) ∼= C2×C2, where C2 is a group of
order 2, which yields βστ = βσ−1

= g−1βg. Hence gτg−1 ∈ CD(L). Consequently,
gτ = cg for some c ∈ CD(L). Note that σ extends to an automorphism of the whole
centralizer CD(L), since the conjugation by g maps the field L to itself. Consider
the element gτ +g = (c+1)g. Then (gτ +g)2 = (c+1)g(c+1)g = (c+1)(c+1)σg2.
Let C = (c + 1)(c + 1)σ ∈ CD(L). Then the algebra A = ⟨L(Cg2), gτ + g⟩ is
a τ -invariant quaternion algebra. If l ∈ (1 + ML) ∩ SL(1, D), then

NrdD(l)NL/K(NrdCD(L)(l)) = NL/K(l)ind CD(L) = 1 ∈ 1 + MK .

It follows from the equality (ind CD(L), char k) = 1 that NL/K(l) = 1. Further,

NL/K(l) = NL(Cg2)/K(Cg2)(l) = 1.

Otherwise, the fact that the extension L/K is quadratic yields L(Cg2) = K(Cg2),
but this contradicts the fact that gτ +g acts nontrivially on L and trivially on Cg2 by
the construction of this element. Hence l ∈ SU(A, τ |A)∩(1+MA), and therefore we
can apply Lemma 24 to the algebra A and the element l, which gives l ∈ U(D, τ)′.

We complete the proof of the proposition by establishing the existence of l with
the indicated properties.

Let M be a maximal subfield of D containing a, and let K(a) ⊂ M . Then

NrdCD(L)(a) = NM/L(a) = NL(a)/L(NM/L(a)(a)) = NL(a)/L(a)[M :L(a)].

Since aaτ = 1, we have NL(a)/L(a)τ
(a) = 1 and by Hilbert’s Theorem 90 we have

a = tτ−1 and t ∈ L(a). In view of Lemma 25 as applied to the extension L(a)/L(a)τ

it can be assumed that t ∈ 1+ML(a). Since L(a)τ = L(a), we have NL(a)/L(tτ−1) =
NL(a)/L(t)τ−1. Let e = NL(a)/L(t) and set l = [L(a):L]

√
eτ−1. Then l is the required

element. Indeed,

NrdCD(L)(al−1) = NL(a)/L(al−1)[M :L(a)] =
(
NL(a)/L(a)NL(a)/L(l)−1

)[M :L(a)]

=
(
eτ−1l−[L(a):L]

)[M :L(a)] =
(
eτ−1e1−τ

)[M :L(a)] = 1,

NrdD(l) = NM/K(l) = NL/K(NM/L(l)) = NL/K(NrdCD(L)(l)) =
= NL/K(NrdCD(L)(a)) = NrdD(a) = 1.

The proof of the proposition is complete.
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Remark 10. As noted above, each division algebra D ∈ TR(K) (char k ̸= 2) pos-
sessing a unitary K/k-involution has a 2-primary index.

Moreover, the following corollary holds.

Corollary 12. Assume that the algebra D ∈ TR(K) is totally ramified and
(char k ̸= 2). Then the congruence theorem holds for the group SU(D, τ).

Indeed, D = K.

Corollary 13. Assume that D ∈ TR(K) (char k ̸= 2) and D has a maximal totally
ramified extension. Then the congruence property holds for SU(D, τ).

Proof. Let L/K be a maximal totally ramified extension of fields in D and let
n=ind D. Then n2 = [D : L] · n, and therefore n = [D : L]. On the other hand,
in view of inequality (1.1) we have [D : L][ΓL : ΓK ] ⩽ [D : L], which implies that
n = [D : L] ⩽ 1, In other words, D is a field and we can apply Proposition 12. The
proof of the corollary is complete.

The following assertion is also valid (including in the case when λD = 1).

Proposition 13. Assume that D ∈ TR(K), K/k is weakly ramified and, in the
case when char k = 2 and K/k is unramified, let εrad λD

∈ k (rad λD is the product
of all distinct prime divisors of the integer λD ). Then λD = 2m .

Proof. Let T be the totally ramified part of the centralizer CD(Z), where Z/K
is a τ -invariant unramified lift of the extension Z(D)/K. Since λD = λT , it is
sufficient to establish that ind T is 2-primary. Thus, the proposition holds for
char k ̸= 2, since ind D is 2-primary (as shown in the beginning of the proof of
Proposition 12).

Consequently, it remains to consider the case when char k = 2 and ind T is
not 2-primary. Since ind T is not 2-primary (for otherwise the proposition is valid
again), T has the form To ⊗Z Te, where ind To is nontrivial and odd, and ind Te

is 2-primary in view of the relation λT = λTo
· λTe

. To complete the proof of
the proposition we demonstrate that λTo = 1. Assume the contrary, that is, let
λTo > 1. We represent To in the form T1⊗Z · · ·⊗ZTs, where T1, . . . , Ts have primary
pairwise coprime indices. As the index λTo

is assumed to be nontrivial, there exists i,
1 ⩽ i ⩽ s, such that λTi

> 1. Set ind Ti = pαi
i . Since εrad λD

∈ k, we have εpi
∈ k.

Consider the extension k(εi)/k, where εi is a primitive exp(ΓTi
/ΓZ)th root of unity.

Then for an appropriate m the element εm
i ∈ k is a primitive pith root of unity.

Assume that εi /∈ Zτ . Then εm
i = (εm

i )τ = ε−m
i , and therefore ε2

pi
= ε2m

i = 1, which
contradicts the fact that εpi

is a primitive pith root of unity, because pi is odd.
Consequently, εi ∈ Zτ . Therefore, Ti = Ai⊗Zτ

Z, where Ai is a τ -invariant central
division Zτ -algebra. This contradicts the facts that the algebra Ai is τ -invariant,
the index of Ai is odd and the restriction of τ to Zτ is trivial. Consequently,
λTi = 1. Thus, λTo = λT1λT2 · · ·λTs = 1. The proof is complete.

§ 8. Congruence property for the groups SU(D, τ )
of unramified algebras with involutions of the form τL(u)

As above, we assume that char k ̸= 2 and the extension K/k is weakly ramified.
First consider the case of unramified algebras D.
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Lemma 26. Let D ∈ D(K) be an unramified algebra and let τ = τL ∈ InvK/k(D).
Then the representation of the involution τL in the form τL(u) is equivalent to
the representation of the involution τ in the form τL(v) for some v ∈ U(D, τL)
(in the case when K/k is totally ramified τL(v), for an appropriate v ∈ U(D, τL),
means an involution on D that acts on L as τ and is such that iv|L is a generator
of the group Gal(L/k)).

Proof. Let D = ⟨L, σ, u⟩, where ⟨σ⟩ = Gal(L/K). Taking an appropriate element
which is L-proportional to u we can assume that D = ⟨L, σ, u⟩. This means that
τ has the form τL(u). Conversely, by the hypothesis of the lemma there exists
v ∈ U(D, τ) such that D = ⟨L, σ, v⟩, and we can assume without loss of generality
that u = v. Note that for any l ∈ L we have u−1lu = lσ and uτ lτu−τ = lστ . In view
of the relation στ = τσ the last equality implies that uτ lu−τ = lσ. This means
that uuτ ∈ L. Moreover, passing to residues gives uuτ = 1. Hence uuτ ∈ 1 + ML,
and since the element uuτ is τ -invariant, it actually belongs to 1 + MLτ

. As the
extension L/Lτ is weakly ramified, there exists y ∈ L such that yyτ = uuτ . This
means that (y−1u)(uτy−τ ) = 1. Passing from u to y−1u we see that the involution
τL has the form τL(y−1u). The proof of the lemma is complete.

Note that not every cyclic involution τL has the form τL(u).

Lemma 27. Let K/k be a weakly ramified extension, D be an unramified K-algebra
and τL ∈ InvK/k(D) be a cyclic involution of the algebra D . Denote by L2 the
extension of K that lies in L and is such that [L : L2] = 2. Suppose that L2/L2τ is
totally ramified. Then τL ̸= τL(u) for all u ∈ U(D, τL) in the following two cases:

(1) −1 ∈ L2
2τ

;
(2) −1 /∈ D2 .

Proof. First consider case (1), that is, let −1 ∈ L2
2τ . Assume that τL = τL(u).

Then ind D is 2-primary by Lemma 10. Since L/K is unramified, L/K is a cyclic
extension with Galois 2-group. As K = k, the extension L/k is a cyclic extension
with Galois 2-group. Consider the extension L2/L2τ . Note that the centralizer
CD(L2) is a quaternion L2-algebra such that the restriction of τ to this centralizer
is an involution of the form τL(u). Since L2/L2τ is totally ramified, it is suffi-
cient to prove the lemma in the case when ind D = 2, K/k is totally ramified and
−1 ∈ k2. Since char k ̸= 2, we can assume that D = (α, β)⊗k k(

√
π), where (α, β)

is a τ -invariant unramified quaternion k-algebra the restriction of τ to which is
as follows:

√
α

τ = −
√

α,
√

β
τ = −

√
β,
√

π
τ = −

√
π, and π ∈ Mk is such that

vk(π) /∈ 2Γk. Since the algebra (α, β) is unramified, we can assume without loss of
generality that α, β ∈ UK and (α, β) is a division k-algebra. Our aim is to prove that
τL cannot be an involution of the form τL(u). Assume the opposite: let τL be a cyclic
involution of the form τL(u), where u ∈ U(D, τ). Since {1,

√
α,
√

β,
√

α
√

β} is the
canonical basis of the quaternion algebra (α, β), we have

√
β
−1√

α
√

β = −
√

α and
u−1

√
αu = −

√
α. This yields

√
β
−1√

α
√

β = u−1
√

αu, which, in turn, implies that
u
√

β
−1 ∈ k(

√
π,
√

α). This means that u
√

β
−1 = a + b

√
α, where a, b ∈ k(

√
π).

Consequently, since u ∈ U(D, τ), we have 1 = uuτ = −β(a + b
√

α)(aτ − bτ
√

α).
Finally, we conclude that −β−1 = (aaτ − αbbτ ) + (−abτ + baτ )

√
α. Since

β−1, aaτ − αbbτ ∈ k, the relation −abτ + baτ = 0 holds. This means that a/b ∈
Sτ (D). It follows from the above that β−1 = (αbbτ − aaτ ) + (abτ − baτ )

√
α. Note
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that the situation where a is an integer and b is not (or b is an integer and a is not)
cannot occur. In the first case it follows from the previous equality that αbbτ is not
an integer, but it is equal to b−1 + aaτ , which is a contradiction. The second case
is considered similarly. Thus, a and b are either integers or not simultaneously.

Consider the case when a and b are integers. Then β
−1

= α b b
τ − a a τ . As the

extension k(
√

π)/k is weakly totally ramified, we have bτ = b. Similarly, aτ = a,
which yields β

−1
= α b

2−a 2. With due regard to the condition −1 ∈ k
2

we obtain
(α, β) = (α, β

−1
). This means that (α, β) is not a division algebra, which is not

the case.
Suppose that both a and b are not integers and we have a = ua/(

√
π)m and

b = ub/(
√

π)n, where ua, ub ∈ Uk(
√

π). Then β−1 = αubu
τ
b /((

√
π)n((

√
π)n)τ ) −

uauτ
a/((

√
π)m((

√
π)m)τ ). If m ̸= n, then we multiply both sides of this equality

by a smaller power of
√

π and arrive at the case considered above. Consequently,
it remains to consider the case when m = n. Raising the denominators on both sides
of the equality and passing to residues gives ua

2 − α ub
2 = 0. Thus, α ∈ k

2
, which

contradicts the fact that (α, β) is a division algebra and completes the consideration
of the case when −1 ∈ L2

2
τ .

Suppose that−1 /∈ D2 and D has an involution of the form τL(u) for u ∈ U(D, τ).
Then τL(u) can be extended to an involution τL(i) of the algebra D(i) = D⊗K K(i),
where i2 = −1, by letting iτ = i. Since −1 /∈ D2 and char k ̸= 2, k(i)/k is
unramified and K(i)/k(i) is totally ramified. Moreover, L ⊗K K(i) is the maxi-
mal cyclic subfield of this algebra and u ⊗K 1 ∈ U(D(i), τL(i)). This means that
τL(i) has the form τL(i)(u⊗K 1). Note that the algebra D(i) is unramified over K(i)
and K(i)/K(i)τL(i) is a totally ramified extension. Thus, if we assume that the
extension L(i)2/L(i)2τL(i) is totally ramified, then we find ourselves in the frame-
work of case (1). This yields that there is no involution of the form τL(i)(u ⊗K 1)
on D(i), which is a contradiction. The proof is complete.

The following technical proposition will be used repeatedly both for extensions
of fields K and for extensions of fields K.

Let N/F be a Galois extension of an infinite field F (char F ̸= 2) such that the
group Gal(N/F ) is a direct product G×G2 of two groups, where G is Abelian and
G2 is a group of order two. Suppose that G2 = ⟨µ̃⟩ and let µ = idG ⊗ µ̃. Note that
if E = NG, then N = Nµ ⊗F E. Then the following proposition holds.

Proposition 14. Let E = F (
√

β). Then the exists a primitive element z
of the extension NG2/F such that, among the elements of the form vz =(
(1 + z

√
β)/(1− z

√
β)

)γ−1 , γ ∈ Gal(N/E), there is a primitive element of N/E .

Proof. First of all note that for an arbitrary intermediate subfield L such that
E ⊂ L ⊆ N and any prime divisor p of degree [L : E] there exists a subextension Tp

such that Tp ⊂ L and [L : Tp] = p. Indeed, if GL = Gal(L/E) and Gp is a subgroup
of GL of prime order p, then let Tp be the field of invariants of the group Gp in N .
It is easily seen that [N : Tp] = p and N/Tp is a cyclic extension of degree p.

The element vz can obviously be written in the form

vz =
1− zγzβ + (zγ − z)

√
β

1− zγzβ + (z − zγ)
√

β
.
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Set A = 1− zγzβ and B = zγ − z. Then

E(vz) = E

(
1 +

2B
√

β

A−B
√

β

)
= E

(
A

B
√

β

)
= E

(
1− zγzβ

zγ − z

)
.

Assume that for any primitive element z of the extension Nµ/F the element
(1 − zγzβ)/(zγ − z) is not primitive for the extension N/E. Then it belongs to
some field Tp. We restrict our consideration to the case when ⟨γ⟩ = Gal(N/Tp)
and NG2/F is cyclic.

Let p = 2. Since zγz = NN |T2(z) ∈ T2, we have 1 − zγzβ ∈ T2 and therefore
zγ − z ∈ T2. Then either z ∈ T2, which is not the case because z is primitive in
the extension N/T2, or z is a root of an irreducible polynomial of degree 2 with
coefficients in T2. However, in the last case zγ − z cannot belong to T2, because
[N : T2] = 2.

Now suppose that p ̸= 2 and (1− zγzβ)/(zγ − z) ∈ Tp. By our assumptions, for
any m ∈ F the element

(
1− (z + m)γ(z + m)β

)
/(zγ − z) also belongs to Tp. Then

so does also the quotient of these two elements. Hence

1− (z + m)γ(z + m)β
1− zγzβ

= 1− (m + zγ + z)mβ

1− zγzβ
∈ Tp, that is,

m + zγ + z

1− zγzβ
∈ Tp.

Similarly, we have (n + zγ + z)/(1− zγzβ) ∈ Tp for n ∈ F and n ̸= m. Taking the
quotient of these two elements we obtain (m + zγ + z)/(n + zγ + z) ∈ Tp. Since

m + zγ + z

n + zγ + z
=

m− n + n + zγ + z

n + zγ + z
= 1 +

m− n

n + zγ + z
,

we have (m − n)/(n + zγ + z) ∈ Tp, which yields zγ + z ∈ Tp. Let zγ = −z + t,
t ∈ Tp. Then (1 − zγzβ)/(zγ − z) transforms into (1 − (t − z)zβ)/(t − z − z) =
(1 + z2β − tzβ)/(t− 2z). Since this element belongs to Tp, we obtain the equality
t̃ = (1 + z2β − tzβ)/(t − 2z), where t̃ ∈ Tp. This immediately implies that z is
a root of a polynomial of degree 2 with coefficients in Tp. On the other hand, since
z is a primitive element of the extension Nµ/F , it is a primitive element of N/E
and, in particular, a primitive element of the extension N/Tp. Hence we arrive at
a contradiction, since [N : Tp] = p and N = Tp(z). The proof is complete.

Corollary 14. Assume that the algebra D ∈ D(K) is unramified, τ ∈ InvK/k(D)
and D contains a maximal subfield N satisfying the conditions formulated before
Proposition 14 for F = k , E = K , µ = τ |N and β = α, where α ∈ Uk and
K = k(

√
α ). Then there exist an unramified τ -invariant lift L of the extension N/k ,

an element z ∈ ULτ
and γ ∈ Gal(L/K) such that

(
(1 + z

√
α)/(1 − z

√
α)

)γ−1 is
a primitive element of the extension N/K .

Proof. Denote the τ -invariant unramified lift of the extension N/k by L/k. By
virtue of the last proposition the extension N/K contains a primitive element of
the form

(
(1 + t̃

√
α)/(1 − t̃

√
α)

)γ−1, where t̃ is some primitive element of the
extension Nτ/k.

Let z be the inverse image of t̃ in Lτ . Then the element
(
(1+z

√
α)/(1−z

√
α)

)γ−1

is primitive for the extension N/K. The proof of the corollary is complete.
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If λ is the lift of the automorphism γ to the field L, then the following remark
is valid.

Remark 11. The inclusion (
1 + z

√
α

1− z
√

α

)λ−1

∈ SU(D, τ)

holds.

Corollary 15. If λ = iu|L , where u ∈ U(D, τ), then
(
(1 + z

√
α)/(1− z

√
α)

)λ−1 ∈
U(D, τ)′ .

Proof. We have d = (1 + z
√

α)/(1 − z
√

α) ∈ U(D, τ), which implies that dλ−1 =
udu−1d−1 ∈ U(D, τ)′. The proof is complete.

Let us formulate a sufficient condition for the group SU(D, τ) to exhibit the
congruence property.

Proposition 15. Let D ∈ D(K) be an unramified algebra of an odd index and
τL ∈ InvK/k(D). Suppose that the involution τ = τL has the form τL(ũ). Then the
group SU(D, τ) has the congruence property.

Proof. Let a ∈ (SU(D, τ) ∩ (1 + MD)) \K. Note that D = ⟨L, σ, ũ⟩, where ⟨σ⟩ =
Gal(L/K) and ũ ∈ U(D, τ). Also note that τ |L commutes with the elements
of Gal(L/K).

Let N = L, E = K, µ = τ |L and F = k. By Proposition 14 there exists a prim-
itive element z̃ of the extension Lτ/k such that d̃z̃ =

(
(1 + z̃

√
α)/(1− z̃

√
α)

)γ−1 is
a primitive element of the extension L/K.

For the lift λ of the automorphism σ in L let dz =
(
(1 + z

√
α)/(1− z

√
α)

)λ−1,
where z = z̃. By Lemma 26 there exists an element u ∈ U(D, τ) such that iu|L = λ.
Then dz ∈ U(D, τ)′ by Corollary 15.

Denote the field K(dza) by L′. As dza = d̃z̃ is a primitive element of the
extension L/K, we have L′ = L. Since D = ⟨L′, σ̃, ũ⟩, where ⟨σ̃⟩ = Gal(L′/K),
by the last lemma we have D = ⟨L′, σ′, u⟩, where ⟨σ′⟩ = Gal(L′/K), σ′ = σ̃
and u ∈ U(D, τ). Applying Proposition 3 to the last algebra and the element dza
gives dza ∈ U(D, τ)′. Hence a ∈ U(D, τ)′.

Now suppose that a ∈ SU(D, τ) ∩ (1 + MD) ∩ K and let dz be the element
mentioned above. Consider dza. We have dza ∈ (L′ \K). Again, dza ∈ U(D, τ)′

by Proposition 3, which implies that a = (dza)d−1
z ∈ U(D, τ)′. The proof of the

proposition is complete.

We need the following proposition below.

Proposition 16. Let D ∈ D(K) be an unramified algebra of 2-primary index, let
τ ∈ InvK/k(D), τ = τL(u), and assume that char k ̸= 2. Then the group SU(D, τ)
has the congruence property.

Proof. If D is a quaternion algebra, then SU(D, τ) has the congruence property by
Lemma 24. Suppose that ind D > 2 and that the special unitary groups of cyclic
subalgebras of D with involutions satisfying the hypotheses of the proposition posses
the congruence property.
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By Proposition 14 there exists a primitive element z̃ of the extension Lτ/k such
that d̃ =

(
(1 + z̃

√
α)/(1− z̃

√
α)

)γ−1 is a primitive element of the extension L/K.
Next, let Ẽ be a quadratic extension of k containing in Lτ . Let E = Ẽ ×k K.

Then E/K is a τ -invariant quadratic extension of K. For the inverse image z of the
element z̃ in Lτ let dz =

(
(1 + z

√
α)/(1 − z

√
α)

)ν−1, where ν is an inverse image
of γ.

Since L = K(d̃) ⊂ K(dz), L is a maximal field and the algebra D/K is unrami-
fied, we have K(dz) = L; furthermore, dz ∈ U(D, τ)′ because (1+z

√
α)/(1−z

√
α) ∈

U(D, τ) and ν = iu|L, u ∈ U(D, τ).
Next, let a ∈ (1+MD)∩SU(D, τ) \K and let L′ = K(dza). Since the extension

K(dz)/K is maximal and K(dz) ⊂ K(dza), we obtain L′ = L. The identity auto-
morphism of the fields L′ and L is the restriction of the identity automorphism of D.
Denote by φ the K-automorphism of D sending L′ to L and such that φ|L′ = idL′ .
Then, since the algebra D is unramified, we conclude from [43] that φ = i(1+m)−1 ,
where m ∈ MD. Consequently, L′ = (1 + m)−1L(1 + m). We apply τ to both
sides of the last equality and obtain L′

τ = (1 + m)τLτ (1 + m)−τ . Since L′ =
K(dza), the field L′ is τ -invariant (in view of the fact that dza ∈ U(D, τ)).
Hence L′ = (1 + m)τL(1 + m)−τ . This implies that (1 + m)−1L(1 + m) =
(1+m)τL(1+m)−τ , which, in turn, yields L = (1+m)(1+m)τL((1+m)(1+m)τ )−1.
Then the restriction of the automorphism i(1+m)(1+m)τ is an automorphism of L
with an identity reduction. Therefore, (1 + m)(1 + m)τ ∈ CD(L) = L. Note that
(1 + m)(1 + m)τ ∈ 1 + ML; hence for an appropriate 1 + p ∈ 1 + ML we have
(1 + m)(1 + m)τ = NL/Lτ

(1 + p) = (1 + p)(1 + p)τ , since L/Lτ is weakly ramified.
Consequently, (1 + p)−1(1 + m) ∈ U(D, τ), and we may assume without loss of
generality that (1 + m) ∈ (1 + MD) ∩ U(D, τ) because 1 + p is a central element
of CD(L).

To complete the proof of the proposition we demonstrate that b =
(1+m)−1(dza)(1+m) belongs to U(D, τ)′. To do this we show that there exists an
element e ∈ (1+ME)∩SU(CD(E), τ |CD(E)) such that NrdCD(E)(b) = NrdCD(E)(e)
and, in addition, NrdD(e) = 1. For such e we have E(be−1) = E(b) and
NrdCD(E)(be−1) = 1, which means that be−1 ∈ (1+MCD(E))∩SU(CD(E), τ |CD(E)).
Since ind CD(E) < ind D, we can apply the inductive hypothesis to be−1 and
obtain be−1 ∈ U(CD(E), τ |CD(E))′.

Now we establish that e ∈ U(D, τ)′, which implies that b ∈ U(D, τ)′.
Let ⟨σ⟩ = Gal(E/K). By Theorem 7 there exists an element g ∈ D such that

ig−1 |E = σ. Let Eτ = k(β). Then gβg−1 = gσ. We apply τ to both sides of
this equality and obtain g−τβgτ = βστ . Since Gal(E/k) = C2 × C2, we have
βστ = βσ−1

= g−1βg. This yields gτg−1 ∈ CD(E). Hence gτ = cg for some
c ∈ CD(E). Note that σ extends to an automorphism of the whole centralizer
CD(E), because the conjugation by g maps the field E to itself. We can assume
without loss of generality that gτ ̸= −g. Otherwise, instead of g we can consider
the element αg, where K = k(α). We look at gτ +g = (c+1)g. We have (gτ +g)2 =
(c + 1)g(c + 1)g = (c + 1)(c + 1)σg2. Denote the element (c + 1)(c + 1)σ ∈ CD(E)
by C. Then the algebra A = ⟨E(Cg2), gτ + g⟩ is a τ -invariant central algebra of
index 2 over K(Cg2). Note that

NE/K(NrdCD(E)(e)) = NE/K(e)ind CD(E) = 1 ∈ 1 + MK .
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Since ind CD(E) is coprime to char k, we have NE/K(e) = 1. It is easily seen
that NE/K(e) = NE(Cg2)/K(Cg2)(e) = 1. Otherwise, since the extension E/K is
quadratic, we have E(Cg2) = K(Cg2), which contradicts the fact that igτ+g acts
nontrivially on E and trivially on Cg2 by the construction of this element. Thus,
e ∈ SU(A, τ |A) ∩ (1 + MA), and therefore Lemma 24 applies to the algebra A and
the element e. Hence e ∈ U(D, τ)′.

It remains to prove that there exists an element e with the indicated properties.
Now,

NrdCD(E)(b) = NL/E(b) = NE(b)/E(NL/E(b)(b)) = NE(b)/E(b)[L:E(b)].

Since bbτ = 1, we have NE(b)/E(b)τ
(b) = 1 and by Hilbert’s Theorem 90 we have

b = tτ−1, where t ∈ E(b). In view of Lemma 25 as applied to the extension
E(b)/E(b)τ , we can assume without loss of generality that t ∈ 1 + ME(b). Let
r = NE(b)/E(t). We set e = [E(b):E]

√
rτ−1 and show that e is the required element.

Indeed,

NrdCD(E)(be−1) = NE(b)/E(be−1)[L:E(b)] =
(
NE(b)/E(b)NE(b)/E(e)−1

)[L:E(b)]

=
(
rτ−1e−[E(b):E]

)[L:E(b)] =
(
rτ−1r1−τ

)[L:E(b)] = 1

and

NrdD(e) = NL/K(e) = NE/K(NL/E(e)) = NE/K(NrdCD(E)(e))
= NE/K(NrdCD(E)(b)) = NrdD(b) = 1.

The proof of Proposition 16 is complete.

Theorem 18. Suppose that D ∈ D(K) is an unramified algebra and τ = τL(u)
is a cyclic involution in InvK/k(D). Then the group SU(D, τ) has the congruence
property. In particular, the assumptions of the theorem are satisfied when D is
a quaternion algebra unramified over K .

Proof. As above, we note that the element a ∈ (1 + MD) ∩ SU(D, τ) ∩K belongs
to U(D, τ)′.

Now let a ∈ (SU(D, τ) ∩ (1 + MD)) \K. Note that D = ⟨L, σ̃, u⟩, where ⟨σ̃⟩ =
Gal(L/K). Moreover, the restriction τ |L commutes with all elements of Gal(L/K).

Let N = L, E = K, µ = τ |L and F = k. By Proposition 14 there exists
a primitive element z̃ of the extension Lτ/k such that for some γ ∈ Gal(L/K) the
element d̃z̃ =

(
(1+z̃

√
α)/(1−z̃

√
α)

)γ−1 is a primitive element of the extension L/K.
For the lift of the K-automorphism γ to a K-automorphism λ of the field L

set dz =
(
(1 + z

√
α)/(1 − z

√
α)

)λ−1, where z = z̃. By Lemma 26 there exists an
element u ∈ U(D, τ) such that iu|L = λ. Then dz ∈ U(D, τ)′ by Corollary 15.

Denote the field K(dza) by L′. Since dza = d̃z̃ is a primitive element of L/K,
we have L′ = L. Consequently, D = ⟨L′, σ̃, u⟩ and by Lemma 26 we have D =
⟨L′, σ′, u⟩, where ⟨σ′⟩ = Gal(L′/K) and u ∈ U(D, τ). Applying Proposition 3 we
obtain dza ∈ U(D, τ)′. Hence a ∈ U(D, τ)′. The proof is complete.
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§ 9. Congruence property for the groups SU(D, τ ). The mixed case

Let D ∈ TR(K) and assume that char k ̸= 2. The main result of this section is
Theorem 3. We recall its formulation.

Let τ ∈ InvK/k(D). Then the group SU(D, τ) has the congruence property in the
following two cases:

(i) D is a field ;
(ii) D is not a field (if char k > 0, then (indD, char k) = 1) and the involution τ

is cyclic and accompanied by a unitary element.

Remark 12. In case (i) Theorem 3 has already been established (see Proposition 12).

We preface the proof of Theorem 3 in case (ii) by the following lemma.

Lemma 28. Assume that D obeys the conditions of case (ii) and I is a τ -invariant
inertia algebra of D . Then τ |I is a cyclic involution of I accompanied by a unitary
element and having the form (τ |I)L and L/Z(I) is an appropriate τ -invariant cyclic
extension of the field Z(I). In this case there exists l ∈ (1 + ML) ∩ SU(D, τ) such
that L = K(l) and l ∈ U(D, τ)′ .

Proof. It is clear that both in the case when char k = 0 and in the case when
k has a positive characteristic, in view of the condition (ind D, char k) = 1 all
K-extensions containing in D are weakly ramified.

Let I be a τ -invariant inertia algebra of D. It follows from the hypothesis of
the lemma that τ |I = (τ |I)L̃(ũ), where L̃ is an appropriate cyclic extension of the
field Z(I) and ũ ∈ U(I, τ |I). Denote the unramified τ -invariant lift of the extension
L̃/Z(I) by L/Z(I). Then τ |I is a cyclic involution of (τ |I)L. However, in this case,
in view of conditions (ii) and Lemma 26 the involution τ |I has the form (τ |I)L(u)
for an appropriate u ∈ U(I, τ |I).

Let us show that there exists an element l mentioned in the formulation of the
lemma. It is easily seen that there exists a primitive τ -invariant element s ∈ UL such
that L̃ = K(s). Denote a primitive element of the extension L̃τ/Z(I)τ by s̃1 and
a primitive element of Z(I)τ/k by s̃2. Let s1 be the inverse image of s̃1 in L and s2 be
the inverse image of s̃2 in Z(I). Then s1 + sτ

1 and s2 + sτ
2 are τ -invariant primitive

elements in L and Z(I), respectively. Note that there exists an element c̃ ∈ k such
that s̃1 + c̃s̃2 is a primitive element of L̃/K. Let

s = (s1 + sτ
1) + 2c(s2 + sτ

2),

where c is the inverse image of the element c̃ in k. In view of the condition char k ̸= 2
and the equality (ind D, char k) = 1, the element s is as required. In the case of
a totally ramified extension K = k(

√
π), π ∈ Mk, let l′ = (1 +

√
πs)/(1−

√
πs).

Then l′ ∈ U(D, τ). Set l = ( ind D
√

NrdD(l′))−1l′. Then it is clear that l ∈
(1 + ML) ∩ SU(D, τ). In the case when K/k is unramified, for q ∈ UK such that
q ̸= k and qτ = −q we set l′ = (1+πqs)/(1−πqs). Then, as in the case of a totally
ramified extension K/k, we show that l′ ∈ U(D, τ). Let l = ( ind D

√
NrdD(l′))−1l′.

Then l is again the desired element.
Now denote by N a cyclic τ -invariant extension of the field K of prime degree

which is contained in Z(I) if Z(I) ̸= K, while in the case when Z(I) = K let N be
a cyclic extension of Z(I) of prime degree that is contained in L.
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Note that L is a maximal subfield in D and

NrdCD(N)(l) = NL/N (l) = NN(l)/N (NL/N(l)(l)) = NN(l)/N (l)[L:N(l)].

Since llτ = 1, we have NN(l)/N(l)τ
(l) = 1 and by Hilbert’s Theorem 90 l = tτ−1,

t ∈ N(l). Since the extension N(l)/N(l)τ is weakly ramified, we can assume with-
out loss of generality that t ∈ 1 + MN(l). Since N(l) is a τ -invariant field, we
have NN(l)/N (tτ−1) = NN(l)/N (t)τ−1. Note that [N(l) : N ] divides the index
of the algebra D, which is coprime to char k. We take m = NN(l)/N (t) and
c = [N(l):N]

√
mτ−1 ∈ 1 + MN and show that c satisfies the following conditions:

NrdCD(N)(lc−1) = NN(l)/N (lc−1)[L:N(l)] =
(
NN(l)/N (l)NN(l)/N (c)−1

)[L:N(l)]

=
(
mτ−1c−[N(l):N ]

)[L:N(l)] =
(
mτ−1m1−τ

)[L:N(l)] = 1, (9.1)
NrdD(c) = NL/K(c) = NN/K(NL/N (c)) = NN/K(NrdCD(N)(c))

= NN/K(NrdCD(N)(l)) = NrdD(l) = 1.

Thus, NrdCD(N)(lc−1) = 1 and NrdD(c) = 1. Taking these two equalities into
account, the proof of the lemma is completed as follows. If lc−1 and c belong
to U(D, τ)′, then the same is true of l. To prove the lemma we use induction
on ind D. When ind D is a prime number, Theorem 3 holds true and the lemma
holds too. Now let ind D be distinct from a prime. Consider the algebra D′ =
CD(N) and the element l′ = lc−1. By the inductive hypothesis Theorem 3 holds
true for D′, whose index is less than ind D; hence, in particular, lc−1 ∈ U(D′, τ |D′)′.
Now, to complete the proof of the lemma is suffices to show that c ∈ U(D, τ)′.

Let ⟨σ⟩ = Gal(N/K). Recall that N/k is a separable extension because char k ̸=2
and ind D and char k are coprime. Then there exists g ∈ D such that ig−1 |N = σ.
Let Nτ = k(β). Then gβg−1 = βσ. We apply τ to both sides of this equality:
g−τβgτ = βστ . Since Gal(N/k) is either a generalized dihedral group or a direct
product of groups of order 2, we have βστ = βσ−1

= g−1βg. It follows from this that
gτg−1 ∈ CD(N). Hence gτ = rg for some r ∈ CD(N). Note that σ can be extended
to an automorphism of the whole centralizer CD(N), since the conjugation by g
maps the field N to itself. Consider the element gτ + g = (r + 1)g. Note that
(gτ + g)p = (r + 1)g(r + 1)g · · · (r + 1)g = (r + 1)(r + 1)σ · · · (r + 1)σp−1

gp. Let
r ̸= −1. Denote the element (r+1)(r+1)σ · · · (r+1)σp−1 ∈ CD(N) by R. Consider
the τ -invariant ramified algebra A = ⟨N(Rgp), gτ +g⟩ of prime index that is central
over K(Rgp). (If r = −1, then let A = ⟨NK(gp), g⟩.) Note that c ∈ SU(A, τ |A) ∩
(1+MA). Indeed, first of all, let us show that NN(Rgp)/K(Rgp)(c) = 1. To do this we
establish the equality NN/K(c) = 1. From (9.1) we obtain NN/K(NrdCD(N)(c)) = 1,
and since NrdCD(N)(l) = NrdCD(N)(c), we have NN/K(NrdCD(N)(c)) = 1, which
yields (NN/K(c))ind CD(N) = 1 ∈ 1 + MK . In view of the equality (ind CD(N),
char k) = 1 we have NN/K(c) = 1. Moreover, it follows from c = [N(l):N]

√
eτ−1

that c[N(l):N ] = eτ−1. Then (NN/Nτ
(c))[N(l):N ] = 1 ∈ 1 + MNτ

. Consequently,
NN/Nτ

(c) = 1, which means that c ∈ U(D, τ). Thus, c ∈ SU(A, τ |A) ∩ (1 + MA).
Note also that the algebra A is ramified over K(Rgp) (over K(gp), respectively), and
therefore by Proposition 12 (for ramified algebras of prime index) the congruence
theorem holds for the algebra A and the element c. Hence c ∈ U(D, τ)′. The proof
is complete.
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Proof of Theorem 3. First recall Remark 12. Let a ∈ (1+MD)∩SU(D, τ). If a ∈ K
and n = ind D, then an = 1, which means that a is an nth root of unity. Then it
follows from (ind D, char k) = 1 that a = 1. The case when char k = 0 is considered
similarly. Thus, we assume below that K(a) ̸= K.

In the proof of the theorem we can restrict our considerations to the case when
a has the property K(a) ̸= K. Indeed, if the extension K(a)/K is totally ramified,
then consider a τ -invariant inertia algebra I containing the element l mentioned
in Lemma 28. Note that a = (al)l−1, where al ∈ SU(D, τ) and K(al) contains
K(l) and therefore K(al) = K(l) = L̃. Thus, if we prove that al ∈ U(D, τ)′, then
a = (al)l−1 will imply that a ∈ U(D, τ)′. Hence we can assume without loss of
generality that K(a) ̸= K.

Let us show that when the extension K(a)/K is unramified, we can assume
without loss of generality that Z(D) ̸= K. Indeed, if Z(D) = K, then, since
K(a)/K is unramified (by Theorem 16) there exists a τ -invariant inertia algebra I
containing K(a). By assumption D = I⊗K T , where T is a weakly totally ramified
algebra. Since NrdD(a) = 1 and

1 = NrdD(a) = (NrdI(a))λD ,

it immediately follows from the coprimality of ind D and char k that NrdI(a) = 1,
and therefore a ∈ U(I, τ |I)′, because I is an unramified Z(I)-algebra.

Thus, if K(a)/K is unramified, then we can assume that Z(D) ̸= K. To prove
the theorem in this case we use induction on ind D. As above, let a ∈ (SU(D, τ) ∩
(1 + MD)) \ K. It is easily seen that the theorem holds in the case when D has
a prime index.

Let I be a τ -invariant inertia algebra such that K(a) ⊂ I, which exists because
the field K(a) is τ -invariant. Denote by N/K an unramified τ -invariant cyclic
extension of prime degree which is contained in Z(I). Then the element a ∈ CD(N)
commutes with the elements of N . Since NrdD(a) = 1 and (ind D, char k) = 1, we
obtain NK(a)/K(a) = 1 (recall that a ∈ 1+MD). This implies that NN(a)/N (a) = 1.
Consider the centralizer CD(N). Note that ind CD(N) < ind D and τ |CD(N) satis-
fies again a condition similar to condition (ii) in Theorem 3. If we assume that our
assertion holds for algebras of index less than ind D, then it follows from the above
that a ∈ U(D, τ)′.

Now we prove the theorem in the case when K(a) is ramified over K. We use
induction on ind D. If ind D is a prime number, then by Proposition 12 the group
SU(D, τ) has the congruence property. Suppose that ind D is not a prime. Denote
the maximal τ -invariant unramified extension K contained in K(a) by Na. Then
Na/K(a) is a totally ramified extension. Consider the centralizer CD(Na) and
note that Na ̸= K, because otherwise we arrive at the situation where K(a)/K is
a totally ramified extension, which we considered above. Since Na is τ -invariant, we
have CD(Na)τ = CD(Na). Moreover, ind CD(Na) < ind D and NrdCD(Na)(a) = 1.
The last equality follows from the fact that a ∈ 1 + MD and

NrdD(a) = NNa/K(NrdCD(Na)(a)) = (NrdD(a))[Na:K] = 1.

Since [Na : K] divides ind D and therefore is coprime to char k, we have
NrdCD(Na)(a) = 1. Applying now the inductive hypothesis to CD(Na) and the
element a we obtain a ∈ U(D, τ)′.
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§ 10. Special cases of the computation of the groups SUKan
1 (D, τ )

In conclusion consider several examples of the computation of the groups
SUKan

1 (D, τ).
We assume below that D ∈ TR(K), char k ̸= 2 and k is Henselian.
For unramified algebras D the following theorem is valid.

Theorem 19. Suppose that the algebra D is unramified. Then the groups
SUKan

1 (D, τ) and SUKan
1 (D, τ) are isomorphic if the involution τ has the form

τL(u), where u ∈ U(D, τ).
The last condition holds for quaternion algebras D .

Proof. Since the algebra D is unramified, we have λD = 1, and since the column
of the diagram in Theorem 2 is exact, we have SUKv

1(D, τ) ∼= SU(D, τ)/U ′. Note
that in our case NrdD(SLv(D)) = 1, and therefore it follows from the exactness of
the sequence (3) in Theorem 2 that the groups SUKv

1(D, τ) and SUKan
1 (D, τ) are

isomorphic, which yields that the sequence

1 → E → SUKan
1 (D, τ) → SUKan

1 (D, τ) → 1

is exact. Thus (see Theorem 3), if the involution τ has the form τL(u) for u∈U(D, τ),
then E = 1. This implies that SUKan

1 (D, τ) ∼= SUKan
1 (D, τ). In the case when D is

a quaternion algebra the condition concerning the involution τ holds by to a result
due to Albert [39]. The proof of the theorem is complete.

We assume below that the algebra D has a nontrivial ramification.
For commutative algebras D the following theorem holds.

Theorem 20. Let D be a field. Then E = 1 and the following sequence is exact:

1 → {z ∈ Z | NZ/K(z) ∈ k}/Z
∗
τ → SUKan

1 (D, τ) → Eλ → 1.

In particular, if Eλ = 1, then SUKan
1 (D, τ) ∼= Σ1

NrdD
/ΣNrdD

.

Proof. By Proposition 12 we have E = 1. First of all, note that SUKan
1 (D, τ) =

SU(D, τ) = 1 since NrdD = idD. Hence, taking the relation SUKan
1 (D, τ) = 1

and the exact sequence (6.2) into account, we obtain SUKv
1(D, τ) ∼= Σ1

NrdD
/ΣNrdD

.
In view of this isomorphism, taking the sequence (6.3) into account we conclude
that the following sequence is exact:

1 → {z ∈ Z | NZ/K(z) ∈ k}/Z
∗
τ → SUKan

1 (D, τ) → Eλ → 1.

The proof is complete.

Now consider the case when the upper ramification index of the algebra D is
trivial.

Theorem 21. If λ = 1, then the following sequence is exact:

1 → SUKan
1 (D, τ) → SUKan

1 (D, τ) → Σ1
NrdD

/ΣNrdD
→ 1.
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Proof. Suppose that λ = 1. Then Eλ = 1. Since, in addition SUKan
1 (D, τ) =

SUKv
1(D, τ), it follows from the exactness of the sequence (6.5) that the following

sequence is also exact:

1 → SUKan
1 (D, τ) → SUKan

1 (D, τ) → Σ1
NrdD

/ΣNrdD
→ 1.

The proof is complete.

Now we consider special fields k.

Proposition 17. Let k be a field such that dim k ⩽ 1 (see [46], Ch. 2, § 3). Then
the following sequence is exact:

1 → SL(Z/K))/(SL(Z/K)) ∩ Z
∗
τ ) → SUKan

1 (D, τ) → Eλ → 1.

Proof. Since dim k ⩽ 1, for any L of finite degree of k the Brauer group Br(L) is
trivial, and therefore D is a field. Hence the group E is trivial. As shown above,
in this case the following sequence is exact:

1 → Σ1
NrdD

/ΣNrdD
→ SUKan

1 (D, τ) → Eλ → 1.

The proof is complete.

Thus, the group SUKan
1 (D, τ) is an extension of Σ1

NrdD
/ΣNrdD

by the subgroup
Eλ of the group of λth roots of unity belonging to the field K. Consider the group
Σ1

NrdD
/ΣNrdD

. Note that ΣNrdD
coincides with the multiplicative group Z

∗
τ of the

field Zτ and Σ1
NrdD

= Z
∗
τ SL(Z/K). Consequently,

Σ1
NrdD

/ΣNrdD
= (Z

∗
τ SL(Z/K))/Z

∗
τ ,

which implies that

Σ1
NrdD

/ΣNrdD

∼= SL(Z/K))/(SL(Z/K)) ∩ Z
∗
τ )

by the isomorphism theorem for groups.
Now consider the case of finite k. Since computations for the groups SUKan

1 (D, τ)
are closely related to the groups E, Eλ and Σ1

NrdD
/ΣNrdD

, which are defined in
terms of the residue algebras D, we preface these computations by a description of
the structure of D. Since dim k ⩽ 1, we have D = Z. Let us show that the degree
[Z : K] is not greater than 2. Namely, we show that if [Z : K] ̸= 1, then [Z : K] = 2.
In the case when [Z : K] ̸= 1 we can apply Proposition 7 to the algebra D. Let
us show that there are no generalized dihedral groups among the groups Gal(Zj/k)
listed in the formulation of Proposition 7.

Suppose that the extension K/k is unramified. Then Z/k is also unramified.
This implies that Gal(Z/k) ∼= Gal(Z/k). By Proposition 7 Gal(Z/k) is a direct
product of groups Gal(Zj/k), which are either generalized dihedral groups or groups
of exponent 2. Suppose that, among the groups Gal(Zj/k), 1 ⩽ j ⩽ r, there is
a group Gal(Zj0/k) that is a generalized dihedral group. On the other hand, since
k is finite, this group must be cyclic. Hence there are no dihedral groups among
the groups Gal(Zj/k).
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Now suppose that K/k is totally ramified and Gal(Zj0/k) is a generalized dihe-
dral group. Then Gal(Zj0/K) has an odd order. By Theorem 13 there exists
a τ -invariant unramified lift N/k of the extension Zj0/k to Zj0/k. Since Zj0/k is
a Galois extension, N/k is a Galois extension too. Now it is easily seen that Zj0/k
is isomorphic to (N ⊗k K)/k, and therefore Zj0/k is Abelian. This means that
there are no generalized dihedral groups among the groups Gal(Zj/k).

Hence all groups Gal(Zj/k) have exponent 2. Since Z = Z1 × · · · × Zr by
Proposition 7 and Gal(Z/K) is a subgroup of the Galois group Gal(Z/k), this
group also has exponent 2. The extension Z/K is unramified, so Gal(Z/K) is
a group of exponent 2. Assume that r > 1. Then Gal(Z/K) contains a subfield
that is a direct compositum of quadratic extensions Q1 and Q2. As the field k is
finite, the field Q1 × Q2 contains divisors of zero, which is impossible. Therefore,
r = 1. Thus, [Z : K] = 2.

As a result, D is a field such that [D : K] ⩽ 2.
Now consider the groups SUKan

1 (D, τ). Note that E = 1, because D is a field.
As concerns the group Eλ, below we consider the cases of a totally ramified and an
unramified extension K/k separately.

Let K/k be totally ramified. In this case Eλ = 1 (Lemma 23). Let K/k be an
unramified extension. Since D has a unitary involution, we have D = D1 ⊗k K,
where D1 is an appropriate quaternion k-algebra. Note that D1 contains no unram-
ified quadratic extensions over k. Otherwise the algebra D1 ×k K has divisors of
zero. Hence D = Z = K. We show that in this case we also have Eλ = 1. In view
of the relation D = Z = K, (6.1) assumes the form Eλ = Cλ(K) ∩K

τ−1
.

To apply Theorem 2 we also need to compute the groups SUKan
1 (D, τ) and

Σ1
NrdD

/ΣNrdD
. Since D is a field, we have SUKan

1 (D, τ) = SU(D, τ) = 1.
Consider the groups Σ1

NrdD
/ΣNrdD

. First suppose that D = Z = K. Then
Σ1

NrdD
= {z ∈ Z | NZ/K(z) ∈ k} = Zτ and ΣNrdD

= Zτ . This implies that
Σ1

NrdD
= Zτ , which coincides with ΣNrdD

. Hence Σ1
NrdD

/ΣNrdD
= 1. As noted

above, in the case when [Z : K] = 2 the extension K/k must be totally ramified.
In this situation the group Σ1

NrdD
coincides with Z

∗
since K = k, and ΣNrdD

coincides with Z
∗
τ . Hence Σ1

NrdD
/ΣNrdD

= Z
∗
/Z

∗
τ .

Applying Theorem 2 to the case when K/k is a totally ramified extension we
obtain SUKan

1 (D, τ) ∼= Σ1
NrdD

/ΣNrdD
. Finally,

SUKan
1 (D, τ) =

{
1 if Z = K,

Z
∗
/Z

∗
τ if [Z : K] = 2.

Consider the case of an unramified K/k. Then the following sequences are exact:

1 → SUKv
1(D, τ) → SUKan

1 (D, τ) → Cλ(K) ∩K
τ−1 → 1

and
1 → SUKv

1(D, τ) → Σ1
NrdD

/ΣNrdD
→ 1.

Since D = Z = K, the same arguments as in the case of totally ramified K/k prove
that SUKv

1(D, τ) ∼= Σ1
NrdD

/ΣNrdD
. Finally, SUKv

1(D, τ) = 1. Thus, SUKan
1 (D, τ) ∼=

Cλ(K) ∩K
τ−1

.
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The following proposition summarizes the above discussion.

Proposition 18. Let k be a finite field, char k ̸= 2, and assume that a central
algebra D ∈ TR(K) has a unitary involution τ . Then the group SUKan

1 (D, τ) can
be computed in the following way: if K/k is totally ramified, then always [Z : K] ⩽ 2
and

SUKan
1 (D, τ) =

{
1 if Z = K,

Z
∗
/Z

∗
τ if [Z : K] = 2,

whereas if K/k is unramified, then SUKan
1 (D, τ) ∼= Cλ(K) ∩K

τ−1
.

Remark 13. The above argument can also be used in the case of an infinite field k.
For example, if k is the field of formal power series in one variable with coefficients in
an algebraically closed field of characteristic 0, then very much the same argument
as in the case of a finite field k produces similar final results on the computation of
SUKan

1 (D, τ) in this case.

Remark 14. Note that if k is a local field (a finite extension of the field of p-adic
numbers or the field of formal power series in one variable with finite field of con-
stants), then the computation of the group SUKan

1 (D, τ) can be reduced to the case
considered above. Indeed, since k is a Henselian field with finite residue field, the
algebra D has a Henselian valuation with finite residue field (namely, a valuation
composed of the original valuation and the valuation of the field k).

Consider another example, where k is a real closed field. In this case the argu-
ment is similar to the reasoning carried out above, so we present only the formula-
tions and sketches of proofs of the corresponding assertions. First we describe the
algebras D.

Proposition 19. Let k be real closed. Then the structure of the residue algebra D
is as follows.

1. If D is not a field, then Z = K .
2. If D is a field, then D = Z and the following possibilities hold for the fields

Z , K and k :
i) Z = K = k ;
ii) Z ̸= K = k ;
iii) Z = K ̸= k .

The proof is evident since k is real closed and the extensions K/k, Z/k and D/k
are finite.

Consider the groups SUKan
1 (D, τ). We make use of Theorem 2.

It turns out that for all algebras listed above we have E = 1. In case 1 we have
E = 1 by Theorem 18, while in all other cases D is a field and the result that E = 1
follows from Proposition 12.

For all algebras listed above, except the ones in case 2, iii), we have Eλ = 1, since
in all these cases the extension K/k is totally ramified. In case 2, iii) the composition
of homomorphisms NZ/K ◦ NrdD is the identity homomorphism. Bearing in mind
that s = 1 for s ∈ SU(D, τ), this gives Eλ = 1 in this case too.
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Now we compute the groups SUKan
1 (D, τ). If D is not a field, then the algebra D

contains a quaternion k-algebra A such that D = A⊗k K and the restriction of τ
to A is the standard quaternion conjugation. Note that U(D, τ) = {u ∈ D |
uuτ = 1}. On the other hand the equation uuτ = 1 is equivalent to NrdD(u) = 1.
Hence SU(D, τ) = SL1(D). By definition we have

SUKan
1 (D, τ) = SU(D, τ)/U(D, τ)′ = SL1(D)/ SL1(D)′.

Moreover,
D
′ ⊂ SL1(D)′.

Indeed, for a, b ∈ D
∗

[a, b] = [NrdD(a)−1a, NrdD(b)−1b].

Since the group SK1(D) is trivial, it follows from the inclusion D
′ ⊆ SL1(D)′ that

the group SUKan
1 (D, τ) is trivial.

Suppose that D is a field. Then U(D, τ)′ = 1. Therefore, in all remaining
cases we have SUKan

1 (D, τ) = SU(D, τ). Let s ∈ SU(D, τ), which means that
NrdD/Z(s) = 1. Since D = Z, we have s = 1. Thus, SUKan

1 (D, τ) = 1 in all cases.
Let us compute the groups Σ1

NrdD
/ΣNrdD

in cases 1)—2, iii) of Proposition 19.
Case 1. D is not a field. In this case the reduced values of the elements in D are

zeros of the quadratic form x2
1 + x2

2 + x2
3 + x2

4 in the variables x1, x2, x3, x4 over K
and, since K = k, of the quadratic form in these variables over k. This implies that
Σ1

NrdD
= ΣNrdD

, which means that Σ1NrdD/ΣNrdD
is trivial.

Case 2, i). NrdD = id, and since Z = K = k, we have Σ1
NrdD

= k
∗
. This means

that NrdD(Dτ ) also coincides with k
∗
.

Case 2, ii). In this case the fact that the element z ∈ Z belongs to Σ1
NrdD

means
that NZ/K(z) ∈ k, since K = k Σ1

NrdD
coincides with Z

∗
. The group ΣNrdD

coincides with Z
∗
τ . Hence Σ1

NrdD
/ΣNrdD

∼= Z
∗
/Z

∗
τ .

Case 2, iii). In this case for z ∈ Z we have NrdD(z) = z, therefore, the con-
dition that z belongs to the group Σ1

NrdD
means that z belongs to k. Note that

NrdD(D)∗τ = Z
∗
τ . Consequently, Σ1

NrdD
/ΣNrdD

∼= Z
∗
/Z

∗
τ , which in view of the

equality Z = K implies that the groups Σ1
NrdD

/ΣNrdD
and K

∗
/k are isomorphic.

The results obtained above, in combination with Theorem 2, establish the fol-
lowing proposition.

Proposition 20. Suppose that k is real closed. Then the group SUKan
1 (D, τ) is

trivial, except for the cases 2, ii) and 2, iii), where it is isomorphic to Z
∗
/Z

∗
τ

and K
∗
/k

∗
, respectively.

Consider one more important example of the field k.

Proposition 21. Let k be an extension of an algebraically closed field with tran-
scendence degree 1. Then SUKv

1(D, τ) ∼= Σ1
NrdD

/ΣNrdD
and the following sequence

is exact:
1 → SUKv

1(D, τ) → SUKan
1 (D, τ) → Eλ → 1,
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where

Eλ =


1 if K/k is totally ramified,

1 if K/k is unramified, λ is odd,

1 if there exists no element s ∈ SU(D, τ) such that NZ/K(s) = −1,

Z/2 otherwise.

Theorem 2 allows one to obtain simple formulae in the case of a field k of algebraic
numbers and algebras D of odd indices, which we do not present here because their
proofs are exceedingly lengthy.

The author is profoundly grateful to the referee, who read the preliminary version
of the paper attentively and made a lot of useful comments.
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