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Existence of solutions of nonlinear elliptic equations
with measure data in Musielak-Orlicz spaces

A. P. Kashnikova and L. M. Kozhevnikova

Abstract. A second-order quasilinear elliptic equation with a measure of
special form on the right-hand side is considered. Restrictions on the struc-
ture of the equation are imposed in terms of a generalized N -function such
that the conjugate function obeys the ∆2-condition and the corresponding
Musielak-Orlicz space is not necessarily reflexive. In an arbitrary domain
satisfying the segment property, the existence of an entropy solution of the
Dirichlet problem is proved. It is established that this solution is renor-
malized.

Bibliography: 29 titles.
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§ 1. Introduction

This paper considers the problem of the existence of a solution of the Dirichlet
problem

−div a(x, u,∇u) +M ′(x, u) + b(x, u,∇u) = µ, x ∈ Ω, (1.1)

u
∣∣
∂Ω

= 0 (1.2)

in an arbitrary unbounded domain Ω⊂Rn = {x = (x1, x2, . . . , xn)}, n⩾ 2. Here the
growth of the functions a(x, s0, s) = (a1(x, s0, s), . . . , an(x, s0, s)) : Ω×R×Rn → Rn

and b(x, s0, s) : Ω×R×Rn → R is determined by a generalized N -function M(x, z),
which does not necessarily satisfy the ∆2-condition, and the bounded Radon
measure µ has a special form.

The concept of renormalized solutions is the main step in the study of general
degenerate elliptic equations with measure data. In [1] and [2], for an equation of
the form

− div a(x,∇u) = µ, x ∈ Ω, (1.3)

in Sobolev spaces, the stability and existence of a renormalized solution of the
Dirichlet problem (1.3), (1.2) in a bounded domain Ω were proved.

In Musielak-Orlicz spaces, the existence of renormalized solutions with general
measure data is a new problem even in the reflexive case. It was established by
Chlebicka [3] under some regularity conditions on the Musielak-Orlicz function
M(x, z) that each bounded Radon measure µ in a bounded domain Ω ⊂ Rn is
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decomposable in the form µ = µM + µs. Here, the measure µM is called diffuse
with respect to the M -capacity CapM (an M -soft measure) and µM (E) = 0 for
any E ⊆ Ω such that CapM (E,Ω) = 0, whereas the measure µs is concentrated on
a set of zero M -capacity and is called singular. It was established that µM is a dif-
fuse measure with respect to the M -capacity if and only if µM ∈ L1(Ω) +W−1

M
(Ω)

(W−1

M
(Ω) is the conjugate space of W̊ 1

M (Ω)), that is, there exist functions f ∈ L1(Ω)
and f = (f1, . . . , fn) ∈ (LM (Ω))n such that

µM = f − div f. (1.4)

In [3] Chlebicka proved the existence of a renormalized solution of the Dirichlet
problem (1.3), (1.2) and also its uniqueness for µ = µM .

In [4], for an anisotropic N -function Φ ∈ ∆2 ∩∇2, a similar measure decomposi-
tion with respect to the anisotropic Φ-capacity was established and the uniqueness
of the approximation solution of the Dirichlet problem (1.3), (1.2) was proved in
the case of a diffuse measure µΦ.

In [5], some class of second-order elliptic equations of the form

− div a(x,∇u) + a0(x, u) = µ, x ∈ Ω, (1.5)

with variable nonlinearity exponents and right-hand side in the form of a general
Radon measure with finite total variation was considered. The existence of a renor-
malized solution of (1.5), (1.2) was proved as a consequence of the stability with
respect to the convergence of the right-hand side of the equation.

If the Musielak-Orlicz functionM does not satisfy the ∆2-condition, then the cor-
responding Musielak-Orlicz space is not reflexive, and even with a diffuse measure
the problem under consideration becomes much more complicated. When no restric-
tion is imposed on the growth of the generalized N -function M(x, z), it is commonly
assumed that it satisfies the log-Hölder continuity condition with respect to the vari-
able x ∈ Ω, which leads to good approximation properties of the Musielak-Orlicz
space.

In [6] the existence of a renormalized solution of problem (1.3), (1.2) with
µ ∈ L1(Ω) and an inhomogeneous anisotropic Musielak-Orlicz function was proved.

The authors of [7] and [8] established the existence of a renormalized and an
entropy solution of the Dirichlet problem, respectively, for an equation of the form

− div(a(x, u,∇u) + c(u)) + a0(x, u,∇u) = f, f ∈ L1(Ω), x ∈ Ω, (1.6)

with c ∈ C0(R,Rn). It was proved in [9], [10] (a0 ≡ 0) and [11] that there exists an
entropy solution of the Dirichlet problem for an equation of the form

− div(a(x, u,∇u) + c(x, u)) + a0(x, u,∇u) = f, f ∈ L1(Ω), x ∈ Ω, (1.7)

with Carathéodory function c(x, s0) : Ω × R → Rn subject to a growth condition
with respect to s0.

All the above results were deduced for entropy and renormalized solutions of
elliptic problems in bounded domains. For elliptic equations with various types
of nonlinearities and measure data (or L1-data), existence and uniqueness results for



478 A.P. Kashnikova and L.M. Kozhevnikova

entropy and renormalized solutions in arbitrary unbounded domains were derived
in [12]–[20]. However, there are no results of this kind for equations with nonlin-
earities specified by Musielak-Orlicz functions.

The difficulty of generalizing to an unbounded domain is that the analogues
of the Poincaré-Sobolev inequality and the compact embedding theorem for the
Musielak-Orlicz-Sobolev space do not work in unbounded domains. These authors
have managed to solve the problem by adding the term M ′(x, u) into (1.1) and
requiring additionally that the function M( · , z) be integrable over Ω. In this paper
we prove the existence of an entropy solution and establish that it is a renormalized
solution of the problem (1.1), (1.2) with a diffuse-type measure µ in arbitrary (for
instance, unbounded) domains Ω satisfying the segment property.

§ 2. Musielak-Orlicz-Sobolev spaces

In this section we provide some necessary information relating to the theory of
generalized N -functions and Musielak-Orlicz spaces (see [21]–[23]).

Definition 2.1. Assume that a function M(x, z) : Ω × R → R+ satisfies the fol-
lowing conditions:

(1) M(x, · ) is an N -function with respect to z ∈ R, that is, it is downward
convex, nondecreasing, even, continuous, M(x, 0) = 0 for a.a. x ∈ Ω, and also

inf
x∈Ω

M(x, z) > 0 for all z ̸= 0,

lim
z→0

sup
x∈Ω

M(x, z)
z

= 0

and
lim

z→∞
inf
x∈Ω

M(x, z)
z

= ∞;

(2) M( · , z) is a measurable function with respect to x ∈ Ω for all z ∈ R.
Such a function M(x, z) is called a Musielak-Orlicz function or a generalized

N -function.

The Young conjugate function M(x, · ) of the Musielak-Orlicz function M(x, · )
is specified by

M(x, z) = sup
y⩾0

(yz −M(x, y))

for almost all x ∈ Ω and any z ⩾ 0. This yields Young’s inequality

|zy| ⩽ M(x, z) +M(x, y), z, y ∈ R, x ∈ Ω. (2.1)

A Musielak-Orlicz function M(x, z) has the integral representation

M(x, z) =
∫ |z|

0

M ′(x, θ) dθ, (2.2)

where M ′(x, θ) : Ω × R+ → R+, M ′(x, · ) is nondecreasing, continuous from the
right, M ′(x, 0) = 0 for almost all x ∈ Ω,

inf
x∈Ω

M ′(x, θ) > 0 for a.a. θ > 0
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and
lim

θ→∞
inf
x∈Ω

M ′(x, θ) = ∞. (2.3)

For almost all x ∈ Ω and z ∈ R it follows from (2.2) and (2.1) that

M(x, z) ⩽ M ′(x, z)z, (2.4)
M ′(x, z)z ⩽ M(x, 2z) (2.5)

and
M(x,M ′(x, z)) ⩽ M ′(x, z)z. (2.6)

Assume that P (x, z) and M(x, z) are Musielak-Orlicz functions. The fact that

lim
z→∞

sup
x∈Ω

P (x, lz)
M(x, z)

= 0 (2.7)

for any positive constant l is denoted by P ≺≺ M ; in this case P is said to grow
slower than M at ∞.

A Musielak-Orlicz function M satisfies the ∆2-condition if there exist constants
c > 0 and z0 ⩾ 0 and a function H ∈ L1(Ω) such that

M(x, 2z) ⩽ cM(x, z) +H(x)

for almost all x ∈ Ω and any |z| ⩾ z0. The ∆2-condition is equivalent to the fulfill-
ment of the inequality

M(x, lz) ⩽ c(l)M(x, z) +Hl(x), Hl ∈ L1(Ω), (2.8)

for almost all x ∈ Ω and any |z| ⩾ z0, where l is any number above one and c(l) > 0.
We assume in this paper that the conjugate N -function M(x, z) satisfies the

∆2-condition for all z ∈ R (that is, z0 = 0). Thus,

M(x, lz) ⩽ c(l)M(x, z) +Hl(x), where Hl ∈ L1(Ω), z ∈ R, (2.9)

for any l > 0 and almost all x ∈ Ω.
There are three Musielak-Orlicz classes.
LM (Ω) is the generalized Musielak-Orlicz class of measurable functions v : Ω → R

such that
ϱM,Ω(v) =

∫
Ω

M(x, v(x)) dx <∞.

LM (Ω) is the generalized Musielak-Orlicz space, which is the smallest linear
space containing the class LM (Ω), with the Luxemburg norm

∥u∥M,Ω = inf
{
λ > 0

∣∣∣ ϱM,Ω

(
v

λ

)
⩽ 1

}
.

EM (Ω) is the closure of bounded measurable functions with compact support
in Ω with respect to the norm ∥u∥M,Ω. The embeddings EM (Ω) ⊂ LM (Ω) ⊂ LM (Ω)
are valid. Below we omit the index Q = Ω in the notation ∥ · ∥M,Q, ϱM,Q( · ).
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In what follows we consider the following conditions on a Musielak-Orlicz func-
tion M(x, z).

(M1, loc) A function M(x, z) is locally integrable if

ϱM,Q(z) =
∫

Q

M(x, z) dx <∞ ∀ z ∈ R

for any measurable set Q ⊂ Ω such that measQ <∞.
(M1) A function M(x, z) is integrable if

ϱM (z) =
∫

Ω

M(x, z) dx <∞ ∀ z ∈ R.

(M2) A function M(x, z) satisfies the ϕ-regularity condition if there exists a func-
tion ϕ : [0, 1/2]×R+ → R+ such that ϕ( · , z) and ϕ(r, · ) are nondecreasing and for
all x, y ∈ Ω, |x− y| ⩽ 1/2, z ∈ R+ and some constant c > 0 we have

M(x, z) ⩽ ϕ(|x− y|, z)M(y, z) and lim
ε→0+

supϕ(ε, cε−n) <∞.

Assume that M and M obey condition (M1, loc). The space EM (Ω) is separable
and (EM (Ω))∗ = LM (Ω). If M satisfies the ∆2-condition, then EM (Ω) = LM (Ω) =
LM (Ω) and LM (Ω) is separable. The space LM (Ω) is reflexive if and only if the
Musielak-Orlicz functions M and M satisfy the ∆2-condition.

For v ∈ LM (Ω) it is true that

∥v∥M ⩽ ϱM (v) + 1, (2.10)
ϱM (v) ⩽ ∥v∥M if |v∥M ⩽ 1 (2.11)

and
∥v∥M ⩽ ϱM (v) if ∥v∥M > 1. (2.12)

A sequence of functions {vj}j∈N ∈ LM (Ω) converges modularly to v ∈ LM (Ω) if
there exists a constant λ > 0 such that

lim
j→∞

ϱM

(
vj − v

λ

)
= 0.

If M satisfies the ∆2-condition, then the modular topology and the norm topology
coincide.

For two conjugate Musielak-Orlicz functions M and M , functions u ∈ LM (Ω)
and v ∈ LM (Ω) satisfy the Hölder inequality∣∣∣∣∫

Ω

u(x)v(x) dx
∣∣∣∣ ⩽ 2∥u∥M∥v∥M . (2.13)

We define the Musielak-Orlicz-Sobolev spaces

W 1LM (Ω) =
{
v ∈ LM (Ω) | |∇v| ∈ LM (Ω)

}
and

W 1EM (Ω) =
{
v ∈ EM (Ω) | |∇v| ∈ EM (Ω)

}
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with the norm
∥v∥1M = ∥v∥M + ∥|∇v|∥M .

A sequence of functions {vj}j∈N ∈W 1LM (Ω) converges modularly to v ∈W 1LM (Ω)
if there exists a constant λ > 0 such that

lim
j→∞

ϱM

(
vj − v

λ

)
= 0 and lim

j→∞
ϱM

(
|∇vj −∇v|

λ

)
= 0.

For brevity we introduce the notation (LM (Ω))n =LM (Ω), (LM (Ω))n+1 =LM (Ω),
(EM (Ω))n = EM (Ω) and (EM (Ω))n+1 = EM (Ω). The space W 1LM (Ω) is iden-
tified with a subspace of the product LM (Ω); it is closed with respect to the
σ(LM ,EM )-topology. The space W̊ 1LM (Ω) is defined as the closure of C∞0 (Ω) with
respect to the σ(LM ,EM )-topology in W 1LM (Ω). Finally, the space W̊ 1EM (Ω) is
defined as the closure of C∞0 (Ω) with respect to the norm ∥ · ∥1M in W 1LM (Ω).

The spaces W̊ 1LM (Ω) and W̊ 1EM (Ω) are Banach spaces (see [22], Theorem 10.2).
We also define the Banach space

W−1LM (Ω) =
{
F = f0 − div f

∣∣ f0 ∈ LM (Ω), f = (f1, . . . , fn) ∈ LM (Ω)
}
.

The following embedding theorem is true (see [24], Theorem 4).

Lemma 2.1. Assume that a Musielak-Orlicz function M(x, z) satisfies the follow-
ing conditions: ∫ ∞

1

M−1(x, z)
z(n+1)/n

dz = ∞,

∫ 1

0

M−1(x, z)
z(n+1)/n

dz <∞, (2.14)

M−1
∗ (x, z) =

∫ z

0

M−1(x, τ)
τ (n+1)/n

dτ, x ∈ Ω, z ⩾ 0.

Then M∗(x, z) is a generalized N -function and W̊ 1LM (Ω) ↪→ LM∗(Ω). In addition,
for any bounded subdomain Q ⊂ Ω the embedding W̊ 1LM (Ω) ↪→ LP (Q) holds and is
compact for any Musielak-Orlicz function P ≺≺M∗ such that P ( · , z) is integrable
over Q.

Definition 2.2. A domain Ω has the segment property if there exist a finite open
covering {Θi}k

i=1 of Ω and nonzero vectors zi ∈ Rn such that (Ω ∩ Θi) + tzi ⊂ Ω
for any t ∈ (0, 1) and i = 1, . . . , k.

We state a theorem on the density of the smooth functions in the Musielak-Orlicz-
Sobolev space (see [25], Theorem 3).

Lemma 2.2. Assume that a domain Ω has the segment property, an N -function
M satisfies conditions (M1) and (M2), and M satisfies condition (M1). Then for
any u ∈ W̊ 1LM (Ω) there exists a sequence of functions uj ∈ C∞0 (Ω) such that

uj → u modularly in W̊ 1LM (Ω), j →∞.
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§ 3. Assumptions and statements of the results

We assume that the functions

a(x, s0, s) : Ω× R× Rn → Rn and b(x, s0, s) : Ω× R× Rn → R

in (1.1) are measurable with respect to x∈Ω for s = (s0, s) = (s0, s1, . . . , sn) ∈ Rn+1

and continuous in s ∈ Rn+1 for almost all x ∈ Ω. We also assume that the following
condition holds.

Condition M. There exist nonnegative functions Ψ, ϕ ∈ L1(Ω) and positive con-
stants Â, a, d and d̂ such that for almost all x ∈ Ω and any s0 ∈ R, s, t ∈ Rn

and s ̸= t,

a(x, s0, s) · s ⩾ aM(x, d|s|)− ϕ(x), (3.1)

M(x, |a(x, s0, s)|) ⩽ Ψ(x) + ÂP (x, d̂s0) + ÂM(x, d̂|s|) (3.2)

and (
a(x, s0, s)− a(x, s0, t)

)
· (s− t) > 0. (3.3)

Here the Musielak-Orlicz functions P (x, z) and M(x, z) (P ≺≺M) obey condition
(M1), the continuously differentiable function M(x, z) obeys (M2), the conjugate
function M(x, z) of M obeys the ∆2-condition and the condition (M1), s · t =∑n

i=1 siti and |s| = (
∑n

i=1 s
2
i )

1/2. Recall that LM (Ω) = EM (Ω).

In addition, assume that there exist a nonnegative function Φ0 ∈ L1(Ω) and
a continuous nondecreasing function b̂ : R+ → R+ such that for almost all x ∈ Ω
and all s0 ∈ R and s ∈ Rn we have

|b(x, s0, s)| ⩽ b̂(|s0|)
(
M(x, d|s|) + Φ0(x)

)
(3.4)

and
b(x, s0, s)s0 ⩾ 0. (3.5)

Note that the fact that M( · , z) ∈ L1(Ω) implies that M ′( · , z) ∈ L1(Ω) for any
fixed z ∈ R.

The condition M is satisfied, for example, by the functions

ai(x, s) = M ′(x, |s|) si

|s|
+ fi(x), fi ∈ LM (Ω), i = 1, . . . , n,

and
b(x, s0, s) = b(s0)R

−1
(M(x, |s|))R−1(Φ0)

for a continuous nondecreasing odd function b : R → R, an arbitrary N -function
R(z) and a nonnegative function Φ0 ∈ L1(Ω).

We assume that the measure µ has the form

µ = f + f0 − div f, f ∈ L1(Ω), f0 ∈ EM (Ω), f ∈ (EM (Ω))n. (3.6)

This choice is due to the representation (1.4), while the presence of the term f0
is related to the unboundedness of Ω. However, we are not going to consider the
problem of the diffuseness of the measure (3.6) in this paper.
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Introducing the notation ã(x, s0, s) = a(x, s0, s)− f, we derive from (1.1) that

−div ã(x, u,∇u) +M ′(x, u) + b(x, u,∇u) = f + f0.

Applying (2.1), we can easily see that the function ã(x, s0, s) also obeys conditions
of the forms (3.1)–(3.3). In addition, using (2.1), we arrive at∫

Ω

|f0| dx ⩽
∫

Ω

M(x, f0) dx +
∫

Ω

M(x, 1) dx <∞.

Consequently, f0 ∈ L1(Ω). Therefore, we consider (1.1) for the measure

µ = f, f ∈ L1(Ω). (3.7)

We introduce the function Tk(r) = max(−k,min(k, r)) and let T̊ 1
M (Ω) denote the

set of measurable functions u : Ω → R such that Tk(u) ∈ W̊ 1LM (Ω) for any k > 0.
For u ∈ T̊ 1

M (Ω) and any k > 0 we have

∇Tk(u) = χ{|u|<k}∇u ∈ LM (Ω). (3.8)

We introduce the notation ⟨u⟩ =
∫

Ω

u dx.

Definition 3.1. An entropy solution of (1.1), (1.2), (3.7) is a function u ∈ T̊ 1
M (Ω)

such that:
(1) b(x, u,∇u) ∈ L1(Ω);
(2) for all k > 0 and ξ ∈ C1

0 (Ω) we have

⟨(b(x, u,∇u) +M ′(x, u)− f)Tk(u− ξ)⟩+ ⟨a(x, u,∇u) · ∇Tk(u− ξ)⟩ ⩽ 0. (3.9)

Definition 3.2. A renormalized solution of problem (1.1), (1.2), (3.7) is a function
u ∈ T̊ 1

M (Ω) such that:
(1) b(x, u,∇u) ∈ L1(Ω);

(2) lim
h→∞

∫
{Ω: h⩽|u|<h+1}

M(x, d|∇u|) dx = 0;

(3) for any smooth compactly supported function S ∈W 1
∞(R) and any function

ξ ∈ C1
0 (Ω), it is true that〈

(b(x, u,∇u)+M ′(x, u)−f)S(u)ξ⟩+⟨a(x, u,∇u)·(S′(u)ξ∇u+S(u)∇ξ)⟩ = 0. (3.10)

The main results in this paper are the following theorems.

Theorem 3.1. Assume that the domain Ω has the segment property and condi-
tions M and (2.14) are satisfied. Then problem (1.1), (1.2), (3.7) has an entropy
solution.

Theorem 3.2. Assume that the domain Ω has the segment property and condi-
tions M and (2.14) are satisfied. Then the entropy solution constructed in Theo-
rem 3.1 is a renormalized solution of problem (1.1), (1.2), (3.7).
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§ 4. Preparatory information

The integrals of the functions M ′(x, u)Tk(u − ξ) and a(x, u,∇u) · ∇Tk(u − ξ)
in (3.9) are assumed to converge for any k > 0. The convergence of the other inte-
grals in (3.9) follows from (3.7) and condition (1) in Definition 3.1. The integral
of the function a(x, u,∇u) · ∇(S(u)ξ) in (3.10) is assumed to converge, while the
convergence of the other integrals follows from (3.7) and condition (1) in Defini-
tion 3.2.

In this section we establish some properties of the entropy solution of prob-
lem (1.1), (1.2), (3.7) and present auxiliary lemmas.

All constants occurring below in this paper are positive.

Lemma 4.1. Let u be an entropy solution of problem (1.1), (1.2), (3.7). Then for
any k > 0

a(x, u,∇u)χ{Ω: |u|<k} ∈ LM (Ω) (4.1)
and∫

{Ω: |u|<k}

(
M(x, u) +M(x, d|∇u|)

)
dx + k

∫
{Ω: |u|⩾k}

M ′(x, |u|) dx ⩽ C1k + C2.

(4.2)

Proof. For ξ = 0 the inequality (3.9) takes the form

I =
∫

Ω

(M ′(x, u) + b(x, u,∇u))Tk(u) dx +
∫
{Ω: |u|<k}

a(x, u,∇u) · ∇u dx

⩽
∫

Ω

fTk(u) dx ⩽ C3k. (4.3)

Applying (2.4) and (3.5) we infer the estimate

I ⩾ k

∫
{Ω: |u|⩾k}

M ′(x, |u|) dx +
∫
{Ω: |u|<k}

M(x, u) dx

+
∫
{Ω: |u|<k}

a(x, u,∇u) · ∇u dx. (4.4)

Combining (4.4) and (4.3) we establish the inequality

k

∫
{Ω: |u|⩾k}

M ′(x, |u|) dx +
∫
{Ω: |u|<k}

M(x, u) dx

+
∫
{Ω: |u|<k}

a(x, u,∇u) · ∇u dx ⩽ kC3. (4.5)

Now, using (3.1) we obtain (4.2).
Let w ∈ EM (Ω) be arbitrary. Then condition (3.3) yields

(a(x, u,∇u)− a(x, u,w)) · (∇u− w) > 0.

It follows that∫
{Ω: |u|<k}

a(x, u,∇u) · w dx ⩽
∫
{Ω: |u|<k}

a(x, u,∇u) · ∇u dx

−
∫
{Ω: |u|<k}

a(x, u,w) · (∇u− w) dx. (4.6)
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Using (3.2) we then deduce that∫
{Ω: |u|<k}

M(x, |a(x, u,w)|) dx

⩽ ∥Ψ∥1 + Â

∫
Ω

P (x, d̂k) dx + Â

∫
Ω

M(x, d̂|w|)) dx ⩽ C4. (4.7)

Combining (4.5), (4.6), (4.7) and (3.8), we derive the estimate∫
{Ω: |u|<k}

a(x, u,∇u) · w dx ⩽ C5 ∀w ∈ EM (Ω).

Replacing w by −w we obtain

−
∫
{Ω: |u|<k}

a(x, u,∇u) · w dx ⩽ C5 ∀w ∈ EM (Ω).

Therefore, it is true that∣∣∣∣∫
{Ω: |u|<k}

a(x, u,∇u) · w dx
∣∣∣∣ ⩽ C5 ∀w ∈ EM (Ω),

which implies (4.1). The lemma is proved.

The following lemma holds.

Lemma 4.2. Let v : Ω → R be a measurable function and let∫
{Ω: |v|⩾k}

M ′(x, |v|) dx ⩽ C1 +
C2

k
(4.8)

for all k > 0. Then

meas{Ω: |v| ⩾ k} → 0, k →∞, (4.9)

and
M ′(x, |v|) ∈ L1(Ω). (4.10)

Proof. Relation (4.8) yields

meas{Ω: |v| ⩾ k} inf
x∈Ω

M ′(x, k) ⩽ C1 +
C2

k
.

Applying (2.3), we derive (4.9) from this inequality.
Furthermore, due to (4.8) and the fact that M ′(x, k) ∈ L1(Ω), we have∫

Ω

M ′(x, |v|) dx =
∫
{Ω: |v|⩾k}

M ′(x, |v|) dx +
∫
{Ω: |v|<k}

M ′(x, |v|) dx

⩽ C1 +
C2

k
+

∫
Ω

M ′(x, k) dx = C6(k).

The lemma is proved.
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Remark 1. If u is an entropy solution of problem (1.1), (1.2), (3.7), then it follows
from Lemmas 4.1 and 4.2 that

meas{Ω: |u| ⩾ k} → 0, k →∞, (4.11)

and
M ′(x, |u|) ∈ L1(Ω). (4.12)

In addition,

∀ k > 0 (M(x, |u|) +M(x, d|∇u|))χ{Ω: |u|<k} ∈ L1(Ω).

Lemma 4.3 (see [24], Lemma 2). Let {vj}j∈N and v be functions in LM (Ω) such
that

∥vj∥M ⩽ C, j ∈ N,
vj → v a.e. in Ω, j →∞.

Then vj ⇀ v as j →∞ in the σ(LM , EM )-topology on the space LM (Ω).

Lemma 4.4. Let gj , j ∈ N, and g be functions in L1(Ω) such that gj ⩾ 0 a.e. in Ω
and

gj → g strongly in L1(Ω), j →∞.

Let vj , j ∈ N, and v be measurable functions in Ω such that

vj → v a.e. in Ω, j →∞,

and
|vj | ⩽ gj , j ∈ N, a.e. in Ω.

Then ∫
Ω

vj dx →
∫

Ω

v dx, j →∞.

Lemma 4.5. Let wj , j ∈ N, and w be functions in L1(Ω) such that wj ⩾ 0 a.e.
in Ω,

wj → w a.e. in Ω, j →∞,

and ∫
Ω

wj dx →
∫

Ω

w dx, j →∞.

Then
wj → w strongly in L1(Ω), j →∞.

Lemma 4.6. If the domain Ω has the segment property and u is an entropy solution
of problem (1.1), (1.2), (3.7), then inequality (3.9) is valid for any ξ ∈ W̊ 1LM (Ω)∩
L∞(Ω).
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Proof. Due to Lemma 2.2, for any ξ ∈ W̊ 1LM (Ω) ∩ L∞(Ω) there exists a sequence
{ξj}j∈N ∈ C∞0 (Ω) such that

∇ξj → ∇ξ, ξj → ξ modularly in LM (Ω), j →∞. (4.13)

It follows that

ξj → ξ and ∇ξj → ∇ξ a.e. in Ω as j →∞. (4.14)

Then for any k > 0

Tk(u− ξj) → Tk(u− ξ) and ∇Tk(u− ξj) → ∇Tk(u− ξ) a.e. in Ω, j →∞.
(4.15)

Note that we can choose {ξj}j∈N so that this sequence is bounded in L∞(Ω).
Let K = supj∈N ∥ξj∥∞ and let k̂ = k +K; then we have

|∇Tk(u− ξj)| ⩽ |∇Tk̂(u)|+ |∇ξj |, x ∈ Ω, j ∈ N.

Since the modularly convergent sequence ∇ξj is bounded in LM (Ω) and in accor-
dance with (3.8), the norms ∥∇Tk(u − ξj)∥M , j ∈ N, are bounded. Using (4.15)
and Lemma 4.3, for any k > 0 we obtain

∇Tk(u− ξj) ⇀ ∇Tk(u− ξ) in the σ(LM ,EM )-topology on LM (Ω), j →∞.
(4.16)

Now we pass to the limit as j →∞ in the inequality∫
Ω

(b(x, u,∇u) +M ′(x, u)− f)Tk(u− ξj) dx +
∫

Ω

a(x, u,∇u) · ∇Tk(u− ξj) dx ⩽ 0.

(4.17)

Since b(x, u,∇u), M ′(x, u), f ∈ L1(Ω) (see Definition 3.1, (1) and (4.12)), using
(4.15) and Lebesgue’s theorem, we can take the limit as j →∞ in the first term.

In view of the fact that a(x, u,∇u)χ{Ω: |u|<k̂} ∈ LM (Ω) = EM (see (4.1)), apply-
ing (4.16) we establish that the second term in the last inequality also converges
as j →∞. Thus, taking the limit in (4.17) we obtain (3.9). The lemma is proved.

Lemma 4.7. Let u be an entropy solution of problem (1.1), (1.2), (3.7). Then for
all k > 0

lim
h→∞

∫
{h⩽|u|<k+h}

M(x, d|∇u|) dx = 0. (4.18)

Proof. Setting ξ = Th(u) in (3.9) we arrive at∫
{h⩽|u|<k+h}

a(x, u,∇u) · ∇u dx

+
∫
{h⩽|u|}

(
b(x, u,∇u) +M ′(x, u)

)
Tk(u− Th(u)) dx ⩽ k

∫
{h⩽|u|}

|f | dx.
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Now, using (3.5) we infer the inequality∫
{h⩽|u|<k+h}

a(x, u,∇u) · ∇u dx + k

∫
{|u|⩾k+h}

(
|b(x, u,∇u)|+M ′(x, |u|)

)
dx

+
∫
{h⩽|u|<k+h}

(
b(x, u,∇u) +M ′(x, u)

)
(u− h signu) dx ⩽ k

∫
{h⩽|u|}

|f | dx.

In view of (3.5) we have

(b(x, u,∇u) +M ′(x, u))(u− h signu) ⩾ 0

for h ⩽ |u|. Combining the two last inequalities and using (3.1) for any k > 0
we derive that

a

∫
{h⩽|u|<k+h}

M(x, d|∇u|) dx ⩽ k

∫
{h⩽|u|}

(|f |+ |ϕ|) dx.

As f, ϕ ∈ L1(Ω), taking (4.11) into account and passing to the limit as h → ∞,
we deduce (4.18). The lemma is proved.

Lemma 4.8. Let vj , j ∈ N, and v be functions in LM (Ω) such that

vj → v a.e. in Ω, j →∞,

and
M(x, vj) ⩽ g ∈ L1(Ω), j ∈ N.

Then
vj → v modularly in LM (Ω), j →∞.

Lemma 4.8 follows from Lebesgue’s theorem.

Lemma 4.9. Let Q be a measurable set, assume that the Carathéodory function
a(x, s0, s) : Q × R × Rn → Rn satisfies (3.3), and let vj : Q → R and wj : Q → Rn

be sequences of measurable functions such that vj → v a.e. in Q, |v| ⩽ k , and∫
Q

(a(x, vj ,wj)− a(x, vj ,w)) · (wj − w) dx → 0, j →∞,

where |w| ⩽ r . Then

wj → w a.e. in Q, j →∞.

This lemma can be proved based on Lemma 2.4 in [26], similarly to the proof of
Lemma 6.2 in [27] by Vorob’ev and Mukminov.

Lemma 4.10. Assume that conditions (3.1)–(3.3) are satisfied, and for some fixed
k > 0 assume that the sequence (Tk(uj),∇Tk(uj)) ∈ LM (Ω), j ∈ N, satisfies

∇Tk(uj) ⇀ ∇Tk(u) in the σ(LM ,EM )-topology on LM (Ω), j →∞, (4.19)

Tk(uj) → Tk(u) a.e. in Ω, j →∞, (4.20)

a(x, Tk(uj),∇Tk(uj)), j ∈ N, is bounded in LM (Ω); (4.21)

lim
s→∞

lim
j→∞

∫
Ω

qj
s(x) dx = 0, (4.22)
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and

qj
s(x) = (a(x, Tk(uj),∇Tk(uj))− a(x, Tk(uj),∇Tk(u)χs)) · (∇Tk(uj)−∇Tk(u)χs),

(4.23)
where χs is the characteristic function of the set Ωs = {x∈Ω | |∇Tk(u)|⩽ s}. Then
it is true for some subsequence that

∇Tk(uj) → ∇Tk(u) a.e. in Ω, j →∞, (4.24)

∇Tk(uj) → ∇Tk(u) modularly in LM (Ω), j →∞, (4.25)

and

a(x, Tk(uj),∇Tk(uj)) · ∇Tk(uj)
→ a(x, Tk(u),∇Tk(u)) · ∇Tk(u) in L1(Ω), j →∞. (4.26)

Proof. We fix r > 0. Let s > r. Applying (3.3) we can infer the relations

0 ⩽
∫

Ωr

(
a(x, Tk(uj),∇Tk(uj))− a(x, Tk(uj),∇Tk(u))

)
· ∇(Tk(uj)− Tk(u)) dx

=
∫

Ωr

(a(x, Tk(uj),∇Tk(uj))− a(x, Tk(uj),∇Tk(u)χs)) · (∇Tk(uj)−∇Tk(u)χs) dx

⩽
∫

Ω

(a(x, Tk(uj),∇Tk(uj))− a(x, Tk(uj),∇Tk(u)χs)) · (∇Tk(uj)−∇Tk(u)χs) dx.

Then from (4.22) we obtain

lim
j→∞

∫
Ωr

(
a(x, Tk(uj),∇Tk(uj))− a(x, Tk(uj),∇Tk(u))

)
· ∇(Tk(uj)− Tk(u)) dx = 0.

(4.27)
Using Lemma 4.9 for Q = Ωr, vj = Tk(uj), v = Tk(u), wj = ∇Tk(uj) and w =
∇Tk(u), we establish the convergence

∇Tk(uj) → ∇Tk(u) a.e. in Ωr, j →∞;

thereupon we deduce the convergence (4.24) using the diagonal process.
According to the Banach-Steinhaus theorem, the convergence (4.19) yields that

the sequence {∇Tk(uj)}j∈N is bounded, that is,

∥∇Tk(uj)∥M ⩽ C7, j ∈ N. (4.28)

We conclude from (4.20), (4.24), since a(x, s0, s) is continuous in s = (s0, s), that

a(x, Tk(uj),∇Tk(uj)) → a(x, Tk(u),∇Tk(u)) a.e. in Ω, j →∞.

By virtue of Lemma 4.3, from this and (4.21) we derive that

a
(
x, Tk(uj),∇Tk(uj)

)
⇀ a

(
x, Tk(u),∇Tk(u)

)
in the σ(LM ,EM )-topology

on LM (Ω), j →∞. (4.29)



490 A.P. Kashnikova and L.M. Kozhevnikova

It follows from (4.20) that

a
(
x, Tk(uj),∇Tk(u)χs

)
→ a

(
x, Tk(u),∇Tk(u)χs

)
a.e. in Ω, j →∞,

while (3.2) implies the estimate

M
(
x, |a(x, Tk(uj),∇Tk(u)χs)|

)
⩽ Ψ(x) + ÂP (x, d̂k) + ÂM(x, d̂s) ∈ L1(Ω), j ∈ N.

By Lemma 4.8 we obtain the convergence

a
(
x, Tk(uj),∇Tk(u)χs

)
→ a

(
x, Tk(u),∇Tk(u)χs

)
modularly in LM (Ω), j →∞.

Since the function M satisfies the ∆2-condition, we have

a
(
x, Tk(uj),∇Tk(u)χs

)
→ a

(
x, Tk(u),∇Tk(u)χs

)
strongly in LM (Ω) = EM (Ω), j →∞. (4.30)

We set yj = a(x, Tk(uj),∇Tk(uj))·∇Tk(uj) and y = a(x, Tk(u),∇Tk(u))·∇Tk(u)
and write∫

Ω

yj dx =
∫

Ω

qj
s(x) dx +

∫
Ω

a
(
x, Tk(uj),∇Tk(u)χs

)
·
(
∇Tk(uj)−∇Tk(u)χs

)
dx

+
∫

Ω

a
(
x, Tk(uj),∇Tk(uj)

)
· ∇Tk(u)χs dx = Ij

s1 + Ij
s2 + Ij

s3. (4.31)

Applying (4.19) and (4.30) we establish that

lim
j→∞

Ij
s2 =

∫
Ω

a
(
x, Tk(u),∇Tk(u)χs

)
· ∇Tk(u)(1− χs) dx

=
∫
{Ω: |∇Tk(u)|>s}

a(x, Tk(u), 0) · ∇Tk(u) dx.

As a(x, Tk(u), 0) · ∇Tk(u) ∈ L1(Ω) and meas{Ω: |∇Tk(u)| > s} → 0 as s → ∞,
we obtain

lim
s,j→∞

Ij
s2 = 0. (4.32)

Due to (4.29),

lim
s,j→∞

Ij
s3 =

∫
Ω

y dx. (4.33)

Combining (4.22) and (4.31)–(4.33) we establish the convergence∫
Ω

yj dx →
∫

Ω

y dx, j →∞. (4.34)

Now, using (4.20) and (4.24) we conclude that

yj → y a.e. in Ω, j →∞. (4.35)

According to (3.1), the functions wj = yj + ϕ and w = y + ϕ are nonnegative;
therefore, from Lemma 4.5 we deduce the convergence (4.26). Then, in view of (3.1)
and (4.26) and using Lemma 4.4 for vj = M(x, d|∇(Tk(uj) − Tk(u))|/2) and gj =
(yj + y + 2ϕ)(a2)−1 we derive (4.25). The lemma is proved.
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Lemma 4.11. Let vj , j ∈ N, and v ∈ L∞(Ω) be functions such that the sequence
{vj}j∈N is bounded in L∞(Ω) and

vj → v a.e. in Ω, j →∞.

Then vj ⇀ v as j →∞ in the σ(L∞, L1)-topology on L∞(Ω).
In addition, if g is in LM (Ω)(EM (Ω)), then

vjg → vg modularly (strongly) in LM (Ω)(EM (Ω)), j →∞.

The proof of Lemma 4.11 follows from Lebesgue’s theorem.
Below we use Vitali’s theorem in the following form (see [28], Ch. III, § 6, The-

orem 15).

Lemma 4.12. Let vj , j ∈ N, and v be measurable functions in a bounded domain
Q such that

vj → v a.e. in Q, j →∞,

and the integrals ∫
Q

|vj(x)| dx, j ∈ N,

are uniformly absolutely continuous. Then

vj → v strongly in L1(Q), j →∞.

Lemma 4.13. Let vj , j ∈ N, and v ∈ LM (Ω) and let

vj → v modularly in LM (Ω), j →∞.

Then vj ⇀ v in the σ(LM , LM )-topology on LM (Ω).

See Lemma 2 in [25].

§ 5. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Step 1. We set

fm(x) = Tmf(x)χΩ(m), where Ω(m) = {x ∈ Ω: |x| < m}, m ∈ N.

Throughout, χQ is the characteristic function of the set Q. It is straightforward to
show that

fm → f in L1(Ω), m→∞, (5.1)

and
|fm(x)| ⩽ |f(x)|, |fm(x)| ⩽ mχΩ(m), x ∈ Ω, m ∈ N. (5.2)

We consider the equations

− div am(x, u,∇u) + am
0 (x, u,∇u) = fm(x), x ∈ Ω, m ∈ N, (5.3)

where

am(x, s0, s) = a(x, Tm(s0), s) and am
0 (x, s0, s) = bm(x, s0, s) +M ′(x, s0).



492 A.P. Kashnikova and L.M. Kozhevnikova

Here

am(x, s0, s) = (am
1 (x, s0, s), . . . , am

n (x, s0, s)) and bm(x, s0, s) = Tmb(x, s0, s)χΩ(m).

It is evident that

|bm(x, s0, s)| ⩽ |b(x, s0, s)| and |bm(x, s0, s)| ⩽ mχΩ(m), x ∈ Ω, (s0, s) ∈ Rn+1.
(5.4)

In addition, using (3.5) we establish the inequality

bm(x, s0, s)s0 ⩾ 0, x ∈ Ω, (s0, s) ∈ Rn+1. (5.5)

We define an operator Am : W̊ 1LM (Ω) →W−1LM (Ω) with domain

D(Am) = {u ∈ W̊ 1LM (Ω) | am
i (x, u,∇u) ∈ LM (Ω), i = 0, . . . , n}

by setting
⟨Am(u), v⟩ =

〈
am(x, u,∇u) · ∇v⟩+ ⟨am

0 (x, u,∇u)v
〉

(5.6)

for v ∈ W̊ 1LM (Ω). A generalized solution of problem (5.3), (1.2) is a function u in
W̊ 1LM (Ω) satisfying the integral identity

⟨Am(u), v⟩ = ⟨fmv⟩ (5.7)

for v ∈ W̊ 1LM (Ω).
The following theorem holds.

Theorem 5.1. If conditions M and (2.14) are satisfied, then the problem (5.3), (1.2)
has a generalized solution.

Proving Theorem 5.1 reduces to verifying the assumptions in the theorem in [29].
Due to Theorem 5.1, for each m ∈ N problem (5.3), (1.2) has a generalized

solution u in W̊ 1LM (Ω). Thus, the integral identity〈
(bm(x, um,∇um) +M ′(x, um)− fm(x))v

〉
+ ⟨a(x, Tm(um),∇um) · ∇v⟩ = 0, m ∈ N, (5.8)

holds for all v ∈ W̊ 1LM (Ω).
Step 2. At this step we establish a priori estimates for the sequence {um}m∈N.

Setting v = Tk,h(um) = Tk(um − Th(um)) in (5.8), h > k > 0, we obtain∫
{h⩽|um|<k+h}

a(x, Tm(um),∇um) · ∇um dx

+
∫
{h⩽|um|}

(
bm(x, um,∇um) +M ′(x, um)

)
Tk,h(um) dx ⩽ k

∫
{|um|⩾h}

|fm| dx.

(5.9)

By virtue of (5.5), on the set {Ω: h ⩽ |um|} we have(
bm(x, um,∇um) +M ′(x, um)

)
Tk,h(um) ⩾ 0.
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In view of this fact, applying (5.2) we derive from (5.9) that∫
{h⩽|um|<k+h}

a(x, Tm(um),∇um) · ∇um dx

+
∫
{h⩽|um|<k+h}

(
|bm(x, um,∇um)|+M ′(x, |um|)

)
|um − h signum| dx

+ k

∫
{|um|⩾k+h}

(
|bm(x, um,∇um)|+M ′(x, |um|)

)
dx ⩽ k

∫
{|um|⩾h}

|f | dx.

This yields the inequality∫
{h⩽|um|<k+h}

(
a(x, Tm(um),∇um) · ∇um + ϕ

)
dx

+ k

∫
{|um|⩾k+h}

(
|bm(x, um,∇um)|+M ′(x, |um|)

)
dx

⩽
∫
{|um|⩾h}

(k|f |+ ϕ) dx ⩽ C3k + C4, m ∈ N. (5.10)

Now we take Tk(um) as a test function in (5.8); making similar transformations
and taking account of (2.4) we obtain the inequality∫

{|um|<k}
a(x, Tk(um),∇Tk(um)) · ∇um dx +

∫
{|um|<k}

M(x, um) dx

+ k

∫
{|um|⩾k}

(
|bm(x, um,∇um)|+M ′(x, |um|)

)
dx ⩽ C3k, m ⩾ k.

(5.11)

Using (3.1), we infer that

a

∫
{|um|<k}

M(x, d|∇um|) dx + k

∫
{|um|⩾k}

(
|bm(x, um,∇um)|+M ′(x, |um|)

)
dx

+
∫
{|um|<k}

M(x, um) dx ⩽ C3k + C4, m ⩾ k. (5.12)

If follows from (5.12) that∫
Ω

M(x, Tk(um)) dx =
∫
{|um|<k}

M(x, um) dx +
∫
{|um|⩾k}

M(x, k) dx

⩽
∫
{|um|<k}

M(x, um) dx + k

∫
{|um|⩾k}

M ′(x, |um|) dx ⩽ C8(k), m ⩾ k,

(5.13)

and∫
Ω

|M ′(x, um)| dx

⩽
∫
{|um|<k}

M ′(x, k) dx +
∫
{|um|⩾k}

M ′(x, |um|) dx ⩽ C9(k), m ⩾ k.

(5.14)
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In addition, inequality (5.12) implies the estimate∫
{|um|<k}

M(x, d|∇um|) dx =
∫

Ω

M(x, d|∇Tk(um)|) dx ⩽ C10(k), m ⩾ k.

(5.15)
Combining (5.4), (3.4) and (5.15) we deduce the inequality∫

{|um|<k}
|bm(x, um,∇um)| dx

⩽ b̂(k)
∫
{|um|<k}

(
M(x, d|∇um|) + Φ0(x)

)
dx ⩽ C11(k) (5.16)

for m ⩾ k. It follows from (5.16) and (5.12) that

∥bm(x, um,∇um)∥1 ⩽ C12(k), m ⩾ k. (5.17)

In addition, from (5.13) and (5.15) we derive that

∥Tk(um)∥M + ∥∇Tk(um)∥M ⩽ C13(k), m ⩾ k. (5.18)

Step 3. According to Lemma 4.2, estimate (5.12) implies that

meas{|um| ⩾ ρ} → 0 uniformly with respect to m ∈ N, ρ→∞. (5.19)

Now we establish the convergence

um → u a.e. in Ω, m→∞, (5.20)

over a subsequence. It follows from (5.18) that the set {Tρ(um)}m∈N is bounded
in W̊ 1LM (Ω). Owing to (2.14), by Lemma 2.1 the space W̊ 1LM (Ω) is compactly
embedded in LP (Ω(R)) for any Musielak-Orlicz function P ∈ L1,loc(Ω), P ≺≺M∗.
Here L1,loc(Ω) is the space consisting of functions v : Ω → R such that v ∈ L1(Q)
for any bounded set Q ⊂ Ω.

For any fixed ρ,R > 0, this yields the convergence Tρ(um) → vρ in LP (Ω(R)) and
also the convergence Tρ(um) → vρ over a subsequence almost everywhere in Ω(R).
Next, (5.20) is established in the same way as in [19], § 5.3. It follows from (5.20)
that

Tk(um) → Tk(u) a.e. in Ω, m→∞, (5.21)

for any k > 0.
Due to (5.20) and (5.21), we deduce from (5.12)–(5.14) that

meas{|u| ⩾ ρ} → 0, ρ→∞, (5.22)
M ′(x, |u|) ∈ L1(Ω), (5.23)

∀ k > 0 M(x, Tk(u)) ∈ L1(Ω). (5.24)

Now we prove that

M ′(x, um) →M ′(x, u) in L1,loc(Ω), m→∞. (5.25)
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In view of the convergence (5.20) we have

M ′(x, um) →M ′(x, u) a.e. in Ω, m→∞. (5.26)

From (5.10) for k = 1 and any h > 0 we derive that∫
{Ω: h⩽|um|<1+h}

(
a(x, Tm(um),∇um) · ∇um + ϕ(x)

)
dx

+
∫
{Ω: |um|⩾h+1}

(
|bm(x, um,∇um)|+M ′(x, |um|)

)
dx

⩽
∫
{Ω: |um|⩾h}

(|f |+ ϕ) dx, m ∈ N.

In view of the fact that f, ϕ ∈ L1(Ω) and the absolute continuity of the integral on
the right-hand side of the last inequality, taking account of (5.19), for any ε > 0,
we can choose sufficiently large h(ε) > 1 such that∫

{Ω: h−1⩽|um|<h}

(
a(x, Tm(um),∇um) · ∇um + ϕ(x)

)
dx

+
∫
{Ω: |um|⩾h}

(
|bm(x, um,∇um)|+M ′(x, |um|)

)
dx <

ε

2
, m ∈ N.

(5.27)

Let Q be an arbitrary bounded subset of Ω; then for any measurable set E ⊂ Q
we have∫

E

M ′(x, |um|)dx ⩽
∫
{E : |um|<h}

M ′(x, |um|) dx +
∫
{Ω: |um|⩾h}

M ′(x, |um|) dx.

(5.28)
The fact that M ′(x, z) ∈ L1(Ω) for any fixed z ∈ R implies the inequality∫

{E : |um|<h}
M ′(x, |um|) dx ⩽

∫
E

M ′(x, h) dx <
ε

2
(5.29)

for any E such that measE < α(ε).
Combining (5.27)–(5.29) we infer the estimate∫

E

M ′(x, |um|) dx < ε ∀E such that measE < α(ε), m ∈ N.

It follows that the integrals
∫

Q

M ′(x, |um|) dx, m ∈ N, are uniformly absolutely

continuous; by Lemma 4.12 we have the convergence

M ′(x, |um|) →M ′(x, |u|) in L1(Q), m→∞.

As Q ⊂ Ω is arbitrary, the convergence (5.25) is proved.
Step 4. We show that Tk(u) ∈ W̊ 1LM (Ω) for any k > 0. Since the set {Tk(um)}m∈N
is bounded in W̊ 1LM (Ω), we can extract a weakly convergent subsequence such that
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Tk(um)⇀vk as m→∞ in the σ(LM ,EM )-topology on W̊ 1LM (Ω), and moreover
vk ∈ W̊ 1LM (Ω). The continuity of the natural map W̊ 1LM (Ω) → LM (Ω) implies
the weak convergences

∇Tk(um) ⇀ ∇vk in the σ(LM ,EM )-topology in LM (Ω), m→∞,

and

Tk(um) ⇀ vk in the σ(LM , EM )-topology in LM (Ω), m→∞.

Using (5.21) and Lemma 4.3, we obtain the weak convergence

Tk(um) ⇀ Tk(u) in the σ(LM , EM )-topology in LM (Ω), m→∞.

It follows that vk = Tk(u) ∈ W̊ 1LM (Ω); therefore,

∇Tk(um) ⇀ ∇Tk(u) in the σ(LM ,EM )-topology in LM (Ω), m→∞. (5.30)

Step 5. We prove the convergences

∇Tk(um) → ∇Tk(u) modularly in LM (Ω), m→∞, (5.31)

and

a(x, Tk(um),∇Tk(um)) · ∇Tk(um)
→ a(x, Tk(u),∇Tk(u)) · ∇Tk(u) in L1(Ω), m→∞. (5.32)

Let w ∈ EM (Ω) be arbitrary; then condition (3.3) yields the inequality(
a(x, Tk(um),∇Tk(um))− a(x, Tk(um),w)

)
· (∇Tk(um)− w) ⩾ 0. (5.33)

From this we derive that∫
Ω

a(x, Tk(um),∇Tk(um)) · w dx ⩽
∫

Ω

a(x, Tk(um),∇Tk(um)) · ∇Tk(um) dx

−
∫

Ω

a(x, Tk(um),w) · (∇Tk(um)− w) dx. (5.34)

Furthermore, applying (3.2) we infer that∫
Ω

M(x, |a(x, Tk(um),w)|) dx

⩽ ∥Ψ∥1 + Â

∫
Ω

P (x, d̂k) dx + Â

∫
Ω

M(x, d̂|w|)) dx = C14.

Using (2.10), we establish the estimate

∥a(x, Tk(um),w)∥M ⩽ C15. (5.35)

Combining (5.34), (5.11), (5.18), and (5.35) we arrive at the inequality∫
Ω

a(x, Tk(um),∇Tk(um)) · w dx ⩽ C16 ∀w ∈ EM (Ω).
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Using the principle of uniform boundedness, for any k > 0 we have

∥a(x, Tk(um),∇Tk(um))∥
M

⩽ C17(k), m ⩾ k. (5.36)

Estimate (5.36) implies that, over a subsequence,

a(x, Tk(um),∇Tk(um)) ⇀ ãk

in the σ(LM ,EM )-topology on LM (Ω), m→∞. (5.37)

For positive real numbers m, j, δ, ε, and s we let ω(m, j, δ, ε, s) denote an
arbitrary quantity such that

lim
s→+∞

lim
ε→0

lim
δ→0

lim
j→+∞

lim
m→+∞

ω(m, j, δ, ε, s) = 0.

Let h, k, h− 1 > k > 0.
Due to Lemma 2.2, there exists a sequence vj ∈ C∞0 (Ω) such that

vj → Tk(u) modularly in W̊ 1LM (Ω), j →∞.

Then
Tk(vj) → Tk(u) modularly in W̊ 1LM (Ω), j →∞,

and

Tk(vj) → Tk(u), ∇Tk(vj) → ∇Tk(u) a.e. in Ω, j →∞. (5.38)

In addition, by Lemma 4.13 we have

∇Tk(vj) ⇀ ∇Tk(u) in the σ(LM ,LM )-topology, j →∞. (5.39)

We set

zmj = Tk(um)− Tk(vj), zj = Tk(u)− Tk(vj), m, j ∈ N,

and φk(ρ) = ρ exp(γ2ρ2), where γ = b̂(k)/a. It is evident that

ψk(ρ) = φ′k(ρ)− γ|φk(ρ)| ⩾ 7
8
, ρ ∈ R.

It follows that

7
8

⩽ ψk(zmj) ⩽ max
[−2k,2k]

ψk(ρ) = C18(k), m, j ∈ N. (5.40)

In view of (5.21) and (5.38) we have

φk(zmj) → φk(zj), φ′k(zmj) → φ′k(zj), ψk(zmj) → ψk(zj)
a.e. in Ω, m→∞, (5.41)

φk(zj) → φk(0) = 0, φ′k(zj) → φ′k(0) = 1, ψk(zj) → ψk(0) = 1
a.e. in Ω, j →∞, (5.42)
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and also

|φk(zmj)| ⩽ φk(2k), 1 ⩽ φ′k(zmj) ⩽ φ′k(2k), m, j ∈ N, (5.43)

and
|φk(zj)| ⩽ φk(2k), 1 ⩽ φ′k(zj) ⩽ φ′k(2k), j ∈ N. (5.44)

Using (5.41), (5.43), (5.42), and (5.44), due to Lemma 4.11 we establish the
convergences

φk(zmj) ⇀ φk(zj) in the σ(L∞, L1)-topology in L∞(Ω), m→∞, (5.45)

and

φk(zj) ⇀ 0 in the σ(L∞, L1)-topology in L∞(Ω), j →∞. (5.46)

We set ζ(r) = min(1,max(0, r)), ηh(r) = ζ(h− r+ 1), ηs,ε(r) = ζ((s− r)/ε+ 1)
and νk,δ(r) = ζ((r − k)/δ + 1), r ∈ R. It is obvious that

ηs,ε(|r|) → χ({|r| ⩽ s}) in R, ε→ 0,

and
νk,δ(|r|) → χ({|r| ⩾ k}) in R, δ → 0.

For brevity, we use the notation ηm
h−1(x) = ηh−1(|um|), η̃h−1(x) = ηh−1(|u|),

ηj
s,ε(x) = ηs,ε(|∇Tk(vj)|), η̃s,ε(x) = ηs,ε(|∇Tk(u)|), νm

k,δ(x) = νk,δ(|um|), and
ν̃k,δ(x) = νk,δ(|u|).

It follows from (5.20) and (5.38) that

ηm
h−1 → η̃h−1 a.e. in Ω, m→∞, (5.47)

ηj
s,ε → η̃s,ε a.e. in Ω, j →∞, (5.48)

νm
k,δ → ν̃k,δ a.e. in Ω, m→∞. (5.49)

Taking φk(zmj)ηm
h−1 as a test function in (5.8), we obtain∫

Ω

a(x, Th(um),∇Th(um)) · ∇(φk(zmj)ηm
h−1) dx

+
∫

Ω

bm(x, um,∇um)φk(zmj)ηm
h−1 dx

+
∫

Ω

M ′(x, um)φk(zmj)ηm
h−1 dx

−
∫

Ω

fmφk(zmj)ηm
h−1 dx = I1 + I2 + I3 + I4 = 0, m ⩾ h. (5.50)

Estimates for the integrals I2–I4. In view of the inequality |M ′(x, um)|ηm
h−1 ⩽

M ′(x, h) ∈ L1(Ω) and the convergences (5.45) and (5.46), we infer that

|I3| ⩽
∫

Ω

M ′(x, h)|φk(zmj)| dx = ω(m) +
∫

Ω

M ′(x, h)|φk(zj)| dx = ωh(m, j).

(5.51)
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Similarly, owing to (5.2), in view of the fact that f ∈ L1(Ω) we obtain

|I4| ⩽
∫

Ω

|f | |φk(zmj)| dx = ω(m) +
∫

Ω

|f | |φk(zj)| dx = ω(m, j). (5.52)

It is obvious that zmjum ⩾ 0 for |um| ⩾ k; therefore, in view of (5.5), we arrive
at the estimate

bm(x, um,∇um)φk(zmj) ⩾ 0 for |um| ⩾ k.

Taking it into account and applying (5.4) and (3.4) we estimate the integrals I2:

−I2 ⩽
∫
{Ω: |um|<k}

|bm(x, um,∇um)| |φk(zmj)| dx

⩽ b̂(k)
∫

Ω

(
M(x, d|∇Tk(um)|) + Φ0(x)

)
|φk(zmj)| dx, m ∈ N.

Using (3.1), we infer the estimate

−I2 ⩽
b̂(k)
a

∫
Ω

(
aΦ0(x) + ϕ(x)

)
|φk(zmj)| dx

+
b̂(k)
a

∫
Ω

a(x, Tk(um),∇Tk(um)) · ∇Tk(um)|φk(zmj)| dx = I21 + I22.

(5.53)

In view of (5.45) and (5.46) we have

I21 =
b̂(k)
a

∫
Ω

(
aΦ0(x) + ϕ(x)

)
|φk(zmj)| dx = ω(m, j). (5.54)

We set I1 = I11 − I12, where

I12 =
∫
{Ω: h−1⩽|um|<h}

a(x, Th(um),∇Th(um)) · ∇um|φk(zmj)| dx.

Now, using (5.51)–(5.54) we derive from (5.50) that

I5 = I11 − I22 = (I1 + I2) + I12 − I22 − I2 = −(I3 + I4) + I12 + ω(m, j)
= ωh(m, j) + I12, m ⩾ h. (5.55)

Using (5.43), we obtain the estimate

|I12| ⩽ φk(2k)
∫
{Ω: h−1⩽|um|<h}

(
a(x, Tm(um),∇um) · ∇um + ϕ

)
dx

+ φk(2k)
∫
{Ω: h−1⩽|um|<h}

ϕdx, m ⩾ h.

Due to (5.27), we have
I12 ⩽ ω(h), m ⩾ h. (5.56)
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Combining (5.55) and (5.56), we establish the inequalities

I5 ⩽ ω(h) + ωh(m, j), m ⩾ h. (5.57)

A representation for I5. Making elementary transformations, we obtain

I5 =
∫

Ω

a
(
x, Th(um),∇Th(um)

)
· ∇Tk(um)φ′k(zmj) dx

−
∫

Ω

a
(
x, Th(um),∇Th(um)

)
· ∇Tk(vj)φ′k(zmj)ηm

h−1 dx

− b̂(k)
a

∫
Ω

a
(
x, Tk(um),∇Tk(um)

)
· ∇Tk(um)|φk(zmj)| dx

=
∫

Ω

a
(
x, Tk(um),∇Tk(um)

)
· ∇Tk(um)ψk(zmj) dx

−
∫

Ω

a
(
x, Th(um),∇Th(um)

)
· ∇Tk(vj)φ′k(zmj)ηm

h−1 dx

=
∫

Ω

a
(
x, Tk(um),∇Tk(um)

)
·
(
∇Tk(um)−∇Tk(vj)ηj

s,ε

)
ψk(zmj) dx

+
∫

Ω

a
(
x, Tk(um),∇Tk(um)

)
· ∇Tk(vj)ηj

s,εψk(zmj) dx

−
∫

Ω

a
(
x, Th(um),∇Th(um)

)
· ∇Tk(vj)φ′k(zmj)ηj

s,εη
m
h−1 dx

+
∫

Ω

a
(
x, Th(um),∇Th(um)

)
· ∇Tk(vj)(ηj

s,ε − 1)φ′k(zmj)ηm
h−1 dx.

It is obvious that

I5 =
∫

Ω

a
(
x, Tk(um),∇Tk(um)

)
·
(
∇Tk(um)−∇Tk(vj)ηj

s,ε

)
ψk(zmj) dx

− b̂(k)
a

∫
Ω

a
(
x, Tk(um),∇Tk(um)

)
· ∇Tk(vj)ηj

s,ε|φk(zmj)| dx

+
∫

Ω

(
a(x, Tk(um),∇Tk(um))− ηm

h−1a(x, Th(um),∇Th(um))
)

×∇Tk(vj)νm
k,δη

j
s,εφ

′
k(zmj) dx

+
∫

Ω

a
(
x, Th(um),∇Th(um)

)
· ∇Tk(vj)(ηj

s,ε − 1)φ′k(zmj)ηm
h−1 dx

= I51 + I52 + I53 + I54, m ⩾ h. (5.58)

Estimates for the integrals I52–I54.
Applying (5.41), (5.43), and Lemma 4.11 for g=∇Tk(vj)ηj

s,ε∈EM (Ω), we deduce
that

∇Tk(vj)ηj
s,ε|φk(zmj)| → ∇Tk(vj)ηj

s,ε|φk(zj)| strongly in EM (Ω), m→∞.

In view of the convergence (5.37), we establish the equality

I52 = − b̂(k)
a

∫
Ω

ãk · ∇Tk(vj)ηj
s,ε|φk(zj)| dx + ω(m).
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Using (5.42), (5.44), (5.48) and Lemma 4.11 for g = ãk ∈ LM (Ω) = EM (Ω), we
obtain that

ãk|φk(zj)|ηj
s,ε → ãk|φk(0)|η̃s,ε = 0 strongly in EM (Ω), j →∞.

Taking account of the convergence (5.39), we have

I52 = ω(m, j). (5.59)

Applying (5.41), (5.43), (5.49) and Lemma 4.11 for g = ∇Tk(vj)ηj
s,ε ∈ EM (Ω),

we derive that

∇Tk(vj)ηj
s,εφ

′
k(zmj)νm

k,δ → ∇Tk(vj)ηj
s,εφ

′
k(zj)ν̃k,δ

strongly in EM (Ω), m→∞.

In view of the convergence (5.37) it follows that

I53 =
∫

Ω

(ãk − η̃h−1ãh) · ∇Tk(vj)ν̃k,δη
j
s,εφ

′
k(zj) dx + ω(m).

Furthermore, applying (5.42), (5.44), (5.48) and Lemma 4.11 for g = (ãk−η̃h−1ãh) ∈
LM (Ω) = EM (Ω), we obtain

(ãk − η̃h−1ãh)φ′k(zj)ν̃k,δη
j
s,ε → (ãk − η̃h−1ãh)ν̃k,δ η̃s,ε

strongly in EM (Ω), j →∞.

In view of the convergence (5.39) we have

I53 =
∫

Ω

(ãk − ηh−1ãh) · ∇Tk(u)η̃s,εν̃k,δ dx + ω(m, j).

Taking account of the fact that (ãk − ηh−1ãh) · ∇Tk(u)η̃s,ε ∈ L1(Ω), we pass to the
limit as δ → 0 and arrive at the relation

I53 =
∫

Ω

(ãk−ηh−1ãh) ·∇Tk(u)η̃s,εχ({|u| ⩾ k}) dx+ω(m, j, δ) = ω(m, j, δ). (5.60)

Then using (5.41), (5.43), (5.47) and Lemma 4.11 for g = ∇Tk(vj)(ηj
s,ε − 1) ∈

EM (Ω) we infer that

∇Tk(vj)(ηj
s,ε − 1)φ′k(zmj)ηm

h−1 → ∇Tk(vj)(ηj
s,ε − 1)φ′k(zj)η̃h−1

strongly in EM (Ω), m→∞.

In view of the convergence (5.37), we establish the equality

I54 =
∫

Ω

ãh · ∇Tk(vj)(ηj
s,ε − 1)φ′k(zj)η̃h−1 dx + ω(m).

Using (5.42), (5.44), (5.48) and Lemma 4.11 for g = ãh ∈ LM (Ω) = EM (Ω),
we obtain

ãhφ
′
k(zj)(ηj

s,ε − 1)η̃h−1 → ãh(η̃s,ε − 1)η̃h−1 strongly in EM (Ω), j →∞.
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In view of the convergence (5.39) we have

I54 =
∫

Ω

ãh · ∇Tk(u)(η̃s,ε − 1) dx + ω(m, j).

Due to the fact that ãh · ∇Tk(u) ∈ L1(Ω), we obtain the equality

I54 =
∫

Ω

ãh · ∇Tk(u)(χs − 1) dx + ω(m, j, ε) = ω(m, j, ε, s). (5.61)

Since I51 is independent of h, it follows from (5.57)–(5.61) that

I51 ⩽ ωh(m, j) + ω(m, j, δ, ε, s) + ω(h). (5.62)

An estimate for the integral

I6 =
∫

Ω

(
a(x, Tk(um),∇Tk(um))− a(x, Tk(um),∇Tk(vj)ηj

s,ε)
)

× (∇Tk(um)−∇Tk(vj)ηj
s,ε)ψk(zmj) dx

=
∫

Ω

a(x, Tk(um),∇Tk(um)) · (∇Tk(um)−∇Tk(vj)ηj
s,ε)ψk(zmj) dx

−
∫

Ω

a(x, Tk(um),∇Tk(vj)ηj
s,ε) · (∇Tk(um)−∇Tk(vj)ηj

s,ε)ψk(zmj) dx

= I51 − I61. (5.63)

The convergence (5.21) implies that

a(x, Tk(um),∇Tk(vj)ηj
s,ε) → a(x, Tk(u),∇Tk(vj)ηj

s,ε) a.e. in Ω, m→∞,

while (3.2) yields the estimates

M(x, |a(x, Tk(um),∇Tk(vj)ηj
s,ε)|)

⩽ ÂM(x, d̂(s+ 1)) + ÂP (x, d̂k) + Ψ(x) ∈ L1(Ω), ε < 1, m, j ∈ N.

By virtue of Lemma 4.8,

a(x, Tk(um),∇Tk(vj)ηj
s,ε) → a(x, Tk(u),∇Tk(vj)ηj

s,ε)

modularly in LM (Ω), m→∞.

Since the function M satisfies the ∆2-condition, it is true that LM (Ω) = EM (Ω)
and

a(x, Tk(um),∇Tk(vj)ηj
s,ε) → a(x, Tk(u),∇Tk(vj)ηj

s,ε)

strongly in EM (Ω), m→∞. (5.64)

In a similar way we establish that

a(x, Tk(um),∇Tk(u)χs) → a(x, Tk(u),∇Tk(u)χs) strongly in EM (Ω), m→∞,
(5.65)

a(x, Tk(u),∇Tk(vj)ηj
s,ε) → a(x, Tk(u),∇Tk(u)η̃s,ε) strongly in EM (Ω), j →∞,

(5.66)

a(x, Tk(u),∇Tk(u)η̃s,ε) → a(x, Tk(u),∇Tk(u)χs) strongly in EM (Ω), ε→ 0,
(5.67)
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and

a(x, Tk(u),∇Tk(u)χs) → a(x, Tk(u),∇Tk(u)) strongly in EM (Ω), s→∞.
(5.68)

Applying (5.40)–(5.42), (5.48), and (5.49), from (5.64), (5.66)–(5.68) we derive
that

a(x, Tk(um),∇Tk(vj)ηj
s,ε)ψk(zmj)

→ a(x, Tk(u),∇Tk(vj)ηj
s,ε)ψk(zj) strongly in EM (Ω), m→∞, (5.69)

a(x, Tk(u),∇Tk(vj)ηj
s,ε)ψk(zj)

→ a(x, Tk(u),∇Tk(u)η̃s,ε) strongly in EM (Ω), j →∞, (5.70)
a(x, Tk(u),∇Tk(u)η̃s,ε)(1− η̃s,ε)

→ a(x, Tk(u),∇Tk(u)χs)(1− χs) strongly in EM (Ω), ε→ 0, (5.71)

and

a(x, Tk(u),∇Tk(u)χs)(1− χs) → 0 strongly in EM (Ω), s→∞. (5.72)

Using (5.69) and (5.30) we infer the relation

I61 =
∫

Ω

a(x, Tk(u),∇Tk(vj)ηj
s,ε) · (∇Tk(u)−∇Tk(vj)ηj

s,ε)ψk(zj) dx + ω(m),

j ∈ N.

Due to Lemma 4.8, it follows from (5.38) and (5.48) that

∇Tk(vj)ηj
s,ε → ∇Tk(u)η̃s,ε modularly in LM (Ω), j →∞.

In accordance with Lemma 4.13, we derive from this that

∇Tk(vj)ηj
s,ε ⇀ ∇Tk(u)η̃s,ε in the σ(LM ,LM )-topology, j →∞. (5.73)

Applying (5.70), (5.73) and (5.71) we obtain the equality

I61 =
∫

Ω

a(x, Tk(u),∇Tk(u)η̃s,ε) · ∇Tk(u)(1− η̃s,ε) dx + ω(m, j)

=
∫

Ω

a(x, Tk(u),∇Tk(u)χs) · ∇Tk(u)(1− χs) dx + ω(m, j, ε).

Finally, owing to (5.72) we arrive at

I61 = ω(m, j, ε, s). (5.74)

Combining (5.63), (5.74), and (5.62) and using (5.40) we deduce the estimate

I7 =
∫

Ω

(
a(x, Tk(um),∇Tk(um))− a(x, Tk(um),∇Tk(vj)ηj

s,ε)
)

× (∇Tk(um)−∇Tk(vj)ηj
s,ε) dx ⩽

8
7
I6

⩽ ωh(m, j) + ω(m, j, δ, ε, s) + ω(h). (5.75)
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Using the notation (4.23) we have

0 ⩽
∫

Ω

qm
s (x) dx

= I7 +
∫

Ω

a(x, Tk(um),∇Tk(um)) · (∇Tk(vj)ηj
s,ε −∇Tk(u)χs) dx

−
∫

Ω

a(x, Tk(um),∇Tk(u)χs) · (∇Tk(um)−∇Tk(u)χs) dx

+
∫

Ω

a(x, Tk(um),∇Tk(vj)ηj
s,ε) · (∇Tk(um)−∇Tk(vj)ηj

s,ε) dx

= I7 + I71 + I72 + I73. (5.76)

Estimates for the integrals I71–I73. In view of the convergences (5.37) and (5.73),
we have

I71 =
∫

Ω

ãk · (∇Tk(vj)ηj
s,ε −∇Tk(u)χs) dx + ω(m)

=
∫

Ω

ãk · ∇Tk(u)(η̃s,ε − χs) dx + ω(m, j) = ω(m, j, ε). (5.77)

Applying (5.30) and (5.65) we obtain the equality

I72 =
∫

Ω

a(x, Tk(u),∇Tk(u)χs) · ∇Tk(u)(χs − 1) dx + ω(m).

In view of (5.72), it follows that

I72 = ω(m, s). (5.78)

The integral I73 is estimated in the same way as I61: more precisely, we have

I73 = ω(m, j, ε, s). (5.79)

Combining (5.75)–(5.79) we obtain∫
Ω

qm
s (x) dx ⩽ ωh(m, j) + ω(m, j, δ, ε, s) + ω(h), m ⩾ h.

As the left-hand side of the last inequality is independent of j, δ, ε and h, taking the
limits as m → ∞, j → ∞, δ → 0, ε → 0 and s → ∞ in succession we establish
the relation

lim
s→∞

lim
m→∞

∫
Ω

qm
s (x) dx ⩽ ω(h).

Passing to the limit as h→∞, we infer that

lim
s→∞

lim
m→∞

∫
Ω

qm
s (x) dx = 0.

By Lemma 4.10, we have the convergences (5.31), (5.32) and

∇Tk(um) → ∇Tk(u) a.e. in Ω, m→∞. (5.80)
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Furthermore, like in [19], § 5.5, we establish the convergence

∇um → ∇u a.e. in Ω, m→∞, (5.81)

over a subsequence.
Step 6. Using (5.36) and the convergences (5.21) and (5.80), due to Lemma 4.3 we
establish the weak convergence

a(x, Tk(um),∇Tk(um)) ⇀ a(x, Tk(u),∇Tk(u))
in the σ(LM ,EM )-topology in the space LM (Ω), m→∞. (5.82)

The continuity of b(x, s0, s) in (s0, s) and the convergences (5.20) and (5.81)
imply that

bm(x, um,∇um) → b(x, u,∇u) a.e. in Ω, m→∞. (5.83)

In view of (5.83), according to Fatou’s lemma we can derive from (5.17) that

b(x, u,∇u) ∈ L1(Ω). (5.84)

Thus, condition (1) in Definition 3.1 is satisfied.
Now we establish the convergence

bm(x, um,∇um) → b(x, u,∇u) in L1,loc(Ω), m→∞. (5.85)

Let Q be an arbitrary bounded subset in Ω. For any measurable set E ⊂ Q
we have∫

E

|bm(x, um,∇um)| dx

⩽
∫
{E : |um|<h}

|bm(x, um,∇um)| dx +
∫
{Ω: |um|⩾h}

|bm(x, um,∇um)| dx.

(5.86)

From (5.4), (3.4) and (3.1) we deduce the estimate∫
{E : |um|<h}

|bm(x, um,∇um)| dx ⩽ b̂(h)
∫
{E : |um|<h}

(
M(x, d|∇um|) + Φ0(x)

)
dx

⩽
b̂(h)
a

∫
E

(
a(x, Th(um),∇Th(um)) · ∇Th(um) + ϕ

)
dx + b̂(h)

∫
E

Φ0(x) dx.

In view of the fact that Φ0, ϕ ∈ L1(E), the convergence (5.32), and the absolute
continuity of the integrals on the right-hand side of the last inequality, for any ε > 0
there is an α(ε) such that∫

{E : |um|<h}
|bm(x, um,∇um)| dx < ε

2
, m ∈ N, (5.87)

for any E with measE < α(ε).
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Combining (5.27), (5.86) and (5.87), we establish the estimate∫
E

|bm(x, um,∇um)| dx < ε ∀E such that measE < α(ε), m ∈ N.

It follows that the sequence {bm(x, um,∇um)}m∈N has uniformly absolutely con-
tinuous integrals over the set Q. By Lemma 4.12, we obtain

bm(x, um,∇um) → b(x, u,∇u) in L1(Q), m→∞,

for any bounded set Q ⊂ Ω. The convergence (5.85) is proved.
Step 7. To prove (3.9) we take a test function v = Tk(um − ξ) in (5.8), where
ξ ∈ C1

0 (Ω), and arrive at the relation∫
Ω

a(x, Tm(um),∇um) · ∇Tk(um − ξ) dx

+
∫

Ω

(
bm(x, um,∇um) +M ′(x, um)− fm

)
Tk(um − ξ) dx = Im + Jm.

(5.88)

We set k̂ = k + ∥ξ∥∞. If |um| ⩾ k̂, then |um − ξ| ⩾ |um| − ∥ξ∥∞ ⩾ k; therefore,
{Ω: |um − ξ| < k} ⊆ {Ω: |um| < k̂}. Consequently,

Im =
∫

Ω

a(x, Tm(um),∇um) · ∇Tk(um − ξ) dx

=
∫
{Ω: |um−ξ|<k}

a(x, um,∇um) · ∇(um − ξ) dx

=
∫
{Ω: |um−ξ|<k}

(
a(x, um,∇um)− a(x, um,∇ξ)

)
· ∇(um − ξ) dx

+
∫
{Ω: |um−ξ|<k}

a(x, um,∇ξ) · ∇(um − ξ) dx

⩾
∫

Ω

ηk−ε,ε(|um − ξ|)
(
a(x, um,∇um)− a(x, um,∇ξ)

)
· ∇(um − ξ) dx

+
∫

Ω

a(x, Tk̂(um),∇ξ) · ∇Tk(um − ξ) dx = Imε
1 + Im

2 , m ⩾ k̂. (5.89)

Furthermore, as a(x, s0, s) is continuous in the variables (s0, s), due to Fatou’s
lemma, we derive from (5.20), (5.81) and (3.3) that

lim
m→∞

inf Imε
1 ⩾

∫
Ω

ηk−ε,ε(|u− ξ|)
(
a(x, u,∇u)− a(x, u,∇ξ)

)
· ∇(u− ξ) dx.

Since ηk−ε,ε(|u− ξ|) → χ({|u− ξ| < k}) in Ω as ε→ 0, passing to the limit yields
the inequality

lim
ε→0

lim
m→∞

inf Imε
1 ⩾

∫
Ω

(
a(x, Tk̂(u),∇Tk̂(u))− a(x, Tk̂(u),∇ξ)

)
· ∇Tk(u− ξ) dx.

(5.90)
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From Lemma 4.8 we obtain

a(x, Tk̂(um),∇ξ) → a(x, Tk̂(u),∇ξ) strongly in LM (Ω) = EM (Ω), m→∞.
(5.91)

Let vm = um−ξ and v = u−ξ. Since |v| = k in a set where |vm| → k as m→∞,
we have ∇v = 0. It follows that

∇Tk(vm)−∇Tk(v) = χ{Ω: |vm|<k}(∇vm −∇v)
+

(
χ{Ω: |vm|<k} − χ{Ω: |v|<k}

)
∇v → 0 a.e. in Ω, m→∞. (5.92)

Evidently,

|∇Tk(um − ξ)| ⩽ |∇Tk̂(um)|+ |∇ξ|, x ∈ Ω, m ∈ N.

Then (5.18) implies that the sequence {∇Tk(um − ξ)}m∈N is bounded in LM (Ω).
Using (5.92) and Lemma 4.3, we derive from this that

∇Tk(um − ξ) ⇀ ∇Tk(u− ξ)
in the σ(LM ,EM )-topology in LM (Ω), m→∞, (5.93)

for any k > 0.
Combining (5.89)–(5.93) we conclude that

lim
m→∞

inf Im ⩾
∫

Ω

a(x, Tk̂(u),∇Tk̂(u)) · ∇Tk(u− ξ) dx

=
∫

Ω

a(x, u,∇u) · ∇Tk(u− ξ) dx. (5.94)

According to Lemma 4.11, we derive from (5.20) that

Tk(um − ξ) ⇀ Tk(u− ξ)
in the σ(L∞, L1)-topology on L∞(Ω), m→∞. (5.95)

We split the integral Jm into two terms. The first integral

Jm
1 =

∫
Ω

(
bm(x, um,∇um) +M ′(x, um)

)
Tk(um − ξ) dx

is estimated as follows. Let supp ξ ⊂ Ω(l), l ⩾ l0, and let cm(x, um,∇um) =
bm(x, um,∇um) + M ′(x, um) and c(x, u,∇u) = b(x, u,∇u) + M ′(x, u). Then in
view of (5.5) we have∫

Ω\Ω(l)

cm(x, um,∇um)Tk(um) dx +
∫

Ω(l)

cm(x, um,∇um)Tk(um − ξ) dx

⩾
∫

Ω(l)

cm(x, um,∇um)Tk(um − ξ) dx = J
lm

1

for l ⩾ l0. Applying (5.25), (5.85) and (5.95) we pass to the limit as m→∞. Next,
taking (5.23) and (5.84) into account, we take the limit as l→∞ and arrive at∫

Ω

(b(x, u,∇u) +M ′(x, u))Tk(u− ξ) dx = lim
l→∞

lim
m→∞

J
lm

1 ⩽ lim
m→∞

inf Jm
1 . (5.96)



508 A.P. Kashnikova and L.M. Kozhevnikova

Using (5.1) and (5.95) and passing to the limit as m→∞ in the second integral,
we establish the relation

lim
m→∞

Jm
2 = lim

m→∞

∫
Ω

fmTk(um − ξ) dx =
∫

Ω

fTk(u− ξ) dx. (5.97)

Combining (5.88), (5.94), (5.96) and (5.97) we obtain (3.9). Theorem 3.1 is
proved.

Proof of Theorem 3.2. We prove that the entropy solution constructed in Theo-
rem 3.1 has all the properties of a renormalized solution. Condition (1) holds since
it coincides with condition (1) in Definition 3.1. Then condition (2) also holds
(see (4.18)).

We prove (3.10). Let {um}m∈N be a sequence of weak solutions of problem
(5.3), (1.2) and let S ∈ W 1

∞(R) be a function such that suppS ⊂ [−M,M ] for
M > 0. For any function ξ ∈ C1

0 (Ω) we take S(um)ξ ∈ W̊ 1LM (Ω) as a test
function in (5.8) and infer that

⟨a(x, Tm(um),∇um) · (S′(um)ξ∇um + S(um)∇ξ)⟩
+ ⟨(bm(x, um,∇um) +M ′(x, um)− fm(x))S(um)ξ⟩

= Im + Jm = 0, m ∈ N. (5.98)

Obviously, we have

Im =
∫

Ω

a(x, Tm(um),∇um) · (S′(um)ξ∇um + S(um)∇ξ) dx

=
∫

Ω

a(x, TM (um),∇TM (um)) · ∇TM (um)S′(um)ξ dx

+
∫

Ω

a(x, TM (um),∇TM (um)) · ∇ξS(um) dx = Im
1 + Im

2 , m ⩾ M.

(5.99)

In view of the convergences (5.20), (5.32), and (5.80), applying Lemma 4.4
we establish the relation

Im
1 =

∫
Ω

a(x, TM (u),∇TM (u)) · ∇TM (u)S′(u)ξ dx + ω(m), m→∞. (5.100)

By Lemma 4.11, the convergence (5.20) yields that

S(um)∇ξ → S(u)∇ξ strongly in EM (Ω), m→∞.

In view of (5.82), we obtain

Im
2 =

∫
Ω

a(x, TM (u),∇TM (u)) · ∇ξS(u) dx + ω(m), m→∞. (5.101)

Combining (5.99)–(5.101) yields

lim
m→∞

Im =
∫

Ω

a(x, TM (u),∇TM (u)) · (S′(u)ξ∇TM (u) + S(u)∇ξ) dx

=
∫

Ω

a(x, u,∇u) · (S′(u)ξ∇u+ S(u)∇ξ) dx. (5.102)
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Due to Lemma 4.11 we have

S(um)ξ ⇀ S(u)ξ in the σ(L∞, L1)-topology, m→∞.

Then taking account of the convergences (5.1), (5.25), and (5.85), we establish the
equality

lim
m→∞

Jm =
∫

Ω

(b(x, u,∇u) +M ′(x, u)− f)S(u)ξ dx. (5.103)

Combining (5.98), (5.102) and (5.103) we arrive at (3.10). Thus, we conclude that
u is a renormalized solution of problem (1.1), (1.2), (3.7). Theorem 3.2 is proved.
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