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Logarithmic nature of the long-time
asymptotics of solutions of a Sobolev-type
nonlinear equations with cubic nonlinearities

P.1. Naumkin

Abstract. The Cauchy problem of the form

10i(u — O%u) + 02u —adiu=1u®, t>0, zcR,
U(O,l’) = uO(x)7 r € R,

is considered for a Sobolev-type nonlinear equation with cubic nonlinearity,
where a > 1/5, a # 1. It is shown that the asymptotic behaviour of the
solution is characterized by an additional logarithmic decay in comparison
with the corresponding linear case. To find the asymptotics of solutions of
the Cauchy problem for a nonlinear Sobolev-type equation, factorization
technique is developed. To obtain estimates for derivatives of the defect
operators, L2-estimates of pseudodifferential operators are used.
Bibliography: 20 titles.

Keywords: nonlinear Sobolev-type equation, critical nonlinearity, factor-
ization technique.

§ 1. Introduction

We consider a Cauchy problem for a Sobolev-type nonlinear equation with cubic
nonlinearity in the one-dimensional case with respect to the space variable:

i0p(u— 02u) + 02u—adiu=u® t>0, R, (1)

’LL(O,I) ZUO(‘T)’ z € R,
where a > 1/5, a # 1. We exclude the case a = 1, since then equation (1)
is easily reducible to a nonlinear Schrédinger equation. Sobolev-type equations
were first deduced in [1] in the description of small oscillations of a rotating fluid.
Sobolev-type equations also arise in plasma theory and in modelling quasi-stationary
processes in continuous electromagnetic media (see [2]). A discussion of the theory
of nonlinear Sobolev-type equations can be found in [3]-[6].
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In the one-dimensional case with respect to the space variable cubic nonlinearities
often behave themselves critically for large times. For example, the asymptotic
behaviour of solutions of the nonlinear Schrédinger equation

1
iatu—i—iagu:u?’

was considered in [7]-[9], where it was shown that the solution is characterized by
an additional logarithmic decay in comparison with the linear Schrédinger equation.
As far as we know, the large-time asymptotics of solutions of the Cauchy problem for
the Sobolev-type nonlinear equation (1) has not been investigated yet. We fill this
gap in our paper by developing the factorization technique proposed in [10]-[14].
We also use some known LZ2-estimates for pseudodifferential operators to estimate
derivatives of the defect operators.

We introduce some notation. We let L? denote the Lebesgue space with the
norm

1/p
lollwr = ([ loto)ldz)  for 1< p <o
R
||}l = esssup|o(z)| for p = oo.
z€R

We introduce the weighted Sobolev space
H™* = {¢ €S [[¢mm: = [[(2)* (i 0:) " l2 < 00}

for m,s € R, where () = V1+4a2, (id;) = /1 —092 and S’ is the space of
Schwartz distributions. We also set H™ = H™". We let C(I; B) denote the space
of continuous functions mapping the interval I to some Banach space B. Similarly,
C!(I; B) denotes the space of continuously differentiable functions from I to B.

We let F¢ or ¢ denote the Fourier transform

" 1 —ix .
o(&) = \/T—W/Re $o(x) da;

then the inverse Fourier transform F~! has the form

Flo = o= [ eoe) e

Different positive constants are denoted by the same letter C.

We consider solutions of (1) in the space C([0,00); H?) N CL((0,00); H?); so
equation (1) is understood in the classical sense. Multiplying (1) by the operator
(1 — 02)~! we rewrite it in the pseudodifferential form as

{z’@tu —Au={(i0,)"%u?, t>0, v€R, @)

u(0,z) = up(z), xz €R,
where (i0,)72 = (1 —8%)7! and the linear pseudodifferential operator A =

(1 —0%)71(—02 + a 8?) is characterized by its symbol

2 4
MO =8
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Under the condition a > 1/5, we have A”(£) > 0 for all £ € R, which guarantees
the nonsingularity of the stationary point p(z) defined as the root of the equation

2¢(1 + 2ag? 4
Ao = 260 (+1+a§£2;a£>:x

for each x € R. Thereafter, using the unperturbed evolution group U(t) =
Fle M8 F we rewrite the Cauchy problem (2) as the integral equation

w(t) = Ut ug— /O Ut — 7)(i 0,) 2 (7) dr. 3)

We introduce the extension operator Dy¢ = t~1/2¢(x/t), the scale transformation
(Bo)(z) = ¢(u(x)) and the factor M = ™) where O(z) = —A(z) + zA/(z).
We also introduce the notation T = z+v/t.

The aim of this paper is to prove the following result.

Theorem 1.1. There exist £g > 0 and a positive constant C' such that if the initial
data ug € H> N HO! satisfy the inequalities

—~ ™ . —~
[luol| g5 npr01 < Co, sup |argup(§)| < — and inf |ug(§)| =€
leI<1 8 lel<1

for e € (0,e0), then there exists a unique time-global solution
u € C([0,00); H* N H*') N C((0, 00); H?)

of Cauchy problem (1). In addition,

u(t, {13) = DtB

\/1 - “A\jg In(t{z)2(z)~2)

as t — oo uniformly with respect to x € R.

Remark 1.1. The asymptotic formula (4) describes an additional logarithmic decay
in comparison with the corresponding linear case.

We briefly describe the rest of this paper. In §2 we describe the factorization
technique. Thereupon, we estimate the defect operators in the uniform metric.
After that, applying some known estimates for pseudodifferential operators in the
L2-norm, we obtain estimates for derivatives of the defect operators. In § 3 we prove
a priori estimates for the solution in the norm || FU(—t)u(t)|x,, where

1pllxr = t:ﬁpﬂ('w”” + W) Tl + ¢ IE) lls + K0 la);

here W (t) = 14+&2In(14t), K(t) = t7 +2t/4W=3/2(t) and v > 0 is small. Finally,
we prove Theorem 1.1 in §4.
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§ 2. Preliminary estimates

2.1. Factorization technique. We consider the following representation of the
unperturbed evolution group:

2 4
Ut) = F e MO F where A(€) = 751125 )

For a > 1/5 we have

1+ (6a — 3)€2 + 3ac* + ac®)
(1+¢2)?

N'(&) = 21 >0 forall £ €R.

Therefore, there exists a unique nonsingular stationary point wp(z) defined as the
root of the equation

2¢(1 + 2a€? + a&?)

1+ ) =gz for each x € R.

N(€) =

We write U (t)F ' ¢=D,BM Q¢, where Dyp=t"1/2¢(x/t) is the extension operator,
(Bo)(x) = ¢p(u(x)) is the scale transformation, M = e?*®(€) is the factor with phase

_ 201+ 8@Ba—1)+agh)

O(§) = —A(§) + &N (§)

(1+&2)2 ’
and
t2 [ istem
Qt)p = 5 ). © Me(&)dE

is the defect operator with phase function S(&,n) = A(§) — A(n) — A'(n)(€ — 7).

We also need the representation FU(—t) = Q*MB~'D; * for the inverse unper-
turbed evolution group, where D, Lo =1/ 2¢(xt) is the inverse extension operator,
B~1¢ = ¢(N'(n)) is the inverse scale transformation, and

£1/2
B V2T Jr

is the conjugate defect operator. Note that the defect operators can be written as
Q(t) = MB~'D;  F~1e=M8) and Q*(t) = MBDe™ M8 F, which shows that they
act from L? to L2 and also that Q*(t) is the conjugate operator of Q(t).

We introduce the new function = FU(—t)u(t). Since FU(—t)L = i O FU(—t)
for the operator £ =1id; — A, applying FU(—t) to (2) we obtain

Q*(t)¢ etSEM y(m)A (n) dn

i 003 = i O FU(—t)u(t) = FU(—t)Lu = (&) *FU(—t)U)F'$)*
= (7' Q"MB™'D; (DBMQP)* = t71{¢) * Q" M*?,

where v = Qp. We have

S(Em) + kOM) = Vs () + (1 + k)S(5 )
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where

Qs = A€ — (k + 1)A<k§r1> for k # —1.

By the definition of the conjugate defect operator Q*(t),

()M"*¢ = \/%/ SEmAROI 6 ()N () dny
_ ZtQk“'D / 1+k / i(14+k)tS (€, n)(b( )A//( )

= ”QMDWQ* k1)t

where Dy 10 = (k+ 1)"Y2¢(z/(k + 1)). Taking k = 2 in this identity, we arrive
at the main equation of the factorization method:

Zatgp\ _ t71<§>72 Q*M2U3 _ t71<€>72€itQD3Q*(3t)1}3, (5)

where we have used the notation

= 0.

Q=03 =A(&) - 3A(§> _ 252(9 + (13a — 3)52 + a§4)

3 27(14 £2)(1 + £2/9)

We introduce the operators

A = ——— M aMk¢, k=0,1;

tA” (n)
thus, A; = in + Ap. The identities i£Q* = Q* Ay and Qi = A;Q hold.

2.2. Estimates for the defect operator Q in the uniform metric. We spec-

ify the kernel A(t,n) as
/i/e—itS(f,m e
2w R

The long-time asymptotics of A(t,n) can be calculated using the method of sta-
tionary phase (see [15]). However, we need to estimate the remainder uniformly
with respect to the parameter n € R. Therefore, for the convenience of the reader,
we give a proof of the asymptotic formula.

Note that

S(fﬂ?) = (6 - 77)2P12(€’77)7

where
P& n) = ()2~ Pa(&m) and  Pa(&,m) = (1—a)((§)* — (n+£)*) +a(&)*(n)*.
If a > 1, then

Pa(&,n) = (a—1)(n+€)* + (€)*(a(n)* — (a = 1)) = C)* ()"
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for all £, € R. In the case when 1/5 < a < 1, using the inequality 7%(n)~* < 1/4
we infer that

2 2
Pz(&??)>a<n>4<£— 1;"07@4) +a(n2+3a2;1> +%
> (€)% (n)*

for all £, € R. Hence P(£,1) = C(£)%(n)?, and we can write

S,n) = 2%, where z = (E—=n)Pi(&n) and Pi(&,n) = C > 0,

for all £,m € R. On the other hand, since P5(§,n) is estimated from above by
C(£)?(n)* for some positive constant C, the function P;(£,n) is bounded above and
below by positive constants uniformly with respect to &, 7 € R.

Now we can replace the integration variable £ by z = (£ — n)Py; thus, we have

At =[x [ .2

F.2) = e =
T Gxe ) jog ~ 9S(Em)/o¢
Note that z = 0 corresponds to £ = 1. We write

a8(&,m)
o3

where

=2(& =)&) ) Ps(&,m),

where
Py(&,n) = —(1—a)né(2+ & +1) + 1+ 2an” + an® + 2a&” + a&*
+ (5a — D)n*€* + 2an*&* (&% + n*) + an*eh.

When a > 1, we can easily see that P3(£,m) > C(E)4{(n)?* for all £,y € R. To
establish this estimate in the case when 1/5 < a < 1 we use the inequalities

1 1 1 1 1
<5+ 577252» &n? < 5(54 +n') and €% < 5T 5774f4~
Then the first term in P3(€,n) satisfies
5(1—a 1—a 1-a
(1 - a2+ € + ) < 2 1 )4 &)+ e

L@ 4.

l1—a, o 9 1
e R RE

It follows that

P3(£a77) =

for all &, € R. In particular,
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since z/(§ — n) is bounded, we have

22/(€—m)
Se(€m)/(E—n)

The boundedness of 1/f(n, z) can be established similarly.
Now we use the equalities

\/; / = o Al =500,

Ps(n,n) = 2< m*A”(n) and  f(n,0) = f(n)

0< f(n,2)=

[\V]

then we have
1 t
A(t,n) = W +/ %Rv

where the remainder R is / etz (f(n,2) — f(n,0)) dz. Integrating by parts in R
R

and using the identity e="=" = (1 — 2it22)710,(ze~**") we derive the equality
R= 7/ efitz{" Zazf(nv Z) dz — / efitz2 4%22(]‘?(773 Z) — f(77a0)) dz
R R

1— 2it22 (1 — 2it22)2
Note that
o 1 1@ (&)
d.f(n,z) = W Oef(n,z) = 3 85f2(77,z) =3 3§W.

Therefore, in view of the estimates

(P& S CE )", [0:PaEm <CEM*Y,  Ps(&m) = CE€) )
|0 Ps(&,m)] < C()* ()" and  |9¢(€)°] < C€)°,

it is true that

(€)5(m)*Pa(&,m) ‘

|8zf(77az)| = 2’65 Pf(f 77)

(&)°(m* (€)°(m)* Pa(€&,m)
¢ ) |5£P2(€’77)|+C‘P:33(€7277) |0 P3(&,m)]
P
+C<]>322’€77 ‘W
<CoE)!

for all £, € R. We also have

and

|f(n,2) = f(0,0) < f(n,2) + f(n,0) < C for [z > 1
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which implies the inequalities

1 2dz e o0
|R| gc/ —F +tCt” 1/ (€)1t dz+C’t*1/ 27 2dz
o 1+tz 1 1

zdz _ dz _ dE _
<C +Ct1/ —+Ot / < Ct 'lnt.
/0 1+122 1 R (£)?

Thus, we arrive at the asymptotic formula

At n) = Z_Alﬂ(n)a Ot nt))

as t — oo, which holds uniformly with respect to n € R.
We define the antiderivative for £ # 0 by

—/ F(O)dC for € >0,
8glf: f
Lf(()d( for & < 0.

We consider the kernel

t ooy, it
G(tagan): %afl(e £S(n 5777)).

Integrating by parts in Q¢ yields

Qd) = \/;/R eiitS(nigm)(b(n - 5) df = A(t, 77)(1)(77) + /R G(ta 57 77)¢n(77 - 5) df,

since —G(t,+0,n) + G(t,—0,n) = A(t,n).
The following lemma estimates the kernel G(t, £, n). We introduce the automodel

variable E: V.
Lemma 2.1. The following inequality holds:
G(t,6m)| <CE™" forall&neR, t>1.

Proof. To estimate the kernel G(t,€,n) we integrate by parts on the basis of the
identity
e itS(n—&m) _ H(t,€,n) ag(ge—itS(n—fm)),

where H(t,&,m) = (1 — it 9:5(n — &, 1)) L. For £ > 0 we obtain

G(t, &) = ‘/27r/ e~ S (n— Cn)dg
t <
=\ SR (1, ) + o /6 eSO O (H (1, C,m) dC.
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Since |0:5(n — ¢, n)| = C|¢|, we have

\H(t,¢,n)| + |0 (H(t,¢,n)| < C(C)72,  where ¢ = (VL.

It follows for £ > 0 that
Gt & m)| < CIENE) ™ + C1/2 /ﬁ (©2de < CEL.

The case £ < 0 is considered similarly.
The lemma is proved.

The following lemma gives us the long-time asymptotics of the defect operator Q.

Lemma 2.2. The following inequality holds:
196 — AdllL < Ct~elle  for all t > 1

Proof. Using the estimate in Lemma 2.1 and the Cauchy-Bunyakovsky-Schwarz
inequality we obtain

1/2
Q6 — Ad| = ‘/Gtsmn fdé‘ 0|¢5||L2</R<> ds)
< O g o

The lemma is proved.

2.3. Estimates for the conjugate defect operator in the uniform metric.
We define the conjugate defect operator V; ¢ by

Vig = \/Z/R6“53(57”)/1@,57n)¢(77)A”(n) dn,

where the weight has the form

h(t,&,n) = (—; —|—z't53(§,77))_ for S5(&,m) = S(&,n) +20(n).

We consider the kernel

* t 1S3
A(t.6) =\ 5= [ S €A ) d

Replacing the integration variable by 77 = t'/21 we arrive at

A5 (,0) = ,/i/e&rﬂ(uowﬁ?)) A" (it~ 12) diy
hA® (—1/2 + 3i52(1 + O(t~1772)))2

177 —1/2 \/§ —1/2
\/>/ 3 1/2+3‘~2) +0(t1?) = \/§+O(t /2y,
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We also obtain

40,6 = V@2 4 0123 + F(E2).

&

Denoting the kernel by

Gt €m) = \/2T O ("Nt €,€ = m)A”(€ =)

T on
and integrating by parts in the integral V', we obtain
* t 7 —
Vh(b = \/ %/Re 1538 n)h(tvgaf - 77)¢(f - W)A//(f - 77) d’]
= 41800 + [ Gitt.emocte —m

since —G7 (t,€,+0) + G, (t,€,—0) = A5 (t,€). The following lemma estimates the
operator V; in the uniform metric.

Lemma 2.3. The following inequality holds:
[Vid = Ajdliue < OtV 2 0y6llLe for all t > 1.

Proof. Since h(t,&,& —n) < C(€)~Hn) 73, we obtain the inequality

Grtenl <@ [T < o@

From the Cauchy-Bunyakovsky-Schwarz inequality we infer that

Vi — Aol =

/RGZ(t,&n)cﬁg(f -n) dn‘

_ _ 1/2
< CII{7) 2 Byl ( / &) E 7 dn)

< CtVH(@) 2 0y e
The lemma is proved.

2.4. Boundedness of pseudodifferential operators. There are many results
concerning the L2-boundedness of pseudodifferential operators of the form

a(t,z, D)6 = / e a(t, x, ©)0(€) de

(see [16]-[19]). Below we use the following result (see [18]).

Lemma 2.4. Assume that the symbol a(t,xz,£) satisfies the estimates

sup  |0F Ota(t,x,€)| < C
z,E€ER, t>1 )

for k,1=0,1. Then
la(t, z,D)d||rz < Cl|¢|re



1034 P.I. Naumkin

A similar result is true for the conjugate operator

W (LD = [ e (1 () do
Lemma 2.5. Assume that the symbol a*(t,x,§) satisfies the estimates

sup  |OF 8éa*(t,x,£)| <C

z,E€ER, t2>1

for k,1=0,1. Then
Ja (€. D)oz < Cllolle.

2.5. Estimates for derivatives of the defect operator. We define the defect
operator with weight h(t, &, n) by

Vi = t1/2 / e SEM h(t, €, m)p(€) de.
R

The following lemma proves that the operator V), is L2-bounded uniformly with
respect to t > 1.

Lemma 2.6. Assume that the kernel h satisfies the estimates
|07 DEh(t, € )] < CHmTIL2
forallé,neR, t > 1, where m,n =0,1. Then
VA" V,d|L> < Cllollne  for all t > 1

Proof. We make the change of variable n = u(x); then

Vio = t'/2MB! / e"Th(t, € p(w))e MO (€) de.
R

Next, we change the variable of integration in accordance with the relation
¢ =t71/2¢" (and omit primes in what follows):

Vip = MB~'D;,!, Re”fh( ju( \/i)>91/26 O g(e) de

= MB'D,,a(t,z,D)F 'Dype g,

where the symbol a(t,z, &) is h(t,&/V/t, u(x/\/t)). Since u(z) = O(x) and ' (z) =
1/A"(u(x)) = O(1), we have

t=m/2 _
o gt .6 = O ot 07 ente. ) )<c
n=p(xt=1/2)

forall z,£ € R, ¢t > 1 and m,n = 0,1. An application of Lemma 2.4 yields

la(t, z, D)oLz < CllollL:.
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Therefore, using the equalities

IVA"B ¢l 2 = ||| L, 1D, )20l = ll¢lLe,
1F " ¢llee = [|¢llz  and [ Dpj26llez = [|¢les,
we deduce the inequality
IVAVidlle < CIVA"B™' Dy jaalt, 2, D)F Dee™ Aol < ClloJLe-
The lemma is proved.
Now we estimate the derivative 0, Q.
Lemma 2.7. The following inequality holds:
10,Q6ll2 < Cllglles for allt > 1
Proof. Integration by parts yields
0n Qo = CVy, 0cdp + CVy, 0,

where

_ 95 _ () _
ToSEn At €m0

0,5(6,m) () )
wlen =2(G5E ) = a(fOA“nJr(g n))dz)‘O(”’

which implies the estimates sup, ¢cp |677 8£qj(n,§)| < C for k1 =0,1, j = 1,2.
Therefore, using Lemma 2.6 we obtain

10,Q0l> < ClIVA”9,Q0l|L2 < Cll0edlLz + Cll¢lea-

and

The lemma is proved.
The next lemma estimates the derivative Q.

Lemma 2.8. The following identity holds:

. 1 1
tQed = i1V, O¢d + Vi, Ogd + Vi e + Vi,
where the weight functions h; are defined below. In addition,
HthngLz < CHQZﬁHLz forallt>1, j=1,2,3.

Proof. Integrating by parts yields

10 = \/T [esen(5- it5(57n))¢(€) ¢
o )

= —Vh1§ Ocd + 0V, 0cd + Vg, 0,
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S(&,n) and
V27 (& — 1) 0:S(¢,m)

1 (1, SEn \_ 1 (AOAEn 1
) ( )

qB(W:m(z‘ “9cS(Em))  Var\ fBEnm 2

where hy(&,n) =

for
ﬁ@m)=/"N%w+@—an1—adzzmd.b@m>:/"N%n+@—nnww
0 0

Note that ¢3(n,n) = 0. Thus, integrating by parts once again, we obtain
1 1
Vg @ = thM aﬁ¢ + quS(ﬁ,

where

_a3(&m) _ 5 (&)
We introduce the notation f3(&,n) = f1(£,n) — 2 f2(&,n). Since f3(n,1) = 0, we can
write

f3(&m) = (€ —n)(fa(&;n) + f5(§,m) + f6(€,m)),

where
1

fa&m) = [ N'(n+ (€~ 77)21)/0 A'(n+ (€ =n)z12)(1 — 2)dzdz,

f5(€777) =

S~ >—

1 1
A%n+@4wﬂﬁz;N%n+@fmh@41*@¢ﬂm

and
ﬁ@m)AX]TN%u(fma@dﬁ([fwwn+@maazw)wy

Hence we have

f4(§777) + f5(f777> + f6(€777)

mien = V2 f3(€m)
and
w6 = 0 AEM + S3(Em) + folEm)

iv2rf3(&,m)
In view of the fact that S(&,m) = (€ —n)2f1(£,n) we deduce the relation

fl(é-vn)

hi(&,n) = ———"— =0(1).
& V2 fo(€m) W
Therefore, using the operator A; = mﬂ OpM we can write

Vi & Ocp = —i A1V, O+t 1V, 0c 9,
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where gg(§,m) = itAgh1(€,n). Thus, we arrive at the representation
. _ 1
tQup = i A1V, Ocd + Vi, Ocd +t Vi, Ocdp + Eth@

where hy = g4 — g¢ and hz = g5. Since sup, (cp |87’,’,C aéhj(n,fﬂ <Cfor k,1 =0,1,
j=1,2,3, using Lemma 2.6 we infer the estimates

[Vh;dllLe < ClIVA" Vi, dllLe < Cf6|L2-

Lemma 2.8 is proved.

2.6. Estimates for derivatives of the conjugate defect operator Q*. Here
we establish the L2-boundedness of the weighted conjugate defect operator

Vio= /2 [ HSEDn(t € mo(mA”(n) dn
R
Lemma 2.9. Assume that the weight function h satisfies
|05 OF h(t, €, m)| < CHmtm/2
forallé,neR, t 21 and myn=0,1. Then
WVid|Le < Cl|[VA" |z for all t > 1.

Proof. We make the change of the variable of integration n = u(z); then
Vip = et (O1/2 /]R et €, u(x))BM ¢ de.
Next, we make the change = = t~'/22’ (primes are omitted below); then we have
Vip=e"OD ], /R e ER(t, &7 2 p(at ™ ?)) D12 BM ¢ da.

We define the pseudodifferential operator by

a*(t,{,D)(;S:/Re_iwfa*(t,g,x)aﬁ(x)dx,

where the symbol is a*(t, &, ) = h(t,&t~1/2, u(xt=1/2)). Then we can write
VZ(ZS — eit/\(f)p;}za* (t, é-’ D)]_-—lm

To establish the L2-boundedness of the pseudodifferential operator a*(t, ¢, D),
we estimate the symbol a*(t,£,x) = h(t,ftil/zvn”n:“(mfl/z). Since p'(z) =
1/A"(u(x)) = O(1), we have

. tfm/Q m an B
oo (46,00 = O (s 07 ™20

)<c
n=p(xt=1/2)
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for all z,£ € R, t > 1 and m,n = 0,1. Therefore, from Lemma 2.5 we derive the
estimate |la*(t, €, D)¢||L§ < C|]|Lz; in view of the equalities

D5 dlee = gl IF 6le = e,
IDyr2¢llL> = [[4llL> and  [|BY|[L2 = [[VA”¢|L2,

it follows that
VidllLe = |a*(t, &, D)F ' Dy2BMé|r2 < CIVA |z

The lemma is proved.

Lemma 2.10. The following inequality holds:
10:Q"llL2 < Cl|dller  for allt 21
Proof. Integration by parts yields
9eQ7 ¢ = CVy, Ongp + CVy 0,

where
9eS(&,n)
S (&)

an(&m) = = 570 | Mo+ €=z az = o)

and

_ 1 65*9(5 77) "
(6 = 35 s )
1

All(n) / A'(n+ (£ =n)z)dz = O(1).

Taking account of the estimates sup, ¢cp |05 9¢q;(€,m)] < C for k,I = 0,1 and
7 = 17,8 and using Lemma 2.9 we obtain

10:Q7¢llLz < CIVA" OpllLz + ClIVA |z < Clloa-

The lemma is proved.
The next lemma estimates the commutator [(¢)~2, Q*].

Lemma 2.11. The following inequality holds:

I1(6)72, Q8| < Ct Y|l for allt > 1

Proof. Integrating by parts we obtain

t(&) 7%, Q1 = CVy 046 + CVy 0,

where

- £+ o

w& = G S T @A)
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and

o 1 <§>_2 - <77>_2 " o 1 §+n o
alen) = 5555 (s 4 0) = iy () =00

Taking account of the estimates sup, ccp |67’7C 8éqj(£,77)| < C for k,1 = 0,1 and
7 =9,10 and using Lemma 2.9 we obtain

t[€) 2 Q719 MLz < Cllglle:-

The lemma is proved.

§ 3. A priori estimates for the solution

First we state a result on the time-local existence of a solution of the Cauchy
problem (2) in the function space C([0,00); H> N H%!) N C1((0,00); H?) (see [20]
for a proof).

Theorem 3.1. Assume that the initial data satisfy uo € H>NH%!. Then for some
T > 0 Cauchy problem (2) has a unique solution

u € C(]0,00); H> N H>') 0 C((0, 00); H?)
such that ||u|lx, < C. If the norm ||ug||gsnro s small, then the existence time T
is greater than 1.

To establish the time-global existence of solutions we need to establish a priori
estimates for solutions in the norm ||$||x, that are uniform with respect to T > 1.
Here

6llxz = sup (lo(t) L= +W2(O)](€) (1)l

te(1,T)
+ ()bl + K1 (1) [[0e¢(t)]L2),

where W (t) = 14 2In(1+t), K(t) = t7 4+ e2Y/4AW=3/2(t), € = ¢V/t, and v > 0 is
small.

3.1. An estimate for the derivative. The next lemma estimates the function

t
=05 (670(0) [ @ (MMAH)A(r)dr,

1

Lemma 3.1. Assume that ||p||x, < Ce. Then

|P(t)||L2 < CeK(t) forallte[1,T].
Proof. Differentiating (5) we arrive at the equality
10,pe = i(6) 2 (€)™ OD3Q* (31)0° + R = i(€) 2 () Q7 ()M (1)v*(t) + R,

where R = t~1e®? 9, ((€)~2D3Q*(3t)v?), which yields i 9,® = R. To estimate the
remainder R we use Lemma 2.10; then ||R| > < Ct~1||v3||gr. From Lemma 2.7 we
also deduce that

[OpvllLe < Cll@llar < CeK (1)
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Using Lemma 2.2 yields the inequality
o] < 13| + Ct /4 9¢ | < Ce,
which implies that
[RllLz < Ot Hvl[Eelv]lm < Ce¥ K ().

Thus, we have

T el < cH K@)
Integration with respect to time leads to the inequality

1P(t)||L: < CeK(t) forte[1,T].
The lemma is proved.
Now we estimate the derivative 0¢p.
Lemma 3.2. Assume that ||@||x, < Ce. Then

0@ < CeK(t) for allt € [1,T).

Proof. In view of Lemma 3.1 we need to estimate the integral
t

1= (79 [ @ @M ar
1

Using the identity t!/2e®5s(&m) = [ 9,(t3/2e9(EM)  where H,(t,&,1) =
(3/2 +itS3(&,m))~t and S3(€,1) = S(&,1) +20(n), and integrating by parts, we
infer that

/ L0 M2 dr = 1Q" () M) Hy (H0(t) — Q*()M2(1) Hy ((1)
- / Q" (1) M2(r) Hy(r)(r) dr / Q" (7) M2(r) Hy ()7 0, 6(r) dr,

where Hy = 3 HE — Hy. Note that S(&,7)+20(n) = Q(§)+35(£/3,1), which yields
the estimate

Sale.n) = 506) + 3000 + 2 (s + 5(50) ) = & 42

since

3
Sn) =5 [ AEE-2)ds > Ole )

Hence we arrive at the inequality

C

|H1(ta§77))| < m
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Since 7 0, v(T) = Q7P + 7Q, P, we have the representation

e
where
Iy = 16" ()M (0) Hy ()% (1) — £Q° ()M (1)H (1)0%(1),
L= [ @@ ) i
I3 = —3¢ /1 t O*(1)M?(1)Hy ()W Q1. dr
and

Iy = =3¢ /1 t Q* (1) M?(1)Hy (1)v*1Q, B dr.
By virtue of Lemma 2.2 we have
(€)7ol < CEOTBI + Ct 4| 0elle < CeWH2(1)
and also
1)~/ wl|ra < CeW 2 @) (€) 7>l < Ct ™AW 12(1).

Now, using Lemma 2.9 for h(t,&,n) = £(1) H; we derive the estimates

[t€Q* () M2 Hyv? (1) ||z < CHY2|(E) 0P || < C3V/ AW —3/2(t) < CeK (t),
1€Q*(1) M (1) Hy (1)v* (1) ||z < C(€) "0 (1) |2 < C® < CeK(b);

so that ||I1]|z < CeK(t). In a similar way we obtain the estimates

t t
2]l < Hf/ Q (1) M*Hayv3 (1) dr|| < Cg3/ 7AW 32 (1) dr < CeK(t).
1 L2 1

Furthermore, it follows from (5) that
Otp; = —iQ(€) 2Q"M?v® = —iQ(€) 2™ D3 Q* (37)v5,
which yields the relations

Q*M?H\v?Qr, = —iQ* M?H v? Qe ™D (3¢) ~2Q* (37)v®
= —iQ*M*H, (3n)~%0® — iQ* M? H v? Qe ™ D3[(3¢) =2, Q* (37)]v°.

Thus we have I3 = I5 + I, where

t
I = 3i¢ / Q*M*H,(3n) %0 dr
1
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and

t
I = 3i¢ / Q* M2 Hyv? Qe ™ D3 [(3¢) 72, Q* (37)]v® dr.
1

As above, owing to Lemma 2.9 for h = £(7j)H; we obtain

1

t t
s llpe < c/ P2 10 (1) g dr < 053/ F3AWS2 (1) dr < CEK (1),
1

Using Lemma 2.11 we also deduce that

t
IHallce < = [ 7 172]((36) %, @ 31z
1
t t
< 052/ 728 dr < 054/ 32K (7 dr < CeK (1),
1 1
Finally, we estimate the term I,. It follows from Lemma 2.8 that
. 1 1
tQi¢p = i A1 Vi, Ogd +nVp, Ocd + 7V Osd + ;thqi

Therefore, we have the representation Iy = 2;0:7 I;, where

d d
= —35/ o ( MQHvaVhSQO—T = —35/ O (1) M2H, vV, agpl

Iy = —3§/ Q* (1) M2 Hinv*Vy, O:pdr,
1
t
I = —3i§/ Q" (1) M2 Hyv? Ay Vy, O:p dr.
1

Using the equalities Q*(t).A1(t) = i£Q*(t) and vy = Ayv = Qilp = inv + Agv
we conclude from this that

1
tA"(n)
= Q" Ay (M?H v*$) — 2Q* M2 Hyvv1 ¢ — Q* (t) M? (Ao Hy ) v ¢

= i€Q*M?*Hv?¢ — 2iQ* M*Hynv2¢ — 2Q* M? H, (Agv)vd — Q* M?* (Ao H, )v? 9.

Q*M?*Hv* A1¢p = Q" ————MH, (Mv)*9,M¢

Hence [0 = Z] 11 Lj, where
t t
I, = 3¢2 / Q* M?H1v*Vy,, O¢pdr, Io = —6¢ / Q* M Hynu*Vy, 0cp dr,
1 1

t
I3 = 3i¢ / Q* M?(AoHy)v*Vy, O:pdr
1

and ¢
I, = 615/ Q*M?*Hy(Agv)vVy, 0@ dr.
1
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Lemmas 2.8 and 2.9 for h = &(n)H; yield the estimate

K _dr
e < e [ @@rrH,e T
1

L2

t t
<C / 7302 (7) 02V, Bl dr < O / /2 4r < CEK (D).
1 1

In a similar way we have
t t
sl + 1ol < € [ 7920V, 0Bl dr +C [ 77 0*Vh, OcBls dr
1 1
t t
< 053/ 32K (1) dr + 053/ T K (1) dr < C3K (t).
1 1
Using Lemmas 2.8 and 2.9 we obtain
t
1l + el + [ sle < C [ 7702V, Belue dr
1
t
<Ce / UK (r) dr < CSSK ().
1

Finally, in view of inequality ||Q*@|lL~ < Ct'/?||¢||r1 we arrive at the inequality

t
[114]lLz < C/ 146) M L2 | @ (7)) MPE(E) Hi (Agv) vV, O¢PllLe~ dr
1
! ~5/4 ~
<Ce | 7 |(TAv) Vi, O¢P||Lr dT
1

<ce? /t TR (1) dr < CeB /; T K (r)dr < C*K(t),
1
which implies the assertion of the lemma for all ¢ € [1,T].
Lemma 3.2 is proved.
3.2. Estimates in the uniform metric. We introduce the notation
y =@ +i() Q" M*Hyv®,
where H3(t,&,n) = (=1/2+tS3(&,m)) " and S3(€,n) = S(&n) +20(1).

Lemma 3.3. Assume that |P|x, < Ce. Theny = @+ O(e3W=3/2). In addition,
the function y(t,£) satisfies the equality
1

aytaf :_7~y3 ta§ +gt7£ 6

W0,E) =~ .0 +olt0) ©)

forallt > 1 and x € R, where

g(t’ g) = O(gl (t? 5))

and
g1(t, &) = P IW 2 (t) + 3775/ L S e|(e) 2w 32,



1044 P.I. Naumkin
Proof. Using the identity ™53 = Hyt3/2 9,(t=1/2¢*53(&m) and integrating by
parts we obtain
t71Q* M?0? = 9,(Q* M*H3v?) — t ' Q* M? Hyv® — 3Q* M? H3v? 9,
where Hy = —$H2Z. Therefore, it follows from (5) that
i Oy = —iRo — 3(€) R, (7)

where Ry = —it~(¢)72Q*M?Hyv? and Ry = Q*M?H3zv? 0pv. We have 00 =
Qp; + (Q)p; hence we can set Ry = Ro + R3, where

Ry = Q*M?H3v*Qp; and Rz = Q*M?H3v*(Q):p.
We derive from (5) that
Qp, = —it " M?(3n) 203 — it~ 1 Qe D4 [(36) 72, Q* (3t)|v>;
thus, we can write Ry = R4 + Rs5, where
Ry = —it™ Q" M* H3v®(3n) 2

and
Rs = —it 1 Q* M?H30v? Qe D3[(36) =2, Q*(3t)]v>.

From Lemma 2.2 we infer the inequality ||(7) 70|~ < CeW /2, which, in view

of the estimate ||V} ¢||L= < Ct'/?||h¢||L1, implies that
1RallLee < CE V210 0llReo | ()2 e < C%47 W2 < Clanl;
from Lemma 2.11 we obtain
1Rs [l < 211~ ol e [16)*7 2 2 1(36) 2, Q7 (3)]0° e
< CET [0 < Clgal.
Furthermore, owing to Lemma 2.8,
1(Q)i¢p =t~ 'V, Ocd +t > Vh, O+t Vi + it A1 Vi, 0.
Therefore, R3 = 23:6 R;, where
Re = t71Q* M2 H3nv® Vi, 0 &, Ry = t72Q*M?H3v*Vy, ¢ 3,
Ry =t 2Q*M?H3v*V},, and Rg = it ' Q*M*H3v* A1 V), O¢P.
Using the inequality [|Q*¢|L~ < Ct'/?||¢|L1 and Lemma 2.8 we deduce the
relations
[RllLoe + || RrllLe + [ Rs|[L~
< CEV2|| () 200 Vi, 0cpln
+ Ot 2| (0) 20V, 0@l + Ot 2|[(1) 20 Vi, Bl
CtHIm) ™ ol 1) 2 (Vi OeBllLe + Vg 0cBllLe + [[Va, Pllr2)
Ot MW (106 lIe + |9]e2)
CEMWTLK () < Clgy|.

INCININ
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Now from the identities Q*(¢).A1(t) = i£Q*(¢) and vy = Ajv = QilP = inv + Agv

we obtain
Q*M?H3v? A1p = i€Q* M?Hsv? ¢ — 2iQ* M2 Hynv? b
— 2Q*M?Hs(Aov)vp — Q* M? (Ao Hs)v” .
Consequently, we can write Ry = 2;3:10 R;, where
Rig = —t7'€Q"M?Hzv* Vi, 9¢p, R =2t Q" M?Hyno?Vy, 0¢,
Rip = —it ' Q*M?(AgH3)v* WV, 8¢9 and Ryz = —2it~ ' Q* M?H3(Agv)vVp, 0 f.

Note that (AgHs3) = O(t~*/2(7)~2); hence, using the inequality ||Q*¢|pL~ <
Ct'/?||¢||p and Lemma 2.8, we deduce the relations

[RiollLee + | Ritf|Lee + [|Rizllue < CtH[() ™ 0V, 0¢|lne
< CEHIm T 0llRee )27 e Vi 96@lle < C2 W1 |0gP ]2
< CMMHAWTIK(t) < Claal.

We estimate the term Ry 3 using the inequality || Q*$| L~ < Ct'/?||¢||r1, Lemma 2.8,
and Lemma 2.7 as follows:
1Rus|Le < CEY2[() =20 (Agv) Vi, 9Pl
< OtV 20 lue Aoz [ Vh, 9¢Pllee
< CSt3PW2K2 (1) < CEAWTIK () < Clgal.

So we arrive at the estimate |Ry|r~ < C|g1]|.
Now consider the asymptotic behaviour of the first term Ry on the right-hand
side of (7). As above, in view of Lemma 2.7 we have

1050* L2 < Ol 2 0? [ [9yv]lLe < CEW T ().
Therefore, an application of Lemma 2.3 yields

V8i

Viie! = —={6 70"+ OEIENE) ™) + O™ IW K ().
Thus, it is true that
i 3 iN/2i

R = = 28 (1,6) + O (E1E) > + AW TR (1)),

e " T e

1
Lemma 2.2 implies that v(¢, &) = o P(t, &)+ O(et~'/*K(t)). Hence
i

_ 1 ~3 3181 /8\—2 —1/4yy—1
Ry W TTE P°(t,8) + O ([EE) "+t TWT K (1))).
We also have the estimate

ly — 31 < |Q"M?H3v? | < Ct 2> 2| [[(7) 0]l < C*W 22,

which yields (6).
Lemma 3.3 is proved.
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Now consider a Cauchy problem for an ordinary differential equation depending
on a parameter ¢ € R:

— 1 3
8ty(t7£) - 2t\/§<§~>2 Y (tvf) +g(ta£)a t 2 1; (8)

y(1,8) = w1(6),
where g(t, &) = O(5 ™\ W=5/2(t) 4 3775/4 4 3¢1g|(€) 2w —3/2).
Lemma 3.4. Assume that the initial perturbation y; satisfies the conditions
T
8

where € > 0 is sufficiently small. Then the solution of Cauchy problem (8) has the
estimates

e<|n@<Ce and |argyi(§)] <o for ¢l <1,

ly(t)] < CeU2  and |argy(t)] < CT'/?
for allt € [1,T) and € € R, where U = 1 4 2 In(t(£)2(£)~2).
Proof. In the case €| > 1 we have (£)=2 < ¢~1; thus, we derive from (8) that
yr = O(372) + O(°~ "W —5/2). Integrating with respect to time, we infer from
this relation that |y(t)| < e + €2 < 2eW~1/2. Now we consider the case |¢| < 1.

We make the substitution y = re, where » > 0 and w is a real function. Taking
the real and imaginary parts, from (8) we deduce that

1

ry = ————— 12 cos 2w + Re(ge ™™ 9
and )
wp=————7r?sin2w + Im gr_le_i“’ 10

with the initial conditions r(1, &) = |y1(§)| and w(1,&) = argy; (&).
Now we prove the inequalities
1o, [m@©F

-
27 < 21

<20 and |w(t,§)|<g (11)

for all t € [1,T] and |{| < 1. Reasoning by contradiction we assume that there is
maximum time T € (1,7T] such that

2
Ly < WOF oy d o) <

2V S g 12

T

8

for all t € [1,7] and |¢| < 1. Dividing (9) by 3 we obtain
cos 2w

B —2: ~  _9R, —lw
L 7t\/§<§>2 2Re(ge™ "),

which implies the inequalities
1 -3 -2
———— —2r gl < Or7° <

tv/6 (€)?

1
= + 2r73|g|.

tV/3(€)
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Integrating with respect to time we find that

e L s [N s
1—1—\/6111 7 25/17" lg| dr

ly1 (&) g2 | t(€)? 2 [f s
< 2 (1) <1+ﬁln <§~>2 +2€/1T lg| d,

since

! - o dr _ ¢ *nt<€>2
/1<f€> T—/2 (1+z)z*1 G

Using (12) and the assumptions concerning g we infer that
t t _
/ r3gldr < 0/ (14 In(r(§)~2))¥2(Pr ' W 2/2(r)
1 1

+ 87 BTG TP T () dr
g C\ijl/2

for all t € [1,7] and |¢] < 1. Thus, we have
t
/ r=3)g|dr < cwl/?,
1

which yields the estimate |y;(£)|?/r%(t) < 2¥. In a similar way we find the lower

estimate 5 9 2 t
1
|3/12(5)| SRR N Y 252/ r3lgldr > 2 ¥
r2(t) V6 (6?2 ! s

for all ¢ € [1,7] and |¢] < 1. Hence (11) holds for all ¢ € [1,7] and |¢] < 1.
Multiplying both sides of (10) by w we arrive at the equality

1 )
Ow? = ————r?wsin 2w 4 2wr Im(ge ™) < wW? Oy Inr? 4+ Cr~Yg|,

tV/3(£)?

since 2w sin 2w > w? for |w| < 7/8. Integrating with respect to time, we derive from
this that

t
Wi(t) < r? (5_2w2(0) + C/ g dT> < U HW?(0) + C2W1/2)
1

for all ¢ € [1,T], |¢] < 1. Consequently, |w(t, )| < 7/8 for all ¢t € [1,T] and |¢] < 1.
This contradiction proves the estimates in the lemma for all ¢t € [1,T].
Lemma 3.4 is proved.

The next lemma establishes a priori estimates for solutions.

Lemma 3.5. Assume that ||p||x, < Ce. Then

1@llx, < Ce.
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Proof. Tt follows from (5) that
d . _ .
0@ lIL: < e B(#) Iz,

which implies the estimate [[(€)5@(t)||L= < Cet? by means of integration with

respect to time. Using Lemma 3.4 and Lemma 3.3 we obtain

1B(t,€)] < |y(t, )| + C3Ww=3/2
< Ce(l1+ g2 ln(t<§>2<g>—2))—1/2 L OSBW 32 < Oe

and

(€2t O] < Ce(€) V(L4 (K€ (E) %)™/ + CEW 32 < Cew /2

for all t € [1,T]. Using Lemma 3.2 we also infer the estimate ||0¢$||r2 < CeK (t) for
the derivative. Thus, we have ||§]|x, < Ce.
The lemma is proved.

§4. Proof of Theorem 1.1
The time-global existence of a solution
u € C(]0,00); H> N H>') N C((0, 00); H?)

of the Cauchy problem (1) satisfying the estimate |||x, < Ce is a consequence of
Lemma 3.5 and the local existence guaranteed by Theorem 3.1. Hence it only
remains to prove the asymptotic formula (4). From the formulae of the factorization
method, Lemma 2.2, and Lemma 3.3 we see that

u(t) = DBMQP = DBM —— + O(t=/4)|0¢l|1.2)
2

Vil
,reiw
= DBM —— + O(t~/?(Int)~%/2

as t — oo. Like in the proof of Lemma 3.4, we obtain

r6€) = (O] + = (€ ) + O(W?)

2
and [w(t, )] < Cw/4, where ¥ =1+ ¢ ln(t<§>2<§~>—2). Consequently,

r(t.6) = (el (1+ (O e 6 T o E -2

) \/g .

Thus, we have

(612 N ~1/2
u<t>:DtBM|as<e>(1+' O(f?' ln(t<€>2<€>2))

+ Ot~/ (In((€)*(€) 7)) /),

which yields the asymptotics (4).
Theorem 1.1 is proved.
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