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Logarithmic nature of the long-time
asymptotics of solutions of a Sobolev-type

nonlinear equations with cubic nonlinearities

P. I. Naumkin

Abstract. The Cauchy problem of the form{
i ∂t(u− ∂2

xu) + ∂2
xu− a ∂4

xu = u3, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

is considered for a Sobolev-type nonlinear equation with cubic nonlinearity,
where a > 1/5, a ̸= 1. It is shown that the asymptotic behaviour of the
solution is characterized by an additional logarithmic decay in comparison
with the corresponding linear case. To find the asymptotics of solutions of
the Cauchy problem for a nonlinear Sobolev-type equation, factorization
technique is developed. To obtain estimates for derivatives of the defect
operators, L2-estimates of pseudodifferential operators are used.

Bibliography: 20 titles.
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§ 1. Introduction

We consider a Cauchy problem for a Sobolev-type nonlinear equation with cubic
nonlinearity in the one-dimensional case with respect to the space variable:{

i ∂t(u− ∂2
xu) + ∂2

xu− a ∂4
xu = u3, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(1)

where a > 1/5, a ̸= 1. We exclude the case a = 1, since then equation (1)
is easily reducible to a nonlinear Schrödinger equation. Sobolev-type equations
were first deduced in [1] in the description of small oscillations of a rotating fluid.
Sobolev-type equations also arise in plasma theory and in modelling quasi-stationary
processes in continuous electromagnetic media (see [2]). A discussion of the theory
of nonlinear Sobolev-type equations can be found in [3]–[6].
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In the one-dimensional case with respect to the space variable cubic nonlinearities
often behave themselves critically for large times. For example, the asymptotic
behaviour of solutions of the nonlinear Schrödinger equation

i ∂tu +
1
2

∂2
xu = u3

was considered in [7]–[9], where it was shown that the solution is characterized by
an additional logarithmic decay in comparison with the linear Schrödinger equation.
As far as we know, the large-time asymptotics of solutions of the Cauchy problem for
the Sobolev-type nonlinear equation (1) has not been investigated yet. We fill this
gap in our paper by developing the factorization technique proposed in [10]–[14].
We also use some known L2-estimates for pseudodifferential operators to estimate
derivatives of the defect operators.

We introduce some notation. We let Lp denote the Lebesgue space with the
norm

∥ϕ∥Lp =
(∫

R
|ϕ(x)|p dx

)1/p

for 1 ⩽ p < ∞,

∥ϕ∥L∞ = ess sup
x∈R

|ϕ(x)| for p = ∞.

We introduce the weighted Sobolev space

Hm,s =
{
ϕ ∈ S′; ∥ϕ∥Hm,s = ∥⟨x⟩s⟨i ∂x⟩mϕ∥L2 < ∞

}
for m, s ∈ R, where ⟨x⟩ =

√
1 + x2, ⟨i ∂x⟩ =

√
1− ∂2

x and S′ is the space of
Schwartz distributions. We also set Hm = Hm,0. We let C(I;B) denote the space
of continuous functions mapping the interval I to some Banach space B. Similarly,
C1(I;B) denotes the space of continuously differentiable functions from I to B.

We let Fϕ or ϕ̂ denote the Fourier transform

ϕ̂(ξ) =
1√
2π

∫
R

e−ixξϕ(x) dx;

then the inverse Fourier transform F−1 has the form

F−1ϕ =
1√
2π

∫
R

eixξϕ(ξ) dξ.

Different positive constants are denoted by the same letter C.
We consider solutions of (1) in the space C([0,∞);H5) ∩ C1((0,∞);H3); so

equation (1) is understood in the classical sense. Multiplying (1) by the operator
(1− ∂2

x)−1 we rewrite it in the pseudodifferential form as{
i ∂tu−Λu = ⟨i ∂x⟩−2u3, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(2)

where ⟨i ∂x⟩−2 = (1 − ∂2
x)−1 and the linear pseudodifferential operator Λ =

(1− ∂2
x)−1(−∂2

x + a ∂4
x) is characterized by its symbol

Λ(ξ) =
ξ2 + aξ4

1 + ξ2
.
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Under the condition a > 1/5, we have Λ′′(ξ) > 0 for all ξ ∈ R, which guarantees
the nonsingularity of the stationary point µ(x) defined as the root of the equation

Λ′(ξ) =
2ξ(1 + 2aξ2 + aξ4)

(1 + ξ2)2
= x

for each x ∈ R. Thereafter, using the unperturbed evolution group U(t) =
F−1e−itΛ(ξ)F , we rewrite the Cauchy problem (2) as the integral equation

u(t) = U(t)u0−
∫ t

0

U(t− τ)⟨i ∂x⟩−2u3(τ) dτ. (3)

We introduce the extension operatorDtϕ = t−1/2ϕ(x/t), the scale transformation
(Bϕ)(x) = ϕ(µ(x)) and the factor M = eitΘ(x), where Θ(x) = −Λ(x) + xΛ′(x).
We also introduce the notation x̃ = x

√
t.

The aim of this paper is to prove the following result.

Theorem 1.1. There exist ε0 > 0 and a positive constant C such that if the initial
data u0 ∈ H5 ∩H0,1 satisfy the inequalities

∥u0∥H5∩H0,1 ⩽ Cε, sup
|ξ|⩽1

|arg û0(ξ)| <
π

8
and inf

|ξ|⩽1
|û0(ξ)| ⩾ ε

for ε ∈ (0, ε0), then there exists a unique time-global solution

u ∈ C([0,∞);H5 ∩H0,1) ∩C1((0,∞);H3)

of Cauchy problem (1). In addition,

u(t, x) = DtB
M |û0|√

1 +
|û0|2√

3
ln(t⟨x⟩2⟨x̃⟩−2)

+ O(t−1/2(ln(t⟨x⟩2⟨x̃⟩−2))−3/4) (4)

as t →∞ uniformly with respect to x ∈ R.

Remark 1.1. The asymptotic formula (4) describes an additional logarithmic decay
in comparison with the corresponding linear case.

We briefly describe the rest of this paper. In § 2 we describe the factorization
technique. Thereupon, we estimate the defect operators in the uniform metric.
After that, applying some known estimates for pseudodifferential operators in the
L2-norm, we obtain estimates for derivatives of the defect operators. In § 3 we prove
a priori estimates for the solution in the norm ∥FU(−t)u(t)∥XT

, where

∥ϕ∥XT
= sup

t∈[1,T ]

(
∥ϕ∥L∞ + W 1/2∥⟨ξ̃⟩−γϕ∥L∞ + t−γ∥⟨ξ⟩5ϕ∥L2 + K−1∥∂ξϕ∥L2

)
;

here W (t) = 1+ε2 ln(1+t), K(t) = tγ +ε2t1/4W−3/2(t) and γ > 0 is small. Finally,
we prove Theorem 1.1 in § 4.
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§ 2. Preliminary estimates

2.1. Factorization technique. We consider the following representation of the
unperturbed evolution group:

U(t) = F−1e−itΛ(ξ)F , where Λ(ξ) =
ξ2 + aξ4

1 + ξ2
.

For a > 1/5 we have

Λ′′(ξ) =
2(1 + (6a− 3)ξ2 + 3aξ4 + aξ6)

(1 + ξ2)3
> 0 for all ξ ∈ R.

Therefore, there exists a unique nonsingular stationary point µ(x) defined as the
root of the equation

Λ′(ξ) =
2ξ(1 + 2aξ2 + aξ4)

(1 + ξ2)2
= x for each x ∈ R.

We write U(t)F−1ϕ=DtBMQϕ, where Dtϕ= t−1/2ϕ(x/t) is the extension operator,
(Bϕ)(x) = ϕ(µ(x)) is the scale transformation, M = eitΘ(ξ) is the factor with phase

Θ(ξ) = −Λ(ξ) + ξΛ′(ξ) =
ξ2(1 + ξ2(3a− 1) + aξ4)

(1 + ξ2)2
,

and

Q(t)ϕ =
t1/2

√
2π

∫
R

e−itS(ξ,η)ϕ(ξ) dξ

is the defect operator with phase function S(ξ, η) = Λ(ξ)− Λ(η)− Λ′(η)(ξ − η).
We also need the representation FU(−t) = Q∗MB−1D−1

t for the inverse unper-
turbed evolution group, where D−1

t ϕ = t1/2ϕ(xt) is the inverse extension operator,
B−1ϕ = ϕ(Λ′(η)) is the inverse scale transformation, and

Q∗(t)ϕ =
t1/2

√
2π

∫
R

eitS(ξ,η)ϕ(η)Λ′′(η) dη

is the conjugate defect operator. Note that the defect operators can be written as
Q(t) = MB−1D−1

t F−1e−itΛ(ξ) and Q∗(t) = MBDte
itΛ(ξ)F , which shows that they

act from L2 to L2 and also that Q∗(t) is the conjugate operator of Q(t).
We introduce the new function φ̂ = FU(−t)u(t). Since FU(−t)L = i ∂tFU(−t)

for the operator L = i ∂t −Λ, applying FU(−t) to (2) we obtain

i ∂tφ̂ = i ∂tFU(−t)u(t) = FU(−t)Lu = ⟨ξ⟩−2FU(−t)(U(t)F−1φ̂)3

= ⟨ξ⟩−2Q∗MB−1D−1
t (DtBMQφ̂)3 = t−1⟨ξ⟩−2Q∗M2v3,

where v = Qφ̂. We have

S(ξ, η) + kΘ(η) = Ωk+1(ξ) + (1 + k)S
(

ξ

1 + k
, η

)
,
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where

Ωk+1 = Λ(ξ)− (k + 1)Λ
(

ξ

k + 1

)
for k ̸= −1.

By the definition of the conjugate defect operator Q∗(t),

Q∗(t)Mkϕ =

√
t

2π

∫
R

eit(S(ξ,η)+kΘ(η))ϕ(η)Λ′′(η) dη

= eitΩk+1Dk+1

√
(1 + k)t

2π

∫
R

ei(1+k)tS(ξ,η)ϕ(η)Λ′′(η) dη

= eitΩk+1Dk+1Q∗((k + 1)t)ϕ,

where Dk+1ϕ = (k + 1)−1/2ϕ(x/(k + 1)). Taking k = 2 in this identity, we arrive
at the main equation of the factorization method:

i ∂tφ̂ = t−1⟨ξ⟩−2Q∗M2v3 = t−1⟨ξ⟩−2eitΩD3Q∗(3t)v3, (5)

where we have used the notation

Ω = Ω3 = Λ(ξ)− 3Λ
(

ξ

3

)
=

2ξ2(9 + (13a− 3)ξ2 + aξ4)
27(1 + ξ2)(1 + ξ2/9)

⩾ 0.

We introduce the operators

Akϕ =
1

tΛ′′(η)
M

k
∂ηMkϕ, k = 0, 1;

thus, A1 = iη +A0. The identities iξQ∗ = Q∗A1 and Qiξ = A1Q hold.

2.2. Estimates for the defect operator Q in the uniform metric. We spec-
ify the kernel A(t, η) as √

t

2π

∫
R

e−itS(ξ,η) dξ.

The long-time asymptotics of A(t, η) can be calculated using the method of sta-
tionary phase (see [15]). However, we need to estimate the remainder uniformly
with respect to the parameter η ∈ R. Therefore, for the convenience of the reader,
we give a proof of the asymptotic formula.

Note that
S(ξ, η) = (ξ − η)2P 2

1 (ξ, η),

where

P 2
1 (ξ, η) = ⟨ξ⟩−2⟨η⟩−4P2(ξ, η) and P2(ξ, η) = (1−a)(⟨ξ⟩2− (η+ξ)2)+a⟨ξ⟩2⟨η⟩4.

If a ⩾ 1, then

P2(ξ, η) = (a− 1)(η + ξ)2 + ⟨ξ⟩2(a⟨η⟩4 − (a− 1)) ⩾ C⟨ξ⟩2⟨η⟩4
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for all ξ, η ∈ R. In the case when 1/5 < a < 1, using the inequality η2⟨η⟩−4 ⩽ 1/4
we infer that

P2(ξ, η) ⩾ a⟨η⟩4
(

ξ − 1− a

a

η

⟨η⟩4

)2

+ a

(
η2 +

3a− 1
2a

)2

+
(1− a)(5a− 1)

2a

⩾ C⟨ξ⟩2⟨η⟩4

for all ξ, η ∈ R. Hence P2(ξ, η) ⩾ C⟨ξ⟩2⟨η⟩4, and we can write

S(ξ, η) = z2, where z = (ξ − η)P1(ξ, η) and P1(ξ, η) ⩾ C > 0,

for all ξ, η ∈ R. On the other hand, since P2(ξ, η) is estimated from above by
C⟨ξ⟩2⟨η⟩4 for some positive constant C, the function P1(ξ, η) is bounded above and
below by positive constants uniformly with respect to ξ, η ∈ R.

Now we can replace the integration variable ξ by z = (ξ − η)P1; thus, we have

A(t, η) =

√
t

2π

∫
R

e−itz2
f(η, z) dz,

where
f(η, z) =

1
∂z(ξ, η)/∂ξ

=
2z

∂S(ξ, η)/∂ξ
.

Note that z = 0 corresponds to ξ = η. We write

∂S(ξ, η)
∂ξ

= 2(ξ − η)⟨ξ⟩−4⟨η⟩−4P3(ξ, η),

where

P3(ξ, η) = −(1− a)ηξ(2 + ξ2 + η2) + 1 + 2aη2 + aη4 + 2aξ2 + aξ4

+ (5a− 1)η2ξ2 + 2aη2ξ2(ξ2 + η2) + aη4ξ4.

When a > 1, we can easily see that P3(ξ, η) ⩾ C⟨ξ⟩4⟨η⟩4 for all ξ, η ∈ R. To
establish this estimate in the case when 1/5 < a < 1 we use the inequalities

ξη ⩽
1
2

+
1
2
η2ξ2, ξ2η2 ⩽

1
2
(ξ4 + η4) and ξ2η2 ⩽

1
2

+
1
2
η4ξ4.

Then the first term in P3(ξ, η) satisfies

(1− a)ηξ(2 + ξ2 + η2) ⩽
5(1− a)

4
+

1− a

4
(ξ4 + η4) +

1− a

4
η4ξ4

+
1− a

2
(ξ2 + η2) +

1− a

2
η2ξ2(ξ2 + η2).

It follows that
P3(ξ, η) ⩾

5a− 1
4

⟨ξ⟩4⟨η⟩4

for all ξ, η ∈ R. In particular,

∂S(ξ, η)/∂ξ

ξ − η
⩾ C;
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since z/(ξ − η) is bounded, we have

0 < f(η, z) =
2z/(ξ − η)

Sξ(ξ, η)/(ξ − η)
⩽ C.

The boundedness of 1/f(η, z) can be established similarly.
Now we use the equalities√

t

2π

∫
R

e−itz2
dz =

1√
2i

, P1(η, η) =

√
1
2
Λ′′(η),

P3(η, η) =
1
2
⟨η⟩4Λ′′(η) and f(η, 0) =

√
2√

Λ′′(η)
;

then we have

A(t, η) =
1√

iΛ′′(η)
+

√
t

2π
R,

where the remainder R is
∫

R
e−itz2

(f(η, z)− f(η, 0)) dz. Integrating by parts in R

and using the identity e−itz2
= (1− 2itz2)−1∂z(ze−itz2

) we derive the equality

R = −
∫

R
e−itz2 z ∂zf(η, z)

1− 2itz2
dz −

∫
R

e−itz2 4itz2(f(η, z)− f(η, 0))
(1− 2itz2)2

dz.

Note that

∂zf(η, z) =
1

∂z(ξ, η)/∂ξ
∂ξf(η, z) =

1
2

∂ξf
2(η, z) =

1
2

∂ξ
⟨ξ⟩6⟨η⟩4P2(ξ, η)

P 2
3 (ξ, η)

.

Therefore, in view of the estimates

|P2(ξ, η)| ⩽ C⟨ξ⟩2⟨η⟩4, |∂ξP2(ξ, η)| ⩽ C⟨ξ⟩⟨η⟩4, P3(ξ, η) ⩾ C⟨ξ⟩4⟨η⟩4,
|∂ξP3(ξ, η)| ⩽ C⟨ξ⟩3⟨η⟩4 and |∂ξ⟨ξ⟩6| ⩽ C⟨ξ⟩5,

it is true that

|∂zf(η, z)| = 2
∣∣∣∣∂ξ

⟨ξ⟩6⟨η⟩4P2(ξ, η)
P 2

3 (ξ, η)

∣∣∣∣
⩽ C

∣∣∣∣ ⟨ξ⟩6⟨η⟩4P 2
3 (ξ, η)

∣∣∣∣ |∂ξP2(ξ, η)|+ C

∣∣∣∣ ⟨ξ⟩6⟨η⟩4P2(ξ, η)
P 3

3 (ξ, η)

∣∣∣∣ |∂ξP3(ξ, η)|

+ C

∣∣∣∣ ⟨η⟩4P2(ξ, η)
P 2

3 (ξ, η)

∣∣∣∣ |∂ξ⟨ξ⟩6|

⩽ C⟨ξ⟩−1

for all ξ, η ∈ R. We also have

|f(η, z)− f(η, 0)| ⩽ C|z| for |z| ⩽ 1

and
|f(η, z)− f(η, 0)| ⩽ f(η, z) + f(η, 0) ⩽ C for |z| ⩾ 1,
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which implies the inequalities

|R| ⩽ C

∫ 1

0

z dz

1 + tz2
+ Ct−1

∫ ∞

1

⟨ξ⟩−1z−1 dz + Ct−1

∫ ∞

1

z−2 dz

⩽ C

∫ 1

0

z dz

1 + tz2
+ Ct−1

∫ ∞

1

dz

z2
+ Ct−1

∫
R

dξ

⟨ξ⟩2
⩽ Ct−1 ln t.

Thus, we arrive at the asymptotic formula

A(t, η) =
1√

iΛ′′(η)
(1 + O(t−1/2 ln t))

as t →∞, which holds uniformly with respect to η ∈ R.
We define the antiderivative for ξ ̸= 0 by

∂−1
ξ f =


−

∫ ∞

ξ

f(ζ) dζ for ξ > 0,∫ ξ

−∞
f(ζ) dζ for ξ < 0.

We consider the kernel

G(t, ξ, η) =

√
t

2π
∂−1

ξ (e−itS(η−ξ,η)).

Integrating by parts in Qϕ yields

Qϕ =

√
t

2π

∫
R

e−itS(η−ξ,η)ϕ(η − ξ) dξ = A(t, η)ϕ(η) +
∫

R
G(t, ξ, η)ϕη(η − ξ) dξ,

since −G(t, +0, η) + G(t,−0, η) = A(t, η).
The following lemma estimates the kernel G(t, ξ, η). We introduce the automodel

variable ξ̃ = ξ
√

t.

Lemma 2.1. The following inequality holds:

|G(t, ξ, η)| ⩽ C⟨ξ̃⟩−1 for all ξ, η ∈ R, t ⩾ 1.

Proof. To estimate the kernel G(t, ξ, η) we integrate by parts on the basis of the
identity

e−itS(η−ξ,η) = H(t, ξ, η) ∂ξ(ξe−itS(η−ξ,η)),

where H(t, ξ, η) = (1− itξ ∂ξS(η − ξ, η))−1. For ξ > 0 we obtain

G(t, ξ, η) = −
√

t

2π

∫ ∞

ξ

e−itS(η−ζ,η) dζ

=

√
t

2π
e−itS(η−ξ,η)ξH(t, ξ, η) +

√
t

2π

∫ ∞

ξ

e−itS(η−ζ,η)ζ ∂ζ(H(t, ζ, η)) dζ.
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Since |∂ζS(η − ζ, η)| ⩾ C|ζ|, we have

|H(t, ζ, η)|+ |ζ ∂ζ(H(t, ζ, η))| ⩽ C⟨ζ̃⟩−2, where ζ̃ = ζ
√

t.

It follows for ξ > 0 that

|G(t, ξ, η)| ⩽ C|ξ̃|⟨ξ̃⟩−2 + Ct1/2

∫ ∞

ξ

⟨ζ̃⟩−2 dζ ⩽ C⟨ξ̃⟩−1.

The case ξ < 0 is considered similarly.
The lemma is proved.

The following lemma gives us the long-time asymptotics of the defect operator Q.

Lemma 2.2. The following inequality holds:

∥Qϕ−Aϕ∥L∞ ⩽ Ct−1/4∥ϕξ∥L2 for all t ⩾ 1.

Proof. Using the estimate in Lemma 2.1 and the Cauchy-Bunyakovsky-Schwarz
inequality we obtain

|Qϕ−Aϕ| =
∣∣∣∣∫

R
G(t, ξ, η)ϕη(η − ξ) dξ

∣∣∣∣ ⩽ C∥ϕξ∥L2

(∫
R
⟨ξ̃⟩−2 dξ

)1/2

⩽ Ct−1/4∥ϕξ∥L2 .

The lemma is proved.

2.3. Estimates for the conjugate defect operator in the uniform metric.
We define the conjugate defect operator V∗hϕ by

V∗hϕ =

√
t

2π

∫
R

eitS3(ξ,η)h(t, ξ, η)ϕ(η)Λ′′(η) dη,

where the weight has the form

h(t, ξ, η) =
(
−1

2
+ itS3(ξ, η)

)−2

for S3(ξ, η) = S(ξ, η) + 2Θ(η).

We consider the kernel

A∗h(t, ξ) =

√
t

2π

∫
R

eitS3(ξ,η)h(t, ξ, η)Λ′′(η) dη.

Replacing the integration variable by η̃ = t1/2η we arrive at

A∗h(t, 0) =

√
1
2π

∫
R

e3iη̃ 2(1+O(t−1η̃ 2)) Λ′′(η̃t−1/2) dη̃

(−1/2 + 3iη̃ 2(1 + O(t−1η̃ 2)))2

=

√
2
π

∫
R

e3iη̃ 2 dη̃

(−1/2 + 3iη̃ 2)2
+ O(t−1/2) =

√
8i√
3

+ O(t−1/2).
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We also obtain

A∗h(t, ξ) =
√

8i√
3
⟨ξ̃⟩−2 + O(t−1/2⟨ξ̃⟩−2 + |ξ̃|⟨ξ̃⟩−2).

Denoting the kernel by

G∗h(t, ξ, η) =

√
t

2π
∂−1

η (eitS(ξ,ξ−η)h(t, ξ, ξ − η)Λ′′(ξ − η))

and integrating by parts in the integral V∗h, we obtain

V∗hϕ =

√
t

2π

∫
R

eitS3(ξ,ξ−η)h(t, ξ, ξ − η)ϕ(ξ − η)Λ′′(ξ − η) dη

= A∗h(t, ξ)ϕ(ξ) +
∫

R
G∗h(t, ξ, η)ϕξ(ξ − η) dη,

since −G∗h(t, ξ,+0) + G∗h(t, ξ,−0) = A∗h(t, ξ). The following lemma estimates the
operator V∗h in the uniform metric.

Lemma 2.3. The following inequality holds:

∥V∗hϕ−A∗hϕ∥L∞ ⩽ Ct−1/4∥⟨η̃⟩−2 ∂ηϕ∥L2 for all t ⩾ 1.

Proof. Since h(t, ξ, ξ − η) ⩽ C⟨ξ̃⟩−1⟨η̃⟩−3, we obtain the inequality

|G∗h(t, ξ, η)| ⩽ Ct1/2⟨ξ̃⟩−1

∫ ∞

η

⟨ỹ⟩−3 dy ⩽ C⟨ξ̃⟩−1⟨η̃⟩−2.

From the Cauchy-Bunyakovsky-Schwarz inequality we infer that

|V∗hϕ−A∗hϕ| =
∣∣∣∣∫

R
G∗h(t, ξ, η)ϕξ(ξ − η) dη

∣∣∣∣
⩽ C∥⟨η̃⟩−2 ∂ηϕ∥L2

(∫
R
⟨ξ̃⟩−2⟨η̃⟩−4⟨ξ̃ − η̃⟩2 dη

)1/2

⩽ Ct−1/4∥⟨η̃⟩−2 ∂ηϕ∥L2 .

The lemma is proved.

2.4. Boundedness of pseudodifferential operators. There are many results
concerning the L2-boundedness of pseudodifferential operators of the form

a(t, x,D)ϕ =
∫

R
eixξa(t, x, ξ)ϕ̂(ξ) dξ

(see [16]–[19]). Below we use the following result (see [18]).

Lemma 2.4. Assume that the symbol a(t, x, ξ) satisfies the estimates

sup
x,ξ∈R, t⩾1

|∂k
x ∂l

ξa(t, x, ξ)| ⩽ C

for k, l = 0, 1. Then
∥a(t, x,D)ϕ∥L2

x
⩽ C∥ϕ∥L2 .
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A similar result is true for the conjugate operator

a∗(t, ξ,D)ϕ =
∫

R
e−ixξa∗(t, x, ξ)ϕ̂(x) dx.

Lemma 2.5. Assume that the symbol a∗(t, x, ξ) satisfies the estimates

sup
x,ξ∈R, t⩾1

|∂k
x ∂l

ξa
∗(t, x, ξ)| ⩽ C

for k, l = 0, 1. Then
∥a∗(t, ξ,D)ϕ∥L2

ξ
⩽ C∥ϕ∥L2 .

2.5. Estimates for derivatives of the defect operator. We define the defect
operator with weight h(t, ξ, η) by

Vhϕ = t1/2

∫
R

e−itS(ξ,η)h(t, ξ, η)ϕ(ξ) dξ.

The following lemma proves that the operator Vh is L2-bounded uniformly with
respect to t ⩾ 1.

Lemma 2.6. Assume that the kernel h satisfies the estimates

|∂m
η ∂n

ξ h(t, ξ, η)| ⩽ Ct(m+n)/2

for all ξ, η ∈ R, t ⩾ 1, where m, n = 0, 1. Then

∥
√

Λ′′Vhϕ∥L2 ⩽ C∥ϕ∥L2 for all t ⩾ 1.

Proof. We make the change of variable η = µ(x); then

Vhϕ = t1/2MB−1

∫
R

eitxξh(t, ξ, µ(x))e−itΛ(ξ)ϕ(ξ) dξ.

Next, we change the variable of integration in accordance with the relation
ξ = t−1/2ξ′ (and omit primes in what follows):

Vhϕ = MB−1D−1
t1/2

∫
R

eixξh

(
t,

ξ√
t
, µ

(
x√
t

))
Dt1/2e−itΛ(ξ)ϕ(ξ) dξ

= MB−1D−1
t1/2a(t, x,D)F−1Dt1/2e−itΛϕ,

where the symbol a(t, x, ξ) is h(t, ξ/
√

t, µ(x/
√

t)). Since µ(x) = O(x) and µ′(x) =
1/Λ′′(µ(x)) = O(1), we have

|∂m
x ∂n

ξ a(t, x, ξ)| = O

(
t−m/2

(Λ′′(η))m
∂m

η ∂n
ξ h(t, ξt−1/2, η)

∣∣∣∣
η=µ(xt−1/2)

)
⩽ C

for all x, ξ ∈ R, t ⩾ 1 and m, n = 0, 1. An application of Lemma 2.4 yields

∥a(t, x,D)ϕ∥L2
x

⩽ C∥ϕ∥L2 .



Logarithmic nature of long-time asymptotics 1035

Therefore, using the equalities

∥
√

Λ′′B−1ϕ∥L2 = ∥ϕ∥L2 , ∥D−1
t1/2ϕ∥L2 = ∥ϕ∥L2 ,

∥F−1ϕ∥L2 = ∥ϕ∥L2 and ∥Dt1/2ϕ∥L2 = ∥ϕ∥L2 ,

we deduce the inequality

∥
√

Λ′′Vhϕ∥L2 ⩽ C∥
√

Λ′′B−1D−1
t1/2a(t, x,D)F−1Dt1/2e−itΛϕ∥L2 ⩽ C∥ϕ∥L2 .

The lemma is proved.

Now we estimate the derivative ∂ηQ.

Lemma 2.7. The following inequality holds:

∥∂ηQϕ∥L2 ⩽ C∥ϕ∥H1 for all t ⩾ 1.

Proof. Integration by parts yields

∂ηQϕ = CVq1 ∂ξϕ + CVq2ϕ,

where
q1(ξ, η) =

∂ηS(ξ, η)
∂ξS(ξ, η)

=
Λ′′(η)∫ 1

0
Λ′′(η + (ξ − η)z) dz

= O(1)

and
q2(ξ, η) = ∂ξ

(
∂ηS(ξ, η)
∂ξS(ξ, η)

)
= ∂ξ

(
Λ′′(η)∫ 1

0
Λ′′(η + (ξ − η)z) dz

)
= O(1),

which implies the estimates supη,ξ∈R |∂k
η ∂l

ξqj(η, ξ)| ⩽ C for k, l = 0, 1, j = 1, 2.
Therefore, using Lemma 2.6 we obtain

∥∂ηQϕ∥L2 ⩽ C∥
√

Λ′′ ∂ηQϕ∥L2
x

⩽ C∥∂ξϕ∥L2 + C∥ϕ∥L2 .

The lemma is proved.

The next lemma estimates the derivative Qt.

Lemma 2.8. The following identity holds:

tQtϕ = iA1Vh1 ∂ξϕ + ηVh1 ∂ξϕ +
1
t
Vh2 ∂ξϕ +

1
t
Vh3ϕ,

where the weight functions hj are defined below. In addition,

∥Vhj ϕ∥L2 ⩽ C∥ϕ∥L2 for all t ⩾ 1, j = 1, 2, 3.

Proof. Integrating by parts yields

tQtϕ =

√
t

2π

∫
R

e−itS(ξ,η)

(
1
2
− itS(ξ, η)

)
ϕ(ξ) dξ

=
1
2
Qϕ−

√
t

2π

∫
R

e−itS(ξ,η) ∂ξ

(
S(ξ, η)

∂ξS(ξ, η)
ϕ(ξ)

)
dξ

= −Vh1ξ ∂ξϕ + ηVh1 ∂ξϕ + Vq3ϕ,
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where h1(ξ, η) =
S(ξ, η)√

2π(ξ − η) ∂ξS(ξ, η)
and

q3(ξ, η) =
1√
2π

(
1
2
− ∂ξ

S(ξ, η)
∂ξS(ξ, η)

)
=

1√
2π

(
Λ′′(ξ)f1(ξ, η)

f2
2 (ξ, η)

− 1
2

)
for

f1(ξ, η) =
∫ 1

0

Λ′′(η + (ξ − η)z)(1− z) dz and f2(ξ, η) =
∫ 1

0

Λ′′(η + (ξ − η)z) dz.

Note that q3(η, η) = 0. Thus, integrating by parts once again, we obtain

Vq3ϕ =
1
t
Vq4 ∂ξϕ +

1
t
Vq5ϕ,

where
q4(ξ, η) =

q3(ξ, η)
i ∂ξS(ξ, η)

and q5(ξ, η) = ∂ξ
q3(ξ, η)

i ∂ξS(ξ, η)
.

We introduce the notation f3(ξ, η) = f1(ξ, η)− 1
2f2

2 (ξ, η). Since f3(η, η) = 0, we can
write

f3(ξ, η) = (ξ − η)(f4(ξ, η) + f5(ξ, η) + f6(ξ, η)),

where

f4(ξ, η) =
∫ 1

0

Λ′′′(η + (ξ − η)z1)
∫ 1

0

Λ′′(η + (ξ − η)z1z)(1− z) dz dz1,

f5(ξ, η) =
∫ 1

0

Λ′′(η + (ξ − η)z1)
∫ 1

0

Λ′′′(η + (ξ − η)z1z)z(1− z) dz dz1

and

f6(ξ, η) = −
∫ 1

0

(∫ 1

0

Λ′′(η + (ξ − η)z1z) dz

)(∫ 1

0

Λ′′′(η + (ξ − η)z1z)z dz

)
dz1.

Hence we have
q4(ξ, η) =

f4(ξ, η) + f5(ξ, η) + f6(ξ, η)
i
√

2πf3
2 (ξ, η)

and
q5(ξ, η) = ∂ξ

f4(ξ, η) + f5(ξ, η) + f6(ξ, η)
i
√

2πf3
2 (ξ, η)

.

In view of the fact that S(ξ, η) = (ξ − η)2f1(ξ, η) we deduce the relation

h1(ξ, η) =
f1(ξ, η)√
2πf2(ξ, η)

= O(1).

Therefore, using the operator A1 =
1

tΛ′′(η)
M ∂ηM we can write

Vh1ξ ∂ξϕ = −iA1Vh1 ∂ξϕ + t−1Vq6 ∂ξϕ,
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where q6(ξ, η) = itA0h1(ξ, η). Thus, we arrive at the representation

tQtϕ = iA1Vh1 ∂ξϕ + ηVh1 ∂ξϕ + t−1Vh2 ∂ξϕ +
1
t
Vh3ϕ,

where h2 = q4 − q6 and h3 = q5. Since supη,ξ∈R |∂k
η ∂l

ξhj(η, ξ)|⩽ C for k, l = 0, 1,
j = 1, 2, 3, using Lemma 2.6 we infer the estimates

∥Vhj ϕ∥L2 ⩽ C∥
√

Λ′′Vhj ϕ∥L2 ⩽ C∥ϕ∥L2 .

Lemma 2.8 is proved.

2.6. Estimates for derivatives of the conjugate defect operator Q∗. Here
we establish the L2-boundedness of the weighted conjugate defect operator

V∗hϕ = t1/2

∫
R

eitS(ξ,η)h(t, ξ, η)ϕ(η)Λ′′(η) dη.

Lemma 2.9. Assume that the weight function h satisfies

|∂m
η ∂n

ξ h(t, ξ, η)| ⩽ Ct(m+n)/2

for all ξ, η ∈ R, t ⩾ 1 and m, n = 0, 1. Then

∥V∗hϕ∥L2 ⩽ C∥
√

Λ′′ϕ∥L2 for all t ⩾ 1.

Proof. We make the change of the variable of integration η = µ(x); then

V∗hϕ = eitΛ(ξ)t1/2

∫
R

e−itxξh(t, ξ, µ(x))BMϕ dx.

Next, we make the change x = t−1/2x′ (primes are omitted below); then we have

V∗hϕ = eitΛ(ξ)D−1
t1/2

∫
R

e−ixξh(t, ξt−1/2, µ(xt−1/2))Dt−1/2BMϕ dx.

We define the pseudodifferential operator by

a∗(t, ξ,D)ϕ =
∫

R
e−ixξa∗(t, ξ, x)ϕ̂(x) dx,

where the symbol is a∗(t, ξ, x) = h(t, ξt−1/2, µ(xt−1/2)). Then we can write

V∗hϕ = eitΛ(ξ)D−1
t1/2a

∗(t, ξ,D)F−1Dt1/2BMϕ.

To establish the L2-boundedness of the pseudodifferential operator a∗(t, ξ,D),
we estimate the symbol a∗(t, ξ, x) = h(t, ξt−1/2, η)|η=µ(xt−1/2). Since µ′(x) =
1/Λ′′(µ(x)) = O(1), we have

|∂m
x ∂n

ξ a∗(t, ξ, x)| = O

(
t−m/2

(Λ′′(η))m
∂m

η ∂n
ξ h(t, ξt−1/2, η)

∣∣∣∣
η=µ(xt−1/2)

)
⩽ C
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for all x, ξ ∈ R, t ⩾ 1 and m, n = 0, 1. Therefore, from Lemma 2.5 we derive the
estimate ∥a∗(t, ξ,D)ϕ∥L2

ξ
⩽ C∥ϕ∥L2 ; in view of the equalities

∥D−1
t1/2ϕ∥L2 = ∥ϕ∥L2 , ∥F−1ϕ∥L2 = ∥ϕ∥L2 ,

∥Dt1/2ϕ∥L2 = ∥ϕ∥L2 and ∥Bϕ∥L2 = ∥
√

Λ′′ϕ∥L2 ,

it follows that

∥V∗hϕ∥L2 = ∥a∗(t, ξ,D)F−1Dt1/2BMϕ∥L2
ξ

⩽ C∥
√

Λ′′ϕ∥L2 .

The lemma is proved.

Lemma 2.10. The following inequality holds:

∥∂ξQ∗ϕ∥L2 ⩽ C∥ϕ∥H1 for all t ⩾ 1.

Proof. Integration by parts yields

∂ξQ∗ϕ = CV∗q7
∂ηϕ + CV∗q8

ϕ,

where

q7(ξ, η) =
∂ξS(ξ, η)
∂ηS(ξ, η)

=
1

Λ′′(η)

∫ 1

0

Λ′′(η + (ξ − η)z) dz = O(1)

and

q8(ξ, η) =
1

Λ′′(η)
∂η

(
∂ξS(ξ, η)
∂ηS(ξ, η)

Λ′′(η)
)

=
1

Λ′′(η)
∂η

∫ 1

0

Λ′′(η + (ξ − η)z) dz = O(1).

Taking account of the estimates supη,ξ∈R |∂k
η ∂l

ξqj(ξ, η)| ⩽ C for k, l = 0, 1 and
j = 7, 8 and using Lemma 2.9 we obtain

∥∂ξQ∗ϕ∥L2
x

⩽ C∥
√

Λ′′ ∂ηϕ∥L2 + C∥
√

Λ′′ϕ∥L2 ⩽ C∥ϕ∥H1 .

The lemma is proved.

The next lemma estimates the commutator [⟨ξ⟩−2,Q∗].

Lemma 2.11. The following inequality holds:

∥[⟨ξ⟩−2,Q∗]ϕ∥L2 ⩽ Ct−1∥ϕ∥H1 for all t ⩾ 1.

Proof. Integrating by parts we obtain

t[⟨ξ⟩−2,Q∗]ϕ = CV ∗
q9

∂ηϕ + CV ∗
q10

ϕ,

where

q9(ξ, η) =
⟨ξ⟩−2 − ⟨η⟩−2

∂ηS(ξ, η)
=

ξ + η

⟨ξ⟩2⟨η⟩2Λ′′(η)
= O(1)
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and

q10(ξ, η) =
1

Λ′′(η)
∂η

(
⟨ξ⟩−2 − ⟨η⟩−2

∂ηS(ξ, η)
Λ′′(η)

)
=

1
Λ′′(η)

∂η

(
ξ + η

⟨ξ⟩2⟨η⟩2

)
= O(1).

Taking account of the estimates supη,ξ∈R |∂k
η ∂l

ξqj(ξ, η)| ⩽ C for k, l = 0, 1 and
j = 9, 10 and using Lemma 2.9 we obtain

t∥[⟨ξ⟩−2,Q∗]ϕ∥L2
x

⩽ C∥ϕ∥H1 .

The lemma is proved.

§ 3. A priori estimates for the solution

First we state a result on the time-local existence of a solution of the Cauchy
problem (2) in the function space C([0,∞);H5 ∩H0,1) ∩C1((0,∞);H3) (see [20]
for a proof).

Theorem 3.1. Assume that the initial data satisfy u0 ∈ H5∩H0,1 . Then for some
T > 0 Cauchy problem (2) has a unique solution

u ∈ C([0,∞);H5 ∩H0,1) ∩C1((0,∞);H3)

such that ∥u∥XT
< C . If the norm ∥u0∥H5∩H0,1 is small, then the existence time T

is greater than 1.

To establish the time-global existence of solutions we need to establish a priori
estimates for solutions in the norm ∥φ̂∥XT

that are uniform with respect to T ⩾ 1.
Here

∥ϕ∥XT
= sup

t∈[1,T ]

(∥ϕ(t)∥L∞ + W 1/2(t)∥⟨ξ̃⟩−γϕ(t)∥L∞

+ t−γ∥⟨ξ⟩5ϕ∥L2 + K−1(t)∥∂ξϕ(t)∥L2),

where W (t) = 1 + ε2 ln(1 + t), K(t) = tγ + ε2t1/4W−3/2(t), ξ̃ = ξ
√

t, and γ > 0 is
small.

3.1. An estimate for the derivative. The next lemma estimates the function

Φ = ∂ξφ̂− ⟨ξ⟩−2Ω′(ξ)
∫ t

1

Q∗(τ)M2(τ)v3(τ) dτ.

Lemma 3.1. Assume that ∥φ̂∥XT
⩽ Cε. Then

∥Φ(t)∥L2 ⩽ CεK(t) for all t ∈ [1, T ].

Proof. Differentiating (5) we arrive at the equality

i ∂tφ̂ξ = i⟨ξ⟩−2Ω′(ξ)eitΩ(ξ)D3Q∗(3t)v3 + R = i⟨ξ⟩−2Ω′(ξ)Q∗(t)M2(t)v3(t) + R,

where R = t−1eitΩ ∂ξ(⟨ξ⟩−2D3Q∗(3t)v3), which yields i ∂tΦ = R. To estimate the
remainder R we use Lemma 2.10; then ∥R∥L2 ⩽ Ct−1∥v3∥H1 . From Lemma 2.7 we
also deduce that

∥∂ηv∥L2 ⩽ C∥φ̂∥H1 ⩽ CεK(t).
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Using Lemma 2.2 yields the inequality

|v| ⩽ C|φ̂|+ Ct−1/4∥∂ξφ̂∥L2 ⩽ Cε,

which implies that

∥R∥L2 ⩽ Ct−1∥v∥2L∞∥v∥H1 ⩽ Cε3t−1K(t).

Thus, we have
d

dt
∥Φ(t)∥L2 ⩽ Cε3t−1K(t).

Integration with respect to time leads to the inequality

∥Φ(t)∥L2 ⩽ CεK(t) for t ∈ [1, T ].

The lemma is proved.

Now we estimate the derivative ∂ξφ̂.

Lemma 3.2. Assume that ∥φ̂∥XT
⩽ Cε. Then

∥∂ξφ̂∥L2 ⩽ CεK(t) for all t ∈ [1, T ].

Proof. In view of Lemma 3.1 we need to estimate the integral

I = ⟨ξ⟩−2Ω′(ξ)
∫ t

1

Q∗(τ)M2(τ)v3(τ) dτ.

Using the identity t1/2eitS3(ξ,η) = H1 ∂t(t3/2eitS3(ξ,η)), where H1(t, ξ, η) =
(3/2 + itS3(ξ, η))−1 and S3(ξ, η) = S(ξ, η) + 2Θ(η), and integrating by parts, we
infer that∫ t

1

Q∗M2ϕ dτ = tQ∗(t)M2(t)H1(t)ϕ(t)−Q∗(1)M2(1)H1(1)ϕ(1)

−
∫ t

1

Q∗(τ)M2(τ)H2(τ)ϕ(τ) dτ −
∫ t

1

Q∗(τ)M2(τ)H1(τ)τ ∂τϕ(τ) dτ,

where H2 = 3
2H2

1 −H1. Note that S(ξ, η)+2Θ(η) = Ω(ξ)+3S(ξ/3, η), which yields
the estimate

S3(ξ, η) =
3
4
Ω(ξ) +

1
2
Θ(η) +

3
4

(
S(ξ, η) + S

(
ξ

3
, η

))
⩾

1
8
(ξ2 + η2),

since

S(ξ, η) =
1
2

∫ ξ

η

Λ′′(z)(ξ − z) dz ⩾ C(ξ − η)2.

Hence we arrive at the inequality

|H1(t, ξ, η)| ⩽ C

1 + t(ξ2 + η2)
.
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Since τ ∂τv(τ) = Qτφ̂τ + τQτ φ̂, we have the representation

I = ⟨ξ⟩−2 Ω′(ξ)
ξ

4∑
j=1

Ij ,

where

I1 = tξQ∗(t)M2(t)H1(t)v3(t)− ξQ∗(1)M2(1)H1(1)v3(1),

I2 = −ξ

∫ t

1

Q∗(τ)M2(τ)H2(τ)v3(τ) dτ,

I3 = −3ξ

∫ t

1

Q∗(τ)M2(τ)H1(τ)v2Qτφ̂τ dτ

and

I4 = −3ξ

∫ t

1

Q∗(τ)M2(τ)H1(τ)v2τQτ φ̂ dτ.

By virtue of Lemma 2.2 we have

⟨ξ̃⟩−γ |v| ⩽ C⟨ξ̃⟩−γ |φ̂|+ Ct−1/4∥∂ξφ̂∥L2 ⩽ CεW−1/2(t)

and also

∥⟨ξ̃⟩−1/2−2γv∥L2 ⩽ CεW−1/2(t)∥⟨ξ̃⟩−1/2−γ∥L2 ⩽ Cεt−1/4W−1/2(t).

Now, using Lemma 2.9 for h(t, ξ, η) = ξ̃⟨η̃⟩H1 we derive the estimates

∥tξQ∗(t)M2H1v
3(t)∥L2 ⩽ Ct1/2∥⟨ξ̃⟩−1v3∥L2 ⩽ Cε3t1/4W−3/2(t) ⩽ CεK(t),

∥ξQ∗(1)M2(1)H1(1)v3(1)∥L2 ⩽ C∥⟨ξ⟩−1v3(1)∥L2 ⩽ Cε3 ⩽ CεK(t);

so that ∥I1∥L2 ⩽ CεK(t). In a similar way we obtain the estimates

∥I2∥L2 ⩽

∥∥∥∥ξ

∫ t

1

Q∗(τ)M2H2v
3(τ) dτ

∥∥∥∥
L2

⩽ Cε3

∫ t

1

τ−3/4W−3/2(τ) dτ ⩽ CεK(t).

Furthermore, it follows from (5) that

Qtφ̂t = −iQ⟨ξ⟩−2Q∗M2v3 = −iQ⟨ξ⟩−2eiτΩD3Q∗(3τ)v3,

which yields the relations

Q∗M2H1v
2Qτφ̂τ = −iQ∗M2H1v

2QeiτΩD3⟨3ξ⟩−2Q∗(3τ)v3

= −iQ∗M4H1⟨3η⟩−2v5 − iQ∗M2H1v
2QeiτΩD3[⟨3ξ⟩−2,Q∗(3τ)]v3.

Thus we have I3 = I5 + I6, where

I5 = 3iξ

∫ t

1

Q∗M4H1⟨3η⟩−2v5 dτ
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and

I6 = 3iξ

∫ t

1

Q∗M2H1v
2QeiτΩD3[⟨3ξ⟩−2,Q∗(3τ)]v3 dτ.

As above, owing to Lemma 2.9 for h = ξ̃⟨η̃⟩H1 we obtain

∥I5∥L2 ⩽ C

∫ t

1

τ−1/2∥⟨η̃⟩−1v5(τ)∥L2 dτ ⩽ Cε3

∫ t

1

τ−3/4W−5/2(τ) dτ ⩽ CεK(t).

Using Lemma 2.11 we also deduce that

∥I6∥L2 ⩽ Cε2

∫ t

1

τ−1/2∥[⟨3ξ⟩−2,Q∗(3τ)]v3∥L2 dτ

⩽ Cε2

∫ t

1

τ−3/2∥v3∥H1 dτ ⩽ Cε4

∫ t

1

τ−3/2K(τ) dτ ⩽ CεK(t).

Finally, we estimate the term I4. It follows from Lemma 2.8 that

tQtϕ = iA1Vh1 ∂ξϕ + ηVh1 ∂ξϕ +
1
t
Vh2 ∂ξϕ +

1
t
Vh3ϕ.

Therefore, we have the representation I4 =
∑10

j=7 Ij , where

I7 = −3ξ

∫ t

1

Q∗(τ)M2H1v
2Vh3 φ̂

dτ

τ
, I8 = −3ξ

∫ t

1

Q∗(τ)M2H1v
2Vh2 ∂ξφ̂

dτ

τ
,

I9 = −3ξ

∫ t

1

Q∗(τ)M2H1ηv2Vh1 ∂ξφ̂ dτ,

I10 = −3iξ

∫ t

1

Q∗(τ)M2H1v
2A1Vh1 ∂ξφ̂ dτ.

Using the equalities Q∗(t)A1(t) = iξQ∗(t) and v1 = A1v = Qiξφ̂ = iηv + A0v
we conclude from this that

Q∗M2H1v
2A1ϕ = Q∗ 1

tΛ′′(η)
MH1(Mv)2 ∂ηMϕ

= Q∗A1(M2H1v
2ϕ)− 2Q∗M2H1vv1ϕ−Q∗(t)M2(A0H1)v2ϕ

= iξQ∗M2H1v
2ϕ− 2iQ∗M2H1ηv2ϕ− 2Q∗M2H1(A0v)vϕ−Q∗M2(A0H1)v2ϕ.

Hence I10 =
∑14

j=11 Ij , where

I11 = 3ξ2

∫ t

1

Q∗M2H1v
2Vh1 ∂ξφ̂ dτ, I12 = −6ξ

∫ t

1

Q∗M2H1ηv2Vh1 ∂ξφ̂ dτ,

I13 = 3iξ

∫ t

1

Q∗M2(A0H1)v2Vh1 ∂ξφ̂ dτ

and

I14 = 6iξ

∫ t

1

Q∗M2H1(A0v)vVh1 ∂ξφ̂ dτ.
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Lemmas 2.8 and 2.9 for h = ξ̃⟨η̃⟩H1 yield the estimate

∥I7∥L2 ⩽ C

∥∥∥∥ξ

∫ t

1

Q∗(τ)M2H1v
2Vh3 φ̂

dτ

τ

∥∥∥∥
L2

⩽ C

∫ t

1

τ−3/2∥⟨η̃⟩−1v2Vh3 φ̂∥L2 dτ ⩽ Cε3

∫ t

1

τγ−3/2 dτ ⩽ Cε3K(t).

In a similar way we have

∥I8∥L2 + ∥I9∥L2 ⩽ C

∫ t

1

τ−3/2∥⟨η̃⟩−1v2Vh2 ∂ξφ̂∥L2 dτ + C

∫ t

1

τ−1∥v2Vh1 ∂ξφ̂∥L2 dτ

⩽ Cε3

∫ t

1

τ−3/2K(τ) dτ + Cε3

∫ t

1

τ−1K(τ) dτ ⩽ Cε3K(t).

Using Lemmas 2.8 and 2.9 we obtain

∥I11∥L2 + ∥I12∥L2 + ∥I13∥L2 ⩽ C

∫ t

1

τ−1∥v2Vh1 ∂ξφ̂∥L2 dτ

⩽ Cε3

∫ t

1

τ−1K(τ) dτ ⩽ Cε3K(t).

Finally, in view of inequality ∥Q∗ϕ∥L∞ ⩽ Ct1/2∥ϕ∥L1 we arrive at the inequality

∥I14∥L2 ⩽ C

∫ t

1

∥⟨ξ̃⟩−1∥L2∥Q∗(τ)M2ξ̃⟨ξ̃⟩H1(A0v)vVh1 ∂ξφ̂∥L∞ dτ

⩽ Cε

∫ t

1

τ−5/4∥(τA0v)Vh1 ∂ξφ̂∥L1 dτ

⩽ Cε3

∫ t

1

τ−5/4K2(τ) dτ ⩽ Cε3

∫ t

1

τ−1K(τ) dτ ⩽ Cε3K(t),

which implies the assertion of the lemma for all t ∈ [1, T ].
Lemma 3.2 is proved.

3.2. Estimates in the uniform metric. We introduce the notation

y = φ̂ + i⟨ξ⟩−2Q∗M2H3v
3,

where H3(t, ξ, η) = (−1/2 + itS3(ξ, η))−1 and S3(ξ, η) = S(ξ, η) + 2Θ(η).

Lemma 3.3. Assume that ∥φ̂∥XT
⩽ Cε. Then y = φ̂ + O(ε3W−3/2). In addition,

the function y(t, ξ) satisfies the equality

∂ty(t, ξ) = − 1

2t
√

3⟨ξ̃⟩2
y3(t, ξ) + g(t, ξ) (6)

for all t ⩾ 1 and x ∈ R, where

g(t, ξ) = O(g1(t, ξ))

and
g1(t, ξ) = ε5t−1W−5/2(t) + ε3tγ−5/4 + ε3t−1|ξ̃|⟨ξ̃⟩−2W−3/2.
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Proof. Using the identity eitS3(ξ,η) = H3t
3/2 ∂t(t−1/2eitS3(ξ,η)) and integrating by

parts we obtain

t−1Q∗M2v3 = ∂t(Q∗M2H3v
3)− t−1Q∗M2H4v

3 − 3Q∗M2H3v
2 ∂tv,

where H4 = − 1
2H2

3 . Therefore, it follows from (5) that

i ∂ty = −iR0 − 3⟨ξ⟩−2R1, (7)

where R0 = −it−1⟨ξ⟩−2Q∗M2H4v
3 and R1 = Q∗M2H3v

2 ∂tv. We have ∂tv =
Qφ̂t + (Q)tφ̂; hence we can set R1 = R2 + R3, where

R2 = Q∗M2H3v
2Qφ̂t and R3 = Q∗M2H3v

2(Q)tφ̂.

We derive from (5) that

Qφ̂t = −it−1M2⟨3η⟩−2v3 − it−1QeitΩD3[⟨3ξ⟩−2,Q∗(3t)]v3;

thus, we can write R2 = R4 + R5, where

R4 = −it−1Q∗M4H3v
5⟨3η⟩−2

and
R5 = −it−1Q∗M2H3v

2QeitΩD3[⟨3ξ⟩−2,Q∗(3t)]v3.

From Lemma 2.2 we infer the inequality ∥⟨η̃⟩−γv∥L∞ ⩽ CεW−1/2, which, in view
of the estimate ∥V∗hϕ∥L∞ ⩽ Ct1/2∥hϕ∥L1 , implies that

∥R4∥L∞ ⩽ Ct−1/2∥⟨η̃⟩−γv∥5L∞∥⟨η̃⟩5γ−2∥L1 ⩽ Cε5t−1W−5/2 ⩽ C|g1|;

from Lemma 2.11 we obtain

∥R5∥L∞ ⩽ Ct−1/2∥⟨η̃⟩−γv∥2L∞∥⟨η̃⟩2γ−2∥L2∥[⟨3ξ⟩−2,Q∗(3t)]v3∥L2

⩽ Cε2t−7/4∥v3∥H1 ⩽ C|g1|.

Furthermore, owing to Lemma 2.8,

t(Q)tϕ = t−1ηVh1 ∂ξϕ + t−2Vh2 ∂ξϕ + t−2Vh3ϕ + it−1A1Vh1 ∂ξϕ.

Therefore, R3 =
∑9

j=6 Rj , where

R6 = t−1Q∗M2H3ηv2Vh1 ∂ξφ̂, R7 = t−2Q∗M2H3v
2Vh2 ∂ξφ̂,

R8 = t−2Q∗M2H3v
2Vh3 φ̂ and R9 = it−1Q∗M2H3v

2A1Vh1 ∂ξφ̂.

Using the inequality ∥Q∗ϕ∥L∞ ⩽ Ct1/2∥ϕ∥L1 and Lemma 2.8 we deduce the
relations

∥R6∥L∞ + ∥R7∥L∞ + ∥R8∥L∞

⩽ Ct−1/2∥⟨η̃⟩−2v2ηVh1 ∂ξφ̂∥L1

+ Ct−3/2∥⟨η̃⟩−2v2Vh2 ∂ξφ̂∥L1 + Ct−3/2∥⟨η̃⟩−2v2Vh3 φ̂∥L1

⩽ Ct−1∥⟨η̃⟩−γv∥2L∞∥⟨η̃⟩2γ−1∥L2(∥Vh1 ∂ξφ̂∥L2 + ∥Vh2 ∂ξφ̂∥L2 + ∥Vh3 φ̂∥L2)

⩽ Cε2t−5/4W−1(∥∂ξφ̂∥L2 + ∥φ̂∥L2)

⩽ Cε3t−5/4W−1K(t) ⩽ C|g1|.
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Now from the identities Q∗(t)A1(t) = iξQ∗(t) and v1 = A1v = Qiξφ̂ = iηv +A0v
we obtain

Q∗M2H3v
2A1ϕ = iξQ∗M2H3v

2ϕ− 2iQ∗M2H3ηv2ϕ

− 2Q∗M2H3(A0v)vϕ−Q∗M2(A0H3)v2ϕ.

Consequently, we can write R9 =
∑13

j=10 Rj , where

R10 = −t−1ξQ∗M2H3v
2Vh1 ∂ξφ̂, R11 = 2t−1Q∗M2H3ηv2Vh1 ∂ξφ̂,

R12 = −it−1Q∗M2(A0H3)v2Vh1 ∂ξφ̂ and R13 = −2it−1Q∗M2H3(A0v)vVh1 ∂ξφ̂.

Note that (A0H3) = O(t−1/2⟨η̃⟩−2); hence, using the inequality ∥Q∗ϕ∥L∞ ⩽
Ct1/2∥ϕ∥L1 and Lemma 2.8, we deduce the relations

∥R10∥L∞ + ∥R11∥L∞ + ∥R12∥L∞ ⩽ Ct−1∥⟨η̃⟩−1v2Vh1 ∂ξφ̂∥L1

⩽ Ct−1∥⟨η̃⟩−γv∥2L∞∥⟨η̃⟩2γ−1∥L2∥Vh1 ∂ξφ̂∥L2 ⩽ Cε2t−5/4W−1∥∂ξφ̂∥L2

⩽ Cε3t−5/4W−1K(t) ⩽ C|g1|.

We estimate the term R13 using the inequality ∥Q∗ϕ∥L∞ ⩽ Ct1/2∥ϕ∥L1 , Lemma 2.8,
and Lemma 2.7 as follows:

∥R13∥L∞ ⩽ Ct−1/2∥⟨η̃⟩−2v(A0v)Vh1 ∂ξφ̂∥L1

⩽ Ct−1/2∥⟨η̃⟩−2v∥L∞∥A0v∥L2∥Vh1 ∂ξφ̂∥L2

⩽ Cε3t−3/2W−1/2K2(t) ⩽ Cε3t−5/4W−1K(t) ⩽ C|g1|.

So we arrive at the estimate ∥R1∥L∞ ⩽ C|g1|.
Now consider the asymptotic behaviour of the first term R0 on the right-hand

side of (7). As above, in view of Lemma 2.7 we have

∥∂ηv3∥L2 ⩽ C∥⟨η̃⟩−2v2∥L∞∥∂ηv∥L2 ⩽ Cε3W−1K(t).

Therefore, an application of Lemma 2.3 yields

V∗hv3 =
√

8i√
3
⟨ξ̃⟩−2v3 + O(ε3|ξ̃|⟨ξ̃⟩−2) + O(ε3t−1/4W−1K(t)).

Thus, it is true that

R0 =
i

2t⟨ξ⟩2
V∗hv3 =

i
√

2i

t
√

3⟨ξ⟩2⟨ξ̃⟩2
v3(t, ξ) + O(ε3(|ξ̃|⟨ξ̃⟩−2 + t−1/4W−1K(t))).

Lemma 2.2 implies that v(t, ξ) =
1√
2i

φ̂(t, ξ) + O(εt−1/4K(t)). Hence

R0 =
1

2t
√

3⟨ξ̃⟩2
φ̂3(t, ξ) + O(ε3(|ξ̃|⟨ξ̃⟩−2 + t−1/4W−1K(t))).

We also have the estimate

|y − φ̂| ⩽ ∥Q∗M2H3v
3∥L∞ ⩽ Ct−1/2∥⟨η̃⟩3γ−2∥L1∥⟨η̃⟩−γv∥3L∞ ⩽ Cε3W−3/2,

which yields (6).
Lemma 3.3 is proved.
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Now consider a Cauchy problem for an ordinary differential equation depending
on a parameter ξ ∈ R:∂ty(t, ξ) = − 1

2t
√

3⟨ξ̃⟩2
y3(t, ξ) + g(t, ξ), t ⩾ 1,

y(1, ξ) = y1(ξ),
(8)

where g(t, ξ) = O(ε5t−1W−5/2(t) + ε3tγ−5/4 + ε3t−1|ξ̃|⟨ξ̃⟩−2W−3/2).

Lemma 3.4. Assume that the initial perturbation y1 satisfies the conditions

ε ⩽ |y1(ξ)| ⩽ Cε and |arg y1(ξ)| <
π

8
for |ξ| ⩽ 1,

where ε > 0 is sufficiently small. Then the solution of Cauchy problem (8) has the
estimates

|y(t)| ⩽ CεΨ−1/2 and |arg y(t)| ⩽ CΨ1/2

for all t ∈ [1, T ] and ξ ∈ R, where Ψ = 1 + ε2 ln(t⟨ξ⟩2⟨ξ̃⟩−2).

Proof. In the case |ξ| > 1 we have ⟨ξ̃⟩−2 ⩽ t−1; thus, we derive from (8) that
yt = O(ε3t−2) + O(ε5t−1W−5/2). Integrating with respect to time, we infer from
this relation that |y(t)| ⩽ ε + ε2 ⩽ 2εΨ−1/2. Now we consider the case |ξ| ⩽ 1.
We make the substitution y = reiω, where r > 0 and ω is a real function. Taking
the real and imaginary parts, from (8) we deduce that

rt = − 1

2t
√

3⟨ξ̃⟩2
r3 cos 2ω + Re(ge−iω) (9)

and
ωt = − 1

2t
√

3⟨ξ̃⟩2
r2 sin 2ω + Im(gr−1e−iω) (10)

with the initial conditions r(1, ξ) = |y1(ξ)| and ω(1, ξ) = arg y1(ξ).
Now we prove the inequalities

1
2
Ψ <

|y1(ξ)|2

r2(t)
< 2Ψ and |ω(t, ξ)| < π

8
(11)

for all t ∈ [1, T ] and |ξ| ⩽ 1. Reasoning by contradiction we assume that there is
maximum time T̃ ∈ (1, T ] such that

1
2
Ψ ⩽

|y1(ξ)|2

r2(t)
⩽ 2Ψ and |ω(t, ξ)| ⩽ π

8
(12)

for all t ∈ [1, T̃ ] and |ξ| ⩽ 1. Dividing (9) by r3 we obtain

∂tr
−2 =

cos 2ω

t
√

3 ⟨ξ̃⟩2
− 2 Re(ge−iω),

which implies the inequalities

1

t
√

6 ⟨ξ̃⟩2
− 2r−3|g| ⩽ ∂tr

−2 ⩽
1

t
√

3 ⟨ξ̃⟩2
+ 2r−3|g|.
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Integrating with respect to time we find that

1 +
ε2

√
6

ln
t⟨ξ⟩2

⟨ξ̃⟩2
− 2ε2

∫ t

1

r−3|g| dτ

⩽
|y1(ξ)|2

r2(t)
⩽ 1 +

ε2

√
3

ln
t⟨ξ⟩2

⟨ξ̃⟩2
+ 2ε2

∫ t

1

r−3|g| dτ,

since ∫ t

1

⟨
√

τ ξ⟩−2 dτ

τ
=

∫ ξ̃ 2

ξ2

dz

(1 + z)z
= ln

t⟨ξ⟩2

⟨ξ̃⟩2
.

Using (12) and the assumptions concerning g we infer that∫ t

1

r−3|g| dτ ⩽ C

∫ t

1

(1 + ε2 ln(τ⟨ξ̃⟩−2))3/2(ε5τ−1W−5/2(τ)

+ ε3τγ−5/4 + ε3τ−1|ξ̃|⟨ξ̃⟩−2W−3/2(τ)) dτ

⩽ CΨ−1/2

for all t ∈ [1, T̃ ] and |ξ| ⩽ 1. Thus, we have∫ t

1

r−3|g| dτ ⩽ CΨ1/2,

which yields the estimate |y1(ξ)|2/r2(t) < 2Ψ. In a similar way we find the lower
estimate

|y1(ξ)|2

r2(t)
⩾ 1 +

ε2

√
6

ln
t⟨ξ⟩2

⟨ξ̃⟩2
− 2ε2

∫ t

1

r−3|g| dτ >
1
3
Ψ

for all t ∈ [1, T̃ ] and |ξ| ⩽ 1. Hence (11) holds for all t ∈ [1, T̃ ] and |ξ| ⩽ 1.
Multiplying both sides of (10) by ω we arrive at the equality

∂tω
2 = − 1

t
√

3 ⟨ξ̃⟩2
r2ω sin 2ω + 2ωr−1 Im(ge−iω) ⩽ ω2 ∂t ln r2 + Cr−1|g|,

since 2ω sin 2ω ⩾ ω2 for |ω| ⩽ π/8. Integrating with respect to time, we derive from
this that

ω2(t) ⩽ r2

(
ε−2ω2(0) + C

∫ t

1

r−3|g| dτ

)
⩽ Ψ−1(ω2(0) + Cε2Ψ1/2)

for all t ∈ [1, T̃ ], |ξ| ⩽ 1. Consequently, |ω(t, ξ)| < π/8 for all t ∈ [1, T̃ ] and |ξ| ⩽ 1.
This contradiction proves the estimates in the lemma for all t ∈ [1, T ].

Lemma 3.4 is proved.

The next lemma establishes a priori estimates for solutions.

Lemma 3.5. Assume that ∥φ̂∥XT
⩽ Cε. Then

∥φ̂∥XT
< Cε.
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Proof. It follows from (5) that

d

dt
∥⟨ξ⟩5φ̂(t)∥L2 ⩽ Cε2t−1∥⟨ξ⟩3φ̂(t)∥L2 ,

which implies the estimate ∥⟨ξ⟩5φ̂(t)∥L2 < Cεtγ by means of integration with
respect to time. Using Lemma 3.4 and Lemma 3.3 we obtain

|φ̂(t, ξ)| ⩽ |y(t, ξ)|+ Cε3W−3/2

⩽ Cε(1 + ε2 ln(t⟨ξ⟩2⟨ξ̃⟩−2))−1/2 + Cε3W−3/2 < Cε

and

⟨ξ̃⟩−γ |φ̂(t, ξ)| ⩽ Cε⟨ξ̃⟩−γ(1 + ε2 ln(t⟨ξ⟩2⟨ξ̃⟩−2))−1/2 + Cε3W−3/2 < CεW−1/2

for all t ∈ [1, T ]. Using Lemma 3.2 we also infer the estimate ∥∂ξφ̂∥L2 ⩽ CεK(t) for
the derivative. Thus, we have ∥φ̂∥XT

< Cε.
The lemma is proved.

§ 4. Proof of Theorem 1.1

The time-global existence of a solution

u ∈ C([0,∞);H5 ∩H0,1) ∩C1((0,∞);H3)

of the Cauchy problem (1) satisfying the estimate ∥φ̂∥XT
< Cε is a consequence of

Lemma 3.5 and the local existence guaranteed by Theorem 3.1. Hence it only
remains to prove the asymptotic formula (4). From the formulae of the factorization
method, Lemma 2.2, and Lemma 3.3 we see that

u(t) = DtBMQφ̂ = DtBM
φ̂√
iΛ′′

+ O(t−3/4∥∂ξφ̂∥L2)

= DtBM
reiω

√
iΛ′′

+ O(t−1/2(ln t)−3/2)

as t →∞. Like in the proof of Lemma 3.4, we obtain

r−2(t, ξ) = |û0(ξ)|−2 +
1√
3

ln(t⟨ξ⟩2⟨ξ̃⟩−2) + O(Ψ1/2)

and |ω(t, ξ)| ⩽ CΨ−1/4, where Ψ = 1 + ε2 ln(t⟨ξ⟩2⟨ξ̃⟩−2). Consequently,

r(t, ξ) = |û0(ξ)|
(

1 +
|û0(ξ)|2√

3
ln(t⟨ξ⟩2⟨ξ̃⟩−2)

)−1/2

+ O(ln(t⟨ξ⟩2⟨ξ̃⟩−2)−3/4).

Thus, we have

u(t) = DtBM |û0(ξ)|
(

1 +
|û0(ξ)|2√

3
ln(t⟨ξ⟩2⟨ξ̃⟩−2)

)−1/2

+ O(t−1/2(ln(t⟨ξ⟩2⟨ξ̃⟩−2))−3/4),

which yields the asymptotics (4).
Theorem 1.1 is proved.
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