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Manifolds of isospectral arrow matrices

A. A. Ayzenberg and V. M. Buchstaber

Abstract. An arrow matrix is a matrix with zeros outside the main diag-
onal, the first row and the first column. We consider the space MStn,λ of
Hermitian arrow (n + 1)× (n + 1)-matrices with fixed simple spectrum λ.
We prove that this space is a smooth 2n-manifold with a locally standard
torus action: we describe the topology and combinatorics of its orbit space.
If n ⩾ 3, the orbit space MStn,λ/T n is not a polytope, hence MStn,λ is not
a quasitoric manifold. However, there is an action of a semidirect product
T n ⋊ Σn on MStn,λ, and the orbit space of this action is a certain simple
polytope Bn obtained from the cube by cutting off codimension-2 faces.
In the case n = 3, the space MSt3,λ/T 3 is a solid torus with boundary subdi-
vided into hexagons in a regular way. This description allows us to compute
the cohomology ring and equivariant cohomology ring of the 6-dimensional
manifold MSt3,λ and another manifold, its twin.

Bibliography: 32 titles.

Keywords: sparse matrix, group action, moment map, fundamental
domain, codimension-2 face cuts.

§ 1. Introduction

Spaces of isospectral Hermitian or symmetric matrices are at the interface between
several areas of mathematics, including symplectic geometry, representation theory,
toric topology and applied mathematics.

Let Mn+1 be the space of all Hermitian matrices of size n+1 and let Mλ ⊂Mn+1

denote the subspace of all Hermitian matrices with fixed simple spectrum λ =
{λ0, λ1, . . . , λn} (we assume that λ0 < λ1 < · · · < λn). The unitary group U(n+1)
acts on Mn+1 by conjugation. Multiplying Hermitian matrices by

√
−1, we obtain

skew Hermitian matrices, hence this action can be identified with the adjoint action
of U(n + 1) on its tangent Lie algebra. For a simple spectrum λ, the subset Mλ is
the principal orbit of this action. The manifold Mλ is diffeomorphic to the variety
of full complex flags Fln+1 = U(n + 1)/Tn+1. Here

Tn+1 = {D = diag(t0, . . . , tn) | ti ∈ C, |ti| = 1}
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is the maximal compact torus of diagonal unitary matrices. The torus acts by
matrix conjugation A 7→ DAD−1 on both matrix spaces Mn+1 and Mλ. In the
coordinate form we have

(aij)i,j=0,...,n 7→ (tit−1
j aij)i,j=0,...,n. (1.1)

It is reasonable to look for subspaces in the flag manifold Mλ
∼= Fln+1 that are

preserved by the torus action. Formula (1.1) implies that the torus action preserves
zeros at the given positions. Hence we can study the spaces of Hermitian matrices
with the given spectrum and zeros at prescribed positions.

The classical example is the space MIn,λ of isospectral tridiagonal Hermitian
matrices. This space was investigated in [32], [10] and [16]. Tomei [32] intro-
duced the real analogue of this space: he proved that this space is a smooth mani-
fold, and its diffeomorphism type is independent of the spectrum. Bloch, Flaschka
and Ratiu [10] studied the Hermitian case and demonstrated its connection with
the toric variety of type An. The general theory developed in the seminal work of
Davis and Januszkiewicz [16] allows one to describe the cohomology ring and the
Tn-equivariant cohomology ring of MIn,λ.

Instead of tridiagonal matrices one can consider staircase Hermitian matrices
(also known as generalized Hessenberg matrices); see [25] and [17]. In such matri-
ces nonzero elements are allowed only in the vicinity of the diagonal, which is
encoded by the so-called Hessenberg function. The spaces of Hermitian staircase
matrices can be studied similarly to the tridiagonal case: the properties of the
generalized Toda flow can be used to prove the smoothness of these spaces. We
collected the results on such ‘matrix Hessenberg manifolds’ in [7].

Note that the torus acting on matrix Hessenberg manifolds may have dimen-
sion less than half the dimension of the manifolds; in that case the theory of
(2n, k)-manifolds is applicable; see [14].

Another way to generalize tridiagonal matrices is to allow two additional non-zero
entries at the top-right and bottom-left corner of the matrix. Such matrices are
called periodic tridiagonal matrices. They appear in the study of the discrete
Schrödinger operator in mathematical physics (see [23] and [21]). The isospectral
space of such matrices is investigated in the forthcoming paper [5].

In this paper we study the isospectral space MStn,λ of matrices that have zeros
outside the diagonal, the first row and the first column. Matrices of this form will
be called arrow matrices. We are indebted to Tadeusz Januszkiewicz1 for telling us
about this wonderful object.

In this paper we prove that MStn,λ is smooth and that its diffeomorphism type
is independent of λ; see § 4. The action of the torus T = Tn on MStn,λ is locally
standard, so the orbit space Qn = MStn,λ/T is a manifold with corners. In § 4
we describe the topology of the orbit space. We introduce a cubical complex Sqn

that is the union of the cubical faces of an n-dimensional permutohedron, and
we prove that the orbit space Qn is homotopy equivalent to Sqn−1. It follows that
for n ⩾ 3 the orbit space is not a simple polytope. The combinatorial face struc-
ture of Qn is described in § 6 using the general notion of a cluster-permutohedron.
The family of cluster-permutohedra contains two known examples: a permutohe-
dron and a cyclopermutohedron of Panina; they provide interesting examples of

1Private communication.
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partially ordered sets, which, as far as we know, have not yet been considered in
combinatorial geometry.

In general, there is a natural permutation action of the symmetric group Σn on
the manifold MStn,λ as well as on the orbit space Qn. We show that the fundamen-
tal domain of the Σn-action on Qn is diffeomorphic to a certain simple polytope,
denoted by Bn. In § 5 we describe the combinatorics of this polytope. We show that
Bn can be obtained from a cube by cutting a sequence of codimension-2 faces, and
hence Bn has a convex Delzant realization. We end § 5 with an observation relating
our construction of the manifold MStn,λ to the general construction of symplectic
implosion introduced in symplectic geometry (see [20]).

This description of the polytope Bn allows us to reconstruct the orbit space Qn

by stacking together n! copies of this polytope. In the future we hope that this
description of the orbit space Qn will allow one to construct effective diagonalization
algorithms for arrow-shaped matrices.

We are especially interested in arrow matrices of size 4 × 4, that is, in the case
n = 3. In this case the orbit space Q3 = MSt3,λ is a solid torus whose bound-
ary is subdivided into hexagons in a regular way. We have learned about this
fact from Januszkiewicz. The cohomology and equivariant cohomology rings of
the space MSt3,λ itself can be computed using the theory developed by the first
author in [1]–[4] and [9]. In general, this theory allows one to describe the coho-
mology and equivariant cohomology rings of manifolds with locally standard torus
action whose orbit spaces have only acyclic proper faces. Since every facet of Q3 is
a hexagon, we are in a position to apply this theory to MSt3,λ. In § 7 we recall the
notions of the Stanley-Reisner ring, h-, h′-, and h′′-numbers of simplicial complexes,
Novik-Swartz theory and related topological results in [16] and [22]. Theorem 7.1 is
based on these results; it describes the homological structure of the manifold MSt3,λ.
The polytope B3 is a cube with cut-off skew edges; this polytope is important in
toric topology. Historically, it has been the starting point of the investigations of
higher Massey products in the cohomology of moment-angle manifolds (a rapidly
developing area of current research; see [12] and [19]).

In the last section, § 8, we introduce a manifold Xn, whose properties are similar
to MStn,λ. This manifold also carries a half-dimensional torus action and its orbit
space is isomorphic to Qn. However, Xn is more interesting from the topological
point of view. For n = 3 we describe the cohomology ring and show that the first
Pontryagin class of X3 is nonzero.

§ 2. Spaces of sparse isospectral matrices

The action of Tn+1 on the isospectral space Mλ is not effective, since the scalar
matrices act trivially. Hence there is an effective action of T = Tn ∼= Tn+1/∆(T 1).
Fixed points of the torus action on Mλ are diagonal matrices with the spectrum λ,
that is, matrices of the form diag(λσ(0), λσ(1), . . . , λσ(n)) for all possible permuta-
tions σ ∈ Σn+1.

The action is Hamiltonian. Indeed, Mλ can be identified with the orbit of the
(co)adjoint action of U(n + 1) on its (co)tangent algebra. This orbit possesses
the Kostant-Kirillov symplectic form, and the action of U(n + 1) (hence of Tn+1)
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on this orbit is Hamiltonian. The moment map for the torus action is given by

µ : Mλ → Rn+1, A = (ai,j) 7→ (a0,0, a1,1, . . . , an,n)

(the image of this map lies in the hyperplane {
∑n

i=0 ai,i =
∑

λi = const} ∼= Rn).
The Atiyah-Guillemin-Sternberg theorem tells us that the image of the moment
map is the permutohedron

Pen
λ = conv{(λσ(0), λσ(1), . . . , λσ(n)) | σ ∈ Σn+1}.

We call it the Schur-Horn permutohedron, since the description of the diagonals of
all Hermitian matrices with a given spectrum is the classical result due to Schur
and Horn.

Construction 2.1. Let Γ = (V,E) be a simple graph (that is, the graph with no
loops and multiple edges) on the vertex set V = {0, 1, . . . , n}. Consider the vector
subspace of Hermitian matrices:

MΓ = {A ∈Mn+1 | aij = 0 if {i, j} /∈ E}.

As noted in § 1, the torus action preserves the set MΓ for any Γ. Set

MΓ,λ = MΓ ∩Mλ.

The action of Tn can be restricted to MΓ,λ. The space MΓ,λ is called the space of
isospectral sparse matrices of type Γ. Then we have

dim MΓ,λ = 2|E|. (2.1)

Example 2.1. If Γ is a complete graph on the set {0, . . . , n}, then MΓ,λ = Mλ
∼=

Fln+1.

Remark 2.1. Without loss of generality only connected graphs can be considered.
Let Γ1, . . . ,Γk be the connected components of a graph Γ with vertex sets
V1, . . . , Vk ⊂ {0, . . . , n}, respectively. Let Ω be the set of all possible partitions of
the set {λ0, . . . , λn} into disjoint subsets Si of cardinalities |Ai|, i = 1, . . . , k. Then
MΓ,λ =

⊔
Ω

∏k
i=1 MΓi,Si . We discuss the underlying combinatorial structures in

detail in § 6.

Problem 2.1. Describe all graphs Γ such that the subspace MΓ,λ is a smooth
manifold, whose diffeomorphism type is independent of the simple spectrum λ.

Remark 2.2. The Kostant-Kirillov form can be restricted to MΓ,λ; however this
restriction need not be symplectic even when MΓ,λ is smooth. Therefore, the
Atiyah-Guillemin-Sternberg theorem is no longer applicable in the general case.
Nevertheless, there is a map µ : MΓ,λ → Rn+1 taking a matrix to its diagonal.
This map is constant on each torus orbit, hence there is an induced map
µ̃ : MΓ,λ/Tn → Rn+1.
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§ 3. Tree matrices

Let Γ be a tree on the vertex set {0, 1, . . . , n}. In this case elements of MΓ

are called tree matrices. The 2n-dimensional space MΓ,λ carries an effective action
of a compact n-torus. This fact makes tree matrices an important object: they
produce natural examples of half-dimensional torus actions. The moment map

µ : MΓ,λ → H ⊂ Rn+1, H =
{∑

ai,i = const
}

,

induces a map of the n-dimensional orbit space MΓ,λ/T to the Schur-Horn permu-
tohedron Pen

λ ⊂ H ∼= Rn. All vertices of Pen
λ belong to µ(MΓ,λ). In what follows

it will be convenient to encode tree matrices in terms of labelled trees.

Definition 3.1. A labelled tree ∆ is a triple ∆ = (Γ, a, b), where Γ = (V,E) is
a tree, a : V → R and b : E → C.

In other words, a labelled tree is a tree with a real number ai assigned to each
vertex i ∈ V , and a complex number be assigned to each edge e ∈ E. A labelled
tree determines a Hermitian matrix A∆ as follows. The elements of A∆ are:

(A∆)i,j =


ai if i = j,

be if i < j and e = {i, j} ∈ E,

be if i > j and e = {i, j} ∈ E,

0 if i ̸= j and {i, j} /∈ E.

Moreover, if a vertex k is fixed in a labelled tree, then we call it a rooted labelled
tree with root k.

Example 3.1. Let In denote the path graph with edges {0, 1}, {1, 2}, . . . , {n−1, n}.
Then MIn,λ is the space of tridiagonal isospectral Hermitian matrices. A classical
result (see [32] and [10]) states that MIn,λ is a smooth manifold, and its diffeomor-
phism type is independent of λ. It follows from a result of Tomei that the orbit
space MIn,λ/Tn is diffeomorphic to an n-dimensional permutohedron as a manifold
with corners.

The moment map µ : Pen ∼= MΓ,λ/Tn → Pen
λ is not the isomorphism of permo-

tohedra. This map determines a bijection between the vertices of permutohedra,
however this map is neither injective nor surjective in the interior of the permuto-
hedron. For n = 2 the image of the moment map is shown in Figure 1 (this figure
is justified in Proposition 4.1 below).

Example 3.2. Let Stn denote the star graph with edges {0, 1}, {0, 2}, . . . , {0, n}.
In this case matrices in MStn

have the form

A∆ =


a0 b1 . . . bn

b1 a1 0 0
...

...
. . .

...
bn 0 . . . an

 . (3.1)

Such matrices are called arrow matrices.



610 A.A. Ayzenberg and V.M. Buchstaber

Figure 1. The image of the moment map for the tridiagonal (3× 3)-matrices.

We formulate several technical statements about general tree matrices. First,
there is a natural notion of a tree fraction, which generalizes continued fractions.

Definition 3.2. Let ∆ = (Γ = (V,E), a, b) be a rooted labelled tree with root
k ∈ V . Define the tree fraction Q(∆, k) associated with (∆, k) by recursion.

1. Let ∆ be a labelled tree with root k and at least one more vertex. By deleting k
from ∆ the tree breaks down into s connected components, where each connected
component is a rooted labelled tree ∆i, whose root ki is a descendant of k. Let
b1, . . . , bs ∈ C be the labels on the edges of ∆ connecting k with its descendants.
Set

Q(∆, k) = ak −
s∑

i=1

|bi|2

Q(∆i, ki)
.

2. If Γ has a single vertex k labelled by ak ∈ R, then we set Q(∆, k) = ak.

In particular, for a labelled path graph, rooted at the endpoint,

the tree fraction Q(∆, k) is the continued fraction of the form

a0 −
|b1|2

a1 −
|b2|2

. . .
...

an−1 −
|bn|2

an

Lemma 3.1. Let ∆ be a labelled tree and A∆ be the corresponding Hermitian
matrix. The diagonal elements of the inverse matrix are given by the tree frac-
tions:

(A−1
∆ )k,k =

1
Q(∆, k)

.

The proof is an exercise in linear algebra.
We say that S is a splitting of the tree Γ if S is a partition of the set of vertices

into 1- and 2-element subsets, in which all 2-element subsets are edges of Γ. Let
S(Γ) be the set of all splittings of Γ. For S ∈ S(Γ) set σ(S) = (−1)p where p is the
number of edges in the splitting.
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Lemma 3.2. For a labelled tree ∆ = (Γ, a, b) the following holds:

det A∆ =
∑

S∈S(Γ)

σ(S)
∏

i is a vertex of S

ai

∏
e is an edge of S

|be|2.

Proof. Another exercise in linear algebra: expand the determinant with respect to
the row corresponding to a leaf vertex of the tree.

Corollary 3.1. For an arrow matrix (corresponding to the star graph)

det


a0 b1 . . . bn

b1 a1 . . . 0
...

...
. . .

...
bn 0 . . . an

 = a0a1 · · · an −
n∑

i=1

|bi|2a1 · · · âi · · · an.

The star graph is the only tree for which det(A∆) is at most quadratic in the vari-
ables |be|.

§ 4. Space of isospectral arrow matrices

Let ∆ = (Stn, a, b) be a labelled star graph and A∆ be the corresponding
arrow matrix given by (3.1). Consider the isospectral space MStn,λ = {A∆ |
SpecA∆ = λ}. We describe the image of the moment map of such matrices, that is,
the set of all possible diagonals (a0, . . . , an) ∈ Rn+1. Since a0 =

∑n
i=0 λi−

∑n
i=1 ai,

it is sufficient to describe all possible (a1, . . . , an) ∈ Rn.

Proposition 4.1. Let Ij = [λj−1, λj ] ⊂ R for j = 1, . . . , n. Then µ(MStn,λ) is the
set {

(a0, a1, . . . , an)
∣∣∣∣ (a1, . . . , an) ∈ Rn, a0 =

n∑
i=0

λi −
n∑

i=1

ai

}
,

where
Rn =

⋃
σ∈Σn

Iσ(1) × · · · × Iσ(n) ⊂ Rn

is the union of n! cubes of dimension n.

Proof. First note that the permutation group Σn acts on the star graph Γ by
permuting its rays. As a consequence, there is an action of Σn on the vector
space MStn . The permutation action preserves the spectrum, hence there is an
induced Σn-action on MStn,λ. Therefore, we may assume that a1 ⩽ a2 ⩽ · · · ⩽ an.

Let us prove that under the conditions

λ0 < a1 < λ1 < a2 < λ2 < · · · < an < λn and a0 =
n∑

i=0

λi −
n∑

i=1

ai

there exists an arrow matrix A∆ with diagonal (a0, . . . , an) and eigenvalues
λ0, . . . , λn. This would imply that the interior of Rn lies in the image of the moment
map. Consider the polynomials P (λ) =

∏n
i=0(λ − λi) and Q(λ) =

∏n
i=1(λ − ai).

Division by Q(λ) yields

P (λ) = (λ− α)Q(λ) + R(λ). (4.1)
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It is easy to check that α =
∑n

i=0 λi −
∑n

i=1 ai = a0. Substituting all possible ai

into (4.1) we obtain

R(an) = P (an) < 0, R(an−1) = P (an−1) > 0, R(an−2) = P (an−2) < 0, . . . .

For the rational function P (λ)/Q(λ) we have the partial fraction expansion

P (λ)
Q(λ)

= λ− a0 +
r1

λ− a1
+ · · ·+ rn

λ− an
,

where

ri =
R(ai)∏

j ̸=i(ai − aj)
< 0 for all i = 1, . . . , n.

Hence we can put ri = −|bi|2 for some bi ∈ C. Consider the arrow matrix A∆

of the form (3.1). According to Lemma 3.1, the top-left element of the matrix
(A∆ − λE)−1 can be written as the tree fraction

(A−1
∆ )0,0 =

1

a0 − λ− |b1|2
a1−λ − · · · −

|bn|2
an−λ

= − 1
P
Q

= −
∏n

i=1(λ− ai)∏n
i=0(λ− λi)

.

This meromorphic function has poles at the points λ0, . . . , λn. On the other hand
the function (A∆ − λE)−1 is holomorphic outside the spectrum of A∆. There-
fore, the λi are the eigenvalues of A∆.

We observe that a similar technique was applied by Moser [24] in the study of
tridiagonal matrices: he attributed this technique to Stieltjes.

The converse reasoning shows that the eigenvalues and the diagonal elements
a1, . . . , an alternate for any arrow matrix A∆. On the other hand, this fact also
follows from Cauchy’s interlace theorem (see, for example, [18]): if A is a Hermitian
matrix of size n and A′ is its principal submatrix of size n−1, then the eigenvalues
of A and A′ interlace. Application of this statement to the matrix A∆ and its
lower-right corner proves that points outside Rn do not lie in the image of the
moment map.

Example 4.1. For n = 2 the image of µ consists of two squares, sitting inside
a hexagon. Arrow matrices of size 3 × 3 coincide with tridiagonal matrices of
this size up to permutation of rows and columns. This explains Example 3.1 and
Figure 1.

Example 4.2. For n = 3 the image µ(MStn,λ) of the moment map is the union of
six cubes shown in Figure 2. The contour shows the convex hull of these cubes,
which is the Schur-Horn permutohedron Pe3

λ.

Theorem 4.1. The space MStn,λ is a smooth manifold of dimension 2n. The space
MR

Stn,λ of isospectral real symmetric arrow matrices is a smooth manifold of dimen-
sion n. The action of Tn on MStn,λ and the action of Zn

2 on MR
Stn,λ are locally

standard.
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Figure 2. The moment map image for the star graph St3.

We need a technical statement, well known in linear algebra.

Lemma 4.1. Let di and νi , i ∈ {1, . . . , n}, be two sets of numbers such that all the
2n numbers are distinct. Then the square matrix

B =
(

Bi,j =
1

di − νj

)
1⩽i,j⩽n

is invertible.

Proof. This follows from the uniqueness of the partial fraction expansion. Assume
that B · (c1, . . . , cn)⊤ = 0 for a vector (c1, . . . , cn) ∈ Rn. Then the rational function

R(d) =
c1

d− ν1
+ · · ·+ cn

d− νn

has roots d1, . . . , dn. Since the degree of the numerator of R(d) is less than n, R(d) is
identically zero and ci = 0 for all i = 1, . . . , n. Thus B is invertible. The lemma
is proved.

Proof of Theorem 4.1. According to Corollary 3.1, the subspace MStn,λ is deter-
mined in the vector space MStn

by the equations

Pj(a, b) = |b1|2
∏

i ̸=0,1

(ai − λj) + · · ·+ |bn|2
∏

i ̸=0,n

(ai − λj)−
n∏

i=0

(ai − λj) = 0 (4.2)

for j ∈ [n] = {1, . . . , n}, and

n∑
i=0

ai −
n∑

i=0

λi = 0. (4.3)

We use the vector notation

∂Pj

∂b
=

(
∂Pj

∂b1
, . . . ,

∂Pj

∂bn

)
and

∂Pj

∂a
=

(
∂Pj

∂a1
, . . . ,

∂Pj

∂an

)
.
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It is sufficient to show that the vectors (∂Pj/∂b, ∂Pj/∂a), j ∈ [n], are linearly
independent at all points in MStn,λ. We have

∂Pj

∂bk
= bk

∏
i ̸=0,k

(ai − λj)

and

∂Pj

∂b
=

(
b1

∏
i ̸=0,1

(ai − λj), b2

∏
i ̸=0,2

(ai − λj), . . . , bn

∏
i ̸=0,n

(ai − λj)
)

=
n∏

i=1

(ai − λj)
(

b1

a1 − λj
, . . . ,

bn

an − λj

)
. (4.4)

First consider the general case: let all the ai, i ∈ [n], be distinct. Similarly to
the proof of Proposition 4.1, we may assume that a1 < · · · < an. Then

λ0 < a1 < λ1 < a2 < · · · < an < λn

and bi ̸= 0 for all i ∈ [n].
It follows from (4.4) that the matrix formed by the vectors ∂Pj/∂b, j = 1, . . . , n,

has the form

(
∂Pj

∂b

)
=

n∏
i=1

bi

∏
i ̸=j

(ai − λj)


1

a1 − λ1
. . .

1
an − λ1

...
. . .

...
1

a1 − λn
. . .

1
an − λn

 .

This matrix is nonsingular by Lemma 4.1. This proves the smoothness of MStn,λ

at generic points.
Now we allow some of the points {ai} to collide. As noted in the proof of

Proposition 4.1, only pairwise collisions can occur:

· · · < aj1 = aj1+1 < · · · < aj2 = aj2+1 < · · · < ajs
= ajs+1 < · · ·

and any pair of colliding diagonal entries determines an eigenvalue λjl
= ajl

= ajl+1.
All other eigenvalues still lie in the open intervals between ai. We denote the set
of all eigenvalues lying between the ai by F , and denote the set of eigenvalues
that come from colliding diagonal elements by D. We have D = {j1, . . . , js} and
F = {0, . . . , n} \D.

Let A ∈ MΓ be a matrix such that ajl
= ajl+1 = λjl

. A simple computation
shows that ∂Pjl

∂b (A) = 0. Moreover, at a point A we have

∂Pjl

∂aj
(A) = 0

if j ̸= jl, jl + 1, and

∂Pjl

∂ajl

(A) = |bjl+1|2
∏

i ̸=jl,jl+1

(ai − λjl
),

∂Pjl

∂ajl+1
(A) = |bjl

|2
∏

i ̸=jl,jl+1

(ai − λjl
).
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Reasoning similar to that used before shows that −(|bjl
|2+|bjl+1|2) is the coefficient

of 1
λ−ajl

in the partial fraction expansion of the (reducible) fraction
∏n

i=0(λ−λi)∏n
i=1(λ−ai)

.

Hence |bjl
|2 + |bjl+1|2 ̸= 0, and one of the numbers ∂Pjl

∂ajl
(A), ∂Pjl

∂ajl+1
(A) is nonzero.

Without loss of generality assume that ∂Pjl

∂ajl
(A) ̸= 0 for all l = 1, . . . , s.

The rows of the rectangular matrix
(∂Pj

∂b (A)
)

that correspond to j ∈ F (that is,
j ̸= j1, . . . , js) are linearly independent by Lemma 4.1. In addition, the rows of the
rectangular matrix

(∂Pj

∂b (A), ∂Pj

∂a (A)
)

that correspond to j ∈ D (that is, j = jl for
some l) have zeros at all positions except for ∂Pj

∂ajl
(A) and ∂Pj

∂ajl+1
(A) and, moreover,

∂Pj

∂ajl
(A) ̸= 0. It follows that the matrix

(∂Pj

∂b (A), ∂Pj

∂a (A)
)

of the form

has the maximal rank. Therefore, MStn,λ is smooth at all points.
Since the action of Tn on MΓ = Rn+1 × Cn is locally standard and the smooth

submanifold MStn,λ is preserved by this action, the induced action of Tn on MStn,λ

is locally standard by the slice theorem.
Theorem 4.1 is proved.

For convenience we denote the orbit space MStn,λ/Tn by Qn.

Proposition 4.2. The map µ̃ : Qn → Rn induced by µ is a homotopy equivalence.

Proof. It is sufficient to prove that the preimage µ̃−1(a) is contractible for any
point a ∈ Rn. By Corollary 3.1 the condition on the spectrum yields the system of
equations

|b1|2
∏

i̸=0,1

(ai − λj) + · · · + |b1|2
∏

i ̸=0,n

(ai − λj) =
n∏

i=0

(ai − λj), j = 0, 1, . . . , n.

(4.5)
Therefore, for fixed diagonal elements ai and eigenvalues λi, the possible
off-diagonal elements bi lie on the intersection of Hermitian real quadrics of special
type. By passing to the orbit space we simply forget the arguments of the num-
bers bi. Setting ci = |bi|2, we see that the parameters ci satisfy a system of linear
equations and conditions ci ⩾ 0. Whenever this set is nonempty, it is a convex
polytope, hence contractible. The proposition is proved.
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Remark 4.1. For generic points a ∈ Rn the preimage µ̃−1(a) is a single point.
In nongeneric points the preimage µ̃−1(a) is a cube. It can be seen that each pair
of colliding values ajl

= ajl+1 produces an interval in the preimage of µ̃. This
interval is parametrized by the barycentric coordinates |bjl

|2, |bjl+1|2 subject to
the relation |bjl

|2 + |bjl+1|2 = const (note that if ajl
= ajl+1, then the expression

|bjl
|2 + |bjl+1|2 separates out in all the equations (4.5)).
The total preimage µ−1(a) is therefore homeomorphic to the product of 3-spheres

(a 3-sphere is the moment-angle manifold corresponding to the interval; see [13] for
the general theory of moment-angle manifolds and complexes).

To determine the homotopy type of the orbit space Qn ≃ Rn, we need a descrip-
tion of the combinatorics of a permutohedron (details can be found in many sources,
for instance, [32]). We fix a finite set [n] = {1, . . . , n}.

Construction 4.1. Let S = (S1, . . . , Sk) be an arbitrary linearly ordered partition
of the set [n] = {1, . . . , n} into nonempty subsets, that is Si ∩ Sj = ∅ for i ̸= j,
and [n] =

⋃
i Si. The set P of all such partitions is partially ordered: S < S′

if S is an order-preserving refinement of S′. It is known that P is isomorphic to
the partially ordered set of faces of the permutohedron Pen−1. The polytope itself
corresponds to the maximal partition (S1 = [n]). Vertices correspond to ordered
partitions of [n] into one-element subsets ({s1}, . . . , {sn}), which are actually just
the permutations τ ∈ Σn, τ(i) = si.

There is an edge between two vertices of a permutohedron if the corresponding
permutations differ by a transposition of i and i + 1. As a corollary, we obtain
a standard fact that the 1-skeleton of the permutohedron is the Cayley graph of
the group Σn with generators (1, 2), (2, 3), . . . , (n− 1, n).

Let FS be the face of the permutohedron that corresponds to the ordered par-
tition S = (S1, . . . , Sk). The polytope FS is combinatorially isomorphic to the
product of permutohedra Pe|S1|−1× · · ·×Pe|Sk|−1. If |Si| ⩽ 2 for all i, then the cor-
responding face FS is a product of intervals and points. We call such faces cubical .
A cubical face of Pen−1 has dimension at most [n/2].

Remark 4.2. We make a remark on another important fact. Consider the standard
convex realization of the permutohedron

Pen−1 = conv{(xσ(1), . . . , xσ(n)) | σ ∈ Σn},

where x1 < x2 < · · · < xn. The vertex (xσ(1), . . . , xσ(n)) in this convex realization
corresponds to the vertex (τ(1), . . . , τ(n)) in the combinatorial description, where
τ = σ−1. For this reason, there is a duality in the notation: it is more convenient
to encode vertices by permutations σ in geometric problems, and by τ = σ−1 in
combinatorial ones.

Definition 4.1. Let Sqn−1 be the cell complex consisting of all cubical faces of an
(n− 1)-dimensional permutohedron.

The complex Sqn−1 is connected: every edge of Pen−1 is a cubical face, hence
lies in Sqn−1.

Proposition 4.3. The orbit space Qn = MΓ,λ/T ≃ Rn is homotopy equivalent
to Sqn−1 .
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Proof. We construct an intermediate simplicial complex N which is homotopy
equivalent to both Sqn−1 and Rn.

Let N be the simplicial complex obtained from Sqn−1 by substituting each cubi-
cal face with vertices {v1, . . . , v2k} by a simplex on the same vertex set. The
natural map N → Sqn−1, which is identical on vertices and linear on each simplex,
is a homotopy equivalence (see [6], where objects of this kind were studied in the
framework of the theory of nerve complexes).

Proposition 4.1 implies that Rn = µ(MΓ,λ) is the union of cubes
⋃

τ∈Σ In
τ , where

In
τ = Iτ(1) × · · · × Iτ(n), Ij = [λj−1, λj ]. All cubes In

τ are convex. Hence the nerve
N ′ of the covering

⋃
τ∈Σ In

τ = Rn is homotopy equivalent to Rn by Alexandroff’s
nerve theorem.

Inspecting all coordinates, we see that the cubes In
τ1

and In
τ2

intersect if and only
if, for every i ∈ [n], we have |τ1(i)− τ2(i)| ⩽ 1. This means that

τ1τ
−1
2 = (i1, i1 + 1)(i2, i2 + 1) · · · (is, is + 1), il+q > il + 1, (4.6)

is a product of independent transpositions interchanging neighbouring elements.
Therefore, the vertices Fτ1 and Fτ2 of the permutohedron Pen−1 lie in a cubical
face FS corresponding to the partition

S =
(
{τ(1)}, {τ(2)}, . . . , {τ(i1), τ(i1 + 1)}, . . . , {τ(is), τ(is + 1)}, . . . , {τ(n)}

)
,

where τ = τ1 or τ = τ2. More generally, let a family of cubes In
τi

, i = 1, . . . , l,
intersect jointly. Then each pair i < j determines its own product of transpositions
of the form (4.6). All permutations s1,j = τjτ

−1
1 have order 2 and commute (since

s1,js
−1
1,i = τjτ

−1
i is of order 2 as well). Therefore, there exists a common partition

into 1- and 2-element subsets, which governs all these permutations. Again, all
the vertices Fτi

lie in the same cubical face of the permutohedron. Thus we have
Sqn−1 ≃ N = N ′ ≃ Rn.

The proposition is proved.

Example 4.3. For n = 3, the orbit space Q3 and the image of the moment map are
homotopy equivalent to Sq2. This complex is just the union of the cubical faces of
a hexagon, which is in fact its boundary: Q ≃ S1. This can be seen from Figure 2.

Figure 3. The cubical complex Sq3 ≃
∨

7 S1.
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For n = 4, the orbit space Q4 is homotopy equivalent to Sq3. This complex is
shown in Figure 3. The complex Sq3 is homotopy equivalent to a wedge of seven
circles.

§ 5. Permutation action and the fundamental polytope

Definition 5.1. Let P be a simple polytope, dim P = n, and G1, . . . , Gs be a col-
lection of its codimension-2 faces. Let F ′

i and F ′′
i be the facets of P such that

F ′
i ∩F ′′

i = Gi. If the sets {F ′
i , F

′′
i }, i = 1, . . . , s, are pairwise disjoint, we call

{Gi} a collection in general position.

Lemma 5.1. If {G1, . . . , Gs} is a collection in general position, then a simple com-
binatorial polytope obtained by cutting off these faces successively does not depend
on the order of cut-offs.

Proof. The statement easily follows from the consideration of the dual simplicial
sphere. Cutting off a face of codimension 2 corresponds to a stellar subdivision of
an edge in a simplicial sphere. The general position implies that the subdivided
edges do not intersect. The independence of the result follows from the definition
of a stellar subdivision. The lemma is proved.

Let In = I1 × · · · × In be a cube, Ij = [−1, 1]. The facets are indexed by the set
W = {±1,±2, . . . ,±n}: the element δk, δ = ±1, encodes the facet

Fδk = I1 × · · ·×
k

{δ} × · · · × In.

The group Zn
2 acts on the set of facets: for an element ε = (ε1, . . . , εn) ∈ Zn

2 ,
εi = ±1, we have εδk = εkδk.

Given a transposition of neighbouring elements σi = (i, i + 1) ∈ Σn, i =
1, . . . , n− 1, we denote by Fσi

the codimension-2 face of In of the form

Fσi
= I1 × · · ·×

i

{1} ×
i+1

{−1} × · · · × In = Fi ∩F−(i+1).

Definition 5.2. Let Bn denote a simple polytope obtained from In by cutting off
all faces Fσi

, i = 1, . . . , n− 1.

Note that the faces Fσi
may intersect, however the result of the cutting off is

well defined according to Lemma 5.1.

Example 5.1. The polytope B3 is obtained from I3 by cutting off two skew edges
(see Figure 4). This polytope plays an important role in toric topology (see [13],
§ 4.9), although it emerged under different circumstances.

The facet of Bn obtained by cutting off Fσi
will be denoted by Fσi

. The original
facets of the cube remain facets of Bn and will be denoted by the same letters Fδk.
In total, the polytope Bn has 3n− 1 facets.

Whenever a codimension-2 face is cut off a polytope Pn, the resulting facet Fn−1
cut

has the combinatorial type of the product I1×Gn−2, for some polytope Gn−2. This
can be seen by considering the dual triangulation of a sphere: whenever an edge e
is subdivided by a vertex v, the link of v is the suspension over the link of e in the
original triangulation.
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Figure 4. The polytope B3.

Every facet Fσi
of Bn has the form I1×Gi. Let αi : Fσi

→ Fσi
be the antipodal

map, that is, the map that is constant on Gi and antipodal on the interval I1.

Construction 5.1. Note that the permutation group Σn acts on the star
graph Stn. This action induces the action of Σn on the space of arrow matrices
which preserves the spectrum. Therefore, there is an action of Σn on MStn,λ, which
commutes with the torus action up to a natural action of Σn on Tn. Let N
denote the semidirect product Nn = Tn ⋊ Σn, where Σn acts on Tn by permuting
the coordinates. The group Nn arises naturally as the normalizer of the maximal
torus Tn in the Lie group U(n).

We have an action of Nn on MStn,λ. The orbit space Qn = MStn,λ/Tn carries the
remaining action of N /Tn ∼= Σn. The image Rn =

⋃
σ∈Σn

In
σ of the moment map

carries a natural action of Σn, which permutes the coordinates (in particular, this
action permutes the cubes in the union). The map µ̃ : Qn → Rn is Σn-equivariant,
as can easily be seen from its definition.

Similar considerations hold true in the real case. The finite group N R
n = Zn

2 ⋊Σn

acts on MR
Stn,λ. Note that N R

n coincides with the Weyl group of type B.

Proposition 5.1. The preimage of a single cube In
σ in the set Rn =

⋃
σ∈Σn

In
σ

under the map µ̃ : Qn → Rn is diffeomorphic to the polytope Bn . The map
µ̃ : µ̃−1(In

σ )→ In
σ is the map Bn → In which blows down the cut-off faces.

The polytope Bn is the fundamental domain of the Σn-action on Qn , Nn-action
on MStn,λ , and N R

n -action on MR
Stn,λ .

Proof. Without loss of generality consider the single cube In
id = I1 × · · · × In,

corresponding to the trivial permutation id ∈ Σ. For points in this cube we have
a1 ⩽ a2 ⩽ · · · ⩽ an. As follows from § 4 (see Remark 4.1), the preimage µ̃−1(x)
consists of a single point for generic x ∈ In

id. If a collision aj = aj+1 occurs for
a point x, then x lies on a codimension-2 face Fσi

of the cube. It was noted in
Remark 4.1 that in this case the preimage µ̃−1(x) is a cube of dimension equal
to the number of pairwise collisions. Therefore, the preimage µ̃−1(In

id) is given by
blowing up the cube at the faces Fσ1 , . . . , Fσn−1 . The proposition is proved.
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The orbit space Qn can be represented as the union of n! copies of the polytope
Bn attached along the cut faces. More precisely, we have

Qn =
⋃

σ∈Σn

Bn
σ/∼, Bn

σ
∼= Bn.

The relation ∼ identifies the point x ∈ Fσi
of the polytope Bn

σ with the point
αi(x) ∈ Fσi

of the polytope Bn
τ whenever σ = τσi. Recall that αi is the antipodal

involution of the facet Fσi
. One should not forget about this involution: in going

over from Bn
σ to Bn

τ the barycentric coordinates |bi|2 and |b2
i+1| on the blown up

face interchange.

Example 5.2. For n = 3 the space Q3 is obtained by stacking six copies of the
polytope B3 shown in Figure 4. The result of this stacking is shown in Figure 5.
It can be seen that Q3 is a solid torus and its boundary is subdivided into hexagons
in a regular way. Note that stacking does not produce additional faces, so the
picture should be smoothened at stack points. This is similar to the construction
of origami templates in the theory of toric origami manifolds (see [15] and [9]).

Figure 5. Reconstructing Q3 by stacking six copies of B3.

The manifold MR
Stn,λ is a small cover over Qn = MR

Stn,λ/Zn
2 in which all stabi-

lizers of the action Zn
2 ⟳ MR

Stn,λ are coordinate subgroups of Zn
2 . The constructed

cellular subdivision on Qn can be lifted to MR
Stn,λ, and we have the following state-

ment.

Theorem 5.1. The manifold MR
Stn,λ is canonically subdivided into 2nn! cells which

are combinatorially isomorphic to Bn . More precisely,

MR
Stn,λ =

⋃
σ∈Σn,ε∈Zn

2

Bn
σ,ε/∼, Bn

σ,ε
∼= Bn,

where the equivalence relation ∼ is generated by the following relations:
• a point x ∈ Fσi

⊂ Bn
σ,ε is identified with the point αi(x) ∈ Fσi

⊂ Bn
τ,ε if

στ−1 = σi ;
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• a point x ∈ Fδk ⊂ Bn
σ,ε1

is identified with the point x ∈ Fδk ⊂ Bn
σ,ε2

if

ε1ε
−1
2 = (+1, . . . ,+1,

k
−1, +1, . . . ,+1).

Each codimension-s cell of the cellular structure on MR
Stn,λ lies in exactly 2n−s

top-dimensional cells.

Remark 5.1. We make a remark about the general construction, called symplectic
implosion, which is related to the space MStn,λ and the cubes appearing in our
work. Details on symplectic implosion can be found in [20].

Assume that there is a Hamiltonian action of a compact Lie group K on a sym-
plectic manifold M . There is a moment map Φ: M → k∗, where k is the Lie algebra
of K. Let T be a maximal torus of K, t be its Lie algebra, and t∗+ be a closed
Weyl chamber in the dual space t. Using the Killing form we can identify Lie alge-
bras with their duals and assume that the vector space t∗ is embedded into k∗ as
a subspace. With all the choices fixed, we can consider the open symplectic sub-
manifold Φ−1((t∗+)◦), the preimage of the open Weyl chamber under the moment
map. A certain compactification of this submanifold is considered. More precisely,
one should take the closed preimage Φ−1(t∗+) and identify two points m1 and m2

in the preimage whenever m2 = gm1 for some element g of the commutator sub-
group [KΦ(m1), KΦ(m1)]. Here KΦ(m1) is the stabilizer of Φ(m1) ∈ t∗+ under the
(co)adjoint K-action on t. The space Mimpl = Φ−1(t∗+)/∼ defined in this way is
called the imploded cross-section.

In our case, M is the manifold Mλ of Hermitian matrices of size n + 1 having
the given simple spectrum λ. As we mentioned in § 1, the conjugation action of
U(n+1) on Mλ is Hamiltonian, and the moment map is just the identity map. Now
consider the subgroup U(n) ⊂ U(n + 1) embedded as the lower-right corner; it will
play the role of K from the general construction. The induced action of K = U(n)
on Mλ is again Hamiltonian, and its moment map Φ assigns to a matrix A ∈ Mλ

its lower-right (n × n)-corner. The maximal torus T ⊂ K = U(n) consists of the
diagonal unitary matrices of size n. The embedding t∗ ⊂ k∗ is given by the diagonal
matrices, and therefore the space Φ−1(t∗) is exactly the space of all arrow matrices
with spectrum λ. The Weyl chamber t∗+ consists of the n-tuples a = (a1, . . . , an)
with a1 ⩽ a2 ⩽ · · · ⩽ an (while the Weyl group is the symmetric group Σn). Hence
Mimpl is the quotient space of µ−1(In

id) by a certain relation (recall that In
σ is the

cube in the union Rn that corresponds to the permutation σ).
The preimage Φ−1(a) is nonempty if and only if the only collisions of ai are

pairwise. In this case it can be easily shown that the subgroup [Ka, Ka] is the
product of SU(2); each SU(2) corresponds to a pair of collided values. By recalling
Remark 4.1 we see that the space Φ−1(t∗+)/∼ is (at least topologically) just the
toric manifold over a cube. Therefore, the symplectic implosion for the U(n)-action
on Mλ, the coadjoint orbit of U(n + 1), is the toric manifold (CP 1)n.

These observations give a hint of how to generalize the manifold MStn,λ and its
properties to other Lie groups.

Remark 5.2. Note that the polytope Bn has a convex Delzant realization, since it is
obtained from a cube by a sequence of codimension-2 face cutoffs. Therefore, there
exists a symplectic toric manifold over Bn. Note, however, that this symplectic
manifold does not coincide with the imploded cross-section described in Remark 5.1.
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§ 6. Combinatorics of strata

In this section Γ is an arbitrary graph on the set V , |V | = n, ∆ = (Γ, a, b) is
a labelled graph, A∆ is its corresponding Hermitian matrix and MΓ,λ is the space
of Γ-shaped matrices with simple spectrum λ.

The orbit space MΓ,λ/Tn is stratified by the dimensions of torus orbits. Suppose
an orbit [A] ∈ MΓ,λ/Tn is represented by a matrix A such that be = 0, e ∈ W ,
for some set W of edges. Removing the edges of W from the graph Γ, we obtain
a new graph Γ̃ on the same vertex set V . Let k be the number of connected
components of Γ̃. We can see that the dimension of the orbit TnA is n− k. The
set of matrices having zeros at the positions e ∈W can in general be disconnected,
since the spectrum λ can be distributed in different ways between blocks of a matrix.
These considerations motivate the following definition.

Definition 6.1. Let Γ be a graph on a vertex set V , |V | = n. Let Γ̃ ⊂ Γ be
a subgraph on V , and V1, . . . , Vk be the vertex sets of the connected components
of Γ̃. Consider V = {V1, . . . , Vk}, the unordered partition of V . We say that two
bijections p1, p2 : V → [n] are equivalent with respect to V (or simply V -equivalent)
if they differ by permutations within each subset Vi, that is,

p1 = p2 · σ, σ ∈ ΣV1 × · · · × ΣVk
⊆ ΣV .

The class of V -equivalent bijections is called a cluster subject to the partition V .
Let PΓ be the set of all clusters subject to partitions of subgraphs Γ̃ ⊂ Γ into
connected components. Now we define a partial order on PΓ. Note that the
inclusion of subgraphs Γ̃′ ⊂ Γ̃ implies that the partition Ṽ ′ is a refinement of Ṽ .
We say that a cluster [p′] subject to Ṽ ′ is less than a cluster [p] subject to Ṽ if p
and p′ are V -equivalent. In other words, p′ < p if p′ is a refinement of p. The poset
PΓ is called the cluster-permutohedron corresponding to Γ.

Remark 6.1. A cluster-permutohedron is a graded poset: the rank of a cluster
subject to a subgraph Γ̃ is equal to the rank of this subgraph, that is, the num-
ber of edges in its spanning forest. Therefore, the rank is equal to the number of
vertices of Γ̃ minus the number of its connected components.

Note that the poset PΓ has a unique maximal element of rank n− 1, which is
represented by the cluster subject to the whole graph Γ. The elements in this cluster
can be permuted arbitrarily. A smallest element of the poset PΓ corresponds to
a partition of the vertex set into n singletons: such clusters are encoded by all
possible permutations p : V → [n]. This means PΓ has exactly n! atoms for any Γ.

Example 6.1. Let Γ be a path graph with edges (1, 2), (2, 3), . . . , (n− 1, n). Its sub-
graph is represented by a sequence of path graphs, and the corresponding partition
of the vertex set has the form

V = {{1, . . . , s1}, {s1 + 1, . . . , s2}, . . . , {sk + 1, . . . , n}},

where 1 ⩽ s1 < s2 < · · · < sk < n. A cluster subject to this partition has the form

({σ(1), . . . , σ(s1)}, {σ(s1 + 1), . . . , σ(s2)}, . . . , {σ(sk + 1), . . . , σ(n)}),
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which is a linearly ordered partition of V = [n]. Therefore, the cluster-permu-
tohedron in this case coincides with the poset of faces of a permutohedron; see
Construction 4.1.

Example 6.2. Let Γ be a simple cycle on [n], that is, the graph with edges (1, 2),
(2, 3), . . . , (n−1, n), (n, 1). In this case, clusters subject to partitions into connected
components are cyclically ordered partitions of [n]. The poset of such cyclically
ordered partitions is called a cyclopermutohedron; it was introduced and studied by
Panina; see [28].

We formulate several basic properties of general cluster-permutohedra.

Proposition 6.1. Let p ∈PΓ be an element of the cluster-permutohedron, subject
to a partition V = {V1, . . . , Vk} of the vertex set of Γ, and let Γi be the induced
subgraph of Γ on the set Vi . Then the lower order ideal

(PΓ)⩽p = {q ∈PΓ | q < p}

is isomorphic to the direct product of posets

PΓ1 × · · · ×PΓk
.

The proof is straightforward from the construction of a partial order on the
cluster-permutohedron. Recall a basic definition from the theory of posets.

Definition 6.2. A poset S is called simplicial if it has a unique minimal element
0̂ ⊂ S, and for each I ∈ S the lower order ideal S⩽I = {J ∈ S | J ⩽ I} is
isomorphic to a Boolean lattice. Elements of a simplicial poset are called simplices.
If every two simplices I, J ∈ S have a unique common lower bound, then S is called
a simplicial complex .

A poset S is called simple (or dually simplicial) if S∗ is a simplicial poset. Here
S∗ is the set S with the reversed order. By the definition of a simplicial complex,
each simplex is uniquely determined by its set of vertices. A simplicial complex S
is called flag if, whenever a collection σ of vertices is pairwise connected by edges,
σ is a simplex of K.

Proposition 6.2. If Γ is a tree, then the poset PΓ is simple. Its dual P∗
Γ is a flag

simplicial complex.

Proof. Let an element p ∈ PΓ be subject to a partition V = {V1, . . . , Vk}. This
partition defines a forest Γ̃ ⊂ Γ uniquely. Let {e1, . . . , ek−1} be the set of edges of Γ
which do not lie in Γ̃. The upper order ideal {q ∈PΓ | q ⩾ p} is isomorphic to the
Boolean lattice of subsets of the set {e1, . . . , ek−1}. The condition on a simplicial
complex and the flag property hold for similar reasons. The proposition is proved.

Example 6.3. Let Γ = Stn be a star graph with edges (0, 1), (0, 2), . . . , (0, n). Its
cluster-permutohedron has the following property: each of its lower order ideals
is again a cluster-permutohedron of a star graph. Indeed, each subgraph of Stn is
a disjoint union of a discrete set of vertices {i1, . . . , is} ⊂ {1, . . . , n} and a star
graph on the remaining vertices.
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Figure 6. The combinatorics of the cluster-permutohedron for the star
graph with three rays.

This example is particularly interesting in connection with the results of § 4. The
space MStn,λ is a smooth manifold with half-dimensional torus action. Therefore,
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the orbit space Qn = MStn,λ/T is a manifold with corners. The poset of faces of this
manifold with corners is isomorphic to the cluster-permutohedron PStn

according
to the arguments from the beginning of this section.

We consider the case n = 3, the star with three rays, in detail. First, note
that the star graph St2 is just a simple path on three vertices, hence its cluster-
permutohedron PΓ is the poset of faces of a hexagon, according to Example 3.1.
All 2-dimensional faces of Q3 are hexagons. Indeed, each of these faces is the
orbit space of the manifold of tridiagonal (3 × 3)-matrices. This orbit space is
a permutohedron of dimension 2, that is, a hexagon.

As shown in § 5, the space Q3 is a solid torus, whose boundary is subdivided
into hexagons in a regular simple fashion: each vertex is contained in exactly three
hexagons. The combinatorics of this hexagonal subdivision can be described in
terms of the cluster-permutohedron (see Figure 6).

We observe that the cell complex ∂Q3 is a nanotube with chiral vectors (2, 2)
and (4,−2), using the terminology adopted in discrete geometry and chemistry
(see [11]).

§ 7. Arrow matrices 4 × 4

We apply the results in [2], [3] and [9] to describe the cohomology and equivariant
cohomology rings of the manifold MSt3,λ.

Recall the necessary definitions. Let Q be a manifold with corners, dim Q = n.
Assume that every vertex of Q lies in exactly n facets (such manifolds with corners
were called nice in [22] or otherwise manifolds with faces). We call Q an almost
homological polytope (or simply an almost polytope) if all of its proper faces are
acyclic. If, moreover, Q itself is acyclic, Q is called a homology polytope.

Let PQ denote a poset of faces of Q. The poset KQ = P∗
Q with reversed order

is simplicial for a nice manifold with corners. If Q is an almost polytope, then the
simplicial poset KQ is a homology manifold (see the definition below).

We recall the basic definitions needed for our considerations. The definitions are
given for simplicial complexes, since general simplicial posets do not appear in our
examples.

Definition 7.1. Let K be a simplicial complex on a set [m] and I ∈ K be a simplex.
The link of I is a simplicial complex linkK I = {J ⊆ [m]\ I | I ∩J ∈ K}. In partic-
ular, linkK ∅ = K. The complex K is called pure if all of its maximal-by-inclusion
simplices have equal dimensions. A pure simplicial complex K of dimension n− 1 is
called a homology manifold whenever, for any nonempty simplex I ∈ K, I ̸= ∅, the
complex linkK I has the same homology as a sphere of the corresponding dimension:

H̃j(linkK I; Z) =

{
Z if j = n− 1− |I|,
0 otherwise.

(7.1)

A manifold K is called orientable if its geometric realization possesses an orienting
cycle. The complex K is called a homology sphere if condition (7.1) also holds for
I = ∅ and linkK ∅ = K.

Remark 7.1. In all the definitions the coefficient ring should be specified. If the
coefficient ring is omitted, it is assumed that the coefficients are in Z.
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Definition 7.2. Let R be either a field or the ring Z, and R[m] = R[v1, . . . , vm] be
the polynomial ring on m generators, deg vi = 2. The Stanley-Reisner ring of K
is the quotient ring

R[K] = R[m]/(vi1vi2 · · · vik
| {i1, . . . , ik} /∈ K).

The ring R[K] has a natural structure of an R[m]-module.

Definition 7.3. Let K be a pure simplicial complex of dimension n− 1. A function
λ : [m] → Rn is called a characteristic function for K if for each maximal simplex
I = {i1, . . . , in} the collection {λ(i1), . . . , λ(in)} is a basis of the free module Rn.

Each function λ : [m] → Rn determines a sequence of degree-2 elements in the
ring R[K] as described below (abusing the terminology we call such elements linear,
since all rings are generated in degree 2 and there are no odd components at all). Let
λ(i) = (λi,1, . . . , λi,n) ∈ Rn, i ∈ [m]. Consider θj = λ1,jv1 + · · ·+ λm,jvm ∈ R[K],
j = 1, . . . , n. Let Θ be the ideal in R[K] generated by θ1, . . . , θn.

Lemma 7.1 (see, for example, [13]). Let R be a field. Then the set of linear ele-
ments θ1, . . . , θn is a linear system of parameters in R[K] if and only if λ : [m]→ Rn

is a characteristic function.

In what follows λ : [m]→ Rn always denotes a characteristic function.

Example 7.1. Let c : [m] → [n] be a proper colouring of the vertices of K, that is,
a map taking different values at the endpoints of any edge of K. For such a colouring
there is an associated characteristic function λc : [m] → Rn, λc(i) = ec(i), where
e1, . . . , en is the fixed basis of Rn. For the characteristic function λc, the elements
of the linear system of parameters have the form

θj =
∑

i,c(i)=j

vi ∈ R[K]2.

Characteristic functions of this kind will be called chromatic.

Proposition 7.1 (Reisner [29], Stanley [31] and Schenzel [30]). If K is a homology
sphere, then R[K] is a Cohen-Macaulay ring. In this case θ1, . . . , θn is a regu-
lar sequence in R[K], which means that R[K] is a free module over the subring
R[θ1, . . . , θn]. If K is a homology manifold, then R[K] is a Buchsbaum ring (which
means that θ1, . . . , θn is a weak regular sequence).

Recall the basic combinatorial characteristics of a simplicial complex. Let fj

denote the number of j-dimensional simplices of K for −1 ⩽ j ⩽ n−1; in particular,
f−1 = 1 (the empty simplex has formal dimension −1). The h-numbers of K are
defined using the relation

n∑
j=0

hjt
n−j =

n∑
j=0

fj−1(t− 1)n−j , (7.2)

where t is a formal variable. Let β̃j(K) = dim H̃j(K) be the reduced Betti number
of K. The h′- and h′′-numbers of K are defined by the relations

h′j = hj +
(

n

j

)(j−1∑
s=1

(−1)j−s−1β̃s−1(K)
)

for 0 ⩽ j ⩽ n, (7.3)
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and

h′′j = h′j −
(

n

j

)
β̃j−1(K) = hj +

(
n

j

)( j∑
s=1

(−1)j−s−1β̃s−1(K)
)

(7.4)

for 0 ⩽ j ⩽ n − 1 and h′′n = h′n. Summation over an empty set is assumed to
produce zero.

Proposition 7.2 (Reisner [29], Stanley [31] and Schenzel [30]). For each pure sim-
plicial complex K of dimension n− 1

Hilb(R[K]; t) =
h0 + h1t

2 + · · ·+ hntn

(1− t2)n
.

For a homology sphere K , Hilb(R[K]/Θ; t) =
∑

i hit
2i . For a homology manifold K ,

Hilb(R[K]/Θ; t) =
∑

i h′it
2i .

Proposition 7.3 (Novik and Swartz [26], [27]). Let K be a connected orientable
homology manifold of dimension n − 1. The 2jth graded component of the module
R[K]/Θ contains a vector subspace (INS)2j

∼=
(
n
j

)
H̃j−1(K; R) which is a trivial

R[m]-submodule (that is, R[m]+(INS)2j = 0). Let INS =
⊕n−1

j=0 (INS)2j be the sum
of all submodules except for the top one. Then the quotient module R[K]/Θ/INS is
a Poincaré duality algebra, and Hilb(R[K]/Θ/INS; t) =

∑
i h′′i t2i .

This result implies in particular the generalized Dehn-Sommerville relations for
manifolds: h′′j = h′′n−j .

Let Λ∗Rn denote the exterior algebra over Rn. For a characteristic function
λ : [m] → Rn and an oriented simplex I = {i1, . . . , is} ∈ K consider the nonzero
skew-form

λI = λ(i1) ∧ · · · ∧ λ(is) ∈ ΛsRn.

Proposition 7.4 (see [2] and [4]). Let K be a connected orientable homology mani-
fold, dim K = n− 1, and θ1, . . . , θn be a linear system of parameters corresponding
to a characteristic function λ. Let R be either Q or Z. Then the 2jth graded
component of the algebra R[K]/Θ is additively generated by the elements

vI = vi1 · · · vij
, I = {i1, . . . , ij} ∈ K,

and we have the following.
(1) All additive relations on the elements vI in the module R[K]/Θ have the form∑

I∈K, |I|=j

⟨ω, λI⟩σ(I)vI , (7.5)

where µ runs over (ΛkRn)∗ and σ runs over the vector space of simplicial
(j − 1)-coboundaries of the complex K : σ ∈ C j−1(K; R), σ = dτ .

(2) All additive relations on the elements vI in the module R[K]/Θ/INS for
j < n have the form (7.5), where σ runs over the space of simplicial cocycles:
σ ∈ C j−1(K; R), dσ = 0.
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In particular, this statement gives an explicit formula for the generators of the
Novik-Swartz ideal INS ⊂ R[K]/Θ. In [8] we called (7.5) Minkowski-type relations
by analogy with the terminology adopted in toric geometry. It was shown that
these relations have a simple geometrical explanation, coming from the theory of
multi-polytopes.

The theory sketched above can be used to describe the cohomological structure
of manifolds with half-dimensional torus action. Let X be a 2n-manifold, and let
a compact torus Tn act on X in a locally standard way. In this case the orbit space
Q = X/T is a nice manifold with corners. Let KQ be the simplicial poset dual
to the simple poset of faces of Q. Let [m] be the vertex set of KQ, and therefore
{F1, . . . ,Fm} be the set of facets of Q.

The preimage of Fi ⊂ Q under the map p : X → Q is a submanifold Xi ⊂ X
of codimension 2, which is called a characteristic submanifold . The cohomology
class dual to [Xi] ∈ H2n−2(X) is denoted by vi ∈ H2(X; Z) (one should orient Xi

somehow to make things well-defined). For a point x in the interior of Fi the
stabilizer of the action is a one-dimensional subgroup. It has the form λ(i)(S1),
where λ(i) ∈ Hom(S1, Tn) ∼= Zn. Since the action is locally standard, the map λ is
a characteristic function on KQ.

If Q is a homology polytope, then KQ is a homology sphere. If Q is an almost
polytope, then KQ is a homology manifold. The proper faces of an almost poly-
tope Q determine the homological cell subdivision of the boundary ∂Q, which is
dual to KQ; for details, see [1].

Proposition 7.5 (Masuda and Panov [22]). If Q is a homology polytope, then

H∗
T (X; Z) ∼= Z[KQ], H∗(X; Z) ∼= Z[KQ]/Θ,

H2i+1(X; Z) = 0, H2i(X; Z) ∼= Zhi(KQ).

Proposition 7.6 (see [9]). If Q is an orientable connected almost polytope and the
projection map p : X → Q admits a section, then

H∗
T (X; R) ∼= R[KQ]⊕H∗(Q; R)

(the units are identified in the direct sum of the rings).

Proposition 7.7 (see [3]). Assume Q is an orientable connected almost polytope
and the projection map p : X → Q admits a section.

(1) Let A∗(X; R) be the subring in H∗(X; R) generated by the classes vi of char-
acteristic submanifolds. Then there exists a sequence of epimorphisms

R[KQ]/Θ ↠ A∗(X; R) ↠ R[KQ]/Θ/INS.

The component A2j(X; R) is additively generated by classes vI , I ∈ KQ , |I| = j .
The relations on these classes in A2j(X; R) for j < n have the form (7.5), where σ ∈
C j−1(K; R) ∼= Cn−j(∂Q; R) runs over all cellular chains vanishing in Hn−j(Q; R).

(2) The submodule A+ =
⊕

j>0 A2j(X; R) is an ideal in H∗(X; R). Then there
is an isomorphism of graded rings

H∗(X)/A+ ∼=
(⊕

i<j

Hi(Q, ∂Q)⊗Hj(Tn)
)
⊕

(⊕
i⩾j

Hi(Q)⊗Hj(Tn)
)

.
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All nontrivial products on the right-hand side are given by cup products in coho-
mology and relative cohomology.

Now we apply this technique to the 6-dimensional manifold MSt3,λ of isospectral
arrow (4 × 4)-matrices. According to the results of §§ 4 and 5, the orbit space
Q3 = MSt3,λ/T 3 is a manifold with corners, homeomorphic to D2 × S1, and its
boundary is subdivided into hexagons as shown in Figure 7, a. Therefore, Q3

St is an
almost polytope. Note that the map p : MSt3,λ → Q3 admits a section. Indeed, Q3

may be identified with the space of arrow matrices with nonnegative off-diagonal
elements. This is a natural subset of MSt3,λ.

Figure 7. The combinatorics of the boundary ∂Q3 (a) and its dual sim-
plicial complex (b). The bold line denotes the cycle in ∂Q3

∼= T 2 which
is contractible within the solid torus Q3. The proper colouring (c) of the
vertices of P∗

St3 (that is, 2-faces of Q3).

The simplicial complex P∗
St3

dual to Q3 is the triangulation of a 2-torus with
twelve vertices that is shown in Figure 7, b. It can be seen that its f -vector is
(f{−1}, f0, f1, f2) = (1, 12, 36, 24), the h-vector is (1, 9, 15,−1), and the h′-vector
is (1, 9, 15, 1).

All stabilizers of the T 3-action on MSt3,λ are coordinate subtori in T 3. Therefore,
the characteristic function λ of the action is chromatic. It comes from the proper
colouring of vertices of P∗

St3
indicated in Figure 7, c. Propositions 7.6 and 7.7

applied to MSt3,λ give the following result.

Theorem 7.1. The relation H∗
T (MSt3,λ; R) ∼= R[P∗

St3
] ⊕ H∗(S1; R) holds. The

subring A∗(MSt3,λ; R) ⊂ H∗(MSt3,λ; R) generated by the classes vi of the charac-
teristic submanifolds has the form

A∗ = A∗(MSt3,λ; R) = R[P∗
St3 ]/Θ/I ,
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where:
• the ideal Θ of the Stanley-Reisner ring R[P∗

St3
] is generated by the linear forms

θ1 = v1 + v3 + v4 + v8, θ2 = v5 + v9 + v10 + v12, θ3 = v2 + v6 + v7 + v11

(the numeration of vertices is as shown in Figure 7);
• the ideal I is additively generated by the elements

v8v11 + v7v8 + v4v7 + v4v11, v8v10 + v4v12, v5v7 + v9v11

(the choice of these elements is noncanonical).
The graded components of the subring A∗ have dimensions (1, 0, 9, 0, 12, 0, 1).
The quotient ring H∗(MSt3,λ)/A+ has the following nonempty components: R in

degree 0, R in degree 1, R3 in degree 2 and R in degree 5. The product in the quotient
ring H∗(MSt3,λ)/A+ is trivial.

The integral cohomology of X6
St is torsion free, the Betti numbers are (1, 1, 12, 0,

12, 1, 1).

Proof. Two statements require an explanation: the form of the generators of the
ideal I , and the torsion freeness of the cohomology. According to Proposition 7.7,
the relations on the classes vI = vi1 · · · vik

∈ H∗(X6
St) are given by all possible

skew forms and all possible cellular cycles in ∂Q3
St, which vanish in the homology

of Q3
St. Each such pair gives a relation

∑
I σ(I)⟨ω, λI⟩vI . There is a unique basis

cycle in ∂Q3
St, which is homologous to zero in Q3

St. This cycle can be recognized
by analyzing the image of the moment map (see Figure 2). This vanishing cycle is
shown in Figure 7.

Torsion freeness of Z[K]/Θ/I can be checked by direct computation based on
part (1) of Proposition 7.4.

The theorem is proved.

§ 8. The twin manifold of MStn,λ

In [7] we introduced the notion of a twin manifold in the variety of complete
complex flags. Given a smooth T -invariant submanifold X ⊂ Mλ

∼= Fln, we con-
struct another smooth T -invariant submanifold X̃ = plp

−1
r (X), called the twin

of X, where pl : U(n) → Fln (pr : U(n) → Fln) is the quotient map defined by the
left free action of a torus on U(n) (by the right action, respectively):

Fln ∼= Tn \ U(n)
pl←− U(n)

pr−→ U(n)/Tn ∼= Fln. (8.1)

It can be seen that X̃/T ∼= X/T since both spaces are homeomorphic to the dou-
ble quotient T \ plp

−1
r (X)/T . However, the characteristic data of the T -manifolds

X and X̃ are different in general. The twins may be nondiffeomorphic.

Construction 8.1. Let us describe the twin of the manifold MStn,λ. A complex
flag in Cn+1 can be naturally identified with the sequence of 1-dimensional linear
subspaces L0, L1, . . . , Ln ⊂ Cn+1, which are pairwise orthogonal: Li ⊥ Lj , i ̸= j.
Consider a diagonalizable operator S : Cn+1 → Cn+1 with distinct real eigenvalues
and define a subset Xn ⊂ Fln+1:

Xn = {{Li} ∈ Fln+1 | S(Li) ⊂ L0 ⊕ Li for i ̸= 0}.
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The action of Tn+1 on Cn+1 induces an effective action of Tn = Tn+1/∆(T 1) on
the space Xn. We can assume that S = Λ = diag(λ0, λ1, . . . , λn).

Note that there is also an action of Σn on Xn which permutes the straight lines
L1, . . . , Ln. This action commutes with the Tn-action, hence there is a combined
action of the direct product Tn × Σn on Xn.

Proposition 8.1. The space Xn is the twin of MStn,λ . In particular, Xn is a smooth
manifold. Its orbit space by the action of Tn is isomorphic to Qn as a mani-
fold with corners and it is homotopy equivalent to Sqn−1 . The orbit space of the
(Tn × Σn)-action on Xn is diffeomorphic to the polytope Bn .

Proof. We recall the construction in [7]. For a Hermitian matrix A consider its
spectral decomposition A = U−1ΛU . Here the unitary operator U is defined up
to left multiplication by diagonal matrices. Given a subspace X ⊂Mλ of matrices
with the given spectrum such that X is preserved by the torus action, we consider
the twin space

X̃ = {A ∈Mλ | A = UΛU−1, where U−1ΛU ∈ X}.

Let e0, e1, . . . , en be the standard basis of Cn+1. Then X̃ is identified with the
collection of flags

U⟨e0⟩ ⊂ U⟨e0, e1⟩ ⊂ · · · ⊂ U⟨e0, e1, . . . , en⟩

for all possible unitary matrices U ∈ U(n) with the property U−1ΛU ∈ X.
Let Li = U⟨ei⟩. The condition U−1ΛU ∈MStn,λ is equivalent to

U−1ΛU(ei) ⊂ ⟨e0, ei⟩ for i ̸= 0,

which is the same condition as

ΛLi ⊂ L0 ⊕ Li.

Hence the twin of MStn,λ is exactly Xn. Since MStn,λ is smooth, so is Xn. The
orbit spaces of a manifold and its twin coincide (see [7] for details).

The proposition is proved.

Remark 8.1. In [7] we noticed that Hessenberg varieties are the twins of manifolds of
staircase isospectral matrices. Note that unlike in this case, the twin Xn of MStn,λ

is not a subvariety of Fln+1.

Remark 8.2. The manifold MStn,λ is a submanifold of MStn
∼= R3n+1 defined by

a system of smooth functions with nondegenerate intersections of level hypersur-
faces. Hence MStn,λ has a trivial normal bundle, and all of its Pontryagin classes
and numbers vanish. However, this may not be the case for its twin Xn. This
makes the twin Xn a more interesting object from a topological point of view.

Construction 8.2. Let us describe the characteristic function on Xn. Recall that
the facets of the orbit space Xn/T ∼= Qn are encoded by clusters subject to the
partitions {{j}, {0, 1, . . . , ĵ, . . . , n}}, j ̸= 0; see § 6. A cluster is given by

{{p(j)}, {p(0), p(1), . . . , p̂(j), . . . , p(n)}}
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for a bijection p : {0, 1, . . . , n} → {0, 1, . . . , n}. The facet F[p] corresponding to this
cluster consists of flags {Li} ∈ Xn such that Lj = ⟨ep(j)⟩. These flags are stabilized
by the circle subgroup Tp(j) ⊂ Tn, which is the image of the p(j)th coordinate
circle of Tn+1 in the quotient Tn = Tn+1/∆(T 1). In particular, the characteristic
function of Xn takes n + 1 values. This function is not chromatic.

Example 8.1. The values of the characteristic function on X3 are shown in Figure 8.
The characteristic function takes four values in Z3 which sum to zero, hence we can
assume that its values are (1, 0, 0), (0, 1, 0), (0, 0, 1) and (−1,−1,−1). These values
come from a proper 4-colouring of facets of the hexagonal subdivision of a torus.
The colouring of a facet is determined by the number standing on a separate vertex
of the cluster encoding the facet.

Note that the quotient map X3 → X3/T ∼= Q3 admits a section. Indeed, the
space Q3

∼= S1 has no second cohomology, hence every principal T -bundle over
the interior of Q3 is trivial. The following proposition is completely similar to
Theorem 7.1.

Proposition 8.2. The relation H∗
T (X3; R) ∼= R[P∗

St3
] ⊕ H∗(S1; R) holds. The

subring A∗(X3; R) ⊂ H∗(X3; R) generated by the classes vi of the characteristic
submanifolds has the form

A∗ = A∗(X3; R) = R[P∗
St3 ]/Θ/I ,

where:
• the ideal Θ of the Stanley-Reisner ring R[P∗

St3
] is generated by the linear forms

θ1 = v4 + v6 + v10 − v1 − v5 − v11, θ2 = v3 + v7 + v12 − v1 − v5 − v11,

θ3 = v2 + v8 + v9 − v1 − v5 − v11

under the numeration of vertices shown in Figure 7;
• the ideal I is additively generated by the elements

v5v7 − v7v8 + v8v11 − v11v12, v8v10 − v8v11 + v4v11 − v4v9,

v4v7 − v5v7 + v11v12 − v4v11

(the choice of these elements is noncanonical).
The graded components of the subring A∗ have dimensions (1, 0, 9, 0, 12, 0, 1).

The integral cohomology of X6
St is torsion free, the Betti numbers are (1, 1, 12, 0,

12, 1, 1).

The second Pontryagin class of X3 is given by the class p1 =
∑12

i=1 v2
i ∈ A∗ ⊂

H∗(X3). It can be shown by direct calculation that this class is nontrivial. Actually,
the integral of this class over any characteristic submanifold equals ±8 (one needs
to introduce an omniorientation to specify the sign). This calculation can be done
by simplifying the expression vip1, with the use of the relations in the cohomology
ring given by Proposition 8.2.
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Figure 8. The characteristic function for the twin of MSt3,λ.



634 A.A. Ayzenberg and V. M. Buchstaber

Acknowledgements. The authors are deeply grateful to Tadeusz Januszkiewicz,
from whom we knew about the general spaces of sparse isospectral matrices and,
in particular, about the space of isospectral arrow matrices and its basic properties.
We also thank Megumi Harada, who noticed that the spaces of arrow matrices can
be studied in the framework of symplectic implosions.

Bibliography

[1] A.A. Ayzenberg, “Locally standard torus actions and sheaves over Buchsbaum
posets”, Mat. Sb. 208:9 (2017), 3–25; English transl. in Sb. Math. 208:9 (2017),
1261–1281.

[2] A. Ayzenberg, “Locally standard torus actions and h′-numbers of simplicial posets”,
J. Math. Soc. Japan 68:4 (2016), 1725–1745.

[3] A. Ayzenberg, “Homology cycles in manifolds with locally standard torus actions”,
Homology, Homotopy Appl. 18:1 (2016), 1–23.

[4] A. Ayzenberg, “Topological model for h′′-vectors of simplicial manifolds”, Bol. Soc.
Mat. Mex. (3) 23:1 (2017), 413–421.

[5] A. Ayzenberg, “Space of isospectral periodic tridiagonal matrices”, Algebr. Geom.
Topol. 20:6 (2020), 2957–2994.

[6] A.A. Ayzenberg and V.M. Buchstaber, “Nerve complexes and moment-angle
spaces of convex polytopes”, Classical and modern mathematics in the
wake of Boris Nikolaevich Delone, Tr. Mat. Inst. Steklova, vol. 275, MAIK
“Nauka/Interperiodica”, Moscow 2011, pp. 22–54; English transl. in Proc. Steklov
Inst. Math. 275 (2011), 15–46.

[7] A. Ayzenberg and V. Buchstaber, “Manifolds of isospectral matrices and
Hessenberg varieties”, Int. Math. Res. Not., 2020, rnz388, 12 pp.

[8] A. Ayzenberg and M. Masuda, “Volume polynomials and duality algebras of
multi-fans”, Arnold Math. J. 2:3 (2016), 329–381.

[9] A. Ayzenberg, M. Masuda, Seonjeong Park and Haozhi Zeng, “Cohomology of toric
origami manifolds with acyclic proper faces”, J. Symplectic Geom. 15:3 (2017),
645–685.

[10] A. M. Bloch, H. Flaschka and T. Ratiu, “A convexity theorem for isospectral
manifolds of Jacobi matrices in a compact Lie algebra”, Duke Math. J. 61:1 (1990),
41–65.

[11] V. M. Buchstaber and N. Yu. Erokhovets, “Fullerenes, polytopes and toric
topology”, Combinatorial and toric homotopy, Lect. Notes Ser. Inst. Math. Sci.
Natl. Univ. Singap., vol. 35, World Sci. Publ., Hackensack, NJ 2018, pp. 67–178.

[12] V. M. Buchstaber and I. Yu. Limonchenko, “Massey products, toric topology and
combinatorics of polytopes”, Izv. Ross. Akad. Nauk Ser. Mat. 83:6 (2019), 3–62;
English transl. in Izv. Math. 83:6 (2019), 1081–1136.

[13] V.M. Buchstaber and T. E. Panov, Toric topology, Math. Surveys Monogr.,
vol. 204, Amer. Math. Soc., Providence, RI 2015, xiv+518 pp.
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