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flat modules of harmonic analysis
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Abstract. We study homologically trivial modules of harmonic analysis
on a locally compact group G. For L1(G)- and M(G)-modules C0(G),
Lp(G) and M(G) we give criteria for metric and topological projectivity,
injectivity and flatness. In most cases, modules with these properties must
be finite-dimensional.
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§ 1. Introduction

Banach homology has a long history dating back to the 1950s. One of the main
questions in this discipline is whether a given Banach module is homologically
trivial, that is, projective, injective or flat. An example of a successful answer to this
question is the work of Dales, Polyakov, Ramsden and Racher [1]–[3], where they
gave criteria for homological triviality for classical modules of harmonic analysis.
It is worth mentioning that all these studies were carried out for relative Banach
homology. We answer the same questions but for two less-explored versions of
Banach homology: topological and metric ones. Metric Banach homology was
introduced by Graven in [4], where he applied modern (at that time) homological
and Banach geometrical techniques to modules of harmonic analysis. The notion
of topological Banach homology appeared in the work of White [5]. Seemingly, the
latter theory looks much less restrictive then the metric one, but as we shall see
this is not the case.

§ 2. Preliminaries on Banach homology

All Banach spaces under consideration are over the field of complex numbers.
Let E be a Banach space. By BE we denote the closed unit ball of E. If F
is another Banach space, then a bounded linear operator T : E → F is called
isometric (c-topologically injective) if ∥T (x)∥ = ∥x∥ (respectively, c∥T (x)∥ ⩾ ∥x∥)
for all x ∈ E. Similarly, T is strictly coisometric (strictly c-topologically surjective) if
T (BE) = BF (respectively, cT (BE) ⊃ BF ). In some cases the constant c is omitted.
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We use the symbol
⊕

p for an ℓp-sum of Banach spaces, and ⊗̂ for a projective tensor
product of Banach spaces.

By A we denote an arbitrary Banach algebra. The symbol A+ stands for the
standard unitization of A. In what follows we consider Banach modules with con-
tractive outer action only. A Banach A-module X is called essential (faithful,
annihilator) if the linear span of A ·X is dense in X (a ·X = {0} implies that a = 0,
A ·X = {0}, respectively). A bounded linear operator which is also a morphism of
A-modules is called an A-morphism. The symbol A-mod stands for the category
of left Banach A-modules with A-morphisms. By A-mod1 we denote the subcat-
egory of A-mod with the same objects, but contractive A-morphisms only. The
analogous categories of right modules are denoted by mod-A and mod1-A, respec-
tively. We use the symbol ∼= to denote an isomorphism of two objects in a category.
By ⊗̂A we denote the functor of projective module tensor product and by Hom, the
usual morphism functor. Now we can give our main definitions.

Definition 1. A left Banach A-module P is metrically (C-topologically, C-
relatively) projective if the morphism functor HomA-mod1(P,−) (respectively,
HomA-mod(P,−), HomA-mod(P,−)) maps all strictly coisometric morphisms (res-
pectively, strictly c-topologically surjective morphisms, morphisms with right
inverse operator of norm at most c) to strictly coisometric (respectively, strictly
cC-topologically surjective, strictly cC-topologically surjective) operators.

Definition 2. A right Banach A-module J is metrically (C-topologically,
C-relatively) injective if the morphism functor Hommod1-A(−, J) (respectively,
Hommod-A(−, J), Hommod-A(−, J)) maps all strictly isometric morphisms (respec-
tively, c-topologically injective morphisms, morphisms with left inverse operator
of norm at most c) to strictly coisometric (respectively, strictly cC-topologically
surjective, strictly cC-topologically surjective) operators.

Definition 3. A left Banach A-module F is metrically (C-topologically, C-rela-
tively) flat if the functor of module tensor product −⊗̂AF maps all isometric
morphisms (respectively, c-topologically injective morphisms, morphisms with left
inverse operator of norm at most c) to isometric (respectively, cC-topologically
injective, cC-topologically injective) operators.

We shall say that a Banach module is topologically (relatively) projective, injec-
tive or flat if it is C-topologically (respectively, C-relatively) projective, injective
or flat for some C > 0.

These definitions were given in a slightly different form by Graven for metric
theory [4], by White for topological theory [5] and by Helemskii for relative the-
ory [6]. For topologically projective, injective and flat modules White used the
terms strictly projective, injective and flat, respectively. It is worth mentioning
that strictly injective and flat modules were originally introduced earlier by Helem-
skii in [7], Ch. VII, § 1. An overview of the basics of these theories is given in [8].
We shall heavily rely upon results in the latter paper.

§ 3. Preliminaries on harmonic analysis

Let G be a locally compact group with unit eG. The left Haar measure of G is
denoted by mG and the symbol ∆G stands for the modular function of G. For an
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infinite and discrete (compact) group G we choose mG to be the counting measure
(respectively, the probability measure). In what follows, for 1 ⩽ p ⩽ +∞ we use
the notation Lp(G) to denote the Lebesgue space of functions that are p-integrable
with respect to the Haar measure.

We regard L1(G) as a Banach algebra with convolution operator in the role of
multiplication. This Banach algebra has a contractive two-sided approximate iden-
tity (see [9], Theorem 3.3.23). Clearly, L1(G) is unital if and only if G is discrete.
In this case δeG

, the indicator function of eG, is the identity of L1(G). Similarly,
the space of complex finite Borel regular measures M(G) endowed with convolu-
tion becomes a unital Banach algebra. The role of identity is played by the Dirac
delta measure δeG

supported on eG. Moreover, M(G) is a coproduct, in the sense
of category theory, in L1(G)-mod1 (but not in M(G)-mod1) of the two-sided
ideal Ma(G) of measures which are absolutely continuous with respect to mG and
the subalgebra Ms(G) of measures which are singular with respect to mG. Note
that Ma(G) ∼= L1(G) in M(G)-mod1 and Ms(G) is an annihilator L1(G)-module.
Finally, M(G) = Ma(G) if and only if G is discrete.

Now we proceed to discuss the standard left and right modules over algebras
L1(G) and M(G). The Banach algebra L1(G) can be regarded as a two-sided ideal
ofM(G) by means of the isometric left and rightM(G)-morphism i :L1(G)→M(G),
f 7→ fmG. Therefore it is enough to define all module structures over M(G). For
any 1 ⩽ p < +∞, f ∈ Lp(G) and µ ∈M(G) we define

(µ ∗p f)(s) =
∫

G

f(t−1s) dµ(t) and (f ∗p µ)(s) =
∫

G

f(st−1)∆G(t−1)1/p dµ(t).

These module actions turn all Banach spaces Lp(G) for 1 ⩽ p < +∞ into left
and right M(G)-modules. Note that for p = 1 and µ ∈ Ma(G) we get the usual
definition of convolution. For 1 < p ⩽ +∞, f ∈ Lp(G) and µ ∈ M(G) we define
the module actions by

(µ ·p f)(s) =
∫

G

∆G(t)1/pf(st) dµ(t) and (f ·p µ)(s) =
∫

G

f(ts) dµ(t).

These module actions turn all Banach spaces Lp(G) for 1 < p ⩽ +∞ into left
and right M(G)-modules too. This special choice of module structure interacts
nicely with duality. Indeed we have an isomorphism (Lp(G), ∗p )∗ ∼= (Lp∗(G), ·p∗)
in mod1-M(G) for all 1 ⩽ p < +∞. Here we set by definition p∗ = p/(p − 1) for
1 < p < +∞ and p∗ = ∞ for p = 1. Finally, the Banach space C0(G) also becomes
a left and a right M(G)-module when endowed with ·∞ in the role of a module
action. Moreover, C0(G) is a closed left and right M(G)-submodule of L∞(G) such
that (C0(G), ·∞)∗ ∼= (M(G), ∗ ) in M(G)-mod1.

By Ĝ we denote the dual group of the group G. Any character γ ∈ Ĝ gives rise
to continuous characters

κL
γ : L1(G) → C, f 7→

∫
G

f(s)γ(s) dmG(s),

and
κM

γ : M(G) → C, µ 7→
∫

G

γ(s) dµ(s),
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on L1(G) and M(G), respectively. By Cγ we denote a left and right augmentation
L1(G)- or M(G)-module. Its module actions are defined by

f ·γ z = z ·γ f = κL
γ (f)z and µ ·γ z = z ·γ µ = κM

γ (µ)z

for all f ∈ L1(G), µ ∈M(G) and z ∈ C.
One of the numerous definitions of amenable group says that a locally com-

pact group G is amenable if there exists an L1(G)-morphism of right modules
M : L∞(G) → CeĜ

such that M(χG) = 1 (see [7], Ch. VII, § 2.5). We can even
assume that M is contractive (see [7], Remark VII.1.54).

Most results in this section that are not supported with references are presented
in full detail in [9], § 3.3.

§ 4. L1(G)-modules

The metric homological properties of L1(G)-modules of harmonic analysis were
first studied in [4]. We generalise these ideas for the case of topological Banach
homology. To clarify definitions we start from a general result on injectivity. It is
instructive to prove it from first principles.

Proposition 1. Let A be a Banach algebra with right contractive approximate
identity; then the right A-module A∗ is metrically injective.

Proof. Let ξ : Y → X be an isometric A-morphism of right A-modules X and Y
and an arbitrary contractive A-morphism φ : X → A∗. By assumption A has a con-
tractive approximate identity, say (eν)ν∈N . For each ν ∈ N we define a bounded
linear functional fν : Y → C by y 7→ φ(y)(eν). By the Hahn-Banach theorem there
exists a bounded linear functional gν : X → C such that gνξ = fν and ∥gν∥ = ∥fν∥.
It is routine to check that ψν : X → A∗, x 7→ (a 7→ gν(x · a)), is an A-morphism
of right modules such that ∥ψν∥ ⩽ ∥φ∥ and ψν(ξ(x))(a) = φ(x)(aeν) for all x ∈ X
and a ∈ A. Since the net (ψν)ν∈N is norm bounded, there exists a subnet (ψµ)µ∈M

with the same norm bound that converges in the strong-to-weak∗ topology to some
operator ψ : X → A∗. Clearly, ψ is a morphism of right A-modules such that
ψξ = φ and ∥ψ∥ ⩽ ∥φ∥. As φ is arbitrary, the map Hommod1-A(ξ, A∗) is strictly
coisometric. Hence A∗ is metrically injective. The proposition is proved.

Proposition 2. Let G be a locally compact group. Then L∞(G) is a metrically
and topologically injective L1(G)-module. As a result, the L1(G)-module L1(G) is
metrically and topologically flat.

Proof. As L1(G) has a contractive approximate identity, by Proposition 1 the right
L1(G)-module L1(G)∗ is metrically injective. As a consequence, it is topologi-
cally injective (see [8], Proposition 2.14). Therefore, it remains to recall that
L∞(G) ∼= L1(G)∗ in mod1-L1(G). The result on the flatness of L1(G) follows
from Proposition 2.21 in [8]. The proposition is proved.

Proposition 3. Let G be a locally compact group, and γ ∈ Ĝ. Then the following
are equivalent:

1) G is compact;
2) Cγ is a metrically projective L1(G)-module;
3) Cγ is a topologically projective L1(G)-module.
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The proof of 1) ⇒ 2) and 3) ⇒ 1) is similar to Theorem 4.2 in [4].
The implication 2) ⇒ 3) follows from Proposition 2.4 in [8].

Proposition 4. Let G be a locally compact group, and γ ∈ Ĝ. Then the following
are equivalent:

1) G is amenable;
2) Cγ is a metrically injective L1(G)-module;
3) Cγ is a topologically injective L1(G)-module;
4) Cγ is a metrically flat L1(G)-module;
5) Cγ is a topologically flat L1(G)-module.

Proof. 1) ⇒ 2), 3) ⇒ 1) The proof is similar to Theorem 4.5 in [4].
2) ⇒ 3) This implication immediately follows from Proposition 2.14 in [8].
2) ⇒ 4), 3) ⇒ 5) Note that C∗γ ∼= Cγ in mod1-L1(G), so all equivalences follow

from the three previous paragraphs and the fact that flat modules are precisely the
modules with injective dual (see [8], Proposition 2.21). The proposition is proved.

In the following statement we study specific ideals of the Banach algebra L1(G),
namely the ideals of the form L1(G) ∗ µ for some idempotent measure µ. In fact,
for the case of commutative compact groups this class of ideals coincides with those
left ideals of L1(G) that admit a right bounded approximate identity.

Theorem 1. Let G be a locally compact group and µ ∈ M(G) be an idempotent
measure, that is µ ∗ µ = µ. Assume that the left ideal I = L1(G) ∗ µ of the
Banach algebra L1(G) is a topologically projective L1(G)-module. Then µ = pmG

for some p ∈ I .

Proof. Let φ : I → L1(G) be an arbitrary morphism of left L1(G)-modules. Con-
sider the L1(G)-morphism φ′ : L1(G) → L1(G), x 7→ φ(x∗µ). By Wendel’s theorem
(see [10], Theorem 1) there exists a measure ν ∈M(G) such that φ′(x) = x ∗ ν for
all x ∈ L1(G). In particular, φ(x) = φ(x ∗ µ) = φ′(x) = x ∗ ν for all x ∈ I. It is
clear now that ψ : I → I, x 7→ ν ∗ x, is a morphism of right I-modules satisfying
φ(x)y = xψ(y) for all x, y ∈ I. By Lemma 2, (ii), in [11] the ideal I has a right
identity, say e ∈ I. Then x∗µ = x∗µ∗e for all x ∈ L1(G). Two measures are equal
if their convolutions with all functions of L1(G) coincide (see [9], Corollary 3.3.24),
so µ = µ ∗ emG. Since e ∈ I ⊂ L1(G), we have µ = µ ∗ emG ∈ Ma(G). Set
p = µ ∗ e ∈ I, then µ = pmG. The theorem is proved.

We conjecture that a left ideal of the form L1(G)∗µ for an idempotent measure µ
is a metrically projective L1(G)-module if and only if µ= pmG for p∈ I with ∥p∥= 1.
In [4] Graven gave a criterion of metric projectivity of the L1(G)-module L1(G).
Now we can prove this fact as a mere corollary.

Theorem 2. Let G be a locally compact group. Then the following are equivalent:
1) G is discrete;
2) L1(G) is a metrically projective L1(G)-module;
3) L1(G) is a topologically projective L1(G)-module.

Proof. 1) ⇒ 2) If G is discrete, then L1(G) is unital with unit of norm 1. From [11],
Proposition 7, we conclude that L1(G) is metrically projective as an L1(G)-module.

2) ⇒ 3) This implication is a direct corollary of Proposition 2.4 in [8].
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3) ⇒ 1) Clearly, δeG
is an idempotent measure. Since L1(G) = L1(G) ∗ δeG

is topologically projective, then by Theorem 1 we have δeG
= fmG for some

f ∈ L1(G). This is possible only if G is discrete. The theorem is proved.

Note that the L1(G)-module L1(G) is relatively projective for any locally com-
pact group G (see [7], Exercise VII.1.17).

Proposition 5. Let G be a locally compact group. Then the following are equiva-
lent:

1) G is discrete;
2) M(G) is a metrically projective L1(G)-module;
3) M(G) is a topologically projective L1(G)-module;
4) M(G) is a metrically flat L1(G)-module.

Proof. 1) ⇒ 2) We have M(G) ∼= L1(G) in L1(G)-mod1 for discrete G, so the
result follows from Theorem 2.

2) ⇒ 3) See [8], Proposition 2.4.
2) ⇒ 4) The implication follows from Proposition 2.26 in [8].
3) ⇒ 1) Recall that M(G) ∼= L1(G)

⊕
1Ms(G) in L1(G)-mod1, so Ms(G) is

topologically projective as a retract of a topologically projective module (see [8],
Proposition 2.2). Note that Ms(G) is also an annihilator L1(G)-module, and there-
fore the algebra L1(G) has a right identity (see [8], Proposition 3.3). Recall that
L1(G) also has a two-sided bounded approximate identity, so L1(G) is unital. The
latter is equivalent to G being discrete.

4) ⇒ 1) Note that M(G) ∼= L1(G)
⊕

1Ms(G) in L1(G)-mod1, so Ms(G) is
metrically flat as a retract of a metrically flat module (see [8], Proposition 2.27).
Recall also that Ms(G) is an annihilator module over a nonzero algebra L1(G),
therefore Ms(G) must be a zero module (see [8], Proposition 3.6). The latter is
equivalent to G being discrete. The proposition is proved.

Proposition 6. Let G be a locally compact group. Then M(G) is a topologically
flat L1(G)-module.

Proof. Since M(G) is an L1-space it is a fortiori an L g
1 -space (see [12], § 3.13,

Exercise 4.7, (b)). Since Ms(G) is complemented in M(G), Ms(G) is an L g
1 -space

too (see [12], Corollary 23.2.1, (2)). Moreover, since Ms(G) is an annihilator
L1(G)-module, it is a topologically flat L1(G)-module (see [8], Proposition 3.6).
The L1(G)-module L1(G) is also topologically flat by Proposition 2. Note that
M(G) ∼= L1(G)

⊕
1Ms(G) in L1(G)-mod1, so the L1(G)-module M(G) is topolog-

ically flat as a sum of topologically flat modules (see [8], Proposition 2.27). The
proposition is proved.

§ 5. M(G)-modules

We turn to the study of the standard M(G)-modules of harmonic analysis. As we
shall see, most of the results can be derived from previous theorems and propositions
on L1(G)-modules.
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Proposition 7. Let G be a locally compact group, and X be an essential (faithful)
L1(G)-module. Then

1) X is a metrically projective or metrically flat (respectively, injective)
M(G)-module if and only if it is a metrically projective or metrically flat
(respectively, injective) L1(G)-module;

2) X is a topologically projective or topologically flat (respectively, injective)
M(G)-module if and only if it is a topologically projective or topologically
flat (respectively, injective) L1(G)-module.

Recall that L1(G) is a two-sided contractively complemented ideal ofM(G). Now
1) and 2) follow from Proposition 2.6 in [8] or Proposition 2.24 in [8] (respectively,
Proposition 2.16 in [8]).

It is worth mentioning here that L1(G)-modules C0(G), Lp(G) for 1 ⩽ p <∞ and
Cγ for γ ∈ Ĝ are essential and L1(G)-modules C0(G), M(G), Lp(G) for 1 ⩽ p ⩽ ∞
and Cγ for γ ∈ Ĝ are faithful.

Proposition 8. Let G be a locally compact group. Then M(G) is a metrically
and topologically projective M(G)-module. As a consequence, it is a metrically and
topologically flat M(G)-module.

Proof. As M(G) is a unital algebra, the metric (topological) projectivity of M(G)
follows from Proposition 7 in [11] since one may regard M(G) as a unital ideal
of M(G). It remains to recall that any metrically (topologically) projective module
is metrically (topologically) flat (see [8], Proposition 2.26). The proposition is
proved.

§ 6. Banach geometric restrictions

In this section we show that many modules of harmonic analysis fail to be met-
rically or topologically projective, injective or flat for purely Banach geometric
reasons. In metric theory for infinite-dimensional L1(G)-modules Lp(G), M(G)
and C0(G) this was done in [4], Theorems 4.12–4.14.

Proposition 9. Let G be an infinite locally compact group. Then
1) L1(G), C0(G), M(G) and L∞(G)∗ are not topologically injective Banach

spaces;
2) C0(G) and L∞(G) are not complemented in any L1-space.

Proof. Since G is infinite all modules in question are infinite dimensional.
1) If an infinite-dimensional Banach space is topologically injective, it contains

a copy of ℓ∞(N) (see [13], Corollary 1.1.4) and consequently, a copy of c0(N).
The Banach space L1(G) is weakly sequentially complete (see [14], Part III.C,
Corollary 14), so by Corollary 5.2.11 in [15] it cannot contain a copy of c0(N).
Therefore, L1(G) is not a topologically injective Banach space. Assume that M(G)
is topologically injective, then so is its complemented subspace Ma(G), which is
isometrically isomorphic to L1(G). By the previous argument this is impossible,
a contradiction. By Corollary 3 in [16] the Banach space C0(G) is not comple-
mented in L∞(G), hence it cannot be topologically injective. Note that L1(G) is
complemented in L∞(G)∗ which is isometrically isomorphic to L1(G)∗∗ (see [12],
Proposition B10). Therefore, if L∞(G)∗ is topologically injective as a Banach space,



1454 N.T. Nemesh

then so is its retract L1(G). By the previous argument this is impossible, a contra-
diction.

2) Suppose C0(G) is a retract of an L1-space; then M(G), which is isometrically
isomorphic to C0(G)∗, is a retract of L∞-space. Therefore, M(G) must be a topo-
logically injective Banach space. This contradicts part 1). Note that ℓ∞(N) embeds
in L∞(G), hence so does c0(N). If L∞(G) is a retract of L1-space, then there exists
an L1-space containing a copy of c0(N). This is impossible as already shown in
part 1). The proposition is proved.

From now on, by A we denote either L1(G) or M(G). Recall that L1(G) and
M(G) are both L1-spaces.

Proposition 10. Let G be an infinite locally compact group. Then
1) C0(G) and L∞(G) are neither topologically nor metrically projective

A-modules;
2) L1(G), C0(G), M(G) and L∞(G)∗ are neither topologically nor metrically

injective A-modules;
3) L∞(G) and C0(G) are neither topologically nor metrically flat A-modules;
4) Lp(G) for 1 < p < ∞ are neither topologically nor metrically projective,

injective or flat A-modules.

Proof. 1) Every metrically or topologically projective A-module is complemented
in some L1-space (see [8], Proposition 3.8). Now the result follows from Proposi-
tion 9, 2).

2) Every metrically or topologically injective A-module is topologically injective
as a Banach space (see [8], Proposition 3.8). It remains to apply Proposition 9, 1).

3) Note that C0(G)∗ ∼= M(G) in mod1-A. Now the result follows from part 1)
and the fact that the dual module of a flat module is injective (see [8], Proposi-
tion 2.21).

4) Since Lp(G) is reflexive for 1 < p <∞, the result follows from Corollary 3.14
in [8]. The proposition is proved.

Now we consider the metric and topological homological properties of A-modules
when G is finite.

Proposition 11. Let G be a nontrivial finite group and let 1 ⩽ p ⩽ ∞. Then the
A-module Lp(G) is metrically projective (injective) if and only if p = 1 (respectively,
p = ∞).

Proof. Assume that Lp(G) is metrically projective (injective) as an A-module. As
Lp(G) is finite dimensional, there exists an isometric isomorphism Lp(G) ∼= ℓ1(Nn)
(respectively, Lp(G) ∼= ℓ∞(Nn)), where n = Card(G) > 1; see [8], Proposition 3.8,
(i) and (ii). Now we use the result of Theorem 1 in [17] for Banach spaces over the
field C: if for 2 ⩽ m ⩽ k and 1 ⩽ r, s ⩽ ∞ there exists an isometric embedding
of ℓr(Nm) into ℓs(Nk), then either r = 2, s ∈ 2N or r = s. Therefore, p = 1
(respectively, p = ∞). The converse easily follows from Theorem 2 (respectively,
Proposition 2). The proposition is proved.

Proposition 12. Let G be a finite group. Then
1) C0(G) and L∞(G) are metrically injective A-modules;
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2) C0(G) and Lp(G) for 1 < p ⩽ ∞ are metrically projective A-modules if and
only if G is trivial;

3) M(G) and Lp(G) for 1 ⩽ p < ∞ are metrically injective A-modules if and
only if G is trivial;

4) C0(G) and Lp(G) for 1 < p ⩽ ∞ are metrically flat A-modules if and only
if G is trivial.

Proof. 1) Since G is finite, we have C0(G) = L∞(G). The result follows from Pro-
position 2.

2) If G is trivial, that is G = {eG}, then Lp(G) = C0(G) = L1(G) and the result
follows from part 1). If G is nontrivial, then we recall that C0(G) = L∞(G) and
use Proposition 11.

3) If G = {eG}, then M(G) = Lp(G) = L∞(G) and the result follows from
part 1). If G is nontrivial, then we note thatM(G) = L1(G) and use Proposition 11.

4) From part 3) it follows that Lp(G) for 1 ⩽ p < ∞ is a metrically injec-
tive A-module if and only if G is trivial. Recall that a Banach module is flat
if and only if its dual is injective (see [8], Proposition 2.21). Now the result
for Lp(G) follows from the identifications Lp(G)∗ ∼= Lp∗(G) in mod1-L1(G) for
1 ⩽ p∗ <∞. Similarly, using the above characterisation of flat modules and isomor-
phisms C0(G)∗ ∼= M(G) ∼= L1(G) in mod1-L1(G) we get a criterion of injectivity
of M(G). The proposition is proved.

It is worth mentioning here that if we consider all Banach spaces over the
field of real numbers, then L∞(G) and L1(G) will be metrically projective and
injective, respectively, for the group G consisting of two elements. The reason
is that L∞(Z2) ∼= Rγ0

⊕
1 Rγ1 in L1(Z2)-mod1 and L1(Z2) ∼= Rγ0

⊕
∞ Rγ1 in

mod1-L1(Z2). Here, Z2 denotes the unique group of two elements and γ0, γ1 ∈ Ẑ2

are the characters defined by γ0(0) = γ0(1) = γ1(0) = −γ1(1) = 1.

Proposition 13. Let G be a finite group. Then for 1 ⩽ p ⩽ ∞ the A-modules
C0(G), M(G) and Lp(G) are topologically projective, injective and flat.

Proof. For a finite group G we have M(G) = L1(G) and C0(G) = L∞(G), so the
modules C0(G) and M(G) do not require special considerations. Since M(G) =
L1(G), we can restrict our considerations to the case A = L1(G). The identity
map i : L1(G) → Lp(G), f 7→ f , is a topological isomorphism of Banach spaces,
because L1(G) and Lp(G) for 1 ⩽ p < +∞ are of equal finite dimension. Since
G is finite, it is unimodular. Therefore, the module actions in (L1(G), ∗ ) and
(Lp(G), ∗p ) coincide for 1 ⩽ p < +∞. Hence i is an isomorphism in L1(G)-mod
and mod-L1(G). One can show similarly that (L∞(G), ·∞) and (Lp(G), ·p ), where
1 < p ⩽ +∞, are isomorphic in L1(G)-mod and mod-L1(G). Finally, one can
easily check that (L1(G), ∗ ) and (L∞(G), ·∞) are isomorphic in L1(G)-mod and
mod-L1(G) via the map j : L1(G) → L∞(G), f 7→ (s 7→ f(s−1)). Thus all the
modules in question are pairwise isomorphic. It remains to recall that L1(G) is
topologically projective and flat by Theorem 2 and Proposition 2, while L∞(G)
is topologically injective by Proposition 2. The proposition is proved.

We summarise the results on the homological properties of modules of harmonic
analysis into Tables 1 and 2. Each cell in each table contains a condition under
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which the corresponding module has the corresponding property and references
to the proofs. The arrow ⇒ indicates that only a necessary condition is known.
We should mention that results for modules Lp(G), where 1 < p <∞, are valid for
both module actions ∗p and ·p . Characterisations and proofs for the homologically
trivial modules Cγ in the case of relative theory are the same as in Propositions 3
and 4, but these results are already well known. For example, the projectivity of Cγ

was characterized in [7], Theorem IV.5.13, and the criterion of injectivity was given
in [18], Theorem 2.5. For algebras L1(G) and M(G) the notions of projectivity
(injectivity or flatness) coincide for all the three theories when one deals with the
modules M(G) and Cγ (respectively, L∞(G), C0(G) and Cγ or L1(G) and Cγ).
Finally, the M(G)-modules M(G) also have the same characterization of flatness
in metric, topological and relative theory.

Table 1. Homologically trivial modules of harmonic analysis

L1(G)-modules

Projectivity Injectivity Flatness

Metric theory

L1(G)
G is discrete
Theorem 2

G = {eG}
Propositions 10, 12

G is arbitrary
Proposition 2

Lp(G)
G = {eG}

Propositions 10, 11
G = {eG}

Propositions 10, 11
G = {eG}

Propositions 10, 12

L∞(G)
G = {eG}

Propositions 10, 11
G is arbitrary
Proposition 2

G = {eG}
Propositions 10, 12

M(G)
G is discrete
Proposition 5

G = {eG}
Propositions 10, 12

G is discrete
Proposition 6

C0(G)
G = {eG}

Propositions 10, 12
G is finite

Propositions 10, 12
G = {eG}

Propositions 10, 12

Cγ
G is compact
Proposition 3

G is amenable
Proposition 4

G is amenable
Proposition 4

Topological theory

L1(G)
G is discrete
Theorem 2

G is finite
Propositions 10, 13

G is arbitrary
Proposition 2

Lp(G)
G is finite

Propositions 10, 13
G is finite

Propositions 10, 13
G is finite

Propositions 10, 13

L∞(G)
G is finite

Propositions 10, 13
G is arbitrary
Proposition 2

G is finite
Propositions 10, 13

M(G)
G is discrete
Proposition 5

G is finite
Propositions 10, 13

G is arbitrary
Proposition 6

C0(G)
G is finite

Propositions 10, 13
G is finite

Propositions 10, 13
G is finite

Propositions 10, 13

Cγ
G is compact
Proposition 3

G is amenable
Proposition 4

G is amenable
Proposition 4
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Table 1 (continuation)

Relative theory

L1(G)
G is arbitrary

[1], § 6

G is amenable
and discrete

[1], § 6

G is arbitrary
[1], § 6

Lp(G)
G is compact

[1], § 6
G is amenable

[3]
G is amenable

[3]

L∞(G)
G is finite

[1], § 6
G is arbitrary

[1], § 6
G is amenable

[1], § 6

M(G)
G is discrete

[1], § 6
G is amenable

[1], § 6
G is arbitrary

[2], § 3.5

C0(G)
G is compact

[1], § 6
G is finite

[1], § 6
G is amenable

[1], § 6

Cγ
G is compact
Proposition 3

G is amenable
Proposition 4

G is amenable
Proposition 4

Table 2. Homologically trivial modules of harmonic analysis

M(G)-modules

Projectivity Injectivity Flatness

Metric theory

L1(G)
G is discrete
Theorem 2,

Proposition 7

G = {eG}
Propositions 10, 12

G is arbitrary
Propositions 2, 7

Lp(G)
G = {eG}

Propositions 10, 11
G = {eG}

Propositions 10, 11
G = {eG}

Propositions 10, 12

L∞(G)
G = {eG}

Propositions 10, 11
G is arbitrary

Propositions 2, 7
G = {eG}

Propositions 10, 12

M(G)
G is arbitrary
Proposition 8

G = {eG}
Propositions 10, 12

G is arbitrary
Proposition 8

C0(G)
G = {eG}

Propositions 10, 12
G is finite

Propositions 10, 12
G = {eG}

Propositions 10, 12

Cγ
G is compact

Propositions 3, 7
G is amenable

Propositions 4, 7
G is amenable

Propositions 4, 7

Topological theory

L1(G)
G is discrete
Theorem 2,

Proposition 7

G is finite
Propositions 10, 13

G is arbitrary
Propositions 2, 7

Lp(G)
G is finite

Propositions 10, 13
G is finite

Propositions 10, 13
G is finite

Propositions 10, 13

L∞(G)
G is finite

Propositions 10, 13
G is arbitrary

Propositions 2, 7
G is finite

Propositions 10, 13
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Table 2 (continuation)

M(G)
G is arbitrary
Proposition 8

G is finite
Propositions 10, 13

G is arbitrary
Proposition 8

C0(G)
G is finite

Propositions 10, 13
G is finite

Propositions 10, 13
G is finite

Propositions 10, 13

Cγ
G is compact

Propositions 3, 7
G is amenable

Propositions 4, 7
G is amenable

Propositions 4, 7

Relative theory

L1(G)
G is arbitrary

[2], § 3.5

G is amenable
and discrete

[2], § 3.5

G is arbitrary
[2], § 3.5

Lp(G)
G is compact

[2], § 3.5
G is amenable
[2], § 3.5, [3]

G is amenable
[2], § 3.5

L∞(G)
G is finite
[2], § 3.5

G is arbitrary
[2], § 3.5

G is amenable
(⇒) [2], § 3.5

M(G)
G is arbitrary

[2], § 3.5
G is amenable

[2], § 3.5
G is arbitrary

[2], § 3.5

C0(G)
G is compact

[2], § 3.5
G is finite
[2], § 3.5

G is amenable
[2], § 3.5

Cγ
G is compact

Propositions 3, 7
G is amenable

Propositions 4, 7
G is amenable

Propositions 4, 7
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