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Eigenvalue asymptotics
of long Kirchhoff plates with clamped edges

F. L. Bakharev and S. A. Nazarov

Abstract. Asymptotic expansions are constructed for the eigenvalues and
eigenfunctions of the Dirichlet problem for the biharmonic operator in thin
domains (Kirchhoff plates with clamped edges). For a rectangular plate
the leading terms are asymptotically determined from the Dirichlet prob-
lem for a second-order ordinary differential equation, while for a T-junction
of plates they are determined from another limiting problem in an infinite
waveguide formed by three half-strips in the shape of a letter T and describ-
ing a boundary-layer phenomenon. Open questions are stated for which the
method developed gives no answer.

Bibliography: 33 titles.
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§ 1. Introduction

1.1. Motivations. The Dirichlet and Neumann boundary-value problems (D)
and (N) for the Laplace operator in thin domains, both static (st) and spectral (sp),
are sufficiently well understood: full asymptotic expansions have been constructed
for solutions of Poisson’s equation, eigenvalues and eigenfunctions alike. It will be
clear from what follows that, in order of increasing complexity of the asymptotic
analysis, these problems can be put in the following order:

st− D ↗ st− N ↗ sp− N ↗ sp− D. (1.1)

A similar hierarchy holds for scalar problems on junctions of thin domains, that is,
lattices which degenerate into graphs in the limit.

Vector problems in elasticity theory, which are extremely important in applica-
tions but require a more laborious asymptotic analysis, also follow the pattern (1.1):
while there are many papers and books devoted to the Neumann problem (when
the surface of the body is either loaded or free from external effects), there are
essentially no publications devoted to the Dirichlet problem (when the surface of
the elastic body is rigidly clamped). The reasons are twofold: the problem st− D
is too simple and, for all practical purposes, no different from the scalar one, while
the problem sp− D cannot be analyzed using the methods developed for scalar
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problems. In particular, we stress that many questions concerning the asymptotic
analysis of junctions of elastic rods and beams (thin elastic lattices) so far have no
answer in either the static or the spectral case.

It is impossible to give a more-or-less exhaustive list of references on this subject
here, so we only mention several monographs [1]–[7] we know of.

Another range of problems, perhaps most important for engineering and con-
struction industry practice, is presented by the theory of Kirchhoff plates, when
the biharmonic equation in a plane domain is equipped with various boundary con-
ditions, for instance, Dirichlet or Neumann, which are associated with the rigidly
clamped or free edges of the plate, respectively. Note that Kirchhoff’s theory itself
is a result of asymptotic analysis, when the relative thickness of a three-dimensional
plate is a small parameter and the statement of the problem considered in what
follows, which is relevant to mechanics, concerns a long thin plate: after dimension
reduction we make a scaling and the two-dimensional image of the plate becomes
thin.

Results on the first three items in the list (1.1) were obtained in [8]–[10]; here we
investigate the Dirichlet spectral problem for the biharmonic operator ∆2, fourth
in the list.

1.2. Fictitious paradoxes and boundary layers. In the technical theory of
deformations of thin plates, going over from the spatial system of three second-order
equations of elasticity theory to another system of three equations, one of order four
and two of order two, so that four boundary conditions must be set at the edge of
a two-dimensional plate, is viewed as a paradox, which is explained in the literature
on a physical level of rigour. In this regard the asymptotic analysis of the static and
spectral problems for the biharmonic operator provides its own pair of ‘paradoxes’1;
namely:

1) the Neumann problem for a fourth-order scalar equation gives rise to a system
of (two) equations of orders four and two, while the number of boundary conditions
increases by one (see [9] and [10]);

2) in the Dirichlet spectral problem for the biharmonic operator ∆2 dimension
reduction produces a second-order scalar equation, and the number of boundary
conditions decreases by one (see § 2.3).

Of course, there is nothing paradoxical here whatsoever: it is well known (for
instance, see the surveys [11] and [12] and the book [3], Ch. 16) that the size and
orders of the limiting system obtained by dimension reduction are not determined
by the analogous characteristics of the original system, but rather by the structure
of the canonical system of Jordan chains of the operator pencil (see [13], Ch. 1)
generated by the full boundary-value problem in a thin domain. For instance,
in § 2.4 we verify that in the problem under consideration this pencil has the single
real eigenvalue zero with Jordan chain of length two: this explains fact 2).

We will need the same Jordan chains in § 2.4, in the analysis of the
boundary-layer phenomenon; the assumption that it decays exponentially gives
rise to the boundary-value conditions in the limiting problem. For static problems
that have the polynomial property (see [14] and [12]; all the equations we discuss
have this property) the structure of the canonical system of Jordan chains of the

1We discuss another kind of ‘paradox’ in § 5.3.
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pencil which corresponds to the eigenvalue zero can be determined by means of
simple algebraic operations with polynomials on which the energy functional in the
variational statement of the problem degenerates. In the static Dirichlet problem for
∆2 there are no Jordan chains at all (see [12], Proposition 3.2 and Example 1.14),
and the fact that the problem on a junction of several half-strips is solvable in
the class of functions that decay exponentially at infinity is a simple consequence
of Kondrat’ev’s theorem (see [15] and also the book [16], Chs. 3 and 5, and the
survey [12], § 3): unique solvability in the Sobolev class ensures that there exists
a unique solution in the class of functions that decay exponentially at infinity.

Since the continuous spectrum of the Neumann problem for ∆2 in a junction of
half-strips is a half-axis [λ†,+∞) with cutoff point λ† = 0, we can again extract
full information about the boundary layer by means of algebraic calculations based
on the approach in [12], and the canonical system consists of two Jordan chains
of length four and two, which explains fact 1) and gives rise to the boundary
conditions (see [10]) or transmission conditions (see [9]) in one-dimensional models
of long curved Kirchhoff plates or a straight cruciform junction of plates.

In the Dirichlet spectral problem for ∆2 the cutoff point for the continuous spec-
trum is positive (see § 2.2). For this reason the approaches mentioned in the previous
paragraph are useless and new techniques must be used. In § 2.4 we are only able
to extract full information on the spectrum for the problem in a single half-strip,
while in §§ 4.2 and 5.2 we verify that in problems in T- and X-junctions of strips
with width one there must also be a discrete spectrum; however, its multiplicity
and the existence or absence of threshold resonances are still open questions.

We stress again that the calculation of Jordan chains on the threshold of the
continuous spectrum of the Dirichlet problem for the biharmonic operator, which
we present in §§ 2.2 and 2.4, is the starting point for all the results that follow.
On the other hand, the fact that the variables in this problem cannot be separated
is a decisive difference between it and boundary-value problems for the Laplace
operator, which have been well studied.

1.3. The contents of the paper. In § 2 we investigate the spectrum of the
Dirichlet problem for the biharmonic operator ∆2 in a thin rectangle (we stress
that the variables in this problem cannot be separated). We investigate a model
problem on a cross-section and the limiting problem on the lateral section, and also
the boundary layer problem in a half-strip, one after the other. As a result, we
propose formal asymptotic expressions for pairs {eigenvalue, eigenfunction}, which
are justified in § 3. Verifying Theorem 3 on convergence proved to be the hardest
part, whereas refining an estimate for the error of the one-dimensional model fol-
lows the standard approach, using the classical lemma on ‘almost’ eigenvalues and
eigenfunctions. The final theorems, Theorems 1 and 4, give a full picture of the
low-frequency part of the spectrum.

The results on the asymptotic behaviour of the spectrum of the same Dirichlet
problem in a T-junction Th of perpendicular plates with thickness 2h≪ 1 presented
in § 4 are much poorer. In Theorem 6 we only find the asymptotic behaviour of the
first eigenvalue; we could not obtain information about the rest of the spectrum.
This eigenvalue lies far below the total spectrum of the problem in a rectangle and
has quite different origins from the eigenvalue in § 2: Theorem 5 shows that the



476 F. L. Bakharev and S.A. Nazarov

Dirichlet problem in an infinite T-shaped waveguide has a nonempty discrete spect-
rum, and in Theorem 6 we verify that it is precisely the bottom point of that
spectrum which produces the first eigenvalue of the problem in the thin domain Th.

In § 5, the final section, we list some attendant question that we leave without
answer. In particular, we explain why the incomplete investigation of the spectrum
of the problem in T has prevented us from analysing the low-frequency part of the
spectrum of the problem in Th. We discuss other shapes of junction, when new
unexpected complications arise for asymptotic analysis, and also discuss boundary
conditions for plates with simply supported edge, for which the accessible informa-
tion is — unexpectedly— quite scanty.

§ 2. Formal eigenvalue asymptotics in a rectangle

2.1. The problem in a rectangle. A long Kirchhoff plate

Πh = (−1, 1)× (−h, h) =
{
x = (y, z) : y ∈ (−1, 1), z ∈ (−h, h)

}
⊂ R2

has the shape of a rectangle in which, after scaling, the lateral sides have a small
half-length h ≪ 1. The natural oscillations of a plate with rigidly clamped edge
are described (for instance, see [17], § 30) by the Dirichlet spectral problem for the
biharmonic operator

∆2uh(x) = Λhuh(x), x ∈ Πh, (2.1)

uh(x) = 0, ∂nu
h(x) = 0, x ∈ ∂Πh, (2.2)

where ∂n is the outward normal derivative, which is defined on the boundary ∂Πh

away from the corner points, and Λh is the spectral parameter. Problem (2.1), (2.2)
has the variational form

a(uh, v; Πh) := (∂2
yu

h, ∂2
yv)Πh + 2(∂y∂zuh, ∂y∂zv)Πh + (∂2

zu
h, ∂2

zv)Πh

= Λh(u, v)Πh ∀ v ∈ H2
0 (Πh), (2.3)

where ( · , · )Πh is the inner product in the Lebesgue space L2(Πh), ∂y = ∂/∂y,
∂z = ∂/∂z, and H2

0 (Πh) is the Sobolev space of functions satisfying (2.2). The
bilinear form a on the left-hand side of the integral identity (2.3) is positive definite
and closed in H2

0 (Πh), so that by [18], Ch. 10, we can express (2.3) as the abstract
equation

Ahuh = Λhuh

for a certain unbounded positive definite selfadjoint operator Ah in L2(Πh). This
operator has discrete spectrum σ(Ah) because the embedding H2

0 (Πh) ⊂ L2(Πh)
is compact. Counting multiplicities, the eigenvalues of Ah form a nondecreasing
sequence

0 < Λh1 6 Λh2 6 · · · 6 Λhn 6 · · · → +∞, (2.4)

and the corresponding eigenfunctions uh1 , uh2 , . . . , uhn, . . . ∈ H2
0 (Πh) can be taken to

be orthogonal and normalized by

(uhn, u
h
m)Πh = δn,m, n,m ∈ N = {1, 2, 3, . . . },
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where δn,m is the Kronecker delta. The asymptotic analysis of the eigenpairs
{Λhn, uhn} as h → +0 is the subject of our investigations in this section and the
next.

2.2. A model problem on an interval. We start by dilating the transverse
coordinate z 7→ ζ = h−1z and look at a model spectral problem on (−1, 1):

∂4
ζU(ζ) = MU(ζ), ζ ∈ (−1, 1), U(±1) = ∂ζU(±1) = 0. (2.5)

As direct calculations show, the eigenvalues

0 < M1 < M2 < · · · < Mn < · · · → +∞

of problem (2.5) can be found by solving the transcendental equation

sinh2(mj) cos2(mj)− sin2(mj) cosh2(mj) = 0,

in which mj = 4
√
Mj . Note that eigenfunctions with odd indices, which correspond

to m1 ≈ 2.365, m3 ≈ 5.497, . . . , are even functions of ζ,

Uk(ζ) = sinh(mk) cos(mkζ) + sin(mk) cosh(mkζ), (2.6)

while eigenfunctions with even indices, which correspond to m2 ≈ 3.927,
m4 ≈ 7.068, . . . , are odd functions of ζ,

Uk(ζ) = cosh(mk) sin(mkζ)− cos(mk) sinh(mkζ).

2.3. Asymptotic ansätze. For an eigenvalue Λh and an eigenfunction uh of
problem (2.1), (2.2) we postulate the asymptotic ansätze

Λh = h−4M1 + h−2µ+ · · · and uh(y, z) = w(y)U1(ζ) + h2u′(y, ζ) + · · · , (2.7)

where the correction term µ and the functions w and u′ are to be determined.
Substituting (2.7) into (2.1) and collecting the terms of order h−2 we deduce the
differential equation

∂4
ζu
′(y, ζ)−M1u

′(y, ζ) = −2 ∂2
yw(y) ∂2

ζU1(ζ) + µw(y)U1(ζ), (2.8)

which can naturally be provided with the boundary conditions

u′(y,±1) = 0 and ∂ζu
′(y,±1) = 0, (2.9)

which follow from (2.2). By Fredholm’s theorem the boundary-value problem
(2.8), (2.9) we have obtained is solvable if the right-hand side of (2.8) is ortho-
gonal to U1 in L2(−1, 1). That is, the condition for solvability has the form of the
differential equation with respect to w

−B ∂2
yw(y)− µw(y) = 0, y ∈ Υ := (−1, 1), (2.10)

where

B = 2
b

a
and b =

∫ 1

−1

|∂ζU1(ζ)|2 dζ > 0, a =
∫ 1

−1

|U1(ζ)|2 dζ > 0.
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Equation (2.10) must be complemented with the boundary conditions

w(−1) = w(+1) = 0 (2.11)

(see the explanations in § 2.4); then we have the countable system of eigenvalues

µn = B
π2

4
n2, n ∈ N = {1, 2, 3, . . . }, (2.12)

and the corresponding eigenfunctions

wn(x) = sin
(
π

2
n(x− 1)

)
. (2.13)

In the rest of this section and in § 3 we prove the following statement on the eigen-
values (2.4); in addition, in Theorem 4 we present information concerning the cor-
responding eigenfunctions.

Theorem 1. There exist positive quantities Cn and hn such that for h ∈ (0, hn)
the eigenvalues (2.4) of problem (2.1), (2.2) satisfy the estimate∣∣∣∣Λhn − h−4M1 + h−2B

π2

4
n2

∣∣∣∣ 6 Cnh
−3/2. (2.14)

2.4. The boundary layer and the problem in a half-strip. Here we explain
why we impose boundary conditions (2.11) for w. In principle, to the ansatz (2.7)
for uh we should add a boundary layer compensating for the residuals from regular
terms in boundary conditions (2.2) at the edges {x : y = ±1, |z| < h} (for instance,
see [3], Ch. 16).

Using the partial Fourier transform Fη 7→ϑ, the Dirichlet problem for the bihar-
monic operator in the infinite strip P = {(η, ζ) ∈ R2 : η ∈ R, ζ ∈ (−1, 1)} generates
the polynomial pencil

u 7→ A(ϑ)u = (∂4
ζu− 2ϑ2 ∂2

ζu + ϑ4u−M1u, u(±1), ∂ζu(±1)) :

H2
0 (−1, 1) → L2(−1, 1)× C× C (2.15)

(see [13], Ch. 1, and also [16], § 1.2, for instance). Direct calculations show that the
pencil (2.15) has the unique eigenvalue ϑ = 0 with Jordan chain {u0, u1}, where
u0 = U1 is the eigenfunction (2.6) with k = 1, and the associated vector u1, which
solves the equation

A(0)u1 =
(
dA

dϑ
(0)u0, 0, 0

)
= (0, 0, 0),

can be taken to be zero. This chain cannot be extended further, because it is clear
that the equation

A(0)u2 =
(

1
2
d2A

dϑ2
(0)u0, 0, 0

)
= (2 ∂2

ζU1, 0, 0)
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for an associated vector of rank two has no solution. In addition, there exists β1 > 0
such that the strip {ϑ ∈ C: | Imϑ| 6 β1} contains no eigenvalues of the pencil, apart
from the eigenvalue zero.

General asymptotic procedures (for instance, see [3], Ch. 16) show that Dirichlet
conditions (2.11) close the resulting equation (2.10) if and only if the following
problem has no bounded solutions in the half-strip P+ = {(η, ζ) ∈ P : η > 0}:

∆2Z(η, ζ)−M1Z(η, ζ) = 0, (η, ζ) ∈ P+,

Z(η,±1) = 0, ∂ζZ(η,±1) = 0, η > 0, (2.16)
Z(0, ζ) = 0, ∂ηZ(0, ζ) = 0, ζ ∈ (−1, 1).

Throughout, we call domains P+ and other infinite domains waveguides.

Remark 1. If Z is a solution of (2.16) and e−β1ηZ ∈ H2
0 (P+), then by Kondrat’ev’s

theorem on asymptotics (see [15] and also by Theorem 1.7 in [16]) and the above
facts concerning the pencil (2.15) we have the representation

Z(η, ζ) = K0U1(ζ) +K1ηU1(ζ) + Z̃(η, ζ), (2.17)

where K0 and K1 are constants and eβ1ηZ̃ ∈ H2
0 (P+) is a remainder term which

decays exponentially. Some solution of the form (2.17) must increase. IfK0 =K1 =0
in it, so that Z ∈ H2

0 (P), then the asymptotic ansatz for the eigenvalue must be
modified (cf. § 4.3). On the other hand, if the solution stabilizes as η → +∞, so
that K1 = 0 and K0 ̸= 0, then in place of the Dirichlet conditions (2.11) we must
impose the Neumann condition ∂yw(±1) = 0.

In Lemma 1 and Theorem 2 we prove that if K1 = 0 then the solution Z = 0 is
trivial. Thus each nontrivial solution (2.17) of problem (2.16) has linear growth at
infinity. We have already mentioned that if such a solution does exist, then by [3],
Ch. 16, Dirichlet conditions (2.11) must be imposed.

Lemma 1. Problem (2.16) has no nontrivial solutions in H2
0 (P+).

Proof. A solution Z ∈ H2
0 (P+) satisfies

M1∥Z;L2(P+)∥2 = ∥∂2
ζZ;L2(P+)∥2 + 2∥∂η∂ζZ;L2(P+)∥2 + ∥∂2

ηZ;L2(P+)∥2.

By the definition of the quantity M1 we have ∥∂2
ζZ;L2(P+)∥2 > M1∥Z;L2(P+)∥2.

Furthermore, the one-dimensional Friedrichs and Hardy inequalities yield

∥∂η∂ζZ;L2(P+)∥2 >
π2

4
∥∂ηZ;L2(P+)∥2 >

π2

16

∫
P+

η−2|Z(η, ζ)|2 dη dζ.

This shows that Z = 0 indeed, which completes the proof.

Theorem 2. Problem (2.16) has no nontrivial bounded solutions.

Proof. It is known (see [19] and, for instance, [20]) that a solution Z ∈ H2
loc(P+)

of (2.16) belongs to H3
loc(P+), so that if K1 = 0 then the derivative ∂ηZ belongs

to H2(P+) and vanishes on ∂P+ together with ∂η∂ζZ. Hence we see from Green’s
formula in P+ that

0 = −
∫ 1

−1

|∂2
ηZ(0, ζ)|2 dζ.
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Thus ∂ηZ ∈ H2
0 (P+) solves (2.16), so that ∂ηZ = 0 by Lemma 1. The proof is

complete.

§ 3. Justifying the asymptotics

3.1. A convergence theorem. The next observation will follow from the calcu-
lations in § 3.4 (see Remark 2).

Lemma 2. For each n ∈ N there exist positive quantities Cµn and hn such that

µhn := Λhnh
2 −M1h

−2 6 Cµn for h ∈ (0, hn].

We will show that µhn → µn as h → +0. It this subsection we only establish
a partial result (see Theorem 3).

By Lemma 2 the quantities µhn are uniformly bounded for h ∈ (0, hn]. We pick
an infinitesimal sequence {hp}p∈N such that

µh → µ0 (3.1)

along this sequence. Here and below we drop the subscripts n and p for brevity.
We can represent the eigenfunction uh, normalized in L2(Πh), in (2.1), (2.2) as

uh(y, z) = wh(y)U1(h−1z) + vh(y, z),

where∫ h

−h
vh(y, z)U1(h−1z) dz= 0 and wh(y) =

1
ah

∫ h

−h
uh(y, z)U1(h−1z) dz, y ∈ [−1, 1].

(3.2)

Lemma 3. There exist positive Cw , Cv and h0 such that for h < h0

h3/2∥∂2
yw

h;L2(Υ)∥+ h1/2∥∂ywh;L2(Υ)∥ 6 Cw, (3.3)

∥vh;H2(Πh)∥ 6 Cvh
−1 and ∥vh;L2(Πh)∥ 6 Cvh. (3.4)

Proof. Substituting the test function v = uh into the integral identity (2.3) gives

Λh = Λh∥uh∥2 = ∥∂2
yu

h∥2 + 2∥∂y∂zuh∥2 + ∥∂2
zu

h∥2 =: J1 + 2J2 + J3. (3.5)

In this subsection ∥ · ∥ will denote the norm in L2(Πh). Setting Uh1 (z) = U1(h−1z)
we will bear in mind the orthogonality condition in (3.2) and the formula∫ h

−h
|Uh1 (z)|2 dz = h

∫ 1

−1

|U1(ζ)|2 dζ = ah.

For the first term, from the right-hand side of (3.5) we deduce that

J1 = ∥∂2
yw

h Uh1 + ∂2
yv
h∥2 = ah∥∂2

yw
h;L2(Υ)∥2 + ∥∂2

yv
h∥2.

The relations∫ h

−h
|∂2
zU

h
1 (z)|2 dz = M1h

−4ah = M1ah
−3 and

∫ h

−h
∂2
zU

h
1 (z) ∂2

zv
h(z) dz = 0
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follow from equation (2.5) for U1 and the orthogonality condition in (3.2). They
also take us to the formula

J3 = M1ah
−3∥wh;L2(Υ)∥2 + ∥∂2

zv
h∥2. (3.6)

Integrating the one-dimensional Poincaré inequality for a function vh which is
orthogonal to Uh1 in L2(−h, h) with respect to y ∈ (−1, 1) we obtain

M1M2
−1∥∂2

zv
h∥2 > M1h

−4∥vh∥2. (3.7)

Taking (3.5), (3.6) and the equality

∥uh∥2 = ah∥wh;L2(Υ)∥2 + ∥vh∥2 (3.8)

into account we conclude that

Ch−2 > ah∥∂2
yw

h;L2(Υ)∥2 + ∥∂2
yv
h∥2 + (1−M1M2

−1)∥∂2
zv
h∥2. (3.9)

From the relation ∫ h

−h
|∂zUh1 (z)|2 dz =

1
h

∫ 1

−1

|∂ζU1(ζ)|2 dζ =
b

h

we obtain

J2 = ∥∂ywh ∂zUh1 + ∂y∂zv
h∥2

= bh−1∥∂ywh;L2(Υ)∥2 + ∥∂y∂zvh∥2 + 2(∂ywh ∂zUh1 , ∂y∂zv
h)Πh .

In the last inner product we integrate by parts and treat the result using the
Cauchy-Schwarz inequality and (3.9):

|2(∂ywh ∂zUh1 , ∂y∂zv
h)Πh | = |2(∂2

yw
h Uh1 , ∂

2
zv
h)Πh |

6 2(Ch−2)1/2((1−M1/M2)−1Ch−2)1/2 6 C ′h−2.

Hence from (3.5) we obtain the first inequality in (3.4). The second follows from
(3.9) and (3.7). Lemma 3 is proved.

Formula (3.3) ensures that the sequence {h1/2wh} is bounded in H1(Υ). Hence
we can select a subsequence on which, besides (3.1), we also have the convergence

h1/2wh → w0 weakly in H1(Υ) and strongly in L2(Υ). (3.10)

For the test function Φ(y, z) = ϕ(y)Uh1 (z) involving an arbitrary multiplier
ϕ ∈ C∞0 (Υ) we write down an integral identity auxiliary to problem (2.3):

Λhah(wh, ϕ)Υ = Λh(uh,Φ)Πh = (∆uh,∆Φ)Πh = (∂2
yw

h Uh1 , ∂
2
yϕU

h
1 )Πh

+ (∂2
yw

h Uh1 , ϕ ∂
2
zU

h
1 )Πh + (wh ∂2

zU
h
1 , ∂

2
yϕU

h
1 )Πh + (wh ∂2

zU
h
1 , ϕ ∂

2
zU

h
1 )Πh

+ (∆vh, ∂2
yϕU

h
1 )Πh + (∆vh, ϕ ∂2

zU
h
1 )Πh =: I1 + · · ·+ I6.
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Easy transformations show that

I1 = ha(∂2
yw

h, ∂2
yϕ)Υ, I2 = I3 = bh−1(∂ywh, ∂yϕ)Υ,

I4 = M1ah
−3(wh, ϕ)Υ, I5 = I6 = (∂2

zv
h, ∂2

yϕU
h
1 )Πh .

Thus,

B−1µh(wh, ϕ)Υ − (∂ywh, ∂yϕ)Υ = B−1h2(∂2
yw

h, ∂2
yϕ)Υ + b−1h(∂2

zv
h, ∂2

yϕU
h
1 )Πh .
(3.11)

Multiplying both sides of (3.11) by h1/2 we take the limit. The modified left-hand
side converges to

B−1µ0(w0, ϕ)Υ − (∂yw0, ∂yϕ)Υ,

while the right-hand side tends to zero. In fact, by (3.3) and (3.4)

h5/2(∂2
yw

h, ∂2
yϕ)Υ 6 h5/2∥∂2

yw
h;L2(Υ)∥ · ∥∂2

yϕ;L2(Υ)∥ → 0

and
h3/2(∂2

zv
h, ∂2

yϕU
h
1 )Πh 6 h3/2(ah)1/2∥∂2

zv
h∥ · ∥∂2

yϕ;L2(Υ)∥ → 0.

It remains to observe that ∥w0;L2(Υ)∥ = 1 because of the second estimate in (3.4)
and relation (3.8).

The condition w0(±1) = 0 follows from the second equality in (3.2) and rela-
tion (3.10), since w0 is smooth. We must stress that there is no convergence
h1/2wh → w0 in H2, so the condition for the derivative ∂yw

0 is not preserved
(cf. ‘paradox’ 2) in § 1.2).

Theorem 3. The convergence h2(Λhn − h−4M1) → µk(n) , where k(n) > n, holds
as h→ +0.

Proof. The above arguments show that the limit exists and is equal to some eigen-
value µk(n) in the list (2.12). It is sufficient to verify that k(n) > n. To do this
we select an infinitesimal sequence hp > 0 such that the convergences (3.10) hold
along this sequence for all whj such that 1 6 j 6 n. Since

ah(whj , w
h
l )Υ = (uhj , u

h
l )Πh − (vhj , v

h
l )Πh = δj,l −O(h2), 1 6 j, l 6 n,

by (3.2) and (3.4) the limit functions w0
1, . . . , w

0
n form an orthogonal system of

eigenfunctions in the list (2.13), and the corresponding limiting eigenvalues form
an increasing sequence. This observation completes the proof.

3.2. The abstract equation. In the space H h = H2
0 (Πh) we consider the inner

product
⟨u, v⟩h = a(u, v)−M1h

−4(u, v)Πh + h−2(u, v)Πh (3.12)

and the operator T h : H h → H h defined by

⟨T hu, v⟩h = (u, v)Πh ∀u, v ∈ H h. (3.13)

It is obvious that T h is compact, continuous, selfadjoint and positive, so that its
essential spectrum consists of the unique point τ = 0 and its discrete spectrum is
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a positive infinitesimal sequence {τhk }k∈N (see [18], Theorems 10.1.5 and 10.2.2).
Problem (2.1), (2.2) is equivalent to the abstract equation

T huh = τhuh.

Comparing the definitions (3.12) and (3.13) with the integral identity (2.3) we see
that

τhk = (Λhk −M1h
−4 + h−2)−1.

The corresponding eigenfunctions ϕhk = (τhk )1/2uhk are orthonormal:

⟨ϕhj , ϕhk⟩h = (τhj τ
h
k )1/2((∆uhj ,∆u

h
k)Πh −M1h

−4(uhj , u
h
k)Πh + h−2(uhj , u

h
k)Πh)

= δj,kτ
h
k (Λhk −M1h

−4 + h2) = δj,k.

The next result is known as the lemma on ‘almost’ eigenvalues and eigenvectors
(see [21], for instance). We present a simplified version of it, which is sufficient for
our purpose.

Lemma 4. Let T be a compact selfadjoint operator in a Hilbert space H . If there
exist numbers β > t > 0 and a nontrivial vector ψ ∈ H such that

∥T ψ − βψ; H ∥ = t and ∥ψ; H ∥ = 1,

then the closed interval [β− t, β+ t] contains at least one eigenvalue of T . Further-
more, if for some t1 ∈ (t, β) the interval [β− t1, β+ t1] contains just one eigenvalue
of T , then the corresponding normalized eigenfunction Φ in H satisfies

∥Φ− ψ; H ∥ 6 2t−1
1 t. (3.14)

3.3. An approximate solution of the abstract equation. We construct
approximations of eigenvectors of the operator T h using the eigenfunctions (2.13)
of the limiting problem (2.10), (2.11), and we use Lemma 4 to justify the asymptotic
formula (2.14).

Let {wk, µk} be an eigenpair in (2.12), (2.13). Setting βhk = (µkh−2 + h−2)−1,
for an approximate eigenvector we take the product

ψhk (y, z) = χh(y)wk(y)Uh1 (z),

where χh is a smooth cutoff function:

χh = 1 for y ∈ [−1 +2h, 1− 2h], χh = 0 for |y| ∈ [1−h, 1], 0 6χh 6 1,

and |∂kyχh(y)| 6 cχh
−k for y ∈ [−1, 1], k = 1, 2. (3.15)

We start by estimating the norm in H h of the approximation we have con-
structed.

Lemma 5. There exist positive cψk and h0 such that for h < h0

∥ψhk ; H h∥ > cψkh
−1/2.



484 F. L. Bakharev and S.A. Nazarov

Proof. Direct calculations show that

∥∆(wkUh1 )∥2 −M1h
−4∥wkUh1 ∥2 + h−2∥wkUh1 ∥2

= ∥∂2
ywk;L

2(Υ)∥2ah+ 2∥∂ywk;L2(Υ)∥2bh−1 + ∥wk;L2(Υ)∥2ah−1 > ckh
−1.

Taking account of the relation

∥((1− χh)wk) ∂2
zU

h
1 ∥2 −M1h

−4∥((1− χh)wk)Uh1 ∥2 = 0,

which follows from the integral identity for problem (2.5), we conclude that it
suffices to have an upper bound for

I1 = ∥∂2
y((1− χh)wk)Uh1 ∥, I2 = ∥∂y((1− χh)wk) ∂zUh1 ∥

and I3 = h−1∥((1− χh)wk)Uh1 ∥.
(3.16)

The first expression is estimated by the sum

∥wk ∂2
y(1−χh)Uh1 ∥+2∥∂y(1−χh) ∂ywk Uh1 ∥+∥(1−χh) ∂2

ywk U
h
1 ∥ =: I11+2I12+I13,

whose terms satisfy the inequalities

I2
11 = ah

∫
1−2h6|y|61

|wk(y)|2 |∂2
yχ

h(y)|2 dy 6 ah4hCkh2(cχh−2)2 6 C ′k,

I2
12 = ah

∫
1−2h6|y|61

|∂ywk(y)|2 |∂yχh(y)|2 dy 6 ah4hCk(cχh−1)2 6 C ′k

and

I2
13 = ah

∫
1−2h6|y|61

|∂2
ywk(y)|2 |1− χh(y)|2 dy 6 ah4hCk1 6 C ′kh

2.

In treating each of the three integrals we have used the following considerations:
the interval of integration has length at most 4h, the function wk is bounded by Ckh
on the interval of integration because wk(±1) = 0; finally, the derivatives of the
cutoff function satisfy (3.15).

In a similar way, for I2 in (3.16) we obtain

I2 6 ∥wk ∂y(1− χh) ∂zUh1 ∥+ ∥(1− χh) ∂ywk ∂zUh1 ∥ =: I21 + I22,

where

I2
21 = bh−1

∫
1−2h6|y|61

|wk(y)|2 |∂yχh(y)|2 dy 6 bh−14hCkh2(cχh−1)2 6 C ′k

and

I2
22 = bh−1

∫
1−2h6|y|61

|∂ywk(y)|2 |1− χh(y)|2 dy 6 bh−14hCk1 6 C ′k.

It remains to observe that

I2
3 = h−2ah

∫
1−2h6|y|61

|wk(y)|2 |1− χh(y)|2 dy 6 h−2ah4hCkh21 6 C ′kh
2.

Lemma 5 is proved.
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Lemma 6. There exist positive quantities Cψk and h0 such that

∥T hψhk − βhkψ
h
k ; H h∥ 6 Cψkh

2

for h ∈ (0, h0).

Proof. We have the equality

∥T hψhk − βhkψ
h
k ; H h∥ = sup

ϕ∈B
⟨T hψhk − βhkψ

h
k , ϕ⟩h,

where the supremum is calculated over the unit ball B in H h. Taking the defini-
tions (3.12) and (3.13) into account we transform the inner product as follows:

⟨T hψhk − βhk , ϕ⟩h = βhk
(
(βhk )−1⟨T hψhk , ϕ⟩h − ⟨ψhk , ϕ⟩h

)
= −βhk

(
(∆ψhk ,∆ϕ)Πh −M1h

−4(ψhk , ϕ)Πh − µkh
−2(ψhk , ϕ)Πh

)
=: βhkγ.

As |βhk | 6 h2, it is sufficient to verify that γ is bounded.
The equalities

(∂2
zψ

h
k , ∂

2
zϕ)Πh −M1h

−4(ψhk , ϕ)Πh = 0

and
2(∂ywk ∂zUh1 , ∂y∂z(χ

hϕ))Πh − µkh
−2(ψhk , ϕ)Πh = 0

follow from the integral identities for problems (2.5) and (2.10), (2.11), respectively.
Thus,

|γ| 6 2|K1|+ 2|K2|+ |K3|,
and we also have

K1 = (wk ∂zUh1 ∂yχ
h, ∂y∂zϕ)Πh , K2 = (∂ywk ∂2

zU
h
1 , ϕ ∂yχ

h)Πh

and K3 = (∂2
y(wkχ

h)Uh1 , ∂
2
yϕ)Πh .

Note that by the Cauchy-Schwarz inequality we have

K1 6 (bh−1)1/2∥wk ∂yχh;L2(Υ)∥ ∥∂y∂zϕ∥ 6 Ck,

because, first, Poincaré’s inequality yields

∥∂2
yϕ∥2 + ∥∂y∂zϕ∥2 + h−2∥ϕ∥2 6 1, (3.17)

and, second, the norm ∥wk ∂yχh;L2(Υ)∥ is no greater than ckh1/2 for similar reasons
to the ones presented in the proof of Lemma 5. The inner product K3 is estimated
similarly: namely,

|K3| 6 (ah)1/2∥∂2
y(wkχ

h);L2(Υ)∥ ∥∂2
yϕ∥ 6 Ck.

Here, we have again used (3.17) and the estimates for I11, I12 and I13 in the proof
of Lemma 5.

Finally, we turn to K2. From the Cauchy-Schwarz inequality we can conclude
that

|K2| 6 (M1h
−4ah)1/2∥∂ywk ∂yχh;L2(Υ)∥ ∥ϕ;L2(Πh ∩ supp |∂yχh|)∥.

It is clear that ∥wk ∂yχh;L2(Υ)∥ 6 ckh
−1/2, so it is sufficient to verify that

∥ϕ;L2(Πh ∩ supp |∂yχh|)∥ 6 ch2.

This is a simple consequence of Friedrichs’ inequality and (3.8). Lemma 6 is proved.
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3.4. The proof of Theorem 1. Lemmas 4–6 ensure that for h < h0 the operator
T h has an eigenvalue τhj(n) such that

|τhj(n) − (µnh−2 + h−2)−1| 6 Cψnc
−1
ψnh

5/2.

In other words

|Λhj(n) −M1h
−4 − µnh

−2| 6 Cψnc
−1
ψnh

5/2(µn + 1)h−2(Λhj(n) −M1h
−4 + h−2)

6 Cnh
−3/2. (3.18)

It is also obvious that j(n) > n. Combining this with the statement of Theorem 3
we derive Theorem 1.

Remark 2. The estimate (3.18) shows that all the µhk satisfy |µhk − µn| 6 Ckh
−1/2

for some n, which proves Lemma 2.

3.5. Eigenfunction asymptotics. In particular, Theorem 1 associates with each
N ∈ N a number hN > 0 such that for h ∈ (0, hN ] all the eigenvalues Λh1 , . . . ,Λ

h
N

are simple (as the eigenvalues (2.12) are simple and (2.14) holds). As a result, our
calculations in § 3.3 and the second part of Lemma 4 which is related to formula
(3.14) lead to a statement concerning the eigenfunctions of (2.3).

Theorem 4. There exist positive values Cn and hn such that for h ∈ (0, hn) the
eigenfunctions of (2.1), (2.2) satisfy

∥uhn − αnχ
hwnU

h
1 ; H h∥ 6 Cn, (3.19)

where αn is the coefficient normalizing ψhn = χhwnU
h
1 in the space H h .

The asymptotic construction of an eigenfunction can be made simpler by elimi-
nating the cutoff function χh or, more precisely, by adding terms of boundary-layer
type. In our paper we leave out these standard procedures and content ourselves
with the estimate (3.19) which is easy to deduce.

§ 4. Asymptotic behaviour of the spectrum of a T-junction of plates

4.1. Spectral problems. Consider a problem similar to (2.1), (2.2):

∆2uh⊤(x) = Λh⊤u
h
⊤(x), x ∈ Th, (4.1)

uh⊤(x) = 0, ∂nu
h
⊤(x) = 0, x ∈ ∂Th, (4.2)

which relates to a T-junction of Kirchhoff plates with small (h ≪ 1) thickness
(Figure 1, a)

Th = Πh ∪
{
(y, z) : z ∈ (−ℓ, 0), y ∈ (−h, h)

}
, ℓ > 0. (4.3)

All the conclusions made in § 2.1 also hold for the spectrum of the opera-
tor Ah

⊤ of problem (4.1), (4.2). We keep our notation for the attributes of this
problem, adding the subscript ⊤ to the symbols. By dilating the coordinates
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Figure 1. T-, X- and Y-junctions.

x 7→ ξ = (η, ζ) = (h−1y, h−1z) and setting h = 0 formally, we transform the thin
domain into the infinite T-shaped waveguide

T =
{
(η, ζ) ∈ R2 : |ζ| < 1

}
∪

{
(η, ζ) ∈ R2 : |η| < 1, ζ < 0

}
, (4.4)

in which we pose the Dirichlet spectral problem for the biharmonic operator

∆2
ξW (ξ) = νW (ξ), ξ ∈ T, and W (ξ) = 0, ∂nW (ξ) = 0, ξ ∈ ∂T. (4.5)

4.2. Existence of a discrete spectrum in a T-shaped waveguide. The spec-
tral problem (4.5) has the variational formulation

(∆W,∆V )T = ν(W,V )T ∀V ∈ H2
0 (T). (4.6)

The bilinear form on the left-hand side of (4.6) is positive and closed in H2
0 (T), and

we can re-write (4.6) as the abstract equation

A⊤W = νW

for a certain unbounded positive selfadjoint operator A⊤ in L2(T), which has a con-
tinuous spectrum σc(A⊤) = [ν†,+∞) with cutoff point ν† = M1 (the first eigenvalue
of problem (2.5)). In what follows we let ν1 denote the infimum of σ(A⊤).

Theorem 5. The discrete spectrum σdi(A⊤) contains at least one eigenvalue
ν1 ∈ (0, ν†).

Proof. Assume that σdi(A⊤) = ∅. Then by [18], § 10.2,

∥∆W ;L2(T)∥2 > M1∥W ;L2(T)∥2 (4.7)

for allW ∈ H2
0 (T). We construct a test functionW δ for which (4.7) fails. It depends

on a small parameter δ > 0 and is given by

W δ(η, ζ) =


e−δ(|η|−1)2U1(ζ), (η, ζ) ∈ T±1 :=

{
±η > 1, |ζ| < 1

}
,

U1(ζ) + δΨ(η, ζ), (η, ζ) ∈ T0 :=
{
|η| < 1, |ζ| < 1

}
,

δΨ(η, ζ), (η, ζ) ∈ T−2 :=
{
|η| < 1, ζ < −1

}
,

(4.8)

where Ψ is a smooth function with support supp Ψ ⊂
{
(η, ζ) : |η| < 1, ζ ∈ (−2, 0)

}
.
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The function W δ decays exponentially at infinity and is piecewise smooth. It is
easy to see that the definitions (4.8) are compatible on the straight-line separators
Υ±1 = {η = ±1, |ζ| < 1} and Υ−2 = {|η| < 1, ζ = −1}, so that W δ belongs
to H2

0 (T).
We substitute (4.8) into (4.7) and calculate the norms. Note that

∥∆W δ;L2(T±j )∥2 −M1∥W δ;L2(T±j )∥ = O(δ2), j = 1, 2,

and
∥∆W δ;L2(T0)∥2 −M1∥W δ;L2(T0)∥2 = 2δY (Ψ) +O(δ2),

where the expression

Y (Ψ) = (∆U1,∆Ψ)T0 −M1(U1,Ψ)T0 = −(∂2
ζU1, ∂ζΨ)Υ−2 + (∂3

ζU1,Ψ)Υ−2

can be made negative by selecting Ψ appropriately. That is, (4.7) does indeed fail
for small δ > 0. The proof is complete.

Proposition 1. The eigenfunctions W of problem (4.5) that are associated with
eigenvalue ν1 satisfy the estimates

|∇pξW (ξ)| 6 cpe
−β1|ξ|, p ∈ N0, |ξ| > 2, (4.9)

for some positive parameter β1 .

Proof. The required result is established using Kondrat’ev’s theory (see [15] and
also [16], §§ 3.2 and 5.2) and our calculations in §§ 2.2 and 2.4; note that we intro-
duced the last condition in (4.9) to exclude corner points, at which derivatives of
the eigenfunction are singular by the same theory, from consideration. The proof
is complete.

Here we give an elementary proof of a weaker result, which is all we need for the
computations that follow.

Lemma 7. The eigenfunctions W in Proposition 1 satisfy the estimates

∥eγ1|ξ|∇pξW ;L2(T ∩ {|ξ| > 2})∥ 6 cp, p = 0, 1, 2,

for some positive parameter γ1 .

Proof. We look at WX(ξ) = X(η)W (ξ), where X is a smooth cutoff function that
is equal to one for η > 2 and to zero for η < 3/2. The function WX ∈ H2

0 (P+)
solves the problem

∆2
ξWX(ξ)− ν1WX(ξ) = f(ξ), ξ ∈ P+, (4.10)

where f is a function with compact support. Problem (4.10) is uniquely solvable
thanks to Friedrichs’ inequality on a cross-section.

The auxiliary function W(ξ) = eγηWX(ξ) solves the problem

∆2
ξW(ξ)− ν1W(ξ) + eγη[∆2

ξ , e
−γη]W(ξ) = eγηf(ξ), ξ ∈ P+,

W(ξ) = 0, ∂νW(ξ) = 0, ξ ∈ ∂P+,
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where the perturbation operator eγη[∆2
ξ , e

−γη], which involves the commutator of
the bi-Laplacian ∆2

ξ and the function e−γη, satisfies

(eγη[∆2
ξ , e

−γη]w,w)P+ 6 Cγ∥w;H2
0 (P+)∥2, w ∈ H2

0 (P+).

Hence there exists γ1 > 0 such that W ∈ H2
0 (P+), and so eγ1ηWX ∈ H2

0 (P+) too.
In the other ‘arms’ of the waveguide (4.4) the proof is similar. The lemma is proved.

4.3. A new asymptotic ansatz. Our next statement describes the asymptotic
behaviour of the first eigenvalue of problem (4.1), (4.2). We stress that, in contrast
to the asymptotic construction in § 3.5, the first eigenfunction of the problem in Th
has the properties of a boundary layer: it is localized quite closely to the middle part
θh =

{
(y, z) : − h < y, z < h

}
of the junction (4.3) and decays at an exponential

rate as the point moves away from θh; see (4.12) and (4.9).

Theorem 6. For each h > 0 the first eigenvalue Λh1,⊤ of problem (4.1), (4.2) sat-
isfies

ν1h
−4 6 Λh1,⊤ 6 ν1h

−4 + Ch−4e−β1/h (4.11)

for some positive C1 .

Proof. We apply the minimum principle (for instance, see [18], Theorem 10.2.1) to
the operator of problem (4.5):

ν1 = inf
w∈H2

0 (T)\{0}

∥∆w;L2(T)∥2

∥w;L2(T)∥2
.

Substituting the function ξ 7→ uh1,⊤(h−1x) which is extended by zero outside the set
{ξ ∈ T : |η| < h−1, ζ > −h−1} into the Rayleigh quotient yields the lower bound
in (4.11).

To verify the upper bound we look at the smooth cutoff function

χh(ξ) =



1, ξ ∈
{
|η| 6 h−1 − 2, z ∈ (−1, 1)

}
∪

{
ζ > −ℓh−1 + 2, η ∈ (−1, 1)

}
,

0, ξ ∈
{
|η| > h−1 − 1

}
∪

{
|ζ| > ℓh−1 − 1

}
,

χ0(h−1 − |η|), |η| ∈ [h−1 − 2, h−1 − 1],
χ0(ℓh−1 − |ζ|), |ζ| ∈ [ℓh−1 − 2, ℓh−1 − 1],

where χ0 is a function on the interval [1, 2]. The definition is rather complicated
because we have to ensure that the error has the optimal rate of decay as h→ +0
(cf. (4.11) and (4.9)). If we wished to have a majorant ν1h−4 + ce−δ/h for some
δ > 0, we could take a cutoff function equal to one for |x| < d/2 and to zero for
|x| > d, where d = min{1, ℓ} in accordance with the definition (4.3).

Applying the minimum principle to (4.1), (4.2), we substitute the function

u0(x) = W1(h−1x)χh(h−1x), (4.12)

where W1 is an eigenfunction of A⊤ which is normalized in L2(T) and corresponds
to the eigenvalue ν1, into the Rayleigh quotient

Λh1,⊤ = inf
u∈H2

0 (Th)\{0}

∥∆u;L2(Th)∥2

∥u;L2(Th)∥2
.
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By (4.9) and the choice of χh we have the chains of inequalities

∥∆(W1χ
h);L2(T)∥2 6 (∥∆W1;L2(T)∥+ ∥∆(W1(1−χh));L2(T)∥)2 6 ν1 + ce−β1/h

and

∥W1χ
h;L2(T)∥2 > (∥W1;L2(T)∥ − ∥W1(1− χh);L2(T)∥)2 > 1− ce−β1/h.

This completes the proof.

§ 5. Open questions

5.1. A T-junction of plates. Of course, we cannot say that our asymptotic
analysis of problem (4.1), (4.2) in § 4 is complete: the results in § 4.2 do not cover
the whole of the spectrum of problem (4.5) in the infinite waveguide (4.4). For
instance, we do not know the total multiplicity of the discrete spectrum σdi(A⊤)
of the operator A⊤ of the problem. And we could neither prove nor disprove
the existence of a threshold resonance. Note that none of the diverse approaches
developed for the Dirichlet problem for the Laplace operator (see [22]–[25] and
many other papers) is fit to treat a fourth-order equation.

It is not difficult to predict (cf. [26], [27] and § 4.3) that each eigenvalue of the
operator A⊤ that lies in the half-open interval (0, ν†] (which includes the threshold)
produces an eigenvalue similar to that in Theorem 1. On the other hand, we could
not even show that the first eigenvalue ν1 in Theorem 5 is simple.

By [28] (see also [24]–[26] and other papers) a threshold resonance occurs when, for
the threshold value ν = ν† of the spectral parameter, problem (4.5) has a bounded
solution, which either decays at infinity and is a trapped wave or stabilizes at
infinity and is an almost standing wave. We mentioned the trapped-wave case in the
preceding paragraph. Almost standing waves affect another series of eigenvalues,
which are generated by the triple of ordinary differential equations with respect to
y ∈ (−1, 1) and z ∈ (−ℓ, 0) (see the components of the junction (4.4)) with Dirichlet
conditions for y = ±1 and z = −ℓ, and with certain transmission conditions at the
common central point with coordinates y = ±0 and z = −0. The same arguments
as in [26] and [27] suggest that when there are no almost standing waves, the said
transmission conditions turn into Dirichlet conditions, that is, the junction splits
into three disjoint line segments in the limit as h → +0. When one or several
standing waves exist, some or other sophisticated transmission conditions bind the
said equations together into a coherent problem2. Thus we have left the question
of finding an eigenvalue of problem (4.1), (4.2) satisfying Λh > M1h

−4 completely
unanswered.

5.2. Other shapes of junction. The method in § 4.2 can easily be applied to the
junctions shown in Figure 1, b and c. In fact, to verify a result similar to Theorem 5
it is sufficient to distinguish a whole strip in the junction: as before, the required test
function is constructed using (4.8). Neither the V- or Z-shaped nor the symmetric
Y-shaped infinite Kirchhoff waveguide shown in Figure 2 contains such a strip, and
so far we have no information about the discrete spectrum of the Dirichlet problem
for ∆2 for these.

2For Neumann boundary conditions a threshold resonance necessarily occurs (see [9]).
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Figure 2. V-, Z- and Y-shaped junctions.

The X-shaped waveguide in Figure 1, b, contains two strips; if they have distinct
widths, then we take the wider strip in constructing a test function (see the proof of
Theorem 5), and this will determine the lower bound of the continuous spectrum.
According to the maximum-minimum principle ([18], Theorem 10.2.2) a nonempty
discrete spectrum for the waveguides in Figure 2, b and с, follows from a similar
property for the V-shaped waveguide in Figure 2, a. Using asymptotic analysis
from [29] we can find an isolated eigenvalue for angles α close to π. Furthermore,
relying on [30] we can conjecture that the total multiplicity of the discrete spectrum
of the waveguides in Figure 1, b and c, and Figure 2, a–c, increases without limit
as α→ +0.

Now we return to a T-shaped waveguide, for which we assume that the infi-
nite crossbeam has width two while the half-infinite leg has width H ∈ (0,+∞).
As decreasing the latter (H < 2) does not affect the cutoff point ν†(H) = M1 of
the continuous spectrum, the discrete spectrum is still nonempty; however, as this
width increases (H > 2) the cutoff point ν†(H) = (2/H)4M1 goes down, and we
cannot use the approach in § 4.2. The next simple statement estimates the value H∗
for which (and above which) there is no discrete spectrum.

Lemma 8. For H > 8/π(M1)1/4 problem (4.5) in the waveguide T(H) has no
discrete spectrum.

Proof. For an arbitrary function U ∈ H2
0 (T(H)), where H > 2, we write down the

obvious inequalities

∥∆U ;L2(Qj±)∥2 > ν†(H)∥U ;L2(T(Qj±))∥2

in the arms Q1±{ξ ∈ T(H) : ± 2η > H} and the leg Q2− = {ξ ∈ T(H) : ζ < −1} of
the waveguide. In the remaining rectangle Θ = {ξ : 2|η| < H, |ζ| < 1} we use
Friedrichs’ inequality twice, which yields

∥∂2
ζU ;L2(Θ)∥2 >

(
π

4

)2

∥∂ζU ;L2(Θ)∥2 >

(
π

4

)4

∥U ;L2(Θ)∥2. (5.1)

Hence, for (π/4)2 > (2/H)4M1 we have

∥∆U ;L2(T(H))∥2 > ν†(H)∥U ;L2(T(H))∥2,

so there is indeed no discrete spectrum. The proof is complete.
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Remark 3. By Sobolev’s embedding theorem, H2 ⊂ C in the plane, and we have
two extra constraints U(±H/2,−1) = 0 in the rectangle Θ in the proof of Lemma 8,
which are induced by the Dirichlet conditions on ∂T(H). There is no way to take
them into account in the classical Friedrichs inequalities used twice in (5.1) above
and adapted to boundary-value problems for the Laplace operator. So there is no
way that the estimate for the critical width H∗ in Lemma 8 will be sharp in any
sense.

5.3. A plate with simply supported edge. Apart from the Dirichlet and Neu-
mann conditions we have discussed in our paper, in the theory of Kirchhoff plates
authors also consider the mixed boundary conditions

uh(x) = 0 and ∆uh(x) = 0, x ∈ ∂Πh, (5.2)

which mean that the deflection and the bending moment vanish on the edge of the
plate, so that this edge is ‘simply supported’ (see [17], § 30). It is easy to see that
the eigenvalues of problem (2.1), (5.2) are the squares of eigenvalues of the Dirichlet
problem for the Laplace operator

−∆vh(x) = βhvh(x) for x ∈ Πh, vh(x) = 0 for x ∈ ∂Πh. (5.3)

It appears ar first glance that the same must also hold if we impose the conditions
of simple support (5.2) on equation (4.1) in a T-junction (4.3) of plates; however,
this is wrong. In fact, iterating the solution of problem (5.3) we obtain ‘eigenfunc-
tions’ in the Sobolev class H1, which belong to the energy class H2 only when the
polygon has no concave angles (with opening greater than π). This observation,
called the Sapondzhyan paradox in mechanics (see [31]), was rigorously justified in
the note [32] (see also [3], Ch. 18, and [33]), where, in particular, the reader can find
a correct algorithm for reducing (4.1), (5.2) to the iterated problem (5.3). Unfor-
tunately, this algorithm does not establish any relation between the eigenvalues of
the above problems. Moreover, the conditions of simple support do not allow the
trick in § 4.2, so that we have no information on the spectra of problem (4.1), (5.2)
in the junction Th or of the problem

∆2
ξW (ξ) = νW (ξ), ξ ∈ T, W (ξ) = 0, ∆ξW (ξ) = 0, ξ ∈ ∂T, (5.4)

in the infinite waveguide (4.4). This also relates to the other junctions in Figures 1
and 2.

Finally, note that there is no sense in using the minimum principle and calcu-
lating the Rayleigh quotient for the eigenfunction W1 ∈ H2

0 (T) of problem (4.6)
provided by Theorem 5. As the cutoff point π4/64 of the continuous spectrum of
problem (5.4) lies below ν†, we cannot prove the existence of an isolated eigenvalue
in problem (5.4) using this method.
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[21] M. I. Vǐsik (Vishik) and L.A. Ljusternik, “Regular degeneration and boundary layer
for linear differential equations with small parameter”, Uspekhi Mat. Nauk 12:5(77)
(1957), 3–122; English transl. in Amer. Math. Soc. Transl. (2) 20 (1962), 239–364.

[22] S.A. Nazarov, “Bounded solutions in a T-shaped waveguide and the spectral
properties of the Dirichlet ladder”, Zh. Vychisl. Mat. Mat. Fiz. 54:8 (2014),
1299–1318; English transl. in Comput. Math. Math. Phys. 54:8 (2014), 1261–1279.

[23] F. L. Bakharev, S.G. Matveenko and S. A. Nazarov, “The discrete spectrum of
cross-shaped waveguides”, Algebra i Analiz 28:2 (2016), 58–71; English transl. in
St. Petersburg Math. J. 28:2 (2017), 171–180.

[24] F. L. Bakharev and S. A. Nazarov, Criteria for the absence and existence of bounded
solutions at the threshold frequency in a junction of quantum waveguides, arXiv:
1705.10481.

[25] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for
waveguide junctions”, J. Math. Anal. Appl. 449:1 (2017), 907–925.

[26] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math.
Soc. (3) 97:3 (2008), 718–752.

[27] S.A. Nazarov, “The spectra of rectangular lattices of quantum waveguides”, Izv.
Ross. Akad. Nauk Ser. Mat. 81:1 (2017), 31–92; English transl. in Izv. Math. 81:1
(2017), 29–90.

[28] S. Molchanov and B. Vainberg, “Scattering solutions in networks of thin fibers:
small diameter asymptotics”, Comm. Math. Phys. 273:2 (2007), 533–559.

[29] S.A. Nazarov, “Discrete spectrum of cranked quantum and elastic waveguides”, Zh.
Vychisl. Mat. Mat. Fiz. 56:5 (2016), 879–895; English transl. in Comput. Math.
Math. Phys. 56:5 (2016), 864–880.

[30] F. L. Bakharev, S.G. Matveenko and S. A. Nazarov, “Examples of plentiful discrete
spectra in infinite spatial cruciform quantum waveguides”, Z. Anal. Anwend. 36:3
(2017), 329–341.

[31] O.N. Sapondzhyan, “Bending of a simply supported polygonal plate”, Izv. Akad.
Nauk Arm. SSR Ser. Fiz.-Mat. Estestv. Tekhn. Nauk 5:2 (1952), 29–46. (Russian)

[32] V.G. Maz’ya and S.A. Nazarov, “On the Sapondzhan-Babushka paradox in
problems of the theory of thin plates”, Dokl. Akad. Nauk Arm. SSR 78:3 (1984),
127–130. (Russian)

[33] S.A. Nazarov and G. Sweers, “A hinged plate equation and iterated Dirichlet
Laplace operator on domains with concave corners”, J. Differential Equations 233:1
(2007), 151–180.

Fedor L. Bakharev
Faculty of Mathematics and Mechanics,
St Petersburg State University,
St Petersburg, Russia
E-mail : fbakharev@yandex.ru

Sergei A. Nazarov
Faculty of Mathematics and Mechanics,
St Petersburg State University,
St Petersburg, Russia
E-mail : srgnazarov@yahoo.co.uk

Received 4/SEP/17 and 2/FEB/18
Translated by N. KRUZHILIN

https://authors.library.caltech.edu/47672/
https://doi.org/10.1002/mana.201400022
https://doi.org/10.1002/mana.201400022
http://mi.mathnet.ru/eng/rm7705
http://mi.mathnet.ru/eng/rm7705
http://mi.mathnet.ru/eng/rm7705
https://doi.org/10.1090/trans2/020/06
https://doi.org/10.7868/S0044466914080110
https://doi.org/10.7868/S0044466914080110
https://doi.org/10.7868/S0044466914080110
https://doi.org/10.1134/S0965542514080090
http://mi.mathnet.ru/eng/aa1485
http://mi.mathnet.ru/eng/aa1485
https://doi.org/10.1090/spmj/1444
https://doi.org/10.1090/spmj/1444
https://arxiv.org/abs/1705.10481
https://arxiv.org/abs/1705.10481
https://doi.org/10.1016/j.jmaa.2016.12.039
https://doi.org/10.1016/j.jmaa.2016.12.039
https://doi.org/10.1112/plms/pdn020
https://doi.org/10.1112/plms/pdn020
https://doi.org/10.4213/im8380
https://doi.org/10.4213/im8380
https://doi.org/10.1070/IM8380
https://doi.org/10.1070/IM8380
https://doi.org/10.1007/s00220-007-0220-8
https://doi.org/10.1007/s00220-007-0220-8
https://doi.org/10.7868/S0044466916050173
https://doi.org/10.7868/S0044466916050173
https://doi.org/10.1134/S0965542516050171
https://doi.org/10.1134/S0965542516050171
https://doi.org/10.4171/ZAA/1591
https://doi.org/10.4171/ZAA/1591
https://doi.org/10.4171/ZAA/1591
https://zbmath.org/?q=an:0101.17901
https://zbmath.org/?q=an:0101.17901
https://zbmath.org/?q=an:0579.73051
https://zbmath.org/?q=an:0579.73051
https://zbmath.org/?q=an:0579.73051
https://doi.org/10.1016/j.jde.2006.09.018
https://doi.org/10.1016/j.jde.2006.09.018
https://doi.org/10.1016/j.jde.2006.09.018
mailto:fbakharev@yandex.ru
mailto:srgnazarov@yahoo.co.uk

	§1 Introduction
	1.1 Motivations
	1.2 Fictitious paradoxes and boundary layers
	1.3 The contents of the paper

	§2 Formal eigenvalue asymptotics in a rectangle
	2.1 The problem in a rectangle
	2.2 A model problem on an interval
	2.3 Asymptotic ansätze
	2.4 The boundary layer and the problem in a half-strip

	§3 Justifying the asymptotics
	3.1 A convergence theorem
	3.2 The abstract equation
	3.3 An approximate solution of the abstract equation
	3.4 The proof of Theorem 1
	3.5 Eigenfunction asymptotics

	§4 Asymptotic behaviour of the spectrum of a $\mathsf T$-junction of plates
	4.1 Spectral problems
	4.2 Existence of a discrete spectrum in a $\mathsf T$-shaped waveguide
	4.3 A new asymptotic ansatz

	§5 Open questions
	5.1 A $\mathsf T$-shaped junction of plates
	5.2 Other shapes of junction
	5.3 A plate with simply supported edge

	Bibliography

