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Locally standard torus actions
and sheaves over Buchsbaum posets

A. A. Ayzenberg

Abstract. Manifolds with locally standard half-dimensional torus actions
represent a large and important class of spaces. Cohomology rings of such
manifolds are known in particular cases, but in general even Betti numbers
are difficult to compute. Our approach to this problem is the following:
we consider the orbit type filtration on a manifold with locally standard
action and study the induced spectral sequence in homology. It collapses
at the second page only in the case when the orbit space is homologically
trivial. The cohomology ring in this case has already been computed. Nev-
ertheless, we can completely describe the spectral sequence under more
general assumptions, namely when all proper faces of the orbit space are
acyclic. The theory of sheaves and cosheaves on finite partially ordered sets
is used in the computation. We establish generalizations of the Poincare
duality and the Zeeman-McCrory spectral sequence for sheaves of ideals of
exterior algebras.

Bibliography: 15 titles.

Keywords: locally standard action, manifold with corners, simplicial
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§ 1. Introduction

An action of a compact torus Tn on a smooth compact manifold M of dimen-
sion 2n is called locally standard if it is locally modelled by the standard representa-
tion of Tn on Cn. The orbit space of a local chart is isomorphic to the nonnegative
cone Cn/Tn ∼= {(x1, . . . , xn) ∈ Rn | xi > 0}, thus the orbit space Q = M/Tn of
the whole manifold has the natural structure of a manifold with corners. Points in
the interior of k-dimensional faces of Q are k-dimensional orbits of the action. For
any face G of Q consider the stabilizer subgroup TG ⊂ Tn of points in the interior
of G. The mapping that associates the toric subgroup TG to the face G is called
the characteristic map.

For any manifold M with locally standard torus action there exists a principal
Tn-bundle Y → Q over the orbit space Q = M/T such that M is equivariantly
homeomorphic to the identification space X = Y/∼ . Here ∼ identifies points over
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a face G ⊂ Q differing by the action of TG (see [7] and [15]). Thus any manifold
with locally standard action is uniquely determined by three objects: a manifold
with corners Q, a principal torus bundle Y over Q (these bundles are encoded by
their ‘Euler classes’ lying in H2(Q; Zn)) and the characteristic maps.

For a manifold with corners Q consider the dual poset SQ. The elements of SQ

are the faces of Q and the order is the reversed inclusion. If Q is the orbit space of
a manifold with locally standard action, then SQ is a simplicial poset.

The description of the topology ofX in terms of the combinatorial data is difficult
and, in general, far from being accomplished. The cohomology and equivariant
cohomology rings are unknown, and even Betti numbers have not been explicitly
calculated yet.

Nevertheless, there are several important particular cases which are known and
well studied. If the orbit space Q is isomorphic to a simple polytope, the manifoldX
is called quasitoric. This particular case was introduced and studied in the seminal
work of Davis and Januszkiewicz [7] and underlay the development of toric topology.
Quasitoric manifolds are natural topological generalizations of smooth projective
toric varieties. The reason why quasitoric manifolds are feasible from the topological
viewpoint is that the orbit space has trivial topology (the convexity happens to be
not so important).

This setting may be generalized to the case when all faces of Q are acyclic. This
situation is very close to toric varieties or quasitoric manifolds, and the answer is
also very similar [9]:

H∗
T n(X; Z) ∼= Z[SQ] and H∗(X; Z) ∼= Z[SQ]/(θ1, . . . , θn),

where Z[SQ] is the face ring of the simplicial poset SQ and (θ1, . . . , θn) is the regular
sequence of degree 2 in Z[SQ], determined by the characteristic map.

There are several papers where the calculation of topological invariants has been
performed for more general examples of locally standard manifolds. In [1] we proved
that whenever all proper faces of Q are acyclic and Y → Q is a trivial bundle, the
equivariant cohomology ring is represented as a direct sum (of rings and of modules
over H∗(BTn; Z) alike):

H∗
T n(X; Z) ∼= Z[SQ]⊕H∗(Q; Z).

We also calculated the Betti numbers and partially described the ring structure
of H∗(X,Z) when X is an orientable toric origami-manifold with acyclic proper
faces of the orbit space. This is a very restricted class of manifolds with locally
standard actions, but even in this case many interesting phenomena spring up. The
Betti numbers of 4-dimensional toric origami-manifolds without any restrictions
on proper faces were calculated in [8]. The cohomology rings of 4-dimensional
manifolds whose orbit spaces are polygons with polygonal holes were described
in [13].

In [15] Yoshida introduced a cohomological spectral sequence converging to
H∗(X; Z) for any locally standard X, but in general this spectral sequence does
not collapse at the second page, so it is difficult to extract any explicit information,
such as Betti numbers, from it.
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In this paper we study the homological structure of a manifold X using the
filtration of X by orbit types

X0 ⊂ X1 ⊂ · · · ⊂ Xn = X. (1.1)

Here Xi is the union of all Tn-orbits of dimension at most i, so dimXi = 2i. This
filtration induces the spectral sequence (EX)r

p,q ⇒ Hp+q(X), where (EX)1p,q
∼=

Hp+q(Xp, Xp−1). For reasons of dimension (EX)r
p,q = 0 for p < q and r > 1.

There is a natural topological filtration of Y which covers the orbit type filtration
of X, and the map f : Y → X induces the map of homological spectral sequences

fr
∗ : (EY )r

p,q → (EX)r
p,q. (1.2)

If the proper faces of Q are acyclic, we prove that the map f2
∗ is an isomorphism

for p > q (Theorem 3). Thus every entry of (EX)r
p,q away from the diagonal is

known, at least if the structure of (EY )2p,q is known. The calculation of diagonal
entries (EX)r

q,q requires additional work. This is done in a different paper [2]. The
diagonal terms play a special role, since they correspond to the equivariant cycles
of X given by face submanifolds.

To prove the above-mentioned isomorphism (Theorem 3), we place the maps
f2
∗ : (EY )2p,q → (EX)2p,q into a long exact sequence and show that certain interme-

diate terms of this sequence vanish. These intermediate terms are the cohomology
modules H∗(SQ; I ) of a graded sheaf I on SQ, whose values are the ideals in the
homology algebra H∗(Tn) generated by the vector subspaces H1(TG) ⊂ H1(Tn).
The vanishing of this sheaf cohomology in certain degrees is the most nontrivial
and essential part of the work. It follows from the duality:

Hn−1−i(SQ; I ) ∼= Hi(SQ; Π̂) (1.3)

(Theorem 2) which holds for an arbitrary homology manifold SQ and extends the
Poincaré dualityHn−1−i(SQ; k) ∼= Hi(SQ; k). Here Π̂ is an auxiliary cellular cosheaf
on SQ, which is defined in our paper.

We study this duality in a broader and quite natural setting. For a simplicial
poset S there exists the Zeeman-McCrory spectral sequence (EZM )r

p,q. It converges
to the homology of S, and its second page is the cohomology of local homology
stacks U∗ on S. If S is a manifold, this sequence collapses at the second page
and gives a standard proof of the Poincaré duality. Thus the Zeeman-McCrory
spectral sequence can roughly be considered as a generalization of Poincaré duality
to nonmanifolds.

We prove that there exists a spectral sequence, which starts with H∗(S; U∗⊗I )
and converges to H∗(S; Π̂) (Theorem 1). For homology manifolds it collapses and
gives the isomorphism (1.3).

We mention one interesting connection of the topological task considered in
this paper with tropical geometry. As we mentioned in the abstract, the spec-
tral sequence (EX)r

p,q collapses at the second page whenever the orbit space Q is
homologically trivial (that is, all faces of Q are acyclic). In particular, this applies
to the case when X is a complete nonsingular toric variety. The homology of X
coincides with the cohomology of the sheaf L /I on SQ. The value of L /I on
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I ∈ SQ is the exterior algebra H∗(Tn/TI). One can construct the tropical toric
variety trop(X) corresponding to X (see [14], for instance) and compute its trop-
ical homology groups using the recipe given in [3]. By definition these tropical
homology groups coincide with H∗(SQ,L /I ) (up to reversing the index). Thus
we get the statement that the homology of a complete nonsingular toric variety
coincides with the tropical homology of the corresponding tropical toric variety,
which is known. A similar statement holds for cohomology.

The paper may be briefly outlined as follows. In § 2 we review the basic notions
for technical statements: simplicial posets, sheaves, cosheaves and the Zeeman-
McCrory spectral sequence. The word ‘sheaf’ will always mean a sheaf over a finite
poset. It is not used in its broadest topological sense, but rather replaces the
term stack or local coefficient system. In § 3 we introduce the notion of homological
characteristic function, define two objects associated with this: the sheaf I and the
cosheaf Π̂, and formulate Theorems 1 and 2, proving the duality (1.3). Theorem 1
is proved in § 4, and Theorem 2 follows as its particular case. Preliminaries on
manifolds with locally standard actions are given in § 5. We also introduce there
topological filtrations on Q, X and Y and formulate Theorem 3, which states that
the modules (EX)r

p,q are isomorphic to (EY )2p,q for p > q. Section 6 is devoted
to the proof of Theorem 3; there we relate manifolds with locally standard torus
actions to the sheaf-theoretical part of the work, which we develop in §§ 2–4.

§ 2. Sheaves and cosheaves over simplicial posets

2.1. Preliminaries on simplicial posets.

Definition 1. A finite partially ordered set (poset) S is called simplicial if
there exists a minimal element 0̂ ∈ S and, for any I ∈ S, the lower order ideal
{J ∈ S | J 6 I} is isomorphic to the boolean lattice 2[k] (the poset of faces of
a (k − 1)-dimensional simplex) for some k > 0.

Elements of S are called simplices. The number k in the definition is denoted
by |I| and called the rank of the simplex I. Also set dim I = |I| − 1. A simplex of
rank 1 is called a vertex ; the set of all vertices of S is denoted by Vert(S). A subset
L ⊂ S closed under taking sub-simplices is called a simplicial subposet.

The notation I
i
< J is used whenever I 6 J and |J | − |I| = i. If S is a simplicial

poset, then for each I
2
< J ∈ S there exist exactly two simplices J ′ ̸= J ′′ between

I and J :

I
1
< J ′, J ′′

1
< J. (2.1)

For a simplicial poset S a sign convention can be chosen. It means that we can

associate an incidence number [J : I] = ±1 with any pair I
1
< J ∈ S so that

[J : J ′] · [J ′ : I] + [J : J ′′] · [J ′′ : I] = 0 (2.2)

for any combination (2.1). Choosing a sign convention is the same as orienting each
simplex in S. We fix an arbitrary sign convention and use it in the considerations
that follow.
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Notice that the set of simplices of any finite simplicial complex obviously forms
a simplicial poset. Thus the notion of a simplicial poset is a straightforward gener-
alization of an abstract simplicial complex.

For I ∈ S consider the following subset of S:

st◦S I = {J ∈ S | J > I},

which is called the open star of I. It is easily seen that S \ st◦S I is a simplicial
subposet of S.

We also define the link of a simplex I ∈ S:

lkS I = {J ∈ S | J > I}.

This set inherits the order relation from S, and lkS I is a simplicial poset with
respect to this order, with minimal element I. The reason why we use two different
notations for the same thing is that it is convenient to distinguish between st◦S I,
which is regarded as a subset (but not a subposet!) of S, and lkS I, which is
regarded as a simplicial poset on its own (and in general, is not included in S as
a subposet in any meaningful way). Note that lkS 0̂ = S.

Let S′ be the barycentric subdivision of S. By definition, S′ is a simplicial com-
plex on the set S \ 0̂ whose simplices are chains of elements of S. By definition, the
geometric realization of S is the geometric realization of its barycentric subdivision
|S| def= |S′|. One can also think of |S| as a CW-complex with simplicial cells. Such
topological models of simplicial posets were called simplicial cell complexes and
studied in [4].

A simplicial poset S is called pure if all its maximal elements have equal dimen-
sion. A poset S is pure whenever S′ is pure.

In the following k denotes the ground ring; it may be either a field or the ring of
integers. The (co)homology of a simplicial poset S means the (co)homology of its
geometrical realization |S|. If the coefficient ring in the notation of (co)homology
is omitted, it is supposed to be k.

Definition 2. A simplicial complex K of dimension n − 1 is called Buchsbaum
(over k) if H̃i(lkK I; k) = 0 for all 0̂ ̸= I ∈ K and i ̸= n−1−|I|. If K is Buchsbaum
and, moreover, H̃i(K; k) = 0 for i ̸= n− 1 then K is called Cohen-Macaulay.

A simplicial poset S is called Buchsbaum (respectively Cohen-Macaulay) if S′ is
a Buchsbaum (respectively Cohen-Macaulay) simplicial complex.

Remark 1. By [12], § 6, S is Buchsbaum whenever H̃i(lkS I; k) = 0 for all 0̂ ̸= I ∈ S
and i ̸= n− 1− |I|. Similarly, S is Cohen-Macaulay whenever H̃i(lkS I; k) = 0 for
all I ∈ S and i ̸= n− 1− |I|.

Typical examples of Buchsbaum posets are triangulations (and, more generally,
simplicial cell decompositions) of manifolds. Typical examples of Cohen-Macaulay
posets are triangulations of spheres. A simplicial poset S is Buchsbaum whenever
all its proper links are Cohen-Macaulay.

One can easily check that whenever S is Buchsbaum and connected, S is pure.
In the following only pure simplicial posets are considered.
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2.2. Cellular sheaves. Let MODk be the category of k-modules. The notation
dimV is used for the rank of a k-module V .

Each simplicial poset S determines a small category CAT(S) whose objects are
elements of S and whose morphisms are inequalities I 6 J . A cellular sheaf [6]
(or a stack [11], or a local coefficient system elsewhere) on S is a covariant functor
A : CAT(S) → MODk. We simply call A a sheaf on S and hope this will not lead
to confusion since other meanings of this word do not appear in the paper. The
homomorphisms A (J1 6 J2) are called restriction maps. The cochain complex
(C∗(S; A ), d) is defined as follows:

C∗(S; A ) =
⊕
i>−1

Ci(S; A ), Ci(S; A ) =
⊕

dim I=i

A (I),

d : Ci(S; A )→ Ci+1(S; A ), d =
⊕

I
1
<I′, dim I=i

[I ′ : I]A (I 6 I ′). (2.3)

The sign convention (2.2) implies that d2 = 0. Thus (C∗(S; A ), d) is a differential
complex. Define the cohomology of A as the cohomology of this complex:

H∗(S; A ) def= H∗(C∗(S; A ), d). (2.4)

Remark 2. The cohomology of A defined in this way coincides with other mean-
ingful definitions of cohomology. For example, the derived functors of the functor
of global sections give the same groups as (2.4) (see [6]).

A sheaf A on S can be restricted to a simplicial subposet L ⊂ S. The complexes
(C∗(L,A ), d) and (C∗(S; A )/C∗(L; A ), d) are defined as usual. The latter complex
gives rise to a relative version of sheaf cohomology: H∗(S,L; A ).

Remark 3. It is standard in the topological literature to consider cellular sheaves
which do not take values on 0̂ ∈ S, since in general this element does not have
a geometrical meaning. However, this extra value A (0̂) will be important in the
considerations of § 6. Therefore, the cohomology group may be nontrivial in degree
−1 = dim 0̂. If a sheaf A is defined on S, then we can consider its truncated
version A which coincides with A on S \ {0̂} and vanishes on 0̂.

The notions of maps, (co)kernels, (co)images and tensor products of sheaves
over S are defined in an obvious componentwise manner. For example, if A
and B are two sheaves on S, then A ⊗ B is a sheaf on S with values (A ⊗
B)(I) = A (I) ⊗ B(I) and restriction maps (A ⊗ B)(I 6 J) = A (I 6 J) ⊗
B(I 6 J). In the realm of finite simplicial posets the distinction between sheaves
and presheaves vanishes, which makes things simpler than they are in algebraic
geometry.

Example 1. Let W be a k-module. By abuse of notation let W denote the globally
constant sheaf on S. It takes the constant value W on I ̸= 0̂ and vanishes on 0̂.
All nontrivial restriction maps are identity isomorphisms. If W is torsion-free, we
have H∗(S;W ) ∼= H∗(S; k)⊗W by the universal coefficients formula.

Example 2. A locally constant sheaf valued by W ∈ MODk is a sheaf W that satisfies
W (0̂) = 0 and W (I) ∼= W for I ̸= 0̂, and all nontrivial restriction maps are
isomorphisms (but need not be identity isomorphisms).
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Example 3. Following [11], define the ith local homology sheaf Ui on S by setting
Ui(0̂) = 0 and

Ui(J) = Hi(S, S \ st◦S J ; k) (2.5)

for J ̸= 0̂. The restriction maps Ui(J1 < J2) are induced by inclusions of subsets
st◦S J2 ↪→ st◦S J1. Standard topological arguments imply that a simplicial poset S
is Buchsbaum if and only if Ui = 0 for i ̸= n− 1 (see also Remark 5 below).

Definition 3. A Buchsbaum simplicial poset S is called a homology manifold (ori-
entable over k) if its local homology sheaf Un−1 is isomorphic to the constant
sheaf k.

A simplicial poset S is an orientable homology manifold if and only if its geo-
metrical realization is an orientable homology manifold in the usual topological
sense.

2.3. Cosheaves. A cellular cosheaf [6] is a contravariant functor Â : CAT(S)op →
MODk. The homology of a cosheaf is defined similarly to the cohomology of a sheaf:

C∗(S; Â ) =
⊕
i>−1

Ci(S; Â ), Ci(S; Â ) =
⊕

dim I=i

Â (I),

d : Ci(S; Â )→ Ci−1(S; Â ), d =
⊕

I
1
<I′, dim I=i

[I : I ′]Â (I > I ′),

H∗(S; Â ) def= H∗(C∗(S; Â ), d).

The relative homology groupsH∗(S,L; Â ) of a cosheaf Â for L ⊂ S are defined as
the homology groups of the differential complex C∗(S,L; Â ) = C∗(S; L̂ )/C∗(L; Â ).

Example 4. Each locally constant sheaf W on S determines the locally constant co-
sheaf Ŵ by inverting all maps, that is, Ŵ (I) ∼= W (I) and Ŵ (I >J)=(W (J <I))−1.

Remark 4. Notice that the notation H∗(S; k) can mean either the homology of the
geometric realization |S| or the homology of a globally constant cosheaf k on S.
Obviously, these two meanings are consistent, and the same holds for the cohomol-
ogy of a constant sheaf.

2.4. Coskeleton filtration and dual faces. In the following we suppose that S
is pure and dimS = n− 1.

Construction 1. Let us recall the construction of the coskeleton filtration on |S|.
Consider the barycentric subdivision S′ of the pure simplicial poset S. By definition,
S′ is a simplicial complex on the set S \ 0̂ and k-simplices of S′ have the form
(I0 < I1 < · · · < Ik), where Ii ∈ S \ 0̂. For each I ∈ S \ {0̂} consider the
subcomplex of the barycentric subdivision:

GI = {(I0 < I1 < · · · ) ∈ S′ such that I0 > I} ⊂ S′

and the subsets

∂GI = {(I0 < I1 < · · · ) ∈ S′ such that I0 > I} ⊂ S′, G◦I = GI \ ∂GI .
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It is easily seen that dimGI = n− 1− dim I since S is pure. We have GI ⊂ GJ

whenever J < I. The complex GI (or its geometrical realization |GI |) is called the
face or the pseudocell of |S| dual to I ∈ S. The boundary ∂GI of a face GI is the
union of some faces of smaller dimensions.

Let Si =
⋃

dim GI6iGI for −1 6 i 6 n − 1. Thus Si is a simplicial subcomplex
of S′. The filtration

∅ = S−1 ⊂ S0 ⊂ S1 ⊂ · · · ⊂ Sn−1 = S′ (2.6)

and the corresponding topological filtration

∅ = |S−1| ⊂ |S0| ⊂ |S1| ⊂ · · · ⊂ |Sn−1| = |S| (2.7)

are called the coskeleton filtrations of S′ and |S| respectively (see [11]).

For a pair I
1
< J ∈ S consider the map:

mq
I,J : Hq+dim GI

(GI , ∂GI)→ Hq+dim GI−1(∂GI)

→ Hq+dim GI−1(∂GI , ∂GI \G◦J) ∼= Hq+dim GJ
(GJ , ∂GJ), (2.8)

where the first map is the connecting homomorphism in the long exact sequence of
homology for the pair (GI , ∂GI) and the last isomorphism is due to excision. The
homology spectral sequence associated with the filtration (2.7) runs

(ES)1p,q = Hp+q(Sp, Sp−1) =⇒ Hp+q(S).

The first differential (dS)1 is the sum of the mapsmq
I,J over all pairs I

1
< J , I, J ∈ S.

Construction 2. Given a sign convention on S, for each q consider the sheaf Hq

on S given by
Hq(I) = Hq+dim GI

(GI , ∂GI)

for I ̸= 0̂, and Hq(0̂) = 0. For neighbouring simplices I
1
< J define the restriction

map by Hq(I
1
< J) = [J : I]mq

I,J . For general I
k
< J consider any saturated chain

in S between I and J :
I

1
< J1

1
< · · ·

1
< Jk−1

1
< J

and set
Hq(I < J) def= Hq(Jk−1 < J) ◦ · · · ◦Hq(I < J1).

Lemma 1. The map Hq(I < J) thus defined does not depend on the choice of
a saturated chain between I and J .

Proof. The differential (dS)1 satisfies ((dS)1)2 = 0, thus mq
J′,J ◦ m

q
I,J′ + mq

J′′,J ◦
mq

I,J′′ = 0. By combining this with (2.2) we see that Hq(I < J) is independent of

the chain if I
2
< J . In general, since {T | I 6 T 6 J} is a boolean lattice, any two

saturated chains between I and J are connected by a sequence of elementary flips

[Jk

1
< T1

1
< Jk+2] [Jk

1
< T2

1
< Jk+2] and the statement follows.
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Thus the sheaves Hq are well defined. They will be called the structure sheaves
of S. The next statement follows directly from the definition of a cochain complex.

Corollary 1. The cochain complex of structure sheaves coincides with (ES)1∗,∗ up
to change of indices:

((ES)1∗,q, (dS)1) ∼= (Cn−1−∗(Hq), d).

Here d is the standard differential in the cochain complex of a sheaf as defined
in (2.3).

Remark 5. There exists an isomorphism of sheaves

Hq
∼= Uq+n−1, (2.9)

where the U∗ are the sheaves of local homology defined in Example 3. Indeed, it
can be shown that Hi(S, S \ st◦S I) ∼= Hi−dim I(GI , ∂GI) and these isomorphisms
can be chosen compatible with restriction maps. For simplicial complexes this
fact was proved in [11], § 6.1; the case of simplicial posets is similar. Note that
the definition of H∗ depends on the sign convention while U∗ does not. This
makes no contradiction since the isomorphism (2.9) itself depends on the choice of
orientations.

The isomorphism (2.9) implies that S is Buchsbaum if and only if Hq = 0
for q ̸= 0. A simplicial poset S is an orientable manifold if it is Buchsbaum and,
moreover, H0

∼= k.

2.5. Zeeman-McCrory spectral sequence. The considerations in the previous
subsection imply the following

Proposition (McCrory, [11]). There exists a spectral sequence, located in the fourth
quadrant,

(EZM )r
p,q, dr : (EZM )r

p,q → (EZM )r
p−r,q+r−1, (2.10)

(EZM )2p,q
∼= Hn−1−p(S; Un−1+q)⇒ Hp+q(S; k). (2.11)

It is isomorphic to the homological spectral sequence associated with the coskeleton
filtration of |S|.

For us, however, it will be more convenient to work with the structure sheaves
H∗ rather than the local homology sheaves U∗. For a Buchsbaum simplicial poset
the sheaf Hi vanishes for i ̸= 0. Thus (EZM )2p,q = 0 for q ̸= 0 and the spectral
sequence collapses at the second page, inducing the isomorphism

Hn−1−p(S; H0) ∼= Hp(S; k).

When S is an orientable homology manifold, this gives the Poincaré duality iso-
morphism

Hn−1−p(S; k) ∼= Hp(S; k).



1270 A.A. Ayzenberg

2.6. Corefinements of sheaves. In this section we develop a technical notion
which will be used further in the proofs. Let A be a sheaf on S. Define a cosheaf
Â ′ on the barycentric subdivision S′ by

Â ′(I1 < · · · < Ik) = A (I1),

with corestriction maps determined naturally by restriction maps of A :

Â ′((I1 < · · · < Ik) ⊃ (J1 < · · · < Js)) = A (I1 6 J1).

We call Â ′ a corefinement of a sheaf A . Faces GI and their boundaries ∂GI are
simplicial subcomplexes of S′, so we can restrict Â ′ to them. The next lemma
easily follows from the definitions.

Lemma 2.
Hq(Sp, Sp−1, Â

′) ∼=
⊕

I, dim GI=p

Hq(GI , ∂GI ; Â ′).

Similar to (2.8) there is a map

mq,A
I,J : Hq+dim GI

(GI , ∂GI ; Â ′)→ Hq+dim GI−1(∂GI ; Â ′)

→ Hq+dim GI−1(∂GI , ∂GI \G◦J ; Â ′) ∼= Hq+dim GJ
(GJ , ∂GJ ; Â ′). (2.12)

These maps allow us to define new sheaves A q on S by setting A q(I) =
Hq+dim GI

(GI , ∂GI ; Â ′) with restriction maps defined similarly to Construction 2.

Lemma 3. If A (I) is torsion-free for all I ∈ S , then there exist natural isomor-
phisms

Hr(GI , ∂GI ; Â ′) ∼= Hr(GI , ∂GI ; k)⊗A (I).

The maps mq,A
I,J coincide with mq

I,J ⊗ A (I < J) up to these isomorphisms. Thus
the sheaf A q is isomorphic to Hq ⊗A .

Proof. By the definition of Â ′ we have

Hr(GI , ∂GI ; Â ′) ∼= Hr(GI , ∂GI ; A (I)),

since the value of Â ′ on all simplices of G◦I is exactly A (I). The rest follows from
the universal coefficients formula.

§ 3. Exterior algebras and characteristic functions

Let V be a free k-module of dimension N. Let Λ[V ] denote the free exterior
algebra generated by V , that is, the quotient of a free tensor algebra T [V ] by the
relations v⊗ v = 0 for all v ∈ V . The algebra Λ[V ] is graded by degrees of exterior
forms.

Definition 4. Fix a simplicial poset S and a locally constant sheaf V on S. A col-
lection of vectors {ωi ∈ V (i) | i ∈ Vert(S)} is called a homological k-characteristic
function if it satisfies the following (∗k)-condition:
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for each simplex I ∈ S \ 0̂ whose vertices are i1, . . . , ik, the vectors

V (i1 6 I)(ωi1), . . . ,V (ik 6 I)(ωik
) ∈ V (I)

are linearly independent over k and span a direct summand in V (I).

For a locally constant sheaf V on S, valued by the vector space V , consider
the sheaf L = Λ[V ] of graded exterior algebras generated by V . This means that
L (I) = Λ[V (I)], and L (I 6 J) is an isomorphism of graded exterior algebras
generated by the isomorphism V (I 6 J) : V (I)→ V (J). Let L̂ denote the locally
constant cosheaf of exterior algebras corresponding to the sheaf L (see Example 4).

Let {ωi ∈ V (i) | i ∈ Vert(S)} be a homological characteristic function. If i is
a vertex of a simplex I, then the restriction map V (i 6 I) sends the vector ωi ∈ V (i)
to some vector in V (I). By abuse of notation we denote the target vector by
the same letter ωi. So far the definition of homological characteristic function
implies that the set {ωi1 , . . . , ωik

} spans freely a direct summand of V (I) whenever
i1, . . . , ik are vertices of I. Note that L (I) is the exterior algebra generated by V (I),
so the vectors ωi can be considered as elements of degree 1 in L (I).

Construction 3. Consider the subsheaf I ⊂L defined as follows. For a simplex I
with vertices i1, . . . , ik we set the value of I on I to be the ideal of L (I) generated
by the linear forms ωi1 , . . . , ωik

:

I (I) = (ωi1 , . . . , ωik
) ⊂ L (I).

It is easily seen that whenever I 6 J , the restriction map L (I 6 J) sends the ideal
I (I) generated by the smaller set of elements into the ideal I (J) generated by
the larger set of elements. Thus the restriction maps of the sheaf I are induced
from those of L and are well defined.

Construction 4. Let us define another type of ideals associated with a character-
istic function. Let J = {i1, . . . , ik} be a nonempty subset of vertices of a simplex
I ∈ S. Consider the element πJ ∈ L (I) = L̂ (I), πJ =

∧
i∈J ωi. By the definition

of the characteristic function, the elements {ωi | i ∈ J} are linearly indepen-
dent, thus πJ is a nonzero form of degree |J |. Let ΠJ ⊂ L (I) be the principal
ideal generated by πJ . The restriction maps L (I < I ′) (and corestriction maps
L̂ (I ′ > I) = L (I < I ′)−1) identify ΠJ ⊂ L (I) with ΠJ ⊂ L (I ′).

Let us define a subcosheaf Π̂ of ideals in L̂ . If J is the whole set of vertices
of a simplex I ̸= 0̂ we set Π̂(I) def= ΠJ ⊂ L̂ (I). If I ′ < I, the corestriction map
L̂ (I ′ > I) injects Π̂(I ′) into Π̂(I) since the form πI′ is divisible by πI . Thus Π̂ is
a well-defined graded sub-cosheaf of L̂ . We formally set Π̂(0̂) = 0.

Now we can formulate our main homological results.

Theorem 1. Let S be a pure simplicial poset of dimension n−1, and I and Π̂ the
sheaf and cosheaf over S determined by some homological k-characteristic function.
Then there exists a spectral sequence

E2
s,k
∼= Hn−1−s(S; Hk ⊗I )⇒ Hs+k(S; Π̂),

dr : Er
s,k → Er

s−r,k+r−1,

which respects the inner gradings of I and Π̂.
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If S is Buchsbaum, the spectral sequence of Theorem 1 collapses at the second
page and implies the following.

Theorem 2. For a Buchsbaum simplicial poset S of dimension n− 1 there exists
an isomorphism Hk(S; H0⊗I ) ∼= Hn−1−k(S; Π̂) which respects the inner gradings
of I and Π̂.

Corollary 2. If S is a homology (n − 1)-manifold, then there is an isomorphism
Hk(S; I ) ∼= Hn−1−k(S; Π̂) respecting the inner gradings.

Let I (q) and Π̂(q) denote the homogeneous parts of inner degree q of the corres-
ponding sheaves I and Π̂, respectively.

Corollary 3 (key corollary). If S is a Buchsbaum simplicial poset, then Hj(S;
H0 ⊗I (q)) = 0 for j 6 n− 1− q .

Proof. By Theorem 2, it is sufficient to prove that Hj(S; Π̂(q)) = 0 for j > q. The
ideal Π̂(I) = ΠI is generated by the element πI of degree |I| = dim I + 1. Thus
Π(q)

I = 0 for q 6 dim I. Hence the corresponding part of the chain complex vanishes,
and the homology in these degrees vanishes as well.

Remark 6. The exterior forms of the top power, Λ[V ](N) ∼= k, lie in every ideal I (I)
and Π̂(I). Thus the isomorphism in Theorem 2, when restricted to the top degree,
gives the Poincaré duality:

Hk(S; H0) = Hk(S; H0 ⊗I (N)) ∼= Hn−1−k(S; Π̂(N)) = Hn−1−k(S; k).

The restriction of the spectral sequence in Theorem 1 to the top degree gives the
Zeeman-McCrory spectral sequence in a similar way.

§ 4. Proof of Theorem 1

The idea of the proof is the following. We construct a filtered double differential
complex Xk,l and then play with various spectral sequences converging to its total
homology.

Before we proceed we need a small technical lemma. Let J ∈ S be a simplex.
If i is a vertex of J , we have a map ηi : Πi ↪→ I (J), which embeds the ideal Πi

generated by the linear form ωi in the ideal I (J) generated by a larger set of linear
forms. Consider the sequence of maps

0← I (J)
η←

⊕
I, dim I=0

I6J

ΠI
ξ←

⊕
I, dim I=1

I6J

ΠI
ξ←

⊕
I, dim I=2

I6J

ΠI
ξ← · · · , (4.1)

where η is the direct sum of the maps ηi over i ∈ Vert(S), i 6 J ; and ξ is the
direct sum of the inclusion maps ΠI ↪→ ΠI′ , each rectified by the incidence sign
[I : I ′]. The sign convention obviously implies that (4.1) is a differential complex.
But what is more important,

Lemma 4. The sequence (4.1) is exact.
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Proof. This is very similar to the Taylor resolution of the monomial ideal in a com-
mutative polynomial ring (or the Koszul resolution), but our situation is a bit dif-
ferent, since the ΠI are not free modules over Λ. Nevertheless, the proof is similar
to the commutative case: the exactness of (4.1) follows from the inclusion-exclusion
principle. To make things precise (and also to tackle the case k = Z) we proceed
as follows.

By the (∗k)-condition, the subspace ⟨ωj | j ∈ J⟩ is a direct summand in V ∼= kN.
Let {ν1, . . . , νN} be a basis of V such that its first |J | vectors are exactly ωj , j ∈ J .
We simply identify J with the subset {1, . . . , |J |} ⊆ [N] by abuse of notation. The
module Λ[V ] splits into multidegree components: Λ =

⊕
A⊆[N] ΛA, where ΛA is the

one-dimensional k-module generated by
∧

i∈A νi. All the modules and maps in (4.1)
respect this splitting. Thus (4.1) can be written as

0←−
⊕

A∩J ̸=∅
ΛA ←−

⊕
I⊆J, |I|=1

⊕
A⊇I

ΛA ←−
⊕

I⊆J, |I|=2

⊕
A⊇I

ΛA ←− · · · ,

⊕
A, A∩J ̸=∅

(
0←− ΛA ←−

⊕
I⊆A∩J, |I|=1

ΛA ←−
⊕

I⊆A∩J, |I|=2

ΛA ←− · · ·
)
.

For each A, the homology of the complex in brackets coincides with H̃∗(∆A∩J ; ΛA)
∼= H̃∗(∆A∩J ; k), the reduced simplicial homology of the simplex on the set A∩J ̸=∅.
Thus the homology vanishes.

Let us define a cosheaf N̂ on S taking values in graded differential complexes.
We set N̂ (I) = C∗(GI ; ΠI), the simplicial chains of the simplicial complex GI .
The corestriction maps N̂ (I > J) are naturally induced by the inclusions of faces
GI ↪→ GJ and the inclusions of coefficient modules Π̂(I > J) : ΠI ↪→ ΠJ .

The chain complex

X∗,∗ = (C∗(S; N̂∗); dH), Xk,l =
⊕

I, dim I=k

Cl(GI ; ΠI)

is a double complex. It has the horizontal homological differential dH : Xk,l →
Xk−1,l (sheaf-differential) and the vertical differential dV :Cl(GI ; ΠI)→Cl−1(GI ; ΠI)
(inner differential). These differentials commute: dHdV = dV dH , so we can form
the totalized differential complex

Xj =
⊕

k+l=j

Xk,l, dTot = dH + (−1)kdV : Xj →Xj−1.

Lemma 5. Hk(X , dTot) ∼= Hk(S; Π̂).

Proof. Consider the vertical spectral sequence [10] converging to Hk(X , dTot):

(EV )r
∗,∗, (dV )r : (EV )r

k,l → (EV )r
k−r,l+r−1,

which first computes the vertical homology and then the horizontal. We have

(EV )1k,l =
⊕

I, dim I=k

Hl(GI ; ΠI).
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Since GI is contractible, Hl(GI ; ΠI) = 0 for l ̸= 0 and H0(GI ; ΠI) = ΠI . Thus

(EV )1k,l =


⊕

dim I=k

ΠI = Ck(S; Π̂) if l = 0,

0 if l ̸= 0,

(EV )2k,l =

{
Hk(S; Π̂) if l = 0,
0 if l ̸= 0.

The spectral sequence collapses at the second page, thus

Hk(X , dTot) ∼= Hk(S; Π̂).

Our next goal is to compute the homology of totalization by first computing
the horizontal homology and then the vertical. Recall that GI is a simplicial sub-
complex of S′, so the module C∗(GI ; ΠI) is regarded as the chain complex of the
constant cosheaf ΠI . Let the cosheaf Î ′ be the corefinement of the sheaf I defined
in § 2.6.

Lemma 6. The sequence

0←− C∗(S′; Î ′)←−
⊕

I, dim I=0

C∗(GI ; ΠI)←−
⊕

I, dim I=1

C∗(GI ; ΠI)←− · · · (4.2)

is exact.

Proof. Since all the maps C∗(GI ; ΠI) → C∗(GI ; ΠI) are induced by inclusions of
simplicial subcomplexes, the sequence (4.2) decomposes as the direct sum over all
simplices ∆ = (I1 < · · · < Ik) ∈ S′:

⊕
∆∈S′

(
0←− Î ′(∆)←−

⊕
I, dim I=0

∆∈GI

ΠI ←−
⊕

I, dim I=1
∆∈GI

ΠI ←− · · ·
)
.

Since the condition ∆ ∈ GI is equivalent to I1 > I, by the definition of corefinement
Î ′ the expression in brackets is equal to

0←− I (I1)←−
⊕

I, dim I=0
I6I1

ΠI ←−
⊕

I, dim I=1
I6I1

ΠI ←− · · · .

This sequence is exact by Lemma 4.

We return to the double complex X . Consider the horizontal spectral sequence

(EH)r
∗,∗ ⇒ H∗(X , dTot), (dH)r : (EH)r

k,l → (EH)r
k+r−1,l−r,

which computes the horizontal homology first and then the vertical.

Lemma 7. Hl(X , dTot) ∼= Hl(S′; Î ′).
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Proof. By Lemma 6 the horizontal homology of X vanishes everywhere except in
degree k = 0, where it is isomorphic to C∗(S′; Î ′). Thus

(EH)2k,l
∼=

{
Hl(S′; Î ′) if k = 0,
0 if k ̸= 0.

The spectral sequence collapses and the statement follows.

Finally, we make use of the coskeleton filtration on S′.

Lemma 8. There exists a spectral sequence

Er
s,k ⇒ Hs+k(S′; Î ′), dr : Er

s,k → Er
s−r,k+r−1, E2

s,k
∼=Hn−1−s(S; Hk⊗I ).

This spectral sequence respects the inner gradings on I and Î ′ .

Proof. Consider the spectral sequence associated with the coskeleton filtration of
S′ for the coefficient system Î ′:

Er
s,k ⇒ Hs+k(S′; Î ′), dr : Er

s,k → Er
s−r,k+r−1,

E1
s,k
∼= Hs+k(Ss, Ss−1; Î ′).

We have

E1
s,k
∼= Hs+k(Ss, Ss−1; Î ′) =

⊕
I, dim GI=s

Hs+k(GI , ∂GI ; Î ′) =
⊕

I, dim GI=s

I k(I)

by Lemma 2. Since the values of I are torsion-free, Lemma 3 implies⊕
I, dim GI=s

I k(I) ∼=
⊕

I, dim GI=s

(I ⊗Hk)(I) = Cn−1−s(S; I ⊗Hk).

Therefore, E2
s,k
∼= Hn−1−s(S; I ⊗Hk), which proves the statement.

The combination of Lemmas 5, 7 and 8 proves Theorem 1.

§ 5. Manifolds with locally standard torus actions

5.1. Orbit spaces. Let Tn be a compact n-dimensional torus. The standard
representation of Tn is a representation of Tn on Cn by coordinate-wise rotations,
that is,

(t1, . . . , tn) · (z1, . . . , zn) = (t1z1, . . . , tnzn),

for zi, ti ∈ C, |ti| = 1. An action of Tn on a (compact connected smooth) manifold
M2n is called locally standard if M has an atlas of standard charts, each isomorphic
to a subset of the standard representation. More precisely, a standard chart on M is
a triple (U, f, ψ), where U ⊂M is a Tn-invariant open subset, ψ is an automorphism
of Tn, and f is a ψ-equivariant homeomorphism f : U → W onto a Tn-invariant
open subset W ⊂ Cn (that is, f(t · y) = ψ(t) · f(y) for all t ∈ Tn, y ∈ U).

The orbit space Cn/Tn of the standard representation is the nonnegative cone
Rn

> = {x ∈ Rn | xi > 0}. Therefore, the orbit space of a locally standard action
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obtains the structure of a compact connected n-dimensional manifold with corners.
Recall that a manifold with corners is a topological space locally modeled by open
subsets of Rn

> with the combinatorial stratification induced from the face structure
of Rn

> (the reader is referred to [5] or [15] for details relevant to the study of torus
actions).

5.2. Characteristic functions. Let Q = M/Tn be the orbit space of a locally
standard action. Let Fac(Q) denote the set of facets (that is, faces of codimen-
sion 1). Every face F of codimension k lies in exactly k distinct facets of Q (such
manifolds with corners are called nice in [9] or manifolds with faces elsewhere).
Consider the set SQ of all faces of Q, including Q itself, and define the order on SQ

by reversed inclusion. Since Q is nice, SQ is a simplicial poset. The minimal element
of SQ is the maximal face, that is, the space Q itself. The facets of Q correspond
to the vertices of SQ. For convenience we denote abstract elements of SQ by I, J
and so on. and the corresponding faces of Q will be denoted by FI , FJ and so on.

If F ∈ Fac(Q) and x is a point in the interior of F , then the stabilizer of x,
denoted by λ(F ), is a one-dimensional toric subgroup in Tn. If FI is a codimension-k
face of Q contained in facets F1, . . . , Fk ∈ Fac(Q), then the stabilizer of an orbit
x ∈ F ◦I is the k-dimensional torus TI = λ(F1) × · · · × λ(Fk) ⊂ Tn, where the
product is free inside Tn. This puts a specific restriction on the subgroups λ(F ),
F ∈ Fac(Q). In general, the map

λ : Fac(Q)→ {one-dimensional toric subgroups of Tn} (5.1)

is called a characteristic function if, whenever the facets F1, . . . , Fk have nonempty
intersection, the map

λ(F1)× · · · × λ(Fk)→ Tn,

induced by inclusions λ(Fi) ↪→ Tn, is injective and splits. This is called the (∗)-
condition. Notice that F1, . . . , Fk have nonempty intersection whenever the corres-
ponding vertices of SQ are the vertices of some simplex.

From the (∗)-condition it follows that the map

H1(λ(F1)× · · · × λ(Fk); k)→ H1(Tn; k) (5.2)

is also injective and splits for any ground ring k. Thus the homology classes
ω1, . . . , ωk of the subgroups λ(F1), . . . , λ(Fk) span freely a direct summand in
H1(Tn; k). This motivates the definition of homological characteristic function
given in § 3. Surely, the exterior algebra Λ[V ] generated by a k-module V has a clear
meaning as the whole homology algebra of a torus: Λ[H1(Tn; k)] ∼= H∗(Tn; k).

If the function (5.1) satisfies (5.2) for some particular ground ring k, we
say that λ satisfies the (∗k)-condition. It is easy to see that the topological
(∗)-condition is equivalent to the (∗Z)-condition, and that the (∗Z)-condition
implies the (∗k)-condition for any k.

5.3. Model spaces. Let M be a manifold with a locally standard action and
µ : M → Q be the projection onto the orbit space. The free part of the action has
the form µ|Q◦ : µ−1(Q◦) → Q◦, where Q◦ = Q \ ∂Q is the interior of the manifold
with corners. The free part is a principal torus bundle over Q◦. It can be uniquely
extended over Q and defines a principal Tn-bundle ρ : Y → Q.
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Therefore any manifold with a locally standard action determines three objects:
the nice manifold with corners Q, the principal torus bundle ρ : Y → Q, and the
characteristic function λ. One can recover the manifold M from these data using
the following standard construction.

Construction 5 (model space). Let ρ : Y → Q be a principal Tn-bundle over
a nice manifold with corners Q and λ be a characteristic function on Fac(Q). Con-
sider the space X def= Y/∼ , where y1 ∼ y2 if and only if ρ(y1) = ρ(y2) ∈ F ◦I for
some face FI of Q and y1 and y2 lie in the same TI -orbit of the action. Then there
exists a natural Tn-equivariant map f : Y → X.

Every manifold with a locally standard torus action is equivariantly homeomor-
phic to its model space (see [15], Corollary 2), so in the following we will work with
X instead of M .

5.4. Filtrations. Since Q is a manifold with corners, there is a natural filtration
on Q:

∅ = Q−1 ⊂ Q0 ⊂ Q1 ⊂ · · · ⊂ Qn−1 = ∂Q ⊂ Q = Qn, (5.3)
where Qi is the union of all faces of dimension 6 i. It lifts to the Tn-invariant
filtration on Y :

∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ · · · ⊂ Yn−1 ⊂ Yn = Y, (5.4)

where Yi = ρ−1(Qi). In turn, this descends to the filtration on X:

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X, (5.5)

Xi = f(Yi). It is easily seen that (5.5) is the filtration of X by orbit types, that is,
Xi is the union of all orbits of dimension at most i. We have dimXi = 2i. The
maps µ : X → Q, ρ : Y → Q and f : Y → X preserve the filtrations.

The filtrations give rise to homological spectral sequences:

(EQ)1p,q = Hp+q(Qp, Qp−1)⇒ Hp+q(Q), (dQ)r : (EQ)r
∗,∗ → (EQ)r

∗−r,∗+r−1,

(EY )1p,q
∼= Hp+q(Yp, Yp−1)⇒ Hp+q(Y ), (dY )r : (EY )r

∗,∗ → (EY )r
∗−r,∗+r−1,

(EX)1p,q
∼= Hp+q(Xp, Xp−1)⇒ Hp+q(X), (dX)r : (EX)r

∗,∗ → (EX)r
∗−r,∗+r−1.

In the following we also need the spectral sequence associated to the filtration
of Q truncated at Qn−1 = ∂Q:

∅ = Q−1 ⊂ Q0 ⊂ Q1 ⊂ · · · ⊂ Qn−1 = ∂Q, (5.6)

(E∂Q)1p,q =

{
Hp+q(Qp, Qp−1) for p < n,

0 for p = n
⇒ Hp+q(∂Q).

Note that (EX)1p,q = 0 for q > p for reasons of dimension. The map f : Y → X
induces the map of spectral sequences

fr
∗ : (EY )r

p,q → (EX)r
p,q.

The main topological result in this paper is the following.

Theorem 3. If Q is orientable and all proper faces of Q are acyclic over k, then
the map f2

∗ : (EY )2p,q → (EX)2p,q is an isomorphism for q < p or q = p = n and is
injective for q = p < n.
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§ 6. Proof of Theorem 3

First we prove a technical lemma, which is extremely useful when from the
topology of Q we go over to the topology of its underlying simplicial poset SQ.

For a poset S consider the space P = Cone |S|. The coskeleton filtration of S
extends to the coskeleton filtration of P :

|S0| ⊂ · · · ⊂ |Sn−1| = |S| ⊂ P

and the corresponding homological spectral sequence is denoted by (EP )∗∗,∗.
For convenience we introduce the following definition.

Definition 5. An oriented manifold with corners Q is called Buchsbaum if all its
proper faces are acyclic over k. If Q is Buchsbaum and Q itself is acyclic over k,
then Q is called Cohen-Macaulay.

Each face G of a Buchsbaum manifold with corners Q is an orientable manifold
with corners. The acyclicity of G implies that Hj(G, ∂G) = 0 for j ̸= dimG and
Hdim G(G, ∂G) ∼= k by Poincaré-Lefschetz duality.

Lemma 9. (1)n Let Q be a Buchsbaum manifold with corners, dimQ = n, SQ be
its underlying poset, and let P = Cone(|SQ|). Then there exists a face-preserving
map ϕ : Q→ P which induces the identity isomorphism on the posets of faces and
an isomorphism of spectral sequences ϕ∗ : (E∂Q)r

∗,∗
∼=→ (ES)r

∗,∗ for r > 1.
(2)n If Q is Cohen-Macaulay of dimension n, then ϕ induces an isomorphism of

spectral sequences ϕ∗ : (EQ)r
∗,∗

∼=→ (EP )r
∗,∗ for r > 1.

Proof. The map ϕ is constructed inductively. The 0-skeleta of Q and P are natu-
rally identified since both correspond to the set of maximal simplices of S. There
always exists an extension of ϕ to higher-dimensional faces since all faces of P are
cones. The statement is proved using the following scheme of induction: (2)6n−1 ⇒
(1)n ⇒ (2)n. The case n = 0 is clear.

We prove the implication (1)n ⇒ (2)n. The map ϕ induces the homomorphism
of the long exact sequences:

H̃∗(∂Q) //

��

H̃∗(Q) //

��

H∗(Q, ∂Q) //

��

H̃∗−1(∂Q) //

��

H̃∗−1(Q)

��
H̃∗(∂P ) // H̃∗(P ) // H∗(P, ∂P ) // H̃∗−1(∂P ) // H̃∗−1(P )

The maps H̃∗(Q) → H̃∗(P ) are isomorphisms since both groups are trivial. The
maps H̃∗(∂Q) → H̃∗(∂P ) are isomorphisms since (E∂Q)

∼=⇒ H∗(∂Q), (E∂P )
∼=⇒

H∗(∂P ) and the spectral sequences are isomorphic by (1)n. The Five Lemma
shows that ϕ∗ : (EQ)1n,∗ → (EP )1n,∗ is an isomorphism as well. This proves (2)n.

Now we prove the implication (2)6n−1 ⇒ (1)n. Let FI be faces of Q and GI

be faces of P . All proper faces of Q are Cohen-Macaulay of dimension 6 n − 1.
Thus (2)6n−1 implies the isomorphisms H∗(FI , ∂FI) → H∗(GI , ∂GI) which sum
together to the isomorphism ϕ∗ : (E∂Q)1∗,∗

∼=→ (E∂P )1∗,∗.
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Corollary 4. If Q is a Buchsbaum manifold then SQ is Buchsbaum. Moreover, in
this case SQ is a homology manifold. If Q is Cohen-Macaulay, then SQ is a homol-
ogy sphere.

From now on we suppose that Q is Buchsbaum, as stated in the hypothesis of
Theorem 3. Thus SQ is also Buchsbaum.

We return to the spaces Y and X over Q. As before, let FI be the face of Q
corresponding to I ∈ SQ. Let YI = ρ−1(FI) and XI = f(YI) be the corresponding
subsets of Y and X, respectively. In fact, XI ⊂ X is a closed submanifold of dimen-
sion 2 dimFI , called a face submanifold. We set ∂YI = ρ−1(∂FI) and ∂XI = f(∂YI)
(the set ∂XI does not have the meaning of a boundary in the topological sense,
this is just conventional notation). Note that Y0̂ = Y and X0̂ = X. We have

(EY )1p,q
∼= Hp+q(Yp, Yp−1) ∼=

⊕
|I|=n−p

Hp+q(YI , ∂YI),

(EX)1p,q
∼= Hp+q(Xp, Xp−1) ∼=

⊕
|I|=n−p

Hp+q(XI , ∂XI).

Remark 7. The map f1
∗ : (EY )1n,q→(EX)1n,q, which coincides with f∗ : H∗(Y, ∂Y )→

H∗(X, ∂X), is an isomorphism since the identification ∼ in Construction 5 touches
only the boundary ∂Y , thus Y/∂Y ∼= X/∂X.

The space YI is a principal Tn-bundle over QI . For each I ∈ S \ 0̂ the face QI

is acyclic. Thus there exists a trivialization YI
∼= QI × Tn and we have

Hp+q(YI , ∂YI) ∼=
⊕

i+j=p+q

Hi(FI , ∂FI)⊗Hj(Tn) ∼= Hq(Tn) (6.1)

(the groups Hi(FI , ∂FI) vanish for i ̸= p, and Hp(FI , ∂FI) ∼= k). Similarly, for X
we have the identification

H∗(XI , ∂XI) ∼= H∗(FI × Tn/TI , ∂FI × Tn/TI),

thus
Hp+q(XI , ∂XI) ∼= Hq(Tn/TI). (6.2)

Consider the graded sheaf H Y
q on SQ that takes the value Hp+q(YI , ∂YI) on each

I ∈ SQ (including I = 0̂), with the restriction maps extracted from the differen-
tial (dY )1 similarly to Construction 2. By (6.1), the truncated part H Y

∗ =
⊕

q H Y
q

(see Remark 3) is the locally constant sheaf L valued by exterior algebras.
Similarly, we can define a graded sheaf H X

q on SQ that takes the value
Hp+q(XI , ∂XI) on I ∈ S. Its truncated part H X

∗ =
⊕

q H X
q is the sheaf of quotient

algebras L /I according to (6.2). Indeed, it is easily seen that the homology
algebra H∗(Tn/TI) is naturally isomorphic to the quotient of H∗(Tn)/I (I), where
I (I) is the ideal generated by the subspace H1(TI) ⊂ H1(Tn).

The map f1
∗ : (EY )1∗,∗ → (EX)1∗,∗ is equal to f∗ : C∗(S; H Y

∗ ) → C∗(S; H X
∗ ).

This last map coincides with f∗ : C∗(S; L )→ C∗(S; L /I ) away from 0̂.

Lemma 10. There exists a short exact sequence of graded sheaves

0→ I →H Y →H X → 0.
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Proof. This follows from the diagram

0

��

0

��
0 // I

� � // H Y // //
� _

��

H X //
� _

��

0

0 // I
� � // H Y // //

����

H X //

����

0

H Y /H Y
∼= //

��

H X/H X

��
0 0

in which all the vertical and two horizontal lines are exact. The lower sheaves
are concentrated in 0̂ ∈ SQ and the graded isomorphism between them is due to
Remark 7.

Finally, the short exact sequence of Lemma 10 induces the long exact sequence
in sheaf cohomology:

· · · → Hi−1(SQ; I (q))→ Hi−1(SQ; H Y
q )

f2
∗−→ Hi−1(SQ; H X

q ) −→ Hi(SQ; I (q))→ · · · . (6.3)

The poset SQ is a homology manifold. Thus its structure sheaf is constant:
H0
∼= k. Corollary 3 implies that the groups Hi(SQ; I (q)) vanish for i 6 n− 1− q.

From the long exact sequence (6.3) we can see that the map

f∗ : Hi−1(SQ; H Y
q )→ Hi−1(SQ; H X

q )

is an isomorphism for i 6 n−1−q and is injective for i = n−q. This map coincides
with

f2
∗ : (EY )2n−i,q → (EX)2n−i,q.

The change of indices p = n− i completes the proof of Theorem 3.

Remark 8. Note that a similar argument proves that the map f∗ : (E∂Y )2p,q →
(E∂X)2p,q is an isomorphism for p > q and injective for p = q.
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