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Approximating the trajectory attractor
of the 3D Navier-Stokes system using
various α-models of fluid dynamics

V. V. Chepyzhov

Abstract. We study the limit as α → 0+ of the long-time dynamics for
various approximate α-models of a viscous incompressible fluid and their
connection with the trajectory attractor of the exact 3D Navier-Stokes
system. The α-models under consideration are divided into two classes
depending on the orthogonality properties of the nonlinear terms of the
equations generating every particular α-model. We show that the attrac-
tors of α-models of class I have stronger properties of attraction for their
trajectories than the attractors of α-models of class II. We prove that for
both classes the bounded families of trajectories of the α-models considered
here converge in the corresponding weak topology to the trajectory attrac-
tor A0 of the exact 3D Navier-Stokes system as time t tends to infinity.
Furthermore, we establish that the trajectory attractor Aα of every α-model
converges in the same topology to the attractor A0 as α → 0+. We con-
struct the minimal limits Amin ⊆ A0 of the trajectory attractors Aα for
all α-models as α → 0+. We prove that every such set Amin is a compact
connected component of the trajectory attractor A0, and all the Amin are
strictly invariant under the action of the translation semigroup.

Bibliography: 39 titles.

Keywords: 3D Navier-Stokes system, α-models of fluid dynamics, trajec-
tory attractor.

Introduction

Three-dimensional α-models of fluid dynamics are systems of differential equa-
tions that in a certain sense approximate and smooth the exact three-dimensional
Navier-Stokes system, and the smoothing is effected by a certain filtration of the
velocity vector which occurs in the argument of the nonlinear term of the original
Navier-Stokes system. The small parameter α reflects the width of the scale of
the spacial filtration of the model. Often the Green’s function associated with the
Helmholtz operator I−α2∆ is considered as the kernel of the filtration. For α = 0,
the system of equations generating the α-model formally coincides with the ordinary
3D Navier-Stokes system.
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It seems that the first α-model described and studied in detail was the
so-called Lagrange Averaged Navier-Stokes-α model (LANS-α model), also called
the Camassa-Holm system with viscosity in the literature (see [1]–[6] and the
bibliographies given in these papers). In a number of papers it has been
shown, both analytically and numerically, that the LANS-α model gives a good
approximation to turbulent flows (see [1]–[7]). In particular, it has been proved
that explicit stationary solutions of the LANS-α system are very similar to
empirical data and results in the numerical modelling of flows in channels and
pipes for a fairly wide interval of values of the Reynolds numbers (see [1]–[3]).

After the LANS-α model, other α-models appeared which approximate the 3D
Navier-Stokes system. For example, a model of turbulence was proposed in [8],
which was called the Leray α-model. This name is related to the fact that Leray [9]
considered a similar regularized system, which he used to prove the existence of weak
solutions of the exact Navier-Stokes system. Note that Leray considered a more gen-
eral smoothing kernel. The use of the Leray α-model in modelling turbulent flows
was substantiated in [8]. There are also other approximating α-models that agree
well with empirical data, for example, the Clark α-model [10], the modified Leray
α-model [11], the simplified Bardina α-model [12], and others. Similar problems
related to approximation and regularization of the three-dimensional Navier-Stokes
system were also considered in [13] and [14].

For the α-models described in the papers listed above, the corresponding Cauchy
problems were studied in detail, theorems on the existence and uniqueness of weak
and strong solutions were proved, smoothing properties of these solutions were
established, and global attractors were constructed for the infinite-dimensional
dynamical semigroups generated by them. Furthermore, estimates of dimension
were obtained for these attractors (that is, estimates of the number of degrees of
freedom of the limit dynamics) depending on the physical parameters of the prob-
lem. In a number of papers (see [15]–[17]) other characteristics were also discussed
related to the turbulence problem (energy spectrum, boundary layers, estimates of
energy and enstrophy, etc.).

As is well known, if we ask similar questions about the classical 3D Navier-Stokes
system, then the answers remain unknown, since, in spite of many years of effort
by the world mathematical community, the key uniqueness theorem has not been
proved for global weak solutions of the inhomogeneous 3D Navier-Stokes system
(which exist). The absence of a proof of the uniqueness theorem means we can-
not apply the highly developed theory of global attractors of infinite-dimensional
dynamical systems to this system directly. This theory is used successfully, for
example, in the study of the 2D Navier-Stokes system and other equations of math-
ematical physics, as well as in the study of the aforementioned α-models (see the
books [18]–[23] and the extensive bibliography in these books).

This substantial gap can be partially filled if we apply the theory of trajectory
attractors of evolutionary partial differential equations, which was created with
emphasis on the equations for which uniqueness theorems of the corresponding
initial-boundary-value problems either do not hold, or have not yet been proved
(see [23], [24]). The trajectory attractor was constructed for the 3D Navier-Stokes
system (see [25], [22]), as well as for other important equations and systems of
mathematical physics with no uniqueness theorem (see [26]–[30]).
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The purpose of our paper is to study the connection between the long-time
dynamics of solutions of various α-models and the trajectory attractor of the exact
3D Navier-Stokes system as α → 0+. In relation to concrete α-models, a similar
problem was solved in [31] for the LANS-α model, and in [32] for the Leray α-model.
Here, we generalize these, proving theorems which are applicable to many known
α-models (as well as to new models which may appear in the future in papers on this
topic). The α-models we consider are divided into two classes, depending on the
orthogonality properties of the smoothed nonlinear term. For example, the Leray
α-model belongs to class I, and the LANS-α model to class II. It turns out that
the attraction of trajectories to the global attractor of the system for an α-model
of class I is stronger than for an α-model of class II.

We now state the main results of the paper. We consider an arbitrary family
of bounded (in the energy norm) solutions (trajectories) Bα = {zα(x, t), t > 0}
of some α-model for 0 < α 6 1. For α = 0 we formally obtain the classical 3D
Navier-Stokes system, for which we construct the trajectory attractor A0. This
attractor describes the dynamics of the Leray-Hopf weak solutions {v(x, t), t > 0}
for the 3D Navier-Stokes system as t→ +∞.

In the main theorem we prove that, as α→ 0+ and as h→ +∞, the time shifts

T (h)Bα =
{
zα(x, t+ h), t > 0

}
of the trajectory set Bα of any α-model of class I or class II tend to the trajectory
attractor A0 of the exact 3D Navier-Stokes system in the corresponding local weak
topology. We further prove that the trajectory attractors Aα of every α-model
converge to the trajectory attractor A0 of the Navier-Stokes system as α → 0+ in
the same local weak topology.

The division of α-models into two classes proposed in the paper is characterized
by the fact that the trajectory attractors Aα corresponding to an α-model of class I
(for example, the Leray α-model) converge ‘more strongly’ as α → 0+ to the
limit A0 than the trajectory attractors of α-models of class II (for example, the
LANS-α model). However, we note that there are α-models that do not fall into
the proposed classification, for example, see [33]. This is related to the use of
a different scheme of regularization of the exact 3D Navier-Stokes system in these
models.

Finally, in the paper, following [31], we construct the minimal limits Amin ⊆ A0 of
the trajectory attractors Aα as α→ 0+ for every α-model of class I or II. We prove
that every such set of trajectories Amin is a compact connected component of the
trajectory attractor A0 of the Navier-Stokes system, and the sets Amin are strictly
invariant under the translation semigroup {T (h)}: T (h)Amin = Amin for h > 0.

For simplicity, in our exposition we consider α-models with periodic boundary
conditions, but a similar scheme can be used to construct α-models and analyze
their attractors for other initial-boundary-value problems, for example in a bounded
domain with the no-slip condition on the boundary.

Notation

Let T3 := [R mod 2π]3 be the three-dimensional torus with the Euclidean metric
and coordinates x = (x1, x2, x3) ∈ T3. Let V denote the space of trigonometric



Approximating the trajectory attractor of the 3D system 613

vector-polynomials y(x) = (y1(x), y2(x), y3(x)) with period 2π in every variable xj ,
j = 1, 2, 3, which have zero divergence and zero mean over the torus T3, that is,

∇ · y(x) := ∂x1y
1(x) + ∂x2y

2(x) + ∂x3y
3(x) = 0 ∀x ∈ T3;

∫
T3
y(x) dx = 0.

The closure of V in the space L2(T3)3 is denoted by H. The Leray-Helmholtz
orthogonal projector is denoted by P : L2(T3)3 → H. The inner product and norm
in H are denoted by ⟨u, v⟩ and |u|, respectively.

For s ∈ R we consider the scale of Hilbert spaces Hs := D(As/2) equipped with
the inner product and norm

⟨u, v⟩s := ⟨As/2u,As/2v⟩, ∥u∥s = |As/2v|,

which corresponds to the (strictly) positive selfadjoint Stokes operator A = −P∆
acting in H with domain D(A) := {u ∈ H | ∆u ∈ H}, which coincides with
the space H2. Note that for periodic boundary conditions the Stokes operator is
A ≡ −∆. Obviously, H0 = H. We omit the index s = 1 in the notation for the
norm of the space H1, ∥u∥ := ∥u∥1. The space H−s is dual to Hs for any s ∈ R.

Recall the standard Poincaré inequality

|u|2 6 λ−1
1 ∥u∥2 ∀u ∈ H1, (0.1)

where λ1 is the first eigenvalue of the Stokes operator A. For any f ∈ H−1,
let ⟨f, u⟩ also denote the action of the functional f ∈ H−1 on a vector u ∈ H1.
The operator A effects an isomorphism between H1 and H−1, and ⟨u, v⟩1 = ⟨Au, v⟩
for all u, v ∈ H1.

In a Banach space X, the norm is denoted by ∥ · ∥X . The Hausdorff distance in
the space X from a set A to B is denoted by

distX(A,B) := sup
a∈A

inf
b∈B

∥a− b∥X . (0.2)

§ 1. Systems of equations for 3D α-models

We consider a system of equations on the torus T3

∂tv = −νAv − PF (u, v) + g(x), ∇ · v = 0, (1.1)

v = u+ α2Au, ∇ · u = 0, (1.2)

in which ν > 0 is the viscosity coefficient, A is the Stokes operator, P is the
Leray-Helmholtz projector, and F (u, v) is a certain bilinear differential operator
of first order in u and v, which is described below. Here, α is a small positive
parameter which corresponds to the given α-model. In the system (1.1), (1.2), the
three-dimensional vector fields

v =
(
v1(x, t), v2(x, t), v3(x, t)

)
, u =

(
u1(x, t), u2(x, t), u3(x, t)

)
are unknown for x ∈ T3 and t > 0. By equation (1.2), the vector field u(x, t)
is uniquely determined by v(x, t) and is a smoother function, that is, if v ∈ Hs,
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then u ∈ Hs+2. The external force g = (g1(x), g2(x), g3(x)), x ∈ T3, is assumed
to be a known vector-function such that ∇ · g = 0. It is assumed that all the
vector-functions have zero mean over the torus T3:∫

T3
u(x, t) dx = 0,

∫
T3
v(x, t) dx = 0,

∫
T3
g(x) dx = 0.

Every α-model (1.1), (1.2) is characterized by its first-order vector differential oper-
ator

F (u, v) =
(
F 1(u, v), F 2(u, v), F 3(u, v)

)
,

in which the components F i(u, v) are linear combinations of all possible operator
monomials of the form uk ∂xj

vn, vk ∂xj
un, and uk ∂xj

un:

F i(u, v) =
3∑

k,j,n=1

Ci
kjnu

k ∂xjv
n +Di

kjnv
k ∂xju

n + Ei
kjnu

k ∂xju
n, (1.3)

where Ci
kjn, Di

kjn, and Ei
kjn are some real coefficients. Note that monomials of the

form vk ∂xjv
n are not used in the representation (1.3), since they do not contain

components of the ‘smoothed’ vector field u. Otherwise, we might obtain a sys-
tem with ‘bad’ properties, as with the exact Navier-Stokes system, which involves
the quadratic term (v · ∇)v. (For F (u, v) = (v · ∇)v, equation (1.1) is obviously
independent of α and coincides with the 3D Navier-Stokes system.)

We consider various operators F (u, v) of the form (1.3) corresponding to various
α-models which are characterized by the following two basic properties.
Property 1. It is assumed that for u = v ∈ V the operator

PF (v, v) = P

3∑
j=1

vj ∂xj
v = P (v · ∇)v (1.4)

coincides with the quadratic operator in the classical 3D Navier-Stokes system.
Consequently, for α = 0 the system (1.1), (1.2) takes the following form:

∂tv = −νAv − P (v · ∇)v + g(x), ∇ · v = 0, (1.5)

that is, this system coincides formally with the classical 3D Navier-Stokes system
for the unknown vector field v = v(x, t), in which the pressure function is excluded
in the standard fashion by applying the operator P to both sides of the system
(see [13], [34]–[36]).
Property 2. It is assumed that one of two properties of orthogonality of the func-
tion F (u, v) to u or v holds in the space H, which divides the α-models under
consideration into two classes:

⟨F (u, v), v⟩ = 0 ∀u, v ∈ V (class I), (1.6)
⟨F (u, v), u⟩ = 0 ∀u, v ∈ V (class II). (1.7)

We look at some examples of α-models that belong to these classes.
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Example 1.1 (Leray α-model, class I; see [8]). The nonlinear operator is

F (u, v) = (u · ∇)v.

The system (1.1), (1.2) has the form

∂tv = −νAv − P (u · ∇)v + g(x), ∇ · v = 0,

v = u+ α2Au, ∇ · u = 0.

For α = 0, u = v we obviously obtain the exact 3D Navier-Stokes system (1.5).
As is well known, the bilinear term in the Navier-Stokes system satisfies the identity

⟨(u · ∇)v, v⟩ = 0 ∀u, v ∈ V .

Consequently, ⟨F (u, v), v⟩ = 0 for any u, v ∈ V .

Example 1.2 (LANS-α model, class II; see [5]). The nonlinear operator is

F (u, v) = −u× (∇× v).

Here, a× b denotes the vector product in the space R3. The system has the form

∂tv = −νAv + P (u× (∇× v)) + g(x), ∇ · v = 0,

v = u+ α2Au, ∇ · u = 0.

Note that the nonlinear term u× (∇× v) can be rewritten in the form

u× (∇× v) = −(u · ∇)v −
3∑

j=1

uj∇vj ;

therefore for v = u,

u× (∇× u) = −(u · ∇)u− 1
2
∇(u · u)

and, consequently, P (u × (∇ × u)) = −P (u · ∇)u, since the operator P projects
any gradient vector-function to zero. Therefore for α = 0 we again obtain the 3D
Navier-Stokes system (1.5). Using standard formulae from vector analysis we can
establish that

⟨F (u, v), u⟩ =
〈
u× (∇× v), u

〉
= 0 ∀u, v ∈ V .

Two more α-models can be constructed if in the preceding example we inter-
change the variables u and v. Indeed, it is obvious that after such an interchange
any α-model changes its class, that is, if F (u, v) generates an α-model of class I,
then for the operator F (u, v) := F (v, u) the corresponding α-model belongs to
class II, and vice versa.

Class II — the modified Leray α-model: F (u, v) = (v · ∇)u (see [11]).
Class I— the modified LANS-α model: F (u, v) = −v × (∇× u) (the author has

not come across this model in the literature).
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In all the examples considered above, α-models were constructed by smoothing
just one argument in the bilinear term of the Navier-Stokes system. When both
arguments are smoothed, we obtain the so-called simplified Bardina α-model which
is in class II.

Class II — simplified Bardina α-model: F (u, v) = −(u · ∇)u (see [12]):

∂tv = −νAv − P (u · ∇)u+ g(x), ∇ · v = 0,

v = u+ α2Au, ∇ · u = 0.

To conclude this section we note that there are infinitely many α-models of both
classes. Indeed, if we have two different α-models of the same class I or II with
operators F0(u, v) and F1(u, v), then the linear interpolation

Fθ(u, v) = (1− θ)F0(u, v) + θF1(u, v) ∀ θ ∈ (0, 1),

generates an α-model of the same class as the operators F0(u, v) and F1(u, v).

§ 2. The trajectory attractor of the 3D Navier-Stokes system

Suppose that the external force satisfies g ∈ H−1. We consider the exact
Navier-Stokes system:

∂tv = −νAv −B(v, v) + g(x), ∇ · v = 0, x ∈ T3, t > 0. (2.1)

From now on, B(u, v) denotes the bilinear operator B(u, v) = P (u · ∇)v.
Note that for any u, v ∈ H1 and any w ∈ H2 we have the inequalities

|⟨B(u, v), w⟩| 6 c0|u| · ∥v∥ · ∥w∥L∞ 6 c|u| · ∥v∥ · ∥w∥2, (2.2)

since H2 ⊂ L∞(T3) by the Sobolev embedding theorem. Recall that H−2 is the
dual space of H2. Consequently, B(u, v) ∈ H−2 and

∥B(u, v)∥−2 6 c|u| · ∥v∥ ∀u, v ∈ H1. (2.3)

Consider a function v( · ) ∈ L2(0,M ;H1) ∩ L∞(0,M ;H) for some M > 0. Then
Av ∈ L2(0,M ;H−1) and by (2.3),

B(v( · ), v( · )) ∈ L2(0,M ;H−2). (2.4)

A function v( · ) ∈ L2(0,M ;H1) ∩ L∞(0,M ;H) is called a weak solution of equa-
tion (2.1) if it satisfies this equation in the space of distributions D ′(0,M ;H−2) (see,
for example, [13]). Then it follows from property (2.4) that for any weak solution
v( · ) the derivative with respect to time satisfies ∂tv( · ) ∈ L2(0,M ;H−2) and, con-
sequently, v( · ) ∈ C([0,M ];H−2). Recall that v( · ) ∈ L∞(0,M ;H). Therefore, by
the well-known Lions-Magenes lemma [37] (see also [35]), the function v( · ) belongs
to the space Cw([0,M ];H) of weakly continuous functions with values in H. Thus,
for equation (2.1) the initial condition

v|t=0 = v0(x) ∈ H (2.5)

makes sense in the class of weak solutions in L2(0,M ;H1) ∩ L∞(0,M ;H).
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The classical theorem on the existence of weak solutions of the Cauchy problem
for the three-dimensional Navier-Stokes system asserts that for any v0 ∈ H there
exists a weak solution v(t) of equation (2.1) in the space L2(0,M ;H1)∩L∞(0,M ;H)
such that v(0) = v0 and v(t) satisfies the energy inequality

1
2
d

dt
|v(t)|2 + ν∥v(t)∥2 6 ⟨g, v(t)⟩, t ∈ [0,M ]. (2.6)

Inequality (2.6) means that

− 1
2

∫ M

0

|v(t)|2ψ′(t) dt+ ν

∫ M

0

∥v(t)∥2ψ(t) dt 6
∫ M

0

⟨g, v(t)⟩ψ(t) dt (2.7)

for any ψ( · ) ∈ C∞0 (]0,M [), ψ(t) > 0.
Such solutions are customarily called Leray-Hopf weak solutions (see, for exam-

ple, [13], [23], [34]–[36]).

Remark 2.1. As is well known, the question of uniqueness of a Leray-Hopf weak
solution of problem (2.1), (2.5) remains open. It is also not known whether any
weak solution satisfies the energy inequality (2.6). Nevertheless it is known that
every weak solution obtained by the Faedo-Galerkin approximation method satisfies
the energy inequality.

In this section we construct the trajectory attractor for the system (2.1). (See
more details in [23], [25].)

We consider the family K +
0 = {v(x, t), t > 0} of all possible Leray-Hopf weak

solutions of the system (2.1), that is, v( · ) ∈ Lloc
2 (R+;H1) ∩ Lloc

∞ (R+;H) and the
function v(t) := v( · , t) satisfies (2.6) for any M > 0. It follows from the existence
theorem stated above that arbitrary solutions of problem (2.1), (2.5) with an arbi-
trary initial condition v(0) ∈ H that are constructed by the Galerkin approximation
method belong to K +

0 .
We call the family K +

0 the trajectory space of the 3D Navier-Stokes system.
This family is not empty and is fairly large. It follows from equation (2.1) that
∂tv( · ) ∈ Lloc

2 (R+;H−2) for any trajectory v( · ) ∈ K +
0 .

We consider the following Banach space F b
+, which we will use to describe sets

of bounded trajectories in K +
0 :

F b
+ =

{
z( · ) | z( · ) ∈ Lb

2(R+;H1) ∩ L∞(R+;H), ∂tz( · ) ∈ Lb
2(R+;H−2)

}
(2.8)

with the norm

∥z∥Fb
+

= ∥z∥Lb
2(R+;H1) + ∥z∥L∞(R+;H) + ∥∂tz∥Lb

2(R+;H−2),

where

∥z∥2Lb
2(R+;H1) = sup

t>0

∫ t+1

t

∥z(s)∥2 ds, ∥z∥L∞(R+;H) = ess sup
t>0

|z(t)|,

∥∂tz∥2Lb
2(R+;H−2) = sup

t>0

∫ t+1

t

∥∂tz(s)∥2−2 ds.
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We introduce the semigroup of translations {T (h)} := {T (h), h > 0} acting
on a function {z(t), t > 0} by the formula T (h)z(t) = z(t + h), t > 0. Clearly,
the semigroup {T (h)} is well defined on F b

+. We consider the action of the semi-
group {T (h)} in K +

0 , the trajectory space of equation (2.1). From the definition
of K +

0 we conclude that if v( · ) ∈ K +
0 , then T (h)v( · ) = v( · + h) ∈ K +

0 for
any h > 0. Therefore,

T (h)K +
0 ⊆ K +

0 ∀h > 0. (2.9)

Proposition 2.1 (see [23]). Let g ∈ H−1 . Then K +
0 ⊂ F b

+ and for any trajectory
v( · ) ∈ K +

0 the inequality

∥T (h)v( · )∥Fb
+

6 C0∥v( · )∥2L∞(0,1;H) exp(−νλ1t) +R0 (2.10)

holds, where the constants C0 , R0 depend on ν , λ1 , and ∥g∥−1 .

In order to define a topology on the trajectory space K +
0 , we introduce the space

F loc
+ =

{
z( · ) | z( · ) ∈ Lloc

2 (R+;H1) ∩ Lloc
∞ (R+;H), ∂tz( · ) ∈ Lloc

2 (R+;H−2)
}
,

in which we define the structure of a topological space Θloc
+ with the topology

of local weak convergence generated by the following convergence: by definition
a sequence {zn( · )} ⊂ F loc

+ converges to z( · ) ∈ F loc
+ in Θloc

+ as n→ +∞ if for any
M > 0 as n→∞ we have

zn( · ) ⇁ z( · ) weakly in L2(0,M ;H1),
zn( · ) ⇁ z( · ) weak-∗ in L∞(0,M ;H),

∂tzn( · ) ⇁ ∂tz( · ) weakly in L2(0,M ;H−2).

(2.11)

Note that the topology of Θloc
+ can be described using a suitable system of neigh-

bourhoods. The space Θloc
+ is a Hausdorff topological space. Obviously F b

+ ⊆ Θloc
+ .

It is known that any ball BR = {z ∈ F b
+ | ∥u∥Fb

+
6 R} is compact in Θloc

+ . Thus,
the ball BR with the topology induced from Θloc

+ is a metrizable space, and the
corresponding metric space is complete (but the entire space Θloc

+ is not metriz-
able, see [23], [25] for the details). The fact that the topology is metrizable on
the balls BR simplifies the construction of the trajectory attractor of the semi-
group {T (h)} acting on K +

0 . The definition of the topology of Θloc
+ immediately

implies that the translation semigroup {T (h)} is continuous in Θloc
+ .

Proposition 2.2 (see [23]). The trajectory space K +
0 is sequentially closed in the

topology of Θloc
+ .

Recall that a set P ⊂ F loc
+ is said to be attracting for the semigroup {T (h)}|K +

0

in the topology of Θloc
+ if for any set B ⊂ K +

0 which is bounded (in F b
+) we have

T (h)B → P as h→ +∞ (2.12)

in the topology of Θloc
+ , that is, for any neighbourhood O(P ) (in Θloc

+ ) there exists
a number h1 = h1(B,O) > 0 such that T (h)B ⊆ O(P ) for all h > h1.

Definition 2.1. A set A0 ⊂ K +
0 is called the trajectory attractor of the semi-

group {T (h)} in the topology of Θloc
+ if
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a) the set A0 is bounded in F b
+ and compact in Θloc

+ ;
b) A0 is an attracting set of the semigroup {T (h)} in the topology of Θloc

+ ;
c) A0 is strictly invariant with respect to the translation semigroup: T (h)A0 =

A0 for all h > 0.

It follows from inequality (2.10) that the ball B2R0 = {v( · )∈F b
+ | ∥v∥Fb

+
62R0}

in the space F b
+ with radius 2R0 is an absorbing set of the semigroup {T (h)}|K +

0
,

that is, T (h)B ⊆ B2R0 for any set B ⊂ K +
0 bounded in F b

+ and for h > h2

if h2 = h2(B) is sufficiently large. It follows from Proposition 2.2 that the set
P = B2R0 ∩K +

0 is also a compact absorbing set.
As already mentioned, the ball B2R0 is a compact metric subspace of Θloc

+ on
which the continuous semigroup {T (h)} acts. Therefore it follows from the clas-
sical theorem on attractors of semigroups that the semigroup {T (h)} on K +

0 has
a compact (in Θloc

+ ) global attractor A ⊂ K +
0 ∩B2R0 :

A0 =
⋂
τ>0

[ ⋃
h>τ

T (h)P
]
Θloc

+

,

where [ · ]Θloc
+

denotes closure in Θloc
+ (see [18], [19] or [23]). This attractor is obvi-

ously a trajectory attractor of the 3D Navier-Stokes system (2.1).
Note that the following inclusions are continuous:

Θloc
+ ⊂ Lloc

2 (R+;H1−δ), Θloc
+ ⊂ C loc(R+;H−δ), 0 < δ 6 1 (2.13)

(see [13] and [23]). Therefore the trajectory attractor A0 satisfies the following
strong attraction properties: for any set B ⊂ K +

0 , bounded in F b
+, and for

any M > 0,

distL2(0,M ;H1−δ)(T (h)B,A0) → 0, distC([0,M ];H−δ)(T (h)B,A0) → 0, h→ +∞.
(2.14)

In order to describe the structure of the trajectory attractor A0, we recall the
definition of the kernel K0 of the system (2.1). The kernel K0 consists of all
the complete weak solutions {v(t), t ∈ R} of this system that are bounded in
the space F b and satisfy the energy inequality (2.6) on the whole of the time
axis R. The norm in F b is defined in the same way as the norm in F b

+ (see (2.8)),
replacing R+ by R. It was proved in [23] that the trajectory attractor A0 of the
three-dimensional Navier-Stokes system coincides with the restriction of the ker-
nel K0 of equation (2.1) to R+:

A0 = Π+K0. (2.15)

Here, Π+v(t) = {v(t), t > 0} for any function {v(t), t ∈ R}. The set K0 is bounded
in F b and compact in Θloc. The topology of Θloc is defined similarly to that of Θloc

+ ,
replacing the intervals (0,M) by (−M,M).
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§ 3. The well-posedness of the Cauchy problem
and global attractors for general α-models

We fix α > 0. We analyze the solutions (trajectories) of the system (1.1), (1.2)

∂tv = −νAv − PF (u, v) + g(x), (3.1)

v = u+ α2Au, (3.2)

together with the initial condition

u|t=0 = u0. (3.3)

The following lemma lets us extend the operator PF (u, v) continuously to the larger
spaces H−1 and H−2 by analogy with the extension to these spaces of the bilinear
operator B(u, v) in the Navier-Stokes system (2.1). We also introduce the operator

F0(u, y) = F (u, u+ y)− F (u, u). (3.4)

Lemma 3.1. Given the vector fields u, v, w ∈ H , the following inequalities hold:

|⟨F (u, v), w⟩| 6 c
(
|u|1/2∥u∥1/2∥v∥+ ∥u∥ |v|1/2∥v∥1/2 + |u|1/2∥u∥3/2

)
∥w∥

∀u, v, w ∈ H1; (3.5)

|⟨F (u, v), w⟩| 6 c(∥u∥ · |v|+ ∥u∥ · |u|)|Aw| ∀u ∈ H1, v ∈ H, w ∈ H2, (3.6)

|⟨F0(u, y), w⟩| 6 c∥u∥ · |y| · |Aw| ∀u ∈ H1, y ∈ H, w ∈ H2. (3.7)

Proof. The operator F (u, v) has the form of a sum of operator monomials (1.3) and
so it is sufficient to prove these inequalities for operators with vector components
of the form uk ∂xjv

n, vk ∂xju
n and uk ∂xju

n. Suppose that u, v, w ∈ H1; then from
Hölder’s inequality we obtain∣∣∣∣∫

T3
uk(x) ∂xj

vn(x)wi(x) dx
∣∣∣∣ 6 c∥uk∥L3∥ ∂xj

vn∥L2∥wi∥L6 .

Recall the following Sobolev inequalities in T3:

∥ϕ∥L3 6 c∥ϕ∥1/2
L2
∥ϕ∥1/2

H1 , ∥ϕ∥L6 6 c∥ϕ∥H1 ∀ϕ ∈ H1. (3.8)

Then we conclude from the preceding inequality that∣∣∣∣∫
T3
uk ∂xj

vnwi dx

∣∣∣∣ 6 c|u|1/2∥u∥1/2∥v∥ ∥w∥.

Similar estimates are derived for vk ∂xju
n and uk ∂xju

n. Inequality (3.5) is proved.
Suppose that u ∈ H1, v ∈ H, w ∈ H2. In the integral for the monomial uk ∂xj

vn,
we integrate by parts:∫

T3
uk(x) ∂xjv

n(x)wi(x) dx = −
∫

T3
vn(x) ∂xj

(
uk(x)wi(x)

)
dx

= −
∫

T3
vn(x) ∂xj

uk(x)wi(x) dx−
∫

T3
vn(x)uk(x) ∂xj

wi(x) dx.
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We apply Hölder’s inequality, Sobolev’s inequalities (3.8) and also use

∥ϕ∥L∞ 6 c∥ϕ∥H2 ∀ϕ ∈ H2,

and obtain the following estimates:∣∣∣∣∫
T3
uk ∂xj

vnwi dx

∣∣∣∣ 6

∣∣∣∣∫
T3
vn ∂xj

ukwi dx

∣∣∣∣ +
∣∣∣∣∫

T3
vnuk ∂xj

wi dx

∣∣∣∣
6 c∥vn∥L2∥ ∂xj

uk∥L2∥wi∥L∞ + c∥vn∥L2∥uk∥L3∥ ∂xj
wi∥L6

6 c1|v| · ∥u∥ · |Aw|+ c1|v| · |u|1/2∥u∥1/2|Aw| 6 c2|v| · ∥u∥ · |Aw|. (3.9)

The integrals in the form ⟨F (u, v), w⟩ corresponding to the monomials vk ∂xj
un

and uk ∂xj
un are estimated directly:∣∣∣∣∫

T3
vk ∂xju

nwi dx

∣∣∣∣ 6 c∥vk∥L2∥ ∂xju
n∥L2∥wi∥L∞ 6 c1|v| · ∥u∥ · |Aw|,∣∣∣∣∫

T3
uk ∂xj

unwi dx

∣∣∣∣ 6 c∥uk∥L2∥ ∂xj
un∥L2∥wi∥L∞ 6 c1|u| · ∥u∥ · |Aw|.

(3.10)

Inequality (3.6) is proved.
In order to verify (3.7), we use the representation (1.3), which implies that the

components of the difference F0(u, y) = F (u, u + y) − F (u, u) are defined by the
formula

F i
0(u, y) =

3∑
k,j,n=1

Ci
kjnu

k ∂xj
yn +Di

kjny
k ∂xj

un, i = 1, 2, 3, (3.11)

that is, these are linear combinations of monomials only of the form uk ∂xjy
n

and yk ∂xj
un. It remains to use inequalities (3.9) and (3.10) for v( · ) = y( · ) and

we obtain inequality (3.7).

The space of functions in which we construct a solution of problem (3.1)–(3.3)
depends on the class of the α-model under consideration.

First we consider an α-model of class I, for which ⟨F (u, v), v⟩ = 0 for all u, v∈H1.
Suppose that we are given a function u( · ) ∈ L2(0,M ;H3) ∩ L∞(0,M ;H2).

The corresponding function v in equation (3.2) satisfies

v( · ) = (I + α2A)u( · ) ∈ L2(0,M ;H1) ∩ L∞(0,M ;H).

We consider weak solutions v(x, t) of (3.1), (3.2), which belong to the space
L2(0,M ;H1) ∩ L∞(0,M ;H). It follows from inequality (3.5) that

PF (u( · ), v( · )) ∈ L2(0,M ;H−1).

Furthermore, Av( · ) ∈ L2(0,M ;H−1). Then it follows from equation (3.1) that
∂tv( · ) ∈ L2(0,M ;H−1), and therefore, ∂tu( · ) ∈ L2(0,M ;H1). Equation (3.1)
can be considered in the space of distributions D(0,M ;H−2) (see [13]). By the
Lions-Magenes lemma, u( · ) ∈ Cw([0,M ];H2); therefore the initial condition (3.3)
makes sense for u0 ∈ H2.

We now state the existence and uniqueness theorem for weak solutions of the
Cauchy problem for an α-model of class I.
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Theorem 3.1. Suppose that g ∈ H and the operator F (u, v) belongs to class I
(see (1.6)). Then for any u0 ∈ H2 and for any M > 0 the problem (3.1)–(3.3) has
a unique solution in the space of functions

u( · ) ∈ L2(0,M ;H3) ∩ L∞(0,M ;H2), ∂tu( · ) ∈ L2(0,M ;H1);

furthermore, the corresponding function v( · ) = (I + α2A)u( · ) satisfies

v( · ) ∈ L2(0,M ;H1) ∩ L∞(0,M ;H), ∂tv( · ) ∈ L2(0,M ;H−1),

and the following energy identity holds:

1
2
d

dt
|v(t)|2 + ν∥v(t)∥2 = ⟨g, v(t)⟩, t > 0, (3.12)

in which the function |v(t)|2 , t > 0, is absolutely continuous; identity (3.12) holds
for almost all t > 0 and the function v( · ) belongs to C([0,M ];H).

We now consider an α-model of class II. By definition

⟨F (u, v), u⟩ = 0 for all u, v ∈ H1.

We fix a function

u( · ) ∈ L2(0,M ;H2) ∩ L∞(0,M ;H1).

The corresponding function is

v( · ) = (I + α2A)u( · ) ∈ L2(0,M ;H) ∩ L∞(0,M ;H−1).

From (3.6) we obtain B(u( · ), v( · )) ∈ L2(0,M ;H−2). Furthermore, obviously,
Av ∈ L2(0,M ;H−2). Consequently, if v( · ) satisfies (3.1), then ∂tv∈L2(0,M ;H−2)
and therefore, ∂tu ∈ Lloc

2 (0,M ;H). We consider equation (3.1) in the space
of distributions D(0,M ;H−2). It follows from the Lions-Magenes lemma that
u( · ) ∈ Cw([0,M ];H1), that is, the initial condition (3.3) makes sense for u0 ∈ H1.

For class II we introduce the following auxiliary function:

w( · ) = (I + α2A)1/2u( · ) =⇒ v( · ) = (I + α2A)1/2w( · ).

Then, obviously,

w( · ) ∈ L2(0,M ;H1) ∩ L∞(0,M ;H), ∂tw( · ) ∈ L2(0,M ;H−1).

The function w(x, t) occupies an ‘intermediate’ position between u(x, t) and v(x, t).
Note that

|w(t)|2 = |u(t)|2 + α2∥u(t)∥2, ∥w(t)∥2 = ∥u(t)∥2 + α2|Au(t)|2, (3.13)

|v(t)|2 = |w(t)|2 + α2∥w(t)∥2, ∥v(t)∥2 = ∥w(t)∥2 + α2|Aw(t)|2. (3.14)

We have the following theorem on the existence and uniqueness of solutions of
the Cauchy problem for α-models of class II.
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Theorem 3.2. Suppose that g ∈ H and the operator F (u, v) belongs to class II
(see (1.7)). Then for any u0 ∈ H1 and any M > 0 the problem (3.1)–(3.3) has
a unique solution in the space

u( · ) ∈ L2(0,M ;H2) ∩ L∞(0,M ;H1), ∂tu( · ) ∈ L2(0,M ;H);

furthermore, the functions v( · ) = (I + α2A)u( · ), w( · ) = (I + α2A)1/2u( · ) satisfy

v( · ) ∈ L2(0,M ;H) ∩ L∞(0,M ;H−1), ∂tv( · ) ∈ L2(0,M ;H−2),

w( · ) ∈ L2(0,M ;H1) ∩ L∞(0,M ;H), ∂tv( · ) ∈ L2(0,M ;H−1),

and the energy identity

1
2
d

dt
|w(t)|2 + ν∥w(t)∥2 = ⟨g, u(t)⟩, t > 0, (3.15)

holds for the function w( · ). The function |w(t)|2 , t > 0, is absolutely continuous,
(3.15) holds for almost all t > 0, and the function w( · ) belongs to C([0,M ];H).

Remark 3.1. Note that for α-models of class II we did not succeed in proving the
energy identity for the function v( · ) = (I + α2A)u( · ) (as we did for class I), but
only for the intermediate function w( · ) = (I + α2A)1/2u( · ), which is smoother.
Therefore the convergence of α-models of class II to the exact 3D Navier-Stokes
system turns out to be weaker than that for α-models of class I (see § 4 and § 5).

Theorems 3.1 and 3.2 are proved in a fairly standard way, using the Galerkin
approximation method. The proof repeats the well-known arguments for the exis-
tence and uniqueness theorem for a solution for the 2D Navier-Stokes system
(see [19], [35] and [36]). We also note that the proof of Theorem 3.1 for the Leray
α-model of class I was given in [8], and the proof of Theorem 3.2 for the LANS-α
model of class II can be found in [5]. For general α-models of these classes the proof
is similar.

We now prove identities (3.12) and (3.15) for α-models of class I and class II.
For class I we take the inner product in H of equation (3.1) with the function v(t)

and use the fact that v( · ) ∈ L2(0,M ;H1) and ∂tv( · ) ∈ L2(0,M ;H−1). We now
apply Lemma 1.2 from Ch. 3 in [35], which implies that the function |v(t)|2 is
absolutely continuous, almost everywhere differentiable, and

d

dt
|v(t)|2 = 2⟨v(t), ∂tv(t)⟩.

For class I, from property (1.6) we obtain〈
PF (u(t), v(t)), v(t)

〉
= 0

for t > 0, since, as already mentioned, PF (u( · ), v( · )) ∈ L2(0,M ;H−1). It remains
to use the identity ⟨v(t), Av(t)⟩ = ∥v(t)∥2 and obtain (3.12).

For class II we take the inner product inH of equation (3.1) with the function u(t)
and use the fact that u ∈ L2(0,M ;H2) and ∂tu( · ) ∈ L2(0,M ;H). Consequently,

A1/2u ∈ L2(0,M ;H1), ∂tA
1/2u( · ) ∈ L2(0,M ;H−1).
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Then from the same lemma we obtain

d

dt
|u(t)|2 = 2⟨u, ∂tu⟩,

d

dt
∥u(t)∥2 = 2⟨A1/2u, ∂tA

1/2u⟩ = 2⟨Au, ∂tu⟩ = 2⟨u, ∂tAu⟩.

For class II we use property (1.7) F (u( · ), v( · )) ∈ L2(0,M ;H−2) and obtain〈
PF (u(t), v(t)), u(t)

〉
= 0

for t > 0. To complete the proof of identity (3.15) we use equations (3.13), (3.14)
and apply the identity (Av, u) = ∥u(t)∥2 + α2|Au(t)|2.

In the proof of Theorems 3.1 and 3.2 we also derive a priori estimates necessary
for solutions, which can be conveniently stated in the form of consequences of the
energy identities (3.12) and (3.15). These are proved by straightforward integration
of these equations, using Poincaré’s inequality (0.1). We state these estimates in
the same form for both classes of models.

Corollary 3.1. Let u(t) be a solution of the problem (3.1)–(3.3). We introduce the
function z(t) = v(t) = (I+α2A)u(t) for class I, and z(t) = w(t) = (I+α2A)1/2u(t)
for class II. Then the following inequalities hold:

|u(t)|2 6 |z(t)|2 6 |z(0)|2e−νλ1t +
|g|2

ν2λ2
1

, (3.16)

ν

∫ t+1

t

∥u(s)∥2 ds 6 ν

∫ t+1

t

∥z(s)∥2 ds 6 |z(0)|2e−νλ1t +
|g|2

(νλ1)2
+
|g|2

νλ1
. (3.17)

Note that estimates (3.16) and (3.17) do not depend explicitly on α.
To give a complete picture we also state the smoothing property for solutions of

α-models; the proof is fairly standard.

Proposition 3.1. If u( · ) is a solution of the problem (3.1)–(3.3), for class I
the function is z(t) = (I + α2A)u(t), whilst for class II the function is
z(t) = (I + α2A)1/2u(t), then z(t) satisfies the inequality

t∥z(t)∥2 + ν

∫ t

0

s|Az(s)|2 ds 6 Ψ(α, t, |z(0)|, |g|) ∀ t > 0. (3.18)

In this inequality, Ψ(α, z, r1, r2) is a monotonically increasing function in every
argument z , r1 , r2 , and Ψ(α, z, r1, r2) → +∞ as α→ 0.

To conclude this section we construct the global attractors for general α-models
in both classes for a fixed α > 0.

We construct a semigroup {Sα(t)} in H by the following rule. For an α-model of
class I, for any z0 ∈ H we set Sα(t)z0 = (I+α2A)u(t), where u(t) is the solution of
problem (3.1)–(3.3) with the initial condition u0 = (I +α2A)−1z0. For an α-model
of class II, for an arbitrary z0 ∈ H we set Sα(t)z0 = (I+α2A)1/2u(t), where u(t) is
the solution of problem (3.1)–(3.3) with the initial condition u0 = (I+α2A)−1/2z0.
It follows from Theorems 3.1 and 3.2 that the semigroup {Sα(t)} is well defined
in H for α-models in both classes.



Approximating the trajectory attractor of the 3D system 625

It follows from inequality (3.16) that the ball BR0 in the space H with radius
R0 = 2|g|/νλ1 is an absorbing set for the semigroup we have constructed. The
set P = Sα(1)BR0 is also absorbing, and from (3.18) we conclude that this set is
bounded in the space H1, that is, the semigroup under consideration has a compact
absorbing set in H. It is easy to verify that this semigroup is continuous in H.

It follows from the facts listed above that there exists a global attractor Aα

in the space H for the semigroup {Sα(t)}, that is, the set Aα is compact in H,
Sα(t)Aα = Aα for t > 0, and distH(Sα(t)B,Aα) → 0 as t → ∞ for any set of
initial data B = {z0} bounded in H. Here we used the general theorem on global
attractors of semigroups (see, for example, [18], [19] or [23]). Note that for some
concrete α-models of classes I and II global attractors were constructed in [5], [8]
and [10]–[12].

Finally we point out that it is also possible to construct a global attractor with
respect to the more smooth variable w( · ) for an α-model of class I, as it is for
class II; this global attractor obviously coincides with (I+α2)−1/2Aα and is bounded
in the space H2, while for an α-model of class II its global attractor Aα with
respect to the variable w( · ) is merely bounded in H1. This shows that there
is a substantial difference between models of different classes with respect to the
degree of smoothing of the exact 3D Navier-Stokes system, which these models are
designed to approximate. There is a similar difference in the comparison of their
trajectory attractors in the limit as α→ 0+ (see § 4 and § 5).

§ 4. The convergence of solutions of α-models

We need estimates of the derivatives ∂tv( · ) and ∂tw( · ) for solutions of the
α-models under consideration that do not depend explicitly on time, similar to the
estimates obtained for the functions v( · ) and w( · ) in Corollary 3.1.

Proposition 4.1. Let u( · ) be a solution of problem (3.1)–(3.3) and let the function
be v( · ) = (I + α2A)u( · ). Then for class I,

(∫ t+1

t

∥∂tv(s)∥2−2 ds

)1/2

6 C1|v(0)|2e−νλ1t +R2
1, (4.1)

and for class II,

(∫ t+1

t

∥∂tw(s)∥2−2 ds

)1/2

6

(∫ t+1

t

∥∂tv(s)∥2−2 ds

)1/2

6 C1|w(0)|2e−νλ1t +R2
1,

(4.2)
where w(t) = (I + α2A)1/2u(t), the constant C1 depends on λ1 and ν , while R1

depends on λ1 , ν and |g|, and the quantities C1 and R1 are independent of α.

Proof. We verify (4.2) for class II. The first inequality for ∂tw( · ) and ∂tv( · ) follows
from (3.14). We further use inequality (3.6), from which it follows that

∥PF (u, v)∥−2 6 c(∥u∥ · |v|+ |u| · ∥u∥) ∀u ∈ H1, v ∈ H. (4.3)
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Substituting in the solution u(t) of problem (3.1)–(3.3) and the corresponding func-
tion v = u+ α2Au, in view of (3.13) we obtain

∥PF (u(t), v(t))∥−2 6 2c
(
|u(t)| · ∥u(t)∥+ α∥u(t)∥α|Au|

)
6 2c

(
|u(t)|2 + α2∥u(t)∥2

)1/2(∥u(t)∥2 + α2|Au|
)1/2 = 2c|w(t)| · ∥w(t)∥. (4.4)

We now apply estimate (3.16), with |z(t)| = |w(t)| for class II, and obtain

∥PF (u(t), v(t))∥2−2 6 4c2
{
|w(0)|2e−νλ1t +

|g|2

(νλ1)2

}
∥w(t)∥2.

We integrate this inequality over the segment [t, t + 1], use the second inequality
in (3.17), with ∥z(t)∥ = ∥w(t)∥ for class II, and obtain∫ t+1

t

∥PF (u(s), v(s))∥2−2 ds 6 4c2
1
ν

{
|w(0)|2e−νλ1t +

|g|2

(νλ1)2
+
|g|2

νλ1

}2

.

Consequently,(∫ t+1

t

∥PF (u(s), v(s))∥2−2 ds

)1/2

6 C|w(0)|2e−νλ1t +R2, (4.5)

where C = 2cν−1/2 and R2 = |g|2/(νλ1)2 + |g|2/νλ1.
From the estimate

∥Av∥2−2 = |v|2 = |u+ α2Au|2 6 (|u|+ α2|Au|)2

6 2(|u|2 + α4|Au|2) 6 2(|u|2 + α2|Au|2)

for α 6 1 we conclude that∫ t+1

t

∥Av(s)∥2−2 ds 6 2
∫ t+1

t

(|u(s)|2 + α2|Au(s)|2) ds (4.6)

= 2
∫ t+1

t

∥w(s)∥2 ds 6 C|w(0)|2e−νλ1t +R2 (4.7)

for suitable quantities C and R. Here we have once more used (3.17) for z( · )=w( · ).
The derivative ∂tv( · ) satisfies equation (3.1), therefore the second inequality

in (4.2) for ∂tv( · ) is obtained from estimates (4.5) and (4.7).
Inequality (4.1) for class I is proved in a similar fashion if we extend the esti-

mates (4.4) and (4.6) using the inequalities |w(t)| 6 |v(t)| and ∥w(t)∥ 6 ∥v(t)∥
(see (3.13)) and then use the stronger inequalities (3.16) and (3.17) established for
class I.

We now combine the inequalities in Proposition 4.1 and Corollary 3.1 in order to
obtain estimates for solutions of α-models in the norm of the space F b

+ (see (2.8)).
Note that the inequalities

|u| 6 |w| 6 |v|, ∥u∥ 6 ∥w∥ 6 ∥v∥, ∥∂tu∥−2 6 ∥∂tw∥−2 6 ∥∂tv∥−2

(see (3.13) and (3.14)) imply that

∥u( · )∥Fb
+

6 ∥w( · )∥Fb
+

6 ∥v( · )∥Fb
+
. (4.8)
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Proposition 4.2. Let u(t) be a solution of the α-model (3.1), (3.2). Let z(t) =
v(t) = (I + α2A)u(t) for class I, and z(t) = w(t) = (I + α2A)1/2u(t) for class II.
Then the function z( · ) belongs to F b

+ and the following inequality holds

∥T (h)u( · )∥Fb
+

6 ∥T (h)z( · )∥Fb
+

6 C2|z(0)|2 exp(−νλ1h) +R2
2. (4.9)

The quantities C2 and R2 are independent of α.

By analogy with the trajectory space K +
0 for the 3D Navier-Stokes system, which

was introduced in § 2, we define the trajectory space K +
α for a given α-model of

class I or II.

Definition 4.1. For class I, the space K +
α consists of all functions

K +
α =

{
vα(t) = (I + α2A)uα(t), t > 0 | uα(0) ∈ H2

}
,

where uα(t) is the solution of problem (3.1)–(3.3) with the initial condition
uα(0) ∈ H2.

For class II the trajectory space K +
α consists of all functions

K +
α =

{
wα(t) = (I + α2A)1/2uα(t), t > 0 | uα(0) ∈ H1

}
,

where uα(t) is the solution of problem (3.1)–(3.3) with the initial condition
uα(0) ∈ H1.

We need the energy identities (3.12) and (3.15), which we rewrite in an equivalent
integral form similar to the energy inequality (2.7) for the 3D Navier-Stokes system.

Proposition 4.3. In class I, for any function v ∈ K +
α we have

−1
2

∫ ∞

0

|v(t)|2ψ′(t) dt+ ν

∫ ∞

0

∥v(t)∥2ψ(t) dt =
∫ ∞

0

⟨g, v(t)⟩ψ(t) dt (4.10)

for any ψ ∈ C∞0 (R+), and in class II, for any function w ∈ K +
α we have

−1
2

∫ ∞

0

|w(t)|2ψ′(t) dt+ ν

∫ ∞

0

∥w(t)∥2ψ(t) dt =
∫ ∞

0

⟨g, u(t)⟩ψ(t) dt. (4.11)

We consider the topological space Θloc
+ introduced in § 2. Recall that F b

+ ⊂ Θloc
+ .

Lemma 4.1. Let the sequences {un( · )} ⊂ F b
+ and {αn} ⊂ (0, 1) be such that

αn → 0. Set zn = (I + α2
nA)un or zn = (I + α2

nA)1/2un . If it is known that
the sequence {zn( · )} is bounded in F b

+ and zn( · ) → V ( · ) in the topology of Θloc
+ ,

where V ( · ) ∈ F b
+ , then {un( · )} is also bounded in F b

+ and un( · ) → V ( · ) in the
topology of Θloc

+ .

Proof. The fact that the sequence {un( · )} is bounded in F b
+ follows from inequal-

ity (4.8).
We now prove that un( · ) → V ( · ) in Θloc

+ . Consider the case zn = (I +α2
nA)un.

By hypothesis, zn( · ) → V ( · ) in Θloc
+ . Since {un( · )} is bounded in F b

+ and any ball
in F b

+ is compact in the topology of Θloc
+ , by passing to a subsequence we can assume

that un( · ) → U( · ) in Θloc
+ for some function U ∈ F b

+. In particular, for any M > 0
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we have the weak convergence un( · ) ⇁ U( · ) in L2(0,M ;H1) (see (2.11)) and,
consequently, Aun( · ) ⇁ AU( · ) weakly in L2(0,M ;H−1). By the hypothesis of
the lemma, αn → 0. Then, obviously, α2

nAun( · ) ⇁ 0 weakly in L2(0,M ;H−1).
Recall that

un + α2
nAun = zn.

Passing to the weak limit on both sides of the equation we have obtained, we find
that U( · ) = V ( · ). Consequently, un( · ) → V ( · ) in Θloc

+ .
The case zn = (I + α2

nA)1/2un was proved in [31], Lemma 3.1.

We now state the main theorem of this section. For an arbitrary α-model of
class I or II, we denote by zn( · ) elements of its trajectory space K +

αn
.

Theorem 4.1. Consider some α-model of class I or II with trajectory spaces K +
α .

Suppose that zn( · ) ⊂ K +
αn

, n ∈ N, is a sequence of functions such that {zn( · )}
is bounded in F b

+ and αn → 0, and it is known that zn( · ) → V ( · ) in the topol-
ogy of Θloc

+ . Then the function V (x, t) is a Leray-Hopf weak solution of the 3D
Navier-Stokes system, that is, the solution satisfies the energy inequality (2.7)
and, consequently, V ( · ) ∈ K +

0 , where K +
0 is the trajectory space of the Navier-

Stokes system.

Proof. We prove the theorem for class I. Let vn( · ) = zn( · ) be the given sequence
of trajectories in K +

αn
. By the hypothesis of the theorem,

∥vn( · )∥Fb
+

6 C ∀n ∈ N. (4.12)

Therefore the given convergence vn( · )→V ( · ) in Θloc
+ implies ∥V ( · )∥Fb

+
6C, that

is, V ∈ F b
+.

Let un( · ) denote the solution of the system (3.1), (3.2) that corresponds to the
function vn( · ). Then it follows from Lemma 4.1 that un( · ) is bounded in F b

+ and

un( · ) → V ( · ) in the topology of Θloc
+ . (4.13)

We claim that V ( · ) is a weak solution of the 3D Navier-Stokes system on any
interval (0,M). The function vn( · ) satisfies the equation

∂tvn = −νAvn − PF (un, vn) + g(x) (4.14)

in the space D ′(0,M ;H−2), and vn = un + α2
nAun. By the hypothesis of the

theorem,
vn( · ) → V ( · ) (4.15)

weakly in L2(0,M ;H1), weak-∗ in L∞(0,M ;H), and

∂tvn( · ) → ∂tV ( · ) (4.16)

weakly in L2(0,M ;H−2). Then the convergences (4.15) and (4.16) also hold in the
weaker topology of the space D ′(0,M ;H−2). It follows from (4.15) that

Avn( · ) → AV ( · ) (4.17)
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weakly in L2(0,M ;H−1), and so also in D ′(0,M ;H−2). Consequently, in order to
obtain

∂tV = −νAV −B(V, V ) + g(x) (4.18)

from (4.14), it is sufficient to prove that

PF (un, vn) → B(V, V ) in D ′(0,M ;H−2). (4.19)

We substitute in F (u, u+ y) = F0(u, y) + F (u, u) (see (3.4)). Then

PF (un, vn) = PF (un, un + α2
nAun) = PF0(un, α

2
nAun) + PF (un, un).

It follows from condition (1.4) that PF (un, un) = B(un, un), that is,

PF (un, vn) = PF0(un, α
2
nAun) +B(un, un). (4.20)

It follows from inequality (3.5) that

∥PF0(un, α
2
nAun)∥−2 6 c∥un∥ · |α2

nAun| = cα2
n∥un∥ · |Aun|. (4.21)

By the Cauchy-Bunyakovskii inequality we conclude that

αn

∫ M

0

∥un(t)∥αn|Aun(t)| dt 6 αn

(∫ M

0

∥un(t)∥2 dt
)1/2(∫ M

0

α2
n|Aun(t)|2 dt

)1/2

.

(4.22)
Recall that

∥v∥2 = ∥u+ α2Au∥2 = ∥u∥2 + 2α2|Au|2 + α4∥Au∥2.

Therefore it follows from (4.9) (see also the second inequality in (3.17)) that∫ M

0

(
∥un(t)∥2 + α2

n|Aun(t)|2
)
dt 6

∫ M

0

∥vn(t)∥2 dt 6 C1 ∀n ∈ N, (4.23)

since vn( · ) is bounded in F b
+ by hypothesis. Consequently,∫ M

0

∥PF0(un(t), α2
nAun(t))∥−2 dt 6 αnC2 → 0, αn → 0,

by (4.21)–(4.23), that is, PF0(un, α
2
nAun) → 0 strongly in L1(0,M ;H−2), and

a fortiori in D ′(0,M ;H−2).
We now find the limit in D ′(0,M ;H−2) of the second summand B(un, un)

in (4.20). It follows from (4.13) that un(t) ⇁ V (t) weakly in L2(0,M ;H1) and
the sequence {un( · )} is bounded in this space. Furthermore, ∂tun(t) ⇁ ∂tV (t)
weakly in L2(0,M ;H−2) and {∂tun( · )} is also bounded there. Applying Aubin’s
compactness theorem (see [38], [39], [13]) we see that un(t) → V (t) strongly in
L2(0,M ;H). Recall that L2(0,M ;H) ⊂ L2(T3× [0,M ])3; therefore we can assume
that

un(x, t) → V (x, t) as n→∞, for almost all (x, t) ∈ T3 × [0,M ]. (4.24)
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The operator B(u, u) can be written in the form

B(un, un) = P

3∑
j=1

∂xj
(uj

nun). (4.25)

It follows from (4.24) that for almost all (x, t) ∈ T3 × [0,M ],

uj
n(x, t)un(x, t) → V j(x, t)V (x, t), n→∞. (4.26)

Recall that {un( · )} is bounded in L2(0,M ;H1) and in L∞(0,M ;H). Then from
Sobolev’s inequality

∥u∥L4 6 c∥u∥3/4|u|1/4 ∀u ∈ H1

we conclude that the sequence {uj
n( · )un( · )} is bounded in L4/3(0,M ;H), and

also in the space L4/3(T3 × [0,M ])3. We apply the well-known result on weak
convergence in the space Lp (Lemma 1.3 in Ch. 1 of [13]) and deduce from (4.26)
that

uj
n( · )un( · ) ⇁ V j( · )V ( · ) as n→∞, weakly in L4/3(T3 × [0,M ])3,

and it converges weakly in L4/3(0,M ;H). Then from (4.25) we obtain that

B(un, un) ⇁ B(V, V ) weakly in L4/3(0,M ;H−1),

and hence also in the space D ′(0,M ;H−2). We have proved the convergence (4.19)
and we have established that the function V ( · ) satisfies the 3D Navier-Stokes sys-
tem (4.18). It remains to verify that V ( · ) is a Leray-Hopf weak solution, that is,
it satisfies the energy inequality (2.7).

Note that vn( · ) satisfies the energy identity (4.10):

−1
2

∫ M

0

|vn(t)|2ψ′(t) dt+ ν

∫ M

0

∥vn(t)∥2ψ(t) dt =
∫ M

0

⟨g, vn(t)⟩ψ(t) dt (4.27)

for any ψ ∈ C∞0 (0,M). Now suppose that ψ(t) > 0 for t ∈ [0,M ]. By Aubin’s
theorem it follows from (4.15) and (4.16) that vn(t) → V (t) strongly in L2(0,M ;H).
Then, obviously, ∫ M

0

⟨g, vn(t)⟩ψ(t) dt→
∫ M

0

⟨g, V (t)⟩ψ(t) dt. (4.28)

Furthermore, for real functions we have |vn(t)| → |V (t)| strongly in L2(0,M) as
n→∞. In particular, passing if necessary to a subsequence, we can assume that

|vn(t)| → |V (t)| for almost all t ∈ [0,M ].

Consider the functions |vn(t)|2ψ′(t), t ∈ [0,M ]. It follows from inequality (4.12)
(see also (3.16)) that these functions have an integrable majorant on [0,M ]. From
the Lebesgue dominated convergence theorem we conclude that∫ M

0

|vn(t)|2ψ′(t) dt→
∫ M

0

|V (t)|2ψ′(t) dt. (4.29)
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Note that vn(t)
√
ψ(t) ⇁ V (t)

√
ψ(t) weakly in the space L2(0,M ;H1) (this follows

from (4.13)). Consequently,∫ M

0

∥V (t)∥2ψ(t) dt 6 lim inf
n→∞

∫ M

0

∥vn(t)∥2ψ(t) dt. (4.30)

Using relations (4.28)–(4.30) we pass to the limit in (4.27) and obtain the required
inequality

−1
2

∫ M

0

|V (t)|2ψ′(t) dt+ ν

∫ M

0

∥V (t)∥2ψ(t) dt 6
∫ ∞

0

⟨g, V (t)⟩ψ(t) dt (4.31)

for any ψ ∈ C∞0 (0,M), ψ > 0.
We have proved that V ( · ) ∈ K +

0 , where K +
0 is the trajectory space of the

Navier-Stokes system. This gives the proof of Theorem 4.1 for models of class I.
For α-models of class II the proof of Theorem 4.1 is given in [31] for the special

case of the LANS-α model. But that proof only uses the characteristic proper-
ties (1.4) and (1.7) of models of class II, the a priori estimate (4.9), and inequal-
ities (3.6) and (3.7). Therefore the arguments in that paper can be extended in
a straightforward fashion to the general case of α-models of class II. Thus, the proof
of Theorem 4.1 is complete.

§ 5. The convergence of trajectories of α-models
to the trajectory attractor of the 3D Navier-Stokes system

We consider the trajectory attractor A0 of the three-dimensional Navier-Stokes
system (2.1), which was constructed in § 2. Recall that A0 ⊂ K +

0 , the set A0 is
bounded in F b

+ and compact in Θloc
+ .

Let K0 denote the kernel of the system (2.1) consisting of all bounded (in the
norm of F b) complete weak solutions {v(t), t ∈ R} of this system that are bounded
in the space F b and satisfy the energy inequality (2.6) on the entire time axis R.
It was shown in § 2 that A0 = Π+K0.

Consider the trajectory space K +
α of some α-model (3.1), (3.2) of class I or II

for α > 0. Recall that for models of class I the space K +
α consists of the trajectories

zα(t) = vα(t) = (I + α2A)uα(t), where uα(t) is the solution of problem (3.1)–(3.3)
with some initial condition in H2, and for models of class II the space K +

α consists
of the trajectories zα(t) = wα(t) = (I +α2A)1/2uα(t), where the solution uα(t) has
initial condition in H1. In what follows we do not distinguish between the classes
of the α-models under consideration.

Consider the shift operators T (h), h > 0, acting on K +
α according to the formula

T (h)z(t) = z(t+ h), t > 0. Let Bα = {zα(t), t > 0} denote families of trajectories
in K +

α that are bounded with respect to the norm of F b
+. We state and prove the

main theorem of the paper.

Theorem 5.1. Suppose a family of sets {Bα}α∈(0,1] , Bα = {zα(t), t > 0} ⊂ K +
α ,

that are uniformly bounded (with respect to α) in F b
+ is given:

∥Bα∥Fb
+

6 R ∀α ∈ (0, 1]. (5.1)
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Then the family of shifted trajectories {T (h)Bα}α∈(0,1] converges to the trajec-
tory attractor A0 = Π+K0 of the Navier-Stokes system in the topology of Θloc

+

as h→ +∞ and as α→ 0+:

T (h)Bα → A0, h→ +∞, α→ 0+ in Θloc
+ , (5.2)

that is, for any neighbourhood O(A0) of the set A0 in the topology of Θloc
+ there

exist h1 = h1(O) and α1 = α1(O) such that

T (h)Bα ⊂ O(A0) ∀h > h1, ∀α, 0 < α 6 α1.

Proof. Suppose that this is not the case, and relation (5.2) does not hold. Then
there exist a neighbourhood O(A0) in Θloc

+ and sequences αn → 0 and hn → +∞
such that

T (hn)Bαn ̸⊂ O(A0).

Consequently, there are trajectories zαn
( · ) ∈ Bαn

such that the functions

Zαn(t) = T (hn)zαn(t) = zαn(t+ hn)

do not belong to the neighbourhood O(A0):

Zαn
( · ) /∈ O(A0). (5.3)

The function Zαn(t) is defined on the half-line [−hn,+∞). Consider the corres-
ponding function uαn( · ) which is a solution of the α-model (3.1), (3.2) for α = αn

with respect to the variable u (that is, uαn
(t) = (I +α2

nA)−1Zαn
(t) for class I, and

uαn
(t) = (I + α2

nA)−1/2Zαn
(t) for class II). Obviously, uαn

(t) is a solution of the
system (3.1), (3.2) on the half-line [−hn,+∞), since (3.1), (3.2) is an autonomous
system and Zαn(t) is the reverse time shift of the function zαn(t) by the time inter-
val hn. Furthermore, from the condition of uniform boundedness (5.1) we conclude
that

sup
t>−hn

|Zαn
(t)|+

(
sup

t>−hn

∫ t+1

t

∥Zαn
(s)∥2 ds

)1/2

+ sup
t>−hn

(∫ t+1

t

∥∂tZαn
(s)∥2−2 ds

)1/2

6 R. (5.4)

It follows from the inequality thus obtained that the sequence {Zαn
( · )} is weakly

compact in the space

Θ−M,M := L2(−M,M ;H1) ∩ L∞(−M,M ;H) ∩
{
u | ∂tu ∈ L2(−M,M ;H−2)

}
for every M , if αn is considered with indices n such that hn > M . Consequently,
for every fixed M > 0 we can find a subsequence {αn′} ⊂ {αn} such that {Zαn′ ( · )}
converges weakly in Θ−M,M . Applying the standard Cantor diagonal procedure we
construct a function V (t), t ∈ R, and a subsequence {αn′′} ⊂ {αn} such that

Zαn′′ ( · ) → V ( · ) weakly in Θ−M,M as n′′ →∞ for any M > 0. (5.5)
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From (5.4) we obtain an inequality for the limit function V (t), t ∈ R:

sup
t∈R

|V (t)|+
(

sup
t∈R

∫ t+1

t

∥V (s)∥2 ds
)1/2

+sup
t∈R

(∫ t+1

t

∥∂tV (s)∥2−2 ds

)1/2

6 R, (5.6)

and, in particular,

V ( · ) ∈ F b = Lb
2(R;H1) ∩ L∞(R;H) ∩ {u | ∂tu ∈ Lb

2(R;H−2)}.

We now apply Theorem 4.1, in which we can assume that the trajectories
zn(t) = Zαn(t) under consideration are defined on the half-axis [−M,+∞) instead
of [0,+∞) (the equations are autonomous) and belong to the trajectory space
K −M

αn
(instead of K 0

αn
:= K +

αn
). Then from (5.5) and (5.6) we conclude that V (t)

is a weak solution of the three-dimensional Navier-Stokes system for all t ∈ R, and
V (t) satisfies the energy inequality on the entire time axis, that is, V ( · ) ∈ K0,
where K0 is the kernel of the system (2.1). But Π+K0 = A0 and, consequently,
Π+V ( · ) ∈ A0. At the same time, from (5.5) we find that

Π+Zαn′′ ( · ) → Π+V ( · ) in Θloc
+ as n′′ →∞,

and, in particular, for large n′′

Π+Zαn′′ ( · ) ∈ O(Π+V ) ⊆ O(A0).

This contradicts (5.3). Consequently, (5.2) is true and Theorem 5.1 is proved.

Note that a similar picture is observed if, instead of trajectories zα(t) in K +
α , we

consider the corresponding smoothed solutions uα(t) of the system (3.1), (3.2); for
class I these are the functions uα(t) = (I + α2A)−1zα(t), and for class II, uα(t) =
(I + α2A)−1/2zα(t). Then to a set of trajectories Bα ⊂ K +

α there will correspond
the set of smoothed solutions B̃α = (I + α2A)−1Bα or B̃α = (I + α2A)−1/2Bα.

Corollary 5.1. If the hypotheses of Theorem 5.1 hold, then

T (h)B̃α → A0, h→ +∞, α→ 0+ in Θloc
+ , (5.7)

where the set is B̃α = (I + α2A)−1Bα for class I, and B̃α = (I + α2A)−1/2Bα for
class II. Here, {Bα}α∈(0,1] is an arbitrary bounded family of trajectories in K +

α

satisfying (5.1).

To prove (5.7) we apply (5.2) and Lemma 4.1.
If we use the inclusions (2.13), as for (2.14), we can obtain strong convergence

in the Hausdorff metric in these spaces.

Corollary 5.2. For any M > 0 and δ ∈ (0, 1],

distL2(0,M ;H1−δ)(T (h)Bα,A0) → 0,

distC([0,M ];H−δ)(T (h)Bα,A0) → 0, h→ +∞, α→ 0+,
(5.8)

where {Bα}α∈(0,1] is an arbitrary bounded family of sets in K +
α .
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We now analyze the behaviour of trajectory attractors of general α-models
as α→ 0+.

We fix α > 0 and consider some α-model of class I or II. We analyze the action
of the translation semigroup {T (h)} on the trajectory space K +

α of this model.
It is easy to verify that the space K +

α is closed in the topology of Θloc
+ . It fol-

lows from (4.9) that K +
α ⊂ F b

+ and there exists an absorbing set of the semi-
group {T (h)} on K +

α that is bounded in F b
+ and compact in Θloc

+ , and the diam-
eter of this absorbing set is independent of α. Then, similarly to § 2, for α > 0 the
trajectory attractor Aα is constructed for the α-model under consideration, that is,
Aα ⊂ K +

α , the set Aα is bounded in F b
+, compact in Θloc

+ , strictly invariant, so
that T (h)Aα = Aα for all h > 0, and

T (h)Bα → Aα as h→ +∞

in the topology of Θloc
+ for any bounded set Bα ⊂ K +

α . In addition, Aα = Π+Kα,
where Kα is the kernel of the system (1.1), (1.2) (which for the class I is described
using the functions v( · ), and for the class II using the functions w( · )). Finally, it
follows from (4.9) that the trajectory attractors Aα are uniformly bounded in F b

+

(with respect to α ∈ (0, 1]):

∥Aα∥Fb
+

6 R2, where R2 is independent of α ∈ (0, 1]. (5.9)

We next establish a simple connection between the trajectory attractor Aα of
some α-model and its global attractor Aα, which was constructed at the end of § 3.

Proposition 5.1. The following identity holds:

Aα = {z(t) = Sα(t)z0, t > 0 | z0 ∈ Aα}.

Using Proposition 3.1 it can be shown that for a fixed α > 0 the trajectory
attractor Aα is bounded (but not uniformly with respect to α!) in the space

F b,s
+ =

{
z( · ) | z( · ) ∈ Lb

2(R+;H2) ∩ L∞(R+;H1), ∂tz( · ) ∈ Lb
2(R+;H−1)

}
,

and Aα is compact and attracts bounded families of trajectories in K +
α in the strong

topology of the space

Θloc,s
+ =

{
z( · ) | z( · ) ∈ Lloc

2 (R+;H2) ∩ Lloc
∞ (R+;H1), ∂tz( · ) ∈ Lloc

2 (R+;H−1)
}
.

Of course, these strong properties are not preserved as α→ 0+, since in the limit
there is the three-dimensional Navier-Stokes system, for which all these questions
are closely related to solution of the Millennium problem for the 3D Navier-Stokes
system. Nevertheless, the following weak result holds.

Corollary 5.3. The trajectory attractors Aα for α-models of both classes con-
verge as α → 0+ in the topology of Θloc

+ to the trajectory attractor A0 of the 3D
Navier-Stokes system:

Aα → A0, α→ 0+. (5.10)

Furthermore, for classes I and II we have, respectively,

(I + α2A)−1Aα → A0, (I + α2A)−1/2Aα → A0, α→ 0+. (5.11)
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In fact, we substitute Bα = Aα into (5.2), use the strict invariance of the sets Aα,
T (h)Aα = Aα for h > 0, and obtain (5.10). By Theorem 5.1, relation (5.11) follows
from (5.7).

In conclusion, similarly to Corollary 5.2 we can derive the following.

Corollary 5.4. For any M > 0 and δ ∈ (0, 1],

distL2(0,M ;H1−δ)(Aα,A0) → 0, distC([0,M ];H−δ)(Aα,A0) → 0, α→ 0+.
(5.12)

§ 6. Minimal limits of the trajectory attractors Aα as α → 0+

Let Aα be the trajectory attractor of some α-model, 0 < α 6 1. In § 5 it was
proved that Aα ⊂ BR2 , where BR2 is the ball in F b

+ with radius R2 independent
of α (see (5.9)).

Clearly, the trajectory attractor A0 of the exact 3D Navier-Stokes system is also
contained in BR2 . Recall that the ball BR2 equipped with the topology of Θloc

+ is
a metrizable space. We denote the corresponding metric on BR2 by ρ( · , · ), and
the metric space itself by Bρ. Using this notation we can restate Corollary 5.3 as
follows:

distρ(Aα,A0) → 0 as α→ 0+, (6.1)

where, as usual, distρ(X,Y ) denotes the (nonsymmetric) Hausdorff distance from
a set X to a set Y in the metric ρ (see (0.2)). Note that the limit relation (6.1) is
stronger than relations (5.12).

Recall that the set A0 ⊂ Bρ is closed in this metric space Bρ.

Definition 6.1. Let Amin be the minimal closed subset of A0 that satisfies (6.1),
that is,

lim
α→0+

distρ(Aα,Amin) = 0

and Amin is contained in every closed subset A′ ⊆ A0 such that

lim
α→0+

distρ(Aα,A
′) = 0.

The set Amin is called the minimal limit of the trajectory attractors Aα as α→ 0+
for the α-model under consideration.

One can prove that the set Amin exists, is unique, and is defined by the formula

Amin =
⋂

0<δ61

[ ⋃
0<α6δ

Aα

]
ρ

.

In [31] this was established for the concrete LANS-α model, but the proof is easily
extended to any α-model in either class.

We now state the final theorem of the paper.

Theorem 6.1. The minimal limit Amin of the trajectory attractors Aα as α→ 0+
for any α-model is a connected component of the trajectory attractor A0 , and the
set Amin is strictly invariant under the translation semigroup {T (h)}, that is,

T (h)Amin = Amin ∀h > 0.
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Proof of Theorem 6.1 is given in [31] for the LANS-α model, but this proof
extends word-for-word to general α-models of class I or II.

Note that the question of whether the trajectory attractor A0 of the exact 3D
Navier-Stokes system itself is connected remains unsolved. Furthermore, several
years ago Professor Mark Vishik stated the following conjecture: to different 3D
α-models of fluid dynamics (the LANS-α model, the Leray α-model, and others)
there may correspond different minimal limits Amin of their trajectory attractors Aα

as α→ 0+, which form different connected components of the attractor A0 of the
three-dimensional Navier-Stokes system.

In conclusion we point out that for α-models of class II we had no success in prov-
ing the convergence of trajectories in terms of the functions vα(t) = (I + α2A)uα(t),
as we had for models of class I, since for class II we have proved only weaker a priori
estimates for the functions wα(t) = (I + α2A)1/2uα(t). We could conclude that
α-models of class I (for example, the Leray α-model) ensure ‘stronger’ approxima-
tion of the original 3D Navier-Stokes system than α-models of class II (for example,
the LANS-α model).
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