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On centres of relatively free associative
algebras with a Lie nilpotency identity

A. V. Grishin and S.V. Pchelintsev

Abstract. We study central polynomials of a relatively free Lie nilpotent
algebra F (n) of degree n. We prove a product theorem, which generalizes
the well-known results of Latyshev and Volichenko. We construct general-
ized Hall polynomials, by using which we prove that the core centre of the
algebra F (n) is nontrivial for any n > 5. We obtain a number of special
results when n = 5 and 6.
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Introduction

Let F = Ass[X] be a free associative k-algebra over a countable set X =
{x1, . . . , xn, . . . } of free generators. As usual, [x1, . . . , xn] denotes a commutator
of length n > 2, that is, [x1, x2] = x1x2 − x2x1 and by induction [x1, . . . , xn] =[
[x1, . . . , xn−1], xn

]
for n > 3. Throughout what follows, T (n) denotes the T-ideal

generated by a commutator [x1, . . . , xn]. Let F (n) = F/T (n) be a relatively free
algebra with the identity [x1, . . . , xn] = 0, which is called the Lie nilpotency identity
of degree n and is denoted by LN(n).

Latyshev was the first to study the algebras F (3) and F (4) in the 1960s (see [1]
and [2]). In particular, he constructed an additive basis of the algebra F (3) and
proved that the variety of associative algebras with the identity LN(4) over a field of
characteristic 0 is a Specht variety. In 1978 Volichenko [3] constructed an additive
basis of the algebra F (4) over a field of characteristic 0.

Currently there are a lot of papers devoted to studying the algebras F (n) from
various viewpoints (see [1]–[15]). Here, the algebra F (3) plays a special role.
On the one hand, if char k = 0, then the algebra F (3) is isomorphic to a free algebra
of the variety var G generated by the Grassmann algebra G which Kemer [16], [17]
used in a key way in giving a positive solution of Specht’s problem. On the other
hand, if char k = p > 0, then the algebra F (3) is the first and so far the only source
of constructions of infinitely based T-spaces and T-ideals (see [5]–[7]).

The centres of the algebras F (3) and F (4) over a field of characteristic p > 3 were
described in [12], [13]. The problem of describing the centres of the algebras F (n)

for n > 5 was stated in the same papers.
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Non-associative algebras with the identity LN(n) are also of interest. Alternative
algebras with the identity LN(5) were studied by Vaulin [18], [19]. In particular,
he found the identities of a Grassmann algebra in this variety. Right-alternative
algebras with the identity LN(n), n 6 6, were studied in [20]–[22]. Finally, interest-
ing results about varieties of right-alternative metabelian algebras with the identity
LN(n) were recently obtained by Kuz’min [23].

This paper is devoted to studying the algebras F (n) for n > 5. It has six sections.
Throughout what follows, char k ̸= 2, 3, if not stipulated otherwise.

In § 1 we prove Theorem 1: T (m)T (n) ⊆ T (m+n−1) if at least one of the numbers m
or n is odd. This theorem is a natural extension of the well-known results of
Latyshev [2] and Volichenko [3].

In § 2 we introduce the notion of the core Z∗(F (n)) of the algebra F (n); this is
the largest ideal of the algebra F (n) contained in the centre Z(F (n)). Now, in 1970
Zhevlakov posed the question of whether core elements exist in a free alternative
algebra Alt[X]. Filippov’s well-known and remarkable theorem [24] states that
there exist nonzero core elements in a k-algebra Alt[x1, . . . , xn] of rank n > 5.

In § 2, for the Hall polynomials h := [[x, y]2, z] and h′ := [[x, y]2, x], we prove the
relations

h ∈ Z(F (5)) \ Z∗(F (5)), h′ ∈ Z∗(F (5)).

Throughout what follows, to simplify the notation we identify polynomials in the
algebra F with their images in the algebras F (n).

We also prove Theorem 2 in § 2, namely Z∗(F (n)) ̸= 0 for any n > 4. In study-
ing the algebra F (2n+1), an important role is played by the extended Grassmann
algebra E(n). This was constructed in [11] where it was called a model algebra
of the variety var F (2n+1), since it satisfies the identity LN(2n+1). Note that every
core element of the algebra F (2n+1) is an identity of the algebra E(n); this implies
the question posed in [11] has a negative answer, namely, it is proved that for n > 2
the algebra E(n) has identities that do not follow from LN(2n + 1).

In § 3 we study central and proper polynomials in two variables of the alge-
bras F (5) and F (6) over a field k of characteristic 0. We prove that every polynomial
f(a, b) in two variables satisfies the following conditions:

a) if f(a, b) ∈ Z(F (5)), then f(a, b) ∈ T (4);
b) if f(a, b) ∈ Z(F (6)), then f(a, b) ∈ Z∗(F (6)).

It is easy to see that h′ ∈ V (4). In § 4 we prove that h /∈ V (4), where V (4) is the
T-space generated by a commutator of degree 4.

In § 5 we show that the algebra E(2) does not have an identity of degree 6 4;
consequently, the weak Hall polynomial h′ is a core element of the algebra F (5) of
the least possible degree.

In § 6 we state some unsolved problems.

§ 1. Products of T-ideals T (m)T (n)

In 1965 Latyshev [2] proved that the inclusion T (m)T (n) ⊆ T (m+n−2) holds for
any positive integers m, n > 2. Later Volichenko [3] noticed that the stronger
relation T (m)T (3) ⊆ T (m+2) holds for n = 3. Thus, the question arose: for which
numbers m, n does the inclusion T (m)T (n) ⊆ T (m+n−1) hold?

We give a complete answer to this question in our paper.
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1.1. Auxiliary lemmas. Throughout what follows, V (n) denotes the T-space
generated by the commutator [x1, . . . , xn]. Note that V (2) = [F, F ], V (n) =
[V (n−1), F ], and T (2) = F ′ is the commutator subalgebra of the algebra F , T (n) =
V (n) ◦ F , where x ◦ y = xy + yx is the Jordan product of elements x, y.

Throughout this section we assume that vi ∈ V (i) and x, y, z, t, a, b ∈ F .

Lemma 1. For any x ∈ F , [V (m), x][V (n−1−m), x] ⊆ T (n) .

Proof. If a = vm, b = vn−1−m, then

[a, x] ◦ [x, b] =
[
[a, x] ◦ x, b

]
− [a, x, b] ◦ x =

[
a, x2, b

]
− [a, x, b] ◦ x ∈ T (n),

since [V (m+1), V (n−m−1)] ⊆ V (n). This obviously yields the required result.

As usual we denote the inner derivation of the algebra F defined by an element a
by Da : x → [x, a].

Lemma 2. The inclusion T (i)DxDy ⊆ T (i+2) holds.

Proof. By applying the Leibniz rule and Lemma 1 we obtain

(via)DxDy = (viDxDy)a + vi(aDxDy) + (viDx)(aDy) + (viDy)(aDx)

∈ V (i+2)F + V (i)V (3) + T (i+2) ⊆ T (i+2).

The proof of the following lemma is presented for the completeness of the expo-
sition.

Lemma 3 (see [3]). If n > 4, T (n−2)T (3) + T (3)T (n−2) ⊆ T (n) .

Proof. We represent the arguments in several steps, working in the algebra F (n).
1◦. [vn−3, x] ◦ [x, y, z] = 0. Setting vn−2 = vn−3Dx, by Lemma 1 we have

0 = [vn−3, x
2]DyDz = (vn−2 ◦ x)DyDz = vn−2 ◦ (xDyDz) = [vn−3, x] ◦ [x, y, z].

2◦. The element f = [vn−3, x]◦[y, z, t] is skew-symmetric with respect to x, y, z, t.
The fact that f is skew-symmetric with respect to x, y, z follows from part 1◦;

that it is skew-symmetric with respect to x, t follows from Lemma 1.
3◦. V (n−2)V (3) = 0. First we observe that vn−2 ◦ [x, y, y] = 0 by part 2◦.

Since, by the Jacobi identity, 3[a, b, c] is a linear combination of elements of the
form [x, y, y], we have the equation V (n−2) ◦ V (3) = 0. It remains to note that
[V (n−2), V (3)] = 0. Part 3◦ gives the required result.

Corollary 1. The inclusion T (3)T (2) + [T (3), F ] ⊆ T (4) holds.

1.2. Theorem on the products T (m)T (n).

Theorem 1. If one of the numbers m, n > 2 is odd, then

T (m)T (n) ⊆ T (m+n−1).
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Proof. We assume that m is odd and proceed by induction on m. The base of
induction for m = 3 is true by Lemma 3. Assuming the induction hypothesis
T (m)T (n) ⊆ T (m+n−1), by Lemmas 1 and 2 we have modulo T (m+n+1)

0 ≡ (vmvn)DyDz

= (vmDyDz)vn + vm(vnDyDz) + (vmDy)(vnDz) + (vmDz)(vnDy)
≡ (vmDyDz)vn,

which completes the proof.

Later we will show (see Lemma 6) that for even m, n > 2 we have

T (m)T (n) ̸⊂ T (m+n−1).

§ 2. The algebra E(m) and the core of the algebra F (2m+1)

2.1. The extended Grassmann algebra E(m). Recall the construction of the
algebras E(m) introduced in [11]. Let E be an associative algebra with unity 1 over
a field k defined by a set of generators em (m ∈ N), θij (i, j ∈ N, 1 6 i 6 j) and by
the defining relations

eiej + ejei = θij , [θij , em] = 0.

Let Θ be the ideal of the algebra E generated by the elements θij . The extended
Grassmann algebra of multiplicity m is defined to be the quotient algebra
E(m) = E/Θm; it was proved in [11] that the algebra E(m) satisfies the identity
LN(2m + 1).

Note that E(1) = G is the ordinary Grassmann algebra.
We claim that the algebra E has an additive basis consisting of the elements

v(. . . , θij , . . . )ei1 · · · ein
,

where v(. . . , θij , . . . ) are commutative-associative monomials in the variables indi-
cated and 1 6 i1 < · · · < in.

Let B = {b1, b2, . . . } be a basis of a space V , on which a symmetric bilinear
form is defined with q(ei, ej) = θij · 1 if i 6 j. Consider the Clifford algebra
Cl(V, q) of the space V over the field of rational functions k(θij | 1 6 i 6 j) in
the variables indicated (see [25]). Let V ∗ denote the subalgebra over the field k
in Cl(V, q) generated by the set V . If ξ is a homomorphism E → V ∗ extending the
map ei → bi, then the elements (v(. . . , θij , . . . )ei1 · · · ein

)ξ are linearly independent
over the field k.

2.2. Core elements and identities of the algebras E(m). We call the set

Z∗(F (n)) =
{
z ∈ Z(F (n)) | (∀x ∈ F (n)) zx ∈ Z(F (n))

}
the core of the algebra F (n). It is easy to see that the core coincides with the largest
ideal of the algebra F (n) contained in its centre. Elements of the core Z∗(F (n)) are
called core elements.
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Proposition 1. Every core element of the algebra F (2m+1) is an identity of the
algebra E(m) .

Proof. The algebra E(m) has zero core Z∗(E(m)). In fact, if 0 ̸= f ∈ Z∗(E(m)),
then in the algebra E(m) the element [f ·eN , eN+1] is nonzero for a sufficiently large
number N , which contradicts the fact that f is a core element.

2.3. The Hall polynomials. We consider the following polynomials:
h(a, b, c) := [[a, b]2, c] (the Hall polynomial);
h′(a, b) := [[a, b]2, b] (the weak Hall polynomial).

Lemma 4. The following relations hold:
a) h(a, b, c) ∈ Z(F (5)) \ Z∗(F (5));
b) 0 ̸= h′(a, b) ∈ Z∗(F (5)).

Proof. a) Since [a, b]2 = 0 in the algebra F (3), it follows that [a, b]2 ∈ T (3). Then
by Lemma 2 we have

[a, b]2DzDt ∈ T (3)DzDt ⊆ T (5).

Thus, we have proved that the Hall polynomial is central.
We now prove that the Hall polynomial is nonzero in the algebra E(2).

We conduct calculations in the algebra E modulo Θ2:

f = [e1, e2] ◦ [e1, e3e4] = (2e1e2 − θ12) ◦ (e1e3e4 − e3e4e1).

Since

e3e4e1 = e3(−e1e4 + θ14) = −e3e1e4 + θ14e3 = e1e3e4 − θ13e4 + θ14e3,

it follows that

f = [e1, e2] ◦ [e1, e3e4] = (2e1e2 − θ12) ◦ (θ13e4 − θ14e3) = 2(e1e2) ◦ (θ13e4 − θ14e3).

Next, taking the equation

e4e1e2 = −e1e4e2 + θ14e2 = e1e2e4 − θ24e1 + θ14e2

into account, we obtain

(e1e2) ◦ e4 = e1e2e4 + e4e1e2 = 2e1e2e4 − θ24e1 + θ14e2.

Similarly, (e1e2) ◦ e3 = 2e1e2e3 − θ23e1 + θ13e2. Consequently,

f = 2(e1e2) ◦ (θ13e4 − θ14e3) = 2e1e2e4θ13 − 2e1e2e3θ14,

[f, e5] = 2[e1e2e4, e5]θ13 − 2[e1e2e3, e5]θ14 = 4e1e2e4e5θ13 − 4e1e2e3e5θ14.

Of course, this implies that the Hall polynomial is not annihilated by any power
of the commutator subalgebra of the algebra E(2), in particular, h /∈ Z∗

(
E(2)

)
.

b) We set (x, y, z)+ := (x ◦ y) ◦ z − x ◦ (y ◦ z). It is well known and is easy to
verify that

(x, y, z)+ =
[
y, [x, z]

]
. (2.1)
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We present the rest of the arguments as a sequence of steps.
1◦. Since [V (2), V (2), F ]=[V (2), F, V (2)]⊆T (5), every Jordan associator (u, v, x)+,

(u, x, v)+, (x, u, v)+ containing elements u, v ∈ V (2) and x ∈ F is equal to zero by
equation (2.1).

2◦. As before, let w = [a, b]. Then

f := [w2, a] ◦ [x, y] = [w, a] ◦ w ◦ [x, y] = −w ◦ [b, a, a] ◦ [x, y].

3◦. [x2, a, a] = [x, a, a] ◦ x + 2[x, a]2.
4◦. w ◦ [x, a, a] ◦ [x, y] = 0.
This follows because, applying the identity indicated in part 3◦, by Lemmas 1

and 3 we have

w ◦ [x, a, a] ◦ [x, y]

= w ◦
{[

x ◦ [x, y], a, a
]
− x ◦

[
[x, y], a, a

]
− 2[x, a] ◦ [x, y, a]

}
= w ◦

[
[x2, y], a, a

]
− w ◦

[
[x, y], a, a

]
◦ x− 2(w ◦ [x, a]) ◦ [x, y, a]

∈ ([a, b] ◦ [V (3), a]) ◦ F + T (3)T (3) = 0.

5◦. f = −w ◦ [b, a, a] ◦ [x, y] = w ◦ [x, a, a] ◦ [b, y] ∈ T (3)T (3) = 0 by Lemma 3.
6◦.

[
[a, b]2, a

]
̸= 0 in F (5). In fact, the element h′(a, b) has degree 5 and is not

contained in V (5), since in the universal enveloping algebra for the free Lie alge-
bra Lie[a, b] the element [a, b][a, b, a] and the commutators of degree 5 are linearly
independent by the Poincaré-Birkhoff-Witt theorem (PBW theorem); see [26].

2.4. Generalized Hall polynomials. Let y1, . . . , yn, z1, . . . , zn be a set of dis-
tinct generators different from a, b, c. Then the generalized Hall polynomials of
degree 2n + 5 are defined to be the polynomials

Hn = [h, y1, z1, . . . , yn, zn], H ′
n = [h′, y1, z1, . . . , yn, zn];

further, the Hall polynomials h and h′ coincide with H0 and H ′
0, respectively.

The following lemma is proved similarly to Lemma 4.

Lemma 5. For any n > 0 the relations

0 ̸= Hn ∈ Z(F (2n+5)) ∩ T (2n+4), 0 ̸= H ′
n ∈ Z∗(F (2n+5))

hold.

2.5. The core of the algebra F (n)(n > 4). It follows from the results in [1]
and [3] that if char k = 0, then

Z(F (3)) = [F (3), F (3)], Z∗(F (3)) = 0,

Z(F (4)) = T (3) + [F (4), F (4)]2, Z∗(F (4)) = T (3).

Lemma 6. The element aD2n−1
b · [x1, y1] · · · [xN , yN ] /∈ T (2n+1) . Furthermore,

T (2m)T (2n) ̸⊂ T (2n+2m−1).
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Proof. It is sufficient to show that aD2n−1
b /∈ Θn in the algebra E.

We set a = e1, b = e2, θ = θ12, η = θ22. We use induction to prove that

aD2m
b = 2mηm−1(ηa− θb). (2.2)

First we verify the induction hypothesis for m = 1:

aD2
b = −

[
b, [a, b]

]
= −(a, b, b)+ = −2(θb− ηa) = 2(ηa− θb).

Using the induction hypothesis we obtain

aD
2(m+1)
b = 2m[ηm−1(ηa− θb), b, b] = 2mηm[a, b, b] = 2m+1ηm(ηa− θb),

which proves the induction step.
Finally, using equation (2.2) we obtain

aD2n−1
b = [aD

2(n−1)
b , b] = 2n−1ηn−2[(ηa− θb), b] = 2n−1ηn−1[a, b]

= 2nηn−1(2ab− θ) ≡ 2n+1ηn−1ab (mod Θn),

that is, aD2n−1
b /∈ Θn.

Since by what was proved above we have the representations

e1D
2m−1
e2

= 2m+1θm−1
22 e1e2 + θ(m), where θ(m) ∈ Θm,

e3D
2n−1
e4

= 2n+1θn−1
44 e3e4 + θ(n), where θ(n) ∈ Θn,

it follows that

e1D
2m−1
e2

· e3D
2n−1
e4

≡ 2m+n+2θm−1
22 θn−1

44 e1e2e3e4 (mod Θ(m+n−1)).

Therefore,
T (2m)T (2n) ̸⊂ T (2n+2m−1).

Note that Lemma 6 shows that the restrictions in Theorem 1 are essential.
Furthermore, Theorem 1 and Lemmas 4, 5 imply the following.

Theorem 2. For any n > 4, Z∗(F (n)) ̸= 0.

Thus, for even n > 4 the algebra F (n) contains a core element of degree n − 1,
for odd n > 4 the algebra F (n) contains a core element of degree n. Later we will
prove that the algebra F (5) does not contain core elements of degree 4. Obviously,
the algebra F (n) does not contain central elements of degree 6 n− 2.

§ 3. Proper and central polynomials
in two variables in the algebras F (5) and F (6)

Throughout this section we assume that char(k) = 0. Recall that a polynomial
f ∈ F is said to be proper if ∂f/∂xi = 0 for any i. Commutators in generators
(Lie monomials) are proper polynomials. Now, the proper polynomials form a sub-
algebra F0 of the algebra F , which is generated by Lie monomials. Moreover, the
PBW theorem describes an additive basis of the algebra F consisting of standard
monomials in basis elements of a free Lie algebra (see [26]).
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3.1. Central polynomials in two variables in F (5).

Lemma 7. Let A be an algebra generated by elements a, b and satisfying the iden-
tities LN(5) and h′ . Then A′3 = 0, where A′ is the commutator subalgebra of the
algebra A.

Proof. We present our proof in several steps, taking

T (m) = T (m)(A), V (m) = V (m)(A).

We see from part 1◦ in Lemma 4 that the Jordan associators (u, v, x)+, (u, x, v)+

and (x, u, v)+ containing elements u, v ∈ V (2) and x ∈ A are equal to 0.
1◦. w2 ∈ Z(A), w3 = 0, where w = [a, b].
The weak Hall polynomial h′ implies that w2 ∈ Z(A) and

0 = [[a, b2] ◦ w, a] = [(b ◦ w) ◦ w, a] = 2[b ◦ w2, a] = −4w3.

We need the following two representations of the ideals A′ and T (m), which are
trivial to verify.

2◦. A′ = wA + T (3) = Aw + T (3) and (A′)2 ⊂ T (3).
3◦. T (m) =

∑
c∈{a,b}A[V (m−1), c] + T (m+1).

4◦. T (4) ·A′ = 0. Indeed, using parts 2◦ and 3◦, by Lemmas 1 and 3 we obtain

T (4) ·A′ =
( ∑

c∈{a,b}

A[V (3), c]
)
· (wA + T (3))

⊆
∑

c∈{a,b}

A[V (3), c]wA + T (4)T (3) = 0.

5◦. [T (3), A′] = 0. Based on Corollary 1 and parts 2◦ and 4◦ we have

[T (3), A′] = [T (3), Aw + T (3)] = [T (3), Aw] = [V (3)A, Aw] = [V (3), Aw]A

⊆ [V (3), A]wA ⊆ T (4) ·A′ = 0.

6◦. A′3 = 0. Indeed, similarly to the above we have

A′2 = (Aw + T (3))(wA + T (3)) ⊆ T (3)w + Aw2;

consequently, A′3 ⊆ (T (3)w + Aw2)(wA + T (3)) = 0, since w2 ∈ T (3).

Proposition 2. Every central polynomial in two variables f(a, b) for the alge-
bra F (5) is contained in the T-ideal T (4) .

Proof. An arbitrary polynomial f(a, b) can be represented in the form

f(a, b) =
∑
i,j

fi,ja
ibj ,

where fi,j are proper polynomials.
If f(a, b) is central, then applying the operators ∂/∂a, ∂/∂b the requisite number

of times we obtain that fi,j is also central. Using homogeneity considerations we
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can assume that the fi,j are homogeneous polynomials. Therefore we can assume
without loss of generality that f(a, b) is a homogeneous proper polynomial. Since
the free associative algebra F does not have any nonzero central elements, we have
deg f > 4.

It follow from Lemma 7 that f is a consequence of the weak Hall polynomial h′

in F (5) if deg f > 6. If, however, deg f = 5, then f is a linear combination of
elements of the form [a1, a2, a3][a4, a5], where a1, . . . , a5 ∈ {a, b}. But every such
element in the algebra F (5) is proportional to h′. Note that h′ ∈ T (4).

Finally, if deg f = 4, then f is a linear combination of elements of the form
[a1, a2, a3, a4] and [a1, a2][a3, a4], where a1, . . . , a4 ∈ {a, b}. Note that [a1, a2][a3, a4]
is proportional to the element w2, where w = [a, b]. It remains to observe that
[V (4), x] = 0 and [w2, x] = h(a, b, x) ̸= 0 by Lemma 4.

3.2. Proper polynomials in two variable in F (5).

Proposition 3. The relation [a, b]3 /∈ T (5) holds.

Proof. Let w = [a, b] ∈ V (2). Then

[a, b2, x, y, z] = [w ◦ b, x, y, z] ∈ [V (2) ◦ F, x, y, z] ⊆ [V (3) ◦ F + V (2) ◦ V (2), y, z]

⊆ [V (4) ◦ F + V (3) ◦ V (2), z] ⊆ V (5) ◦ F + V (4) ◦ V (2) + V (3) ◦ V (3).

This implies that every proper polynomial of degree 6 contained in the ideal T (5)

can be represented in the form of a linear combination of the elements u6, u4u2

and u3v3, where ui, vi are commutators of degree i. By applying the PBW theorem
to the free Lie algebra Lie[a, b] we find that [a, b]3 /∈ T (5).

Proposition 4. a) Proper central polynomials in two variables of degrees 5 and 6
in the algebra F (5) are exhausted by elements of the form[

[a, b]2, a
]
, [a, b]3.

b) Proper polynomials in two variables of degree > 7 are identities in the alge-
bra F (5) .

Proof. a) In essence this part was proved in Proposition 2.
b) Let a1, a2, . . . ∈ {a, b}. Commutators of the form [a1, a2, . . . , am], where

m > 2, are said to be regular. It suffices to show that a product π := v1v2 · · · vl of
regular commutators v1, v2, . . . , vl in which

l∑
i=1

deg(vi) > 7, 4 > deg(v1) > · · · > deg(vi) > 2

is zero.
If deg(v1) = 2, then π = wl, where w = [a, b] and l > 4. Since w2 ∈ T (3), it

follows that π ∈ (T (3))2 ⊆ T (5) by Lemma 3.
If deg(v1) = 3, then either deg(v2) = 3, or deg(v2) = deg(v3) = 2; therefore,

again π ∈ (T (3))2 ⊆ T (5).
The case deg(v1) = 4 is considered in a similar fashion.
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3.3. Central polynomials in two variables in F (6).

Lemma 8. In the algebra F (6) both
[
[a, b]2, b, b

]
̸= 0 and

[
[a, b]3, b

]
̸= 0.

Proof. We verify the second relation, since the first is obvious by the PBW theorem.
To do this it is enough to show that every polynomial of the form [a, b2, x, y, z, t] is
contained in the space V (6) ◦ F + V (5) ◦ V (2) + V (4) ◦ V (3). Let w = [a, b] ∈ V (2);
then

[a, b2, x, y, z, t] = [w ◦ b, x, y, z, t] ∈ [V (2) ◦ F, x, y, z, t]

⊆ [V (3) ◦ F + V (2) ◦ V (2), y, z, t] ⊆ [V (4) ◦ F + V (3) ◦ V (2), z, t]

⊆ [V (5) ◦ F + V (4) ◦ V (2) + V (3) ◦ V (3), t]

⊆ V (6) ◦ F + V (5) ◦ V (2) + V (4) ◦ V (3).

Proposition 5. Every central polynomial in two variables f(a, b) for the alge-
bra F (6) is a core polynomial.

Proof. Let
f(a, b) =

∑
i,j

fi,ja
ibj ,

where the fi,j are proper polynomials.
Following Proposition 2, we can assume that f(a, b) is a homogeneous proper

polynomial and deg f > 5. If deg f = 5 and f /∈ T (5), then we can assume that
f = [a, b, b][a, b]. But [a, b, b][a, b] /∈ Z(F (6)) by Lemma 8. Therefore a proper
polynomial of degree 5 is central only if it is contained in V (5).

Let deg f > 6. By Theorem 1 we have V (i)V (j) ⊆ Z(F (6)) if i + j > 6, and
T (i)T (j) = 0 if i + j > 7. Since

[
[a, b]3, b

]
̸= 0 by Lemma 8, it is easy to see that it

is sufficient to verify the following relations:

g1, g2, g3 ∈ Z∗(F (6)),

where [abm] = aDm
b and g1 = [ab3][a, b], g2 = [ab2][a, b]2, g3 = [a, b]4.

We verify each of the three relations:

g1[x, y] = [ab3][x, y][a, b] =
(
−

[
[ab2], x

]
[b, y] + t(5)

)
[a, b] = 0,

where t(5) ∈ T (5),

g2[x, y] = [ab2][a, b]2[x, y] ∈ T (3)T (3)T (2) ⊆ T (5)T (2) = 0,

g3[x, y] = [a, b]4[x, y] ∈ T (3)T (3)T (2) = 0.

§ 4. The Hall polynomials and the T-space V (4)

It is easy to see that h′(x, y) ∈ V (4), where V (4) is the T-space generated by
a commutator of degree 4. Indeed,[

[x, y]2, x
]

=
[
[x, y], [x, y] ◦ x

]
=

[
[x, y], [x2, y]

]
.

Proposition 6. The element h(x, y, z) satisfies the relation h(x, y, z) /∈ V (4) .
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Proof. Suppose the opposite, that h(x, y, z) ∈ V (4).
We observe that an element of degree 5 in V (4) is a linear combination of com-

mutators of the form [a, pq, b, c]. Setting w = [a, p] we have

[a, p2, b, c] =
[
w ◦ p, b, c

]
=

[
[w, b] ◦ p + w ◦ [p, b], c

]
= [w, b, c] ◦ p + [w, b] ◦ [p, c] + [w, c] ◦ [p, b] + w ◦ [p, b, c].

Consequently, h(x, y, z) is a linear combination of elements of the form

[a, pq, b, c] = [a, p, b, c]q + [a, q, b, c]p + [a, p, b][q, c] + [a, q, b][p, c]
+ [a, p, c][q, b] + [a, q, c][p, b] + [a, p][q, b, c] + [a, q][p, b, c]

and commutators of length 5.
We write down the necessary elements of the form [a, pq, b, c] in the variables

x, y, z, with degrees 2, 2 and 1 respectively.
a) If z is in the first position of the tuple (a, p, q, b, c), then we obtain four

elements
[z, x2, y, y], [z, y2, x, x], [z, xy, x, y], [z, xy, y, x].

b) If z is the second element of the tuple (a, p, q, b, c), then we can assume that
a = x and q = y; in this case we obtain the two elements

[x, zy, x, y], [x, zy, y, x].

c) If b = z, then we have two more elements

[x, y2, z, x], [y, x2, z, y].

d) If c = z, then we obtain the two elements

[x, y2, x, z], [y, x2, y, z].

Thus, for suitable scalars λ1, . . . , λ10 we have the congruence modulo V (5)

λ1

(
[z, x, y, y]x + 2[z, x, y][x, y] + [x, y, y][z, x]

)
+ λ2

(
[z, y, x, x]y + 2[z, y, x][y, x] + [y, x, x][z, y]

)
+ λ3

(
[z, x, x, y]y + [z, y, x, y]x + [z, y, x][x, y]

+ [z, x, y][y, x] + [y, x, y][z, x] + [x, x, y][z, y]
)

+ λ4

(
[z, x, y, x]y + [z, y, y, x]x + [z, x, y][y, x]

+ [z, y, x][x, y] + [x, y, x][z, y]
)

+ λ5

(
[x, z, x, y]y + [x, y, x, y]z + [x, y, x][z, y]

+ 2[x, y, y][z, x] + 2[z, x, y][x, y]
)

+ λ6

(
[x, z, y, x]y + [x, y, y, x]z + [x, z, y][y, x] + [x, y, y][z, x]

+ [x, y, x][z, y] + [z, y, x][x, y]
)

+ λ7

(
[x, y, z, x]y + [x, y, z][y, x] + [x, y, x][y, z] + [y, z, x][x, y]

)
+ λ8

(
[y, x, z, y]x + [y, x, z][x, y] + [y, x, y][x, z] + [x, z, y][y, x]

)
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+ λ9

(
[x, y, x, z]y + [x, y, x][y, z] + [x, y, z][y, x] + [y, x, z][x, y]

)
+ λ10

(
[y, x, y, z]x + [y, x, y][x, z] + [y, x, z][x, y] + [x, y, z][y, x]

)
≡ [x, y, z][x, y].

Using the PBW theorem, we write down a system of linear equations by com-
paring the coefficients of the same basis products.

1) By applying the operator ∂/∂x we obtain

λ1[z, x, y, y] + λ3[z, y, x, y] + λ4[z, y, y, x] + λ8[y, x, z, y] + λ10[y, x, y, z] = 0.

In what follows, to keep our notation concise we shall write [abcd] instead of
[a, b, c, d]. Now,

[y, x, z, y] = [z, [x, y], y] = [zxyy]− [zyxy],
[y, x, y, z] = [z, [x, y, y]] = [z, [x, y], y]− [z, y, [x, y]] = [zxyy]− 2[zyxy] + [zyyx],

and so

λ1[zxyy] + λ3[zyxy] + λ4[zyyx] + λ8([zxyy]− [zyxy])
+ λ10([zxyy]− 2[zyxy] + [zyyx]) = 0,

that is,

λ1[zxyy] + λ8[zxyy] + λ10[zxyy] + λ3[zyxy]− λ8[zyxy]
− 2λ10[zyxy] + λ4[zyyx] + λ10[zyyx] = 0.

Therefore,

λ1 + λ8 + λ10 = 0, (4.1)
λ3 − λ8 − 2λ10 = 0, (4.2)

λ4 + λ10 = 0. (4.3)

2) By applying the operator ∂/∂y we obtain

λ2[z, y, x, x] + λ3[z, x, x, y] + λ4[z, x, y, x]
− λ5[z, x, x, y]− λ6[z, x, y, x] + λ7[x, y, z, x] + λ9[x, y, x, z] = 0.

Hence we have

λ2[zyxx] + λ3[zxxy] + λ4[zxyx]− λ5[zxxy]− λ6[zxyx]
+ λ7[zyxx]− λ7[zxyx]) + λ9[zyxx]− 2λ9[zxyx] + λ9[zxxy] = 0;

therefore,

λ2 + λ7 + λ9 = 0, (4.4)
λ3 − λ5 + λ9 = 0, (4.5)

λ4 − λ6 − λ7 − 2λ9 = 0. (4.6)
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3) Applying the operator ∂/∂z we obtain

λ5[x, y, x, y] + λ6[x, y, y, x] = 0.

Since [x, y, x, y] = [x, y, y, x], it follows that

λ5 + λ6 = 0. (4.7)

4) We compare the coefficients of the element [x, y, y][z, x]:

λ1 + 2λ5 + λ6 + λ8 + λ10 = 0. (4.8)

5) We compare the coefficients of the element [y, x, x][z, y]:

λ2 − λ4 − λ5 − λ6 + λ7 + λ9 = 0. (4.9)

6) We compare the coefficient of the elements [z, x, y][x, y] and [z, y, x][x, y]:

(2λ1 − λ3 − λ4 + 2λ5 + λ6 + λ8)[z, x, y][x, y]
+ (2λ2 + λ3 + λ4 + λ6 − λ7)[z, y, x][y, x]
+ (λ7 + λ8 + 2λ9 + 2λ10 + 1)[z, [x, y]][x, y] = 0.

Therefore we have

(2λ1 − λ3 − λ4 + 2λ5 + λ6 + λ8 + (λ7 + λ8 + 2λ9 + 2λ10 + 1))[z, x, y][x, y]
+ (2λ2 + λ3 + λ4 + λ6 − λ7 − (λ7 + λ8 + 2λ9 + 2λ10 + 1))[z, y, x][y, x] = 0.

Thus, we have two more equations:

2λ1 − λ3 − λ4 + 2λ5 + λ6 + λ7 + 2λ8 + 2λ9 + 2λ10 + 1 = 0, (4.10)
2λ2 + λ3 + λ4 + λ6 − 2λ7 − λ8 − 2λ9 − 2λ10 − 1 = 0. (4.11)

It is easy to verify that the system of equations (4.1)–(4.11) is inconsistent.

§ 5. Identities of the algebra E(2)

Lemma 9. The element [a, x, x, b][x, c] ̸= 0 is skew-symmetric with respect to linear
variables in the algebra F (5) .

Proof. First,
[a, x, x, b][x, c] = −[a, x, x, x][b, c] ̸= 0 in E(2).

Second,
[a, x, x, b][x, b] = 0,

since [x, y, z, b][t, b] = 0 by Lemma 1. Third,

2[a, x, x, a][x, c] = [a, x, x, c] ◦ [a, x] =
[
[a, x, x] ◦ [a, x], c

]
= [h′(a, x), c] = 0.

Lemma 10. The extended Grassmann algebra E(2) does not satisfy a nontrivial
identity of degree at most 4.
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Proof. Note that due to the restrictions on the characteristic we can assume that
the question is about proper multilinear identities f = 0. Obviously, in E(2) there
are no identities of degrees 2 or 3.

Suppose that an identity f = 0 of degree 4 holds in E(2). Then f has the form

f(y, x1, x2, x3) =
∑
σ∈S3

ασ[y, x1σ, x2σ, x3σ] +
∑

σ∈A3

βσ[y, x1σ] ◦ [x2σ, x3σ],

where S3 and A3 are the symmetric and alternating groups of degree 3, respectively.
We claim that all the scalars βσ are equal to 0. Suppose not. Since f ∈ Z(F (5)),

it follows that

[y, a] ◦ [b, c] + λ[y, b] ◦ [c, a] + µ[y, c] ◦ [a, b] ∈ Z(E(2)).

Since the Hall polynomial is nonzero in E(2), we obtain λ = µ = 1. Then

g(y, x1, x2, x3, x) :=
∑

σ∈A3

[[y, x1σ][x2σ, x3σ], x] = 0.

In particular, g(y, x1, x2, x3, y) = 0. We claim that this identity cannot hold in
the algebra E(2). We conduct calculations in the algebra E assuming that θij = 0
(i ̸= j):

[e1, e2][e3, e4] = [e1, e3][e4, e2] = [e1, e4][e2, e3] = 4e1e2e3e4.

Therefore,
g(e1, e2, e3, e4, e1) = 12e1e2e3e4.

Next, taking the equations [eiej , ep] = 0 if the indices i, j, p are distinct, the
fact that 2e2

1 = θ11, and

[e1e2e3e4, e1] = θ11e2e3e4

into account, we obtain

g(e1, e2, e3, e4, e1) = 12θ11e2e3e4 ̸= 0.

Thus, f has the form

f(y, x1, x2, x3) =
∑
σ∈S3

ασ[y, x1σ, x2σ, x3σ],

that is,

f(y, x1, x2, x3) = α1[y, x1, x2, x3] + β1[y, x1, x3, x2] + α2[y, x2, x1, x3]
+ β2[y, x2, x3, x1] + α3[y, x3, x1, x2] + β3[y, x3, x2, x1].

Since f [x1, x2] = 0, it follows that(
α1[y, x1, x2, x3] + α2[y, x2, x1, x3]

)
[x1, x2] = 0.

Consequently, by Lemma 9,

(α1 + α2)[y, x1, x1, x3][x1, x2] = 0, α1 + α2 = 0.
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Similarly, β1 + α3 = 0, β2 + β3 = 0. Thus,

f(y, x1, x2, x3) = α[y, [x1, x2], x3] + β[y, [x1, x3], x2] + γ[y, [x2, x3], x1],

where α = α1, β = β1, γ = β2. Then

f(x1, x1, x1, x3) = (β + γ)[x1, [x1, x3], x1];

therefore, β + γ = 0 by Lemma 6. Similarly,

α + β = β + γ = 0.

Then

α + β + γ = 0, α = β = γ = 0;

therefore, f = 0. The lemma is proved.

As a by-product we have proved two corollaries.

Corollary 2. An element of degree 4 is central in the algebra F (5) only if it is
contained in the T-space V (4) .

Corollary 3. The algebra F (5) does not contain nonzero core elements of degree 4,
that is, the weak Hall polynomial h′ is a core element of the least possible degree.

§ 6. Some unsolved problems

In the preceding sections we have presented results which deal mainly with the
centres Z(F (n)) and Z∗(F (n)) for n = 5, 6.

In the general case, a complete description of the centres of the algebras F (n)

has not been obtained, but it is possible to give a partial description (that is,
to find a fairly substantial part of the centre) under certain restrictions on the
characteristic.

To do this we recall the following facts.
In the case of characteristic p > 0, the following definition plays an important

role (see [11]). Let Wp be the T-space in F (n) generated by all p-words, that
is, monomials in which every variable occurs with multiplicity p. Note that the
T-space Wp is a subalgebra of the algebra F (n). If p > n > 2, then we have
the equation

Wp = Dp ⊕ CDp,

where Dp = {xp
i }T is the T-space generated by the pth power of a variable (a sub-

algebra isomorphic to the algebra of commutative polynomials in a countable set
of variables), and

CDp = Wp ∩ T (2).
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We list the basic known results about centres.

1. Z(F (3)) = V (2) if char k = 0;

Z(F (3)) = Dp ⊕ CDp if char k = p > 0.

2. Z(F (4)) = T (3) + (V (2))2 if char k = 0;

Z(F (4)) = (T (3) + CD2
p)⊕Dp if char k = p > 3.

3. Z(F (5)) ⊇ V (4) + (h′)T + {h}T if char k = 0;

Z(F (5)) ⊇ (V (4) + (h′)T + {h}T )⊕Dp if char k = p > 5;

here, {h}T is the T-space generated by the polynomial h.

4. Z(F (6)) ⊇ T (5) + Z(F (5))V (2) + Z(F (3))V (4) if char k = 0;

Z(F (6)) ⊇ (T (5) + Z(F (5))V (2) + Z(F (3))V (4))⊕Dp if char k = p > 6.

5. Z(F (2m+5)) ⊇ V (2m+4) + (H ′
m)T + {Hm}T if char k = 0;

Z(F (2m+5)) ⊇ (V (2m+4) + (H ′
m)T

+ {Hm}T )⊕Dp if char k = p > 2m + 5;
here, H ′

m and Hm are the generalized Hall polynomials of degree 2m + 5.

6. Z(F (2m+6)) ⊇ T (2m+5) + Z(F (2m+5))V (2) + Z(F (2m+3))V (4)

+ · · ·+ Z(F (3))V (2m+4) if char k = 0;

Z(F (2m+6)) ⊇ (T (2m+5) + Z(F (2m+5))V (2) + Z(F (2m+3))V (4)

+ · · ·+ Z(F (3))V (2m+4))⊕Dp if char k = p > 2m + 6.

The proofs of parts 1 and 2 can be found in [12] and [13], respectively.
The key result for finding central polynomials in F (n) are Theorem 1 and Lemma 5.
In the case of characteristic p, the arguments are completely analogous; only the
T-space Dp is added, which is contained in the centre due to the identity [xp, y] = 0
in the algebra F (n) when p > n.

We draw the reader’s attention to some unsolved problems.

1) Is it true that the equations hold in parts 3–6?
2) It is easy to see that H ′

n ∈ V (2n+4). Is it true that Hn /∈ V (2n+4)?
3) Is it true that Z(F (5)) ⊆ T (4) and Z∗(F (6)) = T (5)?
4) Is it true that Z∗(F (5)) = T (E(2)) = (LN(5), h′)T ?

The authors are grateful to A. N. Krasil’nikov for useful discussions and for
drawing our attention to the paper [27], in which a fact similar to Theorem 1 in
this paper was proved, albeit in the special case when the field of complex numbers
gives the coefficients.
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