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Hermite-Padé approximation of exponential functions

A. V. Astafyeva and A. P. Starovoitov

Abstract. The paper is concerned with diagonal Hermite-Padé polynom-
ials of the first kind for the system of exponentials {eλjz}k

j=0 with arbi-
trary distinct complex parameters {λk}k

j=0. An asymptotic formula for the
remainder term is established and the location of the zeros is described.
For real parameters the asymptotics are found and the extremal properties
are described. The theorems obtained supplement the well-known results
due to Borwein, Wielonsky, Saff, Varga and Stahl.
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§ 1. Introduction

In recent years there has been rapid growth of interest in Hermite-Padé approxi-
mations to exponential functions and their generalizations — in particular, in prob-
lems of approximation of analytic functions [1]–[3], problems of analytic continua-
tion [4], [5], in applications to random matrices [6]–[8], operator theory [9], [10], Dio-
phantine approximations including the irrationality measure of numbers [11], [12],
in proofs of transcendence [12], [13], and in investigations of the algebraic nature of
mathematical constants [14] (for more details, see the surveys [4], [5], [12], [15]–[17]).

The construction of such approximants is due to Charles Hermite in connection
with the arithmetic properties of the number e. Ever since, Hermite-Padé approx-
imants to exponential functions have attracted a great deal of attention from both
classical authors (Hilbert, Klein, Lindemann, Mahler, Siegel) and famous modern
mathematicians, and they continue to do so.

We shall adopt the terminology of [5], [18] and [19].
By diagonal Hermite-Padé approximants of the second kind for the system of

exponentials {ejz}k
j=1 we shall mean the family of rational functions

πj
n,n(z; ejξ) =

P j
n(z)

Qn(z)
, j = 1, 2, . . . , k,
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where the polynomials P 1
n , P

2
n , . . . , P

k
n , Qn (known as the diagonal Hermite-Padé

polynomials of the second kind for the system of exponentials {ejz}k
j=1) have degree

at most kn and are found from the conditions

Qn(z)ejz − P j
n(z) = O(zkn+n+1), z → 0. (1.1)

The rational fractions {πj
n,n(z; ejξ)}k

j=1 first appeared in Hermite’s well-known
paper [20], where he proved the transcendence of e. Analogues of Hermite fractions
for systems of exponentials {eλpz}k

p=1, where λp are distinct algebraic numbers,
were given by Lindemann (see [21]), who used them, in particular, to prove the
transcendence of π. Aptekarev [22] proved that the rational functions πj

n,n(z; eλjξ)
converge uniformly to eλjz on compact subsets of C for systems of exponentials
{eλjz}k

j=1 with arbitrary nonzero distinct complex coefficients λj in the expo-
nents of the exponentials. For k = 1 this result is well-known and is due to
Padé [23]. Starovoitov [24]–[26] described the asymptotic behaviour of the dif-
ference eλjz − πj

n,n(z; eλjξ) in the case when the λj are arbitrary distinct nonzero
real or purely imaginary numbers (see also [27]).

Some time afterwards, Hermite [28] introduced the polynomials A0, A1, . . . , Ak

(which we shall call diagonal Hermite-Padé polynomials of the first kind for the
system of exponentials {ejz}k

j=1) of degree at most n − 1, not all identically equal
to zero, for which

k∑
p=0

Ap(z)epz = O(zkn+n−1), z → 0. (1.2)

Based on the properties of Hermite-Padé polynomials of the first kind, as
described in [28], Mahler [29] found another proof of the transcendence of e.

In the one-dimensional setting, Padé [23] posed the general problem of finding
polynomials that satisfy equalities (1.1) and (1.2); the polynomials constructed in
both cases were found to agree. In the multivariate setting k > 2, polynomials
and Hermite-Padé approximants of the first and second kind for arbitrary sys-
tems of analytic functions have become the subject of intensive and systematic
study after the appearance of the papers [13], [29], [30] by Mahler (the definition
of Hermite-Padé approximants of the first kind can be found in [19], for example).
(For an account of the contribution of other researchers in the development of the
formal theory, see [15], [16], [31].) As we have already pointed out, both types of
approximants, which are clearly distinct in the multivariate case, have numerous
applications in various branches of analysis.

When k = 1 we obtain the classical Padé approximants to the exponential func-
tion. In this case, Padé’s theorem states that the Padé polynomials

A0(z) = −P 1
n−1(z) and A1(z) = Qn−1(z)

with the normalization A1(0) = 1 satisfy the asymptotic equalities

A0(z) = −ez/2

(
1 +O

(
1
n

))
, A1(z) = ez/2

(
1 +O

(
1
n

))
as n→∞ locally uniformly in z ∈ C (that is, on compact subsets of C).
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With the help of explicit formulae, Borwein [32] found asymptotics for the diago-
nal Hermite-Padé polynomials of the first kind for the system {epz}k

p=0 with k = 2.
This result was extended by Wielonsky [33] to arbitrary k. An analogue of Bor-
wein’s theorem for the system of exponentials {eλpz}2p=0 with arbitrary distinct real
parameters λ0 < λ1 < λ2 was proved in [34] .

Our paper is concerned with certain properties of diagonal Hermite-Padé poly-
nomials of the first kind for systems of exponentials {eλpz}k

p=0 with distinct arbi-
trary complex parameters {λp}k

p=0. In particular, for the polynomials {Ap
n}k

p=0,
degAp

n 6 n− 1, satisfying the conditions

Rn(z) =
k∑

p=0

Ap
n(z)eλpz = O(zkn+n−1), z → 0, (1.3)

we give the asymptotics of the remainder term Rn. For real parameters λ0 < λ1 <
· · · < λk we find the asymptotics of Ap

n. We show that when the parameters λp

in the exponents of the exponentials are real, normalized and appropriately trans-
formed polynomials {Ap

n+1}k
p=0 are solutions of the following extremal problem:

Given n, find the polynomials ap
n , p = 0, 1, . . . , k , of degree at most n, where ak

n

is monic, that minimize the expression

En = En(λ0, λ1, . . . , λk; ρ) = min
{ap

n(z)}k
p=0

∥∥∥∥ k∑
p=0

ap
n(z)eλpz

∥∥∥∥
ρ

. (1.4)

Here ∥h∥ρ = max{|h(z)| : z ∈ Dρ}, Dρ = {z : |z| 6 ρ} ⊂ C.
Our ultimate aim is to find the asymptotic law of decrease of the sequence

{En}∞n=1.
For λp = p, p = 0, 1, . . . , k, with k = 2 and ρ = 1 this problem was posed and

solved by Borwein [32]. Wielonsky [33] examined the case k > 2 and ρ < π/k.
Earlier Trefethen [35] and Braess [36] found the solution for k = 1 for a disc and
an interval.

One of the main results in this paper is as follows.

Theorem 1. Let λ0<λ1< · · ·<λk be arbitrary real numbers and let ρ<π/(λk−λ0).
Then, as n→∞,

En ∼
n!λn+1

(kn+ n+ k)!
ρkn+n+k,

where
λ =

∏k−1

p=0
(λk − λp).

All the main results in this paper, including Theorem 1, were obtained by analyz-
ing the asymptotic properties of integral representations of the remainder term Rn

and the polynomials Ap
n. The asymptotic properties of Hermite-Padé approxi-

mants of the second kind to exponential functions were investigated (with the help
of Laplace’s method) in [24]–[26]. In our approach, Laplace’s method is combined
with the saddle-point method; both rely on a further refinement of Wielonsky’s
method, which he outlined in his fundamental paper [33] (see also [24]–[26]).
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§ 2. Preliminary results

In this and the next section, the λp are arbitrary distinct complex numbers
and |λ0| 6 |λ1| 6 · · · 6 |λk|.

Polynomials A0
n, A

1
n, . . . , A

k
n satisfying equalities (1.3) can be obtained by solving

a linear system of kn + n − 1 homogeneous equations with kn + n unknown coef-
ficients. In this case, a nontrivial solution always exists. Moreover, such nontrivial
solutions can be written down explicitly. Indeed, let Cp be the boundary of a disc
with centre at λp and whose radius is so small that all the remaining λj lie in the
complement of this disc; let C∞ be the boundary of a disc with centre at the origin
and whose radius is so large that all the λj , j = 0, 1, 2, . . . , k, lie in its interior.
Using Cauchy’s residue theorem it is easy to show that the functions

Ap
n(z) =

e−λpz

2πi

∫
Cp

eξz dξ

[ϕ(ξ)]n
, 0 6 p 6 k, (2.1)

Rn(z) =
1

2πi

∫
C∞

eξz dξ

[ϕ(ξ)]n
, (2.2)

where ϕ(ξ) = (ξ − λ0)(ξ − λ1) · · · (ξ − λk), satisfy (1.3) and all other conditions.
Next, we shall consider the normalized function R̃n−1 obtained by dividing Rn

by the leading coefficient of the polynomial Ak
n. In order to find its value, setting

p = k in (2.1) we differentiate it n− 1 times. As a result, the value of the leading
coefficient of Ak

n agrees with that of the integral

1
2πi(n− 1)!

∫
Ck

dξ

(ξ − λk)(ξ − λ0)n(ξ − λ1)n · · · (ξ − λk−1)n
,

which, after evaluation by Cauchy’s integral formula, is found to be

1

(n− 1)!
∏k−1

p=0(λk − λp)n
=

λ−n

(n− 1)!
.

We give several assertions without proof which we require in the sequel in a con-
venient form (see [37], Ch. VII, § 43 and § 45).

Assertion 1 (Laplace’s method). Let f(x) and S(x) be continuous functions
on [a, b], where S(x) is real and f(x) may assume complex values. We set

In =
∫ b

a

f(x)enS(x) dx.

Suppose that the absolute maximum of S(x) on [a, b] is attained at a point x0 ∈ (a, b)
(that is, S(x) < S(x0) for x ̸= x0 and S′′(x0) ̸= 0) and that f(x) and S(x) are both
infinitely differentiable near x0 . Then, if f(x0) ̸= 0, the asymptotic equality

In =

√
− 2π
nS′′(x0)

enS(x0)

(
f(x0) +O

(
1
n

))
holds as n→ +∞.
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Assertion 2 (the saddle-point method). Suppose that the functions f(z) and S(z)
are regular in some domain G containing a piecewise smooth curve γ and let

Fn =
∫

γ

f(ξ)enS(ξ) dξ.

Suppose that max{ReS(ξ) : ξ ∈ γ} is attained only at a point z0 which is an interior
point of the contour γ and is a saddle point; that is, S′(z0) = 0, S′′(z0) ̸= 0.
Suppose further that near z0 the contour γ passes through both sectors in which
ReS(ξ) < ReS(z0) (see [37], Ch. VII, § 45). If f(z0) ̸= 0, then

Fn =

√
− 2π
nS′′(z0)

enS(z0)

(
f(z0) +O

(
1
n

))
(2.3)

as n→∞.
The branch of the root function in (2.3) is chosen from the conditions

arg

√
− 1
S′′(z0)

= ϕ0,

where ϕ0 is the angle between the tangent to the curve l at z0 and the positive
direction of the real axis and l is the path of steepest descent passing through z0 ,
that is, the following conditions are satisfied on l near z0 : ImS(z) = ImS(z0) for
z ∈ l; ReS(z) < ReS(z0) for z ∈ l, z ̸= z0 .

Two sequences {αn} and {βn}, which both tend either to zero or to infinity, are
called equivalent (αn ∼ βn) if limn→∞ αn/βn = 1 as n→∞.

§ 3. Asymptotic behaviour of the remainder term Rn

Theorem 2. Let {λp}k
p=0 be arbitrary distinct complex numbers. Then

Rn(z) ∼
exp{λ0+λ1+···+λk

k+1 z}
(kn+ n− 1)!

zkn+n−1 (3.1)

as n→∞ uniformly in z on compact subsets of C.

Proof. We assume without loss of generality that λ0 = 0. The general case can be
reduced to this by multiplying (1.3) by e−λ0z.

Since Rn(0) = 0, (3.1) is true with z = 0. We take an arbitrary fixed z ̸= 0 and
change to z = nw in (2.2). This gives

Rn(nw) =
1

2πi

∫
C∞

dξ

[e−ξwϕ(ξ)]n
. (3.2)

We will find the critical points of the function ψ(ξ) = e−ξ wϕ(ξ) (the zeros
of ψ′(ξ)). These are the roots of the equation

wϕ(ξ) = ϕ′(ξ),
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which can be written as

w =
1
ξ

+
1

ξ − λ1
+ · · ·+ 1

ξ − λk
. (3.3)

The contour C∞ encloses all the λp. We seek a critical point on the contour C∞
lying sufficiently far from the origin. More precisely, we assume that the distance
of the critical point from the origin is greater than 2|λk|. In this case, changing
to ζ = 1/ξ, we expand the right-hand side of (3.3) in a power series

w = (k + 1)ζ + (λ1 + λ2 + · · ·+ λk)ζ2 + (λ2
1 + λ2

2 + · · ·+ λ2
k)ζ3 + · · · . (3.4)

Inverting the series (3.4) using the Lagrange-Bürmann formulae (see [37], Ch. V,
§ 31) and returning to the previous variable ξ, we find the behaviour of the critical
point ξ0 with respect to the values of w; in view of the change z = nw the latter
lie in a sufficiently small neighbourhood of the origin:

ξ0 =
k + 1
w

+
λ1 + λ2 + · · ·+ λk

k + 1
+O(w). (3.5)

Let us now define the contour C∞ so that it passes through ξ0, surrounds all
the points λ0, λ1, . . . , λk, and furthermore, the absolute value of the function ψ(ξ)
on C∞ attains its minimum at the unique point ξ0. To this end we consider the
level lines of the functions ϕ(ξ) and e−wξ that pass through the point ξ0,

L =
{
ξ ∈ C : |ϕ(ξ)| = |ϕ(ξ0)|

}
and L1 =

{
ξ ∈ C : |e−wξ| = |e−wξ0 |

}
.

Note that L is a lemniscate, while L1 is a straight line through ξ0 making an
angle arg(i/w) with the positive direction of the abscissa axis. Writing the equation
of the lemniscate L,∣∣∣∣ϕ(ξ0) +

ϕ′(ξ0)
1!

(ξ − ξ0) + · · ·+ ϕ(k+1)(ξ0)
(k + 1)!

(ξ − ξ0)(k+1)

∣∣∣∣ = |ϕ(ξ0)|,

and taking the fact that ϕ′(ξ0) = wϕ(ξ0) into account, it is easily seen that the
slope of the tangent to L at the point ξ0 is tan(arg(i/w)). So L1 is tangent to L
at ξ0.

According to [38], Ch. III, § 3.3, for sufficiently small |w| the lemniscate L is
a Jordan analytic curve, which encloses all the zeros of ϕ(ξ); the straight line L1

decomposes the plane into two half-planes, one of which (the half-plane Ω) con-
tains L. In the half-plane Ω the absolute value of e−wξ is greater than that of e−wξ0 .
The lemniscate L decomposes the plane into two connected domains (interior and
exterior). If ξ lies in the exterior domain, then |ϕ(ξ)| > |ϕ(ξ0)|.

We now construct the required contour C∞, taking account of possible deforma-
tions of the contour of integration in (3.2). To this end we take a closed interval
from L1 with centre at ξ0 and connect its ends by a smooth Jordan curve which
lies in the half-plane Ω and encircles L. The contour C∞ is the required one.

Note that the equation ϕ′(ξ) = 0 has k roots; they all lie in a convex polygon
containing all the roots of ϕ(ξ); that is, if η is a root of ϕ′(ξ), then

η = m0λ0 +m1λ1 + · · ·+mkλk
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(see [39], Part III, Ch. 1, § 3, Exercise 31), where mp > 0, m0 +m1 + · · ·+mk = 1.
It follows that |η| 6 |λk|. We have ξ0 → ∞ as w → 0, the remaining k roots
of the equation wϕ(ξ) = ϕ′(ξ) being sufficiently close to the roots of the equa-
tion ϕ′(ξ) = 0. Hence they all lie in the disc with centre at the origin and
radius 2|λk|. Consequently, the contour C∞ contains a unique critical point ξ0
of the function ψ(ξ).

By the argument principle, as the point ξ describes the contour C∞ in the positive
direction, the variation in the argument of ϕ(ξ) is 2(k + 1)π. Hence C∞ can be
decomposed into two contours Cj

∞, j = 0, 1, where the increment in the argument
of ϕ(ξ) on the contour C1

∞ is (2k+1)π. It can be assumed without loss of generality
that ξ0 lies inside the contour C0

∞ and that −π/2 6 argϕ(ξ) 6 π/2 if ξ ∈ C0
∞;

if not, we can multiply and divide the right-hand side of (3.2) by einα, where
the real number α is chosen so that −π/2 6 arg(eiαϕ(ξ)) 6 π/2, and then consider
the function eiαϕ(ξ) instead of ϕ(ξ). (Here and below, i is the imaginary unit.)

Consider the function

S(ξ) = wξ − lnϕ(ξ), ξ ∈ C0
∞,

where lnϕ(ξ) = ln |ϕ(ξ)| + i arg0 ϕ(ξ) is the single-valued branch of the logarithm
for which arg0 ϕ(ξ) ∈ [−π/2, π/2]. Note that S(ξ) is the restriction to C0

∞ ⊂ G of
the single-valued analytic function S(ξ) defined in a simply connected domain G
not containing any zeros of ϕ(ξ). In this domain,

S′(ξ) = w − ϕ′(ξ)
ϕ(ξ)

= w − 1
ξ
− 1
ξ − λ1

− · · · − 1
ξ − λk

,

S′′(ξ) =
1
ξ2

+
1

(ξ − λ1)2
+ · · ·+ 1

(ξ − λk)2
,

and hence, S′(ξ0) = 0 and S′′(ξ0) ̸= 0.
For any ξ ∈ C∞,

1
|ψ(ξ)|n

= exp
{
n(Re(wξ)− ln |ϕ(ξ)|)

}
,

the function Re(wξ) − ln |ϕ(ξ)| attains its maximum on C∞ at a unique point ξ0.
Consider the integrals

Fj(n) =
1

2πi

∫
Cj
∞

dξ

[e−ξwϕ(ξ)]n
, j = 0, 1.

Arguing as in the proof of the inequalities (8) in Ch. VII, § 45 in [37], it is readily
seen that

|F1(n)| 6 c|en(S(ξ0)−δ)|, (3.6)

where c, δ > 0 are constants. The integral F0(n) can be written as

F0(n) =
1

2πi

∫
C0
∞

enS(ξ) dξ.

Taking account of the fact that max{ReS(ξ) : ξ ∈ C0
∞} is attained at a unique

point ξ0, which is a simple saddle point interior to the contour C0
∞, we apply
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the saddle-point method (Assertion 2) to find the asymptotics of this integral.
As a result, we have

F0(n) =
1

2πi

√
−2π

nS′′(ξ0)
enS(ξ0)

(
1 +O

(
1
n

))
.

It follows from (3.6) that the absolute value of the integral F1(n) is exponentially
small as n→∞ compared to that of enS(ξ0). Hence, the principal contribution to
the asymptotics of Rn(nw) comes from the integral F0(n). Consequently,

Rn(nw) =
1

2πi

√
−2π

nS′′(ξ0)
enS(ξ0)

(
1 +O

(
1
n

))
. (3.7)

The point ξ0 lies sufficiently far from the origin and so

S(ξ0) = wξ0 − (k + 1) ln ξ0 − ln
(

1− λ1

ξ0

)
− · · · − ln

(
1− λk

ξ0

)
= wξ0 + (k + 1) ln

1
ξ0

+
λ1 + λ2 + · · ·+ λk

ξ0
+O

(
1
ξ20

)
.

As a result, using (3.5),

S(ξ0) = k + 1 + (k + 1) ln
w

k + 1
+
λ1 + λ2 + · · ·+ λk

k + 1
w +O(w2).

Hence

enS(ξ0) = e(k+1)n

(
w

k + 1

)(k+1)n

exp
{
λ1 + λ2 + · · ·+ λk

k + 1
nw

}
(1 +O(nw2)).

Changing from w to z, as n→∞, we have

enS(ξ0) = e(k+1)n

(
z

(k + 1)n

)(k+1)n

exp
{
λ1 + λ2 + · · ·+ λk

k + 1
z

}(
1 +O

(
z2

n

))
.

(3.8)
From the above equality for S′′(ξ) it follows that

S′′(ξ0) =
1
ξ20

(
k + 1 + 2

λ1 + λ2 + · · ·+ λk

ξ0
+O

(
1
ξ20

))
.

Hence, using (3.5),

S′′(ξ0) =
w2

k + 1
(1 +O(w)),

and so √
−1

S′′(ξ0)
=

√
−(k + 1)

w2
(1 +O(w)).
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Taking account of the fact that the angle ϕ0 is arg(i/w) for the contour C0
∞ and

changing to the variable z, we finally obtain√
−1

S′′(ξ0)
=
√
k + 1

i

w
(1 +O(w)) = i

√
k + 1

n

z

(
1 +O

(
z

n

))
. (3.9)

From (3.7)–(3.9) it follows that

Rn(z) =

√
(k + 1)n

2π

(
e

(k + 1)n

)(k+1)n

× exp
{
λ1 + λ2 + · · ·+ λk

k + 1
z

}
zkn+n−1

(
1 +O

(
1
n

))
.

Hence, using Stirling’s formula, we have proved the asymptotic equality (3.1) with
any fixed complex number z.

That the asymptotics in (3.1) are uniform follows from Vitali’s theorem and since
the sequences of functions

(kn+ n− 1)! exp
{
−λ1 + λ2 + · · ·+ λk

k + 1
z

}
Rn(z)
zkn+n−1

, n = n0, n0 + 1, . . . ,

are uniformly bounded in absolute value on compact subsets of C. Indeed,

|Rn(nw)| 6 1
2π

∫ β

α

exp
{
n(Re(wζ(t))− ln |ϕ(ζ(t))|)

}
|ζ ′(t)| dt,

where the contour of integration C∞ is the same and is parametrized by the real
parameter t ∈ [α, β]. Denoting the closed interval corresponding to the parametriza-
tion of the contour C0

∞ by [α1, β1], for sufficiently large n we have

|Rn(nw)| 6 1
π

∫ β1

α1

exp
{
nReS(ζ(t))

}
|ζ ′(t)| dt. (3.10)

To find the asymptotics of the integral in (3.10) we use the Laplace method
(Assertion 1). As a result, we have∫ β1

α1

en Re S(ζ(t))|ζ ′(t)| dt =

√
−2π

n[ReS(ζ(t))]′′t=t0

en Re S(ξ0)|ζ ′(t0)|
(

1 +O

(
1
n

))
,

(3.11)
where t0 is chosen so that ζ(t0) = ξ0. In a sufficiently small neighbourhood of the
point ξ0 = x0 + iy0 the curve C0

∞ is given by the parametric equation

ζ(t) = x(t) + iy(t), t ∈ [−τ, τ ], τ > 0,

where

x(t) = βt+ x0, y(t) = αt+ y0, w = α+ iβ,

t0 = 0, ζ(0) = ξ0, |ζ ′(t0)| = |w|.
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Now, ReS(ζ(t)) has a local maximum at t0 and so elementary calculations show
that

−[ReS(ζ(t))]′′t=0 =
k∑

p=0

|w|2

|ξ0 − λp|2
− 2

k∑
p=0

[
Im(w(ξ0 − λp))
|ξ0 − λp|2

]2

.

Hence, using (3.5) and the easily verified relation

2[Im{w(ξ0 − λp)}]2 = |w|2 |ξ0 − λp|2 − Re{w2(ξ0 − λp)2},

it is readily shown that, for sufficiently large n,

−[ReS(ζ(t))]′′t=0 =
|w|4

k + 1
(1 +O(w)).

Changing to the variable z and taking (3.8)–(3.11) into account, for sufficiently
large n we arrive at the required inequality

|Rn(z)| 6 2 |z|kn+n−1

(kn+ n− 1)!

∣∣∣∣exp
{
λ1 + λ2 + · · ·+ λk

k + 1
z

}∣∣∣∣.
This proves Theorem 2.

§ 4. Proof of Theorem 1

Following Trefethen [35] and Braess [36], let us consider a translation of Hermite-
Padé polynomials of the first kind and of degree n. Let λ0 < λ1 < λ2 < · · · < λk

be arbitrary real numbers,

ãp
n(z) = n!λn+1Ap

n+1(z − zn), 0 6 p 6 k ,

R̃n(z) = n!λn+1Rn+1(z − zn), E∗n = ∥R̃n∥ρ, (4.1)

where

zn =
λ0 + λ1 + λ2 + · · ·+ λk

k + 1
ρ2

kn+ n+ k
,

the factor n!λn+1 in the above formulae normalizing the polynomial ãk
n to be monic.

We prove Theorem 1 using the following two lemmas.

Lemma 1. If n→∞, then

E∗n ∼
n!λn+1

(kn+ n+ k)!
ρkn+n+k. (4.2)

Proof. From Theorem 2, in view of the equivalence

(z − zn)kn+n+k ∼ zkn+n+k exp
{
−λ0 + λ1 + λ2 + · · ·+ λk

k + 1
ρ2

z

}
,

it follows that for |z| = ρ

|Rn+1(z − zn)| ∼ ρkn+n+k

(kn+ n+ k)!

as n → ∞. Now (4.2) follows from the definition of E∗n (see (4.1)). The proof of
Lemma 1 is complete.
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Lemma 2. If ρ < π/(λk − λ0), then En = E∗n for sufficiently large n.

Proof. We use the method in [32] and [33]. It suffices to show that E∗n 6 En

for large n. Suppose that this is not so. Then En < E∗n, and hence there exist
polynomials ap

n, p = 0, 1, . . . , k, where deg ap
n 6 n and ak

n is monic, such that∥∥∥∥ k∑
p=0

ap
n(z)eλpz

∥∥∥∥ < ∥∥∥∥ k∑
p=0

ãp
n(z)eλpz

∥∥∥∥.
Hence for sufficiently large n and |z| = ρ,∣∣∣∣ k∑

p=0

ap
n(z)eλpz

∣∣∣∣ < ∣∣∣∣ k∑
p=0

ãp
n(z)eλpz

∣∣∣∣ .
Consequently, Rouché’s theorem implies that the function

k∑
p=0

(ap
n(z)− ãp

n(z))eλpz (4.3)

has at least kn + n + k zeros in Dρ. But this is not so. In fact, consider the
polynomials bpn = ap

n − ãp
n, p = 0, 1, . . . , k. Let h be the sum of the degrees of

these polynomials. It is known (see [39], Part III, Ch. 4, § 4, Exercise 206) that the
function

k∑
p=0

bpn(z)eλpz

can have at most h + k + (λk − λ0)ρ/π zeros in the disc Dρ. In our setting,
h 6 (k + 1)n− 1 and ρ < π/(λk − λ0). Hence, the function (4.3) can have at most
kn+ n+ k − 1 zeros in Dρ. This contradiction proves Lemma 2.

§ 5. Asymptotics of the polynomials Ap
n

In this section {λp}k
p=0 are distinct real numbers. In what follows it will be

assumed without loss of generality that 0 = λ0 < λ1 < · · · < λk. The general case
reduces to this one.

First, we introduce our notation. Let {xj}k
j=1 be the zeros of the polynomial ϕ′.

It is clear that the xj are real numbers and xj ∈ (λj−1, λj), j = 1, 2, . . . , k. We next
assume that G is a simply connected domain such that {xj}k

j=1 ⊂ G ⊂ C\{λp}k
p=0.

Then (see [37], Ch. IV, § 24, Example 6) the function

S(ξ) = − lnϕ(ξ),

where

S(x1) = − ln |ϕ(x1)| if ϕ(x1) > 0,
S(x1) = − ln |ϕ(x1)| − iπ if ϕ(x1) < 0,



780 A.V. Astafyeva and A.P. Starovoitov

is a single-valued analytic function in G. The values of S are calculated using the
formula

S(ξ) = − ln |ϕ(ξ)| − i[ImS(x1) + ∆γ argϕ(ξ)],

where the curve γ lies in G and joins the points x1 and ξ and ∆γ argϕ(ξ) is the
increment in the argument of ϕ(ξ) along γ.

If ξ ∈ G, then

S′(ξ) = −ϕ
′(ξ)
ϕ(ξ)

= −1
ξ
− 1
ξ − λ1

− · · · − 1
ξ − λk

,

S′′(ξ) = −ϕ
′′(ξ)ϕ(ξ)− [ϕ′(ξ)]2

ϕ2(ξ)
=

1
ξ2

+
1

(ξ − λ1)2
+ · · ·+ 1

(ξ − λk)2
,

and hence S′(xj) = 0 and S′′(xj) = −ϕ′′(xj)/ϕ(xj) > 0, j = 1, 2, . . . , k.
Taking the positive value of the root function, we set

Bn(xj) =

√
1

2πnS′′(xj)
enS(xj), j = 1, 2, . . . , k.

Theorem 3. If z ∈ C is fixed and n→∞, then

A0
n(z) = Bn(x1)ex1z

(
1 +O

(
1
n

))
, (5.1)

Ap
n(z) = Bn(xp+1)e(xp+1−λp)z

(
1 +O

(
1
n

))
−Bn(xp)e(xp−λp)z

(
1 +O

(
1
n

))
, 1 6 p 6 k − 1, (5.2)

Ak
n(z) = −Bn(xk)e(xk−λk)z

(
1 +O

(
1
n

))
. (5.3)

Proof. Equality (5.1) will be proved using the integral representation

A0
n(z) =

1
2πi

∫
C0

eξz dξ

[ϕ(ξ)]n
. (5.4)

To this end we deform the contour of integration C0 in (5.4) into a rectangle R in
the half-plane

{z : −∞ < Re z < λ1},

with vertices at points A(−a′,−r), B(−a′, r), C(a, r), D(a,−r), where r is a suffi-
ciently large positive number, a ∈ (0, λ1) and a′ > 0. We have

|ϕ(a+ it)| =
k∏

j=0

√
(a− λj)2 + t2 > |ϕ(a)|, t ∈ [−r, r] \ {0},

and hence the minimum of the function |ϕ(ξ)| is attained at a unique point a
on the vertical closed interval between the points C and D. Similarly, on the
vertical interval between the points A and B the minimum of the function |ϕ(ξ)|
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is attained at a unique point −a′. On the remaining two horizontal intervals, for
sufficiently large r, |ϕ(ξ)| exceeds the values of |ϕ(ξ)| at both −a′ and a. Indeed,
if r > 2 max{a′, λk}, then for t ∈ [−a, a]

|ϕ(t± ir)| =
k∏

j=0

√
(t− λj)2 + r2 > max{|ϕ(a)|, |ϕ(−a′)|}.

Now we specify a′ and a. We set a = x1, and take a′ such that |ϕ(−a′)| > |ϕ(a)|.
Such a choice is possible, since |ϕ(t)| → +∞ as t→ −∞, t ∈ R.

For an arbitrary interval [L,N ], we take the positive direction to be from L to N
and define

F [L,N ]
n (z) =

1
2πi

∫
[L,N ]

eξz dξ

[ϕ(ξ)]n
.

A domain G can be chosen to contain [D,C]. Hence,

F [D,C]
n (z) =

1
2πi

∫
[D,C]

eξzenS(ξ) dξ.

By the choice of the point a, the maximum of the function ReS(ξ) on the inter-
val [D,C] is attained at a unique point x1, which is a simple saddle point. Hence
the asymptotics of the integral F [D,C]

n can be found using the saddle-point method
(Assertion 2). As a result, we have

F [D,C]
n (z) =

1
2πi

√
−2π

nS′′(x1)
enS(x1)ex1z

(
1 +O

(
1
n

))
. (5.5)

We choose a branch of the root in (5.5) with due regard to the fact that ϕ0 = π/2
in this setting. Hence, we finally obtain

F [D,C]
n (z) = Bn(x1)ex1z

(
1 +O

(
1
n

))
(5.6)

as n→∞.
Similar arguments apply to the integral F [B,A]

n . Taking into account the choice
of −a′, it is easy to check that

|F [B,A]
n (z)| 6 θ|en(S(x1)−δ)|,

where θ and δ are positive constants. This means that, as n → ∞, the absolute
value of the integral F [B,A]

n is exponentially small compared with that of enS(x1).
This also holds for the integrals F [C,B]

n and F [A,D]
n . Therefore, the principal contri-

bution to the asymptotics of A0
n comes from the integral over the interval [D,C].

Consequently, (5.1) follows from (5.6).
Equality (5.3) is proved using the same argument, the only difference being that

when applying the saddle-point method to the corresponding integral the branch
of the root function is chosen using the condition that ϕ0 = −π/2.

We now proceed with the proof of (3.2). Let z ∈ C be fixed. Writing the
polynomial Ap

n, 1 6 p 6 k − 1, in the form (2.1), we deform the contour of inte-
gration Cp into a rectangle R∗ in the domain {z : λp−1 < Re z < λp+1}, with
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vertices at the points A∗(a′,−r), B∗(a′, r), C∗(a, r), D∗(a,−r), where r is a suffi-
ciently large positive number, a′ ∈ (λp−1, λp) and a ∈ (λp, λp+1). As a result, on
the vertical interval between D∗ and C∗ the function |ϕ(ξ)| attains minimum at
a unique point a, while on [B∗, A∗] its minimum is attained at a unique point a′.
For sufficiently large r (r > 2λk), the values of |ϕ(ξ)| on the remaining two horizon-
tal intervals [B∗, C∗] and [A∗, D∗] exceed its values at the points a′ and a. Putting
a′ = xp and a = xp+1, we see that the principal contribution to the asymptotics
of Ap

n comes from the integrals over [B∗, A∗] and [D∗, C∗]. Arguing as above, we
have

F [D∗,C∗]
n (z) =

e−λpz

2πi

√
−2π

nS′′(xp+1)
enS(xp+1)exp+1z

(
1 +O

(
1
n

))
, (5.7)

F [B∗,A∗]
n (z) =

e−λpz

2πi

√
−2π

nS′′(xp)
enS(xp)expz

(
1 +O

(
1
n

))
(5.8)

as n → ∞. The branch of the root function in (5.7) is chosen using the condition
ϕ0 = π/2; in choosing the branch of the root in (5.8), we note that ϕ0 = −π/2.
Now (5.2) is secured by (5.7) and (5.8). The proof of Theorem 3 is complete

Corollary 1. If n→∞, then

A0
n(0) = Bn(x1)

(
1 +O

(
1
n

))
,

Ap
n(0) = Bn(xp+1)

(
1 +O

(
1
n

))
−Bn(xp)

(
1 +O

(
1
n

))
, 1 6 p 6 k − 1,

Ak
n(0) = −Bn(xk)

(
1 +O

(
1
n

))
.

(5.9)

It follows from (5.9) that A0
n(0) ̸= 0 and Ak

n(0) ̸= 0 for sufficiently large n. For
such n we look at two sequences of normalized polynomials

Ã0
n(z) =

A0
n(z)

A0
n(0)

, Ãk
n(z) =

Ak
n(z)

Ak
n(0)

.

To define analogous sequences for 1 6 p 6 k − 1, we consider three possible cases,
each of which can be realized for certain systems of exponentials.

A) |ϕ(xp)| ≠ |ϕ(xp+1)|. We let x̃p denote a point in the pair xp, xp+1 such that

min
{
|ϕ(xp)|, |ϕ(xp+1)|

}
= |ϕ(x̃p)|.

Then for sufficiently large n we have Ap
n(0) ̸= 0, and hence the sequence Ãp

n(z) =
Ap

n(z)/Ap
n(0) is defined.

B) ϕ(xp+1) = −ϕ(xp) and S′′(xp+1) ̸= S′′(xp). For large n, we have Ap
n(0) ̸= 0,

and hence the sequence Ãp
n(z) = Ap

n(z)/Ap
n(0) is defined.

C) ϕ(xp+1) = −ϕ(xp) and S′′(xp+1) = S′′(xp). We have (−1)k+p+1ϕ(xp) > 0,
and so

enS(xp) = (−1)n(k+p+1)e−n ln |ϕ(xp)|,

enS(xp+1) = (−1)n(k+p+1)+ne−n ln |ϕ(xp)|.



Hermite-Padé approximation 783

As a result,

Ap
n(0) = (−1)n(k+p+1)

√
1

2πnS′′(xp)
e−n ln |ϕ(xp)|((−1)n − 1

)(
1 +O

(
1
n

))
.

Hence Ap
2n+1(0) ̸= 0 for sufficiently large n, and so the sequence of polynomials

Ãp
2n+1(z) = Ap

2n+1(z)/A
p
2n+1(0) is defined.

The derivative of the polynomial Ap
n can be written as

dAp
n

dz
(z) =

e−λpz

2πi

∫
Cp

(ξ − λp)
eξz dξ

[ϕ(ξ)]n
. (5.10)

Proceeding in a similar way to that used in finding the asymptotic behaviour of Ap
n,

we apply the saddle-point method to the integral on the right of (5.10), with z = 0,
to obtain

dA1
n

dz
(0) = Bn(xp+1)(xp+1 − λp)

(
1 +O

(
1
n

))
−Bn(xp) (xp − λp)

(
1 +O

(
1
n

))
.

Hence, under our assumptions,

dAp
2n

dz
(0) = (−1)n(k+p+1)

√
1

2πnS′′(xp)
e−n ln |ϕ(xp)|(xp+1 − xp)

(
1 +O

(
1
n

))
,

and the sequence of polynomials Ãp
2n(z) = Ap

2n(z)/(Ap
2n)′(0) is defined.

Theorem 4. If n→∞, then

Ã0
n(z) ⇒ ex1z, Ãk

n(z) ⇒ e(xk−λk)z (5.11)

locally uniformly in z .
If 1 6 p 6 k − 1, then as n→∞,

Ãp
n(z) ⇒ e(x̃p−λp)z (5.12)

in case A);

Ãp
2n(z) ⇒

(
e(xp+1−λp)z√
S′′(xp+1)

− e(xp−λp)z√
S′′(xp)

)(
1√

S′′(xp+1)
− 1√

S′′(xp)

)−1

, (5.13)

Ãp
2n+1(z) ⇒

(
e(xp+1−λp)z√
S′′(xp+1)

+
e(xp−λp)z√
S′′(xp)

)(
1√

S′′(xp+1)
+

1√
S′′(xp)

)−1

(5.14)

in case B);

Ãp
2n(z) ⇒

1
xp+1 − xp

(
e(xp+1−λp)z − e(xp−λp)z

)
, (5.15)

Ãp
2n+1(z) ⇒

1
2
(
e(xp+1+λp)z + e(xp−λp)z

)
(5.16)

in case C). All the convergences are locally uniform in z .
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Proof. The pointwise convergence in (5.11)–(5.16) is secured by Theorem 3.
It remains to show that in each of the cases A), B) and C) the polynomials Ãp

n

with 0 6 p 6 k converge uniformly on compact subsets of C to the corresponding
functions. For example, we prove this result for Ã0

n.
If we assume that |z| 6 ρ and ξ ∈ R, then the absolute value of eξz is majorized

by M = e4ρ max{a′,λk}. Taking (5.4) into account, in the case under consideration
we have

|A0
n(z)| 6 M

π

∫ β

α

e−n ln |ϕ(ζ(t))||ζ ′(t)| dt (5.17)

provided that the contour of integration R is the same and is parameterized by the
real parameter t ∈ [α, β]. For large n, inequality (5.17) also holds if we replace R
by the interval [D,C]. Assume that [D,C] is parametrized by t ∈ [α1, β1]. To find
the asymptotics of the integral in (5.17) we use Laplace’s method (Assertion 1). As
a result, ∫ β1

α1

en Re S(ζ(t))|ζ ′(t)| dt

=

√
−2π

n[ReS(ζ(t))]′′t=t0

en Re S(x1)|ζ ′(t0)|
(

1 +O

(
1
n

))
(5.18)

as n→∞, where t0 is chosen so that ζ(t0) = x1. It is easily seen that

[ReS(ζ(t))]′′t=t0 = −S′′(x1)|ζ ′(t0)|2.

Hence, using (5.9) and (5.18), we obtain the inequality |Ã0
n(z)| 6 2M for suffi-

ciently large n, from which it follows that the sequence {Ã0
n(z)}∞n=1 is uniformly

bounded in absolute value in the disc {z : |z| 6 ρ}. Now by Vitali’s theorem this
sequence converges uniformly to the function ex1z on any compact subset of the disc
{z : |z| 6 ρ}. Similar arguments also apply to the other sequences in Theorem 4.
The proof of Theorem 4 is complete.

§ 6. Illustrative examples

6.1. Consider the system of exponentials {eλpz}2p=0, where 0 = λ0 < λ1 < λ2. Let

p =
√
λ2

1 − λ1λ2 + λ2
2 , h = 5λ1λ2 − 2λ2

1 − 2λ2
2.

Easy calculations show that

x1 =
λ1 + λ2 − p

3
, x2 =

λ1 + λ2 + p

3
,

ϕ(x1) =
(λ1 + λ2)h+ 2p3

27
, ϕ(x2) =

(λ1 + λ2)h− 2p3

27
,

S′′(x1) = ln
54p

(λ1 + λ2)h+ 2p3
, S′′(x2) = ln

−54p
(λ1 + λ2)h− 2p3

.

The following result is a consequence of Theorem 3.
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Corollary 2. If n→∞, then

A0
n(z) = Bn(x1)ex1z

(
1 +O

(
1
n

))
,

A1
n(z) = Bn(x2)e(x2−λ1)z

(
1 +O

(
1
n

))
−Bn(x1)e(x1−λ1)z

(
1 +O

(
1
n

))
,

A2
n(z) = −Bn(x2)e(x2−λ2)z

(
1 +O

(
1
n

))
.

In this example, as was the case in examples in [32] and [33], only cases A) and C)
are realized. Moreover, case C) is realized with h = 0, that is, when λ2 = 2λ1.

Putting λ2 = 2λ1, we have

S(x1) = ln
(

27
2p3

)
, S(x2) = ln

(
27
2p3

)
+ iπ, S′′(x1) = S′′(x2) =

27
p2
,

A1
n(0) =

√
p2

54πn

(
27
2p3

)n

[(−1)n − 1]
(

1 +O

(
1
n

))
.

Hence A1
2n+1(0) ̸= 0 for sufficiently large n. Next, it is an easy consequence of the

now familiar arguments that

dA1
2n

dz
(0) =

√
p2

108πn

(
27
2p3

)2n

(x2 − x1)
(

1 +O

(
1
n

))
.

The following corollary is a consequence of Theorem 4 in the case under consid-
eration.

Corollary 3. As n→∞

Ã0
n(z) ⇒ ex1z, Ã2

n(z) ⇒ e(x2−λ2)z.

If λ2 ̸= 2λ1 , then

Ã1
n(z) ⇒ e(x2−λ1)z,

and if λ2 = 2λ1 , then

Ã1
2n+1(z) ⇒

1
2
(
e(x2−λ1)z+e(x1−λ1)z

)
, Ã1

2n(z) ⇒
1

x2 − x1

(
e(x2−λ1)z−e(x1−λ1)z

)
.

For purposes of comparison, we reformulate a similar result from [24] on the
asymptotics of Hermite-Padé approximants of the second kind in terms of the quan-
tities now involved (see also [27] and [40], where the method of the Riemann-Hilbert
matrix problem was applied in the case λ1 = −1, λ2 = 1 to derive very precise
asymptotics for the quadratic diagonal approximants and the Hermite-Padé poly-
nomials of the first and second kind with a rescaled independent variable).
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Theorem 5. Let πj
n,n(z; eλjξ), j = 1, 2, be the Hermite-Padé approximants of the

second kind for the family {eλ1z, eλ2z}, where λ1 and λ2 are distinct nonzero real
numbers. Then, as n→∞,

eλ1z − π1
n,n(z; eλ1ξ) = B∗n(x1; z)e(λ1−x1)z

(
1 +O

(
1
n

))
,

eλ2z − π2
n,n(z; eλ2ξ) = B∗n(x1; z)e(λ2−x1)z

(
1 +O

(
1
n

))
+ (−1)nB∗n(x2; z) e(λ2−x2)z

(
1 +O

(
1
n

))
,

locally uniformly in z , where

B∗n(xj ; z) =
z3n+1

(3n)!
e(λ1+λ2)z/3

√
2π

nS′′(xj)
e−nS(xj), j = 1, 2.

Assume now that

λ0 = 0, λ1 = 1, λ2 = 1 + ε, 0 < ε 6 1.

For 0 < ε < 1 Theorem 3 implies that

A0
n(z) ∼

√
2p3 + (2 + ε)h

108πpn

(
27

2p3 + (2 + ε)h

)n

e(2+ε−p)z/3,

A1
n(z) ∼ (−1)n

√
2p3 − (2 + ε)h

108πpn

(
27

2p3 − (2 + ε)h

)n

e(−1+ε+p)z/3,

A2
n(z) ∼ (−1)n

√
2p3 − (2 + ε)h

108πpn

(
27

2p3 − (2 + ε)h

)n

e(−1−2ε+p)z/3.

A comparison of these expressions shows that the principal terms of the asymp-
totic formulae for the values of the polynomials A1

n(z) and A2
n(z) at z differ by

a factor eεz, which tends to 1 as ε → 0 locally uniformly. With ε = 1 Theorem 3
yields asymptotic equalities which agree with the corresponding assertions in [32]
and [33]:

A0
n(z) ∼ 1

3
√

2πn

(
3
√

3
2

)n

e(1−1/
√

3 )z,

A1
n(z) ∼ (−1)n 1

3
√

2πn

(
3
√

3
2

)n (
ez/

√
3 + (−1)n−1e−z/

√
3
)
,

A2
n(z) ∼ (−1)n−1 1

3
√

2πn

(
3
√

3
2

)n

e(−1+1/
√

3)z.
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Comparing the previous asymptotic equalities with those given in this case by
Theorem 5 we find that

ez − π1
n,n(z; eξ) ∼ z3n+1

(3n)!
ez

√
2π
9n

(
2

3
√

3

)n

ez/
√

3, (6.1)

eλ2z − π2
n,n(z; e2ξ) ∼ z3n+1

(3n)!
e2z

√
2π
9n

(
2

3
√

3

)n(
ez/

√
3 + (−1)ne−z/

√
3

)
.

The next result follows from Theorem 5 with 0 < ε < 1.

Corollary 4. Let π1
n,n(z; eξ) and π2

n,n(z; e(1+ε)ξ) be the Hermite-Padé approxi-
mants of the second kind for the family {ez, e(1+ε)z}. Then, as n→∞,

ez − π1
n,n(z; eξ) ∼ z3n+1

(3n)!

√
π(2p3 + (2 + ε)h)

27pn

(
2p3 + (2 + ε)h

27

)n

e(3+p)z/3,

e(1+ε)z − π2
n,n(z; e(1+ε)ξ)

∼ z3n+1

(3n)!

√
π(2p3 + (2 + ε)h)

27pn

(
2p3 + (2 + ε)h

27

)n

e(3+3ε+p)z/3.

Corollary 4 asserts that for small values of ε the asymptotics of the corresponding
deviations of Hermite-Padé approximants of the second kind differ insignificantly
and tend to a common value as ε→ 0. In addition, the factor (2p3 +(2+ε)h)/27)n,
which depends on ε and governs the principal term in the asymptotic formula,
tends to (2/(3

√
3 ))2n. This is rather surprising in view of (6.1), because accord-

ing to Corollary 4 the rate of approximation of the function ez by Hermite-Padé
approximants increases substantially (by almost a factor of (2/(3

√
3 ))n).

6.2. We next give an example in which case B) is realized. To this end we look at
the system of exponentials {eλpz}3p=0, where

λ0 = 0, λ1 = 1− ε, λ2 = 2 + ε, λ3 = 3, 0 6 ε < 1.

With these values of the parameters

x1 =
3
2
− 1

2

√
9− 2(1− ε)(2 + ε) , x2 =

3
2
,

x3 =
3
2

+
1
2

√
9− 2(1− ε)(2 + ε) ,

ϕ(x1) = ϕ(x3) = −1
4
(1− ε)2(2 + ε)2, ϕ(x2) =

9
4
(0, 5 + ε)2.

Hence, for ε = 3
2

√
2− 2 ∈ (0, 1),

x1 =
3
2
− 3

2

√
2−

√
2 , x2 =

3
2
, x3 =

3
2

+
3
2

√
2−

√
2 ,

ϕ(x2) = −ϕ(x1) = −ϕ(x3) =
81
8

(
3
2
−
√

2
)
,



788 A.V. Astafyeva and A.P. Starovoitov

whilst
ϕ′′(x2) = −18 + 9

√
2 , ϕ′′(x1) = ϕ′′(x3) = 36− 18

√
2 .

Hence,

S′′(x1) = S′′(x3) =
16
9

(2−
√

2 ), S′′(x2) =
32
9
.

As a result, case B) is realized with p = 1 and p = 2. For example Theorem 4 with
p = 1 implies that

Ã1
2n(z) ⇒

e3(
√

2−1) z/2

1−
√

1−
√

2/2

[
e−3

√
2−
√

2 z/2 −

√
1−

√
2

2

]
,

Ã1
2n+1(z) ⇒

e3(
√

2−1) z/2

1 +
√

1−
√

2/2

[
e−3

√
2−
√

2 z/2 +

√
1−

√
2

2

]
.

§ 7. Location of the zeros of the polynomials Ap
n

Szegő [41] studied the behaviour of the zeros of Taylor polynomials for power
series related to exponential functions. Saff and Varga [42] examined the location
of the zeros of Padé approximants to the exponential function, and in particular,
ascertained the boundary of the annulus containing the zeros of the Padé poly-
nomials. Stahl [18] studied the location of the zeros of the diagonal Hermite-Padé
polynomials of the first and second kinds, transformed by rescaling the indepen-
dent variable, for system of exponentials {1, ez, e2z}. He showed that these zeros
lie on special arcs in the complex plane (see also [27] and [40]). Wielonsky [33]
proved an analogue of Saff and Varga’s theorem for Hermite-Padé polynomials Ap

satisfying (1.2).
The next theorem supplements and extends results due to Saff, Varga, Stahl and

Wielonsky.

Theorem 6. Let {λp}k
p=0 be arbitrary distinct complex numbers. Then, for n > 2,

k > 1, the zeros of Ap
n (that is, the zeros of the Hermite-Padé polynomials of the

first kind for the system of exponentials {eλpz}k
p=0) lie in the disc {z : |z| < Rp

n},
where

Rp
n = 2

(
n− 1

3

) k∑
j=0
j ̸=p

1
|λp − λj |

.

The proof of Theorem 6 depends on the method in [33]. We leave the details to
the reader.

Some of the results in this paper were announced in [43].
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[19] G. López Lagomasino, S. Medina Peralta and U. Fidalgo Prieto, “Hermite-Padé
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