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Closeness to spheres of hypersurfaces
with normal curvature bounded below

A. A. Borisenko and K.D. Drach

Abstract. For a Riemannian manifold Mn+1 and a compact domain
Ω ⊂ Mn+1 bounded by a hypersurface ∂Ω with normal curvature bounded
below, estimates are obtained in terms of the distance from O to ∂Ω for
the angle between the geodesic line joining a fixed interior point O in Ω to
a point on ∂Ω and the outward normal to the surface. Estimates for the
width of a spherical shell containing such a hypersurface are also presented.
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§ 1. Introduction

Blaschke [1] showed that if a complete regular hypersurface Fn has normal curva-
tures pinched between two positive constants k1 and k2, so that k2 > kn > k1 > 0,
then for each point in Fn there exist supporting spheres with radii 1/k1 and 1/k2

that enclose the hypersurface and lie inside it, respectively. However, it turns out
that we can also discuss the closeness of a surface to a sphere in the case when its
normal curvatures are only bounded below.

Take a circle in a Euclidean plane. Obviously, the angle between the ray from
its centre to a point on the circle and the outward normal at this point is zero.
However, if instead of rays from the centre we consider rays with end-point at
some fixed interior point O, then this angle does not vanish identically any longer;
the same holds for arbitrary convex curves in the plane. On the other hand, the
closer all such angles are to zero, the closer the curve to a circle and the point O
to the centre of this circle, that is, the magnitude of this angle characterizes the
closeness of the curve to a circle. This also provides motivation for the study of
estimates for such angles in the general case. It proves that if the normal curvature
of a hypersurface is bounded below, then for points O lying at a distance h from
the boundary in the corresponding domain the angle between the radial direction
from O and the normal cannot be very large.

More precisely, by comparison with constant curvature spaces, an estimate for
a surface in Hn+1(−1) (the Lobachevskii space with constant sectional curva-
ture −1) was derived in [2], provided that all the normal curvatures of the surface
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satisfy the inequality kn > 1 or kn > λ with λ < 1. In [3] a similar estimate was
derived in an Hadamard space Mn+1 (a complete simply connected Riemannian
manifold with nonpositive sectional curvature K) such that −k2

1 6 K 6 0, pro-
vided that the normal curvatures of the surface satisfy the inequality kn > λ with
λ 6 k1. In [4] this estimate was extended to kn = k1.

Thus, the question of similar estimates in manifolds with nonpositive sectional
curvature satisfying 0 > K > −k2

1, k1 > 0, in the case when all the normal
curvatures of the hypersurface satisfy kn > λ with λ > k1, and of estimates for
hypersurfaces with normal curvatures satisfying kn > λ > 0 in manifolds with
positive curvature remains open. For 2-dimensional manifolds such estimates were
announced in [5]. These results and their generalization to many dimensions are
presented in § 2 and § 3.

Another characteristic of closeness to a sphere is the width of a spherical shell
into which the surface can be put. Clearly, the smaller this width, the closer this
surface is to a sphere.

It was proved in [2] that a closed surface in a Lobachevskii space (with curva-
ture −1) lies in a spherical shell of width d 6 ln 2 if the normal curvatures of this
hypersurface satisfy kn > 1 at each point and in each direction. A similar estimate
also holds in Hadamard manifolds (see [6]). In this paper we generalize these results
to constant curvature spaces and to the general Riemannian case, under some other
constraints on the normal curvature of the hypersurface.

§ 2. Preliminary observations and the statements of the main results

We look at a complete simply connected (n + 1)-dimensional Riemannian mani-
fold Mn+1. Let Kσ denote the sectional curvature of Mn+1 at a point P ∈ Mn+1

in the direction of a 2-plane σ ⊂ TP Mn+1. Let Ω ⊂ Mn+1 be a compact closed
domain such that its boundary ∂Ω is a C2-hypersurface.

Take a point O ∈ Ω. Let h := dist(O, ∂Ω) be its distance from the boundary
of the domain, and for an arbitrary point P ∈ ∂Ω let ϕ := ϕ(P ) denote the angle
between the minimizing curve from O to P and the outward normal to ∂Ω at P
(Fig. 1).

Here and throughout, kn = kn(P, Y ) denotes the normal curvature of the hyper-
surface ∂Ω at the point P ∈ ∂Ω in the direction of the vector Y ∈ TP ∂Ω.

It turns out that if the normal curvatures of ∂Ω in all directions are bounded
below (kn > k0), then the angle ϕ cannot be very large. More precisely, we have
the following theorem.

Theorem 1. Let Mn+1(c) be a complete simply connected Riemannian manifold
with constant sectional curvature c and let Ω be a closed bounded domain in M such
that ∂Ω is a regular C2 hypersurface. Let O ∈ Ω be a point in the interior of the
domain, h = dist(O, ∂Ω) be the distance from O to the hypersurface, and ϕ be the
angle between the radial direction from O to a point in ∂Ω and the outward normal
at this point. Then the following results hold.

1. If c = 0, that is, Mn+1(c) = En+1 is a Euclidean space, and if the normal
curvatures of the hypersurface in all directions satisfy kn > k0 > 0, then

cos ϕ >
√

2hk0 − h2k2
0 > hk0. (2.1)
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Figure 1

2. If c = −k2
1 , where k1 > 0, that is, Mn+1(c) = Hn+1 is the (n+1)-dimensional

Lobachevskii space and if the normal curvatures of ∂Ω in all directions satisfy
kn > k0 > k1 , then

cos ϕ >

√
1− sinh2 k1(R− h)

sinh2 k1R
>

sinh k1h

sinh k1R
. (2.2)

3. If c = k2
1 , k1 > 0, that is, Mn+1(c) = Sn+1 is an (n + 1)-sphere with curva-

ture k2
1 , and the normal curvatures of the hypersurface ∂Ω in all directions satisfy

kn > k0 > 0, then

cos ϕ >

√
1− sin2 k1(R− h)

sin2 k1R
>

sin k1h

sin k1R
. (2.3)

In cases 2 and 3, R denotes the radius of a circle with curvature k0 in a 2-plane
with the corresponding curvature c.

A similar result holds when the ambient space is a Riemannian manifold with
curvature having fixed sign.

Theorem 2. Let ∂Ω be a compact C2-hypersurface in a complete simply connected
(n+1)-dimensional Riemannian manifold Mn+1 that bounds a domain Ω ⊂ Mn+1 .
Then the following results hold.

1. If the sectional curvatures Kσ of Mn+1 on all the 2-planes σ satisfy
0 > Kσ > −k2

1 , k1 > 0, and the normal curvatures of ∂Ω in all directions sat-
isfy kn > k0 > k1 , then (2.2) holds.
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2. On the other hand, if the sectional curvatures of Mn+1 satisfy k2
2 > Kσ > k2

1 ,
k1 > 0, Ω lies in a ball of radius π/(2k2), and the normal curvatures of ∂Ω in all
directions satisfy kn > k0 > 0, then (2.3) holds.

Recall (see [3] and [4]) that a locally convex (not necessarily regular) hypersurface
∂Ω ⊂ Mn+1(c) in a constant curvature space is said to be λ-convex if for each point
P ∈ ∂Ω there exists a sphere SP with curvature λ such that in a neighbourhood of
P the hypersurface lies to the convex side of SP . The corresponding domain Ω is
called a λ-convex domain.

Note that a Ck-hypersurface ∂Ω, where k > 2, is λ-convex if and only if its
normal curvatures in all directions at each point satisfy kn > λ. Thus λ-convexity
is a natural generalization of the property of having normal curvatures bounded
below by λ.

In view of these definitions, we obtain the following result on the width of spher-
ical shells in constant curvature spaces.

Theorem 3. Let ∂Ω be a complete k0-convex hypersurface bounding a domain Ω in
a complete simply connected (n + 1)-dimensional manifold Mn+1(c) with constant
sectional curvature c. Then the following results hold.

1. If c = 0 and k0 > 0, then ∂Ω lies in a spherical shell with width

d 6

√
2− 1
k0

. (2.4)

2. If c = k2
1 , k1 > 0 and k0 > 0, then ∂Ω lies in a spherical shell with width

d 6
2
k1

cos−1
√

cos k1R−R. (2.5)

3. If c = −k2
1 , k1 > 0 and k0 > k1 , then ∂Ω lies in a spherical shell with width

d 6
2
k1

cosh−1
√

cosh k1R−R. (2.6)

In cases 2 and 3, R is the radius of a circle with curvature k0 in a 2-plane with
curvature c.

Remark 1. It is known that R = (1/k1) cot−1(k0/k1) on a 2-sphere with curvature
k2
1, and that R = (1/k1) coth−1(k0/k1) in a 2-dimensional Lobachevskii space with

curvature −k2
1. Throughout we let R denote the radius of a circle with curvature

k0 in a plane with constant curvature c. Then we can write (2.5) and (2.6) as

d 6
1
k1

(
2cos−1

√
k0

4
√

k2
0 + k2

1

− cot−1 k0

k1

)
,

d 6
1
k1

(
2 cosh−1

√
k0

4
√

k2
0 − k2

1

− coth−1 k0

k1

)
,

respectively.

Remark 2. The above bounds are sharp: we have equalities for the spindle-shaped
surfaces described below.



Closeness to spheres of hypersurfaces with normal curvature bounded below 1569

We can generalize the bound for the width of a spherical shell to the case when
the ambient Riemannian space has sectional curvature of fixed sign. Namely, we
have the following result.

Theorem 4. Let ∂Ω be a closed C2-hypersurface bounding a domain Ω in a com-
plete simply connected (n + 1)-dimensional Riemannian manifold Mn+1 .

1. Assume that the sectional curvatures of Mn+1 on all the 2-planes σ satisfy
k2
2 > Kσ > k2

1 , where k1, k2 > 0. Suppose that the hypersurface lies in a ball with
radius π/k2 which has the same centre as a ball inscribed in ∂Ω. If the normal
curvatures of ∂Ω in all directions satisfy kn > k0 > 0, then ∂Ω lies in a spherical
shell with width (2.5).

2. Assume that 0 > Kσ > −k2
1 for every 2-plane, k1 > 0. If all the normal

curvatures of ∂Ω in all directions satisfy kn > k0 > k1 , then ∂Ω lies in a spherical
shell with width (2.6).

§ 3. The proofs of angle comparison theorems

3.1. Auxiliary results. We introduce the polar coordinate system with origin at
O ∈ Ω in Mn+1. In these coordinates we can write the metric on the manifold as
ds2 = dt2 + gij dθi dθj , i, j = 1, . . . , n, where t is the length parameter and the θi

are angular variables.
We can assume that the regular hypersurface ∂Ω has equation t = ρ(θ1, . . . , θn).

Indeed, this holds for convex hypersurfaces in the regularity region of the polar
coordinate system. Then ∂Ω is the 0-level set of the function F (t, θ1, . . . , θn) =
t− ρ(θ1, . . . , θn).

For an arbitrary manifold N and a smooth function f the gradient vector field
of this function is the unique vector field gradN f such that

⟨gradN f, v⟩ = v(f) ∀ v ∈ TN.

Let Y be the gradient vector field of the distance function ρ on ∂Ω that measures
the distance from points in ∂Ω to O:

Y = grad∂Ω ρ.

It is known that the unit outward normal to ∂Ω has the form

n =
gradMn+1 F

∥ gradMn+1 F∥
.

At each point in ∂Ω the vector ∂t = ∂/∂t defines the radial direction; let ϕ be the
angle between n and ∂t.

The vectors n(P ), ∂t(P ) and Y (P ) lie in the same 2-plane in TP Mn+1 (see [3]
and [4]). Let X(P ) be the unit vector orthogonal to ∂t(P ) in this plane, and let kn

denote the normal curvature of ∂Ω at P ∈ ∂Ω in the direction of Y = Y (P ) (see
Fig. 1).

Then the following result holds.
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Lemma 1 (see [3] and [4]). Let µn be the normal curvature of a sphere with radius
ρ and centre O at a point P ∈ ∂Ω in the direction of X and assume that an integral
trajectory of the vector field Y is parametrized by the distance t from O to the point
on the curve. Then

kn(t) = cosϕµn(t)− sin ϕ
dϕ

dt

on this trajectory.

To find connections between the curvature of a sphere and the curvature of the
space we require the following lemma.

Lemma 2 (see [7], [8]). Assume that the sectional curvatures of a Riemannian
manifold Mn+1 satisfy one of the following conditions.

1) For all 2-planes σ , Kσ > k2
1 , where k1 > 0, and each sphere with radius t lies

in the regularity region of the polar coordinate system with origin at the centre of
the sphere;

2) 0 > Kσ > −k2
1 , where k1 > 0.

Then the normal curvatures µn in all directions of spheres with radius t satisfy

µn(t) 6 µ0(t),

where µ0(t) is the geodesic curvature of a circle with radius t on a plane with
constant curvature equal to k2

1 in case 1) and to −k2
1 in case 2).

Note that circles with radius t on 2-planes with constant curvature have geodesic
curvatures µ0(t) equal to:

1/t in a Euclidean plane;
k1cot−1k1t on a sphere with curvature k2

1;
k1coth−1k1t on a Lobachevskii plane with curvature −k2

1.
To use this comparison lemma we investigate the magnitude of the angle ϕ for

circles on surfaces with constant Gaussian curvature. The following result holds.

Lemma 3 (see [5]). Let M2 be a plane with constant curvature, γ be a circle with
radius R, and O be a point lying at a distance h from the circle in the disc bounded
by this circle. Then the angle ϕ between the geodesic curve from O to a point γ(s)
on the circle and the outward normal to the circle satisfies the following inequalities:

1) on a Euclidean plane

cos ϕ >

√
2h

R
− h2

R2
>

h

R
;

2) on the Lobachevskii space with curvature −k2
1

cos ϕ >

√
1− sinh2 k1(R− h)

sinh2 k1R
>

sinh k1h

sinh k1R
;

3) on a sphere with curvature k2
1 , provided that R 6 π/(2k1),

cos ϕ >

√
1− sin2 k1(R− h)

sin2 k1R
>

sin k1h

sin k1R
.
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We also require the following result.

Lemma 4. Let f(x) ∈ C1[a, b] and assume that f(a) = 0 and f(b) < 0. Then the
set of points at which f(x) < 0 contains a point x0 ∈ (a, b) such that f ′(x0) < 0.

3.2. The proofs of Theorems 1 and 2. In the two-dimensional case we have
the following result.

Lemma 5. Let γ be a Ck-regular closed curve embedded in a plane with constant
Gaussian curvature, where k > 2, let O be a point lying at a distance h from γ in
the domain bounded by this curve, and let ϕ be the angle between the radial direction
from O to a point in γ and the outward normal at this point.

1. In the case of a Euclidean plane, if the curvature k of γ satisfies k > k0 > 0,
then (2.1) holds.

2. In the case of a Lobachevskii plane with curvature K = −k2
1 , k1 > 0, if the

curvature of the curve satisfies k > k0 > k1 , then (2.2) holds.
3. In the case of a sphere with curvature K = k2

1 , if the curvature k of γ satisfies
k > k0 > 0, then (2.3) holds.

Proof. We carry out the proof for all three cases simultaneously.
In the constant curvature plane we introduce the polar coordinate system with

origin at O. Then the curvature k of the curve γ satisfies

k = µ0(t) cosϕ− sin ϕ
dϕ

dt
, (3.1)

by Lemma 1, where µ0(t) is the curvature of a circle in the plane with constant
curvature k0.

Now we construct an object for comparison. In the constant curvature plane we
look at a circle S with curvature k0. Taking a point O1 lying at the distance h from
the circle in its interior, we consider the polar system of coordinates with origin
at O1. We shall denote the angle between the outward normal to the circle and the
geodesic curve from O1 to a point in S by β.

By Lemma 1

k0 = µ0(t) cosβ − sin β
dβ

dt
. (3.2)

We subtract equation (3.1) from (3.2) and use the assumption that k > k0. Then
we obtain

µ0(cos ϕ− cos β)− sin ϕ
dϕ

dt
+ sin β

dβ

dt
= k − k0 > 0. (3.3)

We set f(t) = cosϕ(t) − cos β(t). Then it follows from (3.3) that this function
satisfies

f ′ + µ0f > 0, f(h) = 0. (3.4)

The condition f(h) = 0 holds because in both cases h is the distance between
the origin and the curve, and therefore ϕ(h) = β(h) = 0.

We look at an arc of γ starting at the point Q0 such that

dist(O,Q0) = dist(O, γ) = h
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and ending at some point Q1, such that t(s) is increasing on this arc (on such arcs
we can parametrize the curve by the distance to the origin). We shall perform the
proof for this arc.

We continue the proof in the more complicated case 3.
If γ is not a circle or O is not the centre of the circle, then h < π/(2k1). Indeed,

as k > 0 by assumption, the curve γ lies on a closed hemisphere, which gives us
a bound for h. We claim that for t close to h we have f(t) > 0, and f(t) is not
identically equal to zero if the arc of γ is not an arc of a circle with curvature k0 in
a neighbourhood of Q0.

In fact, if t such that f(t) < 0 exists arbitrarily close to h, then in the set of such
points, by Lemma 4 we can find t0 close to h such that

f(t0) < 0, f ′(t0) < 0. (3.5)

Since h < π/(2k1) and the point t0 is arbitrarily close to h, from the inequality
µ0(h) > 0 we obtain µ0(t0) > 0. But then (3.5) contradicts (3.4).

Now we take t1 close to h such that f(t1) > 0. (We have shown that there exist
such t1.) Consider the following Cauchy problem:

g′ + µ0(t)g = 0, g(t1) = f(t1) > 0. (3.6)

In case 3, µ0(t) = k1 cot k1t, and then the solution of (3.6) has the form

g(t) =
f(t1) sin k1t1

sin k1t
.

Note that for 0 < t 6 π/(2k1) the function g(t) is positive; furthermore, it is
increasing, that is, g′(t) > 0 for π/(2k1) 6 t < π/k1.

Figure 2

Now we compare solutions of inequality (3.4) and equation (3.6) which satisfy
the same initial condition (Fig. 2). At points where f −g < 0, for t1 6 t 6 π/(2k1),
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we have
(f − g)′ > −µ0(f − g) > 0 (3.7)

because µ0(t) > 0 on this interval. Since f(t1)−g(t1) = 0 (by (3.6)), it follows from
Lemma 4 that the set of points at which f − g < 0 contains a point t2 such that
f(t2)− g(t2) < 0 and f ′(t2)− g′(t2) < 0, which contradicts (3.7). Hence f > g > 0
for t1 6 t 6 π/(2k1).

We have f(π/(2k1)) − g(π/(2k1)) > 0. For t > π/(2k1) we also have µ0(t) < 0.
Thus it follows from (3.7) that f ′ − g′ > 0, that is, f ′ > g′ > 0. Hence for
t > π/(2k1), on the piece of γ where t = t(s) is monotonically increasing, f is
monotonically increasing too. Since f(π/(2k1)) > 0, we have f > 0 on this part
of γ to the right of π/(2k1).

Thus we have shown that cos ϕ(t) > cos β(t) on the arc under consideration.
Using the estimate for cos β(t) from Lemma 3 we obtain the result of Lemma 5
in this case. Obviously, the regular curve γ is a union of several arcs of this type,
which only differ in their minimum distances hi from the point O. Finding an
estimate for the angle ϕ on every piece of γ on which t = t(s) is monotonic, we
obtain a bound for the closed curve. Here we use that the right-hand sides of the
estimates in Lemma 3 are monotone increasing in h. As the minimum distance on
each arc satisfies hi > h, the estimate cos ϕ(t) > cos β(t) holds also for h in place
of hi. Moreover, if hi > π/(2k1), then f(hi) = 0, and it follows from (3.4) that
f ′ > 0 and f > 0 on this arc of the curve.

In this way we complete the proof of assertion 3. Assertions 1 and 2 are proved
in a similar way.

Proof of Theorems 1 and 2.We introduce the polar coordinate system with origin O.
Then the arc length element can be written as ds2 = dt2 + gij dθi dθj . By the
constraints on the normal curvature the hypersurface ∂Ω is embedded, convex, and
compact. Moreover, in all cases, this hypersurface lies in the regularity region of
this system of coordinates. Hence we can assume that ∂Ω is the 0-level set of the
function F (t, θ) = t− ρ(θ).

Let γ be an integral trajectory of the vector field Y = grad∂Ω ρ and let Q0 ∈ γ
be the point lying at distance h from O; Y = 0 at this point and ϕ(Q0) = 0.
Let P ∈ γ be a point at a distance h1 from O such that the distance from O is
a monotone function on the arc Q0P of γ. Then γ can be parametrized by the
parameter t ∈ (h; h1] measuring the distance from O.

By Lemma 1, at points in γ we have

kn(t) = cosϕ(t)µn(t)− sin ϕ(t)
dϕ

dt
. (3.8)

Just as in the two-dimensional case, we look at a circle S with curvature k0 lying
in a 2-plane with constant curvature (equal to 0 in the Euclidean, to k2

1 in the
spherical, and to −k2

1 in the hyperbolic case). Let Q0 be a point on S, and O1 be
a point inside S lying at the distance h from Q0 on the geodesic curve orthogonal
to S at Q0; let β be the angle between the geodesic curve from O1 to a point in S
and the outward normal to S at this point. Then equality (3.2) holds.

Subtracting (3.2) from (3.8), from the assumptions of Theorems 1 and 2, using
Lemma 2 we obtain the differential inequality (3.4).
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The minimum distance h from points in γ to the point O is less than π/(2k1).
Indeed, by the assumptions in Theorem 2, part 2 (the argument is even simpler
in the other cases), the hypersurface ∂Ω lies in a ball of radius π/(2k2), which is
no larger than π/(2k1). So if h = π/(2k1), then a fortiori k1 = k2 and ∂Ω lies in
a constant curvature space, where it is a totally geodesic sphere with centre O, or,
in the 2-dimensional case, it is a closed geodesic.

Now we can repeat the calculations in Lemma 5 and complete the proof of
Theorems 1 and 2.

§ 4. The proofs of the bounds for the width of spherical shells

4.1. Auxiliary results required for the proof of Theorem 3.

Lemma 6. Let ∂Ω be a complete k0-convex hypersurface in a space Mn+1(c) with
constant curvature c, such that

1) if c = 0 or c = k2
1 > 0, then k0 > 0;

2) if c = −k2
1 then k0 > k1 .

Then ∂Ω is an embedded convex hypersurface, and at each point P ∈ ∂Ω it has
a supporting sphere with radius R that contains this hypersurface in its interior.

Remark 3. In Lemma 6 we understand by R the radius of a circle with curvature
k0 in a 2-dimensional manifold M2(c) with constant sectional curvature c.

Proof of Lemma 6. For a Ck-smooth hypersurface, where k > 2, the required result
is an immediate consequence of [9].

Now let ∂Ω be a k0-convex irregular hypersurface. For sufficiently small τ we
look at the outer equidistant surfaces ∂Ωτ , which are ε(τ)-convex with ε(τ) > 0 (in
case 1)) or ε(τ) > k1 (in case 2)), where ε(τ) → k0−0 as τ → 0. It is known that ∂Ωτ

is a C1,1-smooth hypersurface. Moreover, ∂Ωτ is a limit of regular hypersurfaces
∂Ωτ,δ with normal curvatures satisfying kn > ε(τ) − ν(δ), where ε(τ) − ν(δ) > 0
(in case 1)) or ε(τ) − ν(δ) > k1 (in case 2)) and ν(δ) → 0 + 0 as δ → 0. By
the regular case, which we have already considered, ∂Ωτ,δ lies in a sphere with
radius Rτ,δ and curvature ε(τ)− ν(δ), which is a supporting sphere at an arbitrary
point Pτ,δ ∈ ∂Ωτ,δ. Taking the limit as τ → 0 and δ → 0 we see that the sphere
with radius R = limτ,δ→0 Rτ,δ supporting ∂Ω at the point P = limτ,δ→0 Pτ,δ ∈ ∂Ω
contains the whole hypersurface. This holds for any point P and proves the lemma
in the irregular case.

We make an observation, which we use below. Let A and B be points in
Ω ⊂ Mn+1(c) and let M2(c) be a totally geodesic subspace of Mn+1(c) containing
A and B (it exists because the sectional curvature is constant). Then M2(c) con-
tains precisely two circles with radius R passing through A and B. These points
partition each of the circles into two arcs, a longer one and a shorter one. Through-
out what follows we call the shorter arc of a circle with radius R passing through
points A and B the shorter arc of a radius-R circle for A and B.

The following lemma holds.

Lemma 7. Let ∂Ω be a complete k0-convex hypersurface in a complete simply con-
nected space Mn+1(c) with constant sectional curvature c, which bounds a domain Ω
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(where k0 > 0 if c = 0 or c = k2
1 > 0 and k0 > k1 if c = −k2

1 < 0). Then the
shorter arc of any radius-R circle for arbitrary points A, B ∈ Ω lies in Ω.

Proof. Assume that the statement fails and that there exist A, B ∈ Ω and a shorter
arc ω for A and B which does not lie entirely in Ω. We look at the intersection
of Ω with the two-dimensional subspace M2(c) containing A, B and ω. Let γ =
M2(c) ∩ ∂Ω be a curve in this intersection.

It is known that the intersection of a λ-convex surface and a 2-subspace is
a λ-convex curve. Thus γ is k0-convex.

Let A1 and B1 be the points of intersection of ω and γ. Then letting ω1 denote
the part of ω lying between A1 and B1 and letting γ1 denote the part of γ confined
between ω and the chord AB we see that ω1 and γ1 are convex curves lying to the
same side of the geodesic curve joining A1 to B1.

Let C1 be a point on γ1 distinct from A1 and B1. Since γ is a k0-convex closed
curve, the circle δ with radius R supporting γ at C1 contains γ in its interior by
Lemma 6. Assume that δ intersects ω1 in points X1 and Y1. Note that if X1 or Y1

coincides with A1 or B1 for every C1, then ω1 ≡ γ1 and we arrive at a contradiction
to the assumption that ω1 does not lie in Ω. Hence we can assume that X1 ̸= A1

and Y1 ̸= B1.
However, ω1 is the shorter arc of a radius-R circle, so the arc δ1 of δ confined

between ω1 and the chord A1B1 is less that half the circle δ. On the other hand,
by convexity, δ1 and ω1 lie to the same side of the geodesic X1Y1.

We have proved in this way that for the fixed points X1 and Y1 there exist two
different shorter arcs of radius-R circles lying to the same side of the geodesic X1Y1,
which is impossible. This proves Lemma 7.

4.2. Finding bounds for special spindle-shaped hypersurfaces. As above,
we consider a complete simply connected Riemannian manifold Mn+1(c) with con-
stant sectional curvature c. As previously, R denotes the radius of a circle with
curvature k0 in a 2-dimensional manifold M2(c).

We now construct a key object that we need for estimates of the width of spherical
shells.

For fixed points P , Q ∈ Mn+1(c) we look at the special class of spindle-shaped
hypersurfaces v(P,Q) obtained by rotating the shorter arc of a radius-R circle for
P and Q about the geodesic curve l joining these points.

Note that v(P,Q) is a k0-convex surface of revolution. Then for any 2-plane
M2(c) containing P and Q the intersection M2(c)∩ v(P,Q) is a curve γ formed by
two shorter arcs of radius-R circles symmetric relative to the geodesic PQ. We call
such curves lunes or curvilinear digons.

Let O ∈ l be a point lying at equal distance from P and Q. Since v(P,Q) is
the surface of revolution of a circle arc, O is the centre of a sphere S with radius r
inscribed in v(P,Q). Then ω := M2(c) ∩ S is a circle with centre O and radius r
inscribed in γ.

As v(P,Q) is constructed by rotating the shorter arc of a radius-R circle, the
circumscribed sphere S1 of v(P,Q) has centre O and radius ρ := OP = OQ. In
a similar way, ω1 = M2(c)∩S1 is the circle with radius ρ and centre O circumscribed
about γ.
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Here it is obvious that given the radius of the inscribed sphere, for fixed R we
can uniquely recover the points P and Q and therefore the hypersurface v(P,Q)
(because an arc and its end-points are uniquely recovered from the radius R of the
circle and the height r of the circular segment).

Thus we can consider the class of spindle-shaped surfaces so defined. They are
parametrized by r; note that r ∈ [0, R]. By construction, each hypersurface in this
class can be put in a spherical shell with width d = d(r) = ρ(r)− r (for ρ can also
be uniquely recovered from r).

The following lemma is true.

Lemma 8. The following estimates for the width d = d(r) of spherical shells hold
in the class of spindle-shaped hypersurfaces in constant curvature spaces:

1) (2.4) in Euclidean space;
2) (2.5) in the spherical space Sn+1(k2

1);
3) (2.6) in the Lobachevskii space Hn+1(−k2

1).

The proof is by direct calculation of the function d(r) = ρ(r)−r and determining
its maximum by means of standard calculus.

Remark 4. As k1 → 0, the metrics in Sn+1(k2
1) and Hn+1(−k2

1) approach the
Euclidean metric. It is easy to show that the bounds (2.5) and (2.6) tend to (2.4)
as k1 → 0.

4.3. The proof of Theorem 3. We shall prove the theorem in all cases simul-
taneously, indicating differences between these where necessary.
The regular case. Let ∂Ω be a C2-hypersurface.

Let B be a ball with centre O and radius r inscribed in ∂Ω. Let

ρ1 = maxdist(O, ∂Ω)

be the maximum distance from O to points in the hypersurface. Then ∂Ω obviously
lies in a spherical shell with width d = ρ1 − r.

Let ρ(r) be the radius of the circumscribed sphere in Lemma 8. We claim that

d = ρ1 − r 6 ρ(r)− r (4.1)

for all r ∈ [0, R].
Suppose that this inequality fails and let

d = maxdist(O, ∂Ω)− r > ρ(r)− r. (4.2)

Let P ′ ∈ ∂Ω be a point such that max dist(O, ∂Ω) = dist(O,P ′) (Fig. 3). Then by
(4.2) there is a point P on the geodesic curve OP ′, between O and P ′, such that

dist(O,P ) = ρ(r). (4.3)

Let Q be the point symmetric to P in O. We look at the spindle-shaped hyper-
surface v(P,Q).

Then B is also inscribed in v(P,Q). We take the hyperplane π orthogonal to
OP and passing through O. Let D = π ∩B be the ‘equatorial’ ball.
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Figure 3

Let F be a point on ∂D. Then the shorter arc ω of a radius-R circle for the
points P and F , which lies on v(P,Q), also lies in Ω by Lemma 7. As F ∈ ∂D can
be arbitrary, the part v+(P,Q) of the spindle-shaped hypersurface v(P,Q) lying in
the same half-space with respect to π as P and P ′ lies in Ω.

Let Q′ be the second point of intersection of the geodesic curve PQ and the
shorter arc ω1 of the radius-R circle for P ′ and F that bulges towards PQ.

Then it is obvious that ∂D lies on the spindle-shaped surface v(P ′, Q′), and the
part v+(P ′, Q′) lies in Ω by Lemma 7.

Moreover, ω and ω1 must be disjoint. Since the same holds for any point F , it
follows that v+(P,Q) lies inside v+(P ′, Q′) and these surfaces intersect in ∂D.

Note that all the shorter arcs of radius-R circles which lie on v(P,Q) and join
P to ∂D are orthogonal to geodesic curves from O to points in ∂D. As v+(P,Q)
lies inside v+(P ′, Q′), the angle between P ′F and the geodesic OF is larger than
π/2. Hence the radius r′ of the ball B′ inscribed in v(P ′, Q′) is larger than r and
its centre O′ lies between O and P ′.

By the construction of v(P ′, Q′), all the points in v(P ′, Q′) whose distance from
O′ is equal to r′ lie on rays from O′ orthogonal to OP . Since O′F is not orthogonal
to OP , it follows that |O′F | = dist(O′, ∂D) > r′ (here | · | is the length of the
geodesic interval in the corresponding space).

Let T ∈ ∂B−, where B− is the part of the ball B lying in the different half-space
from the points P and P ′ relative to the plane π. The angle O′OT of the geodesic
triangle △OO′T is larger than π/2, so |O′T | > |O′F | > r′ by the cosine theorem.
Since T can be arbitrary, we have B′ ⊂ B− ∩ v+(P ′, Q′) ⊂ Ω.

Thus we have found a ball in Ω which has a radius larger than the inscribed ball:
a contradiction, which proves (4.1). Now Lemma 8 yields estimates (2.4)–(2.6).
The proof in the smooth case is complete.
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The irregular case. Let ∂Ω be an arbitrary complete k0-convex hypersurface. Our
arguments will be similar to the ones in the proof of Lemma 6. Let ∂Ωτ be the
outer equidistant C1,1-smooth convex hypersurface lying at distance τ from ∂Ω.
The hypersurface ∂Ωτ is ε(τ)-convex and limτ→0 ε(τ) = k0. We approximate ∂Ωτ

by Ck-smooth hypersurfaces ∂Ωτ,δ, k > 2, with normal curvatures satisfying kn >
ε(τ) − ν(δ), where ν(δ) → 0 + 0 as δ → 0. For such hypersurfaces we proved
the bound above. Passing to the limit as τ, ε → 0 and bearing in mind that
limτ,δ→0 Rτ,δ = R, we obtain the required bounds in the general case.

The proof of Theorem 3 is complete.

4.4. Auxiliary results required for the proof of Theorem 4. Let Mn+1(c)
be a complete simply connected Riemannian manifold with constant sectional cur-
vature c. Let Ω be a compact convex domain in it, with boundary ∂Ω which is
a closed C2-hypersurface. Let O ∈ Ω be an interior point of the domain and let
P ∈ ∂Ω be a point such that dist(O,P ) = dist(O, ∂Ω). Let ϕ(Q) denote the angle
between the geodesic OQ from O to some point Q ∈ ∂Ω and the outward normal to
∂Ω at Q. Let SP ⊂ Mn+1(c) be a sphere passing through P and orthogonal to OP
such that O lies in the corresponding ball BP and let β(Q) denote the angle between
the geodesic OQ going through some point Q ∈ SP and the outward normal to the
sphere at this point.

Lemma 9. In the above notation, if

ϕ(Q) 6 β(Q)

for some points Q ∈ ∂Ω and Q ∈ SP such that the intervals OQ and OQ of geodesic
lines have the same length, then SP is tangent to the hypersurface ∂Ω at P and the
whole of Ω lies in the ball BP .

Proof. We introduce the polar system of coordinates with origin O on Mn+1(c).
Then the metric has the expression ds2 = dt2 + gij dθi dθj , where t is the dis-
tance from the origin and θ1, . . . , θn are the coordinate variables on the standard
Euclidean sphere Sn. We can assume that the point P has coordinates (h, 0, . . . , 0),
where h = dist(O,Q) = dist(O, ∂Ω).

In a neighbourhood of P we can define our surface and the sphere by explicit
equations. Assume that ∂Ω is given by t = f(θ1, . . . , θn) and SP is given by
t = ρ(θ1, . . . , θn).

Let Q ∈ ∂Ω and Q ∈ SP be points in this neighbourhood such that OQ = OQ.
Then the corresponding outward normals N∂Ω(Q) and NSP

(Q) to the surfaces at
these points have the following expressions:

N∂Ω(Q) =
∂t − gij ∂f

∂θi
∂θj√

1 + |∇f |2∂Ω

, NSP
(Q) =

∂t − gij ∂ρ

∂θi
∂θj√

1 + |∇ρ|2SP

, (4.4)

where all the derivatives are taken at Q or Q, respectively; ∂t, ∂θi , i = 1, . . . , n, is
the coordinate basis in the corresponding tangent space TQMn+1(c) or TQMn+1(c),

and we have set ∂f =
∂f

∂θi
∂θi and ∂ρ =

∂ρ

∂θi
∂θi (throughout, we assume summation

over repeating indices).
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By (4.4) the cosines of the angles between the radial directions ∂t(Q) and ∂t(Q)
at Q and Q and the corresponding normals are expressed by

cos ϕ(Q) =
1√

1 + |∇f |2∂Ω

, cos β(Q) =
1√

1 + |∇ρ|2SP

. (4.5)

Finally, since ϕ(Q) 6 β(Q) by assumption, at the corresponding points we obtain

|∇f |2∂Ω 6 |∇ρ|2SP
. (4.6)

We claim that
f(θ1, . . . , θn) 6 ρ(θ1, . . . , θn) (4.7)

for all (θ1, . . . , θn)∈Sn, and that equality is only attained for the closed domain BP ,
containing (0, . . . , 0). Then the result of the lemma follows from the choice of the
origin.

A) We shall prove the lemma for n = 1. It is sufficient to show that

f(θ) 6 ρ(θ) (4.8)

for each θ ∈ S1.
In the polar coordinate system on M2(c),

g−1(t, θ) = g−1
11 (t, θ) =

1
sc2 k1t

,

where

sc k1t =


sin k1t if c = k2

1 > 0,

t if c = 0,

sinh k1t if c = −k2
1 < 0.

Thus g−1(t, θ) is positive and independent of the magnitude of the angle. Hence
for θ1 and θ2 such that f(θ1) = ρ(θ2), from (4.6) we obtain

f ′
2(θ1) 6 ρ′

2(θ2). (4.9)

In the case of a circle SP , ρ(θ) is known to be a strictly increasing function on
[0, π], unless SP has radius h. If its radius is equal to h, then ρ ≡ h, and it follows
from (4.9) that f ≡ h, so that (4.8) holds.

Since h = f(0) is the minimum distance, the function f(θ) is also strictly increas-
ing in some right neighbourhood of zero [0, θ̃), θ̃ < π.

In fact, if f ≡ h in a neighbourhood of zero, then (4.8) holds. But if f takes the
value h in every right neighbourhood of zero, but is not constant, then we look at
the arc of the curve between two close points P1 and P2 such that f(P1) = h and
f(P2) ̸= h. By convexity, f is strictly increasing in some neighbourhood of P1 on
the arc joining P1 and P2. Then we take P = P1.

Since f(0) = ρ(0) = h, we can take θ̃ such that for each θ2 ∈ [0, θ̃) we can find
θ1 ∈ [0, θ̃) such that f(θ1) = ρ(θ2). Hence

0 < f ′(θ1) 6 ρ′(θ2) (4.10)

in this neighbourhood, from (4.9).
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We set h̃ := f(θ̃). In view of inequality (4.10) above, the inverse functions
θ = f−1(t) and θ = ρ−1(t) are defined on [h; h̃). If t0 := f(θ1) = ρ(θ2), then
by (4.10)

(f−1)′(t0) =
1

f ′(θ1)
>

1
ρ′(θ2)

= (ρ−1)′(t0) > 0. (4.11)

Hence f−1 is increasing more rapidly than ρ−1, and since f−1(h) = ρ−1(h) = 0,
it follows that θ1 = f−1(t0) > ρ−1(t0) = θ2. If inequality (4.11) is strict at some
point then θ1 > θ2. However, then, as f is monotonic, we obtain

f(θ2) < f(θ1) = ρ(θ2),

and since θ2 ∈ [0, θ̃) is arbitrary, this implies (4.8) on the interval in question. If
in (4.11) equality holds at each point in [h; h̃), then the curve coincides with an arc
of the circle SP at all points.

Similar arguments for the left neighbourhood of zero ensure that SP is locally
a supporting circle at P and ∂Ω lies locally inside SP or coincides with this circle
on an arc containing P . We shall show that the same holds for all θ ∈ S1.

Assume the converse. As ∂Ω ⊂ BP locally, the curve ∂Ω must go outside SP .
Let θ0 ∈ [0, 2π] be the first point where ∂Ω intersects SP and extends outside. Then
f(θ0) = ρ(θ0). By the hypotheses of the lemma, for the corresponding angles at
the point Q0 = (f(θ0), θ0) = (ρ(θ0), θ0) ∈ ∂Ω ∩ SP we have

ϕ(Q0) 6 β(Q0),

in contradiction to the assumption that the curve goes outside the circle.
Thus we have arrived at a contradiction, which proves (4.8) and therefore also

the lemma for n = 1.
B) The case n ̸= 1. We take a 2-dimensional totally geodesic submanifold M2(c)

of Mn+1(c) which contains the geodesic interval OP . It intersects SP in a circle
and ∂Ω in a plane curve. Let ϕ̃(Q) and β̃(Q) be the corresponding angles between
the geodesics OQ and OQ and the normals at Q ∈ ∂Ω and Q ∈ SP to the curves
in intersection. As ϕ̃(Q) 6 ϕ(Q), β(Q) = β̃(Q) and ϕ(Q) 6 β(Q), the angles ϕ̃

and β̃ satisfy the assumptions of the lemma. Hence we can apply the arguments in
part A), which show that the curve lies in the disc bounded by the circle. However,
the same holds for any M2(c), so ∂Ω ⊂ BP .

Lemma 9 is proved.

4.5. The proof of Theorem 4. Let O be the centre of a ball B with radius r
inscribed in ∂Ω. We look at the domain D = exp−1

O (Ω) in the tangent space
TOMn+1. Then ∂D = exp−1

O (∂Ω).
Let O ∈ Mn+1(c) be a point in a manifold with constant sectional curvature c.

Identifying the tangent spaces TOMn+1 and TOMn+1(c) by an isometry we define
Ω to be the domain expO D. Then ∂Ω = expO(∂D). We also set B := expO B to
be a ball of radius r.

We introduce the polar coordinate systems with origins at O and O on the
manifolds Mn+1 and Mn+1(c), respectively. Then the metrics in these spaces can
be expressed as

Mn+1 : ds2 = dt2 + gij dθi dθj , Mn+1(c) : ds2 = dt2 + Gij dθi dθj ,
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where, as in Lemma 9, t is the length parameter and θ1, . . . , θn are the coordinate
variables on the standard Euclidean sphere Sn.

If the sectional curvatures K of Mn+1 are negative, 0 > K > −k2
1, then such

a system of coordinates is regular everywhere apart from O (see [8]), and if the
sectional curvatures of Mn+1 are positive, k2

2 > K > k2
1 > 0, then the coordinate

system in question is certainly regular in the ball of radius π/k2 punctured at the
centre. Thus by the hypotheses of the theorem the domain Ω ⊂ Mn+1 lies in the
regularity region of the polar coordinate system which we have introduced on Mn+1.

Since Kσ > c, using the standard comparison techniques (see [7]), for the inverse
matrices (gij) and (Gij) and for any covector a(a1, . . . , an), we obtain

gijaiaj > Gijaiaj . (4.12)

Assume that ∂Ω is explicitly defined by t = f(θ1, . . . , θn). By construction, ∂Ω
is given by the same equation. If N and N are the unit outward normals at two
points Q ∈ ∂Ω and Q ∈ ∂Ω corresponding to each other by means of the isometry
of tangent spaces, then by analogy with Lemma 9 they can be written as

N(Q) =
∂t − gij ∂f

∂θi
∂θj√

1 + |∇f |2∂Ω

and N(Q) =
∂t −Gij ∂f

∂θi
∂θj√

1 + |∇f |2
∂Ω

, (4.13)

where ∂f =
∂f

∂θi
∂θi is a tangent vector to the sphere Sn.

Then by (4.13) the cosines of the angles ϕ(Q) and ϕ(Q) between the radial
direction ∂t and the corresponding outward normals N and N have the expressions

cos ϕ(Q) =
1√

1 + |∇f |2∂Ω

, cos ϕ(Q) =
1√

1 + |∇f |2
∂Ω

.

In view of (4.12), it follows from these relations that at the corresponding points
we have

cos ϕ(Q) 6 cos ϕ(Q). (4.14)

Let P ∈ ∂Ω∩B be a point of tangency of an inscribed ball B with radius r and
the hypersurface ∂Ω, dist(O, ∂Ω) = dist(O,P ) = r, and let P ∈ ∂Ω be the point
corresponding to it by means of the isometry, so that dist(O, ∂Ω) = dist(O,P )=r,
P ∈∂Ω∩B. We take the sphere SP in the manifold Mn+1(c) which has curvature k0,
passes through P , and is orthogonal to the geodesic curve OP , so that O lies in the
corresponding ball BP .

As above, for any Q0 ∈ SP we let β(Q0) denote the angle between the radial
direction and the outward normal at this point. For points Q ∈ ∂Ω and Q0 ∈ SP

such that dist(O,Q) = dist(O,Q0) it follows from Theorem 1 that

cos β(Q0) 6 cos ϕ(Q). (4.15)

From (4.14) and (4.15), for any points Q ∈ ∂Ω and Q0 ∈ SP such that

dist(O,Q) = dist(O,Q0),
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we obtain
cos β(Q0) 6 cos ϕ(Q).

However, SP is then a supporting sphere for ∂Ω by Lemma 9 and the whole of Ω
lies in the ball BP :

Ω ⊂ BP . (4.16)

Obviously, such an inclusion holds for any P ∈ ∂Ω ∩B.
Next we look at the domain

C =
⋂

P∈∂Ω∩B

BP .

By construction, ∂C is a complete k0-convex hypersurface. Furthermore, by
(4.16),

Ω ⊂ C . (4.17)

Now we use arguments similar to the ones in the proof of Theorem 3 to show
that the ball B is also inscribed in the hypersurface ∂C .

Indeed, since B is inscribed in ∂Ω, it is known that the set ∂Ω∩B cannot lie on
an open hemisphere of ∂B. By construction, the same can be said about ∂Ω ∩ B.
Now assume that the claim fails and that B is not inscribed in ∂C . Then there
exists a ball B1 ⊂ C with the same radius, but distinct from B. Let O1 be the
centre of B1.

Let π0 and π1 denote totally geodesic n-dimensional submanifolds of Mn+1(c)
passing through O and O1, respectively, and orthogonal to the geodesic curve OO1.
For an arbitrary point P ∈ π0 ∩ B, let P1 ∈ π1 ∩ B1 be a point such that P1, O1,
P and O lie in some 2-plane M2(c), and the geodesic intervals P1O1 and PO lie
to the same side of O1O. Since ∂C is a k0-convex hypersurface, it follows from
Lemma 7 that any shorter arc of a curvature-k0 circle for the points P and P1 lies
in the corresponding domain C . We take an arc s of this type which makes angles
larger than π/2 with the geodesic curves OP and O1P1. Since we can do this for
any P ∈ π0 ∩ B, the part of ∂B lying in the same half-space as O1 with respect
to π0 contains no points in ∂C and hence no points in ∂Ω ∩ B. We see that some
points in P ∈ ∂Ω∩B must lie on the equatorial circle π0 ∩∂B. But the supporting
curvature-k0 spheres at these points are orthogonal to the geodesic curve OP , by
construction. Hence the arc s does not lie in this sphere, which contradicts the
construction of C and the fact that s lies in C . This contradiction proves that the
ball B with radius r is inscribed in ∂C .

Now since ∂C is a complete k0-convex surface, the width max dist(O, ∂C )− r of
a spherical shell, which clearly contains the hypersurface ∂C , satisfies the bounds
in Theorem 3.

By (4.17), max dist(O, ∂Ω) − r 6 max dist(O, ∂C ) − r. On the other hand,
max dist(O, ∂Ω)− r = maxdist(O, ∂Ω)− r, by construction. Hence

max dist(O, ∂Ω)− r 6 max dist(O, ∂C )− r,

and from Theorem 3 we obtain the required bounds for the width of a spherical shell
in the case of a hypersurface in a Riemannian manifold with nonconstant curvature.
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Theorem 4 is proved.
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