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Direct and inverse theorems of rational
approximation in the Bergman space

T. S. Mardvilko and A.A. Pekarskǐı

Abstract. For positive numbers p and µ let Ap,µ denote the Bergman
space of analytic functions in the half-plane Π := {z ∈ C : Im z > 0}. For
f ∈ Ap,µ let Rn(f)p,µ be the best approximation by rational functions
of degree at most n. Also let α ∈ R and τ > 0 be numbers such that
α + µ = 1

τ
− 1

p
> 0 and 1

p
+ µ /∈ N. Then the main result of the paper

claims that the set of functions f ∈ Ap,µ such that

∞∑
n=1

1

n
(nα+µRn(f)p,µ)τ < ∞

is precisely the Besov space Bα
τ of analytic functions in Π.

Bibliography: 23 titles.
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§ 1. Introduction. The main results

Let Lp(R) denote the space of Lebesgue-measurable complex-valued functions f
on R with finite quasinorm

∥f∥Lp(R) =
(∫

R
|f(x)|p dx

)1/p

, 0 < p <∞.

We shall also consider Lp,µ(Π), the space of complex functions f in the half-plane

Π := {z ∈ C : Im z > 0}

which are measurable with respect to the planar Lebesgue measure m2 and have
a finite quasinorm

∥f∥Lp,µ(Π) =
(∫

Π

(Im z)pµ−1|f(z)|p dm2(z)
)1/p

, p > 0, µ > 0.

The subspace of Lp,µ(Π) consisting of the functions analytic in Π, the Bergman
space, will be denoted by Ap,µ := Ap,µ(Π). For f ∈ Ap,µ we shall set ∥f∥Ap,µ

=
∥f∥Lp,µ(Π).

AMS 2010 Mathematics Subject Classification. Primary 30E10, 30H20, 30H25.
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For 0 < τ <∞ and α ∈ R we introduce the Besov space Bα
τ of analytic functions

f in Π such that

∥f∥Bα
τ

= ∥f (s)∥Aτ,s−α
<∞, s = [α] + 1, (1.1)

where [α] is the integer part of α. As usual, here f (0) = f , f (s) for s > 1 is the
sth derivative of f while for s < 0 f (s) is the (−s)th antiderivative of f uniquely
defined by the condition f (s)(z) → 0 as Im z → +∞. The functional ∥ · ∥Bα

τ
on

Bα
τ defines a quasinorm for [α] + 1 6 0, that is, for α < 0. On the other hand, if

[α] + 1 > 1, that is, α > 0, then the functional ∥ · ∥Bα
τ

is a semiquasinorm on Bα
τ

because ∥f∥Bα
τ

= 0 if and only if f is an algebraic polynomial of degree at most [α].
In § 2 we show that for α ∈ [0, 1

τ ) the functional ∥ · ∥Bα
τ

also is a quasinorm if we
confine ourselves to the functions f such that f(z) → 0 as Im z → +∞. This is
what we shall suppose throughout; that is, in the definition of the space Bα

τ for
α ∈ [0, 1

τ ) we assume that f(z) → 0 as Im z → +∞. It is known that if f ∈ Bα
τ ,

then in (1.1) we can replace s = [α]+1 by any s > α; the resulting quasinorms will
be equivalent.

For the spaces Bα
τ we have the following continuous noncompact embedding (see,

for example, [1] or [2]):

Bα1
τ1
↪→ Bα0

τ0
for α1 − α0 =

1
τ1
− 1
τ0
> 0. (1.2)

In particular,

Bα
τ ↪→ Ap,µ for α+ µ =

1
τ
− 1
p
> 0. (1.3)

Here and in what follows X ↪→ Y means a continuous embedding of the space X
in the space Y .

Let Pn, n = 0, 1, 2, . . . , be the set of algebraic polynomials of degree at most n;
and Rn = {p

q : p, q ∈ Pn, q ̸≡ 0} be the set of rational functions of degree at

most n. For f ∈ Ap,µ we shall consider the best rational approximation

Rn(f)p,µ := Rn(f)Ap,µ = inf
{
∥f − r∥Ap,µ : r ∈ Rn ∩Ap,µ

}
.

It is known that the set of rational functions is dense in Ap,µ. Hence it follows
from (1.3) that if f ∈ Bα

τ , then Rn(f)p,µ → 0 as n → ∞. The central result
of this paper, Theorem 1, includes the direct and inverse theorems of rational
approximation in Ap,µ.

Theorem 1. Let p, µ, τ be positive numbers and α be a real number such that
α+ µ = 1

τ −
1
p > 0 and 1

p + µ /∈ N. Then f ∈ Ap,µ satisfies

∞∑
n=1

1
n

(nα+µRn(f)p,µ)τ <∞

if and only if f ∈ Bα
τ .

The sufficiency part of Theorem 1 (the direct theorem) holds also for 1
p +µ ∈ N.

The necessity can be proved by a method from the paper [3], in which direct
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theorems of rational approximation in Hardy spaces were proved. We can also use
the atomic decomposition of functions in the Bergman space (see [4] and [1]). In
[4] and [1] atomic decomposition is used, in particular, to prove the direct theorem
of rational approximation in the Bloch space. In the sufficiency part of the proof of
Theorem 1 we have also established a Jackson-type inequality, Theorem 2.

Theorem 2. Let α be a real number and p, µ, τ be positive numbers such that
α+ µ = 1

τ −
1
p > 0. If f ∈ Bα

τ , then

Rn(f)Ap,µ
6

c

nα+µ
∥f∥Bα

τ
, n = 1, 2, . . . ,

where c > 0 is independent of n and f .

The necessity part of Theorem 1 (the inverse theorem) is proved by Bernstein’s
method of the proof of inverse theorems of approximation theory; in our case it is
based on Theorem 4 stated below. Also for 1 < τ < ∞ we use the real interpo-
lation method. Theorem 4 is proved with the use of Theorem 3, which also is of
independent interest.

Theorem 3. Let p and µ be positive numbers such that 1
λ = 1

p + µ /∈ N. Then for
r ∈ Rn ∩ Lp,µ(Π) and n > 1,

∥r∥Lλ(R) 6 cnµ∥r∥Lp,µ(Π), c = c(p, µ) > 0.

Theorem 4. Let p and µ be positive numbers such that 1
p + µ /∈ N. Then for

α > −µ, 1
τ = α+ µ+ 1

p and r ∈ Rn ∩Ap,µ, n > 1,

∥r∥Bα
τ

6 cnα+µ∥r∥Ap,µ
, c = c(p, µ, α) > 0.

The constraint 1
p + µ /∈ N is essential in Theorems 3 and 4, as well as in the

necessity part of Theorem 1.
Theorems 1–4 also have analogues in the disc. In the case µ+ 1

p < 1 analogues
of Theorems 1–4 were earlier obtained by Dyn’kin (see [5]). Also for the disc,
in the special case of µ = 1

p and p > 2 the necessity in Theorem 1 together with
Theorems 3 and 4 were established by Misiuk (see [6]) simultaneously with Dyn’kin,
but independently of him. Theorem 3 for µ = 1

p and 0 < p < 1 has recently been
proved by the first author (see [7]), who has made in [7] an essential use of some
results and tricks from [8]. This is where the methods used in [7] and this paper
are considerably distinct from the methods of [5] and [6]. Our proofs of Theorems
3 and 4 are based on a further development of the methods of [8] and [7].

The central results of this paper have been announced in [9].

§ 2. The proof of the direct theorem and of the Jackson-type inequality

We agree that c, c1, c2, . . . will denote positive quantities depending only on the
parameters put in the parentheses. Sometimes the indication of the parameters will
be suppressed.
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In § 5 we present several results on the Bergman space Ap,µ(G) in a domain
G ̸= C. In particular, by Lemma 10, for f ∈ Ap,µ(Π) we have

|f(z)| 6 c(p, µ)
(Im z)µ+1/p

∥f∥Ap,µ
, z ∈ Π. (2.1)

It follows from (2.1) that for f ∈ Bα
τ (Π) with α < 1

τ the condition f(z) → 0 as
Im z → +∞ is well posed.

For the proof of the direct theorem and the Jackson-type inequality we shall use
the atomic decomposition for functions in Ap,µ obtained by Koifman and Rochberg
(see [4]). As concerns atomic decompositions and their applications, also see [1]
and [2]. We state the results of [4] and [1] that we require in the convenient form
of Theorems 5 and 6. To do this we introduce the following notation.

For each θ ∈ (0, 1) consider the set Fθ of closed squares

Q =
{
z : θp+1 6 Im z 6 θp; qθp(1− θ) 6 Re z 6 (q+1)θp(1− θ)

}
, where p, q ∈ Z.

Obviously, these squares have disjoint interiors and their union is Π. We shall
number the squares in Fθ in some way by positive integers: Fθ = {Qk}∞k=1. Let
zk be the centre of the square Qk.

Theorem 5. Let θ ∈ (0, 1), p > 0, µ > 0 and assume that

κ > max
{

1,
1
p

}
+ µ.

Then for any sequence {uk}∞k=1 such that

∞∑
k=1

|uk|p <∞

the series
∞∑

k=1

uk
(Im zk)κ−(µ+1/p)

(z − zk)κ , z ∈ Π, (2.2)

converges in Ap,µ; furthermore, it converges uniformly and absolutely on compact
subsets of Π. The sum f(z) of the series (2.2) satisfies

∥f∥p
Ap,µ

6 c1

∞∑
k=1

|uk|p, c1 = c1(p, µ,κ, θ) > 0.

Theorem 6. Let p, µ and κ be as in Theorem 5. Then there exists

θ0 = θ0(p, µ,κ) ∈ (0, 1)

such that for θ ∈ (θ0, 1) any function f ∈ Ap,µ can be represented by a series (2.2)
with coefficients {uk}∞k=1 satisfying

∞∑
k=1

|uk|p 6 c2∥f∥p
Ap,µ

, c2 = c2(p, µ,κ, θ) > 0.
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In particular, Theorems 5 and 6 imply the embeddings (1.2) and (1.3). With the
help of these theorems we can readily show that for f ∈ Ap,µ the quasinorms ∥f∥Ap,µ

and ∥f (s)∥Ap,µ+s
, s ∈ (−µ,+∞) ∩ Z, are equivalent. Hence replacing s = [α] + 1

in (1.1) by an arbitrary integer s > α we obtain an equivalent quasinorm in the
space Bα

τ .
We shall also require the following Lemmas 1 and 2. Lemma 1 is a fragment of

the proof of Theorem 1.3.1 in [10]. Lemma 2 is a consequence of the inequality

(x+ y)θ 6 xθ + yθ, where x > 0, y > 0, 0 < θ 6 1.

Lemma 1. Let 0 < q < 1 and let {an}∞n=1 be a nonincreasing sequence of nonneg-
ative numbers such that

∑
aq

n <∞. Then

∞∑
n=1

(
1
n

∞∑
k=n

ak

)q

6 c(q)
∞∑

n=1

aq
n.

Lemma 2. Assume that 0 < α < β <∞ and let {ak}∞k=1 be a sequence of nonneg-
ative numbers such that

∑
aα

k <∞. Then( ∞∑
k=1

aβ
k

)1/β

6

( ∞∑
k=1

aα
k

)1/α

.

The sufficiency part of Theorem 1 (the direct theorem), as well as Theorem 2
are obvious consequences of Theorem 7.

Theorem 7. Let p, µ, τ be positive numbers and α a real number such that

α+ µ =
1
τ
− 1
p
> 0. (2.3)

If f ∈ Bα
τ , then

∞∑
n=1

1
n

(nα+µRn(f)p,µ)τ 6 c∥f∥τ
Bα

τ
, c = c(p, µ, τ, α) > 0. (2.4)

Proof. We set s = max{0, [α] + 1}, where [α] is the integer part of α. Next we take
κ ∈ N such that κ > 1+µ+s+ 1

p . Obviously, we also have κ > max{1, 1
τ }+s−α.

Since f ∈ Bα
τ , it follows that f (s) ∈ Aτ,s−α. By Theorem 6, for some θ1 ∈ (0, 1)

the function f (s) can be represented by a series

f (s)(z) =
∞∑

k=1

uk
(Im zk)κ−(s−α)−1/τ

(z − zk)κ , z ∈ Π. (2.5)

(Here the {zk}∞k=1 are the centres of the corresponding squares {Qk}∞k=1 in Fθ1 .)
Furthermore, the coefficients uk of (2.5) satisfy

∞∑
k=1

|uk|τ 6 c1∥f (s)∥τ
Aτ,s−α

6 c2∥f∥τ
Bα

τ
. (2.6)
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We shall assume that the squaresQk are ordered so that {|uk|}∞k=1 is a nonincreasing
sequence.

From (2.1) we see that

|f (s)(z)| 6 c3
(Im z)s−α+1/τ

∥f∥Bα
τ
, z ∈ Π.

It follows from this and Theorem 5 that we can integrate (2.5) termwise s times
along the vertical rays [z, z + i∞), z ∈ Π. In view of (2.3),

f(z) = b

∞∑
k=1

uk
(Im zk)(κ−s)−(µ+1/p)

(z − zk)κ−s
, z ∈ Π, (2.7)

where b = (−1)s (κ−s−1)!
(κ−1)! .

Since p > τ , from (2.6) and Lemma 2 we obtain that
∑
|uk|p is convergent.

Hence by Theorem 5 the series (2.7) converges in Ap,µ. For n ∈ N let rn(z) = 0 for
n < κ − s and

rn(z) = b
∑

16k6n/(κ−s)

uk
(Im zk)(κ−s)−(µ+1/p)

(z − zk)κ−s
for n > κ − s.

Obviously, rn ∈ Rn ∩Ap,µ and therefore Rn(f)p,µ 6 ∥f − rn∥Ap,µ
. For an estimate

of the last quasinorm we use Theorem 5. This yields

Rn(f)p,µ 6 c5

( ∑
k>n/(κ−s)

|uk|p
)1/p

. (2.8)

Now let ak = |u[k/(κ−s)]+1|, k = 1, 2, . . . . The sequence {ak}∞k=1 is nonnegative,
nonincreasing and

∞∑
k=1

aτ
k 6 c6∥f∥τ

Bα
τ

(2.9)

by (2.6). It also follows from (2.8) that

Rn(f)p,µ 6 c7

( ∞∑
k=n

|ak|p
)1/p

. (2.10)

By (2.3) we have τ
p < 1, so we deduce (2.4) from Lemma 1 and relations (2.9)

and (2.10):

∞∑
n=1

1
n

(nα+µRn(f)p,µ)τ 6 c8

∞∑
n=1

(
1
n

∞∑
k=n

|ak|p
)τ/p

6 c9

∞∑
n=1

aτ
n 6 c10∥f∥τ

Bα
τ
.

The proof is complete.
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§ 3. Comparing the quasinorms of a rational function
with respect to the linear and planar measures

Here we prove Theorem 3. We require the Hardy space Hp = Hp(Π) in the
half-plane Π. By definition (see [11]) an analytic function f in Π belongs to Hp,
0 < p <∞, if

∥f∥Hp
:= sup

y>0
∥f( · + iy)∥Lp(R) <∞.

As is known, if f ∈ Hp, then for almost all x ∈ R a limit lim f(z) =: f(x) exists
for z ∈ Π approaching x along paths nontangential to R, and we have ∥f∥Hp =
∥f∥Lp(R). For f ∈ Hp we also point out the inequality

|f(z)| 6 c(p)
(Im z)1/p

∥f∥Hp
, z ∈ Π. (3.1)

Results similar to the conditional Lemma 3 below can also be found in [8] and [7].

Lemma 3. Let p, µ and λ be positive numbers such that 1
λ = µ+ 1

p . Assume that
for some p = p1 < 1

∥r∥Hλ
6 c1(p, µ)nµ∥r∥Ap,µ

(3.2)

for each function r ∈ Rn ∩ Ap,µ, n > 1, which has real coefficients and no poles
outside R. Then for all p = kp1, k ∈ N, and all r ∈ Rn ∩ Lp,µ(Π), n > 1,

∥r∥Lλ(R) 6 c2(p, µ)nµ∥r∥Lp,µ(Π) (3.3)

with some constant c2(p, µ) in place of c1(p, µ).

Proof. We start with the case k = 1. Let r ∈ Rn ∩ Lp,µ(Π) be a rational function
with some poles outside R. Let b+ and b− be the Blaschke products with poles
coinciding (with multiplicities) with the poles of r in the half-planes Im z > 0
and Im z < 0, respectively. For example, if r has no poles in Im z < 0 then we
set b−(z) ≡ 1. Obviously, r cannot have a pole at ∞. For each fixed ζ ∈ T ,
T := {ζ : |ζ| = 1}, all the poles of the rational function

r(z, ζ) := r(z)(b+(z)− ζb−(z))−1

lie in R; its degree coincides with that of r. It is easy to verify (or see [12], Theo-
rem 1.7 and [7], Lemma 1) that

J(p, z) :=
∫

T

|b+(z)− ζb−(z)|−p |dζ|

is a bounded function in C, so that J(p, z) 6 ω(p) for z ∈ C with positive ω(p)
depending only on p = p1 ∈ (0, 1). Using Fubini’s theorem we obtain∫

T

(∫
Π

(Im z)pµ−1|r(z, ζ)|p dm2(z)
)
|dζ|

=
∫

Π

(Im z)pµ−1|r(z)|pJ(p, z) dm2(z) 6 ω(p)∥r∥p
Lp,µ(Π).
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Hence there exists ζ0 ∈ T such that the function r0(z) := r(z, ζ0) satisfies

∥r0∥Ap,µ 6 c3(p)∥r∥Lp,µ(Π), c3(p) =
(
ω(p)
2π

)1/p

.

We set r1(x) = Re r0(x) and r2(x) = Im r0(x), x ∈ R. Then for the rj , j = 1, 2, we
have

∥rj∥Ap,µ
6 c3(p)∥r∥Lp,µ(Π). (3.4)

By assumption the rj satisfy (3.2). In view of (3.2), (3.4) and the obvious inequality
|b+(x)− ζ0b−(x)| 6 2, x ∈ R, we obtain

∥rj(b+ − ζ0b−)∥Lλ(R) 6 2∥rj∥Lλ(R) 6 2c1(p, µ)nµ∥rj∥Ap,µ

6 2c1(p, µ)c3(p)nµ∥r∥Lp,µ(Π), j = 1, 2. (3.5)

Since r = (r1 + ir2)(b+ − ζ0b−) and 0 < λ < 1, by (3.5) inequality (3.3) holds for
each r ∈ Rn ∩ Lp,µ(Π) with the constant c2(p, µ) = 21/λc1(p, µ)c3(p) in place of
c1(p, µ).

Now we show that (3.3) holds for the exponents p = pk := kp1, k = 2, 3, . . . .
Let r ∈ Rn ∩Lp,µ(Π). Then rk ∈ Rnk ∩Lp1,kµ(Π) and therefore, by the case k = 1
already considered,

∥rk∥Lσk
(R) 6 c2(p1, kµ)(nk)kµ∥rk∥Lp1,kµ(Π),

1
σk

:= kµ+
1
p1
. (3.6)

Next we set 1
λk

= µ+ 1
kp1

and observe that

∥rk∥Lσk
(R) = ∥r∥k

Lλk
(R), ∥rk∥Lp1,kµ(Π) = ∥r∥k

Lpk,µ(Π).

Thus, (3.6) yields the required inequality

∥r∥Lλk
(R) 6 c4(pk, µ)nµ∥r∥Lpk,µ(Π)

with the constant c4(pk, µ) = kµc2(p1, kµ). The proof is complete.

Now we follow the pattern used in [8] and [7]. To do this we introduce further
notation. Let n and l be positive integers such that n > l+ 1. We shall denote the
set of functions r ∈ Rn with real coefficients and poles only on R such that each
pole has multiplicity at most l and

r(z) = O(z−l−1) as z →∞

by Rl
n.

Let Πl
m, m > 2, l > 1, denote the set of piecewise-polynomial functions ϕ on R,

with compact support, of degree at most l − 1 and with m free nodes. Namely,
ϕ ∈ Πl

m if there exist m points (nodes of ϕ) −∞ < x1 < x2 < · · · < xm < +∞
such that ϕ|(xk,xk+1) ∈ Pl−1, k = 1, 2, . . . ,m−1, and ϕ(x) = 0 for x ∈ R\ [x1, xm].
The quantities ϕ(xk), k = 1, 2, . . . ,m, can be arbitrary. For convenience we assume
that Πl

1 = {0}.
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Lemma 4 (see [8]). If r ∈ Rl
n, then there exists a real-valued function ϕ ∈ Πl

m,
m 6 n, such that

r(z) =
l!
π

∫
R

ϕ(t) dt
(t− z)l+1

, z ∈ C \ suppϕ.

This ϕ has nodes at poles of r.

Lemma 5 (see [8]). For 1 < q <∞, and k ∈ N, let λ = (k+ 1
q )−1 and let ϕ ∈ Πl

m

and

f(z) =
1
π

∫
R

ϕ(t) dt
t− z

, z ∈ Π.

Then f (k) ∈ Hλ and

∥f (k)∥Hλ
6 c(k, q, l) ·mk · ∥ϕ∥Lq(R).

We shall also use the Bergman and Smirnov spaces Ap,µ(G) and Ep(G) in
a bounded domain G with boundary ∂G which is a rectifiable Jordan curve. We
give the definitions of these spaces and some relevant inequalities in § 5. Using the
method of the proof of Theorem 10 we can also establish the following well-known
embedding. Let p, q and µ be positive numbers such that

µ+
1
p
− 1
q

=: l ∈ N, p < q. (3.7)

If f is analytic in Π, f(z) → 0 as Im z → +∞ and f (l) ∈ Ap,µ(Π), then f ∈ Hq(Π)
and we have

∥f∥Hq
6 c(p, q, µ)∥f (l)∥Ap,µ

. (3.8)

Let l ∈ N, ε > 0, let f be an analytic function in Π and f(z) = O((Im z)−l−ε) as
Im z →∞. Then we denote the lth antiderivative of f determined by the condition
f (−l)(z) → 0 as Im z → ∞ by f (−l). At the beginning of § 2 we showed that f (−l)

is well defined for f ∈ Ap,µ in the case when µ + 1
p > l. It follows from (3.1) that

f (−l) is well defined for f ∈ Hp in the case when 1
p > l.

Lemma 6. Let p, q, µ and l be as in (3.7) and let f ∈ Ap,µ(Π). Then f (−l) ∈ Hq

and for each k ∈ N there exists ψ ∈ Πl
k such that

∥ Im f (−l) − ψ∥Lq(R) 6
c

kl−µ
∥f∥Ap,µ

,

where the positive c is independent of f and k.

Proof. By (3.8), for k = 1 we can set ψ ≡ 0. Now we assume that k > 2 and f ̸≡ 0.
It follows from (3.8) that there exist x1, xk ∈ R, x1 < xk, such that

∥f (−l)∥Lq(R\(x1,xk)) 6
1

k1/p
∥f∥Ap,µ

. (3.9)

Next we can find x2, x3, . . . , xk−1, x1 < x2 < x3 < · · · < xk−1 < xk, such that∫
Dj

(Im z)pµ−1|f(z)|p dm2(z) 6
2
k

∫
D

(Im z)pµ−1|f(z)|p dm2(z), (3.10)
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where D ⊂ Π is the square with side (x1, xk) and Dj ⊂ D is the square with side
Jj := (xj , xj+1), j = 1, 2, . . . , k − 1. Let ∆j ⊂ Dj be the equilateral triangle with
base Jj . From Lemma 12 and (3.10) we obtain the following relation:

∥f∥p
Ap,µ(∆j)

6
c1
k

∫
D

(Im z)pµ−1|f(z)|p dm2(z). (3.11)

Let pj(z) be the (l−1)th order Taylor polynomial of f (−l) at ∆j . Using Theorem 10
with Remark 2 and also relation (3.11) we obtain

∥f (−l) − pj∥Lq(Jj) 6
c2
k1/p

∥f∥Ap,µ(Π). (3.12)

Now we define a function ψ ∈ Πl
k by setting ψ(x) = Im pj(x) for x ∈ Jj ,

j = 1, 2, . . . , k − 1, and ψ(x) = 0 for x ∈ R \ [x1, xk]. This is the required function;
indeed, from (3.9) and (3.12) we obtain

∥ Im f (−l) − ψ∥q
Lq(R) 6

c3
kq/p−1

∥f∥q
Ap,µ(Π) =

c3
kq(l−µ)

∥f∥q
Ap,µ(Π).

The proof is complete.

Proof of Theorem 3. By Lemma 3 it is sufficient to establish Theorem 3 for p ∈ (0, 1)
such that µ+ 1

p ̸∈ N and a rational function r ∈ Rn ∩Ap,µ(Π) with real coefficients
and no poles outside R. We can readily see that such r belong to Rl

n with l = [µ+ 1
p ].

In view of our assumptions, we can find q ∈ (1,+∞) such that µ+ 1
p = l+ 1

q . Using
Lemma 4 we see that there exists a real function ϕ ∈ Πl

m, m 6 n, such that

r(−l)(z) =
1
π

∫
R

ϕ(t) dt
t− z

, z ∈ Π. (3.13)

By M. Riesz’s theorem r(−l) ∈ Hq(Π). Obviously, Im r(−l)(z) is the Poisson integral
of ϕ in Π. Hence Im r(−l)(x) = ϕ(x) at all points x ∈ R except for the poles of r
(the nodes of ϕ).

Consider the least positive integer ν such that 2ν > m. By Lemma 6, for each
s = 0, 1, 2, . . . , ν − 1 there exists a real function ψs ∈ Πl

2s such that

∥ϕ− ψs∥Lq(R) 6
c1

(2s)l−µ
∥r∥Ap,µ(Π). (3.14)

We set ϕs = ψs − ψs−1, s = 1, 2, . . . , ν, and also set ψν = ϕ. Recall that ϕ0 ≡ 0.
Obviously, ϕs ∈ Πl

2s+1 and

ϕ = ϕ1 + ϕ2 + · · ·+ ϕν (3.15)

on R. From (3.14) we also see that

∥ϕs∥Lq(R) 6
c2

(2s)l−µ
∥r∥Ap,µ(Π). (3.16)

Now we can find a lower bound for ∥r∥Lλ(R). Indeed, by (3.13) and (3.15)

∥r∥λ
Lλ(R) = ∥r∥λ

Hλ(Π) = ∥(r(−l))(l)∥λ
Hλ(Π) 6

ν∑
s=1

∥∥∥∥ l!π
∫

R

ϕs(t) dt
(t− z)l+1

∥∥∥∥λ

Hλ(Π)

.
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We continue the estimate using Lemma 5 for k = l and inequality (3.16). Then we
obtain

∥r∥λ
Lλ(R) 6 c3

ν∑
s=1

(2s+1)lλ

(2s)λ(l−µ)
∥r∥λ

Ap,µ(Π) = c4∥r∥λ
Ap,µ(Π)

ν∑
s=1

(2λµ)s

6 c5(2ν)λµ∥r∥λ
Ap,µ(Π) 6 c6n

λµ∥r∥λ
Ap,µ(Π).

The proof is complete.

§ 4. Bernstein-type inequalities for the quasinorms of derivatives
of rational functions and the proof of the inverse theorem

Several special cases of Theorem 8 below were considered in [5]–[7].

Theorem 8. Let p and µ be positive numbers such that µ + 1
p ̸∈ N, s ∈ N and

1
λ = µ+ s+ 1

p . If r ∈ Rn ∩Ap,µ(Π), then

∥r(s)∥Hλ
6 c(p, µ, s)nµ+s∥r∥Ap,µ

.

Proof. Since r ∈ Ap,µ, it follows that r(s) ∈ Ap,µ+s and

∥r(s)∥Ap,µ+s
6 c1(p, µ, s)∥r∥Ap,µ

(4.1)

(see § 2). It is also obvious that r(s) is a rational function of degree at most (s+1)n.
It remains to apply Theorem 3 with µ+ s in place of µ to r(s) and to use inequal-
ity (4.1).

We order the squares in F1/2 (see § 2) by numbering them: F1/2 = {Qk}∞k=1.
Let d(Qk) (in accordance with § 5.1) be the length of the diagonal of Qk.

Lemma 7. Let f ∈ Hp(Π), 0 < p <∞. Then the quantities

δk(f, p) := d(Qk)1/p∥f∥C(Qk), k = 1, 2, 3, . . . ,

form an infinitesimal sequence. Moreover, if the squares Qk in F1/2 are ordered so
that the above sequence is nonincreasing, then

δk(f, p) 6
c(p)
k1/p

∥f∥Hp
, k = 1, 2, 3, . . . .

For a disc Lemma 7 can be found in [13], [5] and [14]. In a half-plane its proof
is similar.

Proof of Theorem 4. Let s = max{1, [α] + 1}, 1
λ = µ+ s+ 1

p , and also let

δk = δk(r(s), λ) = d(Qk)1/λ∥r(s)∥C(Qk), k = 1, 2, 3, . . . .

From inequality (4.1) and Lemma 11 we obtain

∞∑
k=1

δp
k 6 c1∥r∥p

Ap,µ
.
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Hence {δk}∞k=1 is an infinitesimal sequence and we can assume that the squares Qk

in F1/2 are numbered so that this sequence is nonincreasing. Then

δk 6
c2
k1/p

∥r∥Ap,µ
, k = 1, 2, 3, . . . . (4.2)

Using Theorem 8 and Lemma 7 we also find

δk = c3
nµ+s

k1/λ
∥r∥Ap,µ , k = 1, 2, 3, . . . . (4.3)

From (4.2) and (4.3) we obtain

∞∑
k=1

δτ
k 6 c4n

τ(α+µ)∥r∥τ
Ap,µ

.

Applying Lemma 11 again we see that the last inequality is tantamount to the
statement of Theorem 4.

In the necessity part of the proof of Theorem 1 (the inverse theorem) we shall
use the method of real interpolation. For necessary information the reader can
consult [10].

For θ ∈ (0, 1) and 0 < q 6 ∞ let ( · , · )θ,q denote the Peetre interpolation functor.
Now we introduce the approximation space Rβ

q , β > 0, q > 0, of functions
f ∈ Ap,µ(Π) which have a finite quasinorm

∥f∥Rβ
q

=
[ ∞∑

k=1

1
k

(kβRn(f)p,µ)q

]1/q

.

In our notation for Rβ
q we drop p and µ because we fix these parameters throughout

this section.

Lemma 8. For 0 < β0 < β1 < ∞ and 0 < θ < 1 let β = (1 − θ)β0 + θβ1 and let
q, q0, q1 ∈ (0,∞). Then

(Rβ0
q0
,Rβ1

q1
)θ,q = Rβ

q .

This is a special case of Theorem 7.1.8 in [10].

Lemma 9. For 1 < τ0 < τ1 <∞, α0 <
1
τ0

, α1 <
1
τ1

, α0 ̸= α1 and 0 < θ < 1 let

α = (1− θ)α0 + θα1 and
1
τ

=
1− θ

τ0
+

θ

τ1
.

Then (Bα0
τ0
, Bα1

τ1
)θ,τ = Bα

τ .

Lemma 9 is a special case of Theorem 6.4.5 in [10]. The reader should not be
confused by the fact that [10] treats Besov spaces from a different standpoint from
our paper.

Proof of Theorem 1. Necessity. Following our notation we must prove that

Rα+µ
τ ↪→ Bα

τ . (4.4)
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Using Theorem 4 and Bernstein’s method of the proof of inverse theorems of
approximation theory we can easily see that

Rα+µ
min{τ,1} ↪→ Bα

τ . (4.5)

The embeddings (4.4) and (4.5) coincide for 0 < τ 6 1.
Now let τ > 1. We find −µ < α0 < α1 < ∞ and 0 < θ < 1 such that

α = (1−θ)α0+θα1 and 1
τ1

= α1+µ+ 1
p < 1. Then we also have 1

τ0
= α0+µ+ 1

p < 1
and

α+ µ = (1− θ)(α0 + µ) + θ(α1 + µ),
1
τ

=
1− θ

τ0
+

θ

τ1
.

By (4.5),
Rαs+µ

1 ↪→ Bαs
τs
, s = 0, 1.

Hence
(Rα0+µ

1 ,Rα1+µ
1 )θ,τ ↪→ (Bα0

τ0
, Bα1

τ1
)θ,τ .

It remains to use Lemmas 8 and 9. The proof of Theorem 1 is complete.

Remark 1. The constraint 1
p + µ ̸∈ N in Theorem 3 is essential, as we see in the

example of rational functions of degree 2l,

rε(z) = [(z + i)(z + iε)]−l, l :=
1
p

+ µ ∈ N,

depending on the parameter ε ∈ (0, 1
2 ]. Easy calculations (the case µ = 1

p was
considered in [7]) show that for ε ∈ (0, 1

2 ]

∥rε∥Lλ(R) ≍
(

log
1
ε

)1/p+µ

, ∥rε∥Ap,µ(Π) ≍
(

log
1
ε

)1/p

.

Since ∥rε∥Lλ(R) grows much more rapidly than ∥rε∥Ap,µ(Π) as ε → +0, Theorem 3
fails for 1

p + µ ∈ N.
In a similar way we can show that the constraint 1

p + µ ̸∈ N is essential in
Theorems 4 and 8 as well. Hence the condition 1

p + µ ̸∈ N is essential also for the
necessity in Theorem 1.

§ 5. Appendix. Several results on Bergman and Smirnov spaces

The aim of this section is to prove auxiliary results on the Bergman and Smirnov
spaces. We used these results in our proofs of the central results of this paper. We
establish Theorems 9 and 10 below in greater generality than required for the proof
of Theorem 3 since they are of independent interest.

5.1. The Bergman space in a domain and a Whitney-type decomposition.
Let G ⊂ C be a domain distinct from C; ∂G the boundary of G; G = G ∪ ∂G the
closure of G; and let ρ(z, ∂G) be the distance from the point z to the boundary
∂G. In § 1, for positive p and µ we introduced the Lebesgue spaces Lp,µ(Π) and
the Bergman spaces Ap,µ(Π). In a similar way we define the Lebesgue spaces
Lp,µ = Lp,µ(G) and the Bergman spaces Ap,µ = Ap,µ(G) in G. Here Im z must be
replaced by ρ(z, ∂G).
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Lemma 10. If f ∈ Ap,µ(G), then

|f(z)| 6 c(p, s, µ)
∥f∥Ap,µ

(ρ(z, ∂G))µ+1/p
, z ∈ G.

The proof leans on the fact that |f(z)|p is a subharmonic function (see, for
instance, Proposition 1.1 in [12]).

Using Lemma 10 we can prove in particular that Ap,µ(G) is a complete space.
If G is a Jordan domain with rectifiable boundary, then it follows from Theorem 1
in [15] that the set of algebraic polynomials is dense in Ap,µ(G).

Let K and Γ be subsets of C and ρ(K,Γ) the distance between K and Γ, so that
ρ(K,Γ) = inf{|z − ξ| : z ∈ K, ξ ∈ Γ}. Let d(K) and d0(K) denote the diameters
of the smallest closed disc containing K and of the largest open disc lying in K,
respectively.

Let G be a domain distinct from C. A family Z of simply connected closed
domains Q with piecewise smooth boundaries is called a Whitney-type decomposi-
tion of G if it satisfies the following conditions:

(i) two domains in Z can meet only at boundary points;
(ii) the union of all the domains in Z is G;
(iii) there exist constants c1 and c2 such that for each domain Q ⊂ Z

c1ρ(Q, ∂G) 6 d0(Q) 6 d(Q) 6 c2ρ(Q, ∂G). (5.1)

One example of such a partitioning of G is provided by Whitney squares (see
[16], Ch. VI) with c1 =

√
2

8 and c2 = 1. If G = Π, then the family Fθ, 0 < θ < 1,
constructed in § 2 is a Whitney-type decomposition with c1 = 1

θ − 1 and c2 =√
2( 1

θ − 1).
If K is a compact subset of C, then let C(K) denote the set of continuous

complex-valued functions on K. For f ∈ C(K) we set ∥f∥C(K) = maxz∈K |f(z)|.

Lemma 11. Let p and µ be positive numbers and let f ∈ Ap,µ(G). Then

c3∥f∥p
Ap,µ

6
∑

Q∈Z

(d(Q)µ+1/p∥f∥C(Q))p 6 c4∥f∥p
Ap,µ

,

where c3 and c4 depend on p, µ and the constants c1 and c2 in (5.1).

The proof (similarly to the case of Lemma 10) leans on the fact that |f(z)|p is
subharmonic. For a disc Lemma 11 was proved in [17].

Lemma 12. Let p, a and µ be positive numbers, D the open square with vertices
at 0, a, ia and a+ ia and let ∆ ⊂ D be the equilateral triangle with base (0, a). If
f is an analytic function in D and (Im z)pµ−1|f(z)|p is integrable in D, then∫

∆

ρ(z, ∂∆)pµ−1|f(z)|p dm2(z) 6 c(p, µ)
∫

D

(Im z)pµ−1|f(z)|p dm2(z). (5.2)

Proof. Since ρ(z, ∂∆) 6 Im z for z ∈ ∆, inequality (5.2) holds for pµ > 1 with
c(p, µ) = 1. Thus we assume in what follows that pµ < 1. For convenience we
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shall consider a = 2 because the general case reduces to this after a change of the
variable of integration in (5.2).

Let z0 be the centre of the triangle ∆ and ∆0 the triangle with vertices at z0, 0
and 2; let Λ = ∆ \∆0 and let Λ+ and Λ− be the right and left halves of Λ cut by
the line x = 1.

Obviously, ρ(z, ∂∆) = Im z for z ∈ ∆0, so to prove (5.2) it is sufficient to verify
that∫

Λ±

ρ(z, ∂∆)pµ−1|f(z)|p dm2(z) 6 c1(p, µ)
∫

D

(Im z)pµ−1|f(z)|p dm2(z). (5.3)

For example, we prove (5.3) for Λ−. We represent the triangle Λ− \ {0} as
the union of closed trapezia Tk with bases on the lines x = 1

2k−1 and x = 1
2k ,

k = 1, 2, 3, . . . , and with lateral sides lying on the lateral sides of Λ−. Using the
same method as in the proof of Lemma 11 we readily verify that

∞∑
k=1

(d(Tk))pµ+1∥f∥p
C(Tk) 6 c2(p, µ)

∫
D

(Im z)pµ−1|f(z)|p dm2(z). (5.4)

It is an immediate consequence of (5.4) that (5.3) for Λ−. This proves the lemma.

5.2. Quasiconformal reflection. Here we shall assume that G is a bounded
simply connected domain with boundary ∂G which is a Lavrent’ev curve, that is,
a rectifiable Jordan curve such that for any points ξ1, ξ2 ∈ ∂G we have

|Γ(ξ1, ξ2)| 6 κ|ξ1 − ξ2|, (5.5)

where κ > 1 is a constant and |Γ(ξ1, ξ2)| is the length of Γ(ξ1, ξ2), the shortest of
the two arcs of ∂G with end-points at ξ1 and ξ2.

We present the required facts from the theory of quasiconformal mappings (see
[18], [19]). We shall assume that 0 ∈ G. Let ∗ denote a quasiconformal involution
of C such that: ξ∗∗ = ξ for all ξ ∈ C, 0∗ = ∞, ξ∗ = ξ for ξ = ∂G. Such a map ∗ is
not unique; we can choose it so that

(i) for each neighbourhood U ⊂ G of 0 the map ξ 7→ ξ∗ takes C \ (U ∪ U∗)
quasiconformally into itself;

(ii) the map ξ 7→ ξ∗ is continuously differentiable in C \ (0 ∪ ∂G) and for all
ξ ∈ C \ (U ∪ U∗ ∪ ∂G) we have∣∣∣∣∂ξ∗∂ξ

∣∣∣∣ 6 c1, c2 6

∣∣∣∣∂ξ∗∂ξ
∣∣∣∣ 6

1
c2
,

where c1 and c2 depend only on κ in (5.5) and the neighbourhood U ⊂ G
of 0.

Note that for each D ⊂ C we set D∗ = {ξ∗ : ξ ∈ D}. In what follows we assume
that we have picked the map ∗ satisfying conditions (i) and (ii). For example, if G
is the disc |ξ| < 1, then ξ∗ = 1

ξ
.

We shall use a partitioning Z = {Qk}∞k=0 of the domain G into Whitney-type
domains Qk in which Q0 = {ξ ∈ G : |ξ| 6 1

2ρ(0, ∂G)}. Such a partitioning is easy
to construct with the use of Whitney squares.

It follows from the properties of the map ∗ listed above and relations (5.1)
that the infinitesimal sequences ρ(Qk, ∂G), ρ(Q∗k, ∂G), d(Qk), d(Q∗k), d0(Qk) and
d0(Q∗k), where k = 1, 2, 3, . . . , all have the same order.
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5.3. The integral representation. Here we assume that the domain G and the
map ∗ are as described in § 5.2. We look at the closed curves

Γs =
{
ξ∗ : |ξ| = 1

22−s
ρ(0, ∂G)

}
,

s = 0, 1, and let Ω0 and Ω1 be the closed two-connected domains lying between the
curves Γ0 and Γ1 and between Γ1 and ∂G, respectively. Let Ω = Ω0∪Ω1. Consider
a smooth function η : Ω 7→ [0, 1] such that η(ξ) = 1 for ξ ∈ Ω1 and η(ξ) = 0 for
ξ ∈ Γ0. Its existence can readily be demonstrated using averaging in the sense of
Steklov. Then the image of Ω under the map θ(ξ) := ξ∗ · η(ξ) coincides with G,
and we have θ(ξ) = ξ∗ for ξ ∈ Ω1.

Theorem 9. Let f be an analytic function in G, f (s) ∈ A1,s(G), s ∈ N, and

Ts−1(z) = Ts−1(z, f) =
s−1∑
k=0

f (k)(0)
k!

zk.

Then for z ∈ G

f(z) = Ts−1(z)−
1

π(s− 1)!

∫
Ω

f (s)(θ(ξ))(ξ − θ(ξ))s−1 ∂θ(ξ)
∂ξ

dm2(ξ)
ξ − z

.

This is proved in the same way as Lemma 2.3 in [20]. The only difference is that
the density of the algebraic polynomials in the Smirnov space E1/(s+1)(G) was used
in that lemma, while here we use the fact that they are dense in A1,s(G).

The next lemma is well known (see, for instance, [21] or [20]).

Lemma 13. Let G be a domain satisfying the above conditions and β > 0. Then
for each ξ ∈ C \ ∂G ∫

∂G

|dz|
|ξ − z|β+1

6
c

ρ(ξ, ∂G)β
,

where the positive c depends only on β and the constant κ in condition (5.5).

5.4. The Smirnov space. For a rectifiable curve Γ in C and 0 < p < ∞ let
Lp(Γ) denote the Lebesgue space of measurable complex-valued functions f on Γ
with finite quasinorm

∥f∥Lp = ∥f∥Lp(Γ) =
(∫

Γ

|f(z)|p |dz|
)1/p

.

Let G = G+ be a simply connected bounded domain with boundary ∂G that is
a rectifiable Jordan curve; let G− := C \ G. For 0 < p < ∞ let E±p = Ep(G±) be
the Smirnov space of analytic functions in G± (for the definition and properties of
E±p see [22] and [23]). If G is a disc in |z| < 1, then E±p coincides with the Hardy
space H±

p . Many properties of H±
p also hold for E±p . In particular, if f ∈ E±p , then

for almost all ξ ∈ ∂G there exists a limit lim f(z) =: f(ξ) as z in G± converges
to ξ along paths nontangential to ∂G. Correspondingly, we view functions in E±p as
defined in G± and almost everywhere on ∂G. The quasinorm of f ∈ E±p is defined
by ∥f∥E±p

= ∥f∥Lp(∂G). Note that f(∞) = 0 for f ∈ E−p .
The next Lemma 14 follows from David’s theorem (see, for example, [21]) on

singular integrals of Cauchy type.
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Lemma 14. Let G be a domain with boundary ∂G which is a Lavrent’ev curve
and let g ∈ Lu(∂G), 1 < u < ∞. Then there exists a unique pair of functions
g± ∈ Eu(G±) such that g = g+ + g− a.e. on ∂G and ∥g±∥E±u

6 c∥g∥Lu , where the
positive c depends only on u and the constant κ in (5.5).

In Lemma 15 we use a construction described in § 5.2. This lemma follows from
Lemma 2.1 in [20] and properties of the domains Qk and Q∗k, k = 0, 1, 2, . . . .

Lemma 15. Let h ∈ Eu(G−), 0 < u <∞, and

δ0 = ∥h∥C(Q∗0), δk = (d(Q∗k))1/u∥h∥C(Q∗k), k = 1, 2, 3, . . . .

Then
(i) δ0 6 c1(G, u)∥h∥E−u

;
(ii) {δk}∞k=1 is an infinitesimal sequence and if the Qk, k = 1, 2, 3, . . . , are

ordered so that this sequence is nonincreasing, then

δk 6
c2(G, u)
k1/u

∥g∥E−u
, k = 1, 2, 3, . . . .

5.5. The embedding theorem. Now everything is ready for the proof of Theo-
rem 10 used in the proof of Theorem 3, one of the central results of this paper.

Theorem 10. Let p, q and µ be positive numbers such that

0 < p < q <∞, µ+
1
p
− 1
q

=: l ∈ N

and let G be a simply connected bounded domain whose boundary is a Lavrent’ev
curve. If f is an analytic function in G and f (l) ∈ Ap,µ(G), then f ∈ Eq(G).
Furthermore, if f(z0) = f ′(z0) = · · · = f (l−1)(z0) = 0 at a point z0 ∈ G, then

∥f∥Eq
6 c∥f (l)∥Ap,µ

, (5.6)

where the positive c is independent of f .

Remark 2. An analysis of the proof of Theorem 10 below demonstrates that if z0
is the centre of the largest disc inscribed in G (or one of the centres if there are
several such discs), then we can assume that the constant in (5.6) depends only on
p, q, µ and the constant κ in (5.5).

Proof of Theorem 10. We shall assume without loss of generality that 0 ∈ G and
z0 = 0. Since the set of algebraic polynomials is dense in Eq and Ap,µ, it is
sufficient to prove (5.6) for any algebraic polynomial f such that f(0) = f ′(0) =
· · · = f (l−1)(0) = 0. For f satisfying these constraints the inclusions f ∈ Eq and
f (l) ∈ Ap,µ are obvious. We shall use Theorem 9 and the sets Qk, k = 0, 1, 2, . . . ,
in § 5.2.

First we look at the case 1 < q < ∞. Let q′ be the conjugate exponent of q:
1
q′ +

1
q = 1. By the duality (Lq(∂G))′ = Lq′(∂G) there exists a function g ∈ Lq′(∂G)

such that ∥g∥Lq′ = 1 and

∥f∥Eq(G) = ∥f∥Lq(∂G) =
∫

∂G

f(z)g(z) dz. (5.7)
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By Lemma 14 there exist functions g± ∈ Eq(G±) such that ∥g±∥E±q
6 c1 and

g = g+ +g− a.e. on ∂G. Since fg+ ∈ E1(G+), it follows by the generalized Cauchy

theorem (see [22] and [23]) that
∫

∂G

f(z)g+(z) dz = 0. Hence in view of (5.7),

∥f∥Eq =
∫

∂G

f(z)g−(z) dz.

From this equality, Theorem 9 for s = l, Fubini’s theorem and Cauchy’s integral
formula we obtain

∥f∥Eq =
2i
l!

∫
Ω

f (l)(θ(ξ))g−(ξ)(ξ − θ(ξ))l−1 ∂θ(ξ)
∂ξ

dm2(ξ). (5.8)

Now we use Lemma 15 for h = g− and u = q′. We assume that the domains
{Qk}∞k=1 are ordered so that the sequence {δk}∞k=1 is nonincreasing. Since the
relations hold uniformly in ξ ∈ Qk and k = 1, 2, 3, . . . , we see from (5.8) that

∥f∥Eq
6 c1(d(Q0))l+1/q∥f (l)∥C(Q0) + c2

∞∑
k=1

(d(Qk))l+1/q∥f (l)∥C(Qk) · k−1/q′ .

Note that it follows from the condition l+ 1
q = µ+ 1

p and Lemma 10 that the first
term on the right-hand side of the last inequality has the estimate c3∥f (l)∥Ap,µ

.
Hence to complete the discussion of the case 1 < q <∞ it is sufficient to verify the
inequality

∞∑
k=1

(d(Qk))µ+1/p∥f (l)∥C(Qk) · k−1/q′ 6 c4∥f (l)∥Ap,µ
. (5.9)

For 0 < p 6 1 < q <∞ it follows from Lemmas 2 and 11, while if 1 < p < q <∞,
then we apply Hölder’s inequality with exponents p and p′, 1

p′ + 1
p = 1, to the

left-hand side of (5.9) and use Lemma 11 again.
Now we consider the case 0 < q 6 1. Let ν = [ 1q ] + 1. Then for z ∈ G we have

f(z) = − ν!
π(l + ν − 1)!

∫
Ω

f (l)(θ(ξ))(ξ − θ(ξ))l+ν−1 ∂θ(ξ)
∂ξ

dm2(ξ)
(ξ − z)ν+1

. (5.10)

To deduce (5.10) for z ∈ G, we must apply Theorem 9 to f (−ν) (that is, to the νth
antiderivative of f) and s = l + ν, and then differentiate ν times the resulting
integral representation for f (−ν). Then equality (5.6) for z ∈ G follows from the
continuity of f in G and the fact that the integrand on the right-hand side of (5.10)
is uniformly bounded in z ∈ G and ξ ∈ Ω.

We pick points ξ0 ∈ Ω0 and ξk ∈ Q∗k, k = 1, 2, . . . . Then we see from (5.10) that
for z ∈ G

|f(z)| 6 c5

∞∑
k=0

(d(Qk))l+ν+1∥f (l)∥C(Qk) ·
1

|ξk − z|ν+1
. (5.11)

From the construction of the sets Qk and the choice of the ξk we obtain

d(Qk)≍ ρ(ξk, ∂G) for k = 1, 2, 3, . . . .
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Hence bearing in mind that 0 < q 6 1 and q(ν + 1) > 1 and using (5.11) and
Lemma 13 we obtain∫

∂G

|f(z)|q |dz| 6 c6

∞∑
k=0

((d(Qk))l+1/q∥f (l)∥C(Qk))q. (5.12)

Since 0 < p < q, with the help of Lemmas 2 and 11 we deduce (5.6) from (5.12).
Now the proof of Theorem 10 is complete.
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[13] A.A. Pekarskǐı, “Generalized rational approximation in the disc”, Vests̄ı Nats.
Akad. Navuk BSSR Ser. F̄ız.-Mat. Navuk 6 (1990), 9–14. (Russian)

[14] A.A. Pekarskii, “Approximation by rational functions with free poles”, East J.
Approx. 13:3 (2007), 227–319; “Corrigendum”, East J. Approx. 13:4 (2007), 483.

http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0594.46020
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0594.46020
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0594.46020
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1067.32005
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1067.32005
http://mi.mathnet.ru/eng/sm1954
http://mi.mathnet.ru/eng/sm1954
http://dx.doi.org/10.1070/SM1986v055n01ABEH002988
http://dx.doi.org/10.1070/SM1986v055n01ABEH002988
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0472.46040
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0472.46040
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0472.46040
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0992.30021
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0992.30021
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0992.30021
http://www.ams.org/mathscinet-getitem?mr=2668066
http://www.ams.org/mathscinet-getitem?mr=2668066
http://www.ams.org/mathscinet-getitem?mr=2668066
http://mi.mathnet.ru/eng/sm7
http://mi.mathnet.ru/eng/sm7
http://dx.doi.org/10.1070/SM1995v186n01ABEH000007
http://dx.doi.org/10.1070/SM1995v186n01ABEH000007
http://www.zentralblatt-math.org/zmath/search/?an=0344.46071
http://www.zentralblatt-math.org/zmath/search/?an=0344.46071
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0469.30024
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0469.30024
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0955.32003
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0955.32003
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0722.30022
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0722.30022
http://www.ams.org/mathscinet-getitem?mr=2400986
http://www.ams.org/mathscinet-getitem?mr=2400986
http://www.ams.org/mathscinet-getitem?mr=2406610


1346 T. S. Mardvilko and A.A. Pekarskǐı
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