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Stabilization of the solution of a two-dimensional

system of Navier–Stokes equations in an

unbounded domain with several exits to infinity

N.A. Khisamutdinova

Abstract. The behaviour as t → ∞ of the solution of the mixed problem for
the system of Navier–Stokes equations with a Dirichlet condition at the boundary
is studied in an unbounded two-dimensional domain with several exits to infinity.
A class of domains is distinguished in which an estimate characterizing the decay
of solutions in terms of the geometry of the domain is proved for exponentially
decreasing initial velocities. A similar estimate of the solution of the first mixed
problem for the heat equation is sharp in a broad class of domains with several exits
to infinity.
Bibliography: 25 titles.

§ 1. Introduction
In the domain D = (0,∞)× Ω, where Ω is an unbounded subdomain of R2, we

consider the following problem:

ut + (u · ∇)u = ν∆u−∇p, divu = 0, (1.1)

u
∣∣
x∈∂Ω = 0, u

∣∣
t=0
= ϕ(x). (1.2)

Here u(t, x) = (u1, u2) and p(t, x) are the unknown flow velocity and the pressure
and ϕ = (ϕ1, ϕ2) are the prescribed initial velocities.
Note that in the problems discussed here one can make the change of variables

u = νv, t = τ/ν, p = ν2q, bringing (1.1) to a similar system with ν = 1.
In the past 10–15 years there have appeared numerous papers devoted to the

research of the behaviour as t→∞ of the kinetic energy

1

2

∫
Ω

u2(t, x) dx

(the L2-norm) of the flow of a fluid in an unbounded domain. A qualitative answer
to the question of the convergence of the kinetic energy to zero in the case of a
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3-dimensional Cauchy problem was given by Kato [1] (for a strong solution) and
Masuda [2] (for a weak solution). Moreover, the following estimate was established
in [1]. If a solenoidal vector ϕ belongs to the intersection Ln(R

n)∩Lr(Rn), r ∈ [1, n],
and its norm ‖ϕ‖n is sufficiently small, then the Cauchy problem (1.1), (1.2) has
a unique strong solution and ‖u(t)‖α = O(t−γ), γ = (n/r − n/α)/2, for α > r as
t→∞. Here and throughout,

‖v‖α,Q =
( n∑
i=1

∫
Q

vαi (x) dx

)1/α
;

for α = 2 and Q = Ω we shall drop the corresponding indices.
An estimate of the rate of decay of the kinetic energy for a weak solution of the n-

dimensional Cauchy problem for the system (1.1) was established in [3] and refined
in [4], [5]. We state here the result of [4]. If a solenoidal vector ϕ belongs to the
intersection L2(R

n)∩Lr(Rn), n � 2, r ∈ [1, 2), then the Cauchy problem (1.1), (1.2)
has a weak solution which decreases in the same manner as for the heat equation:
‖u(t)‖ = O(t−γ), γ = (n/r − n/2)/2. In [5] a similar estimate is proved for an
arbitrary weak solution satisfying the energy inequality

‖u(t)‖2 + 2ν
∫ t
s

‖∇u(τ)‖2dτ � ‖u(s)‖2

for s = 0, almost all s > 0, and all t > s. In the case of the problem in the exterior
of a bounded domain results of this kind were obtained for r ∈ (1, 2) in [6] (for
n = 3) and [7] (for n � 3).
Thus, the non-linear terms and the pressure involved in the system (1.1) do not

reduce the rate of decay of the flow of the fluid brought about by the heat oper-
ator in the system (1.1). Of course, the adhesion condition at the boundary (1.2)
additionally slows down the flow; however, judging by the above results, this has
no substantial effect on the behaviour of solutions of the exterior problem. On the
other hand, we do not know whether the above results for the exterior problem are
best possible.
The decay of the flow resulting from the adhesion of the fluid to the boundary of

the domain is known to be perceptible in the case of a non-compact boundary.
This is corroborated by the result of [8]. In particular, the following estimates are
established in that paper in the case of rotation domains

Ω(f) =
{
x : x21 + x

2
2 < f

2(x3), x3 > 0
}

(1.3)

defined by a non-decreasing function f(r) ∈ C3(0,∞) such that

lim
r→∞

f(r)

f(qr)
<∞, |f ′|+ |f ′′|+ |f ′′′| � a0, r � 1,

for some q ∈ (0, 1). Let r(t), t > 0, be the inverse of the increasing function rf(r),
r > 0. Let u(t, x) be the strong solution of the 3-dimensional problem (1.1), (1.2)

in the domain D = (0,∞)×Ω(f) with solenoidal initial function ϕ ∈
◦
W1
2(Ω),

ϕ(x) = 0 for |x| > R0, (1.4)
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satisfying the smallness condition of [9]. Then there exist positive constants κ
and A1 such that the following inequalities hold for all x ∈ Ω(f) and t > 1:

|u(t, x)|+ ‖∇p(t)‖ � A1 exp
(
−κr2(t)
t

)
, (1.5)

‖u(t)‖W1
2(Ω)
� A1t1/2 exp

(
−κr2(t)
t

)
.

The constant κ here is independent of the initial function ϕ.
An estimate of the rate of decay similar to (1.5) was established earlier [10] for

solutions of the first mixed problem for the heat equation. Moreover, for domains
of the form (1.3) and non-negative initial functions it was proved in the same paper
that the estimate is sharp provided that the function f has a regular behaviour in
a certain sense.
Thus, adhesion at the boundary results in the flow slowing down at least at the

same rate as that due to the heat outflow across the boundary in the case of
the first boundary condition for the heat equation.
Note that in papers devoted to the decay of the motion of a rotating fluid

described by linear [11]–[15] or non-linear [16] equations (the Cauchy problem or
the first boundary-value problem in a half-space) their authors study the phenome-
non of the slow-down of the motion of a fluid brought about by its rotation, rather
than by the adhesion condition at the boundary as in the present paper.
The proof of the estimates (1.5) for the solution of the 3-dimensional problem

in [8] is based to a considerable extent on the following result of Heywood. In [9], for
an arbitrary domain Ω of dimension n = 3 with boundary uniformly of class C3 he
proved the estimate supx∈Ω |u(t, x)| = O(t−1/2) as t → ∞. (The term “boundary
uniformly of class C3” (see [9]) means the existence of positive constants d and b
such that for an arbitrary point ξ ∈ ∂Ω, in a local Cartesian system of coordinates,
the intersection ∂Ω∩{|x− ξ|<d} is the graph of a function with derivatives of the
first three orders bounded by the constant b.) This result is slightly improved in [8]
as follows: ∫ ∞

0

sup
x∈Ω
|u(t, x)|2 dt <∞. (1.6)

Recall that the unique solubility ‘in the large’ of the problem (1.1), (1.2) in the
class L4 was proved in Ladyzhenskaya’s paper [17]. In a joint work, Lions and
Prodi [18] prove a uniqueness result for the weak solution.
Maremonti [19] established the following relations in the case of solenoidal initial

velocities ϕ ∈ Lp(Ω)∩L2(Ω), p ∈ (1, 2], for the solution of the problem (1.1), (1.2)
in an arbitrary domain Ω ⊆ R2 with C2-boundary:

‖u(t)‖L2 + t1/2‖∇u(t)‖L2 + t‖ut(t)‖L2 = O(t−α) as t→∞, α =
1

p
− 1
2
,

sup
x∈Ω
|u(x, t)| = O(t−1/2−α+ε) for each ε > 0, α = 1

p
− 1
2
.

In the case of a solenoidal initial vector ϕ ∈ L1(Ω)∩L2(Ω) it is easy to derive (1.6)
from the last relation.
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The aim of the present paper is to obtain estimates of the form (1.5) in terms of
geometric characteristics of the unbounded domain Ω with several exits to infinity.
This problem has been partially solved in [20], where in the interiors of the parabolas

Ω(α) = {x ∈ R2 : |x2| < xα1 , x1 > 1} (1.7)

the following estimate was proved for α ∈
(
0, 12
)
:

|u(t, x)|� A1 exp(−kt(1−α)/(1+α)).

In the present paper we substantially extend the class of domains in which
one can prove an estimate of the decrease of the flow of the fluid in the prob-
lem (1.1), (1.2) as t→∞. In particular, this class contains all parabolas Ω(α) with
α ∈ (0, 1). By contrast with the 3-dimensional case the proof of our result is not
based on relation (1.6) and does not use Maremonti’s results.
Let Ω be a two-dimensional domain with k exits to infinity located along rays si,

that is, a domain of the following form:

Ω = Ω
0
∪
( k⋃
i=1

Ω
i

)
,

where the Ω
i
, i = 1, . . . , k, are disjoint unbounded simply connected domains and Ω

0

is a bounded domain, which is not necessarily simply connected. We shall assume
that if the Ox1-axis is directed along a ray si, then the domain Ω

i
lies in the half-

plane {x1 > 0} and the Ω
i

r =
{
x ∈ Ω

i
: x1 < r

}
are bounded simply connected

domains for r � Pi. For a complete statement of the problem (1.1), (1.2) one must
define the flows across the sections Sri =

{
x ∈ Ω

i
: x1 = r

}
of the domains Ω

i
. We

set them equal to zero:

∫
Sri

∂u

∂n
dS = 0, i = 1, 2, . . . , k.

Let λi(r) be the first eigenvalue of the operator −∆ in the domain Ω
i

r with

a Neumann condition at the part of the boundary ∂Ω
i
∩ Ω and with a Dirichlet

condition at the remaining part of the boundary:

λi(r) = inf

{∫
Ω
i

r

|∇v|2 dx
(∫
Ω
i

r

v2 dx

)−1
, v ∈ C∞0

(
Ω
i

r ∪ Ω
0

)}
, r � Pi.

Obviously, the functions λi(r), r � Pi, are non-increasing.
We shall use numbering such that

lim
r→∞

λi(r) = 0, i = 1, 2, . . . , s, (1.8)
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and limr→∞ λi(r) > 0, i = s + 1, . . . , k. Here it is possible that s = k. However,
s � 1, since otherwise, as is well known, the solution decreases more rapidly
than e−εt.
For the domain Q = Ω

0
∪
(⋃k
i=s+1 Ωi

)
we require the inequality

µ = inf

{∫
Q

|∇v|2 dx
(∫
Q

v2 dx

)−1
, v ∈ C∞0 (Ω)

}
> 0. (1.9)

It holds if the intersection ∂Q ∩ ∂Ω is non-empty.
We assume moreover that there exist absolutely continuous non-decreasing pos-

itive functions li(r), r > 0, i = 1, . . . , s, such that for r � Pi the domains
ωi(r) = Ω

i

r+li(r)
r = Ω

i

r+li(r) \ Ω
i

r satisfy the Condition D below. It is known that

for each bounded domain Q with Lipschitz boundary the equation

divv = g, x ∈ Q, g ∈ L2(Q),
∫
Q

g dx = 0,

has a solution v ∈
◦
W1
2(Q) satisfying the estimate (see [21] and also [22])

‖∇v‖Q � d1(Q)‖g‖Q.

Condition D states that the constant d1 in this inequality can be taken the same
for each domain ωi(r), r � Pi:

‖∇v‖ωi(r) � d1‖g‖ωi(r), i = 1, . . . , s. (1.10)

As follows from [22], this condition holds, for instance, if the domains ωi(r), r � Pi,
are uniformly star-shaped relative to some balls Bi. The uniformity means that the
ratios diamωi(r)/ diamBi are bounded by a constant independent of i = 1, . . . , s
and r � Pi. If Ω(α) is a domain of the form (1.7) with some α ∈ (0, 1), then
obviously, the domains ω(r), r � P , become uniformly star-shaped for sufficiently
large P if we take l(r) = rα. Hence such a domain satisfies our assumption.
We impose additionally the following regularity conditions on the functions li.

There exist quantities α ∈ (0, 1) and qi ∈ (0, 1) such that

li(r)

li(qir)
< q−αi , r � Pi. (1.11)

Roughly speaking, this is a restriction from above on the growth of the functions
li(r).
We define the functions ri(t), t > Pili(Pi), as the inverses of the increasing

functions rli(r), r > Pi. Obviously, ri(t) is increasing, tends to infinity, and satisfies
the equalities

t

l2i (ri(t))
=
ri(t)

li(ri(t))
=
r2i (t)

t
. (1.12)
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Assume that there exists δ ∈ (0, 1] such that

lim
r→∞

r1−δ

maxi li(r)
= 0. (1.13)

Let ϕ be an initial function in
◦
W1
2(Ω) that is a limit of solenoidal functions with

compact support and satisfies the condition

‖ϕ(x)‖Ω
i
r � e−cr

δ

, r � P, i = 1, . . . , s, (1.14)

with some positive constants c and P , where Ω
i
r = Ω

i
\ Ω
i

r .

Theorem 1. Let Ω be a two-dimensional domain with boundary uniformly of
class C3 and let li be functions satisfying (1.11), (1.13), and Condition D; let ϕ

be a solenoidal initial function in
◦
W1
2(Ω) satisfying condition (1.14). Then there

exist κ, A2, and T such that the solution of the problem (1.1), (1.2) satisfies the
following estimates for all x ∈ Ω and t > T :

|u(t, x)|+ ‖u(t)‖ � A2 exp
(
−tmin

i

{
λi

(
ri(t)

κ

)
, κ2l−2i (ri(t))

})
,
(1.15)

‖∇u(t)‖+ ‖D2u(t)‖+ ‖∇p(t)‖

� A2 exp
(
−tmin

i

{
λi

(
ri(t)

κ

)
, κ2l−2i (ri(t))

})
, (1.16)

where A2 depends only on the constants d and b in the definition of a boundary
uniformly in the class C3, ‖ϕ‖, and ‖∇ϕ‖, and κ depends only on qi and α in
inequality (1.11) and on d1 in inequality (1.10).

If the domains ωi(r) are uniformly star-shaped, then the estimate (1.15) can be
brought to the following form:

|u(t, x)| � A2 exp
(
−κ̃tmin

i
{l−2i (ri(t))}

)
. (1.17)

For domains with several exits to infinity such that each exit ‘tongue’ is isometric
to a domain of the form Ω(α), the estimate of the solution of the heat equation
similar to (1.17) is sharp. For in an individual ‘tongue’ Ω

i
the following estimate is

sharp according to [10]:

|u
i
(t, x)| � A2 exp(−κ̃tl−2i (ri(t))).

Next, one has the maximum principle u(t, x) � u
i
(t, x) � 0 for non-negative initial

functions. Hence u(t, x) � maxi u
i
(t, x), which demonstrates the sharpness of the

estimate of the form (1.17) for solutions of the heat equation.
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§ 2. Existence of a solution and its properties.
As pointed out in the introduction, the existence of a solution ‘in the large’ to

the problem (1.1), (1.2) was proved in [17]. However, we require several additional
differential properties of this solution, which can be more easily proved at the
stage of the construction of Galerkin approximations. Hence we must repeat here
parts of the known proofs in a slightly modified form adapted to our aims.

For an arbitrary domain Ω ⊂ R2 let
◦
J∞(Ω) be the set of smooth solenoidal

vector-valued functions with compact support v : Ω→ R2 (in what follows we shall
talk about vectors in place of vector-valued functions). Next, let

◦
J∞(Dba) be the

set of smooth solenoidal vectors v(t, x) : Dba → R2 in the cylinder Dba = (a, b)× Ω,
divx v = 0. We denote by

◦
J(Ω) the completion of the set

◦
J∞(Ω) in the norm ‖v‖,

and by
◦
J1(Ω) the completion of the same set in the norm ‖v‖ + ‖∇v‖, and we

define the space of solenoidal functions H0(Ω) to be the completion of
◦
J∞(Ω) in

the norm ‖∇u‖. We define the space
◦
J0,12 (D

b
a) as the closure of the set

◦
J∞(Db+1a−1)

in the spaceW0,1
2 (D

b
a).

For arbitrary vectors u(x), v(x) we set

u · v =
2∑
i=1

uivi, u2 = u · u,

∇u : ∇v =
2∑

i,j=1

∂ui

∂xj

∂vi

∂xj
, |∇u|2 = ∇u : ∇u,

|D2xu|2 =
2∑
i=1

∑
|α|=2

∣∣∣∣∂2ui∂xα

∣∣∣∣2.
We use Galerkin’s method to prove the existence of a generalized solution of the

problem (1.1), (1.2) with initial function ϕ(x) ∈
◦
J1(Ω) satisfying condition (1.4).

Next, having established certain properties of that solution we shall prove the exis-

tence of a solution for an arbitrary initial function ϕ ∈
◦
J1(Ω).

A generalized solution of the problem (1.1), (1.2) in DT = (0, T )×Ω is a vector-
valued function u ∈

◦
J0,1(DT ) satisfying the integral identity

∫ T
0

∫
Ω

(∇u : ∇v− u · vt − uku · vxk) dx dt =
∫
Ω

ϕ · v(0, x) dx (2.1)

for each function v ∈
◦
J∞(DT−1). Here we mean summation over the repeating index

k = 1, 2.
First we prove the existence of a generalized solution in a bounded domain Ω and

then consider the case of an unbounded domain. Then the operator ∆̃ = P∆, where

P : L2(Ω)→
◦
J(Ω) is the orthogonal projection, has a complete orthonormal system
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(in L2(Ω)) of eigenfunctions a
l ∈

◦
J1(Ω), l ∈ N. If the domain Ω has boundary of

class C2, then al ∈W2
2(Ω), l ∈ N ([23], Chapter III, § 17, Theorem 17.1).

We seek approximate solutions in the form

un(x, t) =
n∑
l=1

cln(t)a
l(x),

where the functions cln(t) are defined by the conditions

(unt , a
l) − (unkun, alxk) + (u

n
xk , a

l
xk) = 0, l = 1, 2, . . . , n, (2.2)

and the initial data

cln
∣∣
t=0
= (al,ϕ), l = 1, 2, . . . , n. (2.3)

Here (u,v) is the scalar product in L2(Ω). Equalities (2.2) make up a system of
differential equations of the following form for the cln:

dcln(t)

dt
+

n∑
i=1

alicin(t) −
n∑

i,p=1

alipcin(t)cpn(t) = 0, l = 1, 2, . . . , n, (2.4)

where the ali and the alip are constant scalars.
To prove the unique solubility of the system (2.4) under conditions (2.3) we

shall find an a priori estimate holding for all t � 0. We multiply each equality (2.2)
by the corresponding cln(t) and sum over l ranging from 1 to n. After simple
transformations we obtain

1

2

d

dt
‖un‖2 + (unxk,u

n
xk) = 0. (2.5)

Integrating this equality with respect to t from t0 to t we obtain

‖un(t)‖2 + 2
∫ t
t0

‖∇un(τ)‖2 dτ = ‖un(t0)‖2, (2.6)

which for t0 = 0 gives us the estimate of the function ‖un(t)‖ by the quantity
‖un(0)‖ � ‖ϕ‖.
To demonstrate the required properties of the generalized solution we derive

several further inequalities for the Galerkin approximations:

d

dt
‖∇un‖2 + ‖∆̃un‖2 � ‖(unkun)xk‖2, (2.7)

‖unt ‖2 � 2‖(unkun)xk‖2 + 2‖∆̃un‖2, (2.8)

‖∆̃un‖2 � 2‖unt ‖2 + 2‖(unkun)xk‖2, (2.9)

d

dt
‖unt ‖2 + ‖∇unt ‖2 �

2∑
k=1

‖(unkun)t‖2. (2.10)
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To obtain (2.7) we multiply each equality (2.2) by the corresponding coefficient λl
and use the formulae λlal = ∆̃al = P∆al. Then

(unt , P∆a
l)− (unkun, (∆̃al)xk ) + (unxk , (∆̃a

l)xk ) = 0. (2.11)

In view of the simple relations

(unt , P∆a
l) = (Punt ,∆a

l) = (unt ,∆a
l) = −(∇unt ,∇al),

(unxk , (∆̃a
l)xk) = −(unxkxk , P

2∆al) = −(P∆un, P∆al),

equalities (2.11) can be written as follows:

−(∇unt ,∇al) + ((unkun)xk , ∆̃al) − (∆̃un, ∆̃al) = 0.

Multiplying them by cln and summing for l from 1 to n we obtain

−(∇unt ,∇un) + ((unkun)xk , ∆̃un)− (∆̃un, ∆̃un) = 0. (2.12)

It is easy to deduce (2.7) from this inequality.

Next, we multiply (2.2) by
d

dt
cln and add the resulting equalities with l going

from 1 to n; then

(unt ,u
n
t ) − (unkun, (unt )xk ) + (unxk, (u

n
t )xk) = 0.

Integrating by parts we bring this equality to the following form:

(unt ,u
n
t ) + ((u

n
ku
n)xk ,u

n
t )− (∆un, Punt ) = 0.

Then

‖unt ‖2 = −((unkun)xk ,unt ) + (∆̃un,unt )

�
(
‖(unkun)xk‖2 +

1

4
‖unt ‖2

)
+ ‖∆̃un‖2 + 1

4
‖unt ‖2.

This yields inequality (2.8).
It is easy to obtain from (2.12) the equality

(unt , ∆̃un) + ((u
n
ku
n)xk , ∆̃u

n)− (∆̃un, ∆̃un) = 0.

Hence

‖∆̃un‖2 = (unt , ∆̃un) + ((unkun)xk , ∆̃un)

� ‖unt ‖2 +
1

4
‖∆̃un‖2 + ‖(unkun)xk‖2 +

1

4
‖∆̃un‖2.

This yields inequality (2.9).



400 N.A. Khisamutdinova

We differentiate (2.2) with respect to t:

(untt, a
l) − ((unkun)t, alxk) + ((u

n
xk)t, a

l
xk) = 0,

multiply the results by
d

dt
cln and sum for l from 1 to n; then

(untt,u
n
t )− ((unkun)t, (unt )xk) + ((unxk)t, (u

n
xk)t) = 0.

Thus,

1

2

d

dt
‖ut‖2 + ‖∇unt ‖2 = ((unkun)t, (unt )xk) �

1

2

2∑
k=1

‖(unkun)t‖2 +
1

2
‖∇unt ‖2,

which immediately yields (2.10).
We shall bring (2.7)–(2.10) to the following form:

d

dt
‖∇un‖2 + 3

4
‖∆̃un‖2 � 2c1‖ϕ‖ ‖∇un‖3 + 4c21‖ϕ‖2‖∇un‖4, (2.13)

‖unt ‖2 � 4c1‖ϕ‖ ‖∇un‖3 +
5

2
‖∆̃un‖2 + 8c21‖ϕ‖2‖∇un‖4, (2.14)

‖∆̃un‖2 � 4‖unt ‖2 + 8c1‖ϕ‖ ‖∇un‖3 + 16c21‖ϕ‖2‖∇un‖4, (2.15)

d

dt
‖unt ‖2 +

1

2
‖∇unt ‖2 � 27‖ϕ‖2‖∇un‖2‖unt ‖2. (2.16)

(Here and in what follows the constants c1–c4 depend only on (d, b) and on the
quantities involved in the definition of a boundary uniformly of class C3.) To this
end we shall prove the inequalities

‖(unkun)xk‖2 � 2c1‖ϕ‖ ‖∇un‖3 +
1

4
‖∆̃un‖2 + 4c21‖ϕ‖2‖∇un‖4, (2.17)

‖(unku)nt ‖2 � 128‖ϕ‖2‖∇un‖2‖unt ‖2 +
1

2
‖∇unt ‖2, k = 1, 2. (2.18)

To prove (2.17) it is sufficient to find an estimate for the expression on the
right-hand side of the inequality

‖unkunxk‖
2 =

∫
Ω

(unku
n
xk)
2 dx �

(∫
Ω

(unk)
4 dx

)1/2(∫
Ω

(unxk)
4 dx

)1/2
.

An estimate of the first factor is provided by the well-known inequality ([24], Chap-

ter I, § 1, Lemma 1) for functions u ∈
◦
W 12(Ω):∫

Ω

u4 dx � 2
∫
Ω

u2 dx

∫
Ω

|∇u|2dx. (2.19)
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This inequality cannot be applied directly to uxk , therefore we consider an extension
w ∈W1

2(R
n) of this function such that

∫
Rn

w2 dx < c2

∫
Ω

(unxk)
2 dx,∫

Rn

|∇w|2 dx � c2
∫
Ω

(
(unxk)

2 + |∇unxk|
2
)
dx.

Then ∫
Ω

(unxk)
4 dx �

∫
Rn
w4 dx � 2

∫
Rn
w2 dx

∫
Rn
|∇w|2 dx

� 2c22‖unxk‖
2(‖unxk‖

2 + ‖∇unxk‖
2).

Combining this with the above inequalities we obtain

‖(unkun)xk‖2 � 2c2‖un‖ ‖∇un‖2(‖∇un‖+ ‖∇unxk‖). (2.20)

Let w ∈H0(Ω) and f ∈
◦
J(Ω) be functions satisfying the identity

∫
Ω

∇w : ∇v dx =
∫
Ω

f · v dx

for all v ∈
◦
J∞(Ω). Then the function f is uniquely determined by w and we can

consider the operator f = ∆̃w. The following inequalities, which are similar to the
ones established in [9] for n = 3, hold in this case:

‖D2w‖ � c3(‖∆̃w‖+ ‖∇w‖), (2.21)

sup
x∈Ω
|w(x)| � c4(‖∆̃w‖+ ‖∇w‖). (2.22)

With the help of (2.21) we can give an estimate of ‖∇uxk‖ and then (2.20) can
be continued as follows:

‖(unkun)xk‖2 � 2c2‖un‖ ‖∇un‖2((1 + c3)‖∇un‖+ c3‖∆̃un‖)

� 2c2(1 + c3)‖un‖ ‖∇un‖3 +
1

4
‖∆̃un‖2 + 4c22(1 + c3)2‖un‖2‖∇un‖4,

which proves (2.17) in view of the inequality ‖un‖ � ‖ϕ‖.
For the proof of (2.18) it is sufficient to find an estimate of the expression on the

right-hand side of the relation

‖unkunt ‖2 �
∫
Ω

(unku
n
t )
2 dx �

(∫
Ω

(unk)
4 dx

)1/2(∫
Ω

(unt )
4 dx

)1/2
.
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The estimate of the first factor is provided by (2.19). Note that unt has trace zero
at the boundary ∂Ω, therefore the same inequality can be applied to this function.
Thus,

‖unkunt ‖2 �
(
4

∫
Ω

(unk)
2 dx

∫
Ω

(∇unk)2 dx
)1/2(

4

∫
Ω

(unt )
2 dx

∫
Ω

(∇unt )2 dx
)1/2

� 4‖ϕ‖ ‖∇un‖ ‖unt ‖ ‖∇unt ‖,

which yields (2.18). Using formulae (2.17) and (2.18) it is now easy to deduce
inequalities (2.13)–(2.16) from (2.7)–(2.10).
We now prove the estimate

‖∇un(t)‖2 � A(‖ϕ‖, ‖∇ϕ‖) for all t ∈ [0,∞). (2.23)

Applying the inequality

2c1‖ϕ‖ ‖∇un‖3 � ‖∇un‖2 + c21‖ϕ‖2‖∇un‖4

to the right-hand side of (2.13) we obtain

d

dt
‖∇un‖2 + 3

4
‖∆̃un‖2 � ‖∇un‖2 + 5c21‖ϕ‖2‖∇un‖4. (2.24)

Dropping the second term on the left-hand side and dividing the inequality by
‖∇un‖2 we integrate the result with respect to t from y to t:

ln ‖∇un‖2
∣∣t
y
� t− y + 5c21‖ϕ‖2

∫ t
y

‖∇un‖2 dτ, t > y � 0.

We now use (2.6) for the estimate of the second term on the right-hand side of the
last inequality. We obtain

‖∇un(t)‖2 � ‖∇un(y)‖2 exp
(
t − y + 5

2
c21‖ϕ‖4

)
. (2.25)

After that, we integrate the result again, with respect to y from δ0 to t:

‖∇un(t)‖2(t − δ0) �
∫ t
δ0

‖∇un(y)‖2 exp
(
t− y + 5

2
c21‖ϕ‖4

)
dy

� exp
(
t− δ0 +

5

2
c21‖ϕ‖4

)∫ t
δ0

‖∇un(y)‖2 dy.

We use inequality (2.6) for an estimate of the integral. Then we obtain

‖∇un(t)‖2 � 1

2(t− δ0)
exp

(
t− δ0 +

5

2
c21‖ϕ‖4

)
‖un(δ0)‖2, t � δ0. (2.26)
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From (2.25) with y = 0 we also deduce the inequality

‖∇un(t)‖2 � ‖∇ϕ‖2 exp
(
t+
5

2
c21‖ϕ‖4

)
. (2.27)

The estimate (2.23) for t ∈ [0, 1] now follows from (2.27) and for t > 1 from (2.26)
with δ0 = t− 1 and (2.6).
In what follows we approximate the unbounded domain Ω with boundary uni-

formly of class C3 by a sequence of bounded domains Ωm,
⋃
mΩm = Ω, each with

boundary of class C3 with constants d and b independent of m. If condition (1.4)
holds, then we can select Ωm such that Ωm ⊃ suppϕ. In this case the solution of the
problem (1.1), (1.2) in the domain Ω can be obtained as the weak limit (in appro-
priate spaces) of a subsequence um of the solutions in the bounded domains Ωm
with the same initial function ϕ. Each solution um can in its turn be obtained as
the limit as n→∞ of a subsequence of the Galerkin approximations um,n. (Earlier
we dropped the index m for compactness.)
We claim that the generalized solution of the problem (1.1), (1.2) has the fol-

lowing properties:

ut ∈ L2(0,∞;
◦
J(Ω)), (2.28)

D2u ∈ L2(0,∞;L2(Ω)), (2.29)

∇ut ∈ L2(ε,∞;L2(Ω)) for each ε > 0. (2.30)

First, we establish these properties for the Galerkin approximations. We shall
prove the following estimate ∫ ∞

0

‖∆̃un‖2 dt <∞. (2.31)

To this end we integrate (2.24) with respect to time from t to ∞. Using (2.23) we
obtain

‖∇un‖2
∣∣∞
t
+
3

4

∫ ∞
t

‖∆̃un‖2 dt �
∫ ∞
t

‖∇un‖2(1 + 5c21‖ϕ‖2A) dt.

Hence inequality (2.6) yields

3

4

∫ ∞
t

‖∆̃un‖2 dt � c5‖un(t)‖2 + ‖∇un(t)‖2. (2.32)

Here and in what follows the constants c5–c7 can depend only on (d, b), ‖ϕ‖,
and ‖∇ϕ‖. Now, applying (2.6) and (2.23) we deduce (2.31). Inequalities (2.21),
(2.31), and (2.6) give us (2.29).
From (2.14) we obtain

‖unt ‖2 � ‖∇un‖2 + 12c21‖ϕ‖2‖∇un‖4 +
5

2
‖∆̃un‖2. (2.33)
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Integrating with respect to time from 0 to t and applying (2.23) and (2.6) we see
that∫ t

0

‖unτ ‖2 dτ �
∫ t
0

‖∇un‖2 dτ + 12c21‖ϕ‖2A
∫ t
0

‖∇un‖2 dτ + 5
2

∫ t
0

‖∆̃un‖2 dτ

� 1
2
‖ϕ‖2 + 6c21‖ϕ‖4A +

5

2

∫ ∞
0

‖∆̃un‖2 dτ.

Hence it follows by (2.31) that

ut ∈ L2(0,∞;L2(Ω)). (2.34)

We now claim that (2.28) holds. We obtain the solution of the problem (1.1), (1.2)
as a weak limit of the Galerkin approximations um,n constructed for the sequence of
bounded domains Ωm ⊂ Ω. Each Galerkin approximation satisfies (2.28). After the
weak limit transition property (2.28) still holds for the limit function, the solution.
We claim that ∫ ∞

ε

‖∇unt ‖2 � cA, (2.35)

where the constant cA depends only on ε, (d, b), ‖ϕ‖, and ‖∇ϕ‖. In fact, from (2.16)
we obtain the differential inequality

d

dt
‖unτ‖2 � 27‖ϕ‖2‖∇un‖2‖unτ‖2.

It shows that

‖unt (t)‖2 � ‖unt (t0)‖2 exp
(
27‖ϕ‖2

∫ t
t0

‖∇un‖2 dτ
)
. (2.36)

In view of (2.6), we have

‖unt (t)‖2 � c6‖unt (t0)‖2, t � t0. (2.37)

Integrating this inequality with respect to t0 ∈ [0, ε] and using (2.34) we see that

‖unt (t)‖2 �
c7

ε
, t � ε. (2.38)

We now integrate (2.16) with respect to τ from ε to t, which shows that

‖unt (t)‖2 +
1

2

∫ t
ε

‖∇unt ‖2 dτ � 27‖ϕ‖2
∫ t
ε

‖∇un‖2‖unt ‖2 dτ + ‖unt (ε)‖

� 27‖ϕ‖2A
∫ t
ε

‖unt ‖2 dτ + ‖unt (ε)‖.

Hence, using (2.34) and (2.38) we obtain (2.35) and (2.30).
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Theorem. Let Ω be a domain with boundary uniformly of class C3 and let ϕ lie

in
◦
J1(Ω). Then the solution of the problem (1.1), (1.2) satisfies the inequalities

‖∇u(T )‖2 � b1‖u(t)‖2, T � t+ 1, (2.39)

‖D2u(T )‖2 � b2‖u(t)‖2, T � t+ 2, (2.40)

‖∇p(T )‖2 � b3‖u(t)‖2, T � t+ 2, (2.41)

|u(T, x)| � b4‖u(t)‖, x ∈ Ω, T � t+ 2, (2.42)

in which t � 0. Here the constants b1–b4 can depend only on (d, b), ‖ϕ‖, and ‖∇ϕ‖.
Proof. We start with the proof of relations (2.39)–(2.42) for the Galerkin approxi-
mations under the assumption that the initial function ϕ satisfies condition (1.4).
From (2.26) for δ0 = t− 1 we obtain the inequality

‖∇un(t)‖2 � b1‖un(t − 1)‖2, t � 1.

Since ‖un(t)‖2 is a non-increasing function, it follows that

‖∇un(t)‖2 � b1‖un(t− 1)‖2 � b1‖un(s− 1)‖2, t � s � 1.

This immediately yields (2.39).
Because ‖un(t)‖ is a non-increasing function, it follows from (2.32) and (2.39)

that ∫ ∞
t

‖∆̃un(t)‖2 dt < b̃1‖un(t − 1)‖, t � 1. (2.43)

Here the constant b̃1 (as well as the constants b̃2–b̃6 below) can depend only on
(d, b), ‖ϕ‖, and ‖∇ϕ‖.
We integrate (2.33) to obtain∫ ∞

t

‖unt ‖2 ds �
∫ ∞
t

(
‖∇un‖2 + 12c21‖ϕ‖2‖∇un‖4 +

5

2
‖∆̃un‖2

)
ds.

Applying (2.23), (2.43), and (2.6) to the last inequality we obtain

∫ ∞
t

‖unt ‖2 ds �
∫ ∞
t

‖∇un‖2(1 + 12c21‖ϕ‖2A) ds+
5

2

∫ ∞
t

‖∆̃un‖2 ds

� b̃2‖un(t)‖2 +
5

2
b̃1‖un(t − 1)‖2 � b̃3‖un(t− 1)‖2. (2.44)

We replace t by t + 1 in (2.37) and integrate with respect to t0 ∈ [t, t + 1]. In
combination with (2.44) this yields

‖unt (t+ 1)‖2 � c6
∫ t+1
t

‖unt (s)‖2 ds � b̃4‖un(t − 1)‖2, t � 1.

In particular,

‖unt (t)‖2 � b̃4‖un(t − 2)‖2, t � 2. (2.45)
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Using now relations (2.15), (2.23), and (2.39) it is easy to conclude that

‖∆̃un(t)‖2 � 4‖unt ‖2 + b̃5‖∇un‖2 � 4‖unt ‖2 + b̃6‖un(t − 1)‖2.

We apply (2.45) to this inequality:

‖∆̃un(t)‖2 � 4b̃4‖un(t− 2)‖2 + b̃6‖un(t− 1)‖2.

Since ‖un(t)‖ is a non-increasing function, this yields (2.40).
We shall prove that inequalities (2.39) and (2.40), established so far for the

Galerkin approximations un, hold also for the solution of the problem (1.1), (1.2).
We fix t > 0 and select a subsequence un such that there exists a limit

lim
n→∞

‖un(t)‖ = L.

Using equalities (2.6) for the Galerkin approximations un and a similar identity for
the solution u we shall show that L � ‖u(t)‖. In fact,

lim
n→∞

‖un(t)‖2 = lim
n→∞

(
‖un(0)‖2 − 2

∫ t
0

‖∇un(τ)‖2 dτ
)

� ‖ϕ‖2 − 2
∫ t
0

‖∇u(τ)‖2 dτ = ‖u(t)‖2.

Here we used the weak convergence of the subsequence un to the function u in the

space L2(0, t;
◦
J1(Ωm)) as n→∞. It is known that the norm of the limit function∫ t

0

‖∇u(τ)‖2 dτ

has the estimate

lim
n→∞

∫ t
0

‖∇un‖2 dτ.

First, we prove inequality (2.39) for the solution um in the bounded domain Ωm.
Assume that it fails on a subset E of [t+ 1,∞) of positive measure. Then∫

E

‖∇um(s)‖2 ds > ‖um(t)‖2
∫
E

b1 ds. (2.46)

On the other hand, integrating inequality (2.39) for the Galerkin approximations
we obtain ∫

E

‖∇um,n(s)‖2 ds � ‖um,n(t)‖2
∫
E

b1 ds.

Passing to the limit as n→∞ we obtain∫
E

‖∇um(s)‖2 ds � lim
n→∞

∫
E

‖∇um,n(s)‖2 ds � L2
∫
E

b1 ds,

which contradicts (2.46). Hence inequality (2.39) holds for um for almost all T > t.
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In a perfectly similar fashion one carries out the transition asm→∞ in inequal-
ity (2.39) from the functions um to the solution of (1.1), (1.2). Finally, let ϕi be

a sequence of functions in
◦
J∞(Ω) convergent to ϕ. Then for the corresponding

solutions ui of the problem (1.1), (1.2) we have energy identity (2.6), properties
(2.28)–(2.30), and the estimates (2.39)–(2.42). Hence among the functions ui we
can select a subsequence weakly convergent in the appropriate spaces. It is easy to
see that its limit is a solution of the problem (1.1), (1.2) with initial function ϕ,
and the above properties and inequalities hold also for this solution.
The proof of inequality (2.40) is carried out in a similar fashion to (2.39).

Since ‖∆̃u‖ = ‖P∆u‖ � ‖D2u‖, inequality (2.42) is a consequence of (2.40)
and (2.22).
It is known that a solution with properties (2.28)–(2.30) is also a solution almost

everywhere [24]. To prove (2.41) we observe that

‖u(T ) · ∇u(T )‖ � max
x∈Ω
|u(T, x)| ‖∇u(T )‖� b4b1/21 ‖u(t)‖2

� b4b1/21 ‖ϕ‖ ‖u(t)‖, T � t+ 2. (2.47)

Next, from (1.1) we obtain the equality

‖∇p(T )‖ � ‖(1− P )(ν∆u− u · ∇u)‖.

Inequality (2.41) is now a consequence of (2.40) and (2.47). The proof is complete.

§ 3. Behaviour of the solution at infinity

In this section we prove Theorem 1 for solenoidal initial functions ϕ in
◦
W1
2(Ω)

with condition (1.4), and after that establish the result of Theorem 1 also for

solenoidal initial functions ϕ in
◦
W1
2(Ω) with condition (1.14).

3.1. Behaviour of the solution as |x| → ∞|x| → ∞|x| → ∞. First of all, it is easy to see
from (2.42) that the solution u of the problem (1.1), (1.2) belongs to the space
L∞(Ω) for each t > 0.
We claim that the following estimate holds for each ε ∈ (0, 1):∫ t

0

‖u(τ)‖2∞,Ω dτ � C1 +C2tε. (3.1)

Here the constant C2 depends only on (d, b), ‖ϕ‖, and ε, and C1 depends only on
(d, b), ‖ϕ‖, ‖∇ϕ‖. We use Sobolev’s inequality [25]

|v(x)| � CK(‖v‖K + ‖D2v‖K), (3.2)

which holds in each cone K for the function v ∈W2
2(K); the point x is the vertex

of the cone. Since the boundary of Ω is uniformly of class C3, each point x ∈ Ω is
a vertex of a small cone lying in Ω, the same for all points x. The size of this cone
depends on the constants (d, b). By (3.2) we obtain∫ t

0

|u(τ, x)|2 dτ � 2C2K
∫ t
0

‖u‖2K dτ + 2C2K
∫ t
0

‖D2u‖2 dτ. (3.3)
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By Hölder’s inequality,

‖u(t)‖2K =
∫
K

u2 dx �
(∫
K

1q dx

)1/q(∫
Ω

u2p dx

)1/p
= C3(K)‖u‖22p. (3.4)

For the function u ∈
◦
W1
2(Ω) in the two-dimensional case we have the inequality

([23], Chapter II, § 3, inequality (3.1))

‖u‖2p,Ω � χ1‖∇u‖�‖u‖1−�, 
 = 1− 1
p
, (3.5)

where χ1 depends only on p ∈ [1,∞). We shall find an estimate of the integral on
the right-hand side of (3.3) by applying to it (3.4), (3.5), and after that Hölder’s
inequality and (2.6):

∫ t
0

‖u(τ)‖2K dτ � C3(K, p)
∫ t
0

‖u‖22p dτ � C4(K, p)
∫ t
0

‖∇u‖2�‖u‖2−2� dτ

� C4(K, p)‖ϕ‖2−2�
∫ t
0

‖∇u‖2� dτ

� C5
(∫ t
0

1p dτ

)1/p(∫ t
0

‖∇u‖2�·
1
� dτ

)�
� C6t1/p. (3.6)

The constant C6 depends only on K, ‖ϕ‖, and p. Hence, applying (3.6) and (2.29)
to (3.3) we obtain (3.1) with ε = 1/p.

Theorem 2. Let i be one of the integers 1, 2, . . . , s. Let Ω be a domain with bound-
ary uniformly of class C3, let li be a function satisfying (1.11) and Condition D,

and assume that the initial function ϕ in
◦
J1(Ω) satisfies the condition

ϕ = 0 for x ∈ Ω
i

∞
R0 . (3.7)

Then there exist positive quantities Γi > 1, γi, and A3 such that the following
inequality holds for all t > 0 for the solution of the problem (1.1), (1.2):

∫
Ω
i

∞
R−1

u2(t, x) dx < tA3 exp

(∫ t
0

‖u(τ)‖2∞,Ω dτ +
Γit

l2i (R)
− 2γiR
li(R)

)
, R � R0

q2i
, (3.8)

where R0 is sufficiently large. The constant Γi depends only on qi and α in inequal-
ity (1.11), while γi also depends on d1 in inequality (1.10); A3 depends only on
(d, b), ‖ϕ‖, and ‖∇ϕ‖, but not on R0.
Since R/li(R) →∞ as R→∞, the estimate (3.8) characterizes the decrease of

the solution as x1→∞ in the domain Ω
i
.

We carry out the proof of the theorem with the use of Lemmas 1 and 2 below.
We set

M(t) = sup
x∈Ω
u2(t, x), g(t, r) =M(t) +

2

l2i (r)
.
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In view of (3.1), we have the simple inequality

∫ t
0

g(τ, r) dτ � C1 + C2tε +
2t

l2i (r)
. (3.9)

We select a system of coordinates such that the Ox1-axis is directed along the ray si
and define a cut-off function η(x) with support in Ω

i
r by the equality

η(x) = ξ

(
x1 − r
li(r)

)
,

where ξ(r) is a continuous function vanishing for r < 0, equal to 1 for r > 1, and

linear in the remaining interval. Then the gradient of η has its support in Ω
i

r+li(r)
r

and
∂η

∂x1
=
1

li(r)
. (3.10)

Moreover, for r � Pi, in view of the monotonicity of li, we have the inequality

−∂η
∂r
=
1

li(r)
+
x1 − r
l2i (r)

l′i(r) �
1

li(r)
, x ∈ ωi(r). (3.11)

We introduce our notation:

θ(t) = exp

(
−
∫ t
0

M(τ) dτ

)

and

H(t, r) = θ(t)

(∫
Ω
i

η|∇u(t, x)|2dx+
∫ t
0

∫
Ω
i

ηu2t dx dτ

)
. (3.12)

We can point out the inequality

H(t, r) � b5, t > 0, r � Pi, (3.13)

which follows from (2.23) and (2.28), in which b5 depends only on (d, b), ‖ϕ‖,
and ‖∇ϕ‖.
Lemma 1. Under the assumptions of Theorem 2 there exists β > 1 such that the
following inequality holds for all t > 0 and r � max{R0, Pi}:

H(t, r) � −βli(r)
(
Hr(t, r) +

∫ t
0

g(τ, r)Hr(τ, r) dτ

)
. (3.14)

Here the subscript r denotes the derivative; the constant β depends only on d1 in
inequality (1.10).

Proof. Let F be the set of t > 0 such the ut(t, x) ∈
◦
J(Ω). By property (2.28) the

measure of its complement (0,∞) \ F is zero. We fix t ∈ F .
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Since u(x, t) is a generalized solution satisfying (2.29), it is a solution of the
system (1.1) almost everywhere. We consider the scalar product of the Navier–
Stokes equation and the function ηut and integrate over Ω

i
, which yields

∫
Ω
i

u2tη dx+

∫
Ω
i

(u · ∇)u · ηut dx =
∫
Ω
i

∆u · (ηut) dx−
∫
Ω
i

∇p · ηut dx. (3.15)

We process the integral on the right-hand side using (3.10):

−
∫
Ω
i

∆u · (ηut) dx =
∫
Ω
i

∇u : ∇(ηut) dx

=

∫
Ω
i

η∇u : ∇ut dx+
∫
Ω
i

2∑
j=1

(uj)t
∂uj

∂x1

∂ηi

∂x1
dx

=

∫
Ω
i

η∇u : ∇ut dx+
∫
ωi(r)

2∑
j=1

(uj)t
∂uj

∂x1

1

li(r)
dx.

We can now bring (3.15) to the following form:

∫
Ω
i

u2tη dx+

∫
Ω
i

η∇u : ∇ut dx = −
∫
Ω
i

(u · ∇)u · ηut dx

−
∫
ωi(r)

( 2∑
j=1

(uj)t
∂uj

∂x1

1

li(r)
− p(ut · ∇η)

)
dx. (3.16)

We shall find estimates of the terms on the right-hand side:

∣∣∣∣
∫
Ω
i

(u · ∇)u · ηut dx
∣∣∣∣ �
∫
Ω
i

η

2

(
u2|∇u|2+ u2t

)
dx �

∫
Ω
i

η

2

(
M(t)|∇u|2+ u2t

)
dx.

Next,

∣∣∣∣
∫
ωi(r)

2∑
j=1

(uj)t
∂uj
∂x1

1

li(r)
dx

∣∣∣∣ �
∫
ωi(r)

1

2

(
|∇u|2
l2i (r)

+ |ut|2
)
dx. (3.17)

For the estimate of the remaining integral we shall prove that

∫
ωi(r)

(ut∇η) dx = 0.

Since ut(t, x) ∈
◦
J(Ω), it is sufficient to prove this equality for the vectors v ∈

◦
J∞(Ω).

By Gauss’s divergence theorem,

0 =

∫
Ω
i

r2
r1

divv dx =

∫
∂Ω
i

r2
r1

v · nds =
∫
x1=r2

v1 ds−
∫
x1=r1

v1 ds.
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Hence, taking the section x1 = r2 outside the support of v we obtain∫
x1=r1

v1 ds =

∫
x1=r2

v1 ds = 0 for each r1 > 0.

We have thus proved that∫
ωi(r)

v1 dx =

∫ r+li(r)
r

dr1

∫
x1=r1

v1 ds = 0.

Consequently,∫
ωi(r)

(v · ∇η) dx =
∫
ωi(r)

v ·
(
1

li(r)
, 0

)
dx =

1

li(r)

∫
ωi(r)

v1 dx = 0. (3.18)

Thus there exists a vector w ∈
◦
W1
2(ωi(r)) such that divw = (ut · ∇η) and, in

view of (1.10),

‖∇w‖ωi(r) � d1‖ut∇η‖ωi(r) �
d1
li(r)
‖ut‖ωi(r).

Friedrichs’s inequality enables us to prove the estimate

‖w‖ωi(r) � C‖ut‖ωi(r).

Here the constant C differs from d1 by an absolute coefficient.
Now, for the remaining integral on the right-hand side of (3.16) we can write the

following chain of relations:∣∣∣∣
∫
ωi(r)

p(ut · ∇η) dx
∣∣∣∣ =
∣∣∣∣
∫
ωi(r)

p divw dx

∣∣∣∣ =
∣∣∣∣
∫
ωi(r)

∇p ·w dx
∣∣∣∣

=

∣∣∣∣
∫
ωi(r)

(ut −∆u+ (u · ∇)u)w dx
∣∣∣∣

=

∣∣∣∣
∫
ωi(r)

((ut + (u · ∇)u) ·w+∇u : ∇w) dx
∣∣∣∣

�
∫
ωi(r)

(
|ut|2 + |(u · ∇)u|2

2
+w2 + |∇u : ∇w|

)
dx

�
∫
ωi(r)

(
1

2

(
u2t +M(t)|∇u|2

)
+ C2u2t +

1

2

(
|∇u|2
l2i (r)

+ |∇w|2l2i (r)
))
dx

�
∫
ωi(r)

(
1

2

(
u2t +M(t)∇u2

)
+ C2u2t +

1

2

(
|∇u|2
l2i (r)

+ d21u
2
t

))
dx.

We substitute the estimates so obtained in (3.16):∫
Ω
i

u2t η dx+

∫
Ω
i

η∇u : ∇ut dx �
∫
Ω
i

η

2
(M(t)|∇u|2 + u2t ) dx

+

∫
ωi(r)

(
|∇u|2
l2i (r)

+
1

2
M(t)|∇u|2+ βu2t

)
dx.
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Hence ∫
Ω
i

u2tη dx+
d

dt

∫
Ω
i

η|∇u|2 dx

�
∫
Ω
i

M(t)η|∇u|2 dx+
∫
ωi(r)

((
2

l2i (r)
+M(t)

)
|∇u|2+ βu2t

)
dx.

In view of the inequality η∇ϕ ≡ 0, for r � R0 we have
∫
Ω
i

η|∇u(0, x)|2dx = 0.

Hence integration with respect to t over the interval (0, T ) produces the inequality∫ T
0

∫
Ω
i

ηu2t dx dt+

∫
Ω
i

η|∇u(T, x)|2 dx �
∫ T
0

∫
Ω
i

ηM(t)|∇u|2 dx dt+ h(T ), (3.19)

where we use the notation

h(T ) = h1(T ) + h2(T ) =

∫ T
0

∫
ωi(r)

g(t, r)|∇u|2 dx dt+ β
∫ T
0

∫
ωi(r)

u2t dx dt.

By (3.19), for the function

z(T ) =

∫ T
0

∫
Ω
i

ηM(t)|∇u|2 dx dt

we obtain the differential inequality

z′ =M(T )

∫
Ω
i

η|∇u(T, x)|2 dx �M(T )(z(T ) + h(T )).

On solving it we see that

z(T ) �
∫ T
0

exp

(∫ T
t

M(τ) dτ

)
M(t)h(t) dt

=

∫ T
0

M(t)(h1(t) + h2(t)) exp

(∫ T
t

M(τ) dτ

)
dt. (3.20)

Integration by parts yields easily the equality∫ T
0

M(t)h1(t) exp

(∫ T
t

M(τ) dτ

)
dt = −h1(T ) +

∫ T
0

h′1(t) exp

∫ T
t

M(τ) dτ dt.

Combining it with (3.20) and substituting in (3.19) we see that∫ T
0

∫
Ω
i

ηu2t dx dt+

∫
Ω
i

η|∇u(T, x)|2 dx

�
∫ T
0

θ(t)

θ(T )
(M(t)h2(t) + h

′
1(t)) dt+ h2(T ).
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Multiplying by θ(T ) and using the notation (3.12) we obtain

H(T, r) � βθ(T )
∫ T
0

∫
ωi(r)

u2t dx dt

+

∫ T
0

θ(t)

(
M(t)β

∫ t
0

∫
ωi(r)

u2t dx dt+

∫
ωi(r)

g(t, r)|∇u|2dx
)
dt

� βθ(T )
∫ T
0

∫
ωi(r)

u2t dx dτ

+

∫ T
0

θ(t)g(t, r)

(
β

∫ t
0

∫
ωi(r)

u2t dx dτ +

∫
ωi(r)

|∇u|2 dx
)
dt. (3.21)

Relation (3.11) now gives us the inequality

−li(r)
∂H(t, r)

∂r
� θ(t)

(∫
ωi(r)

|∇u|2 dx+
∫ t
0

∫
ωi(r)

u2t dx dt

)
.

Hence the assertion of the Lemma is a consequence of (3.21).

Lemma 2. Under the assumptions of Theorem 2 let β > 1 be the quantity in
Lemma 1. Then there exists a constant A3 such that for all r0 � max{R0, Pi},
t > 0 the solution of the problem (1.1), (1.2) satisfies the inequality

H(t, r) � A3 exp
(
2t

l2i (r0)
−
∫ r
r0

dρ

4βli(ρ)
+

∫ t
0

‖u(t)‖2∞,Ω dτ
)
, r � r0, (3.22)

with A3 dependent only on (d, b), ‖ϕ‖, and ‖∇ϕ‖.
Proof. We fix r0 � max{R0, Pi} and let y(ζ) be the solution of the Cauchy problem
r′ = βli(r), r(0) = r0. We set h(t, ζ) = H(t, y(ζ)). The function g(t, r) is non-
increasing in r. Hence fixing r = r0 we can write inequality (3.14) as follows:

h(t, ζ) � −hζ(t, ζ)−
∫ t
0

g(τ, r0)hζ(τ, ζ) dτ, ζ � 0.

Integrating this inequality with respect to ζ we see that∫ ∞
ζ

h(t, ρ) dρ � h(t, ζ) +
∫ t
0

g(τ, r0)h(τ, ζ) dτ, ζ � 0. (3.23)

Repeating the integration and using induction on n we obtain the inequality∫ ∞
0

ζn−1

(n− 1)!h(t, ζ) dζ <
n∑
j=0

Cjn(G
jh)(t, 0), (3.24)

where G is the integral operator

(Gh)(t, ζ) =

∫ t
0

g(τ, r0)h(τ, ζ) dτ

and the Cjn are binomial coefficients.



414 N.A. Khisamutdinova

Since h is a non-negative function non-increasing in the second variable, we can
write ∫ ζ

ζ/2

ρn−1h(t, ρ) dρ �
∫ ζ
ζ/2

(
ζ

2

)n−1
h(t, ζ) dρ =

(
ζ

2

)n
h(t, ζ). (3.25)

The binomial coefficients have the estimate 2n, and taking b5 in (3.13) for an
estimate of h we see that the right-hand side of (3.24) does not exceed

2nb5 exp

(∫ t
0

g(τ, r0) dτ

)
.

From (3.25) and the last estimate we obtain

1

(n− 1)!

(
ζ

2

)n
h(t, ζ) �

∫ ζ
ζ/2

ρn−1h(t, ρ) dρ

(n− 1)!

<

∫ ∞
0

ζn−1h(t, ζ) ds

(n − 1)! � 2nb5 exp
(∫ t
0

g(τ, r0) dτ

)
.

Hence

h(t, ζ) �
(
2

ζ

)n
(n− 1)!2nb5 exp

(∫ t
0

g(τ, r0) dτ

)
.

Using now Stirling’s formula we derive a consequence of inequality (3.24):

h(t, ζ) � b5
(
4

ζ

)n
n!

n
exp

(∫ t
0

g(τ, r0) dτ

)
� k1

(
4n

ζe

)n
exp

(∫ t
0

g(τ, r0) dτ

)
.

We set n = [ζ/4] � ζ/4− 1:

h(t, ζ) � k1 exp
(∫ t
0

M(τ) dτ +
2t

l2i (r0)
+ 1− ζ

4

)
, ζ � 0.

Returning to the variable r we arrive at (3.22). The proof of Lemma 2 is complete.

We claim that for r larger than some quantity Di we have the inequality

1 + li(r) � r(q−1i − 1), r � Di. (3.26)

In fact, let n be a positive integer such that qiPi < q
n
i r � Pi. Then by (1.11),

li(r) < q
−nα
i li(q

n
i r) <

(
r

qiPi

)α
li(Pi) = Cir

α. (3.27)

This yields (3.26) since α ∈ (0, 1).
We shall deduce from (3.22) the required inequality

∫ T
0

∫
Ω
i

∞
R−1

u2t (t, x) dx dt � A3 exp
(
ΓiT

l2i (R)
− γiR
li(R)

+ 2

∫ T
0

‖u(t)‖2∞,Ω dτ
)
(3.28)
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for R � max{R0, Pi, Di}/q2i and all T > 0. To this end we set R = r0/q2i and
r = qiR. From (3.26) we conclude that R � 1+ li(r)+ r or R− 1 � r+ li(r). Then
η(x, r) = 1 for x1 > R− 1, therefore by (3.12) we obtain∫ T

0

∫
Ω
i

∞
R−1

u2t (t, x) dx dt � H(T, r) exp
(∫ T
0

M(t) dt

)
. (3.29)

Since the functions li(r) are non-decreasing, it follows by (1.11) that

li(r0) > q
2α
i li(R),

∫ r
r0

dρ

4βli(ρ)
� γi

R

li(R)
, r0 � Pi.

Combining now (3.29) and (3.22) we obtain the estimate (3.28).

Proof of Theorem 2. We now proceed directly to the proof of Theorem 2. We can
assume without loss of generality that R0 � max{Pi, Di}. In view of the initial
condition and the Newton–Leibniz formula, the inequalities

|uj(t, x)| �
∫ t
0

∣∣∣∣∂uj(τ, x)∂t

∣∣∣∣dτ, j = 1, 2,

hold for almost all x ∈ Ω
i

∞
R0
. Hence by the Cauchy–Schwarz–Bunyakovsk̆ı inequality

∫
Ω
i

∞
R−1

u2(t, x) dx � t
∫ t
0

∫
Ω
i

∞
R−1

u2t dx dτ, R � R0 + 1.

Then (3.8) is seen to be a simple consequence of (3.28).

3.2. Proof of Theorem 1. First, we carry out the proof for an initial function
satisfying condition (3.7) for i = 1, 2, . . . , s. It is technically more convenient to con-
sider, in place of the function ri(t) defined in the introduction, the functions Ri(t)
defined by the equalities

t =
γi

2Γi
Rili(Ri). (3.30)

Note that ri(t)<Ri(t) for γi<2Γi and Ri(t)<2Γiri(t)/γi. Let κ=mini�s{γi/(2Γi)}.
Then we can write Ri(t) < ri(t)/κ and λi(Ri(t)) � λi(ri(t)/κ); the second inequal-
ity holds because λi is non-increasing. Obviously,

t

l2i (ri(t))
>

t

l2i (Ri(t))
.

On the other hand, by (1.12) and (3.30) we obtain

t

l2i (ri(t))
=
r2i (t)

t
<
R2i (t)

t
=

4Γ2i t

γ2i l
2
i (Ri(t))

.

Thus,
t

l2i (Ri(t))
� t

l2i (ri(t))
� t

κ2l2i (Ri(t))
. (3.31)
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We shall now show that

lim
t→∞

t1−ε

l2i (ri(t))
=∞ (3.32)

for sufficiently small positive ε. By (3.27) we obtain t = ri(t)li(ri(t)) < Cir
1+α
i (t),

and therefore

ri(t) >

(
t

Ci

)1/(1+α)
.

Hence by (1.12),

t1−ε

l2i (ri(t))
=
r2i (t)

t1+ε
>
(t/Ci)

2/(1+α)

t1+ε
.

This immediately shows the existence of ε > 0 suitable for (3.32). We fix one such ε.
We choose a large number T such that the following inequalities hold for all

t � T :

Ri(t) >
max{R0, Pi, Di}

q2i
, t > Ri(t),

min
i�s
λi(Ri(t)) < µ, (3.33)

Γit

l2i (Ri(t))
> C2t

ε. (3.34)

Here the constant R0 is as in condition (3.7), µ is as in (1.9), and C2 is as in (3.1).
We fix arbitrary t � T .
Using (3.1) and our choice of T we can write inequality (3.8) as follows:

∫
Ω
i

∞
Ri−1

u2(τ, x) dx � τA4 exp
(
C2τ

ε +
Γiτ

l2i (Ri)
− 2γi

Ri
li(Ri)

)

� tA4 exp
(
2Γit

l2i (Ri)
− 2γi

Ri

li(Ri)

)

for each τ � t. Here and in what follows Ri = Ri(t). Note that by (3.30),

2Γit

l2i (Ri)
= γi

Ri

li(Ri)
. (3.35)

Hence

∫
Ω
i

∞
Ri−1

u2(τ, x) dx � tA4 exp
(
−γi

Ri
li(Ri)

)
≡ δi for each τ � t. (3.36)

Here A4 (as well as A5 below) depends only on (d, b), ‖ϕ‖, and ‖∇ϕ‖. We consider
the function ξ(r) equal to 1 for r < R−1, to 0 for r > R and linear on the remaining
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interval; then for an appropriate function v ∈
◦
W1
2(Ω) we have

λi(Ri)

∫
Ω
i

Ri−1
v2(x) dx � λi(Ri)

∫
Ω
i

Ri

ξ2(x1)v
2(x) dx

�
∫
Ω
i

Ri

|∇(ξv)|2 dx � 2
∫
Ω
i

Ri

ξ2|∇v|2 dx+ 2
∫
Ω
i

Ri
Ri−1

v2 dx

� 2
∫
Ω
i

|∇v|2 dx+ 2δi, τ ∈ (0, t). (3.37)

Using (3.36), (3.37), (3.33), (1.9) and identity (2.6) for the solution u, we obtain
a differential inequality for the absolutely continuous function E(τ) = ‖u(τ)‖2:

min
i
λi(Ri)

(
E(τ)−

s∑
i=1

δi

)
� µ
∫
Q

u2(τ, x) dx+
s∑
i=0

λi(Ri)

∫
Ω
i

Ri−1
u2(τ, x) dx

�
∫
Q

|∇u|2 dx+ 2
s∑
i=1

∫
Ω
i

|∇u|2 dx+ 2
s∑
i=1

δi � 2‖∇u(τ)‖2 + 2
s∑
i=1

δi

= 2
s∑
i=1

δi −
d

dτ
E(τ), τ ∈ [0, t].

For the increasing function E(τ) we have the estimate

E(t) �
(
1 +

2

mini λi(Ri)

) s∑
i=1

δi +E(0) exp
(
−tmin

i
λi(Ri)

)
. (3.38)

Since the width of the domain Ω
i

r is at most r, we can conclude from Friedrichs’s

inequality that λi(r) � r−2. By our choice of T we obtain Ri(t) < t, therefore
λi(Ri(t)) � t−2. Inequality (3.38) now assumes the following form:

E(t) � (1 + 2t2)
s∑
i=1

δi + E(0) exp
(
−tmin

i
λi(Ri)

)
.

Taking account of (3.35) and the notation (3.36) we obtain

‖u(t)‖ � s(1 + 2t2)tA4 exp
(

−2Γit
maxi l2i (Ri)

)
+ E(0) exp

(
−tmin

i
λi(Ri)

)
.

In view of relations (3.34), (3.31), and Γi > 1 we can write this as follows:

‖u(t)‖ � A5 exp
(
−tmin

i

{
λi

(
ri(t)

κ

)
,κ2l−2i (ri(t))

})
. (3.39)

Hence it follows by (2.42) that (1.15) holds for t � T for the solutions of the
problem (1.1), (1.2) with initial function ϕ in

◦
J1(Ω) satisfying condition (3.7) for
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i = 1, 2, . . ., s. Note that the pressure and the derivatives of u also satisfy estimates
of the kind (1.16) in view of inequalities (2.41) and (2.40).
We now prove the theorem for the initial function ϕ satisfying condition (1.14).

For the proof we select sufficiently large r and represent the function ϕ as a sum
of solenoidal functions: ϕ = ϕ1 +

∑s
i=1ψi, such that ϕ1(x) = 0 for x ∈

⋃s
i=1 Ωi

∞
r ,

‖ϕ1‖W1
2(Ω)
� A6‖ϕ‖W1

2(Ω)
, ‖ψi‖ � A6e−c(qir)

δ

, where A6 depends only on d1. To

this end we fix an integer i in the set {1, 2, . . ., s} and construct the function ψi.
Let r∗i be a quantity such that r

∗
i + li(r

∗
i ) = r and η(x, r) = ξ((x1 − r∗i )/li(r∗i )).

Then the vector η(x)ϕ(x) fails to be solenoidal only in the domain ωi(r
∗
i ), and we

have

div ηϕ = (ϕ · ∇η), x ∈ ωi(r∗i ).

Using relation (1.14) it is easy to establish a relation of the form (3.18) for the

function (ϕ · ∇η). Hence there exists a vector wi(x, r) ∈
◦
W1
2(ωi(r

∗
i )) such that

divwi = (ϕ · ∇η) and

‖∇w‖ωi(r∗i ) � d1‖ϕ∇η‖ωi(r∗i ) �
d1
li(r∗i )

‖ϕ‖ωi(r∗i ). (3.40)

Using Friedrichs’s inequality we obtain the estimate

‖wi‖ωi(r∗i ) � d1‖ϕ‖ωi(r∗i ) � d1 exp(−c(r
∗
i )
δ). (3.41)

It remains to set ψi(x, r) = η(x, r)ϕ(x)−wi(x, r) and use inequality (3.26), which
shows that r = r∗i + l(r

∗
i ) � r∗i /qi.

We shall now prove that ψi ∈
◦
J1(Ω), i = 1, 2, . . . , s. It is well known that

in a bounded domain with Lipschitz boundary each solenoidal function from the

space
◦
W1
2 belongs also to the space

◦
J1(Ω). Thus, if the domain Ω is unbounded, but

the solenoidal function v ∈
◦
W1
2 has bounded support, then v also belongs to the

space
◦
J1(Ω). Moreover, it follows from inequalities (3.40), (3.41) that wi(x, R)→ 0

as R → ∞ in the space
◦
W1
2(Ω). Hence ψi(x, R) → 0 as R → ∞ in

◦
W1
2(Ω). The

vectors ψi(x, r)–ψi(x, R) are solenoidal and have bounded supports, therefore they

belong to the space
◦
J1(Ω). The function ψi(x, r), which is their limit as R → ∞,

also belongs to this space. Since the initial function is the limit of solenoidal

functions with compact support, it belongs to
◦
J1(Ω). Hence ϕ1 also lies in the

space
◦
J1(Ω).

Let u(t, x) be a solution of the problem (1.1), (1.2) with initial function ϕ sat-
isfying condition (1.14) and let u1(t, x) be the solution of (1.1), (1.2) with initial
function ϕ1. We claim that the quantity ‖u− u1‖ is small.
We subtract from identity (2.1) for u the same identity for u1. In the resulting

equality we set

Φ =

{
u− u1 ≡ v for 0 � t � t1;
0 for t > t1,
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which yields

∫ t1
0

∫
Ω

(
vtv+ vxkvxk − (ukv+ vku1)vxk

)
dx dt = 0.

We can transform this equality to the form

1

2
‖v(x, t)‖2

∣∣t1
0
+

∫ t1
0

‖∇v‖2 dt−
∫ t1
0

∫
Ω

vku
1vxk dx dt = 0, (3.42)

bearing in mind that divu = 0 ([24], Chapter VI, § 1, equality (5)). We now set
σ(t) = ‖∇u1(t)‖ and find an estimate of the last integral in (3.42):

∣∣∣∣
∫
Ω

vku
1vxk dx

∣∣∣∣ =
∣∣∣∣
∫
Ω

vku
1
xkv dx

∣∣∣∣ �
(∫
Ω

|∇u1|2 dx
∫
Ω

v4 dx

)1/2

�
√
2 σ(t)

(∑
j

∫
Ω

v4j dx

)1/2
�
√
2 σ(t)

∑
j

(
2

∫
Ω

v2j dx

∫
Ω

∇v2j dx
)1/2

� 2σ(t)‖v‖ ‖∇v‖ � σ2(t)‖v‖2 + ‖∇v‖2.

Next, we substitute it in (3.42):

1

2
‖v(t1)‖2 +

∫ t1
0

‖∇v‖2 dt � 1
2

s∑
i=1

‖ψi‖+
∫ t1
0

(σ2(t)‖v‖2 + ‖∇v‖2) dt.

Hence

‖v(t1)‖2 � A3s exp
(
−c(rmin

i
qi)
δ
)
+ 2

∫ t1
0

σ2(t)‖v‖2 dt.

Denoting the right-hand side by y(t1) we can write the last inequality as follows:

dy(t1)

dt1
� 2σ2(t1)y(t1).

This yields

y(t) � y(0)e2
∫ t
0
σ2(τ) dτ .

From the identity of the kind (2.6) for u1 we deduce the estimate

∫ t
0

σ2(τ) dτ � ‖ϕ1‖2 � A7‖ϕ‖2,

where we can set A7 = 2 for sufficiently large r.
Hence we can write

y(t) � A8 exp
(
−c(rmin

i
qi)
δ
)
.
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We fix t > T . Then for r = mini{ri(t)q2i } condition (3.7) holds with R0 = r,
therefore we can find an estimate of the norm ‖u1‖ with the help of (3.39):

‖u(t)‖ � ‖u1‖+ ‖u− u1‖

� 2‖ϕ1‖ exp
(
−tmin

i

{
λi

(
ri(t)

κ

)
,κ2l−2i (ri(t))

})
+ A8 exp

(
−c(min

i
q3i min

i
ri(t))

δ
)
.

Let c̃ = cmini q
3δ
i . Note that both mini ri(t) and maxi li(ri(t)) are attained for the

same index j because t = rili(ri). Hence

κ
2t

maxi l2i (ri(t))
− c̃min

i
rδi (t) =

κ
2t

l2j (rj(t))
− c̃rδj (t) =

κ
2rj(t)

lj(rj(t))
− c̃rδj (t)

= rδj (t)

(
κ
2r1−δj (t)

lj(rj(t))
− c̃
)
< 0.

The last inequality is a consequence of (1.13) with sufficiently large t. This brings
us to the result of Theorem 1.
Consider now the case when the domains ωi(r) are uniformly star-shaped. We

fix some i. It follows from the definition of uniform star-shapedness that

diamωi(r) � d̃ diamBi � d̃li(r),

where the constant d̃ is independent of i = 1, 2, . . . , k and r � Pi. Hence we have
Friedrichs’s inequality ∫

ωri

u2 dx � d̃ 2l2i (r)
∫
ωri

|∇u|2 dx

for u ∈ C∞0 (Ω). Covering the domain Ω
i

R by domains of the form ωi(r) we see that

∫
Ω
i

R

u2 dx � d̃ 2l2i (R)
∫
Ω
i

R

|∇u|2 dx.

Hence the estimates λi(R) � d̃−2l−2i (R) must hold. By (1.15) this yields (1.17).
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