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Trigonometric Padé approximants for functions
with regularly decreasing Fourier coefficients

Yu. A. Labych and A.P. Starovoitov

Abstract. Sufficient conditions describing the regular decrease of the coef-
ficients of a Fourier series f(x) = a0/2+

P
an cos kx are found which ensure

that the trigonometric Padé approximants πt
n,m(x; f) converge to the func-

tion f in the uniform norm at a rate which coincides asymptotically with
the highest possible one. The results obtained are applied to problems
dealing with finding sharp constants for rational approximations.
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§ 1. Introduction

We shall consider real continuous 2π-periodic functions f expanded in a conver-
gent Fourier series:

f(x) =
a0

2
+

∞∑
k=1

(ak cos kx+ bk sin kx), (1.1)

where the Fourier coefficients ak and bk are real numbers. For convenience we can
write the Fourier series (1.1) in the complex form

f(x) =
∞∑

k=−∞

cke
ikx, (1.2)

where we set ck = (ak − ibk)/2, c0 = a0/2, c−k = ck.
The sequence {ck}∞k=−∞ contains all the information about f , therefore in prin-

ciple various properties of the function can be described directly in terms of the
coefficients of its Fourier series (1.1) or (1.2). In the framework of this paper we
investigate the approximation properties of continuous functions f with sufficiently
regularly decreasing sequences of Fourier coefficients {ck}∞k=−∞.

Let Rt
n,m be the class of trigonometric rational functions r(x) = pn(x)/qm(x)

where the numerator pn(x) and denominator qm(x) are trigonometric polynomials
with real coefficients such that deg pn 6 n, deg qm 6 m, qm 6≡ 0. We define the best
uniform trigonometric rational approximations to f to be:

Rt
n,m(f) := inf{‖f − r‖ : r ∈ Rt

n,m} = ‖f − r∗n,m‖,

AMS 2000 Mathematics Subject Classification. Primary 41A20, 41A25; Secondary 41A21,
41A44.
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where ‖g‖ = max{|g(x)| : x ∈ [0, 2π]} and r∗n,m is the trigonometric function of
best uniform approximation of f by fractions from Rt

n,m. It is well known that
r∗n,m is uniquely defined (see, for instance, [1]).

By a trigonometric Padé approximant to a function f we shall mean a rational
function πt

n,m(x) = πt
n,m(x; f) = pt

n(x)/qt
m(x) in Rt

n,m, where the numerator and
denominator satisfy the condition

qt
m(x)f(x)− pt

n(x) =
∞∑

k=n+m+1

(ãk cos kx+ b̃k sin kx), (1.3)

where ãk and b̃k are real numbers.
We shall consider certain matrices and determinants whose entries are equal to

Fourier coefficients of the function f . To define them, to each k ∈ Z and each real x
we assign the row matrices

Ck = ‖ck−j‖, E(x) = ‖eijx‖, j = −m, . . . ,m.

Here and throughout, the symbol i in the expressions eijx, eikx and eix is the
imaginary unit. Let

dn,m(x) = det



Cn+m

. . .
Cn+1

E(x)
C−n−1

. . .
C−n−m


.

We denote by dn,m,k the determinant obtained from dn,m by replacing the row
E(x) by Ck, and we denote by ∆n,m the determinant of order 2m obtained from
dn,m(x) by deleting the (m+ 1)st row and (m+ 1)st column.

Proposition 1. Let f be a function defined by a series (1.2). Then the trigono-
metric Padé approximant πt

n,m( · ; f) exists for all positive integers n and m. If
∆n,m 6= 0, then the ratio πt

n,m(x; f) = pt
n(x; f)/qt

m(x; f) is uniquely determined ;
its numerator and denominator are defined by

pt
n(x) =

n∑
k=−n

dn,m,ke
ikx, qt

m(x) = dn,m(x). (1.4)

For m = 0 the approximants πt
n,0( · ; f), n = 0, 1, 2, . . . , coincide with the partial

Fourier sums of f . Formulae (1.4) also hold if we set the determinant of order
zero to be equal to 1 by definition. For m > 0 the assertion of Proposition 1
that the trigonometric Padé approximant πt

n,m( · ; f) exists and is unique and has
a representation in the form (1.4) is not new (see, for instance, [2]–[4]). As is known,
trigonometric polynomials pt

n(x) and qt
m(x) and the fraction πt

n,m( · ; f), which is
their ratio, are not uniquely defined by equality (1.3). In what follows we shall
assume that pt

n and qt
m are defined by (1.4). Then

Lt
n,m(x; f) := qt

m(x)f(x)− pt
n(x) =

∞∑
k=n+m+1

(c̃keikx + c̃−ke
−ikx), (1.5)
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where c̃k = dn,m,k for all k ∈ Z. Since f is a real-valued function, it follows that
ck = c−k. In this case dn,m(x) = dn,m(x) and dn,m,k = dn,m,−k. This means
that the trigonometric polynomials pt

n and qt
m are also real.

In a similar way, repeating [5], we define trigonometric Padé approximants in the
sense of Baker. Namely a trigonometric Padé-Baker approximant for a function f
defined by (1.1) is a rational function π̂t

n,m(x; f) = p̂ t
n(x)/q̂ t

m(x) in Rt
n,m which is

analytic on [0, 2π], representable by its Fourier series and has the greatest possible
order of osculation (in terms of the number of free parameters) with the series (1.1),
that is,

f(x)− π̂t
n,m(x; f) =

∞∑
k=n+m+1

(âk cos kx+ b̂k sin kx),

where âk and b̂k are real numbers. On a formal level the definitions of trigonometric
Padé and Padé-Baker approximants are similar to the corresponding definitions in
the algebraic case. However, as regards their content, the differences between these
notions in the trigonometric case are more significant than in the algebraic case.
In many respects the situation here is analogous to the one which exists for some
other generalizations of the classical case (see, for example, the survey [6]): the
various generalizations lead to different rational constructions.

In fact, consider the Weierstrass function, which can be represented by the lacu-
nary Fourier series

f(x) =
∞∑

i=0

qi cos(2k + 1)ix, 0 < q < 1. (1.6)

In the classical setting there exists a close connection between the C-table (with
entries equal to the Hadamard determinants C(n/m)) and the Padé-Baker table
[π̂n,m( · ; f)]∞n,m=0 (see [5], Ch. 1, § 1.4). In particular, in the C-table zeros form
square blocks, and if C(n/m) 6= 0, then for such n and m the Padé-Baker approxi-
mant π̂n,m( · ; f) is well defined and coincides with the classical Padé approximant
πn,m( · ; f). In the periodic case an analogue of the C-table is the ∆-table of val-
ues of the determinants ∆n,m. If we set q = 1/4 and k = 1 in (1.6), then the
∆-table of f contains the following fragment (the precise values of the entries were
calculated ‘by hand’; these calculations were duplicated using the Mathcad software
package):

n
m

0 1 2 3 4 5 6 7 8 9
0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0
1 0 6= 0 0 6= 0 0 0 0 6= 0 0 6= 0
2 6= 0 6= 0 6= 0 6= 0 0 0 6= 0 0 0 6= 0
3 0 6= 0 0 6= 0 0 0 0 0 0 6= 0
4 6= 0 6= 0 6= 0 6= 0 6= 0 0 0 0 0 6= 0
5 0 6= 0 0 6= 0 0 0 0 0 0 6= 0
6 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 0 0 0
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We see that the zero entries of a ∆-table do not always form square blocks;
moreover, if ∆n,m 6= 0, then the trigonometric Padé approximants πt

n,m( · ; f) and
π̂t

n,m( · ; f) do not necessarily coincide when the second of these is well-defined. For
example, ∆0,2 6= 0, but it is easy to calculate that

πt
0,2(x; f) =

0
5− 8 cos 2x

≡ 0

is not a trigonometric Padé-Baker approximant, though the polynomials pt
0(x) = 0

and qt
2(x) = 5− 8 cos 2x satisfy condition (1.3). In a similar way ∆6,6 6= 0, but

πt
6,6(x; f) =

80 cosx+ 75 cos 3x+ 52 cos 5x
64 + 128 cos 4x− 32 cos 6x

is not representable by a Fourier series since the denominator vanishes at some
point in [0, 2π]. For this reason πt

6,6(x; f) and π̂t
6,6(x; f) cannot coincide.1

If m = 0, then the Padé approximants πt
n,0( · ; f) and π̂t

n,0( · ; f) always exist and
are identically equal to the corresponding partial sum of the Fourier series (1.1). By
a theorem due to Bernstein (see [8]), the trigonometric polynomial of best uniform
approximation of order at most n for the Weierstrass function (1.6) is equal to the
corresponding partial Fourier sum of the series (1.6):

r∗n,0(x; f) = πt
n,0(x; f) = π̂t

n,0(x; f).

We can add to Bernstein’s theorem. Namely, the following result holds.

Proposition 2. Let f(x) =
∑∞

i=0 q
i cos (2k + 1)ix be a Weierstrass function. For

fixed n let s be determined by the conditions

(2k + 1)s 6 n 6 (2k + 1)s+1 − 1.

If 0 6 m 6 2k(2k + 1)s − 1 and 0 6 i + j 6 2k(2k + 1)s − 1, then there exists
π̂t

(2k+1)s+i, j(x; f) and

r∗n,m(x; f) = π̂t
(2k+1)s+i, j(x; f) = πt

(2k+1)s+i, j(x; f) = πt
(2k+1)s, 0(x, f), (1.7)

Rt
n,m(f) =

qs+1

1− q
.

Proof. We shall show that πt
(2k+1)s, 0(x, f) =

∑s
i=0 q

i cos (2k + 1)ix is the trigono-
metric rational function of best approximation in the class Rt

n,m. To do this it is
sufficient to prove (see [1], Ch. 7, § 3, Theorem 2.10) that it has 2(n +m − d) + 2
points of alternance, where d = min{n− (2k+1)s;m}. We shall consider two cases.
Let d = m, that is,

0 6 m 6 n− (2k + 1)s 6 (2k + 1)s+1 − 1− (2k + 1)s = 2k(2k + 1)s − 1.

1The referee drew our attention to [7], where Gibbs phenomenon for generalized Padé approx-
imants of the sign function sgn x is investigated and where, in particular, explicit expressions for
the fractions πt

n,m(x; s) and bπt
n,m(x; s), where s(x) = sgn(cos x), are found, which demonstrate

that these fractions are different for all m > 1.
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Then 2(n+m− d) + 2 = 2(n+ 1). At the points

xi =
iπ

(2k + 1)s+1
, i = 0, 1, . . . , 2(2k + 1)s+1 − 1,

we have

f(xi)− πt
(2k+1)s, 0(xi, f) = (−1)i q

s+1

1− q
.

Since 2(n+ 1) 6 2(2k+ 1)s+1, there exist sufficiently many points of alternance. If
d = n− (2k + 1)s, then

2(n+m− d) + 2 = 2(m+ (2k + 1)s) + 2.

In view of the constraints on m in the hypotheses,

2(m+ (2k + 1)s) + 2 6 2(2k + 1)s+1.

Hence r∗n,m(x; f) = πt
(2k+1)s, 0(x; f). It remains to prove that the Padé approxi-

mant π̂t
(2k+1)s+i, j(x; f) exists for 0 6 i + j 6 2k(2k + 1)s − 1 and coincides with

πt
(2k+1)s+i, j(x; f) and πt

(2k+1)s, 0(x; f). For this it is sufficient to show that

(2k + 1)s + i+ j + 1 6 (2k + 1)s+1.

This is indeed so because

(2k + 1)s + i+ j + 1 6 (2k + 1)s + 2k(2k + 1)s = (2k + 1)s+1.

The proof of Proposition 2 is complete.

We proceed to the statement of the problem. The sequence of Fourier coeffi-
cients {ck}∞k=−∞ of the series (1.2) determines the coefficients of the numerator
and denominator of the fraction r∗n,m( · ; f) uniquely. However, at present the prob-
lem of obtaining explicit expressions for these coefficients in the general case seems,
for all practical purposes, to be unsolvable. Even for m = 0 the only nonelementary
function for which we can find them is the Weierstrass function. For the fraction
π̂t

n,m( · ; f) the situation is similar. On the other hand the precise values of the
coefficients of the numerator and denominator of the classical trigonometric Padé
approximant πt

n,m( · ; f) can be calculated using (1.4). Our immediate aim is to find
conditions on the coefficients of the Fourier series (1.2) ensuring that the trigono-
metric Padé approximants πt

n,m( · ; f) (for m = 0 the πt
n,0( · ; f) are partial sums of

the Fourier series (1.2)) approximate the function f in the uniform norm at a rate
asymptotically coinciding with the highest possible. In this case, as n+m→∞, the
infinitesimals ‖f − r∗n,m‖ and ‖f − πt

n,m‖ will be equivalent.2 Hence by describing
the decreasing asymptotic behaviour of the sequence ‖f − πt

n,m‖ in terms of the
Fourier coefficients of the series (1.1) we shall solve the problem of best rational
approximation of f in a certain sense.

2We say that infinitesimals {αn}∞n=0 and {βn}∞n=0 are equivalent (αn ∼ βn) if αn/βn → 1
as n →∞.
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This approach to the analysis of approximation properties of periodic functions
was initiated by Rusak, and the general statement of the problem is due to him.
Classes of functions f for which the trigonometric Padé approximants πt

n,m( · ; f)
have the extremal properties indicated above were first discovered by Berezkina [9]
and Ta Hong Quang [10]. In the algebraic case similar problems were investigated
by Levin and Lubinsky (see [11]–[14]), in connection with the analysis of results
due to Saff (see [15], [16]) on rational approximation of the exponential function.
In [11]–[14], [17]–[19] the authors found broad classes of entire functions for which
the classical Padé approximants πn,m( · ; f) approximate f in the unit disc at a rate
asymptotically equal to the highest possible, that is, the so-called Saff phenomenon
occurs (see [19] for details). To date the most general results in the algebraic case
have been obtained in [20]. In this paper, in § 2 and § 3 we prove analogues of the
main results in [20] for trigonometric Padé approximants.

First we introduce the requisite function classes. In what follows we consider
continuous 2π-periodic even functions f . Then

f(x) =
a0

2
+

∞∑
k=1

ak cos kx, (1.8)

and the coefficients ck = c−k = ak/2 of the Fourier series in the complex form (1.2)
are real numbers. With these constraints c̃k = c̃−k = dn,m,k = dn,m,−k. Therefore,
taking (1.5) into account we obtain

Lt
n,m(x; f) =

∞∑
k=1

c̃n+m+k(ei(n+m+k)x + e−i(n+m+k)x). (1.9)

We use Tα
β(q), α ∈ N, β > 1, q ∈ R, to denote the set of functions f representable

in the form (1.8) with nonzero Fourier coefficients {an}∞n=0 satisfying the following
restrictions: for each j, 1 6 j 6 m(n), where

lim
n→∞

(m(n))2+β

n
= 0, (1.10)

there exists a sequence of real numbers {b(j)k }∞k=1, such that

|b(j)k | 6 (cjβ)k, c = const, (1.11)

uniformly for k = 1, 2, . . . , and, for n > n0,

an+j

an
=

(
q

nα

)j(
1 +

∞∑
k=1

b
(j)
k

nk

)
. (1.12)

Condition (1.12) defines the rate of decrease of the Fourier coefficients of f
and, in combination with (1.11), in a certain sense describes the regularity of their
decrease.3 In particular, it follows from (1.11) and (1.12) that f is the real part of

3We point out that the sequence {b(j)k }∞k=1 is determined by j alone and is independent of n,
and c is an absolute constant, which is the same for all j.
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the restriction to R of the entire function

f̂(z) = c0 + 2
∞∑

n=1

cne
inz.

In some special cases verification of (1.11) and (1.12) can be simplified. In fact,
let T (α, q), α ∈ N, q ∈ R, be the set of functions f representable in the form
(1.8) for which an 6= 0, n ∈ N, and a sequence of real numbers {bk}∞k=1 exists such
that for n > n0,

an+1

an
=

q

nα

(
1 +

∞∑
k=1

bk
nk

)
, |bk| 6 Mk, M = const, k = 0, 1, 2, . . . .

By Theorem 5.1 in [20], T (α, q) ⊂ Tα
2 (q). Taking this into account we see, for

example, that the function

fh(x) = eh cos x cos (h sinx) =
∞∑

n=0

hn

n!
cosnx, h ∈ R, (1.13)

is in T 1
2 (h).

We say that g belongs to Tα
β (q, d) if g(x) = f(dx), where f ∈ Tα

β (q), d ∈ N. For
example,

gh(x) = ch (h cosx) cos (h sinx) =
∞∑

n=0

h2n

(2n)!
cos 2nx (1.14)

is in the class T 2
2 (h2/4; 2). Using the definition of trigonometric Padé approximants

it is easy to show that if g ∈ Tα
β (q, d) and g(x) = f(dx), then πt

dn+i, dm+j(x; g) =
πt

n,m(dx; f) for 0 6 i+ j 6 d− 1, and therefore

g(x)− πt
dn+i, dm+j(x; g) = f(dx)− πt

n,m(dx; f). (1.15)

The following theorem is one of the central results of our paper (see § 3).

Theorem 1. Let f be a function in Tα
β (q), α ∈ N, β > 1, q ∈ R. If

lim
n→∞

(m(n))2+β

n
= 0,

then for all x ∈ R, uniformly for 0 6 m 6 m(n),

f(x)− πt
n,m(x; f) = (−1)mm! an+1

(
αq

nα+1

)m

Re{ei(n+m+1)x(1 + o(1))},

Rt
n,m(f) ∼ ‖f − πt

n,m( · ; f)‖ ∼ m! |an+1|
(
α|q|
nα+1

)m

as n→∞.
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In § 4 we give applications of Theorem 1 and some other results in § 3 to
problems dealing with finding the sharp constants of rational approximation (in
this connection see Braess [21], Gonchar and Rakhmanov [22], Stahl [23], [24] and
Aptekarev [25]). In particular, we prove a rational analogue of Bernstein’s theo-
rem (see [26], paper 3, Ch. 5, § 54) which establishes the asymptotics of decrease
of the best algebraic polynomial approximations for functions representable by
a Fourier-Chebyshev series with regularly decreasing coefficients.

The authors are grateful to V. N. Rusak for his valuable advice and for the
attention he paid to their work.

§ 2. Asymptotic behaviour of Hadamard-type determinants

Consider m power series which converge in the disc Dρ = {z : |z| < ρ} and have
the following form:

fm−i(z) =
∞∑

k=0

a
(m−i)
k zk, i = 1, . . . ,m, (2.1)

where 
a
(i)
k = 0, 1 6 i 6 m− 1, k < αi,

a
(i)
αi = 1, 1 6 i 6 m− 1,

a
(0)
0 = 1, a(0)

k = 0, k > 1.

(2.2)

We shall assume that the other coefficients of the power series (2.1) satisfy the
following conditions:

|a(i)
k | 6 (ciβ)k−αi, c = const, k > αi, 1 6 i 6 m− 1. (2.3)

For
−→
λ = (λ1, λ2, . . . , λm), λj ∈ Dρ, j = 1, . . . ,m, consider the determinants

∆m(
−→
λ ) := |fm−i(λj)|mi,j=1.

The proof of the following result can be found in [20].

Proposition 3. If c1, c2 > 0, β > 1,

1
c1n+ c2m

6 λj 6
1

c1n− c2m
, j = 1, . . . ,m, (2.4)

and condition (1.10) holds, then uniformly for 0 6 m 6 m(n),

∆m(
−→
λ ) ∼Wm(

−→
λα)

as n→∞, where

Wm(
−→
λ ) = |λm−i

j |mi,j=1 =
∏

16i<j6m

(λi − λj)

is the Vandermonde determinant of order m of the variables λ1, λ2, . . . , λm and−→
λα = (λα

1 , λ
α
2 , . . . , λ

α
m).
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Remark 1. Proposition 3 holds uniformly for all k = 1, 2, 3, . . . if we have

1
c1(n+ k) + c2m

6 λ1 6
1

c1(n+ k)− c2m
,

and the other λj satisfy the same conditions (2.4) as before.
Indeed, in this case

c1(n+ k) + c2m

c1(n+ k)− c2m
6
c1n+ c2m

c1n− c2m
,

and under the assumptions in this remark, Theorem 2.1 in [20] also holds.

We consider two square matrices of order m+ 1:

Ã(k) =


2cn+m+k cn+m+k−1 + cn+m+k+1 . . . cn+k + cn+2m+k

2cn+1 cn + cn+2 . . . cn−m+1 + cn+m+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2cn+m cn+m−1 + cn+m+1 . . . cn + cn+2m

 ,

A(y) =


2 y−1 + y . . . y−m + ym

2cn+1 cn + cn+2 . . . cn−m+1 + cn+m+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2cn+m cn+m−1 + cn+m+1 . . . cn + cn+2m

 ,
and two square matrices of order m:

A0 =


cn+2 + cn cn+3 + cn−1 . . . cn+m+1 + cn−m+1

cn+3 + cn+1 cn+4 + cn . . . cn+m+2 + cn−m+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m+1 + cn+m−1 cn+m+2 + cn+m−2 . . . cn+2m + cn

 ,

B =


cn+2 − cn cn+3 − cn−1 . . . cn+m+1 − cn−m+1

cn+3 − cn+1 cn+4 − cn . . . cn+m+2 − cn−m+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m+1 − cn+m−1 cn+m+2 − cn+m−2 . . . cn+2m − cn

 .
Here and throughout, ck = 2ak, where the ak are the Fourier coefficients of the

series (1.8).

Lemma 1. Let f be a function represented by a series (1.8). Then

∆n,m = detA0 · detB, (2.5)

c̃n+m+k =
1
2

det Ã(k) · detB, (2.6)

qt
m(x) =

1
2

detA(y) · detB, y = eix. (2.7)
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Proof. Since cj = c−j , we can replace c−j by cj in all the rows of the determinant
∆n,m starting from the (m+ 1)th. Then

∆n,m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cn+2m . . . cn+m+1 | cn+m−1 . . . cn
. . . . . . . . . . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m+1 . . . cn+2 | cn . . . cn−m+1

−−− −−− −−− | − −− −−− −−−
cn−m+1 . . . cn | cn+2 . . . cn+m+1

. . . . . . . . . . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . . . . .
cn . . . cn+m−1 | cn+m+1 . . . cn+2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now we transpose the (m+ 1)st row and the last one, the (m+ 2)nd and the next
before last and so on, and in the resulting matrix we transpose the (m+1)st column
and the last one, the (m+ 2)nd column and the next before last and so on. After
these transformations we obtain

∆n,m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cn+2m . . . cn+m+1 | cn . . . cn+m−1

. . . . . . . . . . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m+1 . . . cn+2 | cn−m+1 . . . cn
−−− −−− −−− | − −− −−− −−−
cn . . . cn+m−1 | cn+2m . . . cn+m+1

. . . . . . . . . . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . . . . .
cn−m+1 . . . cn | cn+m+1 . . . cn+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣P Q
Q P

∣∣∣∣ ,

where P and Q are matrices of order m located in the first m columns and first m
rows and in the first m rows and last m columns, respectively. We transform the
above matrix by adding the (m+1)st column to the first, the (m+2)nd column to
the second and so on up to the mth column to which we add the 2mth. After that
we subtract the first row from the (m + 1)st, the second row from the (m + 2)nd
and so on; finally, from the last row we subtract the mth. Then it follows from the
properties of determinants that

∆n,m =
∣∣∣∣P +Q Q

0 P −Q

∣∣∣∣ = det(P +Q) · det(P −Q),

where
det(P +Q) = detA0, det(P −Q) = detB.

The proof of (2.5) is complete.
Now we prove (2.6). In dn,m,n+m+k we replace the coefficients c−j by cj starting

from the (m+ 2)nd row. Then

c̃n+m+k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cn+2m . . . cn+m+1 cn+m cn+m−1 . . . cn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m+1 . . . cn+2 cn+1 cn . . . cn−m+1

cn+2m+k . . . cn+m+k+1 cn+m+k cn+m+k−1 . . . cn+k

cn−m+1 . . . cn cn+1 cn+2 . . . cn+m+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn . . . cn+m−1 cn+m cn+m+1 . . . cn+2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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After elementary transformations of rows and columns, similarly to above we obtain

c̃n+m+k =
∣∣∣∣X Y
0 Z

∣∣∣∣ = detX · detZ,

where
detX =

1
2

det Ã(k), detZ = detB.

The proof of equality (2.6) is complete, the proof of (2.7) is similar, and these
complete the proof of Lemma 1.

Lemma 2. Let ni, i = 1, . . . ,m, be distinct positive integers and let

γ1n− γ2m 6 ni 6 γ1n+ γ2m, i = 1, . . . ,m,

where γ1 and γ2 are positive constants independent of m and n. If a function f can
be represented in the form (1.8) and f ∈ Tα

β (q), then uniformly for 0 6 m 6 m(n),∣∣∣∣∣∣∣∣
cn1 cn2 . . . cnm

cn1+1 cn2+1 . . . cnm+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn1+m−1 cn2+m−1 . . . cnm+m−1

∣∣∣∣∣∣∣∣ ∼ qm(m−1)/2
m∏

i=1

cni

∏
16i<j6m

(n−α
j − n−α

i )

(2.8)
as n→∞.

Proof. Let C be the determinant in (2.8). Then using elementary transformations
we obtain

C = (−1)m(m−1)/2

∣∣∣∣∣∣∣∣
cn1+m−1 cn2+m−1 . . . cnm+m−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn1+1 cn2+1 . . . cnm+1

cn1 cn2 . . . cnm

∣∣∣∣∣∣∣∣
= (−1)m(m−1)/2cn1cn2 · · · cnm

· C ′, (2.9)

where

C ′ =

∣∣∣∣∣∣∣∣∣∣∣

cn1+m−1

cn1

cn2+m−1

cn2

. . .
cnm+m−1

cnm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn1+1

cn1

cn2+1

cn2

. . .
cnm+1

cnm

1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
.

We can write (1.12) as
cn+j

cn
= qj

∞∑
k=0

bjk
1

nk+αj
. (2.10)

Now defining some of the coefficients in (2.1) using (2.2) and defining the other
coefficients by

a
(i)
k = b

(i)
k−αi, k > αi, 1 6 i 6 m− 1,
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it follows from (1.11) that (2.3) holds in this case. Taking account of (2.10) and
the choice of the coefficients in (2.1) we have

C ′ = qm(m−1)/2|fm−i(λj)|mi,j=1,

where λj = 1/nj , j = 1, . . . ,m. By Proposition 3,

C ′ ∼ qm(m−1)/2
∏

16i<j6m

(λα
i − λα

j ).

Finally, by (2.9) we obtain that, as n→∞,

C ∼ (−q)m(m−1)/2
m∏

i=1

cni

∏
16i<j6m

(n−α
i − n−α

j )

= qm(m−1)/2
m∏

i=1

cni

∏
16i<j6m

(n−α
j − n−α

i ).

The proof of Lemma 2 is complete.

Let

A1 :=

∣∣∣∣∣∣∣∣
cn+1 cn + cn+2 . . . cn−m+1 + cn+m+1

cn+2 cn+1 + cn+3 . . . cn−m+2 + cn+m+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m+1 cn+m + cn+m+2 . . . cn+1 + cn+2m+1

∣∣∣∣∣∣∣∣ .
Lemma 3. If f is a function representable in the form (1.8) and f ∈ Tα

β (q), then
uniformly for 0 6 m 6 m(n),

A1 ∼ A0 :=

∣∣∣∣∣∣∣∣
cn+1 cn . . . cn−m+1

cn+2 cn+1 . . . cn−m+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m+1 cn+m . . . cn+1

∣∣∣∣∣∣∣∣ (2.11)

as n→∞.

Proof. We represent A1 as the sum of the 2m determinants obtained by decompos-
ing the columns:

A1 =
∑

n1,n2,...,nm

∣∣∣∣∣∣∣∣
cn+1 cn1 . . . cnm

cn+2 cn1+1 . . . cnm+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m+1 cn1+m . . . cnm+m

∣∣∣∣∣∣∣∣ , (2.12)

where ni can be equal to n + 1 − i or n + 1 + i, i = 1, . . . ,m. By Aj
v1,v2,...,vj

,
1 6 v1 < v2 < · · · < vj 6 m, j = 1, . . . ,m, we denote the determinant in (2.12) in
which nv1 = n+ 1 + v1, nv2 = n+ 1 + v2, . . . , nvj

= n+ 1 + vj , and for the other
values we have ni = n+ 1− i, i = 1, . . . ,m, i 6= v1, v2, . . . , vj . Then (2.12) can be
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written as follows:

A1 = A0 +
∑
v1

A1
v1

+
∑

v1<v2

A2
v1,v2

+ · · ·+
∑

v1<···<vj

Aj
v1,...,vj

+ · · ·+Am
1,2,...,m

= A0 + S1 + S2 + · · ·+ Sj + · · ·+ Sm = A0

(
1 +

m∑
j=1

Sj

A0

)
, (2.13)

where the sum Sj contains precisely Cj
m = m!/(j! (m − j)!) terms. Now we set

λ+
i = (n+ 1 + i)−α and λ−i = (n+ 1− i)−α. It follows from Lemma 2 that

A0 ∼ qm(m+1)/2
m∏

i=0

cn+1−i

∏
06i<j6m

(λ−j − λ−i ),

Aj
v1,v2,...,vj

∼ qm(m+1)/2

j∏
p=1

cn+1+vp

cn+1−vp

m∏
i=0

cn+1−i

∏
06i<j6m

(λ−j − λ−i )

×
j∏

k=1

{ vk−1∏
i=0

i 6=v1,v2,...,vk−1

λ+
vk
− λ−i

λ−vk − λ−i

m∏
i=vk+1

i 6=vk+1,vk+2,...,vj

λ−i − λ+
vk

λ−i − λ−vk

} j∏
k=2

j∏
i=k

λ+
vj
− λ+

vk−1

λ−vj − λ−vk−1

(2.14)

as n→∞.
Using Lagrange’s finite difference theorem we obtain∣∣∣∣v1−1∏
i=0

λ+
v1
− λ−i

λ−v1 − λ−i

∣∣∣∣ 6
v1−1∏
i=0

α
(n+1−i)α−1

(
1

n+1−i −
1

n+1+v1

)
α

(n+1−i)α−1

(
1

n+1−v1
− 1

n+1−i

) =
v1−1∏
i=0

v1 + i

v1 − i

n+ 1− v1
n+ 1 + v1

6
v1−1∏
i=0

v1 + i

v1 − i
= Cv1

2v1−1 6 vv1
1 .

(We have used the fact that Cr
m+r−1 6 mr.) Similarly, for k = 2, 3, . . . , j,∣∣∣∣ vk−1∏
i=0

i 6=v1,v2,...,vk−1

λ+
vk
− λ−i

λ−vk − λ−i

∣∣∣∣ 6 vvk

k .

Next, using Lagrange’s theorem we obtain
m∏

i=v1+1
i 6=v2,v3,...,vj

λ−i − λ+
v1

λ−i − λ−v1

6
m∏

i=v1+1

λ−i − λ+
v1

λ−i − λ−v1

6 C2v1
m+v1

(
n+ 1− v1
n+ 1−m

)(α−1)(m−v1)

6 m2v1

(
n+ 1

n+ 1−m

)(α−1)m

.

Similarly, for k = 2, 3, . . . , j,
m∏

i=vk+1
i 6=vk+1,vk+2,...,vj

λ−i − λ+
vk

λ−i − λ−vk

6 m2vk

(
n+ 1

n+ 1−m

)(α−1)m

.
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Since for all 1 6 vp < vk 6 m we have∣∣∣∣λ+
vk
− λ+

vp

λ−vk − λ−vp

∣∣∣∣ 6

(
n+ 1− vp

n+ 1 + vp

)α−1 (n+ 1− vk)(n+ 1− vp)
(n+ 1 + vk)(n+ 1 + vp)

6 1,

the last factor on the right-hand side of (2.14) has absolute value at most 1.
Finally, in view of (1.12), for n > n0 we obtain

j∏
p=1

cn+1+vp

cn+1−vp

6
j∏

p=1

(
2q

(n+ 1− vp)α

)2vp

6

(
2q

(n+ 1−m)α

)2
Pj

k=1 vk

.

It follows from these inequalities and (2.14) that

∣∣∣∣Aj
v1,v2,...,vj

A0

∣∣∣∣ 6
j∏

p=1

(vpm
2)vp ·

(
n+ 1

n+ 1−m

)jm(α−1)( 2q
(n+ 1−m)α

)2
Pj

k=1 vk

6

(
n+ 1

n+ 1−m

)jm(α−1)( 2qm3/2

(n+ 1−m)α

)2
Pj

k=1 vk

.

Note that Sj 6 Cj
m maxv1,v2,...,vj

|Aj
v1,v2,...,vj

| and Cj
m 6 mj . Hence

m∑
j=1

Sj

A0
6

(
n+ 1

n+ 1−m

)m2(α−1) m∑
j=1

mj

(
2qm3/2

(n+ 1−m)α

)2j

6

(
n+ 1

n+ 1−m

)m2(α−1) m∑
j=1

(
2qm2

(n+ 1−m)α

)2j

. (2.15)

In view of the constraints (1.10), uniformly for 0 6 m 6 m(n),

lim
n→∞

(
n+ 1

n+ 1−m

)m2(α−1)

= 1.

Hence from (2.15) we finally obtain

A1 = A0

(
1 +

m∑
j=1

Sj

S0

)
= A0

[
1 +O

(
m4

(n+ 1−m)2α

)]

as n→∞. The proof of Lemma 3 is complete.

Corollary 1. If a function f can be represented in the form (1.8) and f ∈ Tα
β (q),

then for 0 6 m 6 m(n) and n > n0, detA0 6= 0, detB 6= 0 and ∆n,m 6= 0.

This follows directly from an analysis of the proof of Lemma 3, equality (2.5)
and Lemma 2.
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Lemma 4. If f is a function representable in the form (1.8) and f ∈ Tα
β (q), then

uniformly for 0 6 m 6 m(n),

det Ã(1) ∼ 2(−1)mqm(m+1)/2
m∏

i=0

cn+1−i

∏
06i<j6m

(λ−j − λ−i ), (2.16)

det Ã(k) ∼ 2qm(m+1)/2cn+k

m∏
i=1

cn+1−i

∏
16i<j6m

(λ−j − λ−i )

×
m∏

j=1

{(n+ k)−α − (n+ 1− j)−α}, (2.17)

detA(y) ∼ 2qm(m−1)/2
m∏

i=1

cn+1−i

∏
16i<j6m

(λ−j − λ−i ) (2.18)

as n→∞, where y = eix.

Proof. As in the proof of Lemma 3, we can demonstrate that, as n→∞,

det Ã(k) ∼ 2(−1)m

∣∣∣∣∣∣∣∣
cn+1 cn . . . cn−m+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m cn+m−1 . . . cn
cn+m+k cn+m+k−1 . . . cn+k

∣∣∣∣∣∣∣∣ .
Hence it is easy to show by elementary transformations that

det Ã(k) ∼ 2(−1)m

∣∣∣∣∣∣∣∣
cn+k cn . . . cn−m+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m+k−1 cn+m−1 . . . cn
cn+m+k cn+m . . . cn+1

∣∣∣∣∣∣∣∣ .
Taking account of Remark 1 we apply Lemma 2 to the determinant on the right-
hand side to obtain (2.17). Now (2.16) follows from (2.17) for k = 1.

Next we proceed to prove (2.18). We expand detA(y) along the first row and
then use Lemma 3. We see that, as n→∞,

detA(y) ∼ 2

∣∣∣∣∣∣∣∣
cn cn−1 . . . cn−m+1

cn+1 cn . . . cn−m+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m−1 cn+m−2 . . . cn

∣∣∣∣∣∣∣∣
− 2(y−1 + y)

∣∣∣∣∣∣∣∣
cn+1 cn−1 . . . cn−m+1

cn+2 cn . . . cn−m+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m cn+m−2 . . . cn

∣∣∣∣∣∣∣∣ + · · ·

+ 2(−1)m(y−m + ym)

∣∣∣∣∣∣∣∣
cn+1 cn . . . cn−m+2

cn+2 cn+1 . . . cn−m+3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m cn+m−1 . . . cn+1

∣∣∣∣∣∣∣∣ .
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If we bear in mind that y = eix and use Lemma 2, as in the proof of Lemma 3 we
can show that

detA(y) ∼ 2

∣∣∣∣∣∣∣∣
cn cn−1 . . . cn−m+1

cn+1 cn . . . cn−m+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn+m−1 cn+m−2 . . . cn

∣∣∣∣∣∣∣∣
∼ 2qm(m−1)/2

m∏
i=1

cn+1−i

∏
16i<j6m

{(n+ 1− j)−α − (n+ 1− i)−α}

as n→∞. The proof of Lemma 4 is complete.

§ 3. Trigonometric Padé approximants to functions in the class T α
β (q)

We will now prove our central results.

Theorem 2. Let f be a function represented by a Fourier series (1.8) such that
f ∈ Tα

β (q), α ∈ N, β > 1, q ∈ R. If limn→∞(m(n))2+β/n = 0, then for all x ∈ R,
uniformly for 0 6 m 6 m(n),

f(x)− πt
n,m(x; f) = (−1)mm! an+1

(
αq

nα+1

)m

Re{ei(n+m+1)x(1 + o(1))} (3.1)

as n→∞.

Proof. In view of (1.9), for all x ∈ R we have

f(x)− πt
n,m(x; f)

=
∞∑

k=1

c̃n+m+k

qt
m(x)

(ei(n+m+k)x + e−i(n+m+k)x) = 2 Re
∞∑

k=1

c̃n+m+k

qt
m(x)

ei(n+m+k)x

= 2 Re
{
c̃n+m+1

qt
m(x)

ei(n+m+1)x

(
1 +

∞∑
k=2

c̃n+m+k

c̃n+m+1
ei(k−1)x

)}
. (3.2)

By Lemmas 1 and 4, as n→∞,

c̃n+m+1

qt
m(x)

=
det Ã(1)
detA(y)

∼ (−q)mcn+1

m∏
j=1

{(n+ 1− j)−α − (n+ 1)−α}

∼ (−q)mm! cn+1

(
α

nα+1

)m

= (−1)mm! cn+1

(
αq

nα+1

)m

(3.3)

and
c̃n+m+k

c̃n+m+1
=

det Ã(k)

det Ã(1)
∼ cn+k

cn+1

m∏
j=1

(n+ 1− j)−α − (n+ k)−α

(n+ 1− j)−α − (n+ 1)−α
.

Using the last equivalence, repeating the arguments in the proof of inequality (4.4)
in [20] word for word, for n > n0 we obtain

∞∑
k=2

∣∣∣∣ c̃n+m+k

c̃n+m+1

∣∣∣∣ 6 c

∞∑
k=2

(
2|q|(m+ 1)

nα

)k−1

= O

(
m

nα

)
. (3.4)
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Since 2cn+1 = an+1, relations (3.2)–(3.4) yield the asymptotic equality (3.1),
which completes the proof of Theorem 2.

Theorem 3. Let g ∈ Tα
β (q; d), α ∈ N, β > 1, q ∈ R, and let g(x) = f(dx), where

f is representable by the Fourier series (1.8). If limn→∞(m(n))2+β/n = 0, then
for all x ∈ R, uniformly for 0 6 m 6 m(n),

g(x)− πt
dn+i, dm+j(x; g) = (−1)mm! an+1

(
αq

nα+1

)m

Re{ei(n+m+1)dx(1 + o(1))}

as n→∞, where 0 6 i+ j 6 d− 1.

The result of Theorem 3 follows from equalities (1.15) and (3.1).
Now we show that the trigonometric Padé approximants πt

n,m( · ; f) converge
to f in the class under consideration at a rate asymptotically equal to the highest
possible.

Theorem 4. Let f be a function representable by the Fourier series (1.8) and let
f ∈ Tα

β (q), α ∈ N, β > 1, q ∈ R. If limn→∞(m(n))2+β/n = 0, then uniformly for
0 6 m 6 m(n),

Rt
n,m(f) ∼ ‖f − πt

n,m( · ; f)‖ ∼ m! |an+1|
(
α|q|
nα+1

)m

as n→∞.

Proof. Let

ϕ(x) = (−1)mm! an+1

(
αq

nα+1

)m

ei(n+m+1)x.

For sufficiently large n the difference f(x)−πt
n,m(x; f) has the same sign as Reϕ(x).

As x ranges over [0, 2π), (n+m+1)x ranges over [0, 2π(n+m+1)), therefore there
exist 2(n+m+ 1) real numbers xj , j = 1, 2, . . . , 2(n+m+ 1), such that

0 6 x1 < x2 < · · · < x2(n+m+1) < 2π, ϕ(xj) = (−1)m+jm! an+1

(
αq

nα+1

)m

.

Then at the points xj the difference f(x)−πt
n,m(x; f) takes values with alternating

signs. Hence by the analogue of the de la Vallée Poussin theorem for trigonometric
rational functions (see, for instance, [1], [27])

Rt
n,m(f) > min

16j62(n+m+1)
|f(xj)− πt

n,m(xj ; f)| > m! |an+1|
(
α|q|
nα+1

)m

(1− |o(1)|).

On the other hand

Rt
n,m(f) 6 max

x∈R
|f(x)− πt

n,m(x; f)| 6 m! |an+1|
(
α|q|
nα+1

)m

(1 + |o(1)|).

The proof of Theorem 4 is complete.

Remark 2. Theorem 1 is a consequence of Theorems 2 and 4.
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The following result has a similar proof.

Theorem 5. Let g ∈ Tα
β (q; d), α ∈ N, β > 1, q ∈ R, and let g(x) = f(dx), where

f is representable by the Fourier series (1.8). If limn→∞(m(n))2+β/n = 0, then
uniformly for 0 6 m 6 m(n),

Rt
dn+i, dm+j(g) ∼ ‖g − πt

dn,dm( · ; g)‖ ∼ m! |an+1|
(
α|q|
nα+1

)m

as n→∞, where 0 6 i+ j 6 d− 1.

Corollary 2. Let m(n) = o(n1/4). Then uniformly for 0 6 m 6 m(n),

Rt
n,m(fh) ∼ ‖fh − πt

n,m( · ; fh)‖ ∼ m!hm

n2m
Rt

n,0(fh) ∼ m!hn+m+1

n2m(n+ 1)!
,

Rt
2n+i, 2m+j(gh) ∼ ‖gh − πt

2n+i, 2m+j( · ; gh)‖ ∼ m!h2m

(2n3)m
Rt

2n,0(gh)

∼ m!h2(n+m+1)

2mn3m(2(n+ 1))!

as n → ∞, where 0 6 i+ j 6 1 and the functions fh and gh are defined by (1.13)
and (1.14).

In [20], in connection with a conjecture due to Dzyadyk (see [28]), it was shown
that if f is a defined by a power series then the approximation properties of Padé
approximants to f get worse in comparison with Taylor polynomials as the series
get more lacunary. Analyzing the results of Corollary 2 while bearing in mind that
(1.14) is obtained from (1.13) by deleting the terms with odd indices it is easy to
see that a similar phenomenon also occurs in the periodic case. Indeed,

‖fh − πt
2n+1, 2m( · ; fh)‖

‖fh − πt
2(n+m)+1, 0( · ; fh)‖

∼ (2m)!h2(n+m+1)

(2n)4m(2n+ 2)!
(2n+ 2m+ 2)!
h2(n+m+1)

= (2m)!
(2n+ 2m+ 2)!
(2n)4m(2n+ 2)!

∼ (2m)!
(

1
2n

)2m

∼
√

4πm
(

1
e

m

n

)2m

as n→∞, whereas

‖gh − πt
2n+1, 2m( · ; gh)‖

‖gh − πt
2(n+m)+1, 0( · ; gh)‖

∼ m!h2(n+m+1)

(2n3)m(2n+ 2)!
(2n+ 2m+ 2)!
h2(n+m+1)

∼ m! (4n2)m 1
(2n3)m

∼ m!
(

2
n

)m

∼
√

2πm
(

2
e

m

n

)m

.

Thus, for gh the advantage of trigonometric Padé approximants over Fourier
sums is (2en/m)m/

√
2 times less than for fh. If the function Ph ∈ T 4

2 (h4/256; 4) is
representable as

Ph(x) =
∞∑

k=0

h4k

(4k)!
cos 4kx,
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from Theorem 5, for 0 6 i+ j 6 3 we obtain

Rt
4n+i, 4m+j(Ph) ∼ ‖Ph − πt

4n,4m( · ;Ph)‖ ∼ m!
h4(n+m+1)

(64n5)m(4n+ 4)!

∼ m!h4m

(64n5)m
Rt

4n,0(Ph).

It is now easy to show that, as n → ∞, in the case of Ph this advantage is
(4en/m)m/

√
2 times less than for fh.

So far we have only considered functions f representable as Fourier series (1.8).
This case is interesting for applications (see § 4), but in fact all the above results
also hold for functions f representable as

f(x) =
∞∑

n=1

bn sinnx, (3.5)

where we impose the same conditions on the Fourier coefficients as before. In
particular, if

f̃h(x) = eh cos x sin (h sinx) =
∞∑

n=1

hn

n!
sinnx,

g̃h(x) = sinh (h cosx) sin (h sinx) =
∞∑

n=0

h2n

(2n)!
sin 2nx,

then we have the following result.

Corollary 3. Let m(n) = o(n1/4). Then uniformly for 0 6 m 6 m(n),

Rt
n,m(f̃h) ∼ ‖f̃h − πt

n,m( · ; f̃h)‖ ∼ m!hm

n2m
Rt

n,0(f̃h) ∼ m!hn+m+1

n2m(n+ 1)!
,

Rt
2n+i, 2m+j(g̃h) ∼ ‖g̃h − πt

2n+i, 2m+j( · ; g̃h)‖ ∼ m!h2m

(2n3)m
Rt

2n,0(g̃h)

∼ m!h2(n+m+1)

2mn3m(2(n+ 1))!

as n→∞, where 0 6 i+ j 6 1.

For Fourier series of the form (3.5) the corresponding theorems have similar
proofs, with only slight technical modifications; we will not discuss them here.

§ 4. Some applications

Let Rn,m be the set of algebraic rational functions r(x) = pn(x)/qm(x), where pn

and qm are real algebraic polynomials, deg pn 6 n, deg qm 6 m. For f ∈ C[−1, 1],
that is, for a continuous real function f on the interval [−1, 1] we consider its best
uniform algebraic rational approximations

Rn,m(f) = Rn,m(f ; [−1, 1]) := inf{‖f − r‖ : r ∈ Rn,m},



1070 Yu.A. Labych and A.P. Starovoitov

where ‖g‖ = max{|g(x)| : x ∈ [−1, 1]}. With each f ∈ C[−1, 1] we associate
a function ψ(x) = f(cosx). As in the polynomial case (see [8], Ch. 5) we can prove
that for all n and m,

Rn,m(f ; [−1, 1]) = Rt
n,m(ψ). (4.1)

Suppose that ψ is representable by a Fourier series:

ψ(x) =
A0

2
+

∞∑
k=1

Ak cos kx. (4.2)

Then f can be expanded in the corresponding Fourier series in Chebyshev poly-
nomials Tn(x) = cos(n cos−1 x):

f(x) =
A0

2
+

∞∑
k=1

AkTk(x). (4.3)

Furthermore, if f is the restriction to [−1, 1] of an entire function, then by
Bernstein’s theorem (see [29], Ch. 2, § 2) there exists a sequence {nk}∞k=1 ⊂ N for
which

Rnk,0(f) ∼ |Ank+1| as k →∞. (4.4)

Moreover, for “most usual functions the coefficients decrease so regularly that for-
mula (4.4) holds for all n or, in any case, for those n of the same parity” (see [29],
Ch. 2, § 2). Regularity conditions were stated by Bernstein in the following form
(see [26], paper 3, Ch. 5, § 54).

Proposition 4. If f is represented by a series (4.3) and

lim
n→∞

|An+1|+ |An+2|+ · · ·
An

= 0, (4.5)

then as n→∞,

Rn,0(f ; [−1, 1]) ∼ ‖f − Sn( · ; f)‖ ∼ |An+1|,

where Sn(x; f) = A0/2 +
∑n

k=1AkTk(x) is a partial sum of the series (4.3).

Using Proposition 4 it is fairly easy (see [26]) to establish the decreasing asymp-
totics of the Rn,0(f ; [−1, 1]) as n→∞ for most elementary functions (expx, cosx,
sinx, sinhx, coshx and others). For m > 1 finding the asymptotic behaviour of
the Rn,m(f) is much more difficult. Classical examples when this problem can be
solved are well known (for instance, see the survey [30]):

Rn,m(ex; [−1, 1]) ∼ n!m!
2n+m(n+m)! (n+m+ 1)!

as n+m→∞ (Braess [21]);

Rn,n(|x|; [−1, 1]) ∼ 8e−π
√

n as n→∞ (Stahl [23]);

Rn,n(xα; [0, 1]) ∼ 41+α|sinπα|e−2π
√

αn as n→∞ (Stahl [24]);

lim
n→∞

R1/n
n,n (e−x; [0,+∞]) = v (Gonchar and Rakhmanov [22]);

Rn,n(e−x; [0,+∞]) ∼ 2vn+1/2 as n→∞ (Aptekarev [25]);



Trigonometric Padé approximants 1071

here v = 0.10765 . . . is the Halphen constant. Note also Gonchar’s paper [31]; it
follows from the results there that if F is an analytic function on [−1, 1], then

lim
n→∞

R1/n
n,m(f) =

1
lm
,

where lm is the sum of the half-axes of the largest ellipse with foci at ±1 such that
f extends into its interior as a meromorphic function with at most m poles.

Now we show that the theorems in § 3 enable us to solve similar problems for
functions f representable by a Fourier-Chebyshev series (4.3), provided that the
coefficients {Ak}∞k=0 of the series decrease sufficiently regularly.

By a Padé-Chebyshev approximant to a function f defined by a series (4.3) we
mean (see, for example, [6]) the rational fraction πch

n,m(x) = pch
n (x)/qchm (x) in Rn,m

whose numerator and denominator satisfy

qchm (x)f(x)− pch
n (x) =

∞∑
k=n+m+1

ckTk(x),

where the ck are real numbers.
Clearly, πch

n,0(x; f) = Sn(x; f). For m > 1 the πch
n,m(x; f) are rational analogues

of Fourier partial sums in Chebyshev polynomials. In this connection the next
theorem can be viewed as a generalization of Proposition 4.

Theorem 6. Let f ∈ C[−1, 1] and assume that the corresponding function ψ can
be represented in the form (4.2) and ψ ∈ Tα

β (q), α ∈ N, β > 1, q ∈ R. If

lim
n→∞

(m(n))2+β

n
= 0,

then uniformly for 0 6 m 6 m(n),

Rn,m(f ; [−1, 1]) ∼ ‖f − πch
n,m( · ; f)‖ ∼ m! |An+1|

(
α|q|
nα+1

)m

as n→∞.

Proof. Applying Theorem 4 to ψ while taking account of (4.1) and the identity
πt

n,m(cos−1 x;ψ) = πch
n,m(x; f) we obtain the required result.

In a similar way we can prove the following result.

Theorem 7. Let f ∈ C[−1, 1] and assume that the corresponding function ψ can
be represented in the form (4.2) and ψ ∈ Tα

β (q; d), where α ∈ N, β > 1, q ∈ R,
d ∈ N. If

lim
n→∞

(m(n))2+β

n
= 0,

then uniformly for 0 6 m 6 m(n),

Rdn+i, dm+j(f ; [−1, 1]) ∼ ‖f − πch
dn,dm( · ; f)‖ ∼ m! |An+1|

(
α|q|
nα+1

)m

as n→∞, where 0 6 i+ j 6 d− 1.
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Analyzing §§ 1–4, it is easy to see that we impose conditions of regularity on the
sequence (An)∞n=0 such that uniformly for 0 6 m 6 m(n),

lim
n→∞

|Dn,m,2|+ |Dn,m,3|+ · · ·
Dn,m,1

= 0, (4.6)

where

Dn,m,k =

∣∣∣∣∣∣∣∣
An+1 An · · · An−m+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
An+m An+m−1 · · · An

An+m+k An+m+k−1 · · · An+k

∣∣∣∣∣∣∣∣ .
By definition Dn,0,k = An+k, therefore conditions (4.6) for m = 0 coincide with
Bernstein’s conditions (4.5). The conclusions of Proposition 4 and Theorem 6 also
coincide in this case.

Now we illustrate some applications of Theorems 6 and 7 using examples of
trigonometric series considered before.

Corollary 4. Let m(n) = o(n1/4) and let

Fh(x) = fh(cos−1 x) := ehx cos(h
√

1− x2).

Then uniformly for 0 6 m 6 m(n),

Rn,m(Fh; [−1, 1]) ∼ m!hn+m+1

n2m(n+ 1)!
∼ m!hm

n2m
Rn,0(Fh; [−1, 1])

as n→∞.

Corollary 5. Let m(n) = o(n1/4) and let

Gh(x) = gh(cos−1 x) := cosh(hx) cos(h
√

1− x2).

Then uniformly for 0 6 m 6 m(n),

R2n+i, 2m+j(Gh; [−1, 1]) ∼ m!h2(n+m+1)

2mn3m(2(n+ 1))!
∼ m!h2m

2mn3m
R2n,0(Gh; [−1, 1])

as n→∞, where 0 6 i+ j 6 1.

We prove Corollaries 4 and 5 under the assumption that m(n) = o(n1/4). We
can also show that they hold under the less restrictive condition m(n) = o(n2/3).
It is plausible that these results hold for m(n) = o(n) and that this condition is
best possible (see [19]).

In conclusion we point out that if f is one of the elementary functions expx,
cosx, sinx, sinhx or coshx, then we cannot find the decreasing asymptotics of the
Rn,m(f ; [−1, 1]) as m → ∞ and n → ∞ using Theorems 6 and 7. Nevertheless
there are grounds for optimism as regards our method of analysis. For instance, it
is shown in [9] that for all the elementary functions f mentioned above, if m is fixed,
the infinitesimals Rn,m(f ; [−1, 1]) and ‖f − πch

n,m( · ; f)‖ are equivalent as n→∞.
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[2] Kh. Semerdzhiev, “Padé approximants for functions defined by trigonometric series”,
Plovdiv Unv. Nauchn. Trud. 13:1 (1975), 409–419. (Russian)
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[5] G.A. Baker, Jr. and P. Graves-Morris, Padé approximants. Parts I, II, Encyclopedia Math.
Appl., vol. 13–14, Addison-Wesley, Reading, MA 1981.
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[31] A.A. Gončar (Gonchar), “On a theorem of Saff”, Mat. Sb. 94(136):1(5) (1974), 152–157;
English transl. in Math. USSR-Sb. 23:1 (1974), 149–154.

Yu. A. Labych
Gomel’ State University
E-mail : jlabych@yandex.ru

A.P. Starovoitov
Gomel’ State University
E-mail : svoitov@gsu.by

Received 21/FEB/08 and 13/JAN/09
Translated by IPS(DoM)

http://mi.mathnet.ru/eng/sm619
http://mi.mathnet.ru/eng/sm619
http://dx.doi.org/10.1070/SM2002v193n01ABEH000619
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0047.07301
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0047.07301
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0031.15704
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0072.28403
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0072.28403
http://mi.mathnet.ru/eng/sm2294
http://mi.mathnet.ru/eng/sm2294
http://dx.doi.org/10.1070/SM1980v036n02ABEH001802
http://dx.doi.org/10.1070/SM1980v036n02ABEH001802
http://www.ams.org/mathscinet-getitem?mr=2400986
http://www.ams.org/mathscinet-getitem?mr=2400986
http://www.ams.org/mathscinet-getitem?mr=2406610
http://mi.mathnet.ru/eng/sm3662
http://dx.doi.org/10.1070/SM1974v023n01ABEH001717
http://dx.doi.org/10.1070/SM1974v023n01ABEH001717
mailto:jlabych@yandex.ru
mailto:svoitov@gsu.by

	1 Introduction
	2 Asymptotic behaviour of Hadamard-type determinants
	3 Trigonometric Padé approximants to functions in the class $T^\alpha_\beta(q)$
	4 Some applications
	Bibliography

