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Strong asymptotics of multiply orthogonal

polynomials for Nikishin systems

A. I. Aptekarev

Abstract. Strong asymptotic formulae for the Hermite–Padé polynomials for sys-
tems of Markov-type functions in the Nikishin class are obtained. The proof is based
on the properties of certain rational functions on Riemann surfaces associated with
the supports of the measures generating the Nikishin system.

Bibliography: 23 titles.

Introduction

0.1. Definition and statement of the problem. Let

σ := {σα(x)}pα=1 (0.11)

be a collection of positive Borel measures with supports suppσα lying in some
intervals E := {Eα := [aα, bα]}pα=1 of the real axis,

suppσα ⊆ Eα, α = 1, . . . , p, (0.12)

such that
Eα ∩Eα−1 = ?, α = 2, . . . , p. (0.13)

Nikishin [1] has considered a system of measures {µα(x)}pα=1 generated by the
collection (σ, E) in accordance with the following recursive formulae:

(N) :

dµ1(x) := dσ1(x),

dµ2(x) := d〈σ1, σ2〉(x) :=

(∫
E2

dσ2(t)

x− t

)
dσ1(x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dµα(x) := d〈σ1, σ2, . . . , σα〉 := d〈σ1, 〈σ2, . . . , σα〉〉, α = 2, . . . , p

(0.2)

(the notation 〈σ1, . . . , σα〉 has been proposed recently in [2]).
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The measures making up the Nikishin system (0.1), (0.2), are concentrated on the
same interval E1. In spite of this, they possess a certain ‘independence’ property,
which suffices for the existence of a unique polynomial defined by the system of
orthogonality relations

(∗)
∫
Qn(x)xνdµα(x) = 0, ν = 0, . . . , nα, α = 1, . . . , p,

(∗∗) degQn(x) 6 |n| :=
p∑

α=1

nα

(0.3)

(for the first proof of the uniqueness Qn in the case p = 2 and n = (n, n),
(n + 1, n) see [1]; at present, the uniqueness has been established for multi-indices
n such that nα 6 nα−1 + 1, α = 2, 3, . . . , p; see, for instance, [2]).

Polynomials Qn indexed by vector-valued subscripts n = (n1, . . . , np) and satis-
fying (0.3) are called multiply orthogonal polynomials with respect to the systems of

measures µ = (µ1, . . . , µp). If p = 1, then relations (0.3) define ordinary orthogonal
polynomials.

Another well-known system of measures µ for which multiply orthogonal polyno-
mials are also uniquely defined is the so-called Angelesco system

(A) : {µα(x)}pα=1, suppµα ⊆ Eα, Eα ∩Eβ = ?, α 6= β, α, β = 1, . . . , p.
(0.4)

Multiply orthogonal polynomials with respect to the system (0.4) were considered
for the first time in [3] (and, 60 years later, re-discovered by Nikishin [4]). A system
of measures generalizing both Angelesco and Nikishin systems on the basis of the
concept of ‘tree graph’ has recently been proposed by Gonchar and his colleagues
in [2].

Note that the restrictions on the measures participating in the definitions of
the Angelesco and the Nikishin systems are of a ‘general’ nature and concern only
the ‘geometry’ of the supports of the measures generating these systems. There-
fore the corresponding polynomials (0.3) belong to the so-called classes of general
polynomials of multiple orthogonality (in contrast to polynomials orthogonal with
respect to special weights and generalizing classical orthogonal polynomials: Jacobi
polynomials, Hermite polynomials, and so on; see [5]).

Multiply orthogonal polynomials are the common denominators of the Hermite–
Padé rational approximants

πn(z) :=

(
P (1)

Qn
, . . . ,

P (p)

Qn

)
(0.5)

for systems of Markov functions

µ̂α(z) :=

∫
dµα(x)

z − x , α = 1, . . . , p; (0.6)

they are also called Hermite{Pad�e polynomials for that reason. Indeed, it follows
from the definition of the Hermite–Padé approximations (see, for instance, [6]) that

Qn(z)µ̂α(z) − P (α)(z) = O

(
1

znα+1

)
, α = 1, . . . , p, (0.5′)

which is equivalent to (0.3).
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Multiply orthogonal polynomials are important not only in the approximations
of analytic vector-valued functions by rational ones, but also in other domains of
mathematics: number theory, the spectral calculus of non-symmetric operators,
and the theory of special functions.

In his cornerstone paper [7] Nuttall carried out an investigation of many special

cases of Hermite–Padé polynomials and formulated on this basis conjectures on
the strong asymptotic behaviour of general multiply orthogonal polynomials. (We
point out also Kalyagin’s paper [8], in which the author proved strong asymptotic
formulae for some special multiply orthogonal polynomials.) A strong asymptotic

formula for a sequence of polynomials {Qn(z)}∞n=0, degQn = n, as n → ∞ is a
formula of the following form:

Qn(z) ∼ Φn(z)
(
F (z) + o(1)

)
,

where the leading term Φ(z) is an analytic function with first-order pole at infinity
(which usually depends on the geometry of the supports of the orthogonality mea-
sures) and F (z) (the Szeg}o function) is some function analytic in a neighbourhood
of infinity (which is usually defined in terms of the densities of the orthogonality
measures). The first results on the strong asymptotic behaviour of general poly-
nomials defined by orthogonality relations were the classical theorems of Bernstein
(on the strong asymptotic behaviour of general polynomials orthogonal on an inter-
val, see [9]) and Szegő (for polynomials orthogonal on a circle, see [10]).

This author [11] proved strong asymptotic formulae for general multiply orthogo-
nal polynomials in the Angelesco class. (The leading term of the formula and the
convergence of the Hermite–Padé approximants (0.5) for the collection of Markov
functions (0.6) generated by the Angelesco system (0.4) has been studied by
Gonchar and Rakhmanov in their fundamental paper [12].)

In the present paper we prove a result on the strong asymptotic behaviour of
general multiply orthogonal polynomials in the Nikishin class. We point out that the
issues of uniqueness and convergence, and also the properties of the leading term in
the asymptotic formula for the Hermite–Padé approximants for the Nikishin system
have already been thoroughly studied by several authors (see [1], [2], [13]–[18]).

In the next subsection of the introduction we consider a system of polynomials
orthogonal with respect to ‘variable’ weights (depending on polynomials in the
system). These polynomials are crucially important for the solution of the problem
under consideration. The formulation of the theorem on the strong asymptotic
behaviour proved in this paper (Theorem 1) involves such polynomials. One conse-
quence of this theorem is strong asymptotic formulae for the multiply orthogonal
polynomials for Nikishin systems (Theorem 1′). In conclusion we discuss briefly
the main points of the proof, which we present in the following sections.

The author wishes to express his gratitude to D. N. Tulyakov and H. Stahl for
useful discussions he had with them when he was writing this paper.

0.2. System of polynomials orthogonal with respect to variable weights.
A central role in the study of general multiply orthogonal polynomials is played by
the associated system of polynomials q := {qα,n}pα=1 satisfying the usual orthogo-
nality relations, but with respect to variable weights depending on the polynomials
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themselves in this system:∫
Eα

qα,n(x)xνHα(q; x) dσα(x) = 0, ν = 0, . . . , deg qα,n − 1, α = 1, . . . , p. (0.7)

Such a system is very easy to produce in the Angelesco case: qα,n is a polynomial
whose zeros are those zeros of the polynomial Qn lying in Eα:

Qn(x) =:

p∏
α=1

qα,n(x), deg qα,n = nα, Zer[qα,n] ⊂ Eα. (0.8)

For polynomials qα,n in (0.8) relations of multiple orthogonality (0.3), (0.4) give
one the system of usual orthogonality relations (0.7) with respect to the variable
weights

Hα(q; x) dσα(x) :=

p∏
β=1
β 6=α

qβ,n(x) dµα(x).

In the Nikishin case a similar system of polynomials qα,n, α = 1, . . . , p, is much
more difficult to construct. We present this construction now. We have the following
result.

Assertion (see, for instance, [2] and [13]). For vector-valued indices

n : nα 6 nα−1 + 1, α = 2, . . . , p,

and Borel measures (0.1) there exists a unique system of polynomials

q :=
(
q1,n(x), . . . , qp,n(x)

)
, deg qα,n =

p∑
β=α

nβ,

satisfying the system of orthogonality relations (0.7), where the `variable' weight of

constant sign on Eα is as follows:

Hα(q; x) :=
hα,n(x)

qα−1,n(x) qα+1,n(x)
, q0,n ≡ qp+1,n ≡ 1, (0.9)

and the functions hα,n are recursively de�ned :

h1(x) = 1, hα,n(x) :=

∫
Eα−1

q2
α−1,n(t)

x− t
hα−1,n(t) dσα−1(x)

qα−2,n(t)qα,n(t)
, α = 2, . . . , p.

The multiply orthogonal polynomial Qn(x) for the Nikishin system (0.1), (0.2), is
connected with the {qα,n} as follows:

Qn(x) = q1,n(x). (0.10)
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It is the asymptotic behaviour of the polynomials {qα,n(x)} that we shall be
studying in this paper. We restrict ourselves to the discussion of diagonal sequences
of vector-valued indices

n = (n, n, . . . , n),

therefore we shall denote the vector-valued index n by n in what follows.
We now discuss the normalization of the polynomials {qα,n}pα=1. Besides poly-

nomials with leading coefficient one,

qα,n := zn(p−α+1) + · · · , mα,n :=

∫
Eα

q2
α,n(x)

∣∣∣∣ hα,n(x)

qα+1,n(x) qα−1,n(x)

∣∣∣∣ dσα(x),

we shall also consider the polynomials

q̃α,n := kα,nqα,n

with the following normalization:

1 =

∫
Eα

q̃2
α,n(x)

∣∣∣∣ h̃α,n(x)

qα−1,n(x) qα+1,n(x)

∣∣∣∣ dσα(x), (0.11)

where the integral component of the variable weight is normalized as follows:

h̃α,n = lα,nhα,n,

h̃1,n := 1, h̃α,n(x) :=

∫
Eα−1

q̃2
α−1(t)

x− t
h̃α−1,n(t)

qα−1,n(t) qα,n(t)
dσα−1(t),

(0.12)

α = 2, . . . , m. In that case it is easy to see that

l1,n ≡ 1, lα,n =
α−1∏
ν=1

k2
ν,n,

k1,n =
1

m1,n
, kα,n =

mα−1,n

mα,n
.

We now observe that a weak asymptotic formula is known for the integrand
in (0.11). This enables us to simplify considerably the statement of the problem.
As was proved by López Lagomasino (see [19], Theorem 9 and also [20]), for poly-
nomials {tn(x)}∞n=0 that are orthonormal on an interval E = [a, b] with respect to
the ‘variable’ weight

dσ(x)

|T2n(x)| ,

where dσ(x) is a measure such that

σ′(x) > 0 a.e. on E,
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{T2n(x)}∞n=0 is an arbitrary sequence of polynomials such that

T2n(x) :=
k∏
ν=1

(x− xν,2n), k 6 2n, {xν,2n} ⊂ Ẽ ⊂ R,

Ẽ is a compact set, and E ∩ Ẽ = ?, we have the relation

t2n(x) dσ(x)

|T2n(x)|
∗−→

n→∞
1

π

dx√
(x− a)(b− x)

=: dλ0,E. (0.13)

(We present here a weak version of the statement of Theorem 9 in [19], which is
sufficient for applications to Nikishin systems.) We note also that by repeating the
proof of asymptotic formula (0.13) in [19] one can show that if one multiplies the
variable weight by a continuous coefficient hn(x) > 0, x ∈ [a, b], such that

hn(x)� h(x) ∈ C[a, b] as n→∞,

then the orthonormal polynomials {t̃n(x)}∞n=0 with respect to

hn(x) dσ(x)

|T2n(x)|

also satisfy the relation

t̃2n(x)hn(x) dσ(x)

|T2n(x)|
∗−→

n→∞
dλ0,E(x). (0.13′)

A weak asymptotic formula for the integrand in (0.11) and, therefore, a uniform
asymptotic formula for the normalized integral component (0.12) of the ‘variable’
weight for the polynomials {qα,n} are now consequences of (0.13′):

q̃2
α,n(x)

∣∣∣∣ h̃α,n(x)

qα−1,n(x) qα+1,n(x)

∣∣∣∣dσα(x)
∗−→

n→∞
dλ0,Eα(x), α = 1, . . . , p,

h̃α,n(z) � λ̂0,Eα−1(z) :=

∫
Eα−1

dλ0,Eα−1(x)

z − x , α = 2, . . . , p, (0.14)

where the last limit holds uniformly on compact subsets K of C \Eα−1.1

0.3. Statement of the main result. In view of formula (0.10), which relates
the multiple orthogonal polynomials Qn for the Nikishin system and the collection
of polynomials {qα,n} orthogonal with respect to the variable weights (0.9), and
taking into account the known asymptotic formula for the integral component of
the variable weight (0.14), we have reduced the problem of a strong asymptotic

1Details of the proof of (0.13′) and (0.14) can be found in the recently published paper [21].
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formula for the Qn to the problem of the asymptotic behaviour of the polynomials
{qα,n}pα=1 satisfying a system of orthogonality relations:

qα,n(x) = xn(p−α+1) + · · · ,∫
Eα

qα,n(x)xν
h̃α,n(x) dσα(x)

qα−1,n(x) qα+1,n(x)
= 0,

ν = 0, . . . , n(p− α+ 1) − 1, α = 1, . . . , p, q0,n ≡ qp+1,n ≡ 1,

(0.15)

where the h̃α,n are arbitrary positive continuous functions on the intervals Eα such
that, as n→∞, we have

h̃α,n(x) � hα(x) > 0, x ∈ Eα. (0.16)

Besides conditions (0.11)–(0.13) on the measures {dσα(x)} we also impose the Szegő
condition, which is natural in problems relating to strong asymptotic behaviour.
That is, we assume that these measures are absolutely continuous:

dσα(x) = ρα(x) dx, x ∈ Eα, (0.17)

and that ∫
Eα

ln ρα(x) dλ0,Eα(x) > −∞, α = 1, . . . , p. (0.18)

We now introduce some standard functions necessary for the description of the
strong asymptotic behaviour of the polynomials {qα,n}.

Let

R(E) =

p⋃
α=0

Rα (0.19)

be the (p + 1)-sheeted Riemann surface with quadratic branch points at the end-
points of the intervals Eα = [aα, bα], α = 1, . . . , p, and with monodromy matrices

Maα = Mbα := Eα−1,α, (0.20)

where Ei,j is the matrix interchanging the ith and the jth components of a vector.
That is, R is formed by the consecutively ‘glued’ sheets

R0 := C \E1, Rα := C \ {Eα ∪Eα+1}, α = 1, . . . , p− 1, Rp = C \Ep
where the upper and the lower banks of the slits on two neighbouring sheets are
identified. Clearly, this Riemann surface has genus 0 (which can be verified by
the Riemann–Hurwitz formula), therefore by fixing an arbitrary divisor (a set of
zeros and poles) we can define a unique (up to a multiplicative constant) rational
function on R.

We define a rational function Ψ(z) on R as a function with zero of order p at
the point ∞(0) ∈ R0 and first-order poles at the points ∞(α) ∈ Rα that is regular
(with respect to local variables) at other points of R:

Ψ(z) :=


Ψ(∞(0)) := Ψ0(∞) =

1

C0zp
+ · · · ,

Ψ(∞(α)) := Ψα(∞) =
z

Cα
+ · · · ,

z ∈ R. (0.21)
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We choose the constant coefficient by imposing the following conditions:
p∏

α=1

Cα = 1, C1 > 0. (0.22)

The resulting function Ψ depends on the lengths and the location of the intervals
{Eα}. We shall describe in terms of this function the leading term in the asymptotic
formula for {qα,n}.

The function {fα(z)}pα=1 describing the next term of the asymptotic formula
(the analogue of the Szegő function) can be defined as the solution of the system
of boundary-value problems

(1) fα,
1

fα
∈ H2,ρα(C \Eα), fα(∞) > 0, α = 1, . . . , p,

(2) |fα(x)|2 hα(x)ρα(x)

|(fα+1fα−1)(x)| = λ′0,Eα , x ∈ Eα, f0 ≡ fp+1 ≡ 1.

(0.23)

We shall show below that the problem (0.23) has a unique solution under the Szegő
condition (0.18).

In the present paper we establish the following result.

Theorem 1. There exists a sequence of polynomials {qα,n}pα=1, n ∈ N, satisfying
the system of orthogonality relations (0.15) with weight functions corresponding to

conditions (0.16){(0.18) such that, as n→∞,

(1)

∥∥∥∥ qα,n(x)

|cαΦα(x)|n −
{(

Φα(x)

|Φα(x)|

)n
Fα(x) +

(
Φα(x)

|Φα(x)|

)n
Fα(x)

}∥∥∥∥
L2
ρα

(Eα)

= o(1),

(0.241)
where cα and Φα(z) are de�ned in terms of the function Ψ(z) as follows (see (0.21)):

Φα(z) =

p∏
j=α

Ψ(z(j)), cα =

p∏
j=α

Cj, (0.25)

and the function Fα is the solution of the boundary-value problem (0.23); namely,

Fα(z) =
fα(z)

fα(∞)
, α = 1, . . . , p; (0.26)

(2)
qα,n(z)

(cαΦα(z))n
� Fα(z), z ∈ K b C \Eα, (0.242)

uniformly on compact subsets K of C \Eα, α = 1, . . . , p.

Remark 1. For the normalized polynomials q̃α,n (see (0.11)) the theorem establishes
the relation

qα,n
q̃α,n

=
cnα

fα(∞)

(
1 + o(1)

)
, α = 1, . . . , p.

Remark 2. By imposing the additional constraints that the weight functions be
positive and smooth, for instance, hα,ρα ∈ C1+(Eα), one can prove by standard
methods (see [22] and other papers) that asymptotic formula (0.241) holds also with
respect to the uniform norm C(Eα). Note also that for p = 1 (h1,n ≡ const) our
theorem becomes the classical result of Bernstein–Szegő on the strong asymptotic
formula for orthogonal polynomials with weight ρ1(x) on an interval E1.
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0.4. Uniqueness of q. Strong asymptotic formula for multiply orthogonal
polynomials for Nikishin systems. In connection with the result of Theorem 1
we now discuss the uniqueness problem for the polynomials {qα,n}pα=1 that are
defined for fixed n = (n1, . . . , np) and arbitrary fixed measure hα,n dσα by the
system of orthogonality relations (0.15):

qα,n(x) = xnα + · · · ,∫
Eα

qα,n(x)xν
hα,n(x) dσα(x)

(qα−1,nqα+1,n)(x)
= 0,

ν = 0, . . . , nα − 1, α = 1, . . . , p, q0,n ≡ qp+1,n ≡ 1.

The point is that, by Theorem 1, there exists (under certain limiting condi-
tions on hα,n) a strong asymptotic formula for some sequence of solutions of the
non-linear system (0.15). (The existence of {qα,n}pα=1, satisfying (0.15) is a conse-
quence of Brouwer’s fixed-point theorem.) Hence information on the uniqueness of
{qα,n}pα=1 would render a more definite character to Theorem 1.

For p = 2 it is easy to show that the system (0.15) is uniquely soluble for
all n = (n1, n2). In fact, were there two solutions (q1, q2) and (q̄1, q̄2), then by

orthogonality relations (0.15) the rational function
q1

q2
− q̄1

q̄2
would make at least n1

changes of sign on E1, and the function
q2

q1
− q̄2

q̄1
would make at least n2 changes

of sign on E2. Thus, the polynomial q1q̄2 − q2q̄1 of degree n1 + n2 − 1 would have
at least n1 zeros on the interval E1 and n2 zeros on E2, which would lead to a
contradiction.

However, for p > 3 the uniqueness problem for q is much more complicated and,
as shown by Tulyakov, the system (0.15) can have several solutions.

Example (Tulyakov). Let dσα(x) = dx on the segments E1 ≡ E3 ≡ [−150,−1]
and E2 = [0, 120], and let

h1 := h3(x) :=

{
1, x ∈ E∗1 = [−150,−149.990]∪ [−1.0220,−1],

0, x ∈ E1 \E∗1 ,

h2(x) :=

{
1, x ∈ E∗2 = [0, 0.01333 . . . ] ∪ [119.333 . . ., 120],

0, x ∈ E2 \E∗2 .

Then for each n = (1, 1, 1) there exist three collections of polynomials q(β):

q(1) = {(x+ 16.833 . . .); (x− 51.7158 . . .); (x+ 16.833 . . .)},
q(2) = {(x+ 4.163 . . .); (x− 6.4270 . . .); (x+ 4.163 . . .)},
q(3) = {(x+ 2.757 . . .); (x− 2.98 . . .); (x+ 2.757 . . .)},

satisfying the system of orthogonality relations (0.15).

The question of the uniqueness of solutions to (0.15) for large n or the existence of
common strong asymptotic formulae for all solutions (in the case when the limiting
conditions (0.16) on hα,n are satisfied) is still open.
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Nevertheless, if we do not treat the hα,n as arbitrary weights satisfying only
relation (0.16), but take account of their particular nature, as specified for fixed
n in the case of Nikishin systems by relations (0.12), then the uniqueness of the
collection of polynomials satisfying (0.15), (0.12) is a consequence of the uniqueness
of the polynomial of multiple orthogonality Qn for the Nikishin system. Thus,
Theorem 1 gives us the following result.

Theorem 1′. Let Qn be the diagonal sequence (n = (n, . . . , n)) of multiply orthogo-

nal polynomials (0.3) for the Nikishin system (0.2) generated by absolutely continu-

ous measures (0.17) in the Szeg}o class (0.18). Then the following strong asymptotic

formulae hold for Qn as n→∞:

(1)

∥∥∥∥ Qn(x)

|c1Φ1(x)|n −
{(

Φ1(x)

|Φ1(x)|

)n
F1(x) +

(
Φ1(x)

|Φ1(x)|

)n
F1(x)

}∥∥∥∥
L2
ρ1

(E1)

= o(1),

(2)

∥∥∥∥ Qn(z)

(c1Φ1(z))n
− F1(z)

∥∥∥∥
C(K)

= o(1) for each K b C \E1,

where the functions Φ1 and F1 are de�ned by relations (0.25), (0.26).

0.5. Scheme of the proof of Theorem 1. Structure of the paper. The next
two sections are devoted to the proof of Theorem 1. The proof repeats in its main
points the scheme of the proof of the strong asymptotic formula for the Angelesco
case proposed in [11].

The existence of a sequence of polynomials q satisfying the system of orthogona-
lity relations (0.15) and having strong asymptotic behaviour (0.241), (0.242), will
be a consequence of the existence of some sequence of polynomials Pn with strong
asymptotic behaviour (0.241), (0.242) (but not necessarily satisfying the orthogona-
lity relations). That is, Theorem 1 will be obtained as a consequence of the following
weaker result.

Theorem 2. Let {Fα(z)}pα=1 be a solution of the problem (0.23), (0.26), let {Cα}pα=1

be the constants, and {Φα(z)}nα=1 the algebraic functions and de�ned by (0.21),
(0.22), (0.25). Then there exists a sequence of polynomials Pn = {Pα}pα=1, Pα(x) =
xnα + · · · , nα = n(p− α+ 1), such that

(1)

∥∥∥∥ Pα(x)

|cαΦα(x)|n −
{(

Φα(x)

|Φα(x)|

)n
Fα(x) +

(
Φα(x)

|Φα(x)|

)n
Fα(x)

}∥∥∥∥
L2
ρα

(Eα)

= o(1),

(2)

∥∥∥∥ Pα(z)

(cαΦα(z))n
− Fα(z)

∥∥∥∥
C(K)

= o(1) for each K b C \E1.

The reduction of Theorem 1 to Theorem 2 is discussed in § 1. There we regard
solutions of systems of boundary-value problems (0.23) for analytic functions and
solutions of systems of orthogonality relations (0.15) for polynomials as fixed points
of certain non-linear maps T and Tn. To establish Theorem 1 we shall show that
there exist fixed points of Tn in a neighbourhood of a fixed point of T as n→∞.

Section 2 is devoted to the study of certain properties of rational functions on
the Riemann surface R (see (0.19)), in terms of which we construct a sequence of
polynomials required in Theorem 2.
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At the end of the paper we present an appendix devoted to an extremal property
of orthogonal polynomials which is useful for reductions similar to the transition
from Theorem 2 to Theorem 1.

§ 1. Properties of fixed points of the
maps T and Tnnn. Proof of Theorem 1

1.1. Definition of the map T. First, we describe spaces that are necessary for
the definition of the maps T and Tn. We shall denote by H2,ρ the Hilbert space of
vector-valued analytic functions with components in the Hardy space H2,ρα:

H2,ρ(Ω) 3 f = (f1, . . . , fp) : fα ∈ H2,ρα(Ωα), Ωα = C \Eα, α = 1, . . . , p,

and with norm

‖f‖2H2,ρ
:= max

α=1,...,p
‖fα‖2L2

ρα
(Γ(Ωα)) := max

α

∮
Γ(Ωα)

|fα(ξ)|2ρα(ξ) |dξ|.

Further, let H(Ω) be the locally convex space of vector-valued analytic functions

H(Ω) 3 f = (f1, . . . , fp) : fα ∈ H(Ωα), α = 1, . . . , p,

with family of norms

‖f‖H(Ω) :=
{
‖f‖(K)

H(Ω)

}
K

: ‖f‖(K)
H(Ω) = max

α=1,...,p
{max
z∈Kα

|fα(z)|} for K = {Kα} b Ω,

where the Kα are arbitrary compact subsets of Ωα, α = 1, . . . , p. Fixing some norm
in H(Ω) we obtain a normed (non-complete) space, which we denote by HK(Ω).

Choosing a compact set K with interior points
◦
K : K =

◦
K ∪ Γ(

◦
K), such that

K = {Kα}, Kα : Eα−1 ∪Eα+1 ⊂
◦
Kα ⊂ Kα b Ωα,

α = 1, . . . , p, E−1 = Ep+1 = ?,

we obtain a particular case of the space HK(Ω), which we denote by

HE 3 f = (f1, . . . , fp); ‖f‖HE = max
α=1,...,p

{
max
z∈Kα

|fα(z)|
}
.

Finally, we consider the Banach space of continuous vector-valued functions

CE 3 f = (f1, . . . , fp) : fα ∈ C
(
Eα−1 ∪Eα+1

)
, α = 1, . . . , p, E−1 = Ep+1 = ?,

with norm
‖f‖CE := max

α=1,...,p

{
‖fα‖C(Eα−1∪Eα+1)

}
. (1.1)

Note the following chain of embeddings for the spaces so introduced (regarded as
sets of functions):

H2,ρ ⊂ HE ⊂ CE.
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We shall denote the cones in these spaces containing the elements with compo-
nents symmetric in C (with respect to the real axis) and non-negative on R (within
their domains of definition) by

Ĥ2,ρ, ĤE, ĈE;

we also denote the cones containing the elements with components symmetric (with
respect to the real axis) and non-vanishing (and positive on R) by

Ĥ+
2,ρ, Ĥ+

E , Ĉ+
E .

In the cone Ĉ+
E , besides the norm (1.1) we shall also consider the metric

d(f , g) := max
α=1,...,p

{
dC(Eα−1∪Eα+1)(fα, gα)

}
, (1.2)

where

dC(X)(f, g) = max
x∈X

∣∣∣∣ln f(x)

g(x)

∣∣∣∣ , f(x), g(x) > 0, x ∈ X.

In addition, for the components of the vector-valued functions in question lying in
the Szegő class (1.18) we shall use the metric

dL(X)(f, g) =

∫
X

∣∣∣∣ln f(x)

g(x)

∣∣∣∣ dx.
We now make two observations relating to the norm introduced above and the

metric in the cone Ĉ+
E .

Remark 1.1. The set Ĉ+
E is open in the norm topology, however Ĉ+

E is complete
with respect to the metric d. For taking the logarithms of functions in the cone

transforms Ĉ+ into C in one-to-one fashion and the induced metric coincides with
the one corresponding to the norm in C.

Remark 1.2. The topologies in Ĉ+
E corresponding to the norm and the metric are

locally consistent. That is, if g lies in an r-neighbourhood of f ∈ ĈE such that

‖f − g‖CE 6 θr, θ < 1, r(f ) :=

∥∥∥∥( 1

f1
, . . . ,

1

f2

)∥∥∥∥−1

CE

, (1.3)

then

ln

(
1 +
‖f − g‖
‖f‖

)
6 d(f , g)6 ln

(
1 +

‖f − g‖
r − ‖f − g‖

)
.

We now define a map
T : Ĉ+

E → Ĥ+
2,w,

associating with a function f ∈ Ĥ+
E the vector-valued function Tf = (Tf1, . . . , Tfp)

in Ĥ+
2,w such that its components solve the following boundary-value problem:

Tfα ∈ Ĥ+
2,wα

(Ωα), |Tfα(x)|2 =
fα−1(x)fα+1(x)

wα(x)
, (1.4)

x ∈ Eα, α = 1, . . . , p, f0 ≡ fp+1 ≡ 1,

where wα(x) is a fixed integrable function on Eα satisfying Szegő condition (0.18).
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1.2. Properties of the map T. Unique solubility of the system of
boundary-value problems for analytic functions. The map T is well defined

in the cone Ĥ+(Ω), and its values can be found by the solution of the Dirichlet
problem for a harmonic function ln |Tfα| in Ωα with boundary values integrable on
Γ(Ωα) and equal to 1

2 ln(fα+1fα−1/w) and the subsequent solution of the problem

of finding the harmonically conjugate function ^ln |Tfα|:

Tfα = exp
{

ln |Tfα|+ i ^ln |Tfα|
}
.

The properties of solutions of the Dirichlet problem show (in view of Remark 1.2)
that T is continuous, that is,

‖f (n) − f‖CE = o(1)⇒ ‖Tf (n)−Tf‖H2,ρ = o(1)⇒ ‖Tf (n) −Tf‖CE = o(1). (1.5)

Proposition 1.1. The map T is a contraction with respect to the metric d, that
is,

d(Tf (1),Tf (2)) 6 γ d(f (1), f (2)), (1.6)

where the constant γ < 1 depends only on the location of the intervals Eα satisfying

condition (0.13), α = 1, . . . , p.

Proof. For f ∈ Ĥ+
2,ρ let

ψ := (ψ1, . . . , ψp) :=
(
ln |f1|, . . . , ln |f2|

)
∈ h(Ω) :=

p⊗
α=1

{
Harm(Ωα) ∪L(Eα)

}
,

where the components of ψ are harmonic functions in Ω with integrable boundary
values.

The map T : Ĥ+
2,ρ→ Ĥ+

2,ρ induces the map

t : h(Ω)→ h(Ω),

so that
tψ :=

(
ln |Tf1|, . . . , ln |Tfp|

)
,

and by the definition (1.4) of T we obtain

tψ :=
1

2
Pψ + β,

where β is the vector made up of harmonic functions

βα(z) ∈ Harm(Ωα), βα(x) = lnwα(x) a.e. on Eα, α = 1, . . . , p,

and P is the linear operator

P :=


0 P1,2 0 . . . 0
P2,1 0 P2,3 . . . . . . . . . . . . . . . .

0 P3,2 0 . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . Pp−1,p

0 . . . . . . . . . . . . Pp,p−1 0
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such that
Pi,j : Harm(Ωj)→ Harm(Ωi)

is the following map:

Pijψj ∈ Harm(Ωi), Pijψj(x) = ψj(x) a.e. on Ei,

(that is, the operator Pij associates with the values on the interval Ei ⊂ Ωj of a

function ψj harmonic in Ωj the function Pijψj harmonic in Ωi = C \Ei.
The definition of the map t shows that, similarly to T, it can be considered in a

broader space, namely,
t : CE → h(Ω).

We note also that the d-metric (1.2) in the cone Ĉ+
E is transformed into the metric

induced by the norm (1.1) in CE:

d(f (1), f (2)) = ‖ψ(1) − ψ(2)‖CE .

Hence

d(Tf (1),Tf (2)) = ‖tψ(1) − tψ(2)‖CE =
1

2

∥∥P (ψ(1) − ψ(2))
∥∥

6
1

2
‖P‖ ‖ψ(1) − ψ(2)‖ =

‖P‖
2

d(f (1), f (2)).

It remains to observe that, as follows from the definition (1.1) of the norm ‖ · ‖CE

and the maximum principle for harmonic functions,

‖Pψ‖ = max
�
‖P1,2ψ2‖C(E2); ‖P2,1ψ1 + P2,3ψ3‖C(E1∪E3); . . . ; ‖Pp,p−1ψp−1‖C(Ep−1)

	

< max
�
‖ψ2‖C(E1); 2 max{‖ψ1‖C(E2), ‖ψ3‖C(E2)}; . . . ; ‖ψp−1‖C(Ep)

	
6 2‖ψ‖.

Thus, there exists a constant δ > 0 dependent only on the geometry of the set
E = {Eα}pα=1 such that

‖P‖ 6 2− δ.

Setting γ = 1− δ/2 we obtain the assertion of Proposition 1.1.

The cone Ĉ+
E is complete with respect to the metric d (see Remark 1.1), therefore

Proposition 1.1 yields the following result.

Corollary 1.1. The map T has a unique �xed point f (∞) ∈ Ĥ+
2,ρ:

f (∞) = Tf (∞).

Further, the unique �xed point of the map T with

wα =
hαρα
λ′0,Eα

, α = 1, . . . , p (1.7)

(see (1.4)) is the unique solution of the system of boundary-value problems (0.23).

We now make two observations which can be useful in what follows.
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Remark 1.3. We now specify the domain of the map T. In fact, it is not the whole
of Ĥ+

2,ρ, but the subset of outer functions Ĥ+
2,ρ (that is, the functions that can

be recovered by the boundary values of their moduli by means of the solution of
the Dirichlet problem). Thus, for each w with integrable components satisfying the

Szegő conditions the fixed point of T lies in this subset Ĥ+
2,ρ. Moreover, the converse

is also obvious: each outer function in Ĥ+
2,ρ can be represented as the solution of

the system of boundary-value problems (0.23) with some integrable functions hα
satisfying the Szeg}o condition. This concretization is not very essential, though,

because the outer functions are dense in Ĥ+
2,ρ, which is easy to verify in the scalar

case of Ĥ+
2,ρ(D), where D is the unit disc. In that case each function f(z) ∈ Ĥ+

2,ρ(D)
can be approximated by outer functions fr(z) = f(rz), r < 1, as r→ 1. In fact,

‖f − fr‖2 = ‖fr‖2 − ‖f‖2 + 2〈f, f − fr〉 → 0,

where the difference of the first two terms on the right-hand side approaches zero by
the definition of H2,ρ(D), and the last term converges to zero by Fatou’s theorem

(on the existence of non-tangential limit values). The verification in Ĥ+
2,ρ(Ω) can

be carried out in a similar way.

Remark 1.4. We point out the following method of approximation of the solution
of the system of boundary-value problems (0.23). If w and w(m) have integrable
components satisfying the Szegő condition, then it follows from the relations

‖wα − w(m)
α ‖L(Eα) = o(1), dL(Eα)(wα, w

(m)
α ) = o(1), α = 1, . . . , p,

that

‖f (m) − f‖H2,w = o(1).

(See [10], [22] in the scalar case; the proof in the vector case repeats the arguments
in [11].)

1.3. Definition and properties of the map Tnnn. Let Hn(Ω) be the n-dimensional
subspaces of H2,ρ(Ω) with elements

Hn 3
(
P1,n(z)

Φ1(z)n
, . . . ,

Pp,n(z)

Φnp (z)

)
, (1.8)

where the Pα,n ∈ Pn(p−α+1) are polynomials, deg Pα,n 6 nα = n(p − α + 1), and
the functions Φα(z) are defined in (0.25), α = 1, . . . , p.

Accordingly, Ĥ+n(Ω) is the cone Ĥ+n ⊂ Hn of elements whose αth components
may vanish only on Eα, α = 1, . . . , p. Note that

Ĥ+n ⊂ Ĥ+
2,ρ ⊂ Ĥ+

E ⊂ Ĉ
+
E .

In view of Remark 1.3, Theorem 2 formulated in § 0.5 (on the existence of a
sequence of polynomials with fixed asymptotic behaviour) can be stated as follows.
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Theorem 2′. The family of cones {Ĥ+n}∞n=0 is dense in Ĥ+
2,ρ in the norms of

H(Ω). That is, for each f ∈ Ĥ+
2,ρ there exist f (n) ∈ Ĥ+n such that

‖f (n) − f‖H(Ω) = o(1);

moreover,∥∥∥∥ Φnα
|Φα|n

f(n)
α −

{
Φnα
|Φα|n

fα +
Φnα
|Φα|n

fα

}∥∥∥∥
L2,ρα (Eα)

= o(1), α = 1, . . . , p.

We consider now the map

Tn : Ĉ+
E → Ĥ+n

associating with f ∈ Ĉ+
E the vector-valued function Tnf = (Tnf1, . . . , Tnfp) in Ĥ+n

with components satisfying the following system of orthogonality relations:∫
Eα

(Tnfα)(x)
xν

Φnα(x)

h̃α,n(x)ρα(x) dx

(fα−1fα+1)(x)
= 0,

ν = 0, . . . , nα − 1, α = 1, . . . , p, f0 ≡ fp+1 ≡ 1.

(1.9)

Considering its restriction to functions f =

{
Pα,n

Φnα

}p
α=1

∈ Ĥ+n, the map

f → Tnf =

{
T̃nPα,n

Φnα

}p
α=1

∈ Ĥ+n,

and using the following property of the functions {Φα}pα=1:

|Φα(x)|2
(Φα−1Φα+1)(x)

= 1, x ∈ Eα, α = 1, . . . , p, Φ0 ≡ Φp+1 ≡ 1, (1.10)

which is a consequence of the definition (0.25) (see § 2 for greater detail), we obtain

the following representation for the map T̃n induced on the cone P̂+
n of polynomials

{Pα,n}pα=1:

T̃n : P̂+
n → P̂

+
n ,∫

Eα

(T̃nPα,n)(x)xν
(h̃α,nρα)(x) dx

(Pα−1,nPα+1,n)(x)
= 0,

ν = 0, . . . , nα − 1, α = 1, . . . , p, P0,n ≡ Pp+1,n ≡ 1.

(1.9′)

For fixed n the maps T̃n and Tn are continuous (which follows from the contin-
uous dependence of the coefficients of an orthogonal polynomial on the moments
of the orthogonality measure).
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We consider now the restriction of T̃n to a set P̃n such that

T̃n[P̂+
n ] ⊂ P̃n ⊂ P̂+

n ;

namely, the elements x ∈ P̃n can be represented in the form x =
⋃
α{x

(α)
j }

nα
j=1,

where {x(α)
j } is the zero set of the polynomial Pα,n and has the following properties:

{x(α)
j }

nα
j=1 ⊂ Eα, x

(α)
1 < x

(α)
2 < · · · < x(α)

nα , α = 1, . . . , p.

We introduce in R
Pp
α=1 nα coordinates such that

x+ y =
⋃
α

{
(x

(α)
j + y

(α)
j )

}nα
j=1

,

and we see that P̃n is a convex closed bounded subset of a finite-dimensional space,

which is mapped into itself by the continuous map T̃n. Hence T̃n and, therefore,

also Tn have a fixed point for each n by Brouwer’s theorem. The �xed point of T̃n

is a vector q with polynomial components satisfying the system of orthogonality

relations (1.9′) (cf. (0.15)).

The closeness of the fixed points of T and T̃n as n → ∞ is the subject of our
study.

If
‖h̃α,n − hα‖C(Eα) = o(1), (1.11)

where h̃α,n is as in (1.9) and hα is as in (1.4), (1.7), then the density of the family

of cones {Ĥ+n} in Ĥ+
2,ρ (Theorem 2′) ensures the following closeness properties of

Tn and T as n →∞. The first of these properties can also be called ‘the asymp-
totic behaviour of polynomials with fixed variable weight’ or the local (pointwise)
closeness of Tn and T and reads as follows.

Proposition 1.2. Assume that (1.11) holds for maps T and Tn. If

‖f (n) − f‖C(E) = o(1) (1.12)

then

‖Tnf
(n) −Tf‖H(Ω) = o(1); (1.13)

moreover,∥∥∥∥ Φnα
|Φα|n

Tnf
(n)
α −

{
Φnα
|Φα|n

Tfα +
Φnα
|Φα|n

Tfα

}∥∥∥∥
L2,ρj

(Ej)

= o(1), α = 1, . . . , p.

(1.14)

Proof. First we deduce (1.14) from (1.12) and then obtain (1.13) from (1.14).
We prove (1.14). Let

f̂α :=
{
einθαfα + einθαfα

}
,
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where
θα(x) = arg Φα(x), x ∈ Eα, α = 1, . . . , p.

We consider a sequence g(n) ∈ Ĥ+n, which exists by Theorem 2′ such that

(1) ‖g(n) −Tf‖H(Ω) = o(1), (1.15)

(2) ‖einθαg(n)
α − T̂ fα ‖L2,ρα (Eα) = o(1), α = 1, . . . , p. (1.16)

We apply to the left-hand side of (1.14) the triangle inequality:

‖einθαTnf(n)
α − T̂ fα ‖L2,ρα

6 ‖einθαTnf(n)
α −\Tf(n)

α ‖L2,ρα
+ ‖\Tf(n)

α − T̂ fα ‖L2,ρα
. (1.17)

In view of (1.11) and (1.12), the first term on the right-hand side satisfies for large n
the relation

‖einθαTnf(n)
α −\Tf(n)

α ‖L2,ρα

�
∫
Eα

∣∣einθα(x)Tnf
(n)
α (x)− \Tf(n)

α (x)
∣∣2( h̃α,nρα

f
(n)
α−1f

(n)
α+1

)
(x) dx

=

∫
Eα

∣∣∣∣ Pα,n(x)

|Φα(x)|n −
\

Tf
(n)
α (x)

∣∣∣∣2( h̃α,nρα

f
(n)
α−1f

(n)
α+1

)
(x) dx. (1.18)

The polynomial Pα,n is orthogonal with respect to the weight

hα,nρα

Φnα−1f
(n)
α−1Φnα+1f

(n)
α+1

,

and Tfα is the Szegő function corresponding to the weight

hα,nρα

f
(n)
α−1f

(n)
α+1

,

therefore it follows from the extremality of orthogonal polynomials, the reproducing
property of the Szegő function, and (1.10) that the value of the integral on the
right-hand side of (1.18) can only increase after the replacement of Pα,n by another
polynomial of the same degree and the same leading coefficient (see § 3 for greater
detail).

Thus, replacing the functions Tnf
(n)
α on the left-hand side of (1.18) by the func-

tions g
(n)
α satisfying (1.16) we obtain

‖einθαTnf(n)
α −\Tf(n)

α ‖L2,ρα
. ‖einθαg(n)

α −\Tf(n)
α ‖L2,ρα

6 ‖einθαg(n)
α − T̂ fα ‖L2,ρα

+ ‖\Tf(n)
α − T̂ fα ‖L2,ρα

.
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Returning to (1.17), for sufficiently large n we obtain the relation

‖einθαTnf(n)
α − T̂ fα ‖L2,ρ(Eα) . ‖einθαg(n)

α − T̂ fα ‖L2,ρα
+ 2‖\Tf(n)

α − T̂ fα ‖L2,ρα
,

where the first term on the right-hand side approaches zero by (1.16), and the
convergence to zero of the second term is ensured by (1.12) and the continuity of T
as expressed by (1.5) (see Remarks 1.4 and 1.2; one can also find details in the
proof of relation (5.10) in [11]).

All this establishes (1.14).
To prove (1.13) we observe that, in view of (1.14),

‖g(n) −Tnf
(n)‖H2,ρ = o(1)

and therefore, by Cauchy’s integral formula,

‖g(n) −Tnf
(n)‖H(Ω) = o(1),

which yields (1.13) in view of (1.15).
The proof of Proposition 1.2 is complete.

One consequence of the above Proposition and the compactness principle for
analytic functions is the global (‘uniform’) closeness of T and Tn expressed by the
following result.

Proposition 1.3. Let T and Tn be maps such that (1.11) holds. Then

‖Tnf −Tf‖CE � 0

as n→∞ uniformly for f ∈ HE such that ‖f‖HE 6 C for each C > 0.

Proof. We must show that for each ε> 0 there exists N such that for all n>N
and f , ‖f‖HE 6 C, we have the inequality

‖Tnf −Tf‖CE 6 ε.

Assume the contrary, that is, let the above assertion fail. Then there exist ε > 0
and an infinite sequence of indices Λ and functions f (n),n ∈ Λ, ‖f (n)‖HE 6 C such
that

‖Tnf (n) −Tf (n)‖CE > ε for n ∈ Λ. (1.19)

However, ‖f (n)‖HE 6 C, therefore by Montel’s theorem the sequence {f (n)}n∈Λ is
a compact family on E, so that there exist Λ′ ⊆ Λ and f ∈ C(E) such that

‖f (n) − f‖CE → 0, n ∈ Λ′.

Hence, for indices in the subsequence Λ′ we have

‖Tnf (n) −Tf (n)‖CE 6
(
‖Tnf

(n) −Tf‖CE + ‖Tf (n)−Tf‖CE

)
→ 0,

where the first term on the right-hand side approaches zero by Proposition 1.2 and
the second approaches zero by the continuity of T (see (1.5)). This is a contradiction
with (1.19).

The proof of Proposition 1.3 is complete.
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1.4. Asymptotic closeness of fixed points of the maps Tnnn and T. Proof of
Theorem 1. The contraction property of the map T with respect to the d-metric
(Proposition 1.1) and the closeness of the maps T and Tn for large n (Proposi-

tion 1.3), which is a consequence of the density of the cones Ĥ+n in Ĥ+
2,ρ (Theo-

rem 2′), enable one to verify that each neighbourhood of a fixed point of T contains
fixed points of Tn for large n. This is, in essence, a result equivalent to Theorem 1
stated in the introduction.

Theorem 1′′. Let T and Tn be maps satisfying (1.11). Then there exists a

sequence {f (n)} of �xed points of Tn,

f (n) = Tnf (n), f (n) =

(
q1,n

Φn1
, . . . ,

qp,n
Φnp

)
, (1.20)

such that

‖f (n) − f (∞)‖CE → 0 (1.21)

as n→∞, where f (∞) is a �xed point of T.

Proof. We fix θ < 1. Let ω be a closed neighbourhood of f (∞) in the CE-norm such
that

‖f (∞) − g‖C(E) 6 θ r(f (∞)) for each g ∈ ω, (1.22)

where r(f (∞)) is as in Remark 1.2; see (1.3). We consider a family ωε of closed
neighbourhoods of f (∞) in the d-metric such that

d(f (∞), g) 6 ε for each g ∈ ωε, 0 < ε 6 ε0,

where ε0 is chosen from the condition

ωε0 ⊂ ω (1.23)

(f∞ belongs to the cone of continuous positive functions Ĉ+
E , therefore there exists

such an ε0).
Now let

ωε,n := ωε ∩ Ĥ+n.

The set ωε,n is a closed and bounded (and therefore compact) subset of a finite-
dimensional space. By Theorem 2′ the set ωε,n is non-empty. Moreover, it is easy
to verify that ωε,n is convex. (For ωε,n consists of vector-valued functions of the
form (1.8) whose components have graphs lying in a ‘tube’ with axis along the graph
of f∞. Elements tg(1) + (1 − t)g(2), where g(1), g(2) ∈ ωε,n and t ∈ [0, 1], retain
the form (1.8), and a pointwise inspection shows that their graphs stay within the
tube.)

We claim that for each ε ∈ (0, ε0] there exists Nε such that for each n > Nε we
have

Tn[ωε,n] ⊂ ωε,n. (1.24)

In fact, the elements g ∈ ωε,n are bounded in Ĥ+
E , therefore it follows from Propo-

sition 1.3, in view of the consistency of the norm and the metric in ωε,n (as shown
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by (1.23) and (1.22); see Remark 1.2), that there exists Nε such that for all n > Nε
and g ∈ ωε,n we have

d(Tng,Tg) < (1− γ)ε,

where γ was defined in (1.6). Now, in view of Proposition 1.1 (see (1.6)), we obtain

d(f∞,Tng) 6 d(f∞,Tg) + d(Tg,Tng) < γ d(f∞, g) + (1 − γ)ε < ε,

which proves (1.24). Hence,Theorem 1′′ follows by Brouwer’s fixed point theorem.

A veri�cation of Theorem 1 in the introduction can now be carried out by the
application of Proposition 1.2 to the sequence of fixed points (1.20), (1.21).

It remains to note that if, in the definition of the map Tn : f → Tnf (see (1.9)),

one defines the weight function {h̃α,n}pα=1 by formula (0.12), as for Nikishin systems:

h̃α,n(f ; x) :=

∫
Eα

f2
α−1(t)

x− t
h̃α−1,n(f ; t)

fα−2(t)fα(t)
dσα−1(t), α = 2, . . . , p; h̃1,n := 1,

(1.25)
then limit relations (0.14) ensure (1.11) and we see that the map (1.9), (1.25)
satisfies the assumptions of Theorem 1′′. Taking into account the uniqueness of
the Hermite–Padé polynomials Qn for the Nikishin system (see the introduction)
we see that the map Tn so defined has a unique fixed point. Thus (provided that
Theorem 2 holds), we have veri�ed Theorem 1′.

§ 2. Properties of some rational functions on RRR. Proof of Theorem 2

2.1. Properties of the functions Ψ(z)Ψ(z)Ψ(z) and Φ(z)Φ(z)Φ(z). In this subsection we study
the properties of the function Ψ governing the leading terms of the asymptotic
formula, the functions {Φα}pα=1 (see (0.25)). We defined the function Ψ(z) in the
introduction as a rational function on the Riemann surface R (see (0.19), (0.20))
with divisor (0.21).

First we point out some general properties of rational functions with divisor (0.21)
on (p+1)-sheeted Riemann surfaces with quadratic branch points at the end-points
of the intervals {Eα}pα=1, that is, properties that are independent of the monodromy
group of the Riemann surface (0.20).

(1) It is easy to see that these algebraic functions satisfy the equation

Ψp+1 + r1(z)Ψp + r2(z)Ψp−1 + · · ·+ rp(z)Ψ + r0 = 0 (2.1)

with polynomial coefficients rk(z), where

deg rk = k, k = 0, 1, . . . , p, r0 = (−1)p.

Note that although the coefficients {rk}pk=1 are completely defined by the divisor
and the monodromy group, their actual calculation by these data is a non-trivial
problem.

(2) We are interested in the subset I of the complex plane C on which distinct
branches of the function Ψ(z) — the functions

Ψl(z) := Ψ(z(l)), z ∈ C , z(l) ∈ Rl, l = 0, 1, . . . , p,
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— have the same absolute value. That is,

I :=

{
z :

∣∣∣∣Ψl1

Ψl2

∣∣∣∣ = 1; l1 6= l2; l1, l2 = 0, 1, . . . , p

}
.

The set I can be described as the union of the trajectories of all the roots z(ν) of
the equation

J(ν, z) :=

p+1∏
l1,l2=0
l1>l2

(
ν −

(
Ψl1

Ψl2

+
Ψl2

Ψl1

))
= 0 (2.2)

for ν ∈ [−2, 2]. The coefficients of the equation with respect to the algebraic
function ν(z) are symmetric functions of {Ψl}pl=0, therefore expressing them in
terms of the elementary symmetric functions of {Ψl}pl=0, which are the polynomials
{rk}pk=0 in (2.1), we see that these coefficients are also polynomials in z:

J(ν, z) = νmp + Smp−1(z)νmp−1 + · · · =
mp∑
k=0

Sk(z)νk, mp =
p(p+ 1)

2
, (2.3)

and in view of what we know about the degree of rm, we obtain

max
k=0,...,mp

deg Sk = p(p+ 1). (2.4)

Hence the algebraic function z(ν) has p(p + 1) branches and the subset I (of the

complex z-plane) is the union of p(p + 1) trajectories {Ij}p(p+1)
j=1 starting at the

points z(2) and arriving at z(−2).
We consider now the set of starting points {zj} and the set of terminal points

{dj} (both treated as geometric sets, with no account of multiplicities). That is,

{zj} : J(2, zj) = 0; {dj} : J(−2, dj) = 0.

The polynomial J(2, z) is the discriminant of the algebraic function (2.1), and
the values of distinct branches of the function Ψ(z) coincide at its roots:

Ψk(zj) = Ψl(zj) for some k, l, k 6= l.

The number of roots of J(2, z) counted with multiplicities is p(p + 1), of which
2p are simple roots, which are the branch points of Ψ(z) at the end-points of the
intervals Eα = [aα, bα], and the rest are of a larger (moreover, even) multiplicity,
for Ψ(z) does not branch at these points. That is,

{zj} = {aα, bα}pα=1 ∪ {cj}
up
j=1,

where

up 6
(p+ 1)p − 2p

2
=
p(p− 1)

2
. (2.5)
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The polynomial J(−2, z) is the square of a symmetric function of {Ψl}pl=0 (see
the definition (2.2)), therefore it has roots of even multiplicity,

{dj}vpj=1 : Ψk(dj) = −Ψl(dj) for some k, l, k 6= l,

and we have

vp 6
p(p+ 1)

2
. (2.6)

Thus, the set I is the union of p(p + 1) trajectories (which may have common
points, but no common segments). Of these, 2p start one at a time at the end-points
of the Eα, α = 1, . . . , p (and run along Eα until they terminate at some point dj
or, more generally, until they run against an oncoming trajectory along Eα, after
which both trajectories turn into the complex plane as two conjugate curves). The
remaining trajectories start at the points cj (and either go opposite ways along the
real axis or run into the complex plane as conjugate curves). All trajectories end
in pairs at the points dj.

We point out again that all the above concerns arbitrary (p+1)-sheeted Riemann
surfaces with quadratic branch points at aα, bα, α = 1, . . . , p, and we take no
account of the special features of the monodromy group (0.20).

We proceed now to the particular Riemann surface (0.19) with monodromy
group (0.20) associated with the Nikishin system. In this case the geometry of
I is trivial (in contrast to the Riemann surfaces associated with the Angelesco sys-
tem or with systems of Markov functions on intersecting intervals; see [11], [18]).

Proposition 2.1. We have the relation

I =

p⋃
α=1

Eα.

Proof. By the definition (0.21),

Ψ0(z) ∈ Ĥ+(C \E1), Ψ0(z)
∣∣
∞ =

1

C0zp
+ · · · ,

therefore it follows from the argument principle that

1

2π
4
E1

Arg Ψ0 = p,

that is, Ψ0 takes purely real values at p + 1 points in E1 at least (where the end-
points a1 and b1 are taken into account) and the limit values of Ψ0 from both
above and below are purely imaginary at p points in E1 at least. Thus, since Ψ(z)
is symmetric with respect to the real axis:

Ψ0(x) = Ψ1(x), x ∈ E1,

at least p − 1 points in {cj} (see (2.5)) and p points in {dj} (see (2.6)) must be
interior points of E1:

cjk ∈ E1 : Ψ0(cjk) = Ψ1(cjk), k = 1, . . . , k1, k1 > p− 1,

djs ∈ E1 : Ψ0(djs) = −Ψ1(djs), s = 1, . . . , s1, s1 > p.
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We also point out that
1

2π
4
E1

Arg Ψ1 = −p. (2.7)

Further, by the definition of Ψ(z), see (0.21), we obtain

Ψ1(z) ∈ Ĥ+
(
C \ {E1 ∪E2}

)
, Ψ1(z)

∣∣
∞ =

z

C1
+ · · · .

Hence, by the argument principle,

1

2π
4

E1∪E2

Arg Ψ1 = −1,

therefore, in view of (2.7),

1

2π
4
E2

Arg Ψ1 = p− 1,

which requires E2 to contain in its interior at least p− 2 points in {cj} and p − 1
points in {dj}. We also point out the equality

1

2π
4
E2

Arg Ψ2 = −(p − 1).

Thus, moving along α from 1 to m we obtain

c
j
(α)
k

∈ Eα : Ψα

(
c
j
(α)
k

)
= Ψα−1

(
c
j
(α)
k

)
, k = 1, . . . , kα, kα > p− α,

d
j
(α)
s
∈ Eα : Ψα

(
d
j
(α)
s

)
= Ψα−1

(
d
j
(α)
s

)
, s = 1, . . . , sα, sα > p− α+ 1,

(2.8)

therefore the total numbers of points {cj} and {dj} have lower bounds:

up =

p∑
α=1

kα >
p(p− 1)

2
, vp =

p∑
α=1

sα >
(p+ 1)p

2
.

Thus, in view of the general upper bound (2.5), (2.6), we obtain

up =
p(p− 1)

2
⇒ kα = p− α,

vp =
(p+ 1)p

2
⇒ sα = p− α+ 1,

α = 1, . . . , p.

Thus, we have proved that the sets of points {cj} and {dj} lie in the interior of the
intervals {Eα}p1 each containing kα = p−α and sα = p−α+1 points, respectively.
That is, I is the union of p(p+ 1) trajectories (2.2), which start (for ν = 2) in the
amount of 2(p − α) + 2 from p − α + 2 points in each interval Eα, α = 1, . . . , m
(one trajectory from each of the end-points aα and bα and pairs of trajectories from
the points c

j
(α)
k

∈ Eα, see (2.8)), and which terminate (for ν = −2) at p − α + 1
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points of the same (‘launching ’) interval Eα (two at each point d
j
(α)
s
∈ Eα); at

these trajectories we have |Ψα| = |Ψα−1|.
We now emphasize two points.
First, the trajectories starting at Eα do not intersect the real axis outside the

interval Eα because at each point of R\Eα one of the functions Ψα and Ψα−1 must
be real, therefore if such a trajectory intersects R\ Eα, then there emerges a new
point e such that

Ψα(e) = Ψα−1(e) or Ψα(e) = −Ψα−1(e),

which is in contradiction with (2.8) and (2.4).
Second, the trajectories starting from Eα cannot leave Eα for the complex plane

because the functions z(ν) are symmetric with respect to the real axis (see (2.3)),
and the union of such trajectories and the symmetric (complex conjugate) trajecto-
ries (which necessarily exist in this case), which terminate at Eα, bound a domain
in which the harmonic functions |Ψα(z)| and |Ψα+1| are the same by the maximum
principle; this would lead to a contradiction.

Hence the trajectories forming I start at the points aα, bα, cj(α)
k

in each interval

Eα, where k = 1, . . . , p− α and α = 1, . . . , p; go (for ν : 2→ −2) along the interval
Eα (one trajectory from each of the points aα, bα and pairs of trajectories, going in
the opposite directions, from the points c

j
(α)
k

) and terminate (two trajectories from

the opposite directions at a point) at the points d
j
(α)
s

, s = 1, . . . , p− α+ 1, which

alternate with the c
j
(α)
k

(see Fig. 1).

Figure 1

Thus, I =
⋃p
α+1 Eα and

|Ψl−1(x)| = |Ψl(x)|, x ∈ Eα;

moreover, if |l− k| > 1, l, k = 1, . . . , p, then

|Ψk(z)| 6= |Ψl(z)| for each z ∈ C . (2.9)

The proof of Proposition 2.1 is complete.

We now state one immediate (and important for what follows) consequence of
this result.

Proposition 2.2. For each point z in the complex plane,

|Ψ0(z)| 6 |Ψ1(z)| 6 · · · 6 |Ψp(z)|, (2.10)

and the equality between |Ψl−1(z)| and |Ψl(z)| holds only for z ∈ El.
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Proof. By the definition (0.21) of Ψ(z) we obtain

|Ψ0(∞)| < |Ψ1(∞)|,

therefore, by (2.9) (in view of the continuity of |Ψl| in C , l = 0, . . . , p),

|Ψ0(z)| < |Ψ1(z)|, z ∈ C \E1,

|Ψ0(x)| = |Ψ1(x)| < |Ψ2(x)|, x ∈ E1 (2.111)

(the last inequality holds because otherwise — in the case of the reverse inequality
— it follows from (0.21) that there exists z̃ ∈ C such that |Ψ0(z̃)| = |Ψ2(z̃)|, which
contradicts (2.9)). The last inequality in (2.111) means by continuity that

|Ψ1(z)| < |Ψ2(z)|, z ∈ C \E2, (2.112)

|Ψ1(x)| = |Ψ2(x)| < |Ψ3(x)|, x ∈ E2 (2.113)

(the reverse inequality in (2.113) would mean that |Ψ3(z)| < |Ψ1(z)| for each z ∈ C ,
in view of (2.9), which leads to a contradiction with (2.113) and with the equality
|Ψ2(x)| = |Ψ3(x)| for x ∈ E3).

Repeating these arguments for l = 1, . . . , p we obtain

|Ψl−1(z)| < |Ψl(z)|, z ∈ C \El.

The proof of Proposition 2.2 is complete.

To complete the subsection we point out several properties of the leading terms
in the asymptotic formulae, the functions {Φα(z)}pα=1 (see (0.25)), where

Φα(z) :=

p∏
l=α

Ψl(z), α = 1, . . . , p.

It is an immediate consequence of the definition that

(1) Φα ∈ Ĥ+(C \Eα),

(2) Φα(z)
∣∣
z=∞ '

zp−α+1

cα
, cα =

p∏
l=α

Cl,

(3) |Φα(x)|2 1

|Φα−1(x) Φα+1(x)| = 1, x ∈ Eα, α = 1, . . . , p

(2.12)

(as usual, we agree that Φp+1 ≡ Φ0 ≡ 1).
We now verify property (3) in (2.12). By the definition of {Φα},

Φα
Φα−1

=
1

Ψα−1
,
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so that for α = 2, 3, . . . , p, in view of the equality

Ψα(x) = Ψα−1(x), x ∈ Eα, (2.13)

we have

|Φα(x)|2∣∣(Φα−1Φα+1)(x)
∣∣ =

∣∣∣∣ Ψα(x)

Ψα−1(x)

∣∣∣∣ = 1, x ∈ Eα, α = 2, . . . , p.

For α = 1, in view of (2.13) and bearing in mind that
∏p
l=0 Ψl ≡ 1 (see (0.22)), we

obtain

|Φ1(x)|2
|Φ2(x)| = |Ψ1(x)|2

p∏
l=2

|Ψl(x)| =
∣∣∣∣ p∏
l=0

Ψl(x)

∣∣∣∣ = 1, x ∈ E1.

2.2. Bernstein–Szegő polynomials for RRR. Proof of Theorem 2. In this
subsection we prove Theorem 2 stated in the introduction (see § 0.5). We recall
what we require to this end. For an arbitrary fixed collection of (non-negative,
integrable and satisfying the Szegő condition on E) weight functions w = {wα}pα=1

giving rise to a solution of the boundary-value problem

f = {fα} ∈ Ĥ+
2,w(Ω),(

|fα|2wα
|fα+1fα−1|

)
(x) = 1, x ∈ Eα, α = 1, . . . , p, f0 ≡ fp+1 ≡ 1,

(2.14)

we must construct a sequence of polynomials

Pn = {Pα}pα=1, Pα(z) = znα + · · · , nα = n(p− α+ 1),

such that

(1)

∥∥∥∥ Pα(x)

|cαΦα(x)|n −
{(

Φα(x)

|Φα(x)|

)n
fα(x)

fα(∞)

+

(
Φα(x)

|Φα(x)|

)n
fα(x)

fα(∞)

}∥∥∥∥
L2
wα

(Eα)

= o(1),

(2)

∥∥∥∥ Pα(z)

(cαΦα(z))n
− fα(z)

fα(∞)

∥∥∥∥
H(Ωα)

= o(1)

(2.15)

as n→∞.
We construct the Pn in accordance with the following scheme.

(A) First, we construct a sequence of special weight functions {w(m)
j }pj=1 approxi-

mating w in the integral norm and in the dL-metric:

‖w(m)
j −w‖L(Ej) = o(1),

∥∥∥∥ln
w

(m)
j

w

∥∥∥∥
L(Ej)

= o(1), j = 1, . . . , p, (2.16)
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as m→∞. For these special weights we write down the solution of the boundary-

value problem (2.14) explicitly in terms of some rational functions {f(m)
j }pj=1 on R.

In view of Remark 1.4,
‖f (m) − f‖H2,w(Ω)

= o(1) (2.16′)

as m→∞.
(B) Next, for arbitrary fixed m we construct a sequence of polynomials

P(m)
n = {P (m)

α }pα=1, P (m)
α (z) = znα + · · · , nα = n(p− α+ 1), n > Nm,

such that

(1)

∥∥∥∥ P
(m)
α (x)

|cαΦα(x)|n −
{(

Φα(x)

|Φα(x)|

)n
f

(m)
α (x)

f
(m)
α (∞)

+

(
Φα(x)

|Φα(x)|

)n
f

(m)
α (x)

f
(m)
α (∞)

}∥∥∥∥
C(Eα)

= O(CnEα),

(2)

∥∥∥∥ P
(m)
α (z)

(cαΦα(z))n
− f

(m)
α (z)

f
(m)
α (∞)

∥∥∥∥
C(K)

= O(CnK)

(2.17)

as n→∞, where

CEα , CK < 1 for each K b Ωα, α = 1, . . . , p.

For p = 1 the P (m) coincide with the polynomials introduced by Bernstein (in the
case of an interval) and Szegő (in the circle case), in the proof of strong asymptotic
formulae for ordinary orthogonal polynomials.

Finally, on accomplishing steps (A) and (B) we arrive at the following proof.

Proof of Theorem 2. We fix an arbitrary monotonic sequence {εk}∞k=0 of positive
numbers approaching zero:

εk > 0, εk ↘ 0 as k →∞.

For each k we choose mk such that the right-hand side of (2.16′) is less than εk/2.
Next, for each mk we choose Nk such that for each n > Nk the right-hand sides of
both asymptotic formulae in (2.17) are less than εk/2. The required sequence of
polynomials Pn can now be defined as follows:

Pn := P(mk)
n , n ∈ [Nk, Nk+1], k ∈ N;

it is obvious (from the triangle inequality) that asymptotic formulae (2.15) hold
for Pn.

The proof of Theorem 2 is complete.

It now remains to perform steps (A) and (B).

We fix arbitrary α ∈ {1, . . . , p} and discuss the construction of a polynomial P
(m)
α

satisfying (2.17).
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(A1) Construction of {w(m)
j }pj=1. We shall use three distinct constructions for

j = ν ∈ {α+ 1, . . . , p}, j = k ∈ {1, . . . , α− 1}, and for j = α.
Let ν ∈ {α+ 1, . . . , p}. We set

w(m)
ν (x) :=

1

t(ν)(x)
, x ∈ Eν, where t(ν)(z) = Cν,mν

mν∏
µ=1

(z − zµ,mν ). (2.181)

Here t(ν)(z) is a polynomial on C , that is, a rational function on the Riemann surface
C with pole of order mν at infinity and with mν zeros (counted with multiplicities)

at some finite points. By Weierstrass’s theorem we can choose t(ν) such that w
(m)
ν

approximates wν with the required accuracy (so that (2.16) holds).
Let k ∈ {1, . . . , α− 1}. We set

w
(m)
k (x) :=

1

t̃
(k)
k−1(x)

, x ∈ Ek, (2.182)

where t̃
(k)
k−1 is the (k − 1)th branch of the rational function t̃(k) ∈ M(r(k)) on the

k-sheeted Riemann surface

r(k) :=
k−1⋃
l=0

r
(k)
l , r

(k)
l :≡ Rl, l = 0, . . . , k− 1.

The Riemann surface r(k) (with sheets denoted by r
(k)
l , l = 0, . . . , k − 1) is by

definition made up of the first k sheets of R with punctured branch points at the
projections of the end-points of the interval Ek onto the (k − 1)th sheet of Rk−1.
The function t̃(k) is defined by its divisor as follows:

t̃(k) ∈M(r(k)) :

{
t̃(k)(z) =∞, z

∣∣
∞(0) = ck,mkz

mk + · · · ,
t̃(k)(z) = 0, z ∈ {z̃µ,mk}mkµ=1,

(2.19)

where the zeros {z̃µ,mk}mkµ=1 of the ‘polynomial’ t̃(k) on the Riemann surface r(k)

are chosen so that (by the Weierstrass–Lavrent’ev theorem) the ‘polynomial’ t̃(k)

approximates the function 1/wk(x) on the last sheet of the surface r(k), at the

points of the projection of Ek onto r
(k)
k−1, with accuracy required for (2.16).

Finally, let

w(m)
α (x) :=

[ψ
(α)
α−1(x)]Mα

t̃
(α)
α−1(x)

, Mα =

p∑
ν=α+1

mν , x ∈ Eα,

where ψ
(α)
α−1 is the value on the last sheet of the standard rational function ψ(α) on

r(α) defined as follows by its divisor:

ψ(α)(z) ∈M(r(α)) :

{
ψ(α)(z) =∞, z ∈ {∞(1),∞(2), . . . ,∞(α−1)},
ψ(α)(z) = 0, z ∈ {(∞(0))α−1},

α−1∏
l=0

ψ
(α)
l = 1, ψ

(α)
l (z) = ψ(α)(z(l)), l = 0, . . . , α− 1
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(note that ψ(p+1) = Ψ, see (0.21)), and t̃
(α)
α−1 is the (α− 1)th branch of the rational

function t̃(α) on r(α) defined by its divisor similarly to (2.19), where the zeros of the

‘polynomial’ t̃α on r(α) are chosen so that t̃
(α)
α−1 approximates [ψ

(α)
α−1]Mα/wα with

accuracy required for (2.16).
We point out that the approximations of the weights wj with j 6= α are carried

out independently. At the same time, the approximation of wα must be carried
out after the approximation of the wν, ν = α+ 1, . . . , p, and the approximant t̃(α)

depends on the sum of the degrees of the approximants t(ν). This, however, involves
no complications.

We note also that ψ(1) ≡ 1 for α = 1 and the definition of w
(m)
α coincides

with (2.181), while for α = p we have Mα = 0 and the definition of w
(m)
α coincides

with (2.182).

(A2) Solution of the boundary-value problem for the functions {w(m)
j }. The

de�nition of {f(m)
j (z)}pj=1.

We construct a rational function g(z) on R by specifying its zeros and poles as
follows.

We place all the zeros of each polynomial t(ν), ν = α + 1, . . . , p, on each sheet
Rl, l = 0, . . . , ν − 1, that is,

z(l)
µ,mν = π−1

Rl
(zµ,mν ), µ ∈ {1, . . . , mν}, l = 0, . . . , ν − 1, ν = α+ 1, . . . , p.

All the zeros of each ‘polynomial’ t̃(k), k = 1, . . . , α, are put on the corresponding

sheets of R, that is,

r
(k)
l 3 z̃µ,mk → z̃µ,mk ∈ Rl, µ ∈ {1, . . . , mk}, l = 0, . . . , k − 1, k = 1, . . . , α.

On the sheets Rl, l = α, . . . , p − 1, we place poles at the points (∞(l)), and
their multiplicity must be equal to the number of zeros on Rl. All other poles
(with multiplicities) required in order that g(z) be a rational function on R are put
at ∞(0).

Thus, g(z) is defined by its divisor as follows:

g(z) ∈M(R) :



g(z) =∞,
z ∈

{
(∞(0))

Pα
k=1 mk+αMα, (∞(α))

Pp
ν=α+1 mν ,

(∞(α+1))
Pp
ν=α+2 mν , . . . , (∞(p−1))mp

}
,

g(z) = 0,

z ∈
{
{{z̃µ,mk}mkµ=1, k = 1, . . . , α};

{{z(l)
µ,mν}mνµ=1, l = 0, . . . , ν − 1, ν = α+ 1, . . . , p}

}
.

(2.20)
We choose a normalization of g(z) such that

p∏
l=0

gl =
α∏
k=1

t(k) ·
p∏

ν=α+1

(t(ν))ν , (2.21)



Strong asymptotics of multiply orthogonal polynomials for Nikishin systems 661

where t(k) is a polynomial on C :

t(k) =
k−1∏
l=0

t̃
(k)
l .

In view of this normalization we point out one identity, which is important for what
follows:

α∏
k=1

t(k) =
α∏
k=1

k−1∏
l=0

t̃
(k)
l =

α−1∏
l=0

α∏
k=l+1

t̃
(k)
l .

Besides the functions g(z), t̃(k), and t(ν) we shall require for the definition of

{f(m)
j (z)}pj=1 other rational functions on r(α),

T̃ (α) ∈M(r(α)) :


T̃ (α)(z) =∞,

z ∈
{

(∞(0))αMα
}
,

T̃ (α)(z) = 0,

z ∈
{
{z(l)
µ,mν}mνµ=1, ν = α+ 1, . . . , p, l = 0, . . . , α− 1

}
.

In connection with T̃ (α), we point out an additional identity, which is useful in what
follows:

T̃ (α)(ψ(α))Mα = T (α) :=

p∏
ν=α+1

t(ν). (2.22)

(Identity (2.22) becomes obvious once one continues the polynomial T (α) on C

analytically to r(α) by copying its values on each sheet r
(α)
l , l = 0, . . . , α− 1.)

We now define a collection of functions {f(m)
j }:

f
(m)
j :=



gp, j = p,

gp

p−1∏
l=j

gl∏p
ν=l+1 t

(ν)
, j = α, . . . , p− 1,

gp

(p−1∏
l=α

gl∏p
ν=l+1 t

(ν)

)α−1∏
l=j

gl

T̃
(α)
l

∏α
k=l+1 t̃

(k)
l

, j = 1, . . . , α− 1.

(2.23)

We verify that {f(m)
j }pj=1 is a solution of the boundary-value problem (2.14) with

weights {w(m)
j }.

First, we claim that f
(m)
j ∈ Ĥ+(Ωj). For the successive multiplication of

branches of g in the definition of f
(m)
j ‘removes’ the branch points from the last

sheets of R (the Riemann surface of g) and the successive divisions by the poly-

nomials t(ν) and the corresponding branches of t̃(k) and T̃ (α) ‘remove’ the zeros

and poles from these sheets of R. As a result, f
(m)
j (z) is an analytic function in C

branching at the end-points of the intervals Ej and without zeros or poles on the
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principal sheet of its Riemann surface, that is, the function f
(m)
j is single-valued,

analytic, and non-vanishing in Ω.

Second, we verify that the functions {f(m)
j }pj=1 satisfy boundary conditions (2.14).

We use the fact that polynomials approximating real functions can be selected to

have real coefficients; hence the algebraic functions g, t̃(k), and T̃ (α) can also be
considered symmetric with respect to the real axis. Hence

|g2
l (x)| =

∣∣(gl gl−1)(x)
∣∣, x ∈ El, l = 1, . . . , p,

on El.
For j = α+ 1, . . . , p we have

|f(m)
p (x)|2

|f(m)
p−1(x)|

=

∣∣∣∣( g2
pt

(p)

gpgp−1

)
(x)

∣∣∣∣ = t(p)(x) =
1

w
(m)
p (x)

, x ∈ Ep,

|f(m)
j (x)|2

|(fj−1fj+1)(x)| =

∣∣∣∣( gj
∏p
ν=j t

(ν)

gj−1

∏p
ν=j+1 t

(ν)

)
(x)

∣∣∣∣ = t(j)(x) =
1

w
(m)
j (x)

, x ∈ Ej,

j = α+ 1, . . . , p− 1.

For j = α, in view of identity (2.22), we obtain

|f(m)
α (x)|2

|(fα−1fα+1)(x)| =

∣∣∣∣(gα
[∏p−1

l=α+1

∏p
ν=l+1 t

(ν)
]2∏p

ν=α+1 t
(ν)T̃

(α)
α−1t̃

(α)
α−1

gα−1

[∏p−1
l=α

∏p
ν=l+1 t

(ν)
]2 )

(x)

∣∣∣∣
=
T̃

(α)
α−1t̃

(α)
α−1

T (α)
=

1

w
(m)
α (x)

, x ∈ Eα.

For j = 2, . . . , α− 1, by the symmetry of t̃(k) and T̃ (α) relative to the real axis
we obtain∣∣T̃ (α)

j (x)
∣∣ =

∣∣T̃ (α)
j−1(x)

∣∣, ∣∣t̃(k)
j (x)

∣∣ =
∣∣t̃(k)
j−1(x)

∣∣, x ∈ Ej, k = j + 1, . . . , α,

and therefore

|f(m)
j (x)|2

|(fj−1fj+1)(x)| =

∣∣∣∣( gjT̃
(α)
j−1

∏α
k=j t̃

(k)
j−1

gj−1T̃
(α)
j

∏α
k=j+1 t̃

(k)
j

)
(x)

∣∣∣∣
= t̃

(j)
j−1(x) =

1

w
(m)
j (x)

, x ∈ Ej, j = 2, . . . , α− 1.

Finally, for j = 1, taking into account, besides the symmetry of the functions

g, t̃(k), and T̃ (α), also their normalizations (see (2.21)), we obtain for x ∈ E1 the
equality

|f(m)
1 (x)|2

|f(m)
2 (x)|

=

∣∣∣∣(g2
1g2 · · · gp

∏p
ν=α+1(t(ν))ν−α

∏α−1
l=2 T̃

(α)
l

∏α−1
l=2

∏α
k=l+1 t̃

(k)
l[∏p

ν=α+1(t(ν))ν−α
]2[∏α−1

l=1 T̃
(α)
l

]2[∏α−1
l=1

∏α
k=l+1 t̃

(k)
l

]2 )
(x)

∣∣∣∣
=

∣∣∣∣( ∏α
k=1

∏k−1
l=0 t̃

(k)
l∏α

k=2(t̃
(k)
1 )2

∏α−1
l=2

∏α
k=l+1 t̃

(k)
l

)
(x)

∣∣∣∣
= t̃

(1)
0 =

1

w
(m)
1 (x)

, x ∈ E1.
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Thus, the resulting functions {f(m)
j }pj=1 (see (2.23)) make up a solution of the

boundary-value problem (2.14) with weight functions {w(m)
j }pj=1 (see (2.18)), which,

in their turn, approximate the collection {wj}pj=1 of integrable functions satisfying
the Szegő condition.

(B1) De�nition of the polynomials P
(m)
α , their asymptotic behaviour. We consi-

der the following rational function on R:

χ(z) := g(z) ·Ψn(z),

where g and Ψ are defined above (see (2.20) and (0.21)). We set

Sν(χ; z) :=
∑

06i0<i1<···<iν6p

ν∏
l=0

χil(z), ν = 0, 1, . . . , p. (2.24)

The elementary symmetric functions Sν(χ) of the distinct branches of the algebraic
function χ are single-valued in C , and since all poles of χ lie over the point ∞,
the Sν (z) are polynomials.

We set

P̃ (m)
α :=

Sp−α∏p
ν=α+1(t(ν))ν−α

. (2.25)

We claim that, first, the rational function P̃
(m)
α is a polynomial and, second,

deg P̃
(m)
α = n(p− α+ 1).

In fact, Sp−α is a polynomial and each term in (2.24) vanishes (with the corres-

ponding multiplicities) at the zeros of the polynomial
∏p
ν=α+1(t(ν))ν−α (by the

definition of χ and g; see (2.20)). An estimate for the degree of the polynomial

P̃
(m)
α can be obtained by a consideration of the order of the pole at infinity for each

term ∏ν
l=0 gilΨ

n
il∏p

ν=α+1(t(ν))ν−α
, 0 6 i0 < i1 < · · · < iν 6 p, (2.26)

in the definition (2.25), (2.24). For
∑α
k=1mk +α

∑p
ν=α+1mk−pn 6 n an estimate

for the degree of P̃
(m)
α is provided by the order of the pole at infinity of the term( ∏p

j=α gjΨ
n
j∏p

ν=α+1(t(ν))ν−α

)
(x)

∣∣∣∣
z=∞

= O(zn(p−α+1)).

Thus, for

n >
M̃α + αMα

(p+ 1)
, M̃α =

α∑
k=1

mk, Mα =

p∑
ν=α+1

mν ,

the function defined in (2.25) is the polynomial P̃
(m)
α of degree n(p − α+ 1).

It remains to verify that after normalization the polynomials have the asymptotic
behaviour (2.17) as n→∞. Indeed, it follows from property (2.10) of the weights
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of Ψ (see Proposition 2.2) that the main contribution to the asymptotic behaviour
as n→∞ in the domain Ωα is provided by one term in (2.26):

P̃ (m)
α (z) =

∏p
j=α gj(z)∏p

ν=α+1(t(ν)(z))ν−α

p∏
j=α

Ψn
j (z) + o

( p∏
j=α

Ψn
j (z)

)
, z ∈ Ωα,

where o( · ) uniformly decreases with exponential rate on compact subsets of Ωα.
Normalizing this relation and taking account of the definitions of the functions Φα
and f

(m)
α (see (0.25) and (2.23)) we see that the polynomials

P (m)
α (z) :=

P̃
(m)
α (z)

P̃
(m)
α (∞)

satisfy asymptotic formula (2) in (2.17). A contribution to the asymptotic formula
on the interval Eα is made by two terms in (2.26):

P̃ (m)
α (x) =

∏p
j=α+1 gj(x)Ψn

j (x)∏p
ν=α+1(t(ν)(x))ν−α

[
gα(x)Ψn

α(x) + gα−1(x)Ψn
α−1(x) + o

(
Ψn
α(x)

)]
,

x ∈ Eα,

therefore, in view of the symmetry of g and Ψ with respect to the real axis:

gα(x) = gα−1(x), Ψα(x) = Ψα−1(x), x ∈ Eα,

and also the definitions of Φα and f
(m)
α , we obtain

P̃ (m)
α (x) = f(m)

α (x)Φnα(x) + f
(m)
α (x)Φnα(x) + o

(
Φnα(x)

)
, x ∈ Eα,

which gives us after normalization asymptotic formula (1) in (2.17).
Thus, we have constructed polynomials satisfying (2.17) for arbitrary fixed α.

The same construction can be carried out for the other α in the set {1, 2, . . . , p}.
This completes the proof of Theorems 2 and 1.

§ 3. Appendix: An extremal property of orthogonal polynomials

In this section we present an extremal property of polynomials defined by orthog-
onality relations. It is a useful tool in the proof of strong asymptotic formulae (see,
for instance, [11]). We demonstrate it for ordinary orthogonal polynomials first,
and for polynomials orthogonal with respect to a variable weight dependent on the
index after that.

Let

qn(x) = xn + · · · ,
∫ b

a

qn(x)xνρ(x) dx = 0, ν = 0, 1, . . . , n− 1, (A.1)

be an orthogonal polynomial on the interval E = [a, b] with respect to a weight
ρ(x) satisfying the Szegő condition and such that∫ b

a

ln ρ(x)
dx√

(x − a)(b− x)
> −∞.
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Let F (x) be the Szeg}o function of the weight ρ(x), which is the solution of the
following boundary value problem:

F (x) :=
f(z)

f(∞)
,

(1) f,
1

f
∈ H2,ρ(C \E), f(∞) > 0,

(2) |f(x)|2ρ(x) =
1

π
√

(x − a)(b− x)
, x ∈ E = [a, b].

(A.2)

We denote the leading term of the asymptotic formula for the polynomials qn(z)
by Φ(z):

Φ(z) := z +
√
z2 − 1

(
E = [−1, 1]

)
.

Recall that Φ(z) can be described in terms of the complex logarithmic potential

vλ(z) := Vλ(z) + iV̂λ(z), where Vλ(z) :=

∫ b

a

ln
1

|z − x| dλ(x),

of the equilibrium measure λ(x) of the interval E, which is characterized by the
equilibrium property

Vλ(x) = γ, x ∈ E.

With this notation,

Φ(z) = C(E)e−vλ(z), C(E) := eγ . (A.3)

We also set

Fn(x) := Φn(x)F (x) + Φn(x)F (x), x ∈ E. (A.4)

We have the following result.

Proposition A.1. Let qn be the orthogonal polynomial (A.1), and let C and Fn be

de�ned by conditions (A.2)–(A.4). Then, for arbitrary n ∈ N and each polynomial

Pn(x) = xn + · · · ,∥∥∥∥qn(x)

Cn
− Fn(x)

∥∥∥∥
L2,ρ(E)

6

∥∥∥∥Pn(x)

Cn
− Fn(x)

∥∥∥∥
L2,ρ(E)

.

Proof. We have∥∥∥∥qn(x)

Cn
− Fn(x)

∥∥∥∥2

L2,ρ(E)

=
1

Cn

∫ b

a

|qn(x)|2ρ(x) dx− 2 Re

∫ b

a

qn(x)

Cn
Fn(x)ρ(x) dx+

∫ b

a

|Fn|2ρ(x) dx

=: I1(qn) + 2 Re I2(qn) + I3. (A.5)
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By the extremal property of orthogonal polynomials,

I1(qn) 6 I1(Pn).

In view of the identity

Φ(x) =
1

Φ(x)

and the symmetry of Φ and F with respect to the real axis, the second integral
in (A.5) can be represented as follows:

I2(qn) =

∫ b

a

qn(x)

CnΦn(x)
F (x)ρ(x) dx+

∫ b

a

qn(x)

Cn
F (x)

Φn(x)
ρ(x) dx

=

∫ b

a

qn(x)

CnΦn+(x)
F+(x)ρ(x) dx+

∫ b

a

qn(x)

CnΦn−(x)
F−(x)ρ(x) d(−x),

where ‘+’ indicates the boundary values of an analytic function when the point
approaches the interval from above; correspondingly, ‘−’ indicates the boundary
values on the lower bank of E. Thus,

I2(qn) =

∮
E

qn(ξ)

CnΦn(ξ)
F (ξ)ρ(ξ) |dξ|.

In view of the representing property of the Szegő function F (z) expressed by the
equality

H(∞) =
1

µ

∮
E

H(ξ)F (ξ)ρ(ξ) |dξ|for H(z) ∈ H2,ρ(C \E),

where

µ =

∮
E

|F (ξ)|2ρ(ξ) |dξ|

(see, for instance, [22], p. 165), and of the expansion

CnΦn(z)
∣∣
z=∞ = zn + · · · , qn

CnΦn
,

Pn
CnΦn

∈ H2,ρ(C \E),

we obtain

I2(qn) = In(Pn) = µ.

It remains to observe that the last integral I3 in (A.5) is independent on qn. The
proof of Proposition A.1 is complete.

We consider now a similar extremal property of the polynomials qn(x) = xn+· · ·
orthogonal with respect to a variable weight wn(x)ρ(x):∫

E

qn(x)xνwn(x)ρ(x) dx = 0, ν = 0, . . . , n− 1, wn ∈ C(E), (A.6)
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where the weight must satisfy the condition of the existence of limits(
wn(x)

)1/n
�

n→∞
ϕ(x), ϕ(x) > 0, x ∈ E;

wn(x)

ϕn(x)
�

n→∞
ψ(x),

(A.7)

which must hold uniformly on E.
We now define analogues of the functions Φ and F in (A.3) and (A.2). Let λϕ

be the equilibrium measure (concentrated on the interval E) of the equilibrium
problem for a potential in the exterior field lnϕ(x). This measure is uniquely
specified by the equilibrium condition on E:

Vλϕ +
1

2
lnϕ

{
= γ, x ∈ supp λϕ,

> γ, x ∈ E \ supp λϕ.
(A.8)

By analogy with (A.3) we set

Φ(x) := Ce−vλϕ(z), vλϕ(z) := Vλϕ(z) + iV̂λϕ(z), C := eγ .

Assume that the exterior field has the property that the interval E is the support
of the equilibrium measure in the problem (A.8):

suppλϕ = E = [a, b], (A.9)

and let ψ(x) in (A.7) be a function satisfying the Szegő condition on E:∫ b

a

ln
(
ψ(x)ρ(x)

) dx√
(x− a)(b− x)

> −∞. (A.10)

As before (see (A.2)), let F (z) be the Szegő function for the weight ψρ on E, that
is,

F (z) :=
f(z)

f(∞)
,

(1) f,
1

f
∈ H2,ψρ(C \E), f(∞) > 0,

(2) |f(x)|2ψ(x)ρ(x) =
1

π
√

(x− a)(b− x)
, x ∈ E;

we also set

Fn(x) :=
Φn(x)

|Φn(x)|F (x) +
Φn(x)

|Φn(x)|F (x).

Finally, we recall the Gonchar–Rakhmanov asymptotic formula (see [23]) for the
nth root of the polynomials (A.6) and (A.7):

|qn(z)|1/n � exp{−Vλϕ(z) + γ}, z ∈ K b C \E. (A.11)

We have the following result.
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Proposition A.2. Let qn(x) be the polynomials (A.6) orthogonal on E with respect

to variable weights wnρ, satisfying conditions (A.7), (A.9), and (A.10). Then the

following relation holds for an arbitrary sequence of polynomials Pn(x) = xn + · · · :∥∥∥∥ qn(x)

(C|Φ(x)|)n − Fn(x)

∥∥∥∥
L2,ψρ(E)

6

∥∥∥∥ Pn
(C|Φ(x)|)n − Fn(x)

∥∥∥∥
L2,ψρ(E)

·
(
1 + o(1)

)
. (A.12)

Proof. As before, we represent the left-hand side of (A.12) as a sum of three inte-
grals:∥∥∥∥ qn

(C|Φ|)n − Fn
∥∥∥∥
L2,ψρ(E)

=: I1(qn)− 2 ReI2(qn) + I3

=

∫ b

a

∣∣∣∣ qn(x)

CnΦn(x)

∣∣∣∣2 ψ(x)ρ(x) dx

− 2 Re

∫ b

a

qn(x)

CnΦn(x)
Fn(x)ψ(x)ρ(x) dx+

∫ b

a

|Fn(x)|2ψ(x)ρ(x) dx.

In view of (A.7), we obtain

I1(qn) =

∫ b

a

q2
n(x)wn(x)ρ(x) dx

|C2Φ2(x)ϕ(x)|n
(
1 + o(1)

)
.

By equilibrium relation (A.8) the denominator of the integrand is equal to one,
therefore

I1(qn) =

∫ b

a

q2
n(x)wn(x)ρ(x) dx

(
1 + o(1)

)
.

By the extremal property of orthogonal polynomials (A.6) we obtain

I1(qn) 6 I1(Pn).

Finally, as before,

I2(qn) =

∫ b

a

qn(x)

|CΦ(x)|n

{
Φn(x)

|Φ(x)|nF (x) +
Φn(x)

|Φ(x)|nF (x)

}
ψ(x)ρ(x) dx

=

∮
E

qn(ξ)

CnΦn(ξ)
F (ξ)ψ(ξ)ρ(x) |dx|

and from the reproducing property of the Szegő function we see that

I2(qn) = I2(Pn).

The proof of Proposition A.2 is complete.



Strong asymptotics of multiply orthogonal polynomials for Nikishin systems 669

Bibliography
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[10] G. Szegő, Orthogonal polynomials, Amer. Math. Soc., New York 1959.

[11] A. I. Aptekarev, “Asymptotics of simultaneously orthogonal polynomials in the Angelesco
case”, Mat. Sb.136 (178):1 (5) (1988),56–84; Englishtransl. in Math.USSR-Sb. 64 (1989).

[12] A. A. Gonchar and E. A. Rakhmanov, “On convergence of simultaneous Padé approximants
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