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MORE ON QUASI-FROBENIUS RINGS

UDC 519.48

L. A. SKORNJAKOV*

Abstract. Let R be a ring and 7 its Jacobson radical. Let us set / = /,
J =JJ , and / = | ) o / if α is a limit ordinal. We call a ring an annihilating
ring if the left (right) annihilator of the right (left) annihilator of an arbitrary left
(right) ideal I is 1 itself. We prove that a ring R is quasi-Frobenius if and only if
it is a left self-injective annihilating ring and / =0 for some transfinite a.

Bibliography: 15 items.

Up to the present time numerous criteria have been obtained for a ring to be quasi-

Frobenius (see, e.g., [2], [3], [8]—[10], [12], [13]). The original definition of a quasi-

Frobenius ring includes annihilator conditions, whereas most of the criteria include

self-injectivity. Moreover, some sort of chain conditions are imposed. In this note we

determine how the annihilator conditions and self-injectivity may be combined. Fur-

thermore, a certain restriction is imposed on the radical. An example is given which

shows the restriction to be a necessary one.

All rings under consideration are assumed to be associative with identity element.

If R is a ring and Η is a subset of R, we set

() { \ ; h = Q for a l l

a n d

(H) { \ R h x = 0 for a l l

We shall say that a ring is left-annihilating if MO = / for every left ideal /. A

subset Η of R is called right-balanced if for every mapping / of Η into R for which

each relation Σα .h . = 0, a. e R, h . e H, implies Σα .h -Kh .) = 0 the intersection
ιι ' ι ι ' r ι ι' ι '

Γι, e W(/(^) + r{h)) is nonempty. A ring is called right-balanced if all its subsets are

right-balanced. The properties of being right-annihilating and left-balanced are de-

fined analogously. A ring is called annihilating if it is both right- and left-annihilating.

AMS (MOS) subject classifications (1970). Primary 16A36, 16A34, 16A52.
Editor s note- The present translation incorporates corrections made by the author.
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512 L. A.SKORNJAKOV

If / is an ideal of R, we set / = I, Ia = IIa~ and / a = **^J if a is a limit ordi-

nal. If / = 0 for some transfinite ordinal α , then / is called trans finitely nilpotent.

It is easy to check that nothing is changed if instead of la = IIa~ we set Ia = Ia~ I.

Main Theorem. The following properties of a ring R with a transfinitely nilpotent

]acobson radical are equivalent:

(1) R is quasi-Frohenius.

(2) R is left and right self-infective, while r(L) and 1(1) are nonzero for every

left ideal L and right ideal I distinct from R.

(3) R is a left self-infective annihilating ring.

(4) R is a right-balanced annihilating ring.

Note. This theorem generalizes a result of T. Kato ([13], p. 493, Theorem 10),

who proved that an annihilating two-sided self-injective ring with nilpotent Jacobson

radical is quasi-Frobenius.

Let us begin by proving some lemmas.

Lemma 1. // / is a right-balanced left ideal of a ring R and rl(a) - aR for each

a e R, then for each homomorphism φ: I -> R there exists an element s e R such that

χφ = xs for all χ e I.

Proof. Since l(x) C 1(χφ) for all χ £ I, we have

>) ^rl(x) =xR,

i.e. χφ = xf(x), where fix) £ R. If Σα.χ. = 0, a. e R, x. £ I, then

Consequently, there exists an s £ Μ e[(f(x) + Ax)). Hence xs = xf(x) = χφ for all

χ el.

Lemma 2. - A left self-infective ring is right-balanced.

Proof. Let Η be a subset of a left self-injective ring R. Let us consider the

mapping / mentioned in the definition of a balanced ring and the left ideal / = RH.

Let us define a homomorphism φ: I -» R by setting

( 2 β/fo) φ = 2 aihtf (Λ/) (α/ e ^ ' Λ / e ^»

and let us pick an 5 £ R such that χφ = xs for all χ £ I. Then h(s - /(A)) = hφ -

hf(h) = 0 for all h eH, so that s e /(A) + Ah) for all /»€//.

A system of nonzero submodules of a left (right) module is called independent if

each submodule of the system has zero intersection with the sum of the remaining

ones. By the Goldie dimension of a module we mean the smallest cardinal number

which is greater than or equal to the cardinality of every independent system of sub-

modules. The least cardinal number which is greater than or equal to the Goldie dimen-
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sions of all factor modules of a module will be called its thickness. We shall denote

the Goldie dimension and the thickness of a module A by dim A and thick A, respec-

tively. We note that both the Goldie dimension and the thickness of a completely re-

ducible module coincide with, the cardinality of the set of all its irreducible summands

([1], Chapter IV, § 1).

Lemma 3. // A, Β and C are left R-modules, A C β C C, if the factor module

B/A is completely reducible, and if dim (β/Λ) > Ν Q, then

thick (CM)^dim (£A4)+thick (C/B).

Proof. Let us consider the direct sum

where A C D ζ^ Ηa. Let us set W = β Π ( Σ α ε Ω Η α ) . The module W/A is completely

reducible. Since V//D = (W/A)/(D/A), the module W/D also turns out to be complete-

ly reducible ([ l], Chapter IV, § 1, Corollary 3). Here we have

dim (W/D)^dim (W/^4)^dim (B/A)

([l], Chapter IV, §1). Each irreducible summand of W/D belongs to the finite sum

(HaJD) f . . . + (HaJD).

Consequently, W C S a e f l ' W a , where Ω * C Ω and

Card Ω' = di η (WjD) < din (B/A).

If γ / Ω ' and h e ΗγΓ\1γ ^ β ^ Ω ,(Η β + Β), then h = Ih β + b, 1»β e Η β, b 6 Β.

Hence

b*( ΣΗή^Βς^{Σ Ηήη^^[Σ Ηήη(Σ Η«)^°·

Thus

Λ6ΗτΠ( S

and, consequently,

Wvn 2
But then



5 1 4 L. A. SKORNJAKOV

i.e., the sum

5 ^ Σ « ^ ΐ - B ^ °y(B -*-D))

is direct. Since C/(B + D) S (C/fi)/((B + D)/B), we have

Card (Ω\Ω')< thick (C/B),

whence

Card Ω = Card Ω' + Card (Ω\Ω') < dim (B/A) + thick (C/B).

If Μ C &, where © is a subset of a ring R, then by a rz'ĝ / (M, Q>)-hyperplane we

mean the set of elements of the form Xx.a. + 2/y.&., where a., b. e R, x. e M, y. e

and Ζ,α. = 0. It is clear that a right (Λί, te)-hyperplane is a right ideal of R

Lemma 4. Let & be an infinite subset of R. If for each nonempty subset Μ C G>

//>e /e/i annihilator L of & is different from the left annihilator of the right (M, &)-

hyperplane, then

dim (/?/L)>Card<T.

Proof. As is well known ([5], V 14, Example F), there exists an independent sys-

tem Φ of subsets (*) of & such that Card Φ > Card &. If 0 φ Μ C &, we let S(M) de-

note the right (M, G>)-hyperplane. Repeating word for word the arguments of the proof

of the lemma in [6], we see that

for any choice of distinct subsets MQ, Μ ρ . . . , Μ e Φ. ( 2) Hence

ο)) η Σ ι (sΜ)) ^;(^(Λί0)) η / (η
ί 1 =

Π
1 = 1

This proves that the sum ΣΜ €Q(1(S(M))/L) is direct. The inequality 1{S(M))/L ^ 0 is

included in the hypothesis.

Lemma 5. Let R be a right-annihilating ring with 1 = e-^ +· · ·+ e , where e. =

(*) We recall that a set X of elements of a Boolean algebra Β is called independent (see

|_5_|,§14) if x. f\' ' · Ax n ψ 0 for every choice of distinct elements χ. of X and numbers € • =

± 1 (here χ = χ and # " * is the complement of χ \ It is easy to verify that this implies the

impossibility of expressing any element of X in terms of the rest using the operations of union,

intersection and complementation a finite number of times.

(2) As has been noted by W. Stephenson, the main result of [6j is valid only for local rings.

In fact, in the proof of a lemma in that paper it is assumed that (in the terminology of the pres-

ent note) the left (0, & )- and (Μ, δ> )-hyperplanes are distinct for any choice of a nonempty

subset Μ of the independent system Φ. However, this assertion has been proved only for local

rings.
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e. ^ 0 and e .e. = 0 for i ^ j and the e .Re. are local rings, Η and I are right ideals

of R with

H/I = 2 (^α/7) and Card Ω = t > No·

Then there exist a number i and a left ideal L of R such that

i)c=L and dim (#/L) > t .

Proof. By choosing from each Η α one element not belonging to /, we form a sub-

set 3) of R. Of course, Card 2) = t . In 2) let us consider relations θ. (i = 1,. . . , n),

defined as follows: χθ .y if and only if xe. — ye. el. It is clear that the 0. are equiva-

lence relations. If χθ .y for all i, then χ - y 6 I, so that χ = y. Therefore © may be

considered as a subset of the direct product (3)/^) χ . . · χ (Sz/0^). This makes it

possible to assume that Card Ο /Θ j) = t. It is clear that at most one equivalence class

of Θ, contains elements which fall into / after right multiplication by e γ Choosing

one element from each of the remaining classes and multiplying on the right by e^, we

obtain a system G> of elements of R. Of course, Card fe = t and / Π Ob =0. It xQ, χ ̂ ,

. . . , χ are distinct elements of fe, then
m

We see that for any nonempty subset MCfe the right ideal &R is different from the

right (M, G>)-hyperplane. In fact, if this were not so, then for every xQ ε Μ we would

have

where a, b , c £ R, xQ ^ χ e M, y e &\M and a + Σ&χ = 0. Since ue 1 = u for all

u e G>, we may suppose that a, b , c £ e ^Re γ Let J be the Jacobson radical of

e yRe y If a e } , then (e^ - a)d = e ^ for some d e e^Re 1 (see [4], § 3.7, Proposition

1). Hence

x0 = X(fil = ^xbxd + 2 i/^d 6 ̂  Π

which contradicts the construction of fe. If, however, α /έ J, then for some χ 6 Λΐ\χ0

we have b ιέ ] . Since b is invertible in e ^Re ̂ , as above there arises a contradic-

tion to the condition that χ 4\. Because R is right-annihilating, this result permits

an application of Lemma 4. It remains to set L = /(&) and turn our attention to the

validity of the inclusion l(He^) C L, which follows from G> C %e ̂  C He y

We recall that a ring R is called a /e/i PF-ring if every exact left R-module is

a generator of the category of all left R-modules, and a right S-ring if r{l) Φ 0 f° r

every left ideal / distinct from R.

Lemma 6. // R is a left self-injective right S-ring with Jacobson radical J, then

R is a left-annihilating left PF-ring, every simple left R-module is isomorphic to a
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left ideal of R, and the factor ring R/j is classically semisimple.

Proof. By the results of T. Kato ([13], p. 490, Theorem 7), a ring R satisfying

the conditions of the lemma turns out to be a left PF-ring. The classical semisimplic-

ity of R/J was proved by Utumi ([15], p. 60, Theorem 3.4). Azumaya ([7], p. 703,

Theorem 7) noted that every simple left module over a left PF-ring is isomorphic to a

left ideal. Therefore, the fact that the ring is left-annihilating is a consequence of

results due to Bjork ([8], p. 65, Proposition 2.1).

Lemma 7. Let R be a left self-injective left·annihilating ring, J its Jacobson

radical, and 1 = e, +· · · + e , where e. - e. d 0, the e Re. are local rines, e e. = 0
1 η ι ι r ' ι ι ο ' ι j

and e .Re. C J for i ^ /'. Let I and Η be left ideals of R, I C H, <b an infinite subset

of H, and

where the R(x + I) are irreducible left R-modules. Then

dim (r(J&)/r(&))>Card&.

Proof. By Lemma 6, R is a left PF-ring and there exist isomorphisms

Xx:R(x+I)-»Rcx,

where the c lie in the left socle C of R. Of course, there exists a number i such

that c e c ' e. φ 0. In addition, c £ C. Changing the numbering, if necessary, we

have

Card#! = Card&, where $x = {x\x£$, O=j=cxtCeL}.

I f Σ , c « χ = 0 , w h e r e α e R , t h e n a x e l f o r e v e r y χ e G>. H e n c e a c ' = 0 a n d
X c ( g ^ C ' X X XX

thus α c = 0 . Now let Φ be an independent system of subsets of fej with Card Φ >

Card G>j ([5], §14, Example F). By what was proved above, for each Λ1 e Φ the con-

dition

(cx, if X 6 Λί,
= | 0 , if *

defines a homomorphism <^M: /?(&) -> Ce^ of left i?-modules. By the fact that R is

left self-injective, there is an element sM e Rel such that χφΜ = xsM for all χ e fe.

By [15] (p. 62, Proposition 3.10) we have jfbsM C /C = 0, i.e. s^ e K/β). If

«Αίι̂ Αί, + · · · 4- sMk<iMk Q. r (&),

where Μ. € Φ and «w e R, then, choosing an element

x$Mt\(Mx U · · · U Mt-ι U M/+1 U · · · U Mk),
we obtain

Mi = X (SMfiMj. + · · · + sMkaMk) = 0.
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If elaM e{ £ J, then βχ = e^a^ e tb for some b € e ^Re λ ([4], §3.7, Proposition 1).

Hence

cx = c ^ = CxfijflMfab = cxaMieib = 0,

which is impossible. If however, e ^ ^ e 1 e /, then
I

since

%SMiJ^CJ = 0 .

Thus the submodules (s^ + r(fe))R, where Μ e Φ, form an independent system of

submodules of the factor module τ{}&)/τ(&). Since Card \sM\ Μ e Φ\ > Card δ , the

lemma is proved.

Lemma 8. // / is the Jacobson radical of a ring H, 1 and Η are left ideals, and

JmH = I + Jm + lH for some m, then JmHr(l) c f | j a .

Proof. We shall prove that ]mHr{l) C / for all a. For a < m this is obvious.

Suppose it is true for all β < α. If α is a limit ordinal, then

^ Π J^ = Ja.

However, if α — 1 exists, then

JmHr (/) = (/ 4- Jm^H) r (/) Q JJmHr (/) c JJ^1 = J a .

Lemma 9. // R zs aw annihilating ring with a transfinitely nilpotent jacobson

radical J and with the properties listed in the statement of Lemma 7, Η is a left

ideal of R, and dim(H//H) > KQ, then

thick (#//#)>dim {H/JH).

Proof. By [l] (Chapter III, ^6, Theorem 2), Lemmas 6 and 7 imply the existence

of a subset fe C Η such that

Η = R<§-{-JH and dim (r (Jg)/r (g')) > Card & = dim (/f/J/i) > SY

But then, according to Lemma 5, for a suitable idempotent e. and a left ideal L we

have

c / (r (7^) &·) Q L
and

dim (/?/L) > dial (r (yg)/r (g)) > dim (H/JH).
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Since JH - J& + J H, by taking Lemma 8 into account, we obtain JHr(j<&) C Γ Ί α / α =

0, whence JH C lr(J&) = J& C L, and consequently

thick (/?////) > thick (#/L) > dim (R/L) > din (////#).

Lemma 10. // R is a self-injective left annihilating right S-ring with Jacobson

radical J and the left R~modules R/Jn are Noetherian for η = 1, 2, . . . , then all sub-

modules of the left R-module /?//ω are countably generated. However, if, in addition,

R/j ω contains a submodule not admitting a finite system of generators and R has the

properties listed in the hypotheses of Lemma 7, then there exists a left ideal I of R

such that ]ω <Z I and dim(////) = X Q.

Proof. Let Η be a left ideal of R containing ]ω. Let us set Η = HnJn (n =

0, 1, 2, . . . ) . Of course, Η = DQ + Η 1 ? where DQ is a finitely generated left ideal of

R. Here, if Η = Η ρ we may assume that DQ = 0. Let us assume that we have found

finitely-generated ideals DQ, D,,..., D _ j with the following properties:

a) Hi=

b) (

c) if D. C//.., , then D. = 0.
ζ — ζ + 1 ' ζ

Since

rr ιττ TJ // TJ r-\ /1+1\ s^s I f-T I flt+l\i jtl+1 .— rtl ι jTl+1

Hnftin+l — linf{tin \\J ) ^ (tin -\- J )fJ C = J fj ,

it follows from Lemma 6 and properties of completely reducible modules ([l], Chapter

III, §6, Theorem 2; Chapter IV, § 1 , Corollaries 1 and 3) that

. Hn/Hn+1 - ({Do + D1 + ... + ZVx) Π y" + Hn+1)lHn+l 0 (D f l + Hn+1)fHn+1

for some left ideal £> C // . If D C // . , , we set D = 0 . Since the left Λ-module
η — η η — η + 1 ' w

β//72 is Noetherian, the left ideal D can be taken to be finitely-generated.. It is

obvious that properties a)—c) are valid. Let us set Η = J + DQ + D ̂  + · · · . It is

clear that Η = Η' + Η for each n. Since

r (//„) = r (Ir (Η) Π lr (Jn)) = r/ (r (//) + r (Jn)) =>r{H) + r (J%

we have

r (H) = r (//') Π r (//„) = r (//') Π (r (Η) + r (7")) = Λ (//) 4- r (//') Π r (Jn),

i.e. r{H')nr{Jn) CriH) tot all n. Hence

r (//') = r (Hf) Π r ( Ο = r(//') Π rl (U r (7"))

οο οο

and consequently
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To prove the first assertion we have only to observe that H'/J is a countably-gener-

ated left R-module. We now assume that the left R-module H/j is not finitely gener-

ated. If D . C H . + 1 for all i > p, then, by construction, D. = 0 for i > p. Hence

which implies that Η/]ω is finitely generated. Thus there exist arbitrarily large

values of i for which D. £ W. + 1 . But then among the idempotents mentioned in Lem-

ma 7 there is an e, such that e,D. £ Η . + 1 for i = n-^, «2, . . . , where «^ < «2 < · · . .

In each set e,D choose an x. not belonging to f/ . + 1, and set J = / ω + Rx^ -+- Rx_

+ · · · .

Suppose that ax. e Rx 1 + · · · + Rx._ .̂ By b), ax. ε Hn + 1 . If ae, £. ], then

e,ae, fc J since e,ae, e / for I ^ k. By the properties of local rings ([4], V3.7,

Proposition 1), for some b e e,Re, we have

contrary to construction. Thus, αχ. = ae, χ. € / / , i.e. the system |R(x. + ]l)\i = 1, 2,

. . . } is an independent system of submodules of / / / / , q.e.d.

Lemma 11. An annihilating ring R with a transfinitely nilpotent Jacobson radical

J and which satisfies the conditions of Lemma 7 is left-Noetherian.

Proof. Let u s assume that d i m ( / n / / w ) > Κ Q for some n. Of course, we may

assume that dim(/V/ z ) < Ν Q for ζ = 1, . . . , « - 1. By Lemma 9,

thick {R/Jn+1)>diT\{Jn/Jn+1).

On the other hand, a simple induction using Lemma 3 permits us to establish that

thick (R/jn) < KQ. Again applying Lemma 3, we obtain

dim (Jn/Jn+1) < thick (R/Jn+l) < dim (Jn/Jn+1) + thick (R/Jn) = dim (Jn/Jn+1),

which, of course, is impossible. Thus, all the factor modules Jn/jn are Noetherian,

which implies that all the left R-modules R/Jn are Noetherian (see [4], §1.4, Propo-

sition 6). If the left R -module β / / ω is not Noetherian, then, according to Lemma 10,

we have dim(////) = NQ for some left ideal / of R which contains ]ω. Since

(// + 7^)/// C ////, the module (// + J^/Jl is completely reducible, and by Lemmas

3 and 9, we have

No = dim (I/JI) < thick (R/JI) < dim ((// + Γ)JJI) + thickCCR/// + ^ω)).

On the other hand, well-known properties of completely reducible modules ([l], Chap-

ter IV, §1) imply that

dim ({JI + r )/JI) < dim {I/JI) = No.



520 L. A. SKORNJAKOV

Consequently

No < thick (R/(JI + Γ)) < thick (R/Ja),

which contradicts 'Lemma 10. The fact that R/]°} is Noetherian implies that the chain

Γ = ir (f°) c / (Jr (/°)) £ / (J2r (/°)) c ...

must stabilize. But then JmriJa)) = ]πι + 1τ(]ω) for some m, and by Lemma 8

jmr {Γ) = Λ (/°) r (0) c f| 7° = 0.
α

Hence Jm C UJ0) = JM C Jm+1 C Jm, and consequently f = f + 1 C Π / = 0 . Thus
R = R/]m and is Noetherian by what we have proved earlier.

Lemma 12. // the ] acobson radical J of R is trans finitely nilpotent and e =

e e R, then eje is transfinitely nilpotent.

Proof. Suppose (β]β)β= (e/e)^+1. It is clear that (eJe)&Cj\ If {e]e^C]°^1,

then

{eJef = (eJe) (eJef Q Λ/01"1 = Ja.

Consequently (eje)^ C D j " = 0.

Proof of the Main Theorem. The validity of the implication (!)==»(2) is well known

([3], Theorem 58.6). The implication (2)=»(3) is a consequence of Lemma 6 and its

right-hand analog. The equivalence of properties (3) and (4) follows from Lemmas 1

and 2. Finally, suppose R satisfies condition (3). Since a left-annihilating ring is

obviously a right S-ring, Lemma 6 implies the classical semisimplicity of the factor

ring R/j, where / is the Jacobson radical of R. Taking into account the Wedderburn-

Artin theorem and other well-known results ([l], Chapter III, §3; §8, Propositions 5

and 1; 5*7, Corollary), as well as the Faith-Utumi theorem on lifting idempotents ([ll],

p. 174, Theorem 4.5), we obtain

w h e r e e. . = e.., e. .e,, = 0 for (i, j) ̂  (k, I), e ..Re,, C / for ι Φ k, t h e e . .Re •. a r e

l o c a l r i n g s , a n d t h e left /^-modules Re.. a n d Re-, a r e isomorphic» Moreover, t h e r e

exist e lements u-. e e.,Re.. and ν.. £ e ..Re., such that e . , = u.v.. and e.. = v-.u.. ( [ l ] ,
i] ι i i] i] i] 11 ιί i] η i] ij 7̂ '

Chapter III, §7, Proposition 4). Let us set e = e n + e21 +' — v e i> R = eRe a n <^ / = eJe·

It is known that / is the Jacobson radical of R ([l], Chapter III, §7, Proposition 1).

We shall prove several auxiliary propositions.

(a) The rings e,Re-, and e.Re.. are isomorphic.

To prove this it is sufficient to note that the mapping φ defined by φ(χ) =

ν. .xu .. for all x e e,Re., is the desired isomorphism.

(b) If χ € R, L is a left ideal of R, and eLx = 0, then Lx = 0.

In fact, e • .Lχ — ν . .eu. .Lx C ν. .eLx = 0, whence
z ; z; ij — i]

Lx = ^e^-Lx = 0.
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Similarly, we may prove

(c) // χ e R, I is a right ideal of R, and xle = 0, then xl = 0.

Let /( ) and F( ) have the same meaning in R as /( ) and Κ ) have in R. It is

easily verified that Γ(Δ) = er(&)e and / (Δ) - e/(A)e for every subset Δ C R.

(d) Fl (l) = I for every right ideal I of R.

In fact, if χ e r I (I ), then χ e eRe and

el(I)x=el(I)ex = l(7)x = 0.

By (b), it follows that /(/ )x - 0, i.e.

Thus r I (/ ) C / . The reverse inclusion is obvious.

Similarly, we may prove

(e) Z7(L) = L for every left ideal L of R.

From (d), (e) and Bjork's results ([8], p. 64, Theorem LI) we have

(f) R is a left self-injective annihilating ring.

From (f) and Lemma 12 it follows that R satisfies the hypotheses of Lemma 11.

Consequently R is left Noetherian. By an Eilenberg-Nakayama theorem ([9], pp. 11—

12, Theorem 18), R is quasi-Frobenius and, in particular, Artinian and right self-in-

jective. By (a) the Jacobson radical of each of the rings e.Re.. is nilpotent ([l],

Chapter III, § 1, Theorem 1; §7, Proposition 1). By the results of Bjork ([8], p. 64,

Theorem 1.1; p. 7 2, Theorem 6.2), R is right self-injective and right and left complete

(co-complete in Bjork's terminology), after which we may cite a theorem of Koifman

([2], p. 58, Theorem 2.4).

Example. Let S be the ring of generalized power series studied by Levy ([14],

p. 151). The factor ring S/(x ), like all proper factor rings of S, is self-injective.

It is easily verified that every ideal of the ring contains a least ideal (x )/(x> ).

By [15] (p. 60, Theorem 3.4), R is a PF-ring. The fact that it is annihilating follows,

e.g., from Lemma 6 (besides, this is readily established by a straightforward calcu-

lation). Nevertheless, it is obvious that R is not quasi-Frobenius.

Remark. It is not yet clear whether it is impossible to restrict ourselves to a

one-sided annihilator condition. Moreover, the question of whether there exist one-

sided PF-rings remains open.
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