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MORE ON QUASI-FROBENIUS RINGS
UDC 519,48
L. A. SKORNjAKOV™

Abstract. Let R be aring and J its Jacobson radical. Let us set fl: I,
7%= f]a-l, and ]a:nB«x]B if a is a limit ordinal. We call a ring an annihilating
ring if the left (right) annihilator of the right (left) annihilator of an arbitrary left
(right) ideal [ is / itself. We prove that a ring R is quasi-Frobenius if and only if
it is a left self-injective annihilating ring and J%=0 for some transfinite o

Bibliography: 15 items.

Up to the present time numerous criteria have been obtained for a ring to be quasi-
Frobenius (see, e.g., {21, 131, (811101, [12], [13]). The original definition of a quasi-
Frobenius ring includes annihilator conditions, whereas most of the criteria include
self-injectivity. Moreover, some sort of chain conditions are imposed. In this note we
determine how the annihilator conditions and self-injectivity may be combined. Fur-
thermore, a certain restriction is imposed on the radical. An example is given which
shows the restriction to be a necessary one.

All rings under consideration are assumed to be associative with identity element.

If R is aring and H is a subset of R, we set

l(H)={x]x€R,'xh=0 for all hEH)}
and

r(H)={x|x€R, hx=0 forall hEH}.

We shall say that a ring is left-annihilating if I(1) =1 for every left ideal I. A
subset H of R is called right-balanced if for every mapping [ of H into R for which
each relation Zaihi =0, a; €R, b, € H, implies Eaihif(hl.) = 0, the intersection
ﬂh ey (/(P) + 7(h)) is nonempty. A ring is called right-balanced if all its subsets are
right-balanced. The properties of being righi-annibilating and lefi-balanced are de-

fined analogously. A ring is called anaihilating if it is both right- and left-annihilating.

AMS (MOS) subject classifications (1970), Primary 16A36, 16A34, 16AS2.
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512 L. A. SKORNJAKOV

If I is an ideal of R, we set I' =1, %= 11%" ! and 1%= Ny 17

nal. If /=0 for some transfinite ordinal o, then I is called transfinitely nilpotent.

if a is a limit ordi-

It is easy to check that nothing is changed if instead of [* = 17! we set 1%= 14711,

Main Theorem. The following properties of a ring R with a transfinitely nilpotent
Jacobson radical are equivalent:

(1) R is quasi-Frobenius.

(2) R is left and right self-injective, while AL} and II) are nonzero for every
left ideal L and right ideal 1 distinct from R.

(3) R is aleft self-injective annibilating ring.

(4 R is aright-balanced annihilating ring.

Note. This theorem generalizes a result of T. Kato (113], p- 493, Theorem 10},
who proved that an annihilating two-sided self-injective ring with nilpotent Jacobson
radical is quasi-Frobenius.

Let us begin by proving some lemmas.

Lemma 1. If I is a right-balanced left ideal of a ring R and rl(a) = aR for each
a € R, then for each homomorphism ¢: | > R there exists an element s € R such that
x¢ = x5 for all x €.

Proof. Since [(x) C /(x¢) for all x €1, we have

x@€ri(xg)=rl(x)=xR,

i.e. x¢p = xf(x), where f(x) € R. If Eaixi =0, a, €R, x, €1, then
Zaixif () = Za’ (xep) = (Z a[xl) ¢ —=0.

Consequently, there exists an s € ﬂxe, (/(x) + {x)). Hence xs = xf(x) = x¢ for all
x €L

Lemma 2.- A left self-injective ring is right-balanced.

Proof. Let H be a subset of a left self-injective ring R. Let us consider the
mapping [ mentioned in the definition of a balanced ring and the left ideal I = RH.

Let us define a homomorphism ¢: I > R by setting

(Slats) ¢ = Satif (k) (@ €R, h€H),

and let us pick an s € R such that x¢ = xs for all x €. Then A(s - f(h)) = hop -
hf(h) =0 for all h € H, so that s € fh) + Hh) forall b €H.

A system of nonzero submodules of a left (right) module is called independent if
each submodule of the system has zero intersection with the sum of the remaining
ones. By the Goldie dimension of a module we mean the smallest cardinal number
which is greater than or equal to the cardinality of every independent system of sub-

modules. The least cardinal number which is greater than or equal to the Goldie dimen-
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sions of all factor modules of a module will be called its thickness. We shall denote
the Goldie dimension and the thickness of a module A by dim A and thick A, respec-
tively. We note that both the Goldie dimension and the thickness of a completely re-

ducible module coincide with. the cardinality of the set of all its irreducible summands
({1, Chapter 1V, $1).

Lemma 3. If A, B and C are left R-modules, A C B CC, if the factor module
B/A is completely reducible, and if dim (B/A) > Ky then
thick (C/A) <dim (B/A) +thick (C/B).

Proof. Let us consider the direct sum
2 (Ho/D)ESC/D,
acQ

where ACD & H, Letus set W=18B n(EaeﬂHa). The module W/A is completely
reducible. Since W/D == (W/A)/(D/A), the module W/D also turns out to be complete-
ly reducible ({11, Chapter IV, $1, Corollary 3). Here we have

dim (W/D) <dim (W/A) <dim (B/A)

(L1], Chapter 1V, $1). Each irreducible summand of W/D belongs to the finite sum
(Ha/D) + ... 4+ (Hq, /D).

Consequently, W C % +H ,, where Q' CQ and

ae @
Card Q' = din (¥/D) < din (B/A).

If y£Q  and h eH NE o q(Hg+B), then h=3hg+b,hgcHg b eB.

Hence
be( N Hg)ﬂBg( S Hg) N Wg( > Hﬁ)n(g Ha)gD.
BEQ’ peQ’ ) peQ’ acQ’
Thus
RCHW L 3 Hp) =D
\ZYAHER

and, consequently,

HyN ) (Hy+ B)SD.

v#BEQ’
But then

(Hy “B)1 3 (He+ BISB+ D,

VABEQ”
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i.e., the sum
S == 2 ((Hp + B - D)/(B + D))
BGR
is direct. Since C/(B + D) =(C/B)/((B + D)/B), we have

Card (Q\ Q") < thick (C/B),
whence
Card Q == Card Q" - Card (Q\ &’ ) dim (B/A) -+ thick (C/B).

If MC &, where & is a subset of a ring R, then by a right (M, &)-hyperplane we
mean the set of elements of the form Yx A+ Ey b. i where a, o] ER, x, €M, y; €
&\M and 2a, =0. It is clear that a nght (M g)—hyperplane is a right xdeal of R

Lemma 4. Let & be an infinite subset of R. 1f for each nonempty subset M C &
the left annibilator L of & is different from the left annibilator of the right (M, &)-
byperplane, then

dim (R/L) >Card &.

Proof. As is well known ([5], $14, Example F), there exists an independent sys-
tem @ of subsets(!) of & such that Card ® > Card &. If FdEMC EJ, we let S(M) de-
note the right (M, &)-hyperplane. Repeating word for word the arguments of the proof

of the lemma in [6], we see that
. n
SMy)+ N SMi) = Z xR
=1 X €%

for any choice of distinct subsets M,, M,,..., Mn € ®.(2) Hence

HSM) N 2, HSM)SHSWM) N (ﬂ S(My))

=1(S(My) + [} S(M) = L

This proves that the sum ZM Eq)(l(S(M))/L) is direct. The inequality HS(MY)/L £0 is
included in the hypothesis.

Lemma 5. Let R be a right-annihilating ring with 1=e; +---+ e _, where el
n I3

(1) We recall that a set X of elements of a Boolean algebra B is called independent (see
[5], 8 14) if x: l/\' . '/\xin #£0 for every choice of distinct elements x; of X and numbers € =
11 (here xl = x and x~! is the complement of x ) It is easy to verify that this implies the
impossibility of expressing any element of X in terms of the rest using the operations of union,
intersection and complementation a finite number of times.

(2) As has been noted by W. Stephenson, the main result of [6] is valid only for local rings.
In fact, in the proof of 2 lemma in that paper it is assumed that (in the terminology of the pres-
ent note)the left (&, & > and (M, & »hyperplanes are distinct for any choice of a nonempty
subset M of the independent system ®. However, this assertion has been proved only for local

rings.
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e; #0 and e;e; =0 for i#] and the e,Re, are local rings, H and | are right ideals
of R with .
H/I = 2 (H/I) and CardQ=1_> N,

aEQ

Then there exist a number i and a left ideal L of R such that

[(He)=L and dim (R/L)>t.

Proof. By choosing from each H  one element not belonging to I, we form a sub-
set © of R. Of course, Card ¥ = t. In ¥ let us consider relations 0, (i=1,...,n),
defined as follows: x@z.y if and only if xe, - ye, €. It is clear that the 91‘ are equiva-
lence relations. If xfy for all i, then x —y €1, so that x = y. Therefore $ may be
considered as a subset of the direct product (/60 )x.+.x (@/Gn). This makes it
possible to assume that Card(9/6,) = t. It is clear that at most one equivalence class
of 0, contains elements which fall into I after right multiplication by e;. Choosing
one element from each of the remaining classes and multiplying on the right by e;, we
obtain a system & of elements of R. Of course, Card G-_tand ING = &g, It Xgs X1

-, X, are distinct elements of g, then

m m
xRN Z xR & Hq, () 2 Hy, = 1.
i=1 i=1
We see that for any nonempty subset M C & the right ideal &R is different from the
right (M, g)-hyperplane. In fact, if this were not so, then for every x, € M we would

have

xO = xoa + 2‘ xbx "}‘ Zycya

where g, bx, c, € R, x, £xeM ye g\M and a + sz = 0. Since we, = u for all

u € &, we may suppose that a, b, ¢, €ejRe,. Let ] be the Jacobson radical of
eRe;. If a e j—, then (e1 - a)d = e, for some d € e Re; (see [4], §3.7, Proposition
1). Hence

Xp = Xo&r = R xbxd + > ye d €x,R 1 D) xRS,
Xo7XEE

which contradicts the construction of &. If, however, a £ T, then for some x ¢ M\xo
we have bx £ ]. Since bx is invertible in elRel, as above there arises a contradic-
tion to the condition that x ¢ . Because R is right-annihilating, this result permits
an application of Lemma 4. It remains to set L = (&) and turn our attention to the
validity of the inclusion /(He ;) C L, which follows from & CSe, CHe,.

We recall that a ring R is called a left PF-ring if every exact left R-module is
a generator of the category of all left R-modules, and a right S-ring if #(I) £0 for

every left ideal I distinct from R.

Lemma 6. If R is a left self-injective right S-ring with Jacobson radical |, then
R is a left-annibilating left PF-ring, every simple left R-module is isomorphic to a
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left ideal of R, and the factor ring R/] is classically semisimple.

Proof. By the results of T. Kato ([13}, p. 490, Theorem 7), a ring R satisfying
the conditions of the lemma turns out to be a left PF-ring. The classical semisimplic-
ity of R/] was proved by Utumi ([15], p. 60, Theorem 3.4). Azumaya ({7}, p. 703,
Theorem 7) noted that every simple left module over a left PF-ring is isomorphic to a
left ideal. Therefore, the fact that the ring is left-annihilating is a consequence of
results due to Bjérk (8], p. 65, Proposition 2.1).

Lemma 7. Let R be a left self-injective left-annibilating ring, | its Jacobson
radical, and 1 = ey +-ete,, where el?“ =e; £0, the el.Rel. are local rings, e;e; = 0
and e;Re; CJ for i#j. Let I and H be left ideals of R, I CH, & an infinite subset
of H, and

H/I= S\ R(x +I),
X€E
where the R(x + I) are irreducible left R-modules. Then
dim (r(J&)/r(&))>Card &.

Proof. By Lemma 6, R is a left PF-ring and there exist isomorphisms
% : R(x+ I)— Rey,

where the C; lie in the left socle C of R. Of course, there exists a number 7 such
that ¢ €c. e. £0. In addition, ¢_ € C. Changing the numbering, if necessary, we
x x 1 x

have

Card &, = Card&, where & = {x]|x €8, OsFceeCe).

If X a_x =0, where a_ € R, then a_x €1 for every x € &. Hence a_c' =0 and
x€8 x x x x"x

thus a c_=0. Now let @ be an independent system of subsets of él with Card @ >

Card 61 ({51, $14, Example F). By what was proved above, for each M € ® the con-

dition

¢y, if x€EM,

X =
P {o, i xE&M,

defines a homomorphism ngM: R(g) - Ce; of left R-modules. By the fact that R is
left self-injective, there is an element s, € Re; such that x¢, = xs, forall x € &.
By [15] (p. 62, Proposition 3.10) we have ]{:‘-’SM CJC=0,i.e. sy € J&). If

Smam, + ... - smam, €r(8),
where M. € ® and aj € R, then, choosing an element
z

xeMN\MU ... UM UM U o220 U M),

we obtain

C'xaMi = stiaMi = x(leaMl /i" e . ‘}" sMkaMk) = 0
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If elaMie1 £], then e = elaMielb for some b € e Re; (4], $3.7, Proposition 1).
Hence

Cx = Cxby = Cre,aMh = Cxameb =0,

which is impossible. If however, eay e; €7/, then
1

SmamM; = SMeaM; = Smedmey —+ SmML10M; (1~ 8,) € SMiJ Cr (%),

since

su,J = CJ =0,

Thus the submodules (SM + AG)R, where M € @, form an independent system of
submodules of the factor module /(J&)/A&). Since Card {sylM € ®} > Card &, the

lemma is proved.

Lemma 8. If | is the Jacobson radical of a ring H, | and H are left ideals, and
JPH =1+ J™ 1l for some m, then J™HAI) C ﬂa]“.

Proof. We shall prove that J™HAI) C | for all a. For a <m this is obvious.

Suppose it is true for all B < a. If a is a limit ordinal, then

JTHr( < () JP = J%
B<a

However, if a — 1 exists, then
JHr({) = (I + J™'H)r () S 1" Hr (1) S I = T

Lemma 9. If R is an annihilating ring with a transfinitely nilpotent Jacobson
radical | and with the properties listed in the statement of Lemma 7, H is a left
ideal of R, and dim(H/JH) > R, then

thick (R/JH) >dim (H/JH).

Proof. By [1] (Chapter III, $6, Theorem 2), Lemmas 6 and 7 imply the existence
of a subset & C H such that

H =R&E-+JH and cim(r(J&)r(&)) > Card & = dim (H/JH) > N,
But then, according to Lemma 5, for a suitable idempotent e; and a left ideal L we

have

JE=lr(J8) = l(r(J&)e)=L

and

dim (R/L) > dim (r (J&))r (8)) >dim (H/JH).
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Since JH = J& + J°H, by taking Lemma 8 into account, we obtain JHAJ&) C na]CL:
0, whence JH CI#(J&) = J& CL, and consequently

thick (R/H) > thick (R/L) > dim (R/L) > din (H/JH).

Lemma 10. If R is a self-injective left annibilating right S-ring with Jacobson
radical | and the left R-modules R/]" are Noetherian for n=1, 2,..., then all sub-
modules of the left R-module R/]® are countably generated. However, if, in addition,
R/]“ contains a submodule not admitting a finite system of generators and R has the
properties listed in the hypotheses of Lemma 7, then there exists a left ideal 1 of R
such that | C1 and dim(I/]1) = R .

Proof. Let H be a left ideal of R containing J“. Let us set H =HN J" (o=
0,1,2,...). Of course, H = Dy + H,, where D is a finitely generated left ideal of
R. Here, if H = H,, we may assume that D, = 0. Let us assume that we have found

finitely-generated ideals Dy, Dy,..., D _, with the following properties:

a) Hi= (D+D+..+D:) '+ Di+H,yy;
b) (Do+D+..+D;_) ND:i=H,,,;
¢) if D, CH,,y, then D =0.

Since

Hn/Hn+1 — Hn/(Hn ﬂ Jn+1) ~ (Hn + Jn+1)/Jn+1 g Jn/Jn+1,

it follows from Lemma 6 and properties of completely reducible modules ([1], Chapter
I, $6, Theorem 2; Chapter IV, $1, Corollaries 1 and 3) that

' Hn/Hn-H = ((Do"r' D1+ e +Dn—1) m Jn + Hn+1)/Hn+1 @ (Dn + HIH—I)/HHH

for some left ideal D,CH,. If D, C Hn+1, we set D= 0. Since the left R-module
R/]"'H is Noetherian, the left ideal D can be taken to be finitely-generated. It is
obvious that properties a)—c) are valid. Let us set H = ]J“+ Dy+Dy+---. Itis

clear that H = H' + H_ for each n. Since
r(Ha) = r(lr (H) N Ir (I%) = ri(r (H) 4+ r (J7) = r (H) + r (I%),
we have
r{H)=r(H)Y O\ r(Hn) =r(H)YN(r(H) +r (") =r{H)+rH)D r (Y,

ive. {H"YNAJ™) CAH) for all n. Hence

FH) = F () (7 (%) = r () (D) r67)

=r@N O @M =0 cEN IS )

and consequently



MORE ON QUASI-FROBENIUS RINGS 519
H =Ir(H)=Ir(H)=H

To prove the first assertion we have only to observe that H'/]“ is a countably-gener-
ated left R-module. We now assume that the left R-module H/]® is not finitely gener-
ated. If D, CH, ., forall i>p, then, by construction, D; = 0 for i > p. Hence

H=H =J"+Dy+D,+ ... + D,,

which implies that H/J is finitely generated. Thus there exist arbitrarily large
values of i for which D, ¢ H.,,. But then among the idempotents mentioned in Lem-
ma 7/ there is an e, such that esz’ Z Hi+1 for i =ny, ny, ..., where n; <n, <...
In each set eanj choose an x, not belonging to Hn,‘ﬂ’ and set I = ]J“+ Rx, + Rx,
TR
Suppose that ax; € Rxy +--++ Rx,_;. By b), ax; €H, A1 If ae, £], then
pae, £] since ejae, €] for l;é k. By the properties of local rings ([4] $3.7,

Propos1t10n 1), for some b € e,Re, we have
Xj = epXj = bepagpy; —= beyax; ¢ H;,].“,

contrary to construction. Thus, ax; = ae,x; € ]I, i.e. the system {R(x, + JD|i = 1, 2,

. } is an independent system of submodules of I/]I, g.e.d.

Lemma 11. An annibilating ring R with a transfinitely nilpotent Jacobson radical

] and which satisfies the conditions of Lemma 7 is left-Noetherian.

Proof. Let us assume that dim(]"/]"+l) > R, for some 7. Of course, we may
assume that dim(]i/]iﬂ) <R, fori=1...,n-1 By Lemma9,

thick (R/J™") > din (J"/J™).

On the other hand, a simple induction using Lemma 3 permits us to establish that

thick (R/]J”) < K ;. Again applying Lemma 3, we obtain
dim (J"/J™*") < thick (R/J™") < dim (J"/J™") +- thick (R/J™) = dim (J"}J™"),

which, of course, is impossible. Thus, all the factor modules ]"/]"+1 are Noetherian,
which implies that all the left R-modules R/J" are Noetherian (see [4], § 1.4, Propo-
sition 6). If the left R-module R/J® is not Noetherian, then, according to Lemma 10,
we have dim(I/]I) = K for some left ideal I of R which contains J¥. Since
JI+]9/]1 C1/]1, the module (JI + J)/]I is completely reducible, and by Lemmas

3 and 9, we have

No = dim (IJJ1) < thick (R/JT) < din (JT + JOWIT) + thick(RIJT 4 T®)).

On the other hand, well-known properties of completely reducible modules ({11, Chap-
ter IV, $1) imply that

dim ((J1 -+ JO)WT) <L<din (IJ]) = §,.
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Consequently
No < thick (R/(JT + J®)) < thick (R/J®),

which contradicts 'Lemma 10. The fact that R/J“ is Noetherian implies that the chain
JO=Ilr(JYlUrNSIJr(INE ..

must stabilize. But then J”#(J%) = ]T”Hr(]w) for some m, and by Lemma 8
Jr () = J"r (J)r (0) = O J*=0.
a

Hence |™ CIAJ*) = ]wE]mH CJ™, and consequently J” = J7*1 C ﬂJ“ = 0. Thus

R =R/]™ and is Noetherian by what we have proved earlier.

Lemma 12, If the Jacobson radical ] of R is transfinitely nilpotent and e’ =

e € R, then e]e is transfinitely nilpotent.

Proof. Suppose (e]e)Bz (e]e)BH. It is clear that (e]e)BC_:_Il. If (e]e)’Bg]a’—l,

then

(e']e)ﬁ = (eJe) (eJo)P = 4% = JO.

Consequently (e]e)ﬁg na]a =0.

Proof of the Main Theorem. The validity of the implication (1)=(2) is well known
([3], Theorem 58.6). The implication (2)=>(3) is a consequence of Lemma 6 and its
right-hand analog. The equivalence of properties (3) and (4) follows from Lemmas 1
and 2. Finally, suppose R satisfies condition (3). Since a left-annihilating ring is
obviously a right S-ring, Lemma 6 implies the classical semisimplicity of the factor
ring R/], where | is the Jacobson radical of R. Taking into account the Wedderburn-
Artin theorem and other well-known results ([1], Chapter III, $3. 88, Propositions 5
and 1; §7, Corollary), as well as the Faith-Utumi theorem on lifting idempotents ([11],
p- 174, Theorem 4.5), we obtain

1:(0u+ LAY +€1p‘)—}— e w —]"‘(eml‘&“ LR *‘]‘ @mpm),

where 91.2]. =€ €€y = 0 for (i, j) £ (&, 1), einekl CJ for i 4k, the el.].Rei], are
local rings, and the left R-modules Re;. and Re;, are isomorphic. Moreover, there
exist element.s U € eiIRei]. and v € ez.J.ReZ.1 such that €= ul.].viiind €= vijuﬁ (1],
Chapter III, $7, Prgposition 4). Let us set e = eppt eyt e,y R=¢Re and | = efe.
It is known that ] is the Jacobson radical of R ([1], Chapter II, $7, Proposition 1).

We shall prove several auxiliary propositions.

(a) The rings e, \Re;; and ez.].Rez.]. are isomorphic.

To prove this it is sufficient to note that the mapping ¢ defined by (x) =
v.xu_.. forall x € e, Re., is the desired isomorphism.
17 17 z I3

(b) If x e R, L is aleftideal of R, and eLx =0, then Lx =0,

In fact, e, Lx = v..eu. Lx Cv..elLx =0, whence
17 14 17 - 17

Lx = Yejlx =0,

i
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Similarly, we may prove

(c) If x €R, ] is aright ideal of R, and xle =0, then xI =0.

Let () and 7( ) have the same meaning in R as /() and A ) have in R. It is
easily verified that 7(A) = erlA)e and Z(A) = el(A)e for every subset A CR.

(@ FID) =T for every right ideal T of R.

In fact, if x erl (I), then x € eRe and

el(INNx=el(lex=[(I)x=0.
By (b), it follows that I )x =0, i.e.
x€erl(I)e=elRe=eleRe=el=1.

Thus 77(7) C I . The reverse inclusion is obvious.

Similarly, we may prove

(e) I7(LY =L for every left ideal L of R.

From (d), (e) and Bjérk’s results (I8], p. 64, Theorem 1.1) we have

(f) R is aleft self-injective annibilating ring.

From (f) and Lemma 12 it follows that R satisfies the hypotheses of Lemma 11.
Consequently R is left Noetherian. By an Eilenberg-Nakayama theorem ([9], pp. 11~
12, Theorem 18), R is quasi-Frobenius and, in particular, Artinian and right self-in-
jective. By (a) the Jacobson radical of each of the rings e, Re,. is nilpotent ({11,
Chapter III, €1, Theorem 1; $7, Proposition 1). By the results of Bjsrk (18], p. 64,
Theorem 1.1; p. 72, Theorem 6.2), R is right self-injective and right and left complete
(co-complete in Bjdrk’s terminology), after which we may cite a theorem of Koifman
([2], p. 58, Theorem 2.4).

Example. Let S be the ring of generalized power series studied by Levy ([14],
p- 151). The factor ring S/(x >%), like all proper factor rings of S, is self-injective.
It is easily verified that every ideal of the ring contains a least ideal (%) /(x>").
By [15] (p. 60, Theorem 3.4), R is a PF-ring. The fact that it is annihilating follows,
e.g., from Lemma 6 (besides, this is readily established by a straightforward calcu-
lation). Nevertheless, it is obvious that R is not quasi-Frobenius.

Remark. It is not yet clear whether it is impossible to restrict ourselves to a
one-sided annihilator condition. Moreover, the question of whether there exist one-

sided P F-rings remains open.
Received 7/JUNE/73
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