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PURE AND FINITELY PRESENTABLE MODULES,
DUALITY HOMOMORPfflSMS

AND THE COHERENCE PROPERTY OF A RING
UDC 512.7

E. G. SKLJARENKO

ABSTRACT. The homological properties of pure modules are considered, showing, in
particular, that for coherent rings the pure modules occupy roughly the same position with
respect to injective modules as the flat with respect to projective (for arbitrary rings). The
duality homomorphisms Τοτρ(Α*, F)^*Extp(F,A)* are examined in situations where
they are not isomorphisms; dependence of the structure of these homomorphisms on the
finite presentability or the purity of the modules F and A, as well as on the coherence of
the base ring, is studied. Characterizations of pure and flat modules in terms of duality,
and characterizations of coherence, semihereditariness and noetherianness in terms of
duality, purity and finite presentability are given.

Bibliography: 21 titles.

A submodule A c Β is called pure in Β if the mapping Μ <8> A —»Μ <S> Β is
monomorphic for every right module M. A module A will be called pure if A is a pure
submodule of any module containing it. Such modules are often called absolutely pure,
and other terms are also in use; see §1. In particular, obviously, all injective modules are
pure, and the two notions are equivalent if the base ring is noetherian.

The properties of pure modules and the position they occupy depend strongly on
whether the base ring is coherent; and the requirement of coherence plays the role, from
the homological point of view, of the distinctive condition of compactness. In the
category of modules over a coherent ring, the pure modules occupy roughly the same
position with respect to injective modules as the flat with respect to projective (over an
arbitrary ring). Many characterizations of pure modules are connected with finitely
presentable modules, there being even a certain duality between them (e.g., Lemma 1.4
and Proposition 1.11, Propositions 2.4 and 2.5, et al.), but a full duality is impossible: for
example, the requirement that purity be inherited under passage to quotient modules
reduces to the requirement of semihereditariness of the ring, while the requirement that
finite presentability be inherited (by submodules of finite type) is precisely the require-
ment of coherence for the ring.

In §1 we examine the mutually related properties of pure and finitely presentable
modules. Many of these are already known (for some we give brief proofs). Pure
modules are used to characterize the weak homological dimension of coherent rings in
terms of the right derived functors, in the second argument, of the functor <8>.
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18G20.

© American Mathematical Society 1979

173



174 Ε. G. SKLJARENKO

In §2 we examine the duality homomorphisms in situations where they are not
isomorphisms, and study the dependence of their structure on the finite presentability or
the purity of the modules involved, as well as on the requirement of coherence of the
base ring. In terms of duality we give related characterizations of pure and flat modules.

The results of §2 play an essential role in §3. Most of the facts collected into this third
section can be regarded as results of a negative character for modules over noncoherent
rings, since they show that various properties or assertions connected with purity, finite
presentability and duality, that are easily provable or self-evident in the category of
modules over a coherent ring, are lost as soon as we pass to the noncoherent case.

All modules will be assumed to be left modules, except as otherwise evident from the
text. Ring properties like coherence and hereditariness will be assumed to be satisfied on
the left.

§1. Pure and finitely presentable modules

LEMMA 1.1. Λ module A is pure if and only if it is pure in its infective hull A (see also

Proposition 1.7 in [6]).

Indeed, any inclusion A c Β determines inclusions A c A <z Β (see [5], Chapter III,
§11); hence, from the fact that A is a direct summand in Β it follows that A is a pure
submodule in Β and in B, since A c Β c B.

LEMMA 1.2. A submodule A d Β is pure in Β if and only if, for any free module Ρ of
finite rank and any finitely generated submodule Φ c P, every homomorphism Φ —» A that
extends to a homomorphism Ρ -» Β has an extension Ρ —» A. Similarly, a module A is pure
if and only if every mapping Φ -^ A extends to a mapping Ρ —> A {for any pair Φ c Ρ of
the designated type).

The first half of the lemma is a rephrasing of the characterization of pure submodules
in terms of "relations" (see [1], Chapter 1, Exercise 24 of §2; see also [6], Proposition
1.45, and also [19]). The second half follows from the first by Lemma 1.1 and the
injectivity of A.

COROLLARY 1.3. A direct product Ii\Ax is a pure module if and only if all the Ax are
pure.

LEMMA 1.4. A module A is pure if and only if Ext !(F, A) = 0 for every finitely
presentable module F.

To prove this, it suffices to write out the exact sequence of derived functors of the
functor Hom( , A) corresponding to the exact triple 0-»Φ-»Ρ—»F-*0, where Φ and Ρ
are finitely generated and Ρ is free, and to use Lemma 1.2.

REMARK 1.5. Modules A for which Ext\F, A) vanishes for every finitely presentable F
(or equivalently, that satisfy the condition in the second half of Lemma 1.2) are
sometimes called FP-injective (see [20], and also a similar definition in [10]). The
equivalence of these requirements to the purity of A is noted in [18], [20] and elsewhere
(see also [6], Propositions 1.30, 1.31 and 1.45). We show below (Proposition 1.11) that the
requirement on F of finite presentability cannot be replaced by the requirement of finite
generation.

Lemma 1.4 implies

COROLLARY 1.6. If in the exact triple O - ^ Λ — » 2 ? — » C - * 0 the modules A and C are

pure, so is the module B.
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LEMMA 1.7. The union of a directed system of submodules Ax of a given module (or the

direct limit of injections) is pure if all the Ax are pure (see [20], [18], [14]).

Indeed, suppose A = \JX Ax = lim x Ax, and let A c Β be any inclusion. From the

directedness of the system it follows that any element of Μ <8> A can be written as an

element of some Μ ® Ax. Hence the assertion follows from the purity of Ax and the

inclusions Ax c A c B.

The commutativity of the functor Ext with finite direct sums implies:

COROLLARY 1.8 (see [14] and [20]). A direct sum ΣΧΑΧ is pure if and only if all the Ax

are.

Since injectivity of direct summands implies injectivity of direct sums only for

noetherian rings [7], by Lemma 1.2 we have

COROLLARY 1.9 (see [18]). The notion of purity for a module is equivalent to the notion of

injectivity if and only if the ring is noetherian.

In particular, if pure submodules always separate out as direct summands, then the

ring is noetherian (cf. [8]).

In the general case, a limit of pure modules need not be pure. We note the following

result.

PROPOSITION 1.10 (see [20]). Each of the following requirements is equivalent to the

requirement of coherence for the ring'.

(a) For every finitely presentable module F, the natural transformation

l i m E x f (/% Αλ)-+Εχί*{F, limAj

is an isomorphism.

(b) A direct limit A = lim Ax of pure modules is pure.

The following assertion supplements Lemma 1.4. The proof, actually, presents a

method for constructing pure modules.

PROPOSITION 1.11. 4̂ module F with finitely many generators is finitely presentable if and

only if Ext'(F, A) = Ofor every pure A.

It suffices to show that if F has no finite presentation, one can exhibit a pure module

A such that Ext^F, Α) φ 0. Let 0 -* G -> Ρ -* F-> 0 be an exact triple in which Ρ is a

free module of finite rank, and let {gx} be an (infinite) system of generators in G of

minimal cardinality, indexed over all ordinals λ < ω, where ω is the first ordinal of this

cardinality. Let Gx be the submodule of G generated by all gv, ν < λ. Let ix be the

natural inclusion of G, in the injective hull A x = Gx. For A2, take the direct sum A x + G2,

where G2 = G2/Gx, and for i2 take the monomorphism which is equal to the sum of

some extension i'x: G2^>AX of the mapping ix and of the natural mapping G2-^>G2

cG2c A2. If the mappings /„: Gv -» Av have been constructed for all ν < λ, and if λ is

not a limit ordinal, then /λ: GX—>AX is constructed from ix_x and Gx in the same way as

i2 from ix and G2. Since the restriction of each /„ to Gfl, for a lower index μ, coincides

with iu, when λ is a limit ordinal we can take for /λ the natural mapping of Gx into

Ax = \JV<\AV. We have thus constructed mappings ix: GX^>AX for all λ < ω. By

Lemma 1.7, the module A = \J x Ax is pure. On account of the exact sequence for the
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functor Ext corresponding to the above exact triple of modules, it suffices to show that

the mapping i: G - » A , i = lim /λ, has no extension Ρ-> A. If it did, the fact that Ρ is

finitely generated would imply that i(G) is contained in some Ax, λ < ω; and this is

impossible, since by construction of ix this would mean that Gv+X/Gv = 0 for ν > λ,

contradicting the minimality of the system of generators { gx).

Let Q be the group of rational numbers reduced modulo 1. For any left module A, the

group A* = Ηοπι(Λ, Q) is a right module. We shall frequently make use of the natural

duality homomorphisms

p: Extp(M, A*) -* Torp(M, A)* and σ: Torp(A*, F) -* Extp(F,A)*,

of which the first is always an isomorphism (see [3], Proposition 5.1 in Chapter VI). As

for σ, it is an isomorphism for every finitely generated F, provided the ring is noetherian

(see [3], Proposition 5.3 in Chapter VI).

LEMMA 1.12. The natural transformation σ is an isomorphism if F is finitely presentable

and the base ring is coherent.

Indeed, in this case F has a projective resolution consisting of finitely generated

modules, and the lemma follows from the Remark to Proposition 5.3 of Chapter VI in

[3]·

LEMMA 1.13. Each of the following conditions is equivalent to the purity of the module A:

a) for every inclusion A c Β the mapping A* <8> A —» A* ® Β is monomorphic; b) the

mapping B* —> A* is a split epimorphism (in terms of pure submodules part b) is proved

in [8]).

Indeed, the condition that A* <8> A -» A* ® Β be monomorphic is equivalent to the

condition that {A* <S> B)* ->(A* <£> A)* be epimorphic, or, in view of the duality p, to

the condition that Ηοπι(Λ*, Β*) -> Ηοπι(Λ*, A*) be epimorphic, i.e., that B* -» A* be a

split epimorphism. If in the functor Ηοπι(Λ *, ) we replace the module A * by an arbitrary

right module Μ and run through the reverse argument, we obtain that Μ <S> A —» Μ <S>

Β is a monomorphism.

COROLLARY 1.14. If A* is flat, then A is pure.

PROPOSITION 1.15. If the ring is coherent, then a module A is pure if and only if A* is

flat.

Indeed, by Lemma 1.12 the natural transformation σ is an isomorphism when F is

finitely presentable. Hence, by Lemma 1.4, the purity of A is equivalent to the condition

that ΤΟΓ,(Λ*, F) = 0 for all finitely presentable F. It remains only to observe that every

module is the direct limit of finitely presentable ones, and that the functor Tor commutes

with direct limits.

REMARK 1.16. It will be shown below that the coherence requirement for the ring in

the preceding proposition is essential. A similar result for injective modules over a

noetherian ring is obtained in [11] and [8] (see also §3). Proposition 1.15 is the analogue

of the following assertion (see, e.g., [4]): a module A is flat if and only if the module A*

is injective. We note (see also [9]) that the purity of A* implies the injectivity of A*: the

fact that E\tl(M, A*) = 0 for all finitely presentable right modules Μ (Lemma 1.4)

implies, by the duality p, that Tor,(M, A) = 0, i.e., that A is flat.
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COROLLARY 1.17. // the ring is coherent, then a module A is pure if and only if

Extp(F, A) = 0 for ρ > 1 and all finitely presentable F.

Thus, E x t ^ F , N) can be calculated by means of pure resolutions of N, provided the

module F is finitely presentable.

Indeed, for the flat module A* we have Ίοτρ{Α*, F) = 0, ρ > 1 (see [2]), so that it

suffices to use the isomorphism σ.

COROLLARY 1.18. In the case of a coherent ring, if in the exact triple 0—> A —> Β —» C —>

0 the modules A and Β are pure, so is the module C (cf. question 10 on p. 134 of [6]

(question 7 on p. 127 of the translation)).

To prove this, it suffices to consider the exact sequence of the functor Ext correspond-

ing to the given triple, and to use Corollary 1.17.

Below (§3) it will be shown that the assumption of coherence in these last two

assertions cannot be omitted.

PROPOSITION 1.19 (see [20]). // the ring R is coherent, then its weak dimension w dim R

is equal to the smallest η such that Ext" + 1 (F, N) = 0 for all Ν and all finitely presentable

F.

Indeed, the inequality η > w dim R is ensured by the isomorphisms ρ (because every

module is the direct limit of finitely presentable ones). The reverse inequality is ensured

by the isomorphisms σ.

REMARK 1.20. In a standard fashion (see [3], Chapter VI, §2), the η in question, and

therefore also w dim R, can be characterized by the fact [20] that if in the exact sequence

0 ^> TV -* Λ0—> · · · - ·̂ Λ " -» 0 the modules A' are pure (for example, injective) for / < η

and for any N, then also A n is pure. Similar characterizations of weak dimension and of

related dimensional invariants of rings and modules, as well as relations between them,

are given in [9], [8], [15], [20], [17] et al.

It is known [12] that for the tensor product, regarded as a functor of two arguments,

the right derived functors Rq ® are equal to zero for q > 1 if R is a commutative

integral domain. The following result shows that the derived functors in the second

argument are in general different from zero and, when the ring is coherent, characterize

its weak dimension (or the usual homological dimension if the ring is noetherian).

PROPOSITION 1.21. If the ring is coherent, then the condition w dim R < η is equivalent,

for η > 1, to the condition that the functor Tof~\M, N), regarded as a right derived

functor of Μ <8> Ν in the argument N, is equal to zero; and for η = 1, to the condition that

Tor°(A/, N) is the image of the mapping Μ Θ Ν —> Μ <8> Υ° corresponding to the imbed-

ding of Ν into an injective module Y° (in both cases we have automatically Torq(M, N) =

0 for q > ri).

Let 0 -» Ν -» Y° -» · · · -» Yn~λ -> · · · be an injective resolution of N. If w dim R

< n, then, in keeping with Remark 1.20, the kernel Zn c Yn οϊ the mapping in the

resolution is a pure module; and by Corollary 1.18, so are the kernels Zq a Yq for

q > n. From the exact sequence

Μ (Χ) Ζ?-1 - ^ Μ (glV"7"1 - i Μ ® Z« -y 0

and from the purity of Ζq it follows that the kernel of Μ ® Yq~x —» Μ ® Yq coincides

with the image of a, which, in turn, is equal to the image of Μ <8> Yq~2 -> Μ ® Yq~l
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for q > 1, so that Tor9"\M, N) = 0, or to the image of Μ ® Ν -> Af ® 7° for ? = 1,
so that Tor°(A/, TV) is of the form indicated.

Conversely, the fact that Tor"~1(Af, N) is as described in the proposition means that
the kernel of Μ ® Yn~x -> Af <g> 7" coincides (because of the right exactness of the
tensor product) with the image of the homomorphism a, i.e., with the kernel of β. But
this means that the mapping Μ <8> Z" —» Μ ® y is monomorphic. Since the module Μ
was arbitrary, and the module Yn injective, it follows from Lemma 1.1 that Z" is pure,
and therefore w dim R < η by Remark 1.20.

It is evident from the proof that for coherent R the pure modules are acyclic with
respect to the functor Tor*(Af, ), so that to compute Tor9 (A/, N) we can use pure
resolutions of N.

For η = 1, the preceding results can be stated, without the assumption of coherence
for the ring, in the following form.

PROPOSITION 1.22. Each of the following is equivalent to the condition that the ring be

semihereditary (see also §3): a) the quotient modules of pure (injective) modules are pure

(see [18], [10]); b) the functor Tor°(Af, N) is as described in Proposition 1.21 (in which case

automatically Tor9 = 0 for q > 0); c) Ext2(/r, N) = 0 for every Ν and every finitely

presentable F.

Indeed, if R is semihereditary, it is coherent, so that a) and b) follow from Remark
1.20 and Proposition 1.21. As in the second part of the proof of Proposition 1.21,
condition b) implies that the quotient modules of injective modules are pure. If F is an
ideal of finite type, 5 - ^ C a n epimorphism with Β injective, and F -» C an arbitrary
homomorphism, then the latter extends, since C is pure, to a mapping /? —> C, which can
be covered by a homomorphism R-> B. There is thus obtained a covering F -» Β of the
original homomorphism F'—» C, so that F is projective (see [3], Chapter I, §5) and R
semihereditary. Part c) is an obvious consequence of Proposition 6.2 of Chapter I in [3].

REMARK 1.23. If R is a commutative integral domain, then by Proposition 1.2 of
Chapter VII in [3] and Lemma 1.2, every pure module is divisible (hence, if it is not
injective, it must necessarily have torsion, by Proposition 1.3 of [3]). Purity is equivalent
to divisibility only when the ring is Priifer (see [18]). In this case, Tor°(A/, N) = M' <8>
N, where AT is the quotient of Μ by its torsion submodule (this is easily seen by
considering a pure resolution of length 1 of the module TV and applying Exercise 5 of
Chapter VII in [3]).

§2. The duality homomorphisms

We examine now in detail the homomorphisms

σ: Tor*(TV*, F)-+Extk(F, N)*

in the lowest dimensions k for modules F with finitely many generators, without the
assumption that the ring is noetherian or coherent.

LEMMA 2.1. If F is finitely presentable, then the mapping Ν* ® F—> Hom(F, TV)* is an

isomorphism.

This follows from Proposition 5.2 of Chapter VI in [3] and the right exactness of the
tensor product (see also [1], Chapter I, Exercise 14 of §2).
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PROPOSITION 2.2. Every injective resolution Υ of a module N, 0—»Ν-» Y° —> Y1

— • · · · , determines a homological spectral sequence converging to Τοτ(Ν*, F), with second

term Ep\ = Hp(Torq(Y*, F)). Furthermore, £/ 0 = Extp(F, N)* if F is finitely presentable.

To prove this consider the double complex obtained by tensor multiplication by F of
a projective resolution of the chain complex ([3], Chapter XVII) 0<- N* <- Y°* <- Y1*
<— · · · (which for convenience can be thought of as consisting of columns over N*,
Y0*, Y1*, . . . ). Exactness of the rows of the resolution, together with the projectivity of
the modules, yields, when we take homology on rows, a projective resolution of N* in the
column with index 0 and zeros in the remaining positions; therefore, taking homology on
columns, we have Tor(7V*, F) as the homology of the double complex. The second
spectral sequence is of the form Ep\q = Torq(Yp*, F), taking homology on columns, and
Epq = Hp(Torq(Y*, F)), taking homology on rows. For F finitely presentable, we find
that

Elo = HP {Y* ®F) = HP(Horn (F, Y)*) - H" (Mom (F, Y))* - Ext" (F, N)\

where the first equality follows from Lemma 2.1; the second, from the commutativity of
the homology functor with the exact functor X —> X*; and the third, from the definition
of the functor Ext.

The spectral sequence gives the standard result:

COROLLARY 2.3. For finitely presentable F, we have the exact sequence

TOT2(N*, F) -> Ext2(F> N)*^H0(Τοη(Υ*, F)) ->Tor^iV*, F) -» E\tl(F, N)*->0.

PROPOSITION 2.4. The mapping Torx(N*, F) -> Ext^-F, N)* for a given F with finitely
many generators is epimorphic (for all N) if and only if F is finitely presentable.

In view of the preceding corollary, it suffices to show that the mapping is not
epimorphic if F does not have a finite presentation. Take for JV a pure module A such
that Ext!(F, Α) φ 0 (see Proposition 1.11). As previously mentioned, any module F can
be represented as lim Fx, where the Fx are finitely presentable. Using the fact that

lim Tor, {A*, FJ = T o r t ( ^ * , F),

we conclude from Lemma 1.4 and the commutative diagram

Ext1 (Fa., AY-^Ext^F, A)*

that the mapping in question has zero image.
The same argument gives a similar result for pure modules (using Lemma 1.4):

PROPOSITION 2.5. The homomorphism ΤΟΓ,(Λ*, Ν) -* Ext\N, A)*, for fixed A, has zero
image for all Ν if and only if A is pure.

LEMMA 2.6. The mapping N* ® F -^ Hom(F, ./V)* is always epimorphic if the module F
has finitely many generators.

To prove this, represent F as a direct limit lim Fx, where the Fx are finitely
presentable and the projections Fx —» F^ and FA —» F are epimorphisms. Then the groups
Hom(Fx, N) are included one in the other, Hom(JFx, N) D Hom(/r

ii, TV), filtering down
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to the intersection Hom(F, N). Since the group Q is injective, we have epimorphisms
Hom(FA, N)* —• H o m ^ , N)*. If we call the elements of these groups functionals, then
each such epimorphism is the restriction of the functionals to Hom(F, N) c
Hom(Fx, N). Every element of Hom(F, N)* is represented by the germ of a functional
in Hom(Fx, N)* = N* <8> Fx (Lemma 2.1), and consequently by an element of N* <8> F
= lim N* <8> Fx = lim Hom(Fx, N)*. This proves the lemma.

PROPOSITION 2.7. If F has finitely many generators, then the mapping N* <S> F—•

Hom(F, N)* is an isomorphism for all Ν only when F is finitely presentable.

In proving this, we shall use the terminology of the preceding lemma. By Lemmas 2.1
and 2.6, it suffices to show that if F has no finite presentation, then we can select TV so
that the mapping in question has a nonzero kernel, i.e., so that in some Hom(/r

x, N)*
there exists a nontrivial germ whose restriction to Hom(F, Ν) is equal to zero (we call
the germ of a functional on Hom(Fx, N) nontrivial if it itself and all its restrictions to the
Hom(Ffl, N) c Hom(Fx, N) are different from zero). Take a fixed λ0, and denote the
module FXQ by Fo. We shall consider only those λ > λ0. Let Ν be the direct product
Π λ Fx of the Fx. For each v, denote by /„ the canonical inclusion Fv c Π λ i\. Since the
inclusion Hom(/% N) c Hom(77

(/, N) is induced by a mapping of Fv onto F with nonzero
kernel, the element /„ Ε Hom(Fv, N) cannot belong to Hom(F, Ν) = Π χ Hom(Fx, Ν).
On the other hand, we have /,, £ Hom(F0, N), because of the mapping Fo -» Fv. Regard
the group Hom(jF0, N) as the product Π λ Hom(F0, Fx). It contains in a natural fashion
the direct sum Σλ Hom(F0, Fx) as a subgroup, and obviously every /„ belongs to this
subgroup. Consider for each λ a homomorphism of Hom(F0, Fx) into Q that is different
from zero on /λ but equal to zero on the subgroup Hom(F, Fx) (it suffices to construct a
mapping of the quotient Hom(F0, Fx)/Hom(F, Fx) into Q which is different from zero
on the image of /λ). These homomorphisms determine a mapping into Q of the direct
sum ΣΧ Hom(F0, Fx) c Hom(F0, N) which is equal to zero on Σλ Hom(F, Fx). If we
factor out this subgroup, imbed the quotient group into the quotient

Π Hom(F0, F%)J Π Hom(f, F,\
χ λ

and extend the mapping to the whole of this quotient (which is possible because Q is
injective), we obtain finally a mapping of Hom(F0, Ν) = Π λ Hom(ir

0, Fx), i.e., a func-
tional on Hom(ir

0, N). Clearly, the restriction of this functional to Hom(F, N) is trivial.
But the restriction to any subgroup of the form Hom(Ff,, N) is not, since such a
subgroup is of the form Π λ H o m ^ , Fx) and contains the element /„, on which the
functional is different from zero by construction. This proves the proposition.

REMARK 2.8. In the above construction, we could obviously have taken Ν to be the
product Π λ Fx. Thus, the mapping in Proposition 2.7 need not be an isomorphism even
for injective Ν (in particular, for pure modules there can be no analogue of Proposition
2.7). If F does not have finitely many generators, then, in addition, the mapping is not
epimorphic.

Let F be a module of finite type but without finite presentation, and 0 —• G —> Ρ —> F
-» 0 an exact sequence in which Ρ is a free module with finitely many generators. Then
F = lim Fx, where Fx = P/Gx and the Gx are all the submodules of finite type in G.
Denote by Dx the quotient module G/Gx.
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LEMMA 2.9. If F is a module of finite type but without finite presentation, and Ν an

injective module, then the kernel of the mapping N* <8) F-* Hom(F, N)* is the group

lim Hom(Dx, N)*.
—*

Indeed, we have for each λ the exact triple 0 -> Dx -> Fx -» F -• 0, which for injective

Ν gives an exact sequence

0 -> Horn {Dk, N)* -> Horn (Fk, N)* ·-* Horn (F, NY -v 0.

Hence our assertion follows from the exactness of the functor lim and from the equality

lim Hom(FA, N)* = N* <8> F (see the proof of Lemma 2.6).

PROPOSITION 2.10. If the ring R is coherent and the module F finitely generated, then for

any Ν the duality homomorphisms σ are contained in an exact sequence

... -^ Ext"+1 {F, NY Λ- Jim Ext" {Dx, NY -+ Tor,, (N\ F) 4- Ext" (F, N)*

...-> lim Horn {Ωλ, Ν)* -» Ν* (g) F •$> Horn (F, N)' -> 0.

To prove this, let Υ be an injective resolution of N. Then by Lemma 2.9 we have an

exact triple of chain complexes

0 -> lim Horn (Ολ, Υ)*->Υ* ® F - > Horn (F, F)*-> 0.

The exact sequence of Proposition 2.10 is the corresponding homology sequence. Indeed,

the homology of the complex Hom(F, Y)* is obviously Ext(F, N)*; and the homology

of Y* <S> F is Tor(iV*, F), since by Proposition 1.15 the sequence Y* that constitutes a

resolution of ./V* consists of flat modules. Finally,

ffp(lim Horn (DK, Y)·) = \imHp (Horn {DK, Y)*) - lim ff"(Hom {Dk, Y))*

""* = \imExtP(DK, NY

(the first of these equalities follows from the commutativity of the homology functor Hp

with the exact functor lim; the second, from the commutativity of Hp with the exact

functor X -^ X*; the third, from the definition of Ext).

Observe that, since lim Ζ>λ = 0, we have for any Ν the equality

lim Horn (Dx, Ν)=Γ)Ηοτη (Dk,N)=0.

Observe also that the homomorphism δ in the exact sequence above has another

description: it is the composite of the isomorphism

Extn+i(F, N)* = Extn{G, N)*

and the mapping

Ext n (G, A0*->limExt"(Z) x, Ν)*,

induced by the homomorphisms G —> Dx.

We conclude this section by giving mutually related characterizations, in terms of

duality, of pure and flat modules.
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PROPOSITION 2.11. A module A is pure if and only if the mapping

Tou(A\AlA) -^Ext 1 {A IA, A) *

is the zero mapping.

Indeed, if A is pure, our assertion follows from Proposition 2.5. To prove the converse,

consider the following diagram, corresponding to the exact sequence 0^>A->A-

τ- . . ct

A; A/A) ^A·® A-± A* ®A
σ j _ σ | Ι

0 -^Ext1 {ΑΙΑ, Λ ) · - * Η Ο Γ Π ( Λ , Ay ~+ Horn (A, A)*

The mapping in the middle column is given by the formula

where g e Ηοΐη(Λ, A), a e A and / Ε A* (see [3], Chapter VI, §5), and is therefore

monomorphic: it suffices to take for g the identity isomorphism, and for a any element

of A on which / is different from zero. Thus, if the mapping in the left-hand column is

zero, then so is the homomorphism a, so that β is a monomorphism. Using the same

argument as in Lemma 1.13, we see that the mapping Μ <8> A —* Μ <S> A is

monomorphic for every right module M. Hence A is pure, by Lemma 1.1.

REMARK 2.12. It follows from Proposition 1.15 that for a coherent ring the criterion of

Proposition 2.11 reduces to the condition Toix(A *, A/A) = 0. Furthermore, the injective

hull A in Proposition 2.11 can be replaced by any injective module Β containing A (since

A is contained in Β as a direct summand).

Now suppose that in the exact triple 0—»G—>P—>.F—»Othe module Ρ is projective.

The following assertion supplements the characterization of flat modules given by Chase

(see [7], Proposition 2.2).

PROPOSITION 2.13. The module F is flat if and only (/"Tor,(G*, F) = 0.

LEMMA 2.14. For every module N, the following conditions are equivalent:

a) The mapping Tor,(TV*, F) -^ Ext!(.F, N)* has zero image.

b) For any finitely generated submodule (7λ c G, every mapping (J X —> Ν that has an

extension G —> TV extends to a mapping Ρ —> Ν.

To obtain Proposition 2.13 from this lemma, put Ν = G and apply the lemma to the

inclusions Gx c G, obtaining mappings j x : Ρ -» G that are stationary on Gx. Since Ρ is

the direct summand of a free module, the mappings j x can be selected so that the

modules G{ = Imy\ are finitely generated. If we put λ < μ only when G{ c G^ we

obtain a direct spectrum consisting of modules Ρλ = Ρ and mappings Px —> Ρμ given by

θμ = 1 — j . Since F is the limit of this spectrum (see [21], Proposition 2), F is flat.

To prove the lemma, consider the diagram

{N\ F) ->• N* (g) G -ν Ν* ® Ρ

0 - ^ E x t x ( F , N)* -» Horn (G, N)*-+Hom(P, N)\

The mapping in the right-hand column is a monomorphism (this is obvious for free P,

and consequently also for projective, since the projective are direct summands of free).

Hence, as is easily seen, condition a) of the lemma is equivalent to the condition
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Ker α η Im σ = 0. If Gx is any finitely generated submodule of G, then the fact that the
mapping in the left-hand column of the commutative square

N* ® Gx -> N* ® G
I 1

Hom(Gx, N)*-^ Horn (G, NT
Ρλ

is epimorphic (Lemma 2.6) implies that Im βχ c Im σ. Therefore, since G = lim Gx, the
condition Ker α Π Im σ = 0 is equivalent to the condition that Ker a n Im βχ = 0 for
all finitely generated submodules Gx c G. It is easily verified that Ker α consists of
precisely those functionals on Hom(G, N) (in the terminology of the proof of Lemma
2.6) that vanish on the homomorphisms h' Ε Hom(G, N) that extend to P. Similarly,
Im βλ consists of precisely those functionals in Hom(G, N)* that vanish on the
homomorphisms h" Ε Hom(G, N) whose restrictions to Gx are zero. Therefore, if the
homomorphisms of type h' and h" generate the group Hom(G, N), then Ker a n Im βχ

= 0. Conversely, if the homomorphisms of type h' and h" do not generate Hom(G, N),
then, factoring out from Hom(G, N) the subgroup generated by all such h! and h", we
can construct a nontrivial functional on Hom(G, N) that vanishes both on
homomorphisms of type h! and on homomorphisms of type h", i.e., a nonzero element of
Ker α η Im βχ. Thus, for any given finitely generated submodule Gx c G, the condition
Ker a n Im βχ = 0 is equivalent to the condition that Hom(G, N) be generated by the
homomorphisms of the two types. Now suppose / Ε Hom(GA, N), and let h Ε
Hom(G, N) be an extension of/. If h = h! + h", then h' = h — h" coincides with/on
Gx and has an extension to P; i.e., / extends to a homomorphism Ρ -> Ν. Conversely,
suppose h Ε Hom(G, N), and let/ Ε Hom(Gx, N) be the restriction of h. If/extends to
a mapping Ρ -» Ν, and h' is the restriction of this extension to G, then the mapping
h" — h — h' is equal to zero on Gx; i.e., Hom(G, N) is generated by the homomorphisms
of the two types. This proves the lemma.

§3. Characterizations of coherence and semihereditariness

The impact of coherence of the base ring on many properties of pure modules and on
certain concomitant characterizations of finitely presentable modules has already been
made apparent in several cases above. This connection is more completely reflected in
the following proposition.

THEOREM 3.1. Each of the following assertions is valid precisely when the ring R is
coherent:

a) The natural transformations

N\ F)-+Extk(F, N)*

are isomorphisms for any finitely presentable F, any module N, and any k > 0 {we can
restrict ourselves to the case k = 1).

b) For every module F with finitely many generators, and every N, the transformations σ
are contained in an exact sequence like that in Proposition 2.10.(')

c) A module A is pure if and only if the module A * is flat.

Cyin a) and b), we can use homomorphisms

a:Tor f t(Hom(#, /), F)—-Horn(Ext" (Λ N), J)

with J injective, where we have in mind all allowable situations in the sense of [3].
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d) A module A is pure if and only if Extk(F, A) = 0 for k > 1 and for all finitely

presentable F {we can, however, restrict ourselves to the values k = 1,2).

e) A module F with finitely many generators is finitely presentable if and only if

Ext*(F, A) = Ofor k > 1 and for all pure modules A {we can, however, restrict ourselves to

the values k = 1, 2).

f) If in the exact triple 0->A^>B-+C-^0the modules A and Β are pure, so is the

module C.

That all these assertions hold when the ring is coherent has been proved above: a)

follows from Lemma 1.12; b), from Proposition 2.10; c), from Proposition 1.15; d) and

f), from Corollaries 1.17 and 1.18; and e), from Proposition 1.11 and Corollary 1.17.

Assuming now that R is not coherent, we shall disprove each of the assertions in the

theorem. Let Φ be an ideal of finite type in R that has no finite presentation (as a

module). For the exact sequence Ο^Φ—>/?—>F-»0, consider the diagram

I I i
0 -v Ext1 {F, N)* -> Horn (Φ, N)* -> Horn (/?, N)*.

Select the module Ν so that (see Proposition 2.7) the mapping in the middle column has

nontrivial kernel. Since in the right-hand column we have an isomorphism, this kernel is

contained in Torx{N*, F) (the rows of the diagram are exact) and coincides with the

kernel of the mapping in the left-hand column. Since F is finitely presentable, this

disproves assertion a). Furthermore, by Remark 2.8, Ν can be chosen to be an injective

module A, and since for this choice Τοτχ{Α*, F) φ 0, i.e., A* is not flat, this disproves

assertion c). This also disproves assertion b): for the A in question, we should have in the

exact sequence of Proposition 2.10 that Ext^F, A) = Extl{Dx, A) = 0, contradicting the

fact that A * is not flat.

For the same Φ, we can find, by Proposition 1.11, a pure A such that Εχί^Φ, Α) φ 0.

Since Ext2(F, A) = Εχί'(Φ, A), this disproves assertion d). It also disproves e). Finally,

selecting a finitely presentable F and a pure A such that Ext2(F, Α) φ 0, consider a triple

0 - » Λ - * £ - * < 7 - > 0 ί η which Β is injective. Then Ext'(F, C) = Ext2(F, A), so that, by

Lemma 1.4, C is not pure. This disproves f)· The theorem is now proved.

Parts d) and f) of the theorem explain why a dimensional invariant similar to injective

dimension but defined by means of pure resolutions [20] (and having a connection with

weak dimension) can be properly constructed only when the ring is coherent (cf. [9]).

Corollary 1.9, part c) of Theorem 3.1, and Proposition 2.7 yield the following result

(see Remark 1.16).

THEOREM 3.2. Each of the following conditions is equivalent to the ring being noetherian:

a) A module A is injective if and only if the module A * is flat.

b) The duality homomorphisms σ are isomorphisms for any module F with finitely many

generators.

Let Ax and A2 be submodules of a given module, and Ax + A2 their usual sum (as

submodules). Part f) of Theorem 3.1 can be formulated in the following way.

LEMMA 3.3. Coherence of the ring R is equivalent to the condition that whenever the

modules Ax, A2 and Ax η Α2 are pure, so is the sum Ax + A2.
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Indeed, if R is coherent, the assertion of the lemma follows from assertion f), since
Ax + A2 is the quotient of the direct sum Ax® A2 by a submodule isomorphic to
Ax η A2. If R is not coherent, select a pure module Λ such that Ext2(F, Α) φ 0 for some
finitely presentable F, imbed it in an injective module B, and consider the exact triple
0—>Λ-».βθ.β—»C—>0, where the first mapping is the diagonal imbedding of A into
the direct sum. The argument at the end of the proof of Theorem 3.1 shows that C is not
pure, even though C is the sum of two submodules isomorphic to B.

THEOREM 3.4. Each of the following assertions is valid precisely when the ring R is
semihereditary:

a) The sum of two pure modules (as submodules of a third module) is pure.
b) The set of all submodules of an arbitrary module that are themselves pure modules has

a greatest element (containing all the others).

The characterizations in Proposition 1.22 and Theorem 3.4 of semihereditary rings in
terms of pure modules are analogues of characterizations of hereditary rings in terms of
injective modules (see [16]); the analogue of part b) of Theorem 3.4 is valid for
hereditary rings provided R is noetherian.

If R is semihereditary, assertion a) is a consequence of Proposition 1.22 (the sum of
the modules is a quotient of their direct sum), and assertion b) follows from a) and
Lemma 1.7 (it is proved in [18]; see also [13]). That b) implies a) is obvious. We show
now that a) implies that R is semihereditary. By Proposition 1.22, it suffices to show that
the module A/H is pure whenever A is. If Β = Α θ A and H' is the image of Η in Β
under the diagonal imbedding, then A / Η is isomorphic to the quotient of the module
B/H' by a submodule isomorphic to A (argument as in [16]). Since B/H' is the sum of
submodules isomorphic to A, it is itself pure. Furthermore, a) implies (Lemma 3.3) that
R is coherent. The purity of A/H is therefore a consequence of Corollary 1.18.
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