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INEQUALITIES OF BERNSTEIN TYPE
FOR DERIVATIVES OF RATIONAL FUNCTIONS,

AND INVERSE THEOREMS OF RATIONAL APPROXIMATION
UDC 517.53

A. A. PEKARSKlI

ABSTRACT. Let H be the Hardy space of functions / that are analytic in the disk \z\ < 1
and let J"f be the derivative of / of order a in the sense of Weyl. It is shown, for example,
that if r is a rational function of degree η > 1 with all its poles in the domain \z\ > 1, then
ΙΙ^°ΊΙ//,, < ' " Ί Ι Ί Ι Μ . where ρ e (1, oo], a > 0, σ = (α + p~l Γ 1 and c > 0 depends only
on a and p.

Bibliography: 32 titles.

Let I b e a quasinormed space of functions that are analytic in the disk \z\ < 1, and let

/?„(/, X) {f e Χ, η = 1,2,...) be the best approximation to / in X by rational fractions

of degree at most η - 1. Dolzhenko [17] showed that if / e Hx and Σ/?„(/, Hx) < oo

then / belongs to the Hardy-Sobolev space H\. Under the same conditions on /, Peller

[13] showed that / belongs to the Hardy-Besov space B\. Since B\ g H\, Peller's result is

stronger than Dolzhenko's. Nevertheless (see [17]) both of these inverse theorems on

rational approximation are best possible in the following sense. For every nonincreasing

sequence of numbers an (n = 1,2,...) that satisfies the condition Σαη= + oo, there

exists an / „ e Hx such that Rn(f*, Hx) = O(an) and / * £ H\, and consequently

/ * £ B\. These results are generalized in the present paper. In particular, we obtain the

best possible sufficient conditions on the rate of decrease οϊ Rn(f, Hp) (1 < ρ =ζ oo) that

guarantee that / belongs to the Hardy-Sobolev space //" or the Hardy-Besov space B"

(a > 0, σ = (α 4- p~l)~l). In addition, in contrast to [13], [27] and [28], we prove the

implication Σ ( « „ ( / , ΒΜΟΑ))α/α < oo => / e B{/a (first obtained by Peller [13] for 0 < α

< 1 and then generalized to the case α > 1 in [27], [28] and [31]) without making use of

the connection of Rn(f, BMOA) with Hankel operators. The method for solving these

problems uses inequalities of Bernstein type, obtained here, for derivatives of rational

functions.

The main results of this paper were presented without proof in [29]-[32].
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§1. On some spaces of functions analytic in a disk

Let S be a rectifiable curve in the complex plane. We denote by Lp(S), ρ e (0, oo], the

set of functions /, measurable on S, for which | | / | | p i S < oo, where we set

\ Φ oo,,ι/ωινι) , Ρ
r | | 0 0 . s = esssup | / ( ζ ) | , ρ = oo.

We denote by T, D+, and D_, respectively, the circle \z\ = 1, the disk \z\ < 1 and the

domain \z\ > 1; by Λ(Ζ)+) we denote the set of functions that are analytic in D±. We

denote by Hp, 0 < ρ ^ oo, the Hardy space [1] of functions in A(D + ) for which the

quasinorm

| | / I U , = lim \\f(-p)\\p
ρ —* 1 — 0

is finite, where we write for short HgĤ , = HgH î7- for g e Lp(T). The indicated limit exists

because of the monotonicity of | | / ( · ρ ) | | ρ with respect to ρ ([1], p. 273). If / e Hp and

ζ e T, we denote by /(z) the nontangential limit of /(ζ) as ζ -* z ([1], p. 276). It is

known that

Let / e A{D + ) and let f(k) (k = 0,1,...) be the Taylor coefficients of /. If α > 0, the

following functions in A{D+),

" r(k[a] + l+a) k_ia]

JJ(z)= Σ (k+l)af(k)zk,
k = 0

where Γ is Euler's gamma function and [a] is the integral part of a, are called the

derivatives of / in the Riemann-Liouville and the Weyl senses, respectively. Evidently, if

α = / is a positive integer, f(l)(z) is the ordinary derivative, and J'f(z) = [(d/dz)z]'f(z).

The function Jaf will also be considered for α < 0. In this case it is called the integral of /

of order -a in the sense of Weyl. It is easy to establish (see also [2]) that when α > 0

" α Γ 1 - [ < 1 1 ^ , | ζ | < ρ < 1 , (1)

where the branch of (1 - i?)- 1"" is chosen so that (1 - T J ) " 1 " " > 0 for η e (-oo, 1). We

denote by Hp (a e (-οο,οο), ρ e (0, 00 ]) the Hardy-Sobolev space, i.e. the set of

/ G A(D + ) with finite quasinorm | | / | | f f . = \\Jaf\\H- We denote by B*<q (a e (-00,00),

ρ e (0, 00 ], q e (0, 00 ]) the Hardy-Besov space, i.e. the set of / e A(D+) with finite

quasinorm

= sup
0<ρ<1
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Here β is arbitrary, β > a. The space B°\q is independent of β [2] and the quasinorms for

different values of β are equivalent. In this connection, we call the quasinorm with

β = a + 1 fundamental, and denote it by | | / | | B . .We abbreviate B£ to B£.
p-q

Unlike Jaf, the derivative / ( a ) does not have the semigroup property. In fact, the

equality /<αι+α2> = (/<ai))<°2) i s satisfied for every / only in the case when ax and a2 are

integers. Lemma 1.1, proved below, lets one avoid this inconvenience.

DEFINITION. Let W be a quasinormed space of elements of A{D+). A sequence {λ^,}^

is called a multiplier in W if, for each / e W, we have \\g\\w < cll/H^» where g(z) =

Σ " \kf(k)zk, with c > 0 and independent of /.

LEMMA 1.1. Let α, β > 0. Then the sequences Xk = T(k + a + β)[Τ(Ι( + a)(k + I ) '*]" 1

and μΙί = X~k

l (k = 0,1,2,...) are multipliers in the spaces HJ and B^ q.

PROOF. It follows from the definitions of H^ and ΒΊ

ρ q that we may restrict our

attention to Hp = Hp. Let m be the smallest integer such that m > p~l + 1. From the

asymptotic series for the gamma function ([3], p. 339) we obtain

\ k = b0+(k + l)'1b1+{k + \)~2b2+ ••• +(k + l)""bm+(k + l)~m~ldk,

where bo,bx,...,bm are numbers depending only on α and β, and {dk}^ is a bounded

sequence. Consequently, if / e Hp and g(z) = Σ™ \kf(k)zk, then
m oo , j. m

g(z) = Σ bjJ-Jf(z) + Σ Kk)(k + \Ym-Xdkz
k = I bjfj(z) + ψ(ζ). (2)

/ = 0 A: = 0 7 = 0

Moreover, we have (see [4], p. 142) ||/\||Η/> < C^M/WH, a n d ( s e e 12D

\f(k)\^c2(p)(k+l)1/p (k = 0,1,2,. . . ) .C)

Consequently |ψ(Α:)| < c 3(^)| |/ | |H ( ;(/c + I ) " 2 and U\\Hp < c 4 ( / > ) | | / | | H / Thus we obtain

ΙΙ#ΙΙΗ ^ ^(/Oll/H// I r o m (2)· We can show in a similar way that the sequence (μλ}?Γ is a

multiplier in //̂ ,. This completes the proof of Lemma 1.1.

Let X and Υ be quasinormed spaces. By an embedding X c Υ we shall always

understand a continuous embedding, i.e. if / e X then / e 7 and | | / | | y < c | | / | | x , where

c > 0 is independent of /.

Lemma 1.1 lets us extend various embedding theorems that were proved for the

Riemann-Liouville derivative to the Weyl derivative. For example, we have ([4], p. 142)

H% C Ha

pl (0<PO^PI<<K, p',1 - p-x

l = «o - ax). (3)

There are the following embeddings between the spaces B* q [2]:

BPUCBPU («I>«O,PI>PO), (4)

BP\
 c BP,,O (?i < ίο). (5)

BPU C ΒΖ« («ι - «ο = P\l - Pol >0,ρο*π). (6)

The following two embeddings [2] reflect the connection between H" and Bp:

H;<ZB; (2<ζΡ<χ>), (7)

Β; C Η; ( Ο < / 7 < 2 ) . (8)

(')By c(a,fi,...), c\(a,fi...), c2(a,/8 ) , . . . we denote positive numbers, different in different places,
depending only on α, β,
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We denote by BMOA the space of analytic functions of bounded mean oscillation [5], i.e.

/ e BMOA if there exists g e LX(T) such that

Jy ' 2 n i J T ξ-ζ

The norm in BMOA is defined as follows:

IIBMOA = millgl!oo>

where the lower bound is taken over all g e LX(T) for which (9) holds. Evidently

Hx c BMOA c Hp (0 < ρ < oo). (10)

§2. Inequalities of Bernstein type for the derivatives

of rational functions

Surveys of inequalities for the derivatives of rational functions are given by Gonchar [6]

and Rusak [7]. Here we present only the inequalities that are directly related to the subject

of the present paper. The first result in this direction was obtained by Dolzhenko [8], who

showed that a rational function r of degree η > 1 with poles only in D _ satisfies

IIHI//J < cYn\\r\\Ηχ, (11)

\\r\\BV^c2n^2\\r\\Hx. (12)

For any s e N( 2 ) and ρ e (0, oo] the following generalization of (11) follows from the

results of Sevast'yanov [9]:

\\r\\K_t<c2(s,p,E)n°\\r\\Hp (σ = (s + ρ'1)'1, ε e (Ο,σ)). (13)

As was observed in [9], one cannot take ε = 0 in the preceding inequality if \/p e N. To

see this, it is enough to consider the function r(z) = (1 + δ — ζ)'1 as δ -> +0. We

showed in [10] that for ρ = oo and any j e N w e can take ε = 0 in (13). Inequality (12)

was generalized by Danchenko [12], who showed that

| |HU % < c3(a,t,q,n)\\r\\Hp (a e ( 0 , l ] , p e ( l , o o ] , / < (a+p-1)'1, q > θ). (14)

Another generalization follows from a result of Peller [13] on best rational approximations

for the class B"/a, a <= (0,1], in the space BMOA. This is

H e . / . < e 4 ( a ) # ! « | | r | | B M O A (0 < a < 1).

Our Theorem 2.1 (below) generalizes and strengthens the results quoted above.

THEOREM 2.1. Let r be a rational function of degree η > 1 with all its poles in £)_; let

a > 0, ρ e (1, oo], and σ = (a + p'1)'1. Then

IM|/U<c1(a,/>)/!'"||r||l/,, (15)

\\A\BS * c2{a, p)na\\r\\Hp, (16)

I M k . < c 3(a)«1|/- | |B M O A, (17)

IIHIef,. < c 4 ( a ) « i r " | B M O A . (18)

( 2 ) Ν is the set of positive integers.
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REMARKS. 1) The extremal exponent σ = (α + p~l)~l also occurs in the following

inequality of Brudnyl [22]:

| Δ * / · | | σ , [ 0 . ι - * Λ ] < c(a,p)(nh)a\\r\\pl0J],

where r is a rational function of degree η with poles outside [0,1], a > 0, k = [a] + 1,

Ak

nr is the kth finite difference of r with step 0 < h < l/k, and 1 < ρ < oo.

2) From the embeddings (7) and (8) we obtain that (15) and (16) are equivalent for

σ = 2. For σ > 2, (15) is stronger, but (16) is stronger for σ < 2. A similar statement holds

for (17) and (18).

In the proof of Theorem 2.1 we shall consistently use the following notation. Let

alt... ,an belong to D+. We set

k

Β{ζ)-Β(ζ)

ζ - ζ

LEMMA 2.1. If ζ e Τ and I e Ν then ( 3)

2U/ \Q(z,n\
T 7 = 1

PROOF. For ζ and ξ e Γ we have |df | = df/jf and

Consequently

(2/-1)!
2 π I I V £ V J ' " / I l " i | * " \ ' - J ± l \ ' - ) t (I")

where

Since /7(z) is continuous in D + U Γ, it is enough to calculate it for ζ e D + . Thus we have

'/(*)= Σ C2V(-5(z))'-X(z) ( z e i + ) , (20)
j = -i

where

By Cauchy's formula we obtain

ΙιΜ)=[Β\ζ)ζ'-ψ'-1) {j=l,...,l). (21)

( 3 ) There is a similar assertion in [7] (pp. 115 and 132) for the real axis, with / = 1 and 2.
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If -/ < j < 0, the point ζ = oo is a zero of order at least 2 of the function

Therefore I,j(z) = 0 (j = -/,...,0). By using (19)-(21), we obtain the conclusion of
Lemma 2.1.

LEMMA 2.2. For all z e Tands e Ν

B(s)(z)\^2ss\Xs(z,l/s).

PROOF. We set bk(z) = (z - ak)(l - akz)-\ Then

\B^(z)\=L .,,·,*' . . . W T O - T O , (22)

where the summation is over all collections j 0 , j v ..., j n of nonnegative numbers satisfy-

ing the condition j 0 + ji + • • • +jn = s. It is evident that for every ζ ε Γ , 0 ^ έ < / ι and

1 < j < s we have

- \ak\

z - a.

1/5
1

\z - aL

(23)

Lemma 2.2 follows from (22) and (23).

LEMMA 2.3. If z e Τ and a > 0, then

PROOF. It follows immediately from Lemmas 2.1 and 2.2 that

fT lea, z) I'UI < c{l)\^[z, JJ^J) (z e Γ, / e N). (24)

Let w be the smallest odd number such that m > a. We introduce ρ = (m + l)(a + I)" 1,
4 = (w + l)(w - a)" 1 and S(z) = {ζ e T: |argf - argz| < X~\z, m'1)}. From (24) and
Holder's inequality, we obtain

( i ) (25)

On the other hand,

7\S(7)

1 ) . (26)

Since λ(ζ,β) does not increase in β for fixed ζ e Γ, Lemma 2.3 follows from (25) and
(26).

LEMMA 2.4. /// e Lp(T), ρ e (1, oo ], α > 0

then \\g\\a < c(a, p)na\\f\\p, where σ = (a + ρ : ) J.

PROOF. For ρ = oo the necessary inequality follows from Lemma 2.3 and the relation

(β > 0). (27)f \{z,
JT
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Now let ρ e (1, oo) and α = 1 - p~l. Then σ = 1 and consequently, by Lemma 2.3,

Holder's inequality, and (27),

Therefore Lemma 2.4 is established in the case under consideration. Now let α be

arbitrary. Choose positive numbers γ, τ, /, and s satisfying the conditions / e ( l , p),

I1 + i " 1 = 1, γ + τ = α and /τ = 1 — l/p. Then, by Holder's inequality,

) (28)

for every ζ e T. From Lemma 2.3 and (27) we have

\\<p\\l/y<c4(s,y)n\ (29)

Using the fact that the lemma has already been established for α = 1 - ρ'1 (in this case

IT = 1 - (p/l)'1), we obtain

||*||,<c5(/,/>)«1//-1/1l/ll,. (30)
Thus we obtain the conclusion of Lemma 2.4 in the case ρ e (1, oo) and α > 0 from

(28)-(30) and Holder's inequality.

PROOF OF (15) AND (17). Let the poles of the rational function r be located, counting

multiplicities, at the points l/ax,..., 1/αη, where ai,...,an belong to D + . Then the

function r(£)£~*(O(l - z/f Γ 1 " V 1"" 1" 1 (A: <= Ν and ζ <= Ζ> + ) is an analytic function of

ζ in D _ and has a zero of order at least 2 at oo. Consequently

Therefore if we expand the function (1 - Β(ζ)/Β(ξ))ι+α (ζ e D+ and ξ e T) in a

Taylor series in Β{ζ)/Β{ξ), we obtain from (1)

From (31) and Lemmas 1.1 and 2.4 we obtain (15). To prove (17) it is enough to observe

that (31) remains valid if we replace r(f) by r(f) + Η(1/ξ) on the right, where h e Ητ

and h(0) = 0.

LEMMA 2.5. Let r be a rational function of degree η > 1 with all its poles in Z)_, β > 0

and ρ e (1, oo].

1) There are continuous functions λ(φ) and Λ(φ) of period 2π that satisfy the conditions

λ ( φ ) > 0 ,

x e (0,1), φ e [0,2ττ].

2) There is a continuous function g(<p) of period 2π that satisfies the conditions

\j"r((l - x)e>*)\^\\r\\BMOA(mm{x-\ 8(<ρ)))β, χ e (0,1), φ e [0,2*]·
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PROOF. It is evident that for χ e (0,1) and φ e [0,2m\

|/<V((1-*)*'*) I < m a x |/^(ρ^'φ)Ι=^(<Ρ)· (32)
pe[0,l]

From Lemma 1.1 we find that there is a function /, analytic in D + U T, such that

a n d | |y | |w ^ c^p^rWf,. Consequently we find from (1) that

j'r(z) = Ti\^a) ff(n(l - f p V 1 - " 1 ^ {z e D+\{0}),

where S(z) is the convex curve formed by the circle \ζ| = \ and the tangents to it from the

point z/\z\. Hence we obtain

\^((1-χ)β'*)\^ο2(β)Γ(φ)χ->3, F(<p) = max | / ( ? ) | , (33)
ζ €= S(z )

where z = (1 — jc)e/tp. Let us show that the functions

Α(φ) = c3(y3,/ 7)«1~^[|| r | |^G ( ( p )p + j ( γ = (β

λ ( φ ) = / " ( φ ) + α 4 ( β , ρ ) η - ^ β ]

satisfy the requirements of the lemma for suitable choices of the constants c3(fi, p) and

c4(/8, p). In fact, from (15) together with Theorem (7.36) of [1], p. 278, we obtain

Using (32) and (33), we obtain assertion 1) of Lemma 2.5.

For the proof of assertion 2) we observe that

f
where s e Hx and ^(0) = 0. Consequently, instead of (33) we must use the inequality

To obtain the analog of (32) we have to use (17). Everything else is obtained as in the

proof of assertion 1) for ρ = oo.

PROOF OF (16) AND (18). Let h and λ be the functions from Lemma 2.5 corresponding

to β = α + 1. Then we obtain (16) from Lemma 2.5:

J0 \J0 ·Ί/Λ(<ρ)

< C l ( « , ρ) Γ \°(<p)ha°(<p) d<p < c2(a, p)naa\\rfHp.

Here in obtaining the last inequality we have also applied Holder's inequality. Similarly
we obtain (18) from Lemma 2.5.

COROLLARY 2.1 (compare (13)). Let a > 0, ρ e (1, oo], σ = (a + p'1)'1, s e (0, oo],
q e (0, oo ] and

An(a,p,s,q) =
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where the upper bound is taken over all rational functions rn m 0 of degree at most η (η > 1).

ThenC)
An(oc,P,o,q)xna (q > a), (34)

AK(a,p,a,q)xn"'1-"'1 (q < σ), (35)

An(a,p,s,q)= +oo (s > σ, q e(0, oo]), (36)

An(a,p,s,q) x na (s < a, q e ( 0 , oo]). (37)

PROOF. The upper inequality in (34) follows from (16) and (5). To obtain the lower

inequality in (34) it is enough to consider the function rn(z) = z". The upper inequality in

(35) follows from (16) and (6). To obtain the lower inequality we consider the function

"'„(*) = Σ [{1 + e)e2·""» - z]'1

k = 0

for sufficiently small ε > 0. We immediately verify (36) by the example of the function

rx{z) = (1 + e — z ) " 1 as ε -> +0. To obtain the lower inequality in (37) we consider the

function r,,(z) = z". To obtain the upper inequality in (37) we use Lemma 2.5. Let h and

λ be the functions of Lemma 2.5 corresponding to β = s'1 — p~l > a. Then (with

corresponding changes for q = oo) we have

dx)

Corollary 2.1 is proved.

Let the rational function r of degree η + m have no poles on T, but η poles in D+ and

m in D_. Then r(z) = r+(z) + r__(l/z), where r + and r_ are rational functions of

respective degrees η and m with all their poles in D_. It is easy to obtain the following

corollary of Theorem 4.1.

COROLLARY 2.2. // α > 0, ρ e (1, oo] and σ = (a + p'1)'1 then

IK lie; < c(a,p)na\\r\\p, | | r_ | | e . < c(a, p)ma\\r\\P.

In conclusion, we remark that it would be interesting to extend Theorem 2.1 to the

Smirnov spaces Ep. Some special results in this direction were obtained in [11], [14] and

[15].

§3. Inverse theorems on rational approximation

Let f £L Hp and η > I: Let Rn(f,Hp) denote the best approximation to / in Hp by

rational fractions of degree at most « — 1. Following [16], we introduce the approxima-

tion space Rpq (a > 0, ρ e (0, oo ], ? e (0, oo ]) of functions / e Hp with finite

quasinorm
γ/ι

(2kaR2k(f,Hp))q\ , q Φ oo,

, + sup 2kaRlk(f,Hp).
k = 0,l....

( 4 ) T h e s y m b o l a,, ~ bn m e a n s t h a t t h e r e a r e c o n s t a n t s cltc2 > 0 s u c h t h a t qfc,, < an < ί^Λ,,. « = 1 , 2 , . . . .
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We denote by /?„(/, BMOA) the best approximation to / in BMOA by rational fractions

of degree at most » — 1, and the corresponding approximation space by R%

THEOREM 3.1. Let a > 0, ρ e (1, oo] and σ = (a + p'1)'1. Then

Ra

P,o c B;, (38)

Λ;,™η(2,ο) c H;, (39)

* S , i / a

c * i V (40)

Λ · ,min(2,l/o) C H"/a- (41)

REMARK. Some special cases of the embeddings (38)-(41) were obtained earlier by

Dolzhenko [11], [17], Danchenko [12], Peller [13], and the author [10]. These special cases

are corollaries of inequalities of Bernstein type for derivatives of rational functions (see

the survey in §2). An exception is (40), obtained earlier by Peller [13] for 0 < α < 1 and

then generalized to the case α > 1 simultaneously and independently by Peller [27],

Semmes [28] and the author [31]. As we noted in the Introduction, our proof differed from

those of Peller and Semmes by not using the connection between best rational approxima-

tions in BMOA and Hankel operators. Peller (see [13] and [27]) also obtained the inverse

of the embedding (40). Embeddings (38), (39), and (41) admit partial inverses [31], and if

1 < ρ < oo embedding (38) also admits a complete inverse (see [32]). Proofs of these

results will be given in another paper.

For the proof of Theorem 3.1 we need the following Lemmas 3.1 and 3.2.

LEMMA 3.1 ([1], p. 20). Let f(x) be a nonnegative function defined for χ > 0, and let

r > 1 and s < r — 1. Iff(x)xs is integrable on (0, oo), then

LEMMA

conditions

where I >

3.2.

/

m >

Let

h +

Κ
0, r> 1

Mx)

?«, and

andq >

-\ .

1.

*}

ι 1

F 1

be sequences of nonnegative numbers satisfying the

k,x'1))' (xe[0,oo)),
k — oc

then

Γ I £ (Ajf^^)'.
£ = - 0 0

PROOF. We define a function <p(y) on (0, oo) in the following way. If j is a positive

integer and y e (gy'~\ g-'] then <p(y) equals Xkq'J if AA ε {qJ~x, qj] and equals 0 when

no A* belongs to {qJ~l,qj\. Since hk + 1/hk>q for every £, the interval ($ 7 '~\ qJ]

contains at most one hk and consequently <p(y) is well defined. It is easy to verify the

inequality

* φ | - ) ^ (χ > ο).
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Making an appropriate change of variable in the improper integral, we find from Lemma
3.1 that

Γ V(x)xmr~ldx < c3(r,q) Γ l\ f 9{y)y'dy\ x^m

Jo Jo \x Jo j

y2

/•OO

< c5(r,m,q,l) / <pr{x)xrU~m~1)-1 dx.

By the definition of φ(χ) we obtain

f° <ff(x)x«'-m-l'>-1dx<c6{r,m,q,l) £ (h'k

m\k)
r.

Thus the conclusion of Lemma 3.2 follows from the preceding two inequalities.
The proof of Theorem 3.1 is divided into five cases:
1. Embedding (3.1) for σ < 1. Following Bernstein's classical method, we represent a

function / e Ra

p a in the form

/(*)««„+ Σ «*(*) (z*D+), (42)
/<~o

where M^ is a rational function of degree at most 2*+ 1, with all its poles in JD_, that
satisfies

II κ II ** ρ *̂* "2.\J^p}^ V /

and a 0 is a constant such that |a o | < 2||/1| H.
Taking account of the restriction σ < 1, we find from (16) and (43) that

00

2. Embedding (38) for σ > 1. We again use (42) and (43), and also suppose that all
uk * 0. Let Xk and hk be the continuous functions of period 2w from Lemma 2.5 for uk

and β = α + 1. We set

Then, for every φ, we have

V | | A r | | 1 J P M < 2 * + a , (44)

{f,Hp), (45)

Therefore we find from Lemma 3.2 that for every φ e [0,2ir]

(\ + 1f((l-x)ei*)\°x°-1dx

(46)
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From Holder's inequality and (44) and (45) we obtain

d<p< cA{a, p){2k"R2, (/, Hp)) ".

Thus the required embedding follows from (46). If some uk = 0 in (42), we have to make

evident modifications in the proof.

3. Embedding (39) for a <= (0,2]. This follows from (38) and (8).

4. Embedding (39) for σ > 2. This is proved just like (38) for σ > 1. Here, along with

Lemmas 2.5 and 3.2, we also have to use the Littlewood-Paley theorem ([4], p. 214)

according to which

2
c(a,p)

o/2,[0,2v]

5. Embeddings (40) and (41). These are proved just like the embeddings (38) and (39)

respectively.

Theorem 3.1 is proved.

§4. Embeddings (38)-(41) are best possible

THEOREM 4.1. Let a > 0, ρ e (1, oo], and σ = (a + p'1)'1.

1) Corresponding to every sequence {an}f that is nonincreasing and tends to zero, and

satisfies
00

Σ (2*<V) m m ( 2 " ' ) =+oo, (47)

there is anf e Hp such that Rn(f, Hp) = O(an) andf φ. Ηζ.

2) Corresponding to every sequence {an}f that is nonincreasing and tends to zero, and

satisfies

£ (2kaa2>)°= +oo, (48)

there is anf<=Hp such that Rn(f, Hp) = O(an) andf € B?.

Thus, embeddings (38) and (39) cannot be improved. It follows from (10) that, in the
same sense, embeddings (40) and (41) also cannot be improved. Moreover, by a result of
Peller [13], [27], there is actually equality in (40). In addition, since (38) admits an inverse
for 1 < ρ < oo (see §3), assertion 2) of Theorem 4.1 is of interest only when ρ = oo. Since

the proof is the same for all p, we take ρ e (1, oo] for the sake of completeness of

presentation. Assertion 1) for α = 1 and ρ = oo, and 2) for α = \ and ρ — oo in

Theorem 4.1, were obtained previously by Dolzhenko [17].

The proof of Theorem 4.1 is based on the following lemmas, 4.1 and 4.2.

LEMMA 4.1. If a > 0, 0 < q < oo, and if the sequence {bk}™ is nonincreasing and tends

to zero, and the series

t(2kabk)
9 (49)

diverges, then the series

£ (2k"{bk-bk + l ) ) q (50)

also diverges.
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PROOF. Suppose that (50) converges. We show that in this case

b«k < Cl(a, p)2-v"< Σ Ί = j ' Pj = *y ~

for all /c = 0 , 1 , . . . . In fact, since bk | 0 , then bk =

converges we have, for q < 1,

(51)

and since (50)

j=k

If <7 > 1, let q' = ̂ (^r - 1) \ and from Holder's inequality we obtain

oc

Σ 2-'"

Thus we obtain (51) from the preceding two relations. From (51) we obtain

k=o j = kk = 0

oo j

( \ \~~* \~*

7 = 0 A=0 ' 7 = 0

The last inequality contradicts the divergence of (49). This completes the proof of Lemma

4.1.

For use below, we introduce the notation

finj = */J (« e N, 2" - 1 " + 1 - 2),

Gn =

LEMMA 4.2. Lei « > 0, /) € (1, oo] a«J σ = (α + ρ'1)'1. Then for every η e Ν ?/jere « α

rational function ψη of degree 2" that satisfies the conditions

1) II<PJI// < cx(a,p),
2)W^\\a,c^2nac2{a,p\

3) IIV^IIoo.c, < 1 (« * w).

PROOF. We set

It is easily shown that

lim
^ +0

X)'A\
1/σ

(52)

(53)
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In (52) the right-hand side is to be taken to be 1 for ρ = οο; to obtain (53) we need to use
the equality

which follows from (1). The functions <pn and φ<α) tend uniformly to zero as 8 -» +0,
outside an arbitrarily small neighborhood of Gn. Hence it follows from (52) and (53) that
φη satisfies conditions l)-3) for sufficiently small δ > 0. This completes the proof of
Lemma 4.2.

The proof of Theorem 4.1 is divided into four cases.
1) Assertion 1) for σ < 2. As the required function we take

00

/(*) = Σ Pk<Pk(z)>
k = \

where pk = α2*
+1 ~ fl2*+2 a n ^ t n e <Pk a r e ̂ e rational fractions from Lemma 4.2. From

condition 1) of Lemma 4.2 we obtain

Σ Pk<Pk c1(a,p)a2j+i

for every η e N, and consequently Rn(f, Hp) = O(an) as η -» οο. On the other hand, for
arbitrary η e Ν we have from conditions 2) and 3) of Lemma 4.2.

>c2(a,p)[(2""Pny-a°22-"}.

o.G.

Setting G = UfG,,, we obtain | | / ( a ) L , c = +oo from Lemma 4.1 and (47), and conse-
quently, by Carleson's embedding theorem ([18], pp. 195-198), / ( e ) £ Ha. The proof of
this part of the theorem is completed by applying Lemma 1.1.

2. Assertion 1 for σ > 2. As the required function we take

(54)
k-l

Evidently /?„(/, Hp) = O(an). On the other hand, for every ρ e (0,1) we have, by
Holder's inequality and Parseval's equality,

- i

-1/2

Consequently, we obtain / £ H% by letting ρ -> 1 - 0 and using Lemma 4.1 and (47).
3. Assertion 2) for a < 2. This follows from assertion 1) and (8).
4. Assertion 2) /ο/· σ > 2. We show that the function (54) is the required function. In

fact, let pn = 1 - 2"", η e N, and ρ e [pn, p n + 1]. Then, by Holder's inequality and
Parseval's theorem,

a/2
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By (48) we find from Lemma 4.1 that

5° > „ - ! •'ft, "Ό

This completes the proof of Theorem 4.1.

§5. Degree of rational approximation and smoothness of functions

We denote by uk(8,f)p (k e N, 8 > 0, / e Lp(T)) the kth order modulus of
smoothness of /, i.e.

k

ω*(δ,/)Ρ= sup £ (-l)*~"c;/(ei<-+I'A))
l*l<8 , = 0 />.[0,2*]

THEOREM 5.1. Lei α > 0, ; e ( l , oo] and σ = (α + ζ»"1)"1, and /ei k be the smallest
positive integer such that k > a.

1) /// e Hp then for every η e Ν
η η

m-0 m—0

2) Iff e BMOA then for every η e Ν

£ (2""*ο4(2-,/)1 / β)1 / β < c(«) Σ (2""Ή2,(/,ΒΜΟΑ))1/α. ( 5 6 )

COROLLARY 5.1. /// is the smallest positive integer such that I > a, then for every 8 e (0, \]

(57)

To obtain (57) we observe that for α £ Ν we have I — k and it suffices to suppress the
terms with m = 0,1,..., η - 1 on the left-hand side of (55). However, if α e N, then
/ = k — 1 and by Marchaud's inequality (see, for example, [19]) the left-hand side of (55)
majorizes cx(«, ρ)(2"'ω/(2"",/)„)".

In view of Corollary 2.2, inequalities (55) and (57) remain valid if we suppose that
/ e Lp(T) and R2-(f, Hp) is replaced by R2">(f, Lp(T)), the best approximation to / in
Lp(T) by rational fractions of degree 2m - 1.

An inequality of the type of (57) was obtained by Dolzhenko [20] for α = 1 and
ρ = oo; by Sevast'yanov [21] for α e (0,1) and ρ = oo; and finally by Brudnyi [22] for
a > I — ρ'1, ρ e [1, oo], and with k instead of /.

For the proof of Theorem 5.1 we require the following two lemmas.

LEMMA 5.1. Let ρ e (0, oo], 5 = min(l, p), k e Ν andf e Bps. Then for every 8 e (0,1]

PROOF. For every ζ e D+ we have /(z) = fx(z) + /2(z), where

Λ(*)= Σ c;(-i)

From Lemma 1.1 and a result of Storozhenko [23] we obtain, since \\g(P · )\\p is
nondecreasing with respect to ρ (g e Hp),

fiL· < c2(k,p)Sk\\j"f(-(l - 8/k))\\H . (58)
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From the properties of finite differences ([24], p. 157) we have, for every ζ e D+,

s/k dt f/kfo/k , {S/k rS/k ..... . x . .

f dh d t 2 - - - y / ( * > ( ( ! _ ( / l + / 2 + . . . + / A ) ) Z ) Λ
0 J0 J0

\ f ( k ) ( ( l ~ ( t 1 + t2 + ••• + t k ) ) z ) \ d t x d t 2 ••• d t k

f,,/2 tt>0

ί, + 12 + • ' • + tk < S

If ^ e [1, oo] we find from (59) that

ΙΙΛΙ < ( ΐ 4 τ ) [ / ο

δ ΙΙ/ ( 4 )(·(ΐ - 0 ) L / * - 1 * . (60)

Therefore we obtain the necessary inequality for ρ e [1, oo] from (58), (60), and Lemma

1.1. For /; e (0,1) we introduce

F(z)= max \f(k)(rz)\.

We find from (59) that

\A(z)f<[(k -!)!]-'( Σ Γ'\ F((l-t)z)t"-i*P

*c (k,p)f F'ipzHl-pY'-'dp. (61)

Using the fact that \\F(-p)\\p < cA(p)\\f<k\-p)\\p for every P e (0,1) ([1], p. 278), we

obtain the conclusion of Lemma 5.1 for ρ e (0,1) from (58), (60) and Lemma 1.1. This

completes the proof of Lemma 5.1.

LEMMA 5.2. Let a > 0, ρ e (0, oo] and q ε (0, oo), and let k be the smallest positive

integer such that k > a. Then a function f e Hp belongs to class Bp if and only if

I o \ ?

// + Σ (2""W(2-™,/),)* <oo. (62)ι
ρ '

»ι = 1

Here the quasinorm (62) is equivalent to the quasinorm ||/||B« .

REMARKS. 1) With a corresponding definition of | |/| | s« the conclusion of the lemma

remains valid for q = oo.

2) The lemma is well known for ρ e [1, oo] and q e [1, oo] (see, for example, [25]).

3) For the proof of Theorem 5.1 we need only the necessity for ρ = q.

PROOF OF LEMMA 5.2. For ; ' ε Ν we introduce μ/. = | |7 λ/((1 - 2~j) • ) \ \ H . From

Lemma 5.1 we obtain

As in the proof of Lemma 4.1, we obtain

(2macok(2-m,f)py<c2(a,p,q)2y""> £ (2^^%)\ γ = α/2.
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Consequently | | / | | ' B - ? <
 C3(«> P> 4)11/11 β; „> s i n c e Bp.q

c:Hp f o r α > 0. The reverse in-
equality follows from a result of Storozhenko [26]:

and Lemma 1.1. This completes the proof of Lemma 5.2.

PROOF OF THEOREM 5.1. Let f e Hp, 1 < /> < oo, and let rn be a rational function of

degree 2" - 1 for which | | / - r\\H < 2R2,,(f, Hp). From (38) and Lemma 5.2 we obtain

IkJI»; < ci(«' P)lkJU;.. (« > 0, σ = (« + /Γ1)"1). (63)

Evidently, R2j(rn, /) = 0 for y > n, and

Λ2,(ΓΙΙ>7ί/)) = Λ 2 , (/-(/-Γ Λ ) ,^)<Λ 2 /(/ ,/ ί ; , )+ | | /-Γ η | | ι / ,<3Λ 2 /(/ ,^)

for y = 0,1,..., « - 1. On the other hand, for every j e N,

ω4(2->,ΓΒ)σ = «,(2->,/-(/- /•„))„ >-2-1/"ω,(2-Λ/)σ-ω,(2-Λ/-,,,)

>2-1/αω,(2-Λ/)σ-2* + 1Λη(/,//;,).

Consequently, from (63) we obtain

Σ (2-X(2-'",/) ( J)
o<c2( a, / J)| |/ | | / ) + C3(a,Jp) Σ (2^ 2 ».(/,^))° .

m = 1 m = 0

Now if in the preceding inequality we replace f(z) by /(z) - /(0) and use the inequality

\\f(z)-f(0)\\Hp<c4(p)Rl(f,Hp),

we obtain (55). Inequality (56) is proved similarly. This completes the proof of Theorem

5.1.

Grodno Received 13/MAY/83
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