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TCHEBYCHEFF RATIONAL APPROXIMATION IN THE DISK,
ON THE CIRCLE, AND ON A CLOSED INTERVAL

UDC 517.53

A. A. PEKARSKH

ABSTRACT. Suppose that the function / is analytic in the disk {z: \z\ < 1} and
continuous in its closure. Let Rn{f) denote the best uniform approximation of /
by rational functions of degree at most n. In 1965 Dolzhenko established that if
Σ/RnU) < °°i then / ' belongs to the Hardy space H\. The following converse
of this result is obtained here: if / ' 6 Hi, then Rn{f) = O(l/n). In combination
with results of Peller, Semmes, and the author, this estimate yields, in particular, a
description of the set of functions / with Ε ( 2 * α β 2 * {f))9]1/g < oo, where α > 1
and 0 < q < oo.

Bibliography: 38 titles.

Let Ω be a subset of the complex plane C, and let Ω be its closure. Denote by C(Q)
the set of continuous functions on Ω, with the norm ||/||οο,Ω = sup{|/(z)|: ζ € Ω}. If Ω
is a domain, then A(Q) is the set of functions analytic in Ω. The set of rational functions
of degree at most η (η > 0) with poles only in C\£l is denoted by ̂ η ( Ω ) . We introduce
the best uniform approximation Rn{f,Ω) = inf{||/ - rH^n: r € ^ η (Ω)} of / by the
set ^η(Ω). We also introduce the notation D+ = {z <E C: \z\ < 1}, £>_ = C\D+, and
r = {£eC:|e | = i}.

Dolzhenko [1] showed that if / € C{T) and Σ # η ( / , Τ ) < oo, then / is absolutely
continuous on T. He also established that for / absolutely continuous Rn(f,T) can
tend to zero arbitrarily slowly, i.e., the result in [1] does not admit a converse (see [2]).
In [3] Dolzhenko considered the analogous problem for functions / € A(D+) Π C(D+).
He showed that if ^ i ? n ( / , D + ) < oo, then /' belongs to the Hardy space Hi. Thus,
the following problem was posed: what can be said about the behavior of Rn(f,D+) as
η —> oo for functions / € A{D+)(~)C(D+) such that / ' e ffi? In [4] the author established
the estimate #„(/ , D+) = O(ln3 n/n) for such functions. Later [5] the author succeeded
in replacing In3 η by In n. We improve the method in [5] and get the following result: if
/ e A{D+) nC(D+) and /' 6 Hi, then(x)

Rn(f,D+)< en'11|f'\\Hl ( n > l ) . (1)

The proof of (1) is based on the use of an atomic decomposition of the space Rei?i
introduced by Coifman [6] (see also [7]), the use of rational operators of Jackson type

1980 Mathematics Subject Classification (1985 Revision). Primary 41A20, 41A50; Secondary 30C15,
30D55, 41A25.

( ')Here and below, c,cl,C2,... denote absolute positive constants, which are generally different in
different places. Similarly, c(-• ·)> ci( · •• ),C2(· ·•)>·•· denote positive quantities depending only on the
parameters indicated in the parentheses.
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88 Α. Α. PEKARSKII

constructed by Rusak [8], [9], and the use of an inequality of the author which connects
best rational approximations on D+ and on Τ [10]. Results in [11] on best rational
approximation in Hi are used here to generalize inequality (1) to, for example, the Besov
space -Sf/a (a > 1) of functions in the disk D+, on the circle T, and on the interval [—1,1]·
The results are definitive improvements of the direct theorems on Tchebycheff rational
approximation due to Brudnyi [12], Peller [13], and the author [11]. In combination
with known inverse theorems of Peller [13], Semmes [14], and the author [15], the results
in this paper give a description of the set of continuous functions whose best rational
approximations tend to zero at the rate of a power.

The main results in this article were announced in [16] and presented at a session of the
All-Union School on Function Theory and Approximations held in Saratov in February
1986.

§1. Lemmas on simple functions

A real-valued function <p defined on R will be called a simple function if it is absolutely
continuous, ||^'||OO,R < oo, and there exists a (finite) interval 1{φ) such that suppy? C
Ι {φ). Since the interval Ι {φ), which we call a support interval for φ, is not uniquely
determined, we shall assume below in speaking of simple functions that a certain specific
support interval is given for them. The quantity μ(φ) = \I(<p)\ • ||^'||oo,R < oo is an
important characteristic of a simple function, where \I{<p)\ is the length of Ι {φ). The
function identically equal to zero will also be called simple.

LEMMA 1.1. Let f(x) = Σ%=1 <Pk(x), where the <pk are simple functions such that
Ι(φι) D I(<p2) D ••• D Ι(<ΡΡ)- Let J2l=i l*(<Pk) = v. Then for anyn>6 ( t i e N) there
exist simple functions ψι,..., iftq (q < n) satisfying the following conditions:

a) \f(x) - Σ9

3=ι ^ ( χ ) Ι ^ <*«/" f°r * e R>
b) f{x) ~ EUi *&) =0forxe Ι(φρ) U [R\J(pi)],
<0 Σ ' = ι μ(Φι) < C2V.

PROOF. The lemma is obvious for ρ < 6; therefore, we assume that ρ > 6. Without
loss of generality it can also be assumed that I(<Pk) — (—Ofc,6*)) k = 1, . . . ,p, where
afc)6fc > 1 and ap — bp = 1. For y > 0 we introduce the simple function Ay(x) =
max{0,1 - \x\/y), for which I(Ay) = (-y,y) and μ(Δν) = 2. Let

yk = min{afc, bk}, <pk(x) = <pk{x) - <pk(Q)Ayk {x),

Mx) = 5>*(0)Aw(z), f2(x) = J2vk{x)-
k=i fc=l

Fix some m e N. We show that there exist real numbers hi,...,hmi and positive
numbers y\ = z\ > z-i > • • • > zmi = yp = 1 (mi < 2(m + 1)) such that:

a') |/i(x) - ΣΓ=ι Λ,-Δ.,ΟΟΙ ̂  i^MELi I^Wi for * e R,
b') fi(x) - ΣΓ=Ί *i**M) = 0 for χ € [-1,1] U

Γ
Indeed, suppose first that all <pk(0) are nonnegative. Then /i(x) is even, downwards
convex on [0, oo), linear on [0,1], and equal to zero on [t/i, oo). Take numbers z1:..., zm+i
(mi = m + 1) so that the variation of /i(x) on each of the intervals [ZJ+1,ZJ] (j =
1,..., m) does not exceed (1/m) ]Cjt=i V*(0)· It is geometrically easy to find nonnegative
numbers Ai,..., Am + 1 such that conditions a')-c') hold. Obviously, in this case we can
set C3 = 1 in a'). In the general case we introduce the functions

/+(*)= Σ <Pk(0)Ayk(x), fr(x)= Σ (-<Pk(0))Ayk(x).
<Pk(0)>0
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Then fi(x) = fi~{x) — fi{x), and it is necessary to consider each of the functions f^(x)
and /f (x) separately. Conditions a')-c') hold with mi = 2(m + 1) and C3 = 2.

We proceed to consider the function ./^(z)- Let us define a continuous function ξ+(χ)
on R by setting £ + (±2 J ) = [1 + (-l)J']/2 (j = 0,1,2,...) and letting ξ+{χ) be linear
on the intervals (-1, l),(2',2-»+1), and (-2 J + 1 ,-2 J ) {j = 0,1,2,...)- Define ξ~{χ) =
1 - ξ+(χ). Then / 3(i) = /+(i) + / 2"(ΐ), where

It follows from the condition <pfc(0) = 0 that the functions φΙ((χ)ξ+(χ) and φΙ((χ)ξ~(χ)
decompose into sums of the simple functions ψ£ί{χ) [i = l , . . . ,s + ) and Φ'ζ^χ) (ί =
1,..., s~), respectively. Here the intervals into which (—al5 bi) is divided by the zeros
of £+(x) and ζ~{χ) are support intervals for ψ^^χ) and Φ^^{χ), respectively. It can be

assumed that each system of functions {4>tiY%=i a n ( ^ {^iYi=\ ^ o r a fr^d value of i has
one and the same support interval. It is easy to get that

, k = l,...,p. (2)

We introduce the simple functions
Ρ

fc=l

It is not hard to see that

For example, consider the function f£{x)- It can be assumed that the rpf are indexed
so that ΐ\φΐ) = (-2,2) and μ{ψ%) > μ(ψ£) > ··• > μ{Ψ++)- We get from (2) that

Σ ί = ι ΡίΨ?) < C4i), and hence

M ^ ) < c 4 « / ( t - l ) , i = 2,...,e+. (3)

For the m e Ν chosen earlier we set mj = min{m, s+}. Using inequality (3) and the
fact that the intervals Ι {ψ*) (i = 1,.. •, s+) are disjoint, we get that

a") |/2

+(*) - ΣΓ 2 + ^ + ( x ) | < c5^/m for χ e R,

b") /2

+(x) - Σ Γ ? ^ ( Ϊ ) = 0 for χ 6 [-1,1] U (RXl-a!,^)],

c") Σ Γ ? μ{*ΐ) < cev.
Obviously, analogous relations hold also for the function f2 (x). Thus, Lemma 1.1 follows
from a')-c') and a")-c").

LEMMA 1.2. Suppose that the conditions of Lemma 1 hold, ρ > 2, and 1 < fci <
k? < • · • < kd < ρ — 1 are positive integers. Then for any η € Ν there exist simple
functions ψι,...,ψ9 (q < n + 6{d + 1)) satisfying the following conditions:

a) 1/(2) - Σ ι <M*)I < c i«/ n for i e R ,
b) Six) ~ E? M*) =0forxe I(<pp) U [Ul i( ' (^,)V(^, + 1 ))] U
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PROOF. We let ko = 0 and kd+i = p, and, assuming that ν φ 0 (the lemma is obvious
for ν = 0), we introduce for i = 1,..., d + 1 the following objects: (2)

A, ki

fi(x) =

According to Lemma 1.1, for any i = l,...,d + l there exist simple functions
(j = 1,..., «ft, φ < n, + 5) satisfying the following conditions:

* ) l/i(*) - E ' U i M * ) l < ci«i/n< < e^/n for χ € R,
b.) fi(x) ~ E 'L i ^ j ( x ) = 0 for χ € / ( ^ , ) U

It follows from a,)-Ci) t ha t ipi,j{x) (i = l , . . . , d + 1, y = 1, ...,<fc) are the desired

functions. There are g = Σ χ + 1 Qi < η + 6(rf + 1) of them. Lemma 1.2 is proved.

LEMMA 1.3. Suppose that f(x) = Σ\ <fk{x), where the ipk are simple functions such
that any two intervals I(<Pk) and I(fk') with k φ k! are either disjoint or imbedded one
in the other. Let Y^^ifk) = v. Then for any η e Ν there exist simple functions
Φι, • • •, Ψς (q < η) satisfying the following conditions:

< — for x e R, (4)

< C2V. (5)

PROOF. We introduce the function

where xt(x) is the characteristic function of the interval I(<Pk)- We fix some m € Ν
(m > 2) and denote by (£o, fm) the smallest interval containing \J*I(<Pk)· Note that
θ(χ) > 0 for all χ e R, θ(χ) = 0 for χ G R\(&>, fm), and / R (̂x)<ix = v. Therefore, there
are points f0 < 6 < · • · < ξπι-ι < ζτη such that / £ + 1 6{x)dx = v/m (i = 0,..., m - 1).
We partition the set {1,... ,p} into subsets Gs (s = 1,... ,m):

s-l

}\|jGi (s = 2,... ,m - 1),
t = l

m - l

We also introduce the functions

k€Ga

If some set Gs is empty, then the corresponding function fs(x) is taken identically equal
to zero. It is not hard to see that

l|/m||oo,R < V/m. (7)
(2)[a] is the integer part of a number o.
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Assume first that Gj φ 0 (j = 1,... ,m — 1). The simple functions φ^ in the decom-
position of f3 according to (6) will be denoted by T3^ (i = 1,... ,pa). As follows from
the construction of the sets Gs and the conditions of the lemma, we can assume that
/(Γ 8 ι 1) D / ( r s , 2 ) D ··• D / ( r e , p . ) . Let Ia = Ι(Γ 8,ι). For each s = 1,... , m - 1 we define
a set Es C I3 as follows. Let Es — 0 if I3 does not contain any interval Is> other than
itself. But if such an Ia, exists,(3) then define Es as the union of all the intervals Js- ^ Is

satisfying the condition that there is no interval I3n with / s . ^ Isi> ^ Is. Obviously, if
Es Φ 0 , then Es is the union of certain disjoint intervals I{<Pk)· The number of such
intervals I(<pk) is denoted by ds. In the case Es = 0 we set di — 0. It is not hard to see
that

dx +d2 + hdm-i < m. (8)

Assume that ν Φ 0 (the lemma is obvious for ν = 0), and let

m s =

According to Lemma 1.2, there exist simple functions ip3j{x) (j — 1,... ,qs, q3 < ms

6(<is + 1)) satisfying the following conditions:
as) \fs{x) - Σ%ι Φ3,]{Χ)\ < civs/ms < cxv/m for χ € R,

bs) fs{x) ~ Σϊ=ι -Φ*Λχ) = 0 for x e E3 U (R\/e),

From condition b s) and the way of constructing the sets Es and the functions fa we get
that for a fixed χ € R at most one of the numbers fs{x) — Y?jS= χΨβ,]{χ) (s = 1,..., m-1)
is nonzero. Therefore, by condition a s ),

m - l m - l 9s

s = l s=l j = l

= max

(9)

By (7),

Also from condition c s) we get

m - l

m - l

s=l j=X

< — for χ 6 R.
m

c3v

m
(10)

oo,R

m—1

8 = 1 J = l 8 = 1

By (8), the total number of terms in the double sum in (10) is

m — 1 m — 1

Σ <7a < Χ) Κ + 6(ds + 1)] < 14m. (12)
3 = 1 S = l

If some G s = 0 ( l < s < m — 1), then in the above arguments we should consider only
the functions / s with G3 φ 0 . But if all the Gs are empty for s = 1,... ,m - 1, then
(10) -(12) clearly hold, for example, for all q3 = 1 and for the simple functions ψ3,ι equal
identically to zero. Thus, relations (10)-(12) always hold, and they imply Lemma 1.3.

(3)By assumption, only these two cases are possible.
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§2. Lemmas on rational operators of Jackson type

Let Zk (k = 1,... ,n) be points in the upper half-plane Π = {ζ e C: Imz > 0}, i.e.,
zk — ah + i0k, where —oo < ak < oo and fik > 0. We define the Blaschke product

= π ^
zk

and the rational kernel of Jackson type

g(x,t) =
6(0 - b(x)

t-x
(x,teR).

Let g(x) = fR g(x, t)dt. Following Rusak [8], [9], we define a rational operator of Jackson
type for a function / integrable on R with respect to the measure (1 + t2)~~2dt:

(13)

Actually, Rusak considered integration with respect to (1 + t2)dt instead of integration
with respect to dt in (13). Obviously, this does not affect the following important prop-
erties, where were established in [8] and [9]:

a) 3ln (x, f) is a linear operator, and

(14)

b) 3fn(x,f) is a rational function of degree at most 4n — 4.

LEMMA 2.1. For any χ 6 R

0k
9{x) >

Ufc=i
- Q f c ) 2

PROOF. We compute g(x) in a way completely analogous to that in Rusak's paper
[8] (see also [9], pp. 132-136). As a result,

πι, - 4b-Hx)b'"(x)}.

Consequently,

fc=l

This proves Lemma 2.1.

+3
k=\

LEMMA 2.2. Suppose that -oo < a < oo, β > 0, and φ is a simple function such
that Ι (φ) = (α- β,α + β) and μ{φ) < 1. Then for any i e R

43 β 16 0
(χ - a)» + β* 9(χ)[(χ-α)2+βψ·
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PROOF. Suppose that %x = {f € R: \t-x\< l/{ig(x)} and §2 = R \ ^ . By (14),

|ρ(ζ)-.0 η (χ,ρ) | <-£-τ [ \<p{x) - <p{t)\g{x,t)dt

* J

If ί Ε §Ί, then |^(z) - ρ( ί) | < 1/2/3-ξ/φ), and

But if t Ε gy, then |y?(x) - <p(<)| < |z - i|/2/3, and

J <yjj \x-t\g{x,t)dt<— J ~^ = J

Combining these estimates, we find that

\φ{χ)-3η{χΜ\<^Ά (̂ €R). (15)

(16)

Under the condition that χ & [a - 2/3, a + 2/3] the estimate (15) can be refined as follows:

j ra+0
\φ{χ)-&η{χ,φ)\ = \&η{χ,<ρ)\< γ-r^r J g{x,t)dt

< J L Γ+/3 d^ < J6^ β
g\X) Ja—β \y ~~ ·£) 9\%) \\% ~ Οι) ~Υ ρ \

Lemma 2.2 follows from (15) and (16).

LEMMA 2 . 3 . Suppose that <pi,...,<pn

 are simple functions, and let f = ψ\ Λ Υ <ρη

and μ/c — μ{φ^· Then the half-plane Π contains at most 2n numbers zi,...,zm such
that the operator 2>m{x, •) determined by them satisfies the relation

(iGR).

PROOF. Let I{<Pk) — {a-k - &,<**: + /3fc), where -oo < a*; < oo and /3fc > 0. Since
the operator 3>η{χΛ •) is linear, it can be assumed that Y^[ μ^ = 1. The parameters
Zk,j of the desired operator 3fm{x, •) are determined as follows: Zkj = cnk + ιβ^, where
fc = 1,. . . , η and j = 1, . . . , [ημ^ + 1. Obviously, there are m = Σ™([ημΐε] + 1) < 2n
such numbers z^j. Setting Sk(x) = [(x - ak)2 + β\\~ι, we get from Lemma 2.2 that for
any χ e R

(x, f)\ <
43 16

k=i

On the basis of Lemma 2.1 we conclude that for any χ € R

>8πη

fc=l fc=l

Lemma 2.3 is proved.
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REMARK. It can be shown similarly that under the conditions of Lemma 2.3 the
estimate

k=l

holds for the Fejer-type operator J^(z,/) also introduced by Rusak in [8] and [9], and
determined by the kernel \b(i) - b{x)\2/\t - x\2.

§3. Approximation in the disk

We introduce the function spaces needed in what follows. Our main object of investi-
gation is the approximation space R% q(Q) (a > 0, 0 < q < oo) of functions / G C(Q)
with finite quasinorm

1/9

Lfc=o
(Ω) =

H*S,,«x,(n) ~ l l / l loo,n- fc>Q

(q φ oo), (17)

' = oo). (18)

Let 5 be a locally rectifiable curve in C, and let 0 < ρ < oo. Denote by LP(S) the
Lebesgue space of measurable functions f on S with

"<<*> ( 0 < P < o o ) ,

oo (p = oo).

The Hardy space Hp = HP(D+) is defined as the set of / G A(D+) with

The limit in (19) exists because | |/(·/Ο)||Ρ ΙΓ is monotone in ρ (see [17], p. 77). For the
definition of the Hardy space HP(D-) in D- one should consider the functions / € A(D-)
vanishing at infinity and let ρ —* 1 + 0 instead of ρ —> 1 - 0. It is known (see [17] and
[18]) that the functions / G Hp (HP{D-)) have nontangential boundary values /(£) for
almost all ζ G T. Let / ( Q ' {a > 0, / € A(D+)) denote the ath derivative of / in
the Riemann-Liouville sense (see [19] and [15]). The Hardy-Sobolev space Hg (a > 0,
0 < ρ < oo) is defined as the set of / € A(D+) such that

ll/lk? = ll/lli/p + ll/ ( Q )K<oo. (20)
Let S be the circle Τ or the interval [-1,1], and let / G LP{S). Denote by ωρ,*(·, /) the

fcth modulus of smoothness of / in LP(S). The Besov space Bp(S) (a > 0, 0 < ρ < oo)
is defined as the set of functions / G Lp (S) with

P)Pf]'/'<oc, pi,
where k = [a] + l. The Hardy-Besov space B°(D+) (B°(D-)) is defined as the set of
/ G HP{D+) (f G HP(D-)) such that the boundary function /(£) belongs to B%{T). The
spaces R^oq(D+) and Bg(D+) will sometimes be denoted by Rg, q and Bg for brevity.
We note that in [11] and [15] we used another equivalent definition of Hp and B% (see
[19] and [22] for more details on this). We have the imbeddings(4)

S p ° C i i ; (p<2), B p f f ? ° (p>2), (22)

and both imbeddings are strict (see [19] and [22]) for ρφ2.

(4)Only continuous imbeddings axe considered in this paper.
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If / € Hua or / ε Bf. and a > 1, then the boundary function /(ξ) is continuous

on T, i.e., the spaces Hf/a and B°/a are imbedded in C(~D+) for a > 1. If / € Bf/a[S),

where a > 1 and 5 is the circle Τ or the interval [—1,1], then / coincides almost

everywhere on 5 with some function in C(S). Thus, we again have that Bf.(S) C C(S)

for a > 1. In the case a € (0,1) the spaces Hf,,B^,, and Bf,(S) contain essentially
unbounded functions. Therefore, Theorems 3.2 and 4.1 (see below), our main results, do
not hold for α < 1.

To prove the inequalities (1) we also need the Hardy space Ηι(ΐΙ) in the half-plane
Π = {ζ e C: Imz > 0}. It is defined [18] as the set of / € A{U) such that

ΙΙ/ΙΙ/ΜΠ) = s u p | | / ( - + z y ) | | i i R < oo.
3/>O

The functions / £ #ι(Π) have nontangential boundary values f(x) for almost all χ 6 R.
A real-valued function ο € Loo(R-) is called an atom (see [6] and [7]) if there exists

a (finite) interval J(a) such that suppo C J{a), ||a||oo,R < l/ |J(a) | , and, moreover,
fRa(x)dx = 0. If a(x) is an atom, then <p(x) = f^.ooa,(t)dt is a simple function (see §1)
for which Ι {φ) = J(a) and μ(ιρ) < 1.

LEMMA 3.1. Suppose that g € ίΓι(Π) and g^O. Then there exist a sequence (finite
or infinite) of atoms αϊ, a?,... and a sequence of positive numbers λχ, λ2, • • · such that:

a) Reg(x) — Y^k Xkak{x) for almost all i £ R ;
b ) Σ * λ * <c|lffllHi(n);
c) for any k and k' (k Φ k') the intervals J(a.k) and J(afc/) are either disjoint or

imbedded one in the other.

Lemma 3.1 was obtained by Coifman in [6], where, however, the condition c) is missing
in its formulation. This condition is not hard to see from the proof, which is constructive.
There is a simpler proof in [7].

LEMMA 3.2. IffeA(D+)nC(D+), then

Rn(f,T)<Rn(f,D+)<2Rn(f,T), n>0.

The first inequality is obvious, and the second was obtained in [10].

THEOREM 3.1. If f eHj, then

Rn(f,D+)<(c/n)\\f'\\Hi, n>l.

PROOF. We introduce the auxiliary function ς{η) = /[Γ(??)] (η € Π), where z =
Τ(η) = (1 + ίη)Ι(η + ί) is a linear fractional mapping of the half-plane Π onto the disk
D + . It is easy to show that g' € Hi(U) and ||g'|Ui(n) = | | / ' I IHI(D+) · Therefore, Lemmas
1.3, 2.3, and 3.1 imply that for any m € Ν there exist tj € ^ m ( R ) {j = 1,2) such that

\\Reg-r1\\oo,R<c1m-1\\f'\\Hl, (23)

IIImff-ralloo.R^cam-Ml/'ll^. (24)

Making the inverse substitution η = T~1(z) — (1- iz)/(z — i), we get Theorem 3.1 from
(23) and (24) and Lemma 3.2.

The sharpness of Theorem 3.1 can be judged by the example of the function φη{ζ) —
ζη+1/2π{π+ 1), for which (see [9], p. 167) | | ^ | l » i = l a n d Rn{fn,D+) = 1/2π(η + 1).

We introduce the following best approximation for a function / 6 Hi:

RnUM = inf{||/ - r'\\Hl: r € ^n(D+)}.



96 Α. Α. PEKARSKII

LEMMA 3.3. iffeHf, then

Rn(f,D+) < (c/rOSn/ai/'.ffx), η > 2.

PROOF. Let r, € ^n/2(D+) be such that | | / ' - ri||ff l = Έη/2(/',Ηι). Then by
Theorem 3.1

Rn(f,D+) = Rn[r* + (/ - r.)] <

< (c/n)\\f - r'JHl =

Lemma 3.3 is proved.

COROLLARY 3.1. ///eH{, then Rn(f,D+) = o{i/n).

The proof follows directly from Lemma 3.3 and Jackson's theorem.

THEOREM 3.2. The following imbeddings are valid:

RlA C H\ C i 4 i O O , (25)

K>,i/a C Hf/a C Λ^,2 (α > 1), (26)

<iC5jcC. (27)

^S,,i/e = B»/a (a > 1). (28)

PROOF. The left-hand imbeddings in (25)-(27), as well as the imbedding "C" in
(28), are known ([3], [13]-[15], and [20]). The right-hand imbeddings in (25) and (27)
follow directly from Theorem 3.1 and (22). We get the right-hand imbedding (26). From
Lemma 3.3,

R2k(f,D+)<c2'kR2k-1(f\H1) (*>1) (29)

for a function / € Hf/a {a > 1). Since / ' e H^'J, we get from Theorem 4.1 in [11] that

\\r\\Hl + (30)

The right-hand imbedding in (26) follows from (29) and (30). The imbedding "D" in
(28) is proved similarly. This proves Theorem 3.2.

For s €Ξ Ν and β > 0 we introduce the function

where Inf!) χ = ln(x) and ln(s) χ — ln(ln(s_i) x) for s > 2, the principal branch is taken
for all logarithms, and the positive number α is chosen so that ips^(z) is continuous in
D+. For sufficiently large η we have the relations(5)

(31)

Rn(<Ps,0, [0,1]) ~ l M l n ^ D nf (s > 2). (32)

The equivalences (31) and (32) were obtained for s = 2 in [23]. The case s > 2 is
handled similarly. We mention that the first nontrivial upper and lower estimates for
RnifsM, [0,1]) were obtained by Gonchar in [24] and [25]. See also Bulanov's paper [26]
about a lower estimate of Rn(<pi,p, [0,1]). It is shown in Example 3.1 that (31) and (32)
are preserved if [0,1] is replaced by Τ or by £>+.

( 5 )a n a bn ·» an - O{bn)iibn = O(an).
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EXAMPLE 3.1. For sufficiently large η

Rn(<ph0,D+) χ ϋη^,β,Τ) χ 1/η1+β, (33)

fin(^,/5,D+)xJRri(^,0,r)xl/n(ln(s_1)n)'3 (a > 2). (34)

PROOF. It follows from the lower estimate in (31) and (32) and from Lemma 3.2 that
it suffices for us to get an upper estimate for Rn(<pSt0,D+) (s > 1). With this goal we
introduce φβ,β,η{ζ) = <Ρβ,β{{1 — e~n)z) and choose some k e Ν such that k > 1 + β.
From the right-hand imbeddings in (25) and (26) we have

Rn(ips^D+) < Cln-'\\φ'3β - φ'8ίβ,η\\Ηι + c3(fc)n- fc | |*5<5 in | |JTl/lk. (35)

The necessary upper estimate follows from (35). The relations (33) and (34) are proved.
Since φ3β € B{ for any s and β, (34) and (22) imply that the right-hand imbeddings

in (25) and (27) are sharp in the sense that ί^,οο cannot be replaced by R^ <q for any
q < oo. The impossibility of an analogous improvement in the left-hand imbeddings in
(25) and (27) follows from results of Dolzhenko [3]. Examples in [11] and [15] give us
that the imbeddings (26) also cannot be improved.

For Lebesgue measurable sets I ' c i ' w e define the measure

= JJ'{l-\z\y2dxdy (z = x + iy).

Denote by Lp q (D+, μ) the Lorentz space of μ-measurable functions in D+ (see [27],
§5.3).

COROLLARY 3.2. If a > l, k > a (fceN), andO <q<<x>, then

f € R^q ο fik\z)(l - \z\)k € L 1 / Q , , (D+,^ .

In particular,

Rn(f,D+)=O(n~a)
W k l'a) as t - +0.

The proof is based on (28) and is analogous to that of Corollary 4.2 in [11].
Let us compare the degree of best rational approximation in C(D+) and the space

BMOA of analytic functions of bounded mean oscillation in D+ (see [13], [18], and [20]).
By definition, an / S A(D+) belongs to BMOA if it is representable as an integral of
Cauchy type with bounded density:

ι r nic\

'.ξ, (36)

where g € Loo(T) and ζ e D+. Here we set | | / | |BMOA = inf ||g||oo,T' where the infimum
runs over all g such that (36) holds. Let Rn{f,BMOA) denote the best approximation
of / in BMOA by the set <92n{D+), and by R?q the approximation space determined
by (17) and (18) when ||/||oo,n is replaced by | |/ | |BMOA and #„(/, Ω) is replaced by
i?n(/,BM0A). Obviously, for / € A{D+) Π C(D+)

Rn(f,BMOA) < Rn{f,D+). (37)

Therefore, (28) implies the imbedding B",a C R" 1,a for α > 1. By using real interpola-
tion this imbedding can be generalized to a < 1. The necessary interpolation theorems
are in [27] and [28]. Thus, we have obtained a new proof of a result of Peller [13], [20]:
BjV C R"l/a {a > 0). The reverse imbedding also holds (see [20], [13], [14], and [15]).

We show that inequality (37) can be reversed for "sufficiently smooth functions".
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COROLLARY 3.3. If feBMOA and
OO

^J?*(/,BMOA) < o o , (38)
k=Q

then f € C(D+), and for any η > 1

Rn(/, D+) < °- Σ Rk(f, BMOA). (39)

The proof is by the standard method with use of Theorem 3.1 and the inequality (see
[20] and [13]) \\r'\\Hl < cn||r||BMOA, where r€&n(D+) and η > 1.

The sharpness of inequality (39) can be judged by the example of the function (ρ3>β(ζ),
for which we obtained (33) and (34) earlier. For sufficiently large η we also have the
equivalences

(40)

^ T l (^, / 3,BMOA)xl/nln ( 1 ) n---ln ( a _ 2 ) ( ln ( s _ 1 ) n) 1 + / ' (s > 2). (41)

The assertions (40) and (41) were obtained in [11] for s = 2, and the case s > 2 is handled
similarly.

REMARKS. 1. We can show that if (38) does not hold, then / £ C(D+) in general.
2. Relation (39), in combination with a result of Peller in [13] and [20] {B°/a C R?a/a,

a > 0), also leads to the imbedding B"/a C Roo,i/a (a > 1) in (38).

§4. Approximation on the circle and on a closed interval

Together with the integral Jf+g(z) denned by (36), we also introduce for a j € L\{T)
the integral J^~g(z) obtained from (36) by replacing ζ € D+ by ζ € £>_. For ξ e Τ
let 3f±g{(i) denote the nontangential boundary values of Jf±g{z). As is known [17],
ρ(ξ) = Ji*Ό{ξ) +J^~g(C) for almost all ξ G T. We also define the conjugate function

where the integral is understood in the sense of the Cauchy principal value. It is known
[17] that <?(£) exists almost everywhere on Τ and

where

0(0) = (1/27Γ) f 9(ξ)\άξ\.
JT

LEMMA 4.1 ([13], [20]). The operators 3?+ ,Jf~, and act continuously from
B°/a{T) (a>0) intoB?/a(D+),B?/a(D_), and Bf / a(T), respectively.

LEMMA 4.2 ([13], [29]). If f(x) £ Bf/a[-l, 1] (a > 0), then 9(ξ) = /[(£+ 0/2] €
B",a(T), and this mapping is continuous.

THEOREM 4.1 . Suppose that S is the circle Τ or the interval [-1,1]. Then

RLAS) C Bl(S) C R^iS), (42)

K>,i/a(S) = B?/a(S) (a > 1). (43)

PROOF. The left-hand imbedding in (42) is known, as is the imbedding " c " in (43)
(see [13]-[15], [20], and [29]). The right-hand imbedding in (42) and the imbedding " D "
in (43) follow from Theorem 3.2 and Lemmas 4.1 and 4.2. Theorem 4.1 is proved.
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THEOREM 4.2. // the functions f and f are absolutely continuous on T, then for
any η > 1

) > cn-^H/'Hi.T + /yil

The proof follows immediately from Theorem 3.1 and the properties given above for
an integral of Cauchy type and for conjugate functions.

REMARK. Sevast'yanov [35] pointed out the advisability of studying best rational
approximations of the functions in Theorem 4.2. As is clear from Lemma 3.2, Theorems
3.1 and 4.2 are equivalent.

COROLLARY 4.1. Suppose that f e C{T) and that the function f{eix) is even and
convex on [0,2π\. Then f € C(T), and for any η > 1

^crri/'lkr, (44)

Ι^η^ΙΙ/ΊΙι,τ. («)
PROOF. We introduce the function At{x) = max{0,1 — |a;|/i}, where x e [-ΤΓ,ΤΓ]

and t > 0. It is not hard to show (see also [30], Chapter II, §1), that there exists a
nondecreasing function h(t) on [0, π] satisfying the conditions h(n) — h(0) = | | | / | | ι , τ and

f(eix) = / ( - I ) + Γ At(x)dh(t) (χ Ε [ττ,π]).
./ο

We get (44) and (45) from Theorem 4.2 (or Theorem 4.1 and Lemma 4.1) and the last
relation.

We remark that (44) is an obvious consequence of Theorem 5.1 in [31], while (45) is
new. Relation (44) can be obtained similarly in the nonperiodic case (see [31] and [32]).

For χ > 0 we introduce the function Φο(ζ) = ζ In ζ for ζ > 1, Φο(ζ) = 0 for χ < 1.
Denote by L^o(T) the corresponding Orlicz space [33] of functions on T.

COROLLARY 4.2 [31]. /// is absolutely continuous on Τ and f e.L%0{T), then for
any η > 1

The proof follows immediately from Theorem 4.2 and the theorem of Zygmund on
conjugate functions [18].

Grigoryan [34] proved that if
oo

J2Rk(f,T)< oo, (46)
fc=0

then / € C(T). Sevast'yanov [35] constructed examples which imply that if (46) does
not hold, then / £ C{T) in general. Theorem 4.3 below gives an analogue, for rational
approximations, of an inequality of Stechkin [36] connecting best polynomial approxima-
tions of a function and its conjugate.

THEOREM 4.3. Suppose that f € C{T) and condition (46) holds. Then for any
n>2

k>n/2

The proof is by a standard method with the use of Theorem 4.2 along with the
inequalities ||r'| |i iT < cn||r||oo,T and ||(f)'||i,r < ΗΜΙοο,τ·, where re&n(T) and η > 1.
The first of these inequalities is due to Dolzhenko [1], and the second to Rusak [9], [35].
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The sharpness of Theorem 4.3 can be judged by the following example.

EXAMPLE 4 . 1 . For any s e Ν and β > 0 there exists an fa<0 G C{T) such that

/s,/3 G C{T) and, for suiBciently large n,

Rn(fi,0,T) x Rn(fi,0,T) x l/n1+0, (47)

Λη(Λ )/3,Γ)χ1/η1η ( 1 )η-··1η ( β_2 )η(1η ( 8_1 )η)1 + / 3 (β > 2), (48)

Rn(fi,fi, Τ) x l/n(ln(e_D nf (s > 2). (49)

PROOF. The constructions are based on the functions <ps^ in §3. Let /ι,β{ξ) =

'Ρι,β(ξ), ξ€Τ. Since <pi<0 C C(D+) f)A(D+), it follows that f1<0 = -ι'/ι,/j + const, and
hence (47) follows from (33). In the case s > 2 we introduce functions rk G ̂ 2 * (Ό+)
which satisfy the conditions \\<ρβ,β -?Ά:||ΒΜΟΑ = #2fc(^s,/j,BMOA). Fix some sufficiently
large k0- We have that tpSt0 = ui + u2 + u3 + • • •, where ui = rfco, w2 = rko+1 - rko,
«3 = rko+2 - rko+1 and so on. According to (41), | |UJ||BMOA < c\s{2j+k°), where Xa{n)
is the right-hand side of (41). Since Uj € ^2>+*ο(-0+)) it follows [37] that there is a

Vj € ̂ ?2>+"o (D-) such that the function Wj = Uj + Vj satisfies the condition

ΗΙΙΟΟ,Γ - | |«>||BMOA < c\s{V+k°). (50)

We show that /Si/g = w\ + w^ + • • · is the desired function. Indeed, (50) implies that
fs,p € C(T) and that the upper estimate in (48) is valid. To obtain the lower estimate
in (48), note that 3?+faS = <ps,0 + const and Rn{fa,0, Τ) > Λη(^,^,ΒΜΟΑ) > cXs{n)
by (41). Thus, (48) is proved. The upper estimate in (49) follows from Theorem 4.3 and
the upper estimate in (48). It remains to get the lower estimate in (49). For this, note
that fSi0 = ifSi0 - 2i<pSt0 + const, and hence

Rn(fs,0,T) > 2R2n(<p9i0,T) - Rn(fs,0,T).

The lower estimate in (49) is obtained from the last inequality, relation (34), and the
upper estimate in (48). This proves (47)-(49).

COROLLARY 4.3 . Suppose that a > 1 andO < q < oo. Then the following conditions

are equivalent:

a) /6Λ*ιβ(Γ),

b)feR^q(T),_

c)2'+feRgo<q(D+) andJT-feRZjD-).

Recall that a description of R^oq(D+) is given in Corollary 3.2. The space /Ζ£,)β(Ζ)_)
admits an analogous description. Thus, Corollaries 3.2 and 4.3 give a description of the
space R&JT).

Let (•, -)eiq be the Peetre interpolation functor [27]. One application of the results
obtained is given in Corollary 4.4.

COROLLARY 4.4 (cf. [13], [20] and [28]). Suppose that S is the circle Τ or the
interval [-1,1], s > 1, 0 < θ < 1, and a = 9s > 1. Then

(C(S),Bs

1/s(S))e,1/a = B?/a(S).

The proof follows immediately from Theorem 4.1 and the equalities (see [27], Chapter

7)

In conclusion we note that it is possible to give a "real" description of the spaces
So,q{T) and i?£oi9[—1,1] for a > 1. This description is based on the idea of an atomic
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decomposition of the spaces H",a and Bf, . It is also possible to introduce a character-
istic, analogous to moduli of smoothness in polynomial approximation, which connects
smoothness of functions and the degree of Tchebycheff rational approximation. Such a
characteristic was introduced for the spaces Lv (1 < ρ < οο) in [4] and [16]. We propose
to consider these questions separately. We remark also that by using the Faber transfor-
mation method ([13], [21], and [29]) it is possible to generalize Theorem 3.2 for Lipschitz
domains [38].

Grodno State University Received l/APR/86
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