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Estimates of derivatives of simplest
fractions and other questions

V. I. Danchenko

Abstract. The approximation properties of simplest fractions (s.f.’s), that is,
of the logarithmic derivatives of complex polynomials, have recently become
a subject of intensive research. These properties of s.f.’s prove to have many
similarities with those of polynomials. For instance, one has for them ana-
logues of Mergelyan’s and Jackson’s classical results on uniform polynomial
approximation. In connection with approximation by s.f.’s estimates of the
Markov–Bernstein kind for derivatives of s.f.’s on various subsets of the com-
plex plane arouse interest. Such estimates are obtained in this paper on circles,
straight lines and their intervals, and some applications of these estimates are
indicated. Several other questions relating to approximation properties of
s.f.’s are also considered.

Bibliography: 28 titles.

§ 1. Introduction

By a simplest fraction (s.f.) of degree n, n > 1, of the complex variable z ∈ C
we mean a rational function of the following form:

ρ(z) = ρn(z) =
n∑

k=1

1
z − zk

, (1)

that is, the logarithmic derivative of a complex variable (some of the points zk ∈ C
can be equal). The approximation properties of s.f.’s have recently become an
object of intensive study (see [1]–[8]). For this reason one is interested in estimates
of the Markov–Bernstein kind for s.f.’s on various subsets K of the complex plane C,
that is, in estimates of the following form:

|ρ′(z)| 6 A(z,K, n, ‖ρ‖K), ‖ρ‖K = sup{|ρ(t)| : t ∈ K}, z ∈ K, (2)

where A is a positive quantity that is finite at each point z ∈ K and depends only
on the indicated parameters (but is independent of the location of the poles of the
s.f. ρ). In what follows we consider only sets K of the simplest form: circles, straight
lines, and straight line intervals. As is known, in the class of rational functions of
general form (of arbitrary fixed degree n) there can be no estimates of the form (2) at
any point of a set K of the above form (see, for instance, [9]). Moreover, there exist
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no estimates either in the class of rational functions representable as a difference of
s.f.’s. One example here is the s.f. fa,b(z) = (z − a)−1 − (z − b)−1, where K does
not separate the points a and b, a 6= b. Then f ′a,b(z) = −fa,b((z− a)−1 +(z− b)−1)
and for each z ∈ K one can clearly find a → b → z such that both ‖fa,b‖K → 0
and |f ′a,b(z)| → ∞. For an s.f. (1) there exist estimates of the form (2), and in
the case of bounded sets K they are similar to inequalities of Bernstein type for
derivatives of polynomials (see §§ 6, 7). Moreover, one can find estimates of s.f.’s
also on unbounded sets. For instance, it is shown in [10] that for x ∈ R = (−∞,∞),
for an s.f. of the form (1) with Im zk > 0, k = 1, . . . , n, we have the inequalities

|Re ρ′(x)|+ |Im ρ′(x)| 6 2 Im ρ(x)(|Re ρ(x)|+ ‖Re ρ‖R) 6 4‖ρ‖2R,

and for each s.f. ρ of the first degree the first inequality here becomes an equality
for some real x. Other precise inequalities of this type hold on R and other sets of
the above-mentioned form. One can find the proofs of the main results in §§ 4–7.
In § 8 we consider some additional properties of s.f.’s. Some of our results here were
published in the Proceedings of Conferences [6]–[8].

§ 2. Auxiliary results

Let G be a simply connected domain in the extended complex plane C, with
boundary γ that is a piecewise analytic curve in C, that is, it consists of finitely
many regular Jordan analytic arcs γm. (Each arc γm is the image on the Riemann
sphere of the interval [0, 1] under a locally conformal map.) Here γ is not necessarily
a simple curve: it can be a two-sided bounded or unbounded cut. We shall call
points z ∈ γ distinct from ∞ and the end-points of the arcs γm regularity points
of γ. We denote by w = w(z) a fixed univalent conformal map of the domain G
onto the unit disc D : |w| < 1. We fix n and some points zk ∈ G, k = 1, . . . , n,
distinct from ∞ (points with distinct indices are not necessarily distinct). In what
follows we often write w in place of w(z) for z ∈ G and v in place of w(ζ) for ζ ∈ γ.
For wk = w(zk) we set

B(z) =
n∏

k=1

w − wk

1− wwk
, τ(ζ) =

w′(ζ)
w(ζ)

, µ(ζ) =
B′(ζ)

τ(ζ)B(ζ)
=

n∑
k=1

1− |wk|2

|v − wk|2
> 0,

(3)
where ζ ∈ γ is a regularity point of the curve γ (at such a point ζ the quantity τ(ζ)
is well defined, finite, and non-zero). For fixed real ϕ we consider the fraction

f(z, ϕ) =
1

B(z)− eiϕ
,

where we choose ϕ such that all the roots ζk ∈ γ, k = 1, . . . , n, of the equation
B(ζ) = eiϕ are regularity points of γ. In view of the definition of µ, we can write
down the expansion of f(z, ϕ) into elementary fractions (with respect to the variable
w = w(z) the function f(z, ϕ) is a rational function):

f(z, ϕ) = a+
n∑

k=1

1
B(ζk)

w′(ζk)B(ζk)
vkB′(ζk)

vk

w − vk
= a+ e−iϕ

n∑
k=1

1
µ(ζk)

vk

w − vk
,



Estimates of derivatives of simplest fractions 507

where a is a finite constant and vk = w(ζk), |vk| = 1 for all k. We now calculate
the z-derivatives of both sides of this equality and after a simple transformation
taking account of (3) obtain

B′(z)
B(z)

w

w′(z)
B(z)eiϕ

(B(z)− eiϕ)2
=

n∑
k=1

1
µ(ζk)

vkw

(w − vk)2
, w = w(z).

Since for real x, y we have

eixeiy

(eix − eiy)2
= −1

4
cosec2 x− y

2
, (4)

substituting in the above identity z = ζ ∈ γ, B(ζ) = eiβ , v = w(ζ) = eiα, and
vk = w(ζk) = eiαk we obtain

µ(ζ) = sin2 β − ϕ

2

n∑
k=1

1
µ(ζk)

cosec2 α− αk

2
. (5)

We shall require one further identity. Consider the expansion in simplest frac-
tions (with respect to w = w(z)):

1
w

eiϕ

B(z)− eiϕ
=

1
w

eiϕ

B0 − eiϕ
+

n∑
k=1

1
µ(ζk)

1
w − vk

, B0 = (−1)n
n∏

k=1

wk,

after which, multiplying both sides by w, setting w → ∞ and performing simple
transformations we obtain

n∑
k=1

1
µ(ζk)

=
eiϕ

(−1)n
∏n

k=1 1/wk − eiϕ
− eiϕ

B0 − eiϕ
=

1− |B0|2

|B0 − eiϕ|2
. (6)

§ 3. Main lemma

Consider the functions

f1(z) =
P (w)∏n

k=1(w − wk)
, f2(z) =

Q(w)∏n
k=1(1− wwk)

, f(z) = f1(z) + f2(z),

(7)
where P (w) and Q(w) are arbitrary polynomials of degree at most n and where, as
before, w = w(z), wk = w(zk), zk ∈ G, |wk| < 1 (points with distinct indices can
be the same).

Lemma 1. At each regularity point ζ of γ,

sin
β − ϕ

2
(
f ′1(ζ)e

i(β−ϕ)/2 + f ′2(ζ)e
−i(β−ϕ)/2

)
=
τ(ζ)
2i

f(ζ)µ(ζ)− τ(ζ)
2i

sin2 β − ϕ

2

n∑
k=1

f(ζk)
µ(ζk)

cosec2 α− αk

2

=
τ(ζ)
2i

sin2 β − ϕ

2

n∑
k=1

f(ζ)− f(ζk)
µ(ζk)

cosec2 α− αk

2
, (8)
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where the real parameters α, β, are defined by the relations

v = w(ζ) = eiα, B(ζ) = eiβ ,

and ϕ is an arbitrary real number such that all the roots ζk, k = 1, . . . , n, of the
equation B(z) = eiϕ, z ∈ γ, are regularity points of the curve γ, and β − ϕ 6= 2πl
for integer l, w(ζk) = eiαk .

Proof. For fixed ζ ∈ γ and ϕ 6= β + 2πl consider the function

F (z) = F (z, ϕ) =
f1(z)B(z) + f2(z)eiϕ

B(z)− eiϕ
.

This function is rational in the variable w = w(z), with poles only at the points
vk = w(ζk) = eiαk . Hence, in view of the definition (3), we obtain

F (z) = A+
n∑

k=1

w′(ζk)eiϕ

vkB′(ζk)
vkf(ζk)
w − vk

= A+
n∑

k=1

vkf(ζk)
µ(ζk)(w − vk)

,

where A is a finite constant. Consequently, for z = ζ ∈ γ and v = w(ζ) = eiα (see
also (4)),

F ′(ζ) = −τ(ζ)
n∑

k=1

f(ζk)
µ(ζk)

vvk

(v − vk)2
=
τ(ζ)

4

n∑
k=1

f(ζk)
µ(ζk)

cosec2 α− αk

2
. (9)

On the other hand,

F ′(z) =
f ′1(z)B(z)
B(z)− eiϕ

+
f ′2(z)e

iϕ

B(z)− eiϕ
− f(z)eiϕB′(z)

(B(z)− eiϕ)2
.

It is easy to verify that for z = ζ ∈ γ and B(ζ) = eiβ we have the equalities

B(ζ)
B(ζ)− eiϕ

=
1
2

(
1− i ctg

β − ϕ

2

)
,

eiϕ

B(ζ)− eiϕ
= −1

2

(
1 + i ctg

β − ϕ

2

)
,

eiϕB′(ζ)
(B(ζ)− eiϕ)2

=
B′(ζ)
B(ζ)

eiϕB(ζ)
(B(ζ)− eiϕ)2

= −1
4
µ(ζ)τ(ζ) cosec2 β − ϕ

2
.

Hence we can write the above expression for F ′(z) as follows:

2 sin2 β − ϕ

2
F ′(ζ) = i sin

ϕ− β

2
(
f ′1(ζ)e

i(β−ϕ)/2 +f ′2(ζ)e
−i(β−ϕ)/2

)
+

1
2
f(ζ)µ(ζ)τ(ζ).

Comparing this equality with (9) we obtain the first equality in (8), which, in view
of (5), yields the second equality in (8). The proof of Lemma 1 is complete.

Remark. Methods similar to the ones used in Lemma 1 and based on various inter-
polation identities, were used by Bernstein [11], Szegő [12], Akhiezer, Levin [13], [14],
Videnskǐı [15], Rusak [16], Pekarskǐı [17], and many other authors. This approach
was widely used for the derivation of precise inequalities of Markov–Bernstein type
for derivatives of rational, algebraic, and entire functions, in the analysis of extremal
properties of Chebyshëv–Markov fractions, and in other questions.
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§ 4. Consequences of Lemma 1

4.1. For ζ and β fixed as in the lemma we set t = t(ϕ) = (β − ϕ)/2. Since the
equalities in (8) hold for all admissible t described in Lemma 1 and therefore, by
continuity, also for all t 6= πl, the following result is a consequence of (5) and the
first equality in (8).

Theorem 1. At each regularity point ζ of the curve γ the functions (7) have the
following estimate for all t ∈ R:

|sin t| |f ′1(ζ)eit + f ′2(ζ)e
−it| 6 |τ(ζ)|

2
(|f(ζ)|+ ‖f‖γ)µ(ζ). (10)

4.2. Setting t = t(ϕ) = (β − ϕ)/2 we isolate the real and imaginary parts of the
expressions f ′1(ζ) = u1 + iv1, f ′2(ζ) = u2 + iv2, and

W (ζ, t) := sin t
(
f ′1(ζ)e

it + f ′2(ζ)e
−it

)
= U(ζ, t) + iV (ζ, t),

so that

2U(ζ, t) = (v1 − v2) cos(2t) + (u1 + u2) sin(2t) + v2 − v1,

2V (ζ, t) = (u2 − u1) cos(2t) + (v2 + v1) sin(2t) + u1 − u2,

2|W (ζ, t)|2 = −C cos(4t)−B sin(4t)−A cos(2t) + 2B sin(2t) +A+ C,

where A = (u1 − u2)2 + (v1 − v2)2, B = u1v2 − u2v1, C = u1u2 + v1v2.

Theorem 1a. Let ζ ∈ γ be a regularity point of the curve γ. Then the quantities
W1(ζ), . . . ,W8(ζ) defined below have the estimate 2−1|τ(ζ)|(|f(ζ)|+ ‖f‖γ)µ(ζ):

W1(ζ) =
1
2
(√

(v1 − v2)2 + (u1 + u2)2 + |v1 − v2|
)
,

W2(ζ) =
1
2
(√

(u1 − u2)2 + (v1 + v2)2 + |u1 − u2|
)
,

W3(ζ) =
√

(u1 − u2)2 + (v1 − v2)2, W4(ζ) =
1√
2

√
u2

1 + v2
1 + u2

2 + v2
2 ,

W5(ζ) =
√
|u1v2 − u2v1| , W6(ζ) =

1
2

√
u2

1 + v2
1 + u2

2 + v2
2 + u1u2 + v1v2 ,

W7(ζ) =
1√
2

√
k2
2

8k1
+ k1 +A+ C , k2 6 4k1,

W8(ζ) =
1√
2

√
k2 − k1 +A+ C , k2 > 4k1,

where k1 =
√
B2 + C2, k2 =

√
A2 + 4B2. In particular, for all k1 and k2 the same

estimate holds for W9(ζ) =
√
k1 +A+ C/

√
2 .

Proof. The quantities W1(ζ) and W2(ζ) are equal to the maximum values (in
the t-variable) of the quantities |U(ζ, t)| and |V (ζ, t)|, respectively. The estimate of
W3(ζ) is a consequence of (10) and the equalityW3(ζ) = |W (ζ, π/2)|. The estimates
of W4,5,6(ζ) follow from (10), the equalities between ||W (ζ, π/4)|2±|W (ζ,−π/4)|2|
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and 2W 2
4 (ζ) and 2W 2

5 (ζ), and the equality 2W 2
6 (ζ) = |W (ζ, π/6)|2+ |W (ζ,−π/6)|2.

Finally, in the estimates of W7(ζ) and W8(ζ) we have

2 max
t
|W (ζ, t)|2 > min

α
max

τ
(k1 cos(2τ) + k2 cos(τ − α) +A+ C).

An easy analysis shows that the minmax on the right-hand side is attained for
α = π/2, in which case the maximum on the right-hand side is easy to calculate:
for the corresponding values of k1, k2 it is equal to 2W 2

7 (ζ) and 2W 2
8 (ζ).

4.3. Consider the domain G = C+ that is the open upper half-plane, and let
{z1, . . . , zn} ⊂ C+ be a fixed set of points. Let

w(z) =
z − i

z + i
;

then by the definition of (3), for real x we obtain

τ(x) =
2i

x2 + 1
, µ(x) = (x2 + 1)

n∑
k=1

Im zk

|x− zk|2
, x ∈ R.

Consider the rational functions

R1(z) =
P (z)∏n

k=1(z − zk)
, R2(z) =

Q(z)∏n
k=1(z − zk)

, R(z) = R1(z) +R2(z),

where P (z) and Q(z) are arbitrary polynomials of degree at most n. The following
result is a consequence of Theorems 1 and 1a (for f1,2 = R1,2).

Theorem 2. Let x ∈ R, u1 = ReR′
1(x), v1 = ImR′

1(x), u2 = ReR′
2(x), and

v2 = ImR′
2(x). Then the quantities W1(x), . . . ,W9(x) listed in Theorem 1a have

the following estimate:

Wm(x) 6
1
2
(|R(x)|+ ‖R‖R)µ1(x), µ1(x) :=

n∑
k=1

2 Im zk

|x− zk|2
, m = 1, . . . , 9.

A similar estimate of |W (x, t)| holds for each real t.

The estimate of W3(x) and Rusak’s result in [16] yield the inequalities

|R′
1(x)±R′

2(x)| 6 ‖R‖Rµ1(x). (11)

Remark. In [16] Rusak obtained inequality (11) with ‘+’ sign and pointed out that
it was extremal, that is, became an equality for some rational function R = R1+R2.
See also inequalities (14). In [17], Theorem 3.1, Pekarskǐı obtained inequalities of
the form (11) for either component R1,2(z):

|R′
1(x)| 6 ‖R‖R

∑ 2 Im tk
|x− tk|2

, |R′
2(x)| 6 ‖R‖R

∑ 2|Im t′m|
|x− t′m|2

,

where the sums are taken over all the poles tk ∈ C+ and t′m ∈ C− of the functions R1

and R2. These inequalities produce both inequalities in (11) for an arbitrary mutual
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positioning of the poles of the rational functions R1 and R2, but with coefficient 2
on the right-hand side.

We point out that inequalities (11) have been generalized to various metrics and
more general domains in [17]–[21] (where the authors obtain estimates that are
sharp in order, but not extremal). For instance, estimates of type (11) have been
obtained for domains G with rectifiable boundaries γ of bounded linear density [20]
(that is, the length of the part of γ lying in an arbitrary disc of radius r is at most
A(γ)r).

In the case of the upper half-plane one can refine the estimate of W1 and W2

since the coefficient iτ(ζ) in (8) is real. Then, comparing the real (imaginary) parts
in (8) we obtain∣∣R′

1(x) +R′
2(x)

∣∣ +
∣∣Im(

R′
1(x) +R′

2(x)
)∣∣ 6

(
|ReR(x)|+ ‖ReR‖R

)
µ1(x),∣∣R′

1(x)−R′
2(x)

∣∣ +
∣∣Re

(
R′

1(x)−R′
2(x)

)∣∣ 6
(
|ImR(x)|+ ‖ImR‖R

)
µ1(x),

so that for R2 = 0 we have the inequalities

|R′
1(x)|+ |ImR′

1(x)| 6 (|ReR1(x)|+ ‖ReR1‖R)µ1(x), (12)
|R′

1(x)|+ |ReR′
1(x)| 6 (|ImR1(x)|+ ‖ImR1‖R)µ1(x). (13)

We point out that (12) becomes an identity for each fraction R1(z) = 1/(z − z0)
with single pole z0 ∈ C+. The estimates (12) and (13) complement the following
result of Rusak (see [16], Theorem 1):

|R′
1(x)| 6 ‖ReR1‖Rµ1(x), |R′

1(x)| 6 ‖ImR1‖Rµ1(x). (14)

4.4. Let G = gr = {z : |z| > r} be the exterior of a disc of some positive radius r,
and let {z1, . . . , zn} ⊂ gr be a fixed point set. Let w(z) = r/z. Then by the
definition (3) we obtain

τ(ζ) = −1
ζ
, µ2(ζ) := µ(ζ) =

n∑
k=1

|zk|2 − r2

|ζ − zk|2
, |ζ| = r.

For rational functions

R1(z) =
P (z)∏n

k=1(z − zk)
, R2(z) =

Q(z)∏n
k=1(r2 − zzk)

, R(z) = R1(z) +R2(z),

where P (z) and Q(z) are arbitrary polynomials of degrees at most n, the following
result is a consequence of Theorems 1 and 1a (for f1,2 = R1,2).

Theorem 3. Let |ζ|=r, u1=ReR′
1(ζ), v1=ImR′

1(ζ), u2=ReR′
2(ζ), v2=ImR′

2(ζ).
Then the quantities W1(ζ), . . . ,W9(ζ) listed in Theorem 1a have the following esti-
mates :

Wm(ζ) 6 (2r)−1(|R(ζ)|+ ‖R‖γr )µ2(ζ), m = 1, . . . , 9.

where γr is the boundary of the domain gr . A similar estimate of |W (ζ, t)| holds
for each real t.
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The estimate for W3(x) and above-mentioned Rusak’s inequality in [16] yield the
following relations:

r|R′
1(ζ)±R′

2(ζ)| 6 ‖R‖γr
µ2(ζ). (15)

We point out that Pekarskǐı [17] obtained similar estimates for the components R1,2

(see our remark to Theorem 2).
We can complement Theorem 3 as follows. Let θ ∈ (0, 1], M > 0. We say that

a function R(z) belongs to the class Lip(M, θ, γr) on the circle γr = {ζ : |ζ| = r} if

|R(reit1)−R(reit2)| 6 Mrθ

∣∣∣∣sin t1 − t2
2

∣∣∣∣θ.
Theorem 3a. The following estimates of a rational function of the above-indicated
form R = R1+R2 belonging to the class (M, θ, γr) hold for m = 1, . . . , 9 and ζ ∈ γr :

Wm(ζ) 6
M

2r1−θ
(1 + µ2(ζ))1−θ/2. (16)

Proof. We denote the right-hand side of (8) (the last expression) by A(ζ, ϕ). Then
in view of Hölder’s inequality (1/p = 1− θ/2, 1/q = θ/2) and equalities (5)and (6),
one obtains

|A(ζ, ϕ)| 6 M

2r1−θ
sin2 β − ϕ

2

n∑
k=1

1
µ2(ζk)

∣∣∣∣cosec
α− αk

2

∣∣∣∣2−θ

6
M

2r1−θ

(
sin2 β − ϕ

2

n∑
k=1

1
µ2(ζk)

cosec2 α− αk

2

)1−θ/2( n∑
k=1

1
µ2(ζk)

)θ/2

6
M

2r1−θ
µ

1−θ/2
2 (ζ)

(
1 + |B|
1− |B|

)θ/2

, B = (−1)n
n∏

k=1

r

zk
, (17)

for ζ = re−iα, ζk = re−iαk , where ϕ is arbitrary. Since ϕ can be arbitrary, the
estimates of the quantities Wm(ζ), m = 1, . . . , 9, proceed in the same way. If in
place of R we now consider a variation of it, namely, the new rational function

R̃(z) = R(z) + (z − z0)−1

with sufficiently large |z0|, then setting z0 → ∞, by the estimates (17) for the
corresponding quantities W̃m(ζ) one obtains (16).

§ 5. Estimates for derivatives of an s.f. on a straight line

5.1. Let fn(z) = ρn(z) + R(z) be a rational function such that ρn is an s.f. of
the form (1) with set of poles Pn = {z1, . . . , zn} lying in the open upper half
plane C+, where R is an arbitrary rational function with poles in the open lower
half plane C−, R(∞) 6= ∞. We now prove an auxiliary result on the separation of
the singularities of an s.f.

Lemma 2. The following estimate holds :

‖ρn‖R 6 (1 + εn) lnn · ‖fn‖R, n > 2, (18)
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where the positive εn approach zero as n→∞ (the εn depend only n). The estimate
is sharp in order in the following sense: there exists a sequence of functions of the
above-indicated form f̃n(z) = ρ̃n(z)+ R̃n(z) such that ‖ρ̃n‖R > 25−1 lnn · ‖f̃n‖R for
integer n > 100.

Recall for comparison that for arbitrary rational functions ρn of degree at most n
in a similar problem of the separation of singularities, in place of lnn one has the
coefficient n, which is the precise order (see, for instance, [17], [21]–[23]).

Proof. We set f = fn, ρ = ρn and shall assume that ‖f‖ = ‖f‖R = 1 (we can
always achieve this after a transformation of the form f(z/‖f‖)/‖f‖ preserving the
form of the s.f.). Then, as shown in [10], Theorem 1, for the distance dist(Pn,R)
of the set Pn = {z1, . . . , zn} from the axis R we have dist(Pn,R) > B ln lnn · ln−1 n
for n > 3 (with some positive absolute constant B; this estimate is independent of
the particular form of R(z); one can assume that R is an arbitrary function in the
Hardy class H∞(C+)).

In addition, it is shown in Lemma 1 of [10] that on the line Im z = −h, h ∈ (0, n),
we have the inequality |ρ(x− ih)| 6 (1/2) ln(2en/h) for real x. Assume that δ > 0
and let h = n−1−δ. Then |ρ(x− ih)| 6 (1 + δ/2) ln(en), and therefore

|ρ(x)| 6 |ρ(x− ih)|+ |ρ(x)− ρ(x− ih)|

6

(
1 +

δ

2

)
ln(en) +

1
n1+δ

n∑
k=1

1
|x− zk|2

6

(
1 +

δ

2

)
ln(en) +

1
nδ

ln2 n

B2 ln2 lnn
.

Selecting a sequence δ = δn > 0 convergent to zero sufficiently slowly so that
the second term in the above majorant approaches zero as n → ∞ we obtain
inequality (18).

Example 1. For a corroboration of the sharpness of the order we can take for
example the s.f. ρ̃n in [10], § 4.1:

ρ̃(z) = ρ̃n(z) =
n∑

k=1

1
z − ki

+
b′(z)

b(z)− a
, b(z) = bn(z) =

n∏
k=1

z + ki

z − ki
,

where a = a(n) = (−1)n ln(n+ 1), and we set f̃n(z) = ρ̃(z) + R̃n(z), R̃n(z) = ρ̃(z).
It is easy to see that f̃n has the form indicated in Lemma 2 and for n > 100 has the
following properties (for more detailed computations the reader can consult § 4.1
of [10]):

(a) the distance between its poles and the axis R is less that 2−1 ln lnn · ln−1 n
(we do not require this property here);

(b) for x ∈ R one has

|ρ̃(0)| >
n∑

k=1

1
k
− 1

lnn− 1

∣∣∣∣b′(0)
b(0)

∣∣∣∣ =
lnn− 3
lnn− 1

n∑
k=1

1
k
>

2
5

lnn, n > 100,

and, in addition,

|f̃n(x)| = 2|Re ρ̃(x)| 6
n∑

k=1

2|x|
x2 + k2

+
2

ln(n+ 1)− 1
|b′(x)|
|b(x)|

6 10, x ∈ R.

The proof of Lemma 2 is complete.



514 V. I. Danchenko

5.2. We now proceed to estimates of the derivatives of an s.f. on the real axis R.

Theorem 4. Let ρn(z) be an s.f. of the form (1) with set of poles {z1, . . . , zn} lying
in C+, and let R be a rational function with simple poles from the set {z1, . . . , zn}
such that R(∞) 6= ∞. Then the inequalities

|ρ′n(x)±R′(x)| 6 2‖ρn +R‖R Im ρn(x) (19)

hold. Moreover,

|ρ′n(x)| 6 (|ρn(x)|+ ‖ρn‖R) Im ρn(x), (20)
|Im ρ′n(x)| 6 (|Re ρn(x)|+ ‖Re ρn‖R) Im ρn(x), (21)
|Re ρ′n(x)| 6 (|Im ρn(x)|+ ‖Im ρn‖R) Im ρn(x), (22)

|ρ′n(x)|+ |Im ρ′n(x)| 6 2(|Re ρn(x)|+ ‖Re ρn‖R) Im ρn(x), (23)
|ρ′n(x)|+ |Re ρ′n(x)| 6 2(|Im ρn(x)|+ ‖Im ρn‖R) Im ρn(x). (24)

Here relations (21) and (23) become equalities (the first relation at some point x ∈ R
and the second on the whole of R) for each s.f. ρ(x) of the first degree.

Proof. Inequalities (19) follow from (11), (20), and the estimate for W3 in Theo-
rem 2 (for R1(z) = ρn(z), R2(z) = 0). The same estimate yields inequalities (21)
and (22) for R2(z) = R1(z) = ρn(z) and −R2(z) = R1(z) = ρn(z), respectively.
Inequalities (23) and (24) follow from (12) and (13).

Theorem 4a. Under the assumptions of Theorem 4,

|ρ′n(x)±R′(x)| 6 (2 + εn) lnn · ‖ρn +R‖2R, n > 2, (25)

where the positive εn approach zero as n → ∞ (the εn depend only on n). The
estimate is sharp in order in the following sense: for each integer n > 100 there
exists an s.f. f̃n(z) = ρ̃n(z) + R̃n(z) of the form indicated in Theorem 4 such that
‖f̃ ′n‖R > 50−1 lnn · ‖f̃n‖2R.

Proof. Inequality (25) follows by (19) and Lemma 2. For an example demonstrating
the sharpness one can take the s.f. ρ̃ = ρ̃n of Example 1 and set R̃n(z) = ρ̃(z).
Then

ρ̃ ′(x) =
b

b− a

(
b′

b

)2

+
b

b− a

(
b′

b

)′

−
(
b′

b

)2(
b

b− a

)2

−
n∑

k=1

1
(x− ki)2

,

where a = a(n) = (−1)n ln(n + 1), b = bn(x). We observe that here for x = 0 the
absolute value of the first term on the right-hand side is greater that 4 lnn,
the second term vanishes, and the sum of the absolute values of the last two terms
is bounded by an absolute constant A 6 12 (we bear in mind that the set of poles
of the s.f. ρ̃n is symmetric relative to the imaginary axis). Hence we obtain the
lower bound

|f̃ ′n(0)|
2

= |ρ̃ ′(0)| > 4 lnn−A > lnn, n > 100,

so that in view of the estimate ‖f̃n‖R 6 10 (see Example 1), we see that the
estimate (25) is sharp in order.
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5.3. In the case of an arbitrary mutual positioning of the poles of ρn and R (having
the form indicated in the beginning of § 5.1) there exists no estimate of the kind
of (19), (25). This is a consequence of the following well-known fact: there exist no
estimates of the Bernstein kind for derivatives of rational functions of general form
(see, for instance, Dolzhenko [9]). However, if R = ρ̃ is also an s.f., then such an
estimate is possible.

Theorem 4b. Let ρ and ρ̃ be s.f.’s such that the set of poles of the first fraction
lies in C+ and that of the second lies in C−. Then

|ρ′(x)|+ |ρ̃ ′(x)| 6 A‖ρ+ ρ̃ ‖2R(ln2(en) + ln2(eñ)), (26)

where n and ñ are the degrees of the s.f.’s ρ and ρ̃, respectively, and A is a positive
absolute constant.

Inequality (26) is an immediate consequence of Lemma 2 and the estimate (23)
applied separately to each of the fractions ρ and ρ̃.

§ 6. Estimates of derivatives of an s.f. on the circle

6.1. Let fn(z) = ρn(z) + R(z) be a rational function, where ρn is an s.f. of the
form (1) with set of poles Pn = {z1, . . . , zn} in the domain gr = {z : |z| > r},
r > 0, where R is an arbitrary rational function with poles inside the circle γr =
{z : |z| = r} such that R(∞) = 0. We shall prove an analogue of Lemma 2 for
circles. We set ρ = ρn, M = ‖fn‖γr

.

Lemma 3. The following estimate holds for n > n0(rM):

‖ρn‖γr 6 3 lnn ·M +
1
nr

. (27)

Here one can set n0(x) = 103(x2 + 1).

Proof. We shall use in the proof the following inequality from Theorem 6 in [10]
for the distance dist(Pn, γr) between the set Pn = {z1, . . . , zn} and the circle γr:

dist(Pn, γr) >
1
2

r

n+ 1

(
ln

n+ 1
1 + 2Mr ln(3n)

− 2
)
, (28)

provided that n > 4(r2M2 + 1). Hence it is easy to see that dist(Pn, γr) > r/n for
n > n0(rM) = 103(r2M2 + 1).

In the case of R(∞) = 0 it follows by Cauchy’s integral formula that |ρ(0)| 6 M
and |ρ′(z)| 6 Mr/(r2−|z|2), where |z| < r. Integrating the last inequality over the
radial interval Ln = [0, an], an = r(1− n−4)eit for some fixed t ∈ R we obtain

|ρ(z)| 6 |ρ(0)|+ M

2
ln
r + |z|
r − |z|

, z ∈ Ln, |ρ(an)| 6 M + 2M ln(2n).

Hence taking account of the inequality dist(Pn, γr) > r/n, n > n0, we obtain

|ρ(eit)| 6 |ρ(an)|+ |ρ(eit)− ρ(an)| 6 M(1 + 2 ln(2n)) +
1
nr

,

which proves (27) since t can be arbitrary.
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Remark. The estimate (28) is independent of the form of the function R(z); we
can assume that R is an arbitrary function in the Hardy class H∞(gr) such that
R(∞) = 0 (see [10]). It is easy to see from (28) that for all positive integers n we
have

dist(Pn, γr) > a(M, r)
lnn
n

, (29)

where the positive quantity a(M, r) depends only on M = ‖fn‖γr
and r.

Inequalities of the type of (28), (29), and therefore ones similar to (27) hold also
if one replaces gr by the exterior G(γ) of a Jordan curve γ with the generalized
Lyapunov property:

dist(Pn, γ) > a1(M,γ)
lnn
n

, ‖ρn‖γ 6 a2(M,γ) lnn, (30)

where the positive quantities a1,2(M,γ) depend only on M and γ. Recall that by
the generalized Lyapunov property of a smooth curve one means that the modulus
of continuity ω(r) of the argument of its tangent satisfies the Dini condition as a

function of arc-length s:
∫

0

ω(s)
s

ds <∞.

In fact, let z = ψ(w) be a conformal univalent map of the exterior of the unit
disc {g1 : |w| > 1} onto G(γ) such that ψ(∞) = ∞. By a result of Warshawski [24],

0 < A1(γ) 6 |ψ′(w)| 6 A2(γ) <∞, w ∈ g1. (31)

We observe that

ψ′(w)fn(ψ(w)) = ψ′(w)R(ψ(w)) +
n∑

k=1

ψ′(w)
ψ(w)− zk

= F (w) +
n∑

k=1

1
w − wk

,

where zk = ψ(wk), and F (w) is a function in the class H∞(g1) such that F (∞) = 0.
It follows from (29) and (31) that |wk| − 1 > a3(M,γ)n−1 lnn for all k. Hence (31)
yields the first inequality in (30), while the proof of the second is perfectly similar
to the proof of Lemma 2.

6.2. The following results hold.

Theorem 5. For r > 0 let ρn(z) be an s.f. of the form (1) with set of poles
{z1, . . . , zn} lying in the exterior of the circle γr , and let R be a rational function
with simple poles belonging to the set {r2/z1, . . . , r2/zn} such that R(∞) 6= ∞.
Then the two inequalities

‖ρ′n ±R′‖γr
6 ‖fn‖γr

(nr−1 + 2‖ρn‖γr
), fn = ρn +R (32)

hold.

This result is a consequence of (15) and the equality

µ2(ζ) = Re
( n∑

k=1

zk + ζ

zk − ζ

)
= n− 2 Re(ζρn(ζ)).
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Theorem 5a. Under the assumptions of Theorem 5, for R(∞) = 0 one has

‖ρ′n ±R′‖γr
6 n‖fn‖γr

(r−1 + εn), (33)

where εn = 6n−1(r−1 + lnn · ‖fn‖γr
) and n > n0(r‖fn‖γr

), and the quantity n0 is
defined in Lemma 3. The estimate (33) is sharp in order in the following sense:
for an arbitrary integer n > 2 and arbitrary positive r there exists an s.f. ρ̃n of
degree n with poles in gr such that ‖ρ̃n‖γr

6 1 and ‖ρ̃ ′n‖γr
> r−1(n− 1).

Proof. Inequality (33) is a consequence of (27) and (32). For an example of an s.f.
one can take ρ̃n = nzn−1(zn −Arn)−1 with A = 1 + n/r. Then calculations yield

‖ρ̃n‖γr 6
n

r(A− 1)
= 1, |ρ̃ ′n(r)| = n

r2
(n− 1)A+ 1

(A− 1)2
>
n− 1
r

,

which proves the second part of Theorem 5a concerning the sharpness of the
estimate.

§ 7. Estimates of derivatives of s.f. on an interval

Assume that all the poles of an s.f. ρ(z) = ρn(z) of the form (1) lie outside an
interval [−a, a], a > 0. We shall assume in addition that ρ(x), x ∈ R, takes only
real values, so that the set of poles zk is symmetric relative to the real axis. Let
‖ρ‖∗[−a,a] = maxx∈[−a,a] |

√
a2 − x2 ρ(x)|.

Theorem 6. Let ρ(x) = ρn(x) be a real-valued s.f. Then for n > n0(‖ρ‖∗[−a,a])
(the value of n0 was defined in Lemma 3),

(a2 − x2)|ρ′(x)| 6 |xρ(x)|+ n‖ρ‖∗[−a,a](1 + εn), (34)

where εn = 6n−1 lnn · (1 + ‖ρ‖∗[−a,a]). The estimate (34) is sharp in order in the
following sense: for all a > 0 and n ∈ N there exists an s.f. ρ̃(x) = ρ̃n(x) of
the above-indicated form such that

‖ρ̃ ‖∗[−a,a] 6 1, max
x∈[−a,a]

|(a2 − x2)ρ̃ ′(x)− xρ̃(x)| > n. (35)

Proof. It is sufficient to prove (34) for a = 1. In fact, for a > 0 and x = at,
t ∈ [−1, 1], x ∈ [−a, a], we can define an s.f. ρ0 by the equality ρ0(t) = aρ(at). Then
(1 − t2)|ρ′0(t)| = (a2 − x2)|ρ′(x)|, tρ0(t) = xρ(x),

√
1− t2 ρ0(t) =

√
a2 − x2 ρ(x).

Thus, if (34) holds for ρ0 with a = 1, then it holds also for ρ(x) with arbitrary
a > 0.

Making the change of variable z = (w + 1/w)/2, zk = (wk + 1/wk)/2, where we
assume for definiteness that |wk| > 1, we verify directly that

ρ(z) =
2w

w2 − 1
F (w), F (w) =

n∑
k=1

(
1

wwk − 1
+

w

w − wk

)
, (36)

(z2 − 1)ρ′(z) + zρ(z) = wF ′(w), z =
w + 1/w

2
; (37)
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here each z 6= ±1 corresponds to two distinct values of w with product 1. By (36)
and the equality

√
1− x2 = |v2 − 1|/|2v|, which holds, for x ∈ [−1, 1] and w = v =

eit, t ∈ R,

|F (v)| =
√

1− x2 |ρ(x)| 6 ‖ρ‖∗[−1,1], x =
v + 1/v

2
.

We observe that the set of points wk is symmetric relative to the real axis, therefore
the set of poles of F (w) is symmetric relative to the unit circle. Hence by (37), (15),
and the last inequality we obtain

(1− x2)|ρ′(x)|6 |xρ(x)|+ |F ′(v)|6 |xρ(x)|+ ‖F‖γ1µ2(v) 6 |xρ(x)|+‖ρ‖∗[−1,1]µ2(v),

(38)
µ2(v) =

n∑
k=1

|wk|2 − 1
|v − wk|2

,

for x = (v + 1/v)/2. We now take into account the inequality

µ2(v) = n− 2 Re(vR(v)) 6 n+ 2‖R‖γ1 , R(v) =
n∑

k=1

1
v − wk

.

By Lemma 3, |R(v)| 6 3 lnn · ‖F‖γ1 + 1/n 6 3 lnn · (1 + ‖ρ‖∗[−1,1]), therefore
‖µ2‖γ1 6 n(1 + εn) with εn = 6n−1 lnn · (1 + ‖ρ‖∗[−1,1]) for n > n0(‖F‖γ1), which
in combination with (38) proves inequality (34).

Example 2. It is sufficient to present an example substantiating the sharpness of
the estimate (34) with a = 1. Let n ∈ N and let wk, k = 1, . . . , n, be the roots
of the equation wn −A = 0 for some A > 1. Then from (36) we obtain

ρ̃(z) = ρ̃n(z) =
2w

w2 − 1
F̃ (w) =

2nw
w2 − 1

A(w2n − 1)
(wnA− 1)(wn −A)

. (39)

Let A be a solution of the equation 2An(A−1)−2 = 1. Then for w=v, |w|= |v|=Z1,
x ∈ (−1, 1), taking account of the equality

√
1− x2 = |v2 − 1|/2 we obtain

|ρ̃(x)| 6 2An
(A− 1)2

min
{

1√
1− x2

, n

}
, ‖ρ̃ ‖∗γ1

6
2An

(A− 1)2
= 1. (40)

Simple calculations for |v| = 1 yield (see (37))

(1− x2)ρ̃ ′(x)− xρ̃(x) = −vF̃ ′(v) = 2An2 Re
(

vn

(vn −A)2

)
.

At the points v such that vn = 1, the last expression is equal to 2An2(A−1)−2 = n;
comparing this with (40) we obtain (35) (for a = 1).

We point out that from (39), using the substitution w = eit, t = cosx, one
obtains a representation of the s.f. ρ̃(x) in terms of the Chebyshëv polynomials
Tn(x) = cosncos−1x:

ρ̃(x) = 2n
Tn−1(x)− Tn+1(x)

2Tn(x)− Tn−2(x)− Tn+2(x) + (A+ 1/A)(T2(x)− 1)
, n > 2

(a reducible fraction).
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§ 8. Several additional properties of s.f.’s and their generalizations

8.1. Zolotarev and Chebyshëv problems for s.f.’s. An analogue of the
Zolotarev problem for s.f.’s can be stated as follows. Let δ ∈ (0, 1/2), ∆1 =
[−1+δ,−δ], ∆2 = [δ, 1−δ]. For an s.f. ρ of the form (1) we set mδ(ρ) = min{|ρ(x)| :
x ∈ ∆1} and

λn(δ) = sup
{
mδ(ρ)
‖ρ‖∆2

: deg ρ 6 n

}
, n = 1, 2, . . . , (41)

where one takes the sup over all the s.f.’s (1) of degree at most n. One must find
the precise growth order of the quantities λn(δ).

As Example 2 shows, for each fixed δ, λn(δ) grows more rapidly than each
power nα, α > 1. In fact, let A = nα. The s.f. ρ̃(x) in Example 2 has the following
properties. Its poles lie on the ellipse

z =
1
2

(
a+

1
a

)
cos t+

i

2

(
a− 1

a

)
sin t, t ∈ [0, 2π], a = an = n

√
A . (42)

Hence they are located in the ((a − 1/a)/2)-neighbourhood of the interval [−1, 1],
and moreover,

1
2

(
a− 1

a

)
6 bn = 2α

lnn
n

provided that bn 6 2 (the last relation holds, for instance, if n > eα). In addition
(see (40)),

√
1− x2 |ρ̃(x)| 6 3n1−α for x ∈ [−1, 1] and n > n0(α).

Then the s.f. ρ0(x) = 2ρ̃(2x − 1) has similar properties with respect to the
interval [0, 1]: all its poles lie in the (α(lnn)/n)-neighbourhood of [0, 1] and, in
addition, ‖ρ0‖∆2 6 6n1−α(δ(1 − δ))−1/2. It follows by the first property that
for sufficiently large n the function |ρ0(x)| increases on [−1,−δ] and attains its
minimum at x = −1; moreover, |ρ0(−1)| > n/2. Thus, for each δ ∈ (0, 1/2)
and n > n1(α) > n0(α) we have λn(δ) > 12−1(δ(1− δ))1/2nα.

An analogue of the Chebyshëv problem for s.f.’s can be stated as follows. Find
an s.f. of degree n having the least deviation from zero on [−1, 1] in the norm
‖ · ‖∗[−1,1] among all the s.f.’s ρn of the form (1) with distance d(ρn) from the set of
poles to the interval [−1, 1] not exceeding 1. Example 2 shows that for A = 2n all
the poles of ρ̃n(x) lie in the 3

4 -neighbourhood of the interval [−1, 1], and moreover,
‖ρ̃ ‖∗[−1,1] 6 2n+1n(2n − 1)−2 � n2−n+1. Is this the precise order? Some lower
bounds for the least deviation in question under the assumption d(ρn) 6 1 were
obtained in [25]. It is shown there, for instance, that if ‖ρn‖[−1,1] 6 b−n−1 for
some b > 2, then all the poles of the s.f. ρn lie outside the ellipse of the form (42)
with a = b/2.

8.2. Approximation properties of s.f.’s and polynomials have much in common
(see [1]–[4]). For instance, one has an analogue of Mergelyan’s theorem on uniform
approximation by simplest fractions of complex-valued functions f(z) on compact
subsets E of the complex plane.

Theorem [1], [2]. A function f(z) that is continuous on a compact subset E of C
with connected complement and analytic at its interior points can be uniformly
approximated on E to an arbitrary accuracy by simplest fractions.
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We say that a compact subset E of C is of class A if it separates no points in
the plane and one can connect two arbitrary points of it by a rectifiable curve of
length at most A lying in E; here A = A(E) is a finite quantity. Let Rn = Rn(f,E)
and En = En(f,E) be the smallest uniform deviations on E of the function f from
the sets of s.f.’s and polynomials of degree at most n, respectively. As shown in
[1] and [2], if E ∈ A , then R[n ln(1/En)] < CEn, C = C(f,E), n > n0(f,E). Let
f be a complex-valued function satisfying the assumptions of Mergelyan’s theorem

on E. For fixed b ∈ E ∈ A we set α(f ; z) =
∫ z

b

f(t) dt, where the integral is

taken over a rectifiable curve in E joining b to z ∈ E. Kosukhin [4] has shown
that the deviations Rn+1(f,E) and En(feα(f ; · ), E) are weakly equivalent on the
above-defined class A of compact sets E: Rn+1(f,E) � En(feα(f ; · ), E).

Consider now special fractions of the following form:

θ(z) =
ρ1,n1(z)− ρ2,n2(z)
ρ3,n3(z)− ρ4,n4(z)

, (43)

where the ρs,ns
(z), s = 1, . . . , 4, are s.f.’s of the form (1) and of degree at most ns.

This slightly more complicated form of fractions results in significantly stronger
approximation properties. We have the following result.

Theorem 7 [6]. Let E be an arbitrary compact set, R(z) a rational function of
degree n > 1, and r = ‖R‖E < ∞. Then for p > 5r there exists a frac-
tion of the form (43) with degrees n1, n2, n3, n4 not exceeding pn such that
‖θ −R‖E 6 2errp+1/p! .

For a positive integer p we set

qp(z) =
p∑

k=0

1
k!
Rk(z), δp(z) = R′(z)−

q′p(z)
qp(z)

.

Lemma 4 [2]. For z ∈ E and p > 5r one has p! |δp(z)| 6 |R′(z)|2errp.

In fact, δp(z) = R′(z)Rp(z)/(p! qp(z)); furthermore, for z ∈ E and p > 5r we
have

|qp(z)| > e−r −
∞∑

k=p+1

|R(z)|k

k!
> e−r − rp+1

(p+ 1)!

(
1+

rer

p+ 1

)
>
e−r

2
, r = ‖R‖E .

Proof of Theorem 7. Let θ(z) = (q′p(z)/qp(z))/(R
′(z)/R(z)). Then taking account

of Lemma 4 we obtain

R(z) = θ(z) + δp(z)
R(z)
R′(z)

, |δp(z)|
∣∣∣∣ R(z)
R′(z)

∣∣∣∣ 6 2er r
p+1

p!
.

It follows from Theorem 7 that if for some function f its best uniform approxima-
tions Rn = Rn(f,E) on E by rational functions of degree at most n decrease to zero
as n → ∞, then for its best uniform approximations Θn = Θn(f,E) by fractions
of the form (43) of degree at most n we have the estimate Θ[n ln(1/Rn)] 6 C(f)Rn,
n > n0(f). For instance, for the best uniform approximations Θn(|x|, [−1, 1])
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of |x| on the interval [−1, 1] we obtain Θn(|x|, [−1, 1]) 6 C exp(− 3
√
n ). Recall for

comparison that the corresponding rational approximations by polynomials have
order 1/n (Bernstein), and the ones by rational functions of general form
have order exp(−π

√
n ) (Newman [26], Bulanov [27], Vyacheslavov [28]).

8.3. We now present an application of approximation by s.f.’s to numerical differ-
entiation of analytic functions. The corresponding results are a joint work [7]. Let
z0 ∈ D (the unit disc) and let s and n be fixed positive integers. For integer p > 1
we set

α(z) = −1
s

1
(z − z0)s

, A = As(z0) =
1
s

1
(1− |z0|)s

, q(z) =
p∑

k=0

αk(z)
k!

.

Then for z ∈ γ = {z : |z| = 1} and p > 5A, by Lemma 4 we obtain

1
(z − z0)s+1

− q′(z)
q(z)

=
1

p! sp

(−1)p

(z − z0)sp+s+1

1
q(z)

, |q(z)| > e−A

2
.

We point out that it follows, in particular, by a similar estimate for q(z) with
α(z) = z that all the roots zm of the equation

∑p
k=0 z

k/k! = 0 satisfy the inequality
|zm| > p/5, m = 1, . . . , p. It is also easy to show (on the basis of Rouché’s theorem)
that |zm| 6 2p.

Thus,∫
γ

∣∣∣∣ 1
(z − z0)s+1

− q′(z)
q(z)

∣∣∣∣ |dz| 6 2eA+p

(ps)p

∫
γ

|dz|
|z − z0|sp+s+1

6 4πeA+pAs

(
A

p

)p

. (44)

The estimate of the last integral I proceeds as follows (we set β = (sp+s+1)/2 > 1
and b = |z0|):

I = 2
∫ π

0

dϕ

(1− 2b cosϕ+ b2)β
=

∫ ∞

0

4(1 + t2)β−1

((1− b)2(1 + t2) + 4bt2)β
dt

=
4

(1− b)2(β−1)

∫ ∞

0

((1− b)2 + (1− b)2t2)β−1

((1− b)2 + (1 + b)2t2)β
dt

6
4

(1− b)2(β−1)

∫ ∞

0

((1− b)2 + (1 + b2)t2)β−1

((1− b)2 + (1 + b)2t2)β
dt =

2π
(1− b)2β−1(1 + b)

.

Next, we have q′(z)/q(z) =
∑ps

k=1(z−ζk)−1−ps(z−z0)−1, where the ζk = z0 +τ−1
k

are the zeros of q(z) and the τk are the roots of the equation (in t)
p∑

m=0

(−1)m

m!

(
ts

s

)m

= 0. (45)

Let f be a holomorphic function in D. If all the points ζk lie in D, then for
sufficiently small positive ε we have

1
s!
f (s)(z0) + psf(z0)−

ps∑
k=1

f(ζk) =
1

2πi

∫
|z|=1−ε

f(z)
(

1
(z − z0)s+1

− q′(z)
q(z)

)
dz.

Hence (44) yields the following result.
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Theorem 8. Let f be a holomorphic function in the unit disc D; ‖f‖=‖f‖D<∞.
Then at points z0 ∈ D, for positive integers s and p > 5A = 5s−1(1 − |z0|)−s one
has

1
s!
f (s)(z0) ≈ −psf(z0) +

ps∑
k=1

f(ζk)

with the following error bound :∣∣∣∣ 1
s!
f (s)(z0) + psf(z0)−

ps∑
k=1

f(ζk)
∣∣∣∣ 6 2‖f‖ep+AAs

(
A

p

)p

,

where the ζk = z0 + τ−1
k ∈ D and the τk are the roots of equation (45), and where(

ps

5

)1/s

6 |τk| 6 (2ps)1/s.

8.4. We now present another application of the estimates (14). Consider the frac-
tion

R(z) =
n∑

k=1

Ak(z − ak)−1, (46)

where the Ak are arbitrary quantities and ak ∈ C+. Then for real positive λ,

V :=
n∑

k=1

Ake
iλak =

1
2πi

∫ ∞

−∞
eiλxR(x) dx =

1
2πλ

∫ ∞

−∞
eiλxR′(x) dx.

Using (14) we now obtain

|V | 6 ‖ReR‖R

2πλ

∫ ∞

−∞
µ1(x) dx =

n

πλ
‖ReR‖R. (47)

One can also obtain the same estimates with ReR(x) replaced by ImR(x).
We use inequality (47) for the estimate of the rate of decrease as x → +∞ of

solutions v(x) of the equation v(n) +cn−1v
(n−1) + · · ·+c0v = 0 with constant coeffi-

cients ck, provided that the roots zk, k = 1, . . . , n, of the characteristic polynomial
P (z) = zn + cn−1z

n−1 + · · · + c0 lie in the left half-plane. For compactness we
assume that all the roots zk are simple. For fixed quantities A1, . . . , An we consider
the fractions

R0(z) = R0({Ak}, z) =
n∑

k=1

Ak

z − zk
, r0(y) = ImR0(iy),

and set ‖r0‖ = max{|r0(y)| : −∞ < y <∞}.

Theorem 9. The estimate |v(x)| 6 n‖r0‖x−1 holds for x > 0 for solutions of the
form v(x) =

∑n
k=1Ake

xzk , Re zk < 0. A similar estimate with r0(y) = ReR0(iy)
in place of r0(y) = ReR0(iy) also holds.
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In fact, it is sufficient to consider in (46) the fraction R(z) with poles ak = −izk

lying in C+. Since ReR(x) = −r0(x), the required bounds are consequences of (47).
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