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ON DECAY OF A SOLUTION OF THE FIRST MIXED PROBLEM
FOR THE LINEARIZED SYSTEM OF NAVIER-STOKES EQUATIONS

IN A DOMAIN WITH NONCOMPACT BOUNDARY
UDC 517.947

F. KH. MUKMINOV

ABSTRACT. A. K. Gushchin, V. I. Ushakov, A. F. Tedeev, and other authors have
investigated how stabilization rate of solutions of mixed problems for parabolic equa-
tions of second and higher orders depends on the geometry of an unbounded domain.
Here an analogous problem is considered for the linearized system of Navier-Stokes
equations in a domain with noncompact boundary in three-dimensional space. Es-
timates are obtained for the rate of decay of a solution as / —> oo , in terms of a
simple geometric characteristic of the unbounded domain. These estimates coincide
in form with the corresponding estimates of a solution of the first mixed problem for
a parabolic equation.

Bibliography: 21 titles.

Let Ω be an unbounded domain in E3 with a noncompact boundary. For the
velocity vector u(t, x) = {u\, ui, Μ3) and for the pressure p(t, x) we consider the
following problem in the domain ΰ = ( 0 , ο ο ) χ Ω :

(1) u( - Δ11 = Vp, divx 11 = 0,

(2) «Uean = 0, η\(=ο = φ{χ).

The author knows only one paper containing a study of stabilization of a solution of
the mixed problem for the system (1): the article [5] by Rusanov. In it he established
that if Ω is the exterior of a disk in the plane and if the initial function φ is bounded,
then the solution of the problem (1), (2) satisfies the estimate |u(i, x)\ < c(x)/lnt
for sufficiently large values of the time.

There are many articles investigating the asymptotics of solutions of the Cauchy
problem or the mixed problem in a half-space for a system of equations of the form

v( — [ν, ω] - νΔ\ - βυν άιν\ + Vp = 0,

υ(0,χ) = φ{χ), ω = ( 0 , 0 , ω),

for different values of the constants α, β , and ν (see, for example, [4], [18]-[21]),
and the bibliography in [21]). Due to the presence of the Coriolis term, this system
differs strongly from (1). For example, in [18] it was established that in the case
a — β = 0 the solution of the Cauchy problem decays at the rate t~5/2 uniformly
over the whole space. But in the case of the system (1) the solution of the Cauchy
problem coincides with the solution of the Cauchy problem for the heat equation,
and thus it decays like ;~3/2 uniformly over the whole space.
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Many articles study the stabilization of solutions of the Cauchy problem for the
nonlinear Navier-Stokes equations (see, for example, [6]—[10]). Heywood [17] ob-
tained the estimate 0(f~1/2) for the uniform decay of a solution of the mixed prob-
lem for the system of Navier-Stokes equations in an arbitrary unbounded domain
with smooth boundary. It is natural to expect that the actual rate of decay depends
strongly on the geometry of the unbounded domain.

The purpose of the present article is to single out a geometric characteristic of a
domain, that would determine the rate of decay for the problem (1), (2).

An analogous problem was considered in [l]-[3], [15], and [16] for the case of a
parabolic equation.

We assume that the initial function φ has bounded support, and we consider a
generalized solution of the problem (1), (2). The boundary of the domain is assumed
to be Lipschitz everywhere in this article. In Theorem 2 the boundary has smoothness
C 3 in the following sense. There exists a number r such that for each point χ £ 8Ω.
the ball neighborhood of radius r about χ has a local Cartesian coordinate system
in which the boundary of the domain can be represented locally by the equation
y-i = F(y\, y2). Here the derivatives of F through order three are bounded by a
constant independent of χ .

In this paper we establish estimates of the rate of decay in terms of a rather simple
characteristic of the domain—the function l(r) in the condition (A) below.

Let Br = {\x\ < r} be the ball of radius r. Denote by ΩΓ

ρ , 0 < ρ < r, the set
Ω Π Br\Bp . We say that Ω satisfies condition (A) if:

(A) There exist positive numbers a\ , π and a continuous monotone nondecreas-
ing function l(r), r>rx, with

(3) lim/(r)/r = 0,
r—>oo

such that for all r > r\ and ρ e [a\l{r), r]

(4) / y2dx<l2{r)\ \Vy/\2dx, ψ e W\(O).

In §3 it will be shown that condition (A) is satisfied, for example, by convex
domains of revolution of the form

(5) n = {x:x2 + x2<f2(x3), x 3 > 0 } ,

determined by a continuous function f(r), r > 0, such that

(6) lim/(r)//- = 0.
r—>oo

Here the function 3/(>) can be taken as l(r).
Another condition on the domain Ω is due to the following circumstance. As is

known, many results in the qualitative theory of equations of parabolic or elliptic
type are obtained by substituting a test function of the form η(χ)ιι with suitable
"cutoff" function η(χ) into the integral identity for a generalized solution. In the
case of the system (1) such test functions are not admissible, since the vector η(χ)υ
is no longer solenoidal. In this article we use test functions of the form curl(?/(x)w),
where w is a vector such that curl w = u. The next condition ensures the existence
of a suitable vector w.

Denote by ,ΐ(Ω) the set of smooth solenoidal vectors with compact support in
Ω. We say that a domain satisfies condition (B) if it satisfies condition (A) and,
moreover,

(B) There exist numbers k > 0 ε G (0, 1/2), r2 > rx and a2 > «ι/ε such
that for all r > r2 and ρ e [a\l(2r), r] there is a linear operator 31 mapping
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ΐ(Ω) to ̂ \(ζι7+^ιι+εΡ) and satisfying the following requirements: if w =
wlan = 0, curl w = ν, and

(7) / \Vy*\2dx< k [ \2dx.
Ja+p/i+'p Jn'r

+"

It will be assumed everywhere except in §3 that the domain satisfies condition (B).
Let r(t) be the function inverse to the monotone increasing continuous function

rl(r), r>r\. It obviously satisfies the equalities

1 ' I2(r(t)) /(/"(/)) t ·

Theorem 1. For any RQ > 0 there exist positive numbers Τ and κ such that the
solution of the problem (1), (2) satisfies for all t > Τ the estimate

(9) ||u(i, * ) | | w , ( n )

for any initial function φ e W^(Q) with suppp c β Λ ο and ά\\φ = 0.

The next theorem gives an estimate for the solution in the Loo-norm, as well as
an estimate of the pressure.

Theorem 2. Let Ω be a domain with boundary of class C 3 . Then for any Ro > 0
there are positive numbers Τ, κ, and c such that the solution of the problem (1), (2)
satisfies for all t > Τ the estimates

(10) |u(i,x) |

( 1 1 ) \\Vp(t,x)\\um<ctl'2exp(-Kr2(t)/t)\\<p\\wl{a),

ο

for any initial function φ £ \ν?,(Ω)η\ν^(Ω) such that supp̂ > c BRo, ... , άϊνφ = 0,

and Αφ e ̂ ( Ω ) .
A convex domain of revolution of the form (5) with function / of class C 2(0, oo)

satisfies condition (B) (see §3) if

(12) lim/(>·) = oo,
r—>oo

(13) \f(r)f"(r)\<a0, r>r0.

The inequalities (9)—(11) are valid for such domains, with the function r(i), t > 0,
inverse to the monotone function rf{r), r > 0. In particular, if f(r) = ra , α €
(0, 1), then r2{t)/t = j(i-«)/(i+<*); a n d the increasing factor t1/2 in these inequalities
is not essential. Thus, there are positive constants Τγ and K\ such that the solution
of the problem (1), (2) in a domain of the form

Ω = {χ:χ2 + χ2 <χ2α, χ3 > 0 } , α € ( 0 , 1 ) ,

with compactly supported initial function satisfies for all t > T\ the estimates

i, x)\ < cxp(-K^l-^l^)\Mwlm, χ e Ω,

l|Vp(/, ^Hi^di, < expC-.Kii1"»^1·1-^

If a domain of the form (5) is equipped with a "handle", then it becomes not simply
connected, but condition (B) still holds. But if an infinite "cylinder" of constant
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radius or an expanding cylinder is deleted from a domain of the form (5), then the
author does not know whether the remaining domain satisfies condition (B).

§1

In this section we prove the basic Lemma 1.

Denote by }"(Ω) the closure of the set ά(Ω) in the space \ν^(Ω) Ξ (W{(Q)Y
ο

and by ,Ι(Ω) the closure of the same set in the space Ι^(Ω).
Let DT = (0, Τ) χ Ω, Do = (0, oo) χ Ω, and D = R χ Ω be cylindrical

domains. Denote by J{D) the set of smooth compactly supported vector fields
\(t, x) — (v\, V2, v3) on D satisfying the condition div^v = 0. Its closure in

the space Wl

2(DT) is denoted by Jl(DT).
The existence and uniqueness of generalized solutions of problem (1), (2) have

been thoroughly investigated (see, for example, [11], [13]). But our generalized solu-
tion is taken from a smaller space; therefore, for completeness of the exposition we
give a proof of existence by Galerkin's method and in passing establish the properties
of a generalized solution that are needed in what follows.

ο

Assume that the initial function φ{χ) is an element of «^(Ω) and has bounded
support, and let RQ be the radius of a ball about the origin containing the support.

A generalized solution of the problem (1), (2) in DT, Τ > 0, is defined to be a
ο

function u(f, x) € ix{DT) satisfying (2) and the identity

(14)
for all ν € J(D). The function u(i, x) is called a generalized solution of the problem
(1), (2) in D if it is a generalized solution of this problem in DT for all Τ > 0.

We prove the existence of a generalized solution.
ο

In the Hubert space .Ι2(Ω) we take a fundamental system of functions a*(x) €
ί (Ω), k — 1, 2, ... , that is orthogonal in Γι2(Ω). Assume first that φ is in ΐ
Then there is a sequence of functions of the form

f = l

that converges to φ in the norm of the space \ν^(Ω).
We look for an approximate solution v" of the problem (1), (2) in the form

1=1

where the functions C,n are found from the conditions

(15) C, n(0) = C ° , i=l,2,...,n,

and the equations

(16) (v«,a') + (Vv",Va') = 0, / = 1,2, . . . , « ,

in which (u,v) denotes the inner product in Ι^ίΩ). The equations (16) are a
system of ordinary differential equations with constant coefficients. This system with
the conditions (15) is uniquely solvable on the interval [0, T].
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We multiply each of the equations (16) by the corresponding function Qn(t) and
add the results from 1 to η , obtaining the equality

in which ||v|| denotes the norm in L2(Q). Integration with respect to t gives

(17) ||y"(0H2

Jo

We multiply (16) by the functions C'in(t). Analogous transformations give us

(18)

Finally, we differentiate (16) with respect to t, multiply by the corresponding func-
tions C'in(t), and sum the result over i. After integration with respect to t we
get

(19)

We transform (16) by integrating by parts: (\" - A\n , a') = 0, i = 1, 2, ... , η . It
follows that v? (0) = PnA\n(0) = PnAb" , where Pn denotes the projection of L2(Q)
onto the linear span of the elements a 1, ... , a" . Since b" tends to φ in the norm
of W?,(Q), it follows from (17)—(19) that the sequence v" is uniformly bounded in
the completion Η of J{D) in the norm

A ball in a Hubert space is weakly compact; therefore, we can assume by re-indexing if
ο

necessary that v" -»• u e Η . It is easy to see that u is an element of C([0, T]; J 1 (Ω)).
We prove that this function satisfies the identity (14). To do this we integrate (16)
with respect to t and, using the weak convergence, pass to the limit as η —» oo . We

/
/o

Multiplying the last equality by the continuous functions Λ,·(ί) and adding over /',
we establish the identity (14) for functions of the form ν = JZ"=1 hin(t)a.'(x). Such

ο

functions are dense in the space C([0, T]; J 1 ^ ) ) (see [11], Russian p. 200). Con-
sequently, in (14) we can substitute the functions u, ut in place of ν. After simple
transformations we obtain

(20) f u2{t,x)dx + 2 [ [ \X>u\2dxdT= ί φ2{χ)άχ,
Ja Jo Jo. Ja

(21) 2 / / n2dxdx+ [ \Vn{t, x)\2 dx = ί \V<p(x)\2dx.
Jo Ja Ja Ja

Thus, we have proved the existence of a generalized solution for an initial function
in j ( Q ) . The solution belongs to the space Η and satisfies (20), (21).

ο

Suppose now that φ € J'(Q) and φ" € 3(Ω) is a sequence of functions conver-
o

gent to φ in the norm of J ' ( Q ) . Let u" be the solutions constructed above for the
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problem (1), (2) with the initial functions φ" . Applying (20) and (21) to the differ-
ο

ence u" — um and using the fact that φ" is a Cauchy sequence in J 1 (Ω), we establish
ο

the convergence u" —> u in J 1 (DT). By passing to the limit in the corresponding
identities for u" we prove that u satisfies (14), (20), and (21), i.e., is a generalized
solution of the problem (1), (2) and belongs to the space C([0, Τ]; 3ι(Ω)).

It is easy to see that (20) is valid for an arbitrary generalized solution; therefore,
it is unique.

It will be assumed without loss of generality that RQ is not less than the constant
r2 in condition (B). We fix R> Ro and introduce the notation μ = 12(2R),

(22) H{t,r) = e-t>>1{f |Vu(i, x)|2dx + ί f u2dxdr\ ,

w h e r e u ( i , x ) is a so lu t ion of t h e p r o b l e m (1), (2) w i t h ini t ia l f u n c t i o n φ e ί ( Ω ) ,
s u p p φ e BRo.

Let r a n d ρ b e a r b i t r a r y n u m b e r s satisfying t h e re la t ions Ro<r<r + p<R,
and ρ € [a2l(2R), r].

Lemma 1. There exists a number β dependent only on the ε, k, and a2 in condition
(B) such that for all t > 0 the function H(t, r) satisfies the inequality

β ( /"'
(23) H{t,r + p)<Aj[MH(t,r)+ H(T,r)t

Ρ \ Jo
Proof. Let £(r) be a smooth function equal to 0 for r < 1/2, to 1 for r > 1/2+ ε,
and monotone in the remaining interval. Let η(χ) = η(χ, r, ρ, ε) = ξ((\χ\ - r)/p).
Obviously, there is a constant a , depending only on ε , such that

Λ dW(x)(24) \νη(χ)\2 a

P 2

p>0.

The function η is equal to 0 in the ball Br, and r > RQ , therefore, η φ = 0. The
gradient V>/ is nonzero only in the shell Br+p/2+ep\Br+p/2 .

We verify that the inequality (4) is applicable to the domain Ω!^',\+ερ . Indeed,
the numbers r' = r + ρ/2 + ερ and ρ' = ερ satisfy the requirements in condition
(A): r' >R0>r2>rl; ρ' > εα21(2Κ) > a\l(r').

By condition (B), the vector w(i, x) = Mv{t, x) is defined for every ν e J(D).
By (7) and (4), w is an element of C([0, oo); νί1

2(Ωβρ

ρ

/

/1
+ερ)). Let us consider the

function
0, \x\<r + p/2,{
curlew),

Obviously, άΐνΦ = 0 and Φ(ί, χ) = η2ν+ν(η2) χ w, since curl w = ν. The support
of the function Φ(ί, χ) is bounded for each t, and, by condition (Β), Φ(ί, χ) is

ο

an element of \ν^(Ω) for all ( e l . Since Ω has a Lipschitz boundary, this leads to
ο

t h e c o n c l u s i o n t h a t Φ ( ί , χ ) e . ^ ( Ω ) for e a c h ( e K (see, for e x a m p l e , [13], C h a p t e r
ο

I, Theorem 1.6). Thus, Φ(ί, χ) is an element of C(K;
Substituting the test function Φ(ί, χ) in (14), we have

(25) / u,(f/2v+V(f/2)xw)i/xufi+ f
JDT JD
/ , ( / ( / ) ) f (/ (/) ( / ) ) = 0.
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We get an upper estimate of certain terms in the last expression.
Using the inequality I2(r') < μ, along with the relations (24), (4), and (7), we can

write

dxdt4

< r ^ i r f w
Jo Jn-r:_p,

^
P2

 JO

Further

/
JD
/
DT

Finally,

\= { \Vv
JDT

< f f^-
JDT \ 4

u | 2 ) dxdt

\Vv\2dxdt.% [
P2 Jo Jar

+

|Vu| 2»7|Vi7| |Vw| + |w| £

^ [ [ (w2 + \Vn\2)dxdt.
Ρ Jo Jar', ,

r -β

Again using (4) and (7), we have

ρ2 Jo V/ 1
- 2μ JDT

Using these estimates, from (25) we deduce the inequality

JDT
[ tf\Vu\2dxdt + f ^-(u2 + \2)dxdt

DT JDT 4

^T C f (|Vu|
P2 Jo Jar;p

Now let us replace ν by a sequence of functions u" € J{D) convergent to u( in
W^' 1{DT). Passing to the limit as η —> oo and using simple transformations, we get

(26)

• ί η2\να(Τ, x)\2 dx
Ja

< / ηι\νφ(χ)\ιάχ + - / tf\Vu\zdxdt
Ja β JDT

1 4 a fT f 2 2

P2 Jo Jsi'r
+P '
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The first term on the right-hand side of (26) is equal to zero, because ην φ = 0.
Let β = max(14a, 14ak, a2). For the functions

(t)= [ tf\Vu
JDT

Ρ2 Jo Jn?°

we get the inequality ζ < h(t) + ζ/μ from (26). This inequality gives us that z(T) <
/ o

r exp((r - ί)/μ)Λ(ί) dt. Substituting this in the right-hand side of (26) and taking
into account that η = 1 for \x\ > r + ρ, we get

e'

(27) " * Ζ
+ ^ l

β Ρ2 Jo

We transform one of the integrals by parts:

Jo Ja?°

als by parts:

Ι Γ e(T-tw f [ \Vu\2dxdTdt
β Jo Jo Jar

= -e(T-t)ln f ί |Vu|2iixu?T + [ e{T-')/fi [ \Vu{t,x)\2dxdt.
Jo Ja?° ο J° ^Ω?°

Combining this with (27), we obtain

e <^- Γ f n'dxdt+L·7'" ΓH{t,r)dt.
Ρ Jo Jo.™ Ρ Jo

Multiplication of the last inequality by βχρ(-Γ//ι) completes the proof of Lem-
ma 1.

In this section we prove Theorems 1 and 2.

Proposition. There exist positive numbers γ and R\, dependent on Ω, RQ, and the
constants in condition (B), such that the generalized solution of the problem (1), (2)
satisfies for all R> R\ and Τ > 0 the estimate

< 2 8 )

for all φ e J 1 (Ω), supp φ € BRo.
Proof. By the condition (3), it is possible to choose a number R\ > 2RQ such that
2{2fie)l'2l{2R) < R/2 for all R>RL

Fix an R > R\ and an r e [Ro, R]. We prove by induction on n that for all ρ

and n with r + np < R and ρ G [ail{2R), r] we have the relation

Λ ] Σ (»-i)\ ' t > 0 >
' !=0 ^ ' '

where
A = \νφ\2 dx.

Ja
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For η = 0 it is a consequence of (22) and (21). Further, if (29) is valid for some η ,
then, replacing r by r + np in (23) and using (29), we get

η tn-m ,,m+\ (m\ η tn+\-i(m\ η t

J+E

Replacing m by / - 1 in the first sum, we have

Σ' (ΛΗ. ' ·
Here (_̂ ,) = (Λ",) = 0. This concludes the proof of the inequality (29), because

CV) ="(") + (A);
As is known, x'/i\ < exp(x), / = 0, 1, . . . , for positive χ . Therefore,

f-'V/(/ι - /)! < μηβ*Ιμ

for / = 0, ... , n. Using the equality X)"=o (̂ ) = 2" , we now get from (29) and (22)

(30)

Let y = (80έ?)"1/2, η = [y/ty"1/2]. If « = 0, i.e., 1 > yRp'1'2 = yR/l(2R),
then (28) is a consequence of (21). But if η > 1, then let r = R/2 and ρ = R/2n
and verify the condition ρ e [(*2/(2.R), Λ/2]. By the choice of the number β ,
ρ = R/2n > (2ββμ)1/2 > α2μ

ι/2 = a2l(2R). Further, by the choice of the number
R\, p = R/2n < 2{2βεμ)1/2 < R/2. Thus, the inequality (30) can be used. Here

o Λ ι - , ~ V Ρ2 )ι ,

This proves the inequality (28) of the proposition.

Corollary. A generalized solution of the problem (1), (2) satisfies the estimate

(31)

for all t > 0 and R> R\. The constants Ri and γ and the condition on φ are the
same as in the proposition.

Proof. The condition on the initial function and the Newton-Leibniz formula enable
us to write the inequalities

dui{r, x)
dt

dx, / = 1 , 2 , 3 ,

which are valid for a.e. χ e Ω^ . We square them and use the Cauchy-Schwarz-
Bunyakovskii inequality

l ^ l V ,-=1,2,3.

We sum the last relation over / and integrate with respect to χ e Ω ^ , R > Ro.
This gives

/ a2(t,x)dx< t f ί ujdxdr.
Ja™ Jo Jaf
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Now (31) is a simple consequence of (28).

Proof of Theorem 1. It suffices to carry out the proof for initial functions in the space
ΐ ( Ω ) . Let R\ and y be the numbers in the proposition. Since r{t) tends to infinity
as t ->· oo, there is a number Τ > 1 such that r(4t/y) > 2RX for all t > Τ.

Fix t > Τ and let R = r{St/y)/2. From (8),

(32) -*— = - J * _ = t?L

Consequently, the estimate (31) can be represented in the form

(33)
a™ V ot

for all T € [ 0 , t].
We write the inequality (4) for the vector u with τ > 0

u2(T,x)dx< [ \Vu(T,x)\2dx< [ \Vu(T,x)\2dx.

It follows from the identity (20) that the function Ε(τ) = /Ω ιι2(τ, χ) dx is abso-
lutely continuous. Using (33), we deduce for it the differential inequality

[ ^
Ja lot

Solving it for the monotone nonincreasing function Ε (τ), we get the estimate
E(t) <δ + Ε{0) exp(-2t/l2(R)).

The monotonicity of the function / in (32) gives us the inequality 2t/l2(R) >
y2R2/St. Replacing δ by its value, we have

(34) E{t) < 3texp(-y2R2/St)(A 2 2 2

To estimate the integral

F(t)= [ \Vu(t,x)\2dx
Jsi

we rewrite the identity (20) in the form

/ u2(2i ,x)dx + 2f f |Vu|2 dxdz= [ u2(t ,x)dx.
Jii Jt Ja Ja

Then the inequalities

F(2t)<- f f \Vu\2dxdr< - fu2(t,x)dx
t Jt Ja t Ja

hold for the monotone nonincreasing function F(t) (see [21]). Combining the latter
with (34) and replacing t by t/2, we get

F{t) < 3exp(-A 2 (4 i/y)/160M w , ( £ J ) .

The inequality (9) with κ = y2/32 is a consequence of the last inequality, (34), and
the inequality r(4t/y) > r(t), which follows from the monotonicity of r for γ < 4.
Theorem 1 is proved.
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Proof of Theorem 2. By the hypothesis of the theorem, the function ψ(χ)=Αφ is an
ο

element of 3ι(Ω) (see [13], Chapter I, Theorem 1.6), and it is clear that suppy C
BRo. By Theorem 1, the solution v/(t, x) of the problem (1), (2) with the initial
function ψ satisfies the estimate

(35) ||w(i,

We show that the function u(?, x) = φ(χ) + /0' W(T , χ) άτ is the generalized solu-
tion of the problem (1), (2) with initial function φ .

By the definition of a generalized solution, w satisfies for any V in J(DT) the
identity

By substituting

\(t,x)= Ι γ{τ,χ)άτ, ve 3{D),'.,x)= f ν(τ,
Jt

and transforming the integrals by parts it is not hard to get the identity (14), which
is what was to be shown.

ο

By using the continuity of the functions u and w in the norm of 3ι(Ω), it is not
hard to get from (14) with the test function ξη(ί)\(χ) (ξη is a ί-shaped sequence)
that

(wv + VuVv) dx = 0, / > 0,

for all ν e J 1 ^ ) . We write the estimate (6) in [17] in the form

(36)

with a constant C depending only on Ω and the measure of the compact set Κ c Ω.
It is easy to verify (see, for example, [11], Russian p. 57) that Διι - w is the gradient
of some function ρ satisfying the estimate

(37) Ι|ν/>(ί)ΙΙΜΩ) < I |W(0IIL 2 (Q) + l|u(0llw>(JC) ·

Since ψ = Vq>, we get the inequality (11) of Theorem 2 from (36), (37), (35), and
(9).

It follows from the smoothness of the boundary of Ω that there is a sufficiently
small cone Κ that can touch any point of Ω from the inside. The functions u and

ο

w belong to C([0, oo]; .^(Ω)). Therefore, by (36) and the Sobolev inequality

u(t, x) is continuous for t > 0 and χ e Ω and satisfies the estimate

|u(i,^) |<C 2( | |W(OI|L 2 (n) + l|Vu(i)||L2(n)), * > 0 , χ € Ω .

The inequality (10) now follows from (35) and (9). Theorem 2 is proved.

In this section prove that the conditions (A) and (B) hold for domains of revolution
of the form (5) if / satisfies (6), (12), and (13).

We first derive an inequality.
Let S be a convex surface of revolution of class C 2 with axis of revolution Ox-s,

Ο e S. Let φ be the polar angle, and t the geodesic distance from a point of S to
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the point Ο, t e [0, a]. Denote by r(6) the radius of the circle C$ = {t = Θ} and
by R(d) the integral of this function, R' = r, R(0) = 0. The monotonicity of r(t)
implies the inequality

R(t)<tr(t), i e [ 0 , a ] .

We prove that for any function g e Cl(S)

(38) [ g2dS< 2a2 [ \Vsg\2 dS + 2a f g2 dl.
Js Js Jca

Here \Vsg\ can be understood as the usual gradient of an extension of g to a
neighborhood of S such that the extension is constant along the normal to S1.

For a fixed φ we write the Newton-Leibniz formula for g:

h

from which

8(θ) = - ί ge(t)dt + g(a),
h

g2(6)<2a Γ g2(t)dt + 2g2(a).
h

Consequently,

Γ g\Q)r{Q)dQ<2a Γ r(0) Γ g2dtd6+ 2R(a)g2(a)
Jo Jo Je

= 2a Γ R{e)g2

e άθ + 2R(a)g2(a)
Jo

< 2a (α ζ r{e)g2 άθ + r{a)g2{a)^ .

Integrating the latter with respect to φ on (0, 2π), we get (38).
If Ω is a domain of the form (5) and S(r) = Ω Π {|χ| = r) , then it follows from

the monotonicity of / that a < nf(r)/2. Therefore, by (38), the inequality

/ g2dS<9f2(r)[ \Vg\2dS, te(O,r],
Js(t) Js(t)

holds for any smooth function with compact support in Ω . Integrating it with respect
to t € [ r - p , r ] , we conclude that (4) holds for r > 0 , ρ e(0, r], and l(r) = 3/( r ) .

Theorem 3. Suppose that a function f{r) of class C 2(0, oo) satisfies the conditions
(6), (12), and (13), and Ω is a convex domain of the form (5). Then there exist
numbers k and r-χ such that for all r > r2 and ρ e [6f(2r), r] there is a linear
operator 31 mapping 3{Q) to W^(f7), U = Ω^/β , and satisfying the following
requirements: if w = &y, then w| a i J = 0, curl w = ν, and

[
Ju

\Vw\2dx <k \2dx.
υ Ja'*"

Remark. In the process of proving the theorem we construct a function ν, then w
and w. It is easy to see that the correspondences ν >-> ν, ν ι-> w, and w ι-> w
determine certain linear mappings, and in what follows we shall not make special
mention of this.

We consider some auxiliary domains.
Let t\ — r + f(r) and t2 = r + ρ - f(r). In view of the convexity of Ω and (6)

there is a number r2 > r0 such that

(39) f(2r) < 2f(r), r > 0; f'(r) < 1, r > r2.
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Let 2? = Ω η { ί ι < Χ 3 < ί 2 } - If the numbers r and ρ satisfy the conditions
of Theorem 3, then in view of (13) the domain Β can be supplemented to form a
convex domain of revolution V with Β c V c ilr

r

+p whose boundary d V is of class
C2 and has radius of curvature ry > af(r) for any normal section of the surface d V
at an arbitrary point of it. Here and in what follows in this section the letter a with
indices will denote various positive constants depending only on the c*o in (13).

The condition on the radius of curvature enables us to introduce coordinates
(τ, ω) in the layer F of thickness a.\f(r) contiguous to dV, where ω stands for
the coordinates on d V, and τ is the distance from a point in V to the boundary.

For simplicity we assume that So = ΘΩ,ηθν = dQn{t\ < x$ <ti\. The domain
V without U is broken up into two connected components Q\ and Qi. The parts
S\ = dQ\ η {;t3 < t\} and 5*2 = dQ2 Π {χ?, > t{\ of their boundaries are said to be
spherical.

ο

Fix an arbitrary vector ν e J(Q). We construct a vector ν e J(F) such that

(40) \{x) = \ ( x ) , xeU,

a n d

(41) / \2dx = a2 f \2dx.
Jv Jv

We consider on Q\ harmonic functions gl (i — 1, 2) satisfying Neumann con-
ditions on the boundary:

—— = ( v , « ) , —— = 0 , g'dx = 0, i = l,2.
S\ 2Qi\Si J\li

The solvability of the Neumann problems follows easily from the fact that the vector
ν is compactly supported and solenoidal. Let

ν - Vg', χ € Qi,
" ν , χ € U.

Since (v, n)\av = 0 and, as is easily verified, divv = 0 in V in the sense of
ο

generalized functions, it follows that ν € J(V) (see [13], Chapter I, Theorem 1.4).
We prove the inequality (41). Assume that <p(t) is a continuous function equal to

1 for r < r + p/3 and to 0 for r > r + ρ/2, and linear in the remaining interval.
Obviously, \<p'\ < 6/p. Since p/3 > 2f(2r), it follows that 5Ί c Br+p/3. By the
fact that ν has compact support and by the Neumann conditions,

gl(p{r)(y,n)dS
dQi

(42) =j Υ^υ^{8'φ

<\lf y2dx(f \Vgl\2dx + % f
L JQt \JQi Ρ JQ,

By the Poincare inequality, for the function gl

1/2

The inequality
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now follows from (42). The latter, together with the analogous inequality for g2,
proves (41).

The following assertion is taken from (12) (p. 20).

Lemma 2. Suppose that V is a bounded convex domain in E3 with boundary of class
ο

C2. Then for any vector ν in J(V) there is a unique solenoidal vector weW)(K),
with zero tangent component on the boundary, such that curl w = ν. Furthermore,

I \Vw\2dx < I y2dx.
Jv Jv

Let w be the vector constructed for the function ν according to the lemma. In
view of (41) it satisfies the inequality

(43) / \Vvr\2dx = a2 I v2dx.
Jv Jv

For brevity we let

1= [ \2{x)dx.
Jv

Theorem 3 will be proved if we construct a function h e W^(U) satisfying on
S = d U η ΘΩ the conditions

= (w, n)
s

(44)

and such that

(45)

with a constant b depending only on the a0 in the condition (13). Indeed, it suffices
to set w = w - Vh .

We remark that a direct application of general trace theorems gives us the inequal-
ity (45) with the constant b dependent on U, which is not good enough.

Let us consider the mapping y(x) given by the formulas

It maps V diffeomorphically into some domain V . Further, the image of U will
lie in the cylinder

Q = {y:y2+y2<l, 0 < y3 < p/(3f(r))}.

According to (39), the Jacobian of the mapping y(x) satisfies the estimate

(46)

The

(47)

will be

inequality

proved below.

1
4/3(r) -

Dy
Dx

/ w2dx
Jv

1

< a6f
2(r)I

1

Pir)
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Let u(y) be a function such that u(y{x)) = W\X\ + w2X2 · Then by using (46),
(47), and (43) it is not hard to get the estimate

(48)

< <*sf(r) I [~^ + |Vw| 2 ) dx < a9f(r)l.

We consider a smooth partition of unity {ψί{ί)} , ί 6 Ζ, on the real axis such that
the support of the function φο(ί) lies in the interval [\, | ] and q>i{t) = <po(t - i).
Let Ui(y) = u(y)q>i(y3), i = -!,..., η = [p/(3f(r))].

We prove that for the functions ui{y) there exist functions hj(y) satisfying the
inclusions supp h, C {y: y\ + y\ < 1, / + | < j ; 3 < / + ψ } , the boundary conditions

r' = \

and the inequalities

' M M i 1

To do this it suffices to describe a way of constructing the function /z0 . Let Ct =
Q(~){t < y3 < 2- t} a cylinder, and let C be a domain with smooth boundary such
that C 1 / g c C c C 0 . According to Theorem 8.3 in the book [14] (Chapter 1, §8.2),
there is a function g such that

where the constant d does not depend on the function u0 . It remains to set h0 = ηg ,
where η is a smooth cutoff function equal to 1 in C1/4 and to 0 outside C\/%.
Denote by h(y) the sum Σ"=_{ hi{y). Since each point y belongs to no more than
two supports of the functions ψί, it follows from the inequality (48) that

n n

'- z_^, IIAillw^e) — ai° z-,
i=-l i=-l

n

i=-l

By using (13), (39), and (46) it is not hard to prove the inequality

with a constant b\ depending only on the a 0 in the condition (13). Combining the
last two inequalities, we get (45).

It remains to verify that the function h(y(x)) satisfies the condition (44). We
write the equalities

(VA, (χι, x2, 0 ) ) | 5 = (VA ,r)\s = f(x3) ^
dh_
dr>

m = u = (w, r ) .

Since h(y{x)) is equal to 0 on S, this gives V^ = w on S. Theorem 3 is proved.
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Proof of inequality (47). We denote by q the vector

\(y) dyL \χ - y\

and let u(x) = (4π)~ι curlq(x). Let us prove that curlu(x) = v. Since q(x) is a
solution of the Poisson equation Aq = -4πν, to do this it suffices to verify that the

ο

vector q is solenoidal. It is easy to see that for every v e J ( K ) , extended by zero
outside V, div ν = 0 in the sense of generalized functions. Therefore, Adivq =
-4rtdivv = 0, and hence the decreasing harmonic function divq is identically zero.

It follows from the equality curl(u - w) = 0 that the vector u - w is the gradient
of a function g(x) denned in V . Further, divVg = div(u - w) = 0, therefore, g
is a harmonic function. Since u, w e V/\{V), it is not hard to prove that g belongs
to W2(V).

To prove (47) we establish corresponding estimates for the vectors u and Vg.

Lemma 3. Let r > r2 and ρ e [6/(2r), r] . Then there is an absolute constant a\2

such that for every vector ν € J(Q)

(49) I u2dS<al2f(r)l,
JdV

2dx<al2f
2((50) [ u2dx<al2f

2(r)I.
Jv

Proof of Lemma 3. Obviously,

Let CR = {χ: χ2 + x\ < R2} , a cylinder. Then for a € (1, 3)

ί dy_ _ 3 _ a

Jc, \y\a

>cR

Since V c C2f(r), for all χ e V

I
By the Cauchy-Schwarz-Bunyakovskii inequality, it follows from (51) that

py)dy
U2(x) < / pUdy f dy < I p

Jv \χ - y\2 Jv \χ - y\2 ~ Jv \χ - y\2

After integration with respect to χ, we have

(f ^ ) d y

< (4b(2)f(r))2 f y2(y)dy.
Jv

Now (50) follows from (41). Let us apply to (51) the Cauchy-Schwarz-Bunyakovskii
inequality in a different form:

U2(x) < / *2wdy [ dy < b(5)(4f(r)y,2 r *2(y
( ' - Κ \x-y?'2 Jv \x-y\"2 ~ b{2>{4nr)) Jv | x -

We integrate the last inequality over the boundary of V :

(52) / u2(x)dS<b(l)(4f(r)Y/2 f ny)([ dSx λ dy.
Jdv Jv \Jdv \x - y\ ' /
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By using the convexity of V and the inclusion V c C2/(r) it is not hard to prove
the inequality

m a x / ^ | 3 / 2 < a 1 3 / ' / 2 ( r ) ,
ye»3 Jov \x-y\2'2

which together with (52) and (41) yields (49). Lemma 3 is proved.
Denote by V^g the tangent component of the vector Vg on the boundary d V .

Since the vector w is collinear to the normal on dV, Vsg coincides with the tangent
component us of the vector u on the boundary. Therefore, from (49),

(53) / \Vsg\
2dS<al2f(r)l.

JdV

In view of (50) and the equality w = u — Vg, to prove (47) it suffices to establish
the estimate

(54) [ \Vg\2dx<al4f
2(r)l.

Jv
Since a harmonic function has minimum Dirichlet integral among functions with a
fixed value on the boundary of a domain, it remains to construct some function g
satisfying (54) and having the same boundary values as g, i.e.,

(g- g)\ov = 0.

On the surface d V the function g is an element of W2

l (d V). Consequently, for
all t e [t\, t2] its trace is defined on the circle yt — dV Π {χ-$ = t} and belongs to
L2{y,).

We consider a continuous function y/(t), ( e B , that is constant outside [t\, t2]
and such that

1 f

2π/(ί) Jy{t)

It belongs to W^([t\, t2]), and
r2n ds

-τ- άφ for a.e. t e[ti, t2].
at

Here the partial derivative is computed in the coordinates {t, φ) on the surface dΩ.
By (39),

According to the Cauchy-Schwarz-Bunyakovskii inequality,

ψ'2(ί) < - L · [ \*sg\2 dy for a.e. te[tu t2] •
π/(0 Jy,

Using (39) and (53), we can write

\Vw(x3)\2dx= [ \ψ'\2άχ< Γ f{t) f \Vsg\2dydt
Jv Jt, Jy,

It is easy to see that the trace of the function ψ{χ-$) on dV is an element of
W^(dV). Denote by h the trace on 9 F of the difference g - ψ{χι). We establish
the estimate

(56) / \Vsh\2dS<ai5f(r)l.
JdV
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To do this we estimate the Dirichlet integral of the trace of ψ on d V :

\Vi/,(x3)\2dS= [ y,l2dS< f (-JL· / \Vsg\
2dy) dS<al6 [ \Vsg\2dS.

Js0 Jso \ π / ( ί ) Jyi ) Js0

[
Jdv

Now (56) follows from (53).
We prove the inequality

(57) / h2dS<axlf
2{r) [ \Vsh\2dS.

JdV JdV

N o t e t h a t for a n y c o n t o u r yt, t e [ i i , h],

[ hdy = O.[
y,

The radius of each circle yt does not exceed 2f(r); therefore, the Poincare inequality
gives us

/ h2dy< 4f2(r) [ \Vsh\2 dy for a.e. t e [ί,, t2].

Multiplying the latter by the appropriate Jacobian and integrating with respect to t,
we get

(58) / h2dS<4f2(r) [ \Vsh\2dS.
Js0 Js0

To estimate the integral over Si we use an inequality following from (38) for the
surfaces S(t) = 9 F n { ^ < ( } , t € [tx, tx + f{r)]:

[ h2dS< an (a{t) f h2dy + a2(t) [ \Vsh\2 dS) ,
Jsl V Jy< Jsw 1

where a(t) is easily seen not to exceed aigf(r). Integrating it with respect to t in
[h , t\ + f{r)] and using (58), we get

/ h2dS<a20f
2(r) [ \Vsh\2dS.

Js, Jdv
The analogous inequality for S2, together with (58), completes the proof of the
estimate (57).

Recall that the radius of curvature ry of the normal section y of the surface d V
at any point ω is > af(r). Under parallel displacement of the surface by a quantity
t along the inner normal the element dy is shortened by a factor of ry/(ry — t).
Assuming without loss of generality that a > a.i, we conclude that for t < aif(r)
this ratio does not exceed 2. Consequently, if we regard h(ω) as a function on the
layer F, then the inequality

|V s A| | l = / <2|VjA| | / = 0

holds for the component of its gradient tangent to d V .
Using the inequality / < 1 for the Jacobian of the system of coordinates (t, ω),

we can write the following estimates for the function h = }ι(ω)η(ί), where η =
1 — t/a.\f(r) for t < a\f{r) and η = 0 for all other values of t:

f \Vh\2dx< r m dt [ ( ( | f
Jdv Jo Jdv \ \ o t

/ (Τ72Γ^() \ s \ ) άω.
dv \aJ )
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We now conclude from (57) and (56) that the extension h of h from the boundary
inside the domain satisfies an estimate of the type (47). Thus, in view of (55) the
function g - h + ψ{χ$) forms an extension of g from the boundary dV inside V
and satisfies the estimate (47). All the more so, the harmonic function g satisfies
this estimate.

The author expresses gratitude to A. K. Gushchin for useful remarks leading to
improvements in the paper.

BIBLIOGRAPHY

1. F. Kh. Mukminov, Stabilization of solutions of the first mixed problem for a parabolic equation of
second order, Mat. Sb. I l l (153) (1980), 503-521; English transl. in Math. USSR Sb. 39 (1981).

2. , On decay of the norm of a solution of the mixed problem for a parabolic equation of higher
order, Differentsial'nye Uravneniya 23 (1987), 1172-1180; English transl. in Differential Equations
23(1987).

3. A. F. Tedeev, Stabilization of solutions of the first mixed problem for a quasilinear parabolic equation
of higher order, Differentisial'nye Uravneniya 25 (1989), 491-498; English transl. in Differential
Equations 25 (1989).

4. V. N. Maslennikova, The solution of the Cauchy problem and its asymptotics as t —• oo for the
linearized equations of rotating viscous liquid, Dokl. Akad. Nauk SSSR 189 (1969), 1189-1192;
English transl. in Soviet Phys. Dokl. 14 (1969/70).

5. B. V. Rusanov, Slow unsteady flow of a viscous fluid around a circular cylinder, Vestnik Leningrad.
Univ. 1955 no. 2 (Ser. Mat. Fiz. Khim. vyp. 1), 81-106. (Russian)

6. Maria Elena Schonbek, L2 decay for weak solutions of the Navier-Stok.es equations, Arch. Rational
Mech. Anal. 88 (1985), 209-222.

7. Michael Wiegner, Decay results for weak solutions of the Navier-Stokes equations on R" , J. London
Math. Soc. (2) 35 (1987), 303-313.

8. H. Beirao da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes
equations in the whole space, Indiana Univ. Math. J. 36 (1987), 149-166.

9. Ryuji Kajikiya and Tetsuro Miyakawa, On L2 decay of weak solutions of the Navier-Stokes equa-
tions in R" , Math. Z. 192 (1986), 135-148.

10. Wolfgang Borchers and Tetsuro Miyakawa, L2 decay for the Navier-Stokes flow in halfspaces, Math.
Ann. 282 (1988), 139-155.

11. O. A. Ladyzhenskaya, Mathematical questions in the dynamics of a viscous incompressible fluid,
2nd rev. aug. ed., "Nauka", Moscow, 1970; English transl. of 1st ed., The mathematical theory of
viscous incompressible flow, Gordon and Breach, New York, 1963; revised, 1969.

12. E. B. Bykhovskii and N. V. Smirnov, On orthogonal decomposition of the space of vector-valued
functions that are square-integrable over a given domain, and on operators of vector analysis, Trudy
Mat. Inst. Steklov. 59 (1960), 6-36. (Russian)

13. Roger Temam, The Navier-Stokes equations: theory and numerical analysis, rev. ed., North-Holland,
Amsterdam, 1979.

14. J.-L. Lions and E. Magenes, Problemes aux limites non homogenes et applications. Vol. 1, Dunod,
Paris, 1968; English transl., Springer-Verlag, Berlin, 1972.

15. A. K. Gushchin, Stabilization of solutions of the second boundary value problem for a parabolic
equation of second order, Mat. Sb. 101 (143) (1976), 459-499; English transl. in Math. USSR Sb.
30 (1976).

16. V. I. Ushakov, Stabilization of solutions of the third mixed problem for a parabolic equation of
second order in a noncylindrical domain, Mat. Sb. I l l (153) (1980), 95-115; English transl. in
Math. USSR Sb. 39(1981).

17. John G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions,
Indiana Univ. Math. J. 29 (1980), 639-681.

18. V. N. Maslennikova, On the rate of decay of a vortex in a viscous liquid, Trudy Mat. Inst. Steklov.
126 (1973), 46-72; English transl. in Proc. Steklov Inst. Math. 126 (1973).



264 F. KH. MUKMINOV

19. V. N. Maslennikova and Μ. Ε. Bogovskii, On Sobolev systems with three space variables, Partial
Differential Equations (Proc. Sem. S. L. Sobolev), "Nauka", Novosibirsk, 1976, pp. 49-68. (Rus-
sian)

20. A. V. Glushko, Time asymptotics of the solution of the Cauchy problem for the linearized system of
Navier-Stokes equations with zero right-hand side, Theory of Cubature Formulas and applications
of Functional Analysis to Problems in Mathematical Physics (Proc. Sem S. L. Sobolev), "Nauka",
Novosibirsk, 1981, pp. 5-33. (Russian)

21. V. N. Maslennikova and A. V. Glushko, Localization theorems ofTauberian type and the rate of
decay of a solution of the hydrodynamics system for a viscous incompressible liquid, Trudy Mat.
Inst. Steklov. 181 (1988), 156-187; English transl. in Proc. Steklov Inst. Math. 1989, no. 4 (181).

UFA

Received 20/MAR/91

Translated by Η. Η. McFADEN


