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ON DECAY OF A SOLUTION OF THE FIRST MIXED PROBLEM
FOR THE LINEARIZED SYSTEM OF NAVIER-STOKES EQUATIONS
IN A DOMAIN WITH NONCOMPACT BOUNDARY
UDC 517.947

F. KH. MUKMINOV

ABSTRACT. A. K. Gushchin, V. I. Ushakov, A. F. Tedeev, and other authors have
investigated how stabilization rate of solutions of mixed problems for parabolic equa-
tions of second and higher orders depends on the geometry of an unbounded domain.
Here an analogous problem is considered for the linearized system of Navier-Stokes
equations in a domain with noncompact boundary in three-dimensional space. Es-
timates are obtained for the rate of decay of a solution as ¢t — oo, in terms of a
simple geometric characteristic of the unbounded domain. These estimates coincide
in form with the corresponding estimates of a solution of the first mixed problem for
a parabolic equation.
Bibliography: 21 titles.

Let Q be an unbounded domain in R3 with a noncompact boundary. For the
velocity vector u(¢, x) = (4;, #2, u3) and for the pressure p(¢, x) we consider the
following problem in the domain D = (0, o0) x Q:

(1) uw—Au=Vp, divy,u=0,
(2) Ureoo =0, w0 =gp(x).

The author knows only one paper containing a study of stabilization of a solution of
the mixed problem for the system (1): the article [5] by Rusanov. In it he established
that if Q is the exterior of a disk in the plane and if the initial function ¢ is bounded,
then the solution of the problem (1), (2) satisfies the estimate |u(¢, x)] < ¢(x)/In¢
for sufficiently large values of the time.

There are many articles investigating the asymptotics of solutions of the Cauchy
problem or the mixed problem in a half-space for a system of equations of the form

v, —[v, @] —vAv— BV divv+Vp =0,
ap

2_

Y’

v(0, x) =@(x), w=(0,0,w)),

+divu=0,

for different values of the constants «, §, and v (see, for example, [4], [18]-[21]),
and the bibliography in [21]). Due to the presence of the Coriolis term, this system
differs strongly from (1). For example, in [18] it was established that in the case
a = B = 0 the solution of the Cauchy problem decays at the rate ¢~%/2 uniformly
over the whole space. But in the case of the system (1) the solution of the Cauchy
problem coincides with the solution of the Cauchy problem for the heat equation,
and thus it decays like /~3/2 uniformly over the whole space.
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Many articles study the stabilization of solutions of the Cauchy problem for the
nonlinear Navier-Stokes equations (see, for example, [6]-[10]). Heywood [17] ob-
tained the estimate O(t~!/2) for the uniform decay of a solution of the mixed prob-
lem for the system of Navier-Stokes equations in an arbitrary unbounded domain
with smooth boundary. It is natural to expect that the actual rate of decay depends
strongly on the geometry of the unbounded domain.

The purpose of the present article is to single out a geometric characteristic of a
domain, that would determine the rate of decay for the problem (1), (2).

An analogous problem was considered in [1]-[3], [15], and [16] for the case of a
parabolic equation.

We assume that the initial function ¢ has bounded support, and we consider a
generalized solution of the problem (1), (2). The boundary of the domain is assumed
to be Lipschitz everywhere in this article. In Theorem 2 the boundary has smoothness
C3 in the following sense. There exists a number r such that for each point x € 9Q
the ball neighborhood of radius r about x has a local Cartesian coordinate system
in which the boundary of the domain can be represented locally by the equation
y3 = F(y1, ¥2). Here the derivatives of F through order three are bounded by a
constant independent of x.

In this paper we establish estimates of the rate of decay in terms of a rather simple
characteristic of the domain—the function /(r) in the condition (A) below.

Let B, = {|x| < r} be the ball of radius r. Denote by Q, 0 < p < r, the set
QnNB\B,. We say that Q satisfies condition (A) if:

(A) There exist positive numbers «a;, r; and a continuous monotone nondecreas-
ing function /(r), r > r;, with

(3) lim /(r)/r =0,

such that for all r > r; and p € [a/(r), r]

(4) widx < 12(r)/ Vy|*dx, y € V?’%(Q)-
o ’

r—p
In §3 it will be shown that condmon (A) is satisfied, for example by convex
domains of revolution of the form

(5) Q= {x: x{ +x} < f2(x3), x3 >0},
determined by a continuous function f(r), r > 0, such that
(6) lim f(r)/r =

Here the function 3f(r) can be taken as /(r).

Another condition on the domain Q is due to the following circumstance. As is
known, many results in the qualitative theory of equations of parabolic or elliptic
type are obtained by substituting a test function of the form #5(x)u with suitable
“cutoff” function #n(x) into the integral identity for a generalized solution. In the
case of the system (1) such test functions are not admissible, since the vector #{x)u
is no longer solenoidal. In this article we use test functions of the form curl(n(x)w),
where w is a vector such that curlw = u. The next condition ensures the existence
of a suitable vector w.

Denote by J(Q) the set of smooth solenoidal vectors with compact support in
Q. We say that a domain satisfies condition (B) if it satisfies condition (A) and,
moreover,

(B) There exist numbers kK > 0 ¢ € (0,1/2), r, > r and a; > a;/¢ such
that for all » > r, and p € [a,l(2r), r] there is a linear operator % mapping



THE LINEARIZED SYSTEM OF NAVIER-STOKES EQUATIONS 247

J(Q) to W%(Q::{Zﬁﬂ” ) and satisfying the following requirements: if w=.%v, then

Wlgqa =0, curlw=v, and

) / |Vw|*dx < k vidx.
Qr+p/2+sp Q!+p
r+p/2 r
It will be assumed everywhere except in §3 that the domain satisfies condition (B).
Let r(¢t) be the function inverse to the monotone increasing continuous function
ri(r), r > r;. It obviously satisfies the equalities

t r(t) ri(t)

(8) R2(rt)) ~ I(r() ~ ¢

Theorem 1. For any Ry > 0 there exist positive numbers T and k such that the
solution of the problem (1), (2) satisfies for all t > T the estimate

(9) (e, X)llwyq) < 3¢ exp(=kr*(1)/0)|@llwyq)
2 2

o
Jfor any initial function @ € W(Q) with supp@ C Bg, and dive =0.
The next theorem gives an estimate for the solution in the L..-norm, as well as
an estimate of the pressure.

Theorem 2. Let Q be a domain with boundary of class C3. Then for any Ry > 0
there are positive numbers T , k, and ¢ such that the solution of the problem (1), (2)
satisfies for all t > T the estimates

(10) u(z, x)| < ct'?exp(—xr(t) /Dl @llwya) » xeQ,
(11) IVp(t, X)L, < ct'/? CXD(—WZ(I)/I)“(Png(Q),
for any initial function ¢ € W;(Q)ﬂ\?vg(ﬂ) such that supp@ C Bgr,,...,dive =0,

and Agp € VcVi(Q).

A convex domain of revolution of the form (5) with function f of class C%(0, oo)
satisfies condition (B) (see §3) if

(12) lim £(r) = oo,
(13) SO Ol <o, T2,

The inequalities (9)—(11) are valid for such domains, with the function r(t), ¢ >0,
inverse to the monotone function rf(r), r > 0. In particular, if f(r) =r*, a €
(0, 1), then r?(¢)/t = t1-2)/(1+a) "and the increasing factor ¢!/2 in these inequalities
is not essential. Thus, there are positive constants 77 and x; such that the solution
of the problem (1), (2) in a domain of the form

Q={x:xt+x3 <x}, x>0}, ae(0,1),
with compactly supported initial function satisfies for all ¢ > 7] the estimates
la(, %) lwyqy < exp(=k121 =) gy
[u(z, x)| < CXD(—’Clt(l_a)/(1+a))|l¢”wg(n)’ x€Q,
VD, )iy < exp(=xit' =) @]y q)

If a domain of the form (5) is equipped with a “handle”, then it becomes not simply
connected, but condition (B) still holds. But if an infinite “cylinder” of constant
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radius or an expanding cylinder is deleted from a domain of the form (5), then the
author does not know whether the remaining domain satisfies condition (B).

§1

In this section we prove the basic Lemma 1.

Denote by J*(Q) the closure of the set J(Q) in the space wi(Q) = (W (Q))3
and by J(Q) the closure of the same set in the space L,(Q).

Let DT = (0, 7) xQ, Dy = (0,00) x Q, and D = R x Q be cylindrical
domains. Denote by J(D) the set of smooth compactly supported vector fields
v(t, x) = (v, vy, v3) on D satisfying the condition div,v = 0. Its closure in
the space W}(DT) is denoted by J'(D7).

The existence and uniqueness of generalized solutions of problem (1), (2) have
been thoroughly investigated (see, for example, [11], [13]). But our generalized solu-
tion is taken from a smaller space; therefore, for completeness of the exposition we

give a proof of existence by Galérkin’s method and in passing establish the properties
of a generalized solution that are needed in what follows.

Assume that the initial function ¢(x) is an element of 3 1(Q) and has bounded
support, and let Ry be the radius of a ball about the origin containing the support.
A generalized solution of the problem (1), (2) in DT, T > 0, is defined to be a

function u(t, x) € J'(DT) satisfying (2) and the identity
(14) / (w,v+Vavv)dxdt=0
DT

for all v € J(D). The function u(t, x) is called a generalized solution of the problem
(1), (2) in D if it is a generalized solution of this problem in D7 forall 7> 0.
We prove the existence of a generalized solution.

_ In the Hilbert space 32(9) we take a fundamental system of functions a* (x) €
J(Q), k=1,2,..., that is orthogonal in L,(Q2). Assume first that ¢ is in J(Q).
Then there is a sequence of functions of the form

b"(x) = ‘icﬁlai(x)
i=1

that converges to @ in the norm of the space W3(Q).
We look for an approximate solution v” of the problem (1), (2) in the form

vi(x) = Z Cin(D)a'(x),

i=1

where the functions C;, are found from the conditions

(15) Cin(0) = CY,, i=1,2,...,n,
and the equations
(16) (v?,a') + (Vv*,Va') =0, i=1,2,...,n,

in which (u,v) denotes the inner product in L,(Q). The equations (16) are a
system of ordinary differential equations with constant coefficients. This system with
the conditions (15) is uniquely solvable on the interval [0, T7].
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We multiply each of the equations (16) by the corresponding function C;,(t) and
add the results from 1 to n, obtaining the equality

1d

2dt

in which ||v]] denotes the norm in L,(€2). Integration with respect to ¢ gives

v 112 + 1wv"||* = 0,

t
(17) V(O + 2 / Vv de = b2
0
We multiply (16) by the functions Cj,(f). Analogous transformations give us
t
(18) 2 [ IV de+ [9v @ = Vb2,
4]

Finally, we differentiate (16) with respect to ¢, multiply by the corresponding func-
tions C/ (), and sum the result over i. After integration with respect to ¢ we
get

(19) v (1% + 2/0 Vv 12 de = (v (0)1%.

We transform (16) by integrating by parts: (v! —Av*,a')=0, i=1,2,...,n. It
follows that v?(0) = P,Av*(0) = P,Ab", where P, denotes the projection of Ly(Q)
onto the linear span of the elements a!, ..., a". Since b" tends to @ in the norm
of W(Q), it follows from (17)-(19) that the sequence v* is uniformly bounded in
the completion H of J(D) in the norm

Il = [ 4+ ud 4 dxd.

A ball in a Hilbert space is weakly compact; therefore, we can assume by re-indexing if

necessary that v* — u € H. Itis easy to see that u is an element of C([0, T]; J(R?)).
We prove that this function satisfies the identity (14). To do this we integrate (16)
with respect to ¢ and, using the weak convergence, pass to the limit as n — oco. We
get

T
/ [(u,, a") + (Vu, Va')]dt = 0.
0
Muitiplying the last equality by the continuous functions 4;(¢) and adding over i,
we establish the identity (14) for functions of the form v = 37, h;,(f)a’(x). Such

functions are dense in the space C([0, 7T7]; 3 1(Q)) (see [11], Russian p. 200). Con-
sequently, in (14) we can substitute the functions u, u, in place of v. After simple
transformations we obtain

(20) /Quz(t,x)dx+2/0t/Q]Vu|2dxdr=/9(02(x)dx,
1) 2/0'/Qu,2dxdr+/g|w(z,x)|de=/Q|V¢(x)|2dx.

Thus, we have proved the existence of a generalized solution for an initial function
in J(Q). The solution belongs to the space H and satisfies (20), (21).

Suppose now that ¢ € J'(Q) and ¢" € J(Q) is a sequence of functions conver-
gent to @ in the norm of J!(Q). Let u” be the solutions constructed above for the
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problem (1), (2) with the initial functions @”. Applying (20) and (21) to the differ-
ence u”—u” and using the fact that ¢” is a Cauchy sequence in J'(Q), we establish

the convergence u* — u in J!(DT). By passing to the limit in the corresponding
identities for u” we prove that u satisfies (14), (20), and (21), i.e., is a generalized

solution of the problem (1), (2) and belongs to the space C([0, T1; J}(Q)).

It is easy to see that (20) is valid for an arbitrary generalized solution; therefore,
it is unique.

It will be assumed without loss of generality that Ry is not less than the constant
r, in condition (B). We fix R > Ry and introduce the notation u = /2(2R),

t
(22) _HU,r)=e_””{/.|Vu0,xﬂ2dx+:/‘/ |ﬁdxdr},
Q= 0 i
where u(z, x) is a solution of the problem (1), (2) with initial function ¢ € J(Q),
supp ¢ € Bg, .

Let r and p be arbitrary numbers satisfying the relations Ry <r <r+ p <R,
and p € [az/(2R), r].

Lemma 1. There exists a number B dependent only on the ¢, k, and oy in condition
(B) such that for all t > 0 the function H(t, r) satisfies the inequality

(23) H(t,r+p)§;ﬂ§(,uH(t,r)+/0tH(r,r)dt) .

Proof. Let &(r) be a smooth function equalto 0 for r < 1/2,to 1 for r > 1/2+¢,
and monotone in the remaining interval. Let n(x)=n(x,r, p,e)=&({(x|—r)/p).
Obviously, there is a constant «, depending only on ¢, such that

(81
H
pz

The function 7 is equal to 0 in the ball B,, and r > Ry, therefore, np = 0. The
gradient V7 is nonzero only in the shell B, ,/..)\Brip2 -

We verify that the inequality (4) is applicable to the domain Q:i/’;ﬁ”” . Indeed,
the numbers ' = r+ p/2 +¢ep and p’ = ep satisfy the requirements in condition
(A: " >Rog>r>r1; p > eal(2R) > ayl(r).

By condition (B), the vector w(t, x) = #v(t, x) is defined for every v € J(D).
By (7) and (4), w is an element of C([0, co); WL(Q'T#/2+¢7)) _Let us consider the

r+p/2
function

(24) |Vn(x)? xeR} r>1, p>0.

6x,6x,

0’ le <r+ p/2 ’

(1, x) = (T, X), x €%, niep
+p/2+

curl(n?w), Q:+£/2 .,

Obviously, div® =0 and ®(¢, x) = n2v+V(n2) x w, since curlw = v. The support
of the function ®(¢, x) is bounded for each ¢, and, by condition (B), ®(¢, x) is

an element of \?Vé(Q) forall 1 € R. Since Q has a Lipschitz boundary, this leads to
the conclusion that ®(z, x) € J'(Q) for each ¢ € R (see, for example, [13], Chapter
I, Theorem 1.6). Thus, ®(¢, x) is an element of C(R; J'(Q)).

Substituting the test function ®(¢, x) in (14), we have

(25)/ u,(n2v+V(172)><w)dxdt+/ Vu(n?Vv+ V(P )v+V(Vn? xw)) dx dt =
pr pr
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We get an upper estimate of certain terms in the last expression.

Using the inequality /2(r') < u, along with the relations (24), (4), and (7), we can
write

2 n’ 252
/DT HV(n*) x w)u,ldxdtﬁ/ (T“’ +4|Vn|*w ) dxdt

2
< / ™ 2 dx dt+4al / / VW dxds
oo 4 .

1
< - nzufdxdt+4a'tztk// vidxdt.
4 p 0 Jt

> o

Further
2
/ |Va(V(n?) x v)dxdt 5/ (’%v2 +4|Vn|2|Vu|2) dxdt
DT DT
1 2.2 4a t 2
<= nvedxdt+ — |Va|“dxdt.
4 DT p 0 Q;*”

Finally,

z/ |Vuv(V(n?) x w)|dx dt
DT

< / |Vu|( ) dx dt
DT

2 t
< [ (Lot v 2uvnpiow?) axder % [ [+ vupydre.
pr \2U P~ Jo Q_

82112
ox;0x;

Again using (4) and (7), we have
1
< —1—/ n*|Vu|®dx dt + %/ / (|Vu|? + 3ukv?)dx dt .
2u Jpr pe Jo Jaopr
Using these estimates, from (25) we deduce the inequality
2
/ Py + Vuvy) dx di < L/ n2|Vu|2dxdz+/ T2 +v?) dx dt
DT 2/1 DT pT 4

1
;—‘j// (IVul? + ukv?) dx dt.
o Jare

Now let us replace v by a sequence of functions u* € J(D) convergent to u, in
Wg’ L(DT). Passing to the limit as #n — oo and using simple transformations, we get

; Zu,zdxdz+/gn2|Vu(T,x)|2dx

(26) < / n2|V<o<x>|2dx+% [ i dxar
DT

140// (|Vul]? + uku?)dx dt .
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The first term on the right-hand side of (26) is equal to zero, because Ve =0.
Let B = max(14a, 14ak, a3). For the functions

2(1) = / IVl dx dt,
DT

t
—%/0 /Qm(|Vu|2+uu,)dxa’t

we get the inequality z < A(t)+ z/u from (26). This inequality gives us that z(7) <
foT exp{(T — t)/u)h(t)dt. Substituting this in the right-hand side of (26) and taking
into account that n =1 for |x| > r+ p, we get

T
eT/“H(T,r+p)§—/—35/ / (IVuf? + uu?) dx dt

t
L e(T—t)/ll// (|Vu|2+yu,)dxdtdt
ﬂp 0 JQpe

We transform one of the integrals by parts:

1 T t
1 / eT=0/n / / Va2 dx dzdi
HmJo 0 Jo

p T
T / / (Va2 dx dr
0 7o 0

Combining this with (27), we obtain

T Bu T B T
e /“H(T,r+p)§-—-2—/ / u,zdxdt+—2eT/“/ H(t, r)dt.
P Jo Jax p 0

(27)

t
+ / T / \Vu(t, x)Pdxdt.
0 Qw

Multiplication of the last inequality by exp(—7/u) completes the proof of Lem-
ma 1.

§2
In this section we prove Theorems 1 and 2.

Proposition. There exist positive numbers y and R, dependent on Q, Ry, and the
constants in condition (B), such that the generalized solution of the problem (1), (2)
satisfies for all R> R, and T > 0 the estimate

/ /wu, (t, x)dxdt < exp (1+l2?27;'1) 1(3)21;))/9|V¢(x)|2dx

forall ¢ € J1(Q), supp g € Bg, .
Proof. By the condition (3), it is possible to choose a number R; > 2Ry such that
2(2Be)'?1(2R) < R/2 forall R > R;.

Fix an R > R; and an r € [Ry, R]. We prove by induction on n that for all p
and n with r+np < R and p € [a3/(2R), r] we have the relation

(29) H(t, r+np)<A( ) Zt’('nl_,)t-)’ £>0,

where

A :/ Vo|?dx.
Q
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For n =0 it is a consequence of (22) and (21). Further, if (29) is valid for some n,
then, replacing r by r+ np in (23) and using (29), we get

ﬂ)n+l n Zn—mﬂm+1(m) n tn+1—ilui(r_l)
H(t, 1 <AL L F Ans M ol V V4
(&, r+(n+1)p) < <p7- mgo n—m)! +§(n+1—1)!
Replacing m by i — 1 in the first sum, we have
ﬂ n+1 n+l t"H_iﬂi(,-f,,) + (rll)
< Nl .
H(t,r+(n+1)p)_A(p2 CESE)

i=1

Here (") = (,%,) = 0. This concludes the proof of the inequality (29), because

: n+1
" =0+01).

As is known, x'/i' <exp(x), i=0,1, ..., for positive x. Therefore,

Ot (n = DS phet
for i=0,..., n. Using the equality >/, (?) = 2", we now get from (29) and (22)
t n
(30) / / wdxdi< A (2‘#) e/n
0 JQx P

r+np
Let y = (88e)~1/2, n = [yRu~'?]. If n =0, i.e., 1 > yRu~!/2 = yR/I(2R),

then (28) is a consequence of (21). Butif n > 1, thenlet r = R/2 and p = R/2n
and verify the condition p € [@2/(2R), R/2}. By the choice of the number £,
p = R/2n > (2Beu)'’? > ayu'’? = ayl(2R) . Further, by the choice of the number
Ry, p=R/2n < 2(2Ben)'’? < R/2. Thus, the inequality (30) can be used. Here

Zﬂu]” _ [Bun? _ YR

P2l | R? I2R)]
This proves the inequality (28) of the proposition.

] <e ™ <exp [1

Corollary. A generalized solution of the problem (1), (2) satisfies the estimate
2t YR
2 _
(31) /Q?u (t, x)dx < 3tdexp [IZ(ZR) l(2R)}

forall t >0 and R > R, . The constants Ry and y and the condition on @ are the
same as in the proposition.

Proof. The condition on the initial function and the Newton-Leibniz formula enable
us to write the inequalities
du ,‘(T s X )

ute, 0l < [ 2

which are valid for a.e. x € Q® . We square them and use the Cauchy-Schwarz-
Bunyakovskii inequality

t 12
u%(z,x)gz/ [Qu—] dr, i=1,2,3.
0

dt, i=1,2,3,

ot

We sum the last relation over / and integrate with respect to x € Q¥ , R > Ry.

This gives
t
/ uz(t,x)dxgt/ / wdxdr.
Qg 0 JOp
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Now (31) is a simple consequence of (28).

Proof of Theoren: 1. 1t suffices to carry out the proof for initial functions in the space
J(Q). Let R, and y be the numbers in the proposition. Since r(¢) tends to infinity
as t — oo, there is a number 7 > 1 such that r(4¢/y) > 2R, forall t > T.

Fix t > T andlet R =r(8¢/y)/2. From (8),

2t 7R y2R?

IZ(2R) ~ 2I(2R) ~ 8t
Consequently, the estimate (31) can be represented in the form

y2R2
(33) / v’ (1, x)dx <6 = 34T exp (—— % )
Qg

forall T €0, 1].

We write the inequality (4) for the vector u with 7> 0
L

2(R) Jor

(32)

wl(t, x)dx < / |Vu(t, x)|*dx < / |Vu(z, x)|>dx.
Qr Q

It follows from the identity (20) that the function E(7) = f[,u?(t, x)dx is abso-
lutely continuous. Using (33), we deduce for it the differential inequality

1 1

———(E(1) = d) < PR . u’(t, x)dx

I*(R)

2gy =10
S/QIVH(T,X)I dx = 2atE(r), T€[0,1].

Solving it for the monotone nonincreasing function E(t), we get the estimate
E(t) <6 + E(0)exp(—2t/I*(R)).

The monotonicity of the function / in (32) gives us the inequality 2¢//?(R) >
y2R?/8t. Replacing & by its value, we have

(34) E(1) < 3texp(—y*R*/8t)(4 + E(0)) = 3texp(—ysz/St)llwllivé(g) .
To estimate the integral
F(t)= / [Vu(t, x)|>dx
Q

we rewrite the identity (20) in the form

2t
/u2(2t,x)dx+2/ /qulzdxdr:/uz(t,x)dx.
Q t Q Q

Then the inequalities

2
F(21) < l/ / [Vu?dxdt < l/ wi(t, x)dx
tJi Ja tJa
hold for the monotone nonincreasing function F(¢) (see {21]). Combining the latter
with (34) and replacing ¢ by ¢/2, we get
F(1) < 3exp(=72r(41/7)/ 1609 I3, -

The inequality (9) with x = y2/32 is a consequence of the last inequality, (34), and
the inequality r(4¢/y) > r(¢), which follows from the monotonicity of » for y < 4.
Theorem 1 is proved.
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Proof of Theorem 2. By the hypothesis of the theorem, the function y(x) = Ag is an

element of 3 1(Q) (see [13], Chapter I, Theorem 1.6), and it is clear that suppy C
Bg, . By Theorem 1, the solution w(z, x) of the problem (1), (2) with the initial
function w satisfies the estimate

(35) Iw(z, X)llwi@) < 3t'72 exp(—xr* (1) /D] ¥ llwyq) -

We show that the function u(¢, x) = @(x) + fot w(t, x)dt is the generalized solu-
tion of the problem (1), (2) with initial function ¢ . .

By the definition of a generalized solution, w satisfies for any V in J(DT) the
1dentity

/ (w,V+VwVV)dxdt=0.
DT
By substituting
T
V(t,x):/ v(t, x)dt, ve J(D),
t

and transforming the integrals by parts it is not hard to get the identity (14), which
is what was to be shown.

By using the continuity of the functions u and w in the norm of J!(Q), it is not
hard to get from (14) with the test function &,(z)v(x) (&, is a d-shaped sequence)
that

/(wv+Vqu)dx=O, t>0,
Q

for all ve j‘(Q) . We write the estimate (6) in [17] in the form
(36) (D llwzx) < CUWO L@ + IVa©)liL@)

with a constant C depending only on Q and the measure of the compact set K C .
It is easy to verify (see, for example, [11], Russian p. 57) that Au—w is the gradient
of some function p satisfying the estimate

(37) Ve (Dl < W)l + ||“(t)||w§(1<)-

Since y = V¢, we get the inequality (11) of Theorem 2 from (36), (37), (35), and
(9).

It follows from the smoothness of the boundary of Q that there is a sufficiently
small cone K that can touch any point of Q from the inside. The functions u and

w belong to C([0, ]; 3 1(Q)) . Therefore, by (36) and the Sobolev inequality
lu(z, x)| < Cillu()llwzx,) x €Q,
u(t, x) is continuous for £ > 0 and x € Q and satisfies the estimate
u(t, X)| < QWO Iy + VOO @), >0, xeQ.
The inequality (10) now follows from (35) and (9). Theorem 2 is proved.

§3

In this section prove that the conditions (A) and (B) hold for domains of revolution
of the form (5) if f satisfies (6), (12), and (13).

We first derive an inequality.

Let S be a convex surface of revolution of class C? with axis of revolution Ox;,
O € S. Let ¢ be the polar angle, and ¢ the geodesic distance from a point of S to
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the point O, ¢ € [0, a]. Denote by r(f) the radius of the circle Cp = {t = §} and
by R(6) the integral of this function, R’ = r, R(0) = 0. The monotonicity of r(z)
implies the inequality

Rty <tr(t), t€l0,a].
We prove that for any function g € C!(S)
(38) /g2 ds < 2a2/ IVSg|2dS+2a/ gdl.
S S .

a

Here |Vgg| can be understood as the usual gradient of an extension of g to a
neighborhood of S such that the extension is constant along the normal to §S'.
For a fixed ¢ we write the Newton-Leibniz formula for g:

2(6) = — /0 " go(t)di + g(a),

from which o
g0 < Za/ ga(t)dt+2g%(a).
[/}

Consequently,
/ gX0)r(6)do < 2a/ r(0)/ g2dtdf + 2R(a)g*(a)
0 0 9
= 2 / R(6)g2d6 + 2R(a)g%(a)
0

<2a(a ["r6)g3d0 + rla)g*(@)

Integrating the latter with respect to ¢ on (0, 27), we get (38).
If Q is a domain of the form (5) and S(r) = Qn {|x| =r}, then it follows from
the monotonicity of f that a < mf(r)/2. Therefore, by (38), the inequality

/ g2dS < 9f2(r)/ VePdS, te(0,r,
S(r) S()

holds for any smooth function with compact support in €. Integrating it with respect
to t € [r—p, r], we conclude that (4) holds for r >0, p € (0, r], and I(r) = 3f(r).

Theorem 3. Suppose that a function f(r) of class C*(0, co) satisfies the conditions
(6), (12), and (13), and Q is a convex domain of the form (5). Then there exist
numbers k and ry such that for all r > r, and p € [6f(2r), r] there is a linear

operator £ mapping J(Q) to WY(U), U = Q:frlz,’/’f, and satisfying the following

requirements: if w= v, then wlsgq =0, curlw =v, and

/ wwitdx <k [ vdx.
U foladd
Remark. In the process of proving the theorem we construct a function ¥, then w
and w. It is easy to see that the correspondences v — ¥, ¥ — W, and w — w
determine certain linear mappings, and in what follows we shall not make special
mention of this.

We consider some auxiliary domains.

Let 1y =r+ f(r) and t; = r+ p — f(r). In view of the convexity of Q and (6)
there is a number r, > ry such that

(39) f@ry<2f(r), r>0;  f(N<L, rzn.
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Let B =Qn{t < x3 < tp}. If the numbers » and p satisfy the conditions
of Theorem 3, then in view of (13) the domain B can be supplemented to form a
convex domain of revolution V with B C V c Q;*” whose boundary aV is of class
C? and has radius of curvature r, > af(r) for any normal section of the surface 9V
at an arbitrary point of it. Here and in what follows in this section the letter a with
indices will denote various positive constants depending only on the ap in (13).

The condition on the radius of curvature enables us to introduce coordinates
(1, w) in the layer F of thickness a,f(r) contiguous to 8V, where w stands for
the coordinates on 8V , and 7 is the distance from a point in V' to the boundary.

For simplicity we assume that So = 3QnaoV =9Qn{t; < x3 < t;}. The domain
V' without U is broken up into two connected components @; and @, . The parts
S =00, Nn{x3 <t} and S» = Q> N{x3 > 1} of their boundaries are said to be
spherical.

. [e]
Fix an arbitrary vector v € J(Q). We construct a vector v € J(V) such that

(40) ¥(x) =v(x), xelU,
and

62 4. 2
(41) /Vv dx—az/Vv dx.

We consider on Q; harmonic functions g’ (i =1, 2) satisfying Neumann con-
ditions on the boundary:

i i )
¢’ ) O¢ =0, gldx =0, i=1,2.
on s, on lagns, o

The solvability of the Neumann problems follows easily from the fact that the vector
v is compactly supported and solenoidal. Let

0_{V—Vgi’ eri,
T, xeU.
Since (¥, n)|lsy = 0 and, as is easily verified, divi = 0 in V in the sense of

=(v,n

generalized functions, it follows that ¥ € J(V') (see [13], Chapter I, Theorem 1.4).

We prove the inequality (41). Assume that ¢(¢) is a continuous function equal to
1 for r<r+p/3 and to O for r > r+ p/2, and linear in the remaining interval.
Obviously, |¢'| < 6/p. Since p/3 > 2f(2r), it follows that S; C B,.,/3. By the
fact that v has compact support and by the Neumann conditions,

/ Ve dx = /glag ds = / glo(r)(v, n)dS

(42) / Zj (89 dx

&5

36 1/2
<|2f vax ([ wepax+ 3 [ 1epax)| "
1 (o] P Jo,
By the Poincaré inequality, for the function g!
2 [ 1g'Pdx < Sdiam 1) [ ve'Pdx < ar [ 1ve'fdx.
P Jo, P o o
The inequality
/ IVe'ldx < 2(1 +a4)2/ vidx
1 1
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now follows from (42). The latter, together with the analogous inequality for g2,
proves (41).

The following assertion is taken from (12) (p. 20).
Lemma 2. Suppose that V is a bounded convex domain in R?® with boundary of class

[
C?. Then for any vector v in J(V) there is a unique solenoidal vector w € wi(v),
with zero tangent component on the boundary, such that curlw = v. Furthermore,

/|Vw|2dx§/v2dx.
| 4 Vv

Let W be the vector constructed for the function v according to the lemma. In
view of (41) it satisfies the inequality

(43) / |VW|2dx = a2/ vZdx.
1% v
For brevity we let
I= / vi(x)dx.
v

Theorem 3 will be proved if we construct a function h € W#(U) satisfying on
S =0UnNnoQ the conditions

(44) ns=o, oh

S| =@

S

and such that

3 azh 2
(45) /U.Z (ax,-axj) dx < b,

i,j=1

with a constant b depending only on the ag in the condition (13). Indeed, it suffices
toset w=w-—Vh.

We remark that a direct application of general trace theorems gives us the inequal-
ity (45) with the constant b dependent on U, which is not good enough.

Let us consider the mapping y(x) given by the formulas

X _X3—’—P/3
YiZ Foa) T 0

It maps V diffeomorphically into some domain V’. Further, the image of U will
lie in the cylinder

i=1,2, Y3

O={y:yi+yi<t,0<y3s<p/Bf(N)}.
According to (39), the Jacobian of the mapping y(x) satisfies the estimate

1 Dyl 1 1
46) 730 = ‘Dx‘ = TR S PO
The inequality
(47) / W dx < agfH(nI
V

will be proved below.



THE LINEARIZED SYSTEM OF NAVIER-STOKES EQUATIONS 259

Let u(y) be a function such that u(y(x)) = W;x; + Wox2. Then by using (46),
(47), and (43) it is not hard to get the estimate

2 a; Uz (x) 2
”u“WZI(V/) < 7(r )/ (fz(r) + IVu(x)l ) dx
< asf(r)/ (f2( + |Vw]2) dx < asf(r)l.

We consider a smooth partition of unity {¢;(¢)}, i € Z, on the real axis such that
the support of the function ¢o(¢) lies in the interval [, I] and ¢,(¢) = go(t — i).

(48)

Let w;(y) = u(y)pi(y3), i=—1,...,n=[p/(3f(r)].
We prove that for the functions u; (y) there exist functions #;(y) satisfying the
inclusions supph; C {y: yi +y3 <1, 5 <i+ ‘—85} , the boundary conditions
ah;
hilp=1 =0, 8nl . =ui(y),

and the inequalities
||hi“WZ2(Q) < alOHui”WZI(V’) > i=-1,...,n.

To do this it suffices to describe a way of constructing the function Ay. Let C, =
On{t<y3<2—t} acylinder, and let C be a domain with smooth boundary such
that Cyj3 C Cc Co . According to Theorem 8.3 in the book [14] (Chapter 1, §8.2),
there is a function g such that

ag

r'= =09 .
glr=1 on

v = uO(.V)! ”g”pVZZ(g) S d”u()”n/zl(a)!
where the constant ¢ does not depend on the function ug. It remains to set 4y = g,
where 7 is a smooth cutoff function equal to 1 in C,/4 and to O outside Cjg.
Denote by A(y) the sum Y} _, h;(y). Since each point y belongs to no more than

two supports of the functions ¢;, it follows from the inequality (48) that

n n
Al < Z IAillwzg) < @10 Z letillwy oy

i=—1 i=—1

n
<ay Y. el supp gy < 2an1l[Ullwp vy < 2ayy(ag f(r)D)'/2.

i=—1

By using (13), (39), and (46) it is not hard to prove the inequality

82h )2 by / NS
dx < =~ v, h|? + (—) dy,
/ Z (ax, dx;j r= fr) Jo VAl MZZI 0y;0y; Y

with a constant b; depending only on the ag in the condition (13). Combining the
last two inequalities, we get (45).

It remains to verify that the function Ah(y(x)) satisfies the condition (44). We
write the equalities

_on
B or' r'=1

= Zn:u,-:u:(ﬁ',r).

i=—1

(Vh, (1, 32, s = (Vh, Dls = fxs) 5

Since A(y(x)) is equal to 0 on S, this gives VA =w on §. Theorem 3 is proved.
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Proof of inequality (47). We denote by q the vector

/ Y(y)dy
& X =

and let u(x) = (4n)~!curlq(x). Let us prove that curlu(x) = ¥. Since q(x) is a
solution of the Poisson equation Aq = —4n¥v, to do this it suffices to verify that the

vector q is solenoidal. It is easy to see that for every v € J(V), extended by zero
outside V', divv = 0 in the sense of generalized functions. Therefore, Adivq =
—4n divv = 0, and hence the decreasing harmonic function divq is identically zero.

It follows from the equality curl(u — W) = 0 that the vector u— W is the gradient
of a function g(x) defined in V. Further, divVg = div(u — w) = 0, therefore, g
is a harmonic function. Since u, W € Wi(V), it is not hard to prove that g belongs
to Wi(V).

To prove (47) we establish corresponding estimates for the vectors u and Vg.

Lemma 3. Let r > r; and p € [6f(2r), r]. Then there is an absolute constant ai,
such that for every vector v € J(Q)

(49) /a wdS <anfOL,
(50) /Vu2 dx < apfinl.
Proof of Lemma 3. Obviously,

W)l dy
(51) el < [ R

Let Cg = {x: x} + x} < R?}, a cylinder. Then for a € (1, 3)

dy _
= b(a)R3> .
/cR [y|e (@)

Since V C Cyppy, forall x eV
dy
e < 4B (2) f (7).
| w2 < 4110
By the Cauchy-Schwarz-Bunyakovskii inequality, it follows from (51) that
~2 o2
2 v (y)dy/ dy /v ) dy
u(x) < <4b(2)f(r .
= [ [, o @ [
After integration with respect to x , we have

[wwax<a@so [ o) ([ 757) 4

< (4b(2) £(1))? /V 2()dy.

Now (50) follows from (41). Let us apply to (51) the Cauchy-Schwarz-Bunyakovskii
inequality in a different form:

V2 d V2(y)d
20y < V(J’)dJ’/ Y < psv4 1/2/ y)dy
w0 < [ | e v [T
We integrate the last inequality over the boundary of V :

(52) [ wtxids <easo' [ i) ( / L) dy.

v x —yP3?
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By using the convexity of V' and the inclusion V' C Cyp( it is not hard to prove
the inequality

dasy 12
max —=<a 12(r s
ve®s Jop |x — Y32 = 13/75(r)

which together with (52) and (41) yields (49). Lemma 3 is proved.

Denote by Vgsg the tangent component of the vector Vg on the boundary 9V .
Since the vector w is collinear to the normalon 8V , Vgg coincides with the tangent
component ug of the vector u on the boundary. Therefore, from (49),

(53) /aV |Vsgl?dS < apnf(r)l.

In view of (50) and the equality W = u— Vg, to prove (47) it suffices to establish
the estimate

(54) /V |Vgl?dx < ajaf*(r)l.

Since a harmonic function has minimum Dirichlet integral among functions with a
fixed value on the boundary of a domain, it remains to construct some function £
satisfying (54) and having the same boundary values as g, i.e.,

(&-8)lav =0.
On the surface 9V the function g is an element of W,'(8V). Consequently, for

all ¢t € [t;, t2] its trace is defined on the circle y, = 8V N {x;3 = ¢t} and belongs to

Ly(y,) -
We consider a continuous function y(¢), ¢ € R, that is constant outside [¢;, ;]
and such that

1
W(t):m y(t)gd% teln, ).

It belongs to W,l([t;, 2]), and

1 [*7og
4 - —_—
y'(t) = 7 ), dt dp forae.te[n, tr].

Here the partial derivative is computed in the coordinates (¢, ¢) on the surface 0Q.

By (39), ,

0 ,
6—’;’ < (1+ )| Vsgl? < 2|Vsgl, ae weSp.
According to the Cauchy-Schwarz-Bunyakovskii inequality,
w'?(t) < 1 |Vsg|?dy forae. telt,ts].
n (t) 7t

Using (39) and (53), we can write

1]
/V Yy (xs)2 dx = /V wPdx< [ f / Vsgldydt
H 7

(55)
<4f(r) /S VsgldS < dan /(L.

It is easy to see that the trace of the function y(x3) on 9V is an element of
W]l (8V). Denote by h the trace on 9V of the difference g — w(x3). We establish
the estimate

(56) /a IVshPdS < ais /(1.
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To do this we estimate the Dirichlet integral of the trace of w on 9V :

1
[ wweoras= [ wrass [ (o [ 19sePdr) as <a [ (9ssids.
So So nf(t) Yt So
Now (56) follows from (53).
We prove the inequality

(57) hza’SSa”fz(r)/ \Vsh2dS.
av

av
Note that for any contour y,, 7 €[t,, t2],

/hdyzO
Pt

The radius of each circle y, does not exceed 2f(r); therefore, the Poincaré inequality
gives us
h2dy <4f%(r) | |Vshi*dy forae. te[t,t].
Ve Ve
Multiplying the latter by the appropriate Jacobian and integrating with respect to ¢,
we get

(58) h2dS < 4f2(r)/ |Vsh|*dS.
So SD
To estimate the integral cver S| we use an inequality following from (38) for the
surfaces S(t) =0V n{x3 <t}, te[t, t, + f(r)]:

R2dS < ag (a(t)/ h2dy+a2(z)/ ;Vsh|2d5> ,
N0

S Vi

where a(t) is easily seen not to exceed a,9f(r). Integrating it with respect to ¢ in
[t1, t1 + f(r)] and using (58), we get

K2dS < azofz(r)/ Vsh2dsS.

8 av

The analogous inequality for S;, together with (58), completes the proof of the
estimate (57).

Recall that the radius of curvature r, of the normal section y of the surface 9V
at any point w is > af(r). Under parallel displacement of the surface by a quantity
¢t along the inner normal the element dy is shortened by a factor of ry/(ry —t).
Assuming without loss of generality that a > a;, we conclude that for ¢t < a; f(r)
this ratio does not exceed 2. Consequently, if we regard 4(w) as a function on the
layer F, then the inequality

|Vsh| |z=z < 2|VSh| |t=0

holds for the component of its gradient tangent to 9V .
Using the inequality J < 1 for the Jacobian of the system of coordinates (¢, w),

we can write the following estimates for the function & = h(w)n(t), where n =
1 —t/a,f(r) for t <a,f(r) and n =0 for all other values of ¢:

ay 2
. a1 f(r) .
/ |Vh|2a’x§/ dt/ ((%) +4|Vsh|2|z=o) dow
oV 0 oV

< alf(r)/ay ( T )hz(a)) +4|vsh|2) do.
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We now conclude from (57) and (56) that the extension h of h from the boundary
inside the domain satisfies an estimate of the type (47). Thus, in view of (55) the
function £ = 4 + w(x;) forms an extension of g from the boundary 0V inside V
and satisfies the estimate (47). All the more so, the harmonic function g satisfies
this estimate.

The author expresses gratitude to A. K. Gushchin for useful remarks leading to
improvements in the paper.
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