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ASYMPTOTICS OF GROWTH
FOR NON-MONOTONE COMPLEXITY

OF MULTI-VALUED LOGIC FUNCTION SYSTEMS

V.V. KOCHERGIN, A.V. MIKHAILOVICH

Abstract. The problem of the complexity of multi-valued logic functions
realization by circuits in a special basis is investigated. This kind of
basis consists of elements of two types. The first type of elements are
monotone functions with zero weight. The second type of elements are
non-monotone elements with unit weight. The non-empty set of elements
of this type is finite.

In the paper the minimum number of non-monotone elements for an
arbitrary multi-valued logic function system F is established. It equals
⌈logu(d(F )+1)⌉−O(1). Here d(F ) is the maximum number of the value
decrease over all increasing chains of tuples of variable values for at least
one function from system F ; u is the maximum (over all non-monotone
basis functions and all increasing chains of tuples of variable values)
length of subsequence such that the values of the function decrease over
these subsequences.
Keywords: combinational machine (logic circuits), circuits complexity,
bases with zero weight elements, k-valued logic functions, inversion complexity,
Markov’s theorem, Shannon function.

In this paper the problem of the non-monotone complexity of a k-valued logic
function system realization is studied. Non-monotone complexity means that the
considered basis contains all monotone functions (they have zero weight) and a
finite number of non-monotone functions (they have positive weight). Markov [1, 2]
obtained the exact answer for the problem for Boolean functions with the only
non-monotone function negation. In [3, 4] the exact values of the non-monotone
complexity of multi-valued logic function systems for two bases is obtained. These
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bases contain one non-monotone function (Post negation or  Lukasiewicz negation)
and all monotone functions.

In this paper the upper and lower bounds for the non-monotone complexity of
multi-valued function systems in the general case are obtained. The upper and lower
bounds are asymptotically the same.

Denote by Ek the set {0, 1, . . . , k − 1}. A sequence

α̃1 = (α11, . . . , α1n), α̃2 = (α21, . . . , α2n), . . . , α̃r = (αr1, . . . , αrn)

of the pairwise different tuples from En
k is called increasing chain with respect to

the order 0 < 1 < . . . < k − 1 or chain if

αij ≤ αi+1,j , i = 1, . . . , r − 1, j = 1, . . . , n.

The tuples α̃1 and α̃r are called the initial tuple and the terminal tuple of the chain
respectively.

Let f(x1, . . . , xn) be a k-valued logic function. An ordered pair of tuples α̃ =

(α1, . . . , αn) and β̃ = (β1, . . . , βn), α̃, β̃ ∈ En
k , is called a jump for the function f if

1) αj ≤ βj , j = 1, . . . , n;
2) f(α̃) > f(β̃).
A jump for a system of functions is a pair of tuples which is a jump for any

function of the system.
Let F = {f1, . . . , fm}, m ≥ 1, be a system of k-valued logic functions with

arguments x1, . . . xn. Let C be a chain of the form

α̃1, α̃2, . . . , α̃r.

Decrease dC(F ) of the system F over chain C is the number of jumps of the form
(α̃i, α̃i+1) for the system F .

Decrease d(F ) of the system F is the maximum dC(F ) over all chains C.
Let Pk be the set of all k-valued logic functions, M be the class of all monotone

functions from Pk with respect to the order 0 < 1 < . . . < k − 1.
The aim of this paper is to study the non-monotone complexity of multi-value

logic functions. That is, k-valued logic function realization by circuits of funcitonal
elements (logic circuits, combinational machine — see e.g. [5, 6]) over bases B of
the form

B = M ∪ {ω1, . . . , ωp}, ωi ∈ Pk \M, i = 1, . . . , p (p ≥ 1). (∗)

Here any function from M has zero weight, functions ω1, . . . , ωp have positive
weights ρ1, . . . , ρp respectively. Further, in case the oposite is not mentioned, consider
ρ1 = . . . = ρp = 1 to simplify the reasoning and to emphasize the essential idea.

Non-monotone complexity IB(S) of the circuit S over basis B is the sum of the
weights of all non-monotone elements of the circuit S. Non-monotone functional
elements correspond to non-monotone basis functions.

Non-monotone complexity of the multi-valued logic function system F over basis
B is the minimum non-monotone complexity of the circuits that realize the function
system F over basis B. Denote non-monotone complexity of the system F over basis
B by IB(F ).

The exact value of the non-monotone complexity for Boolean functions over bases
B0 = M ∪ {x} (i.e. inversion complexity) has been obtained by Markov [1, 2]. For
any Boolean function system F Markov proved that

IB0(F ) = ⌈log2(d(F ) + 1)⌉ .
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Let us note that [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] also concern problem of
Boolean functions computation by circuits that contain the minimum number of
negations.

In papers [3, 4] the classical Markov result has been extended to the case of
k-valued logic function systems, k ≥ 2. It is shown that the minimum number of
negations for arbitrary k-valued logic system F computation equals ⌈log2(d(F )+1)⌉
in the case of Post negation (x+1 (mod k)) and equals ⌈logk(d(F )+1)⌉ in the case
of  Lukasiewicz negation (k − 1 − x). If k = 2 these formulas give the same result
that coincides with Markov’s theorem.

In addition let us note that papers [18, 19] deal with the problem of non-
monotone complexity for systems of Boolean functions over an arbitrary basis of
the form (∗). It is proved that for any system F there exists constant c(B) such
that

⌈log2(d(F ) + 1)⌉ − c(B) ≤ IB(F ) ≤ ⌈log2(d(F ) + 1)⌉ .
Moreover, for any N there exists a Boolean basis BN and a Boolean function gN
such that

⌈log2(d(gN ) + 1)⌉ − IBN (gN ) > N.

This paper proves a similar result for a multi-valued logic function system. We
need to define extra notions for the exact statement of the main result.

Let f be a k-valued logic function, C = (α̃1, α̃2, . . . , α̃r) be an arbitraty chain
from En

k . By uC(f) denote the maximum length t of the subsequence β̃1, β̃2, . . . , β̃t

of the sequence C such that f(β̃1) > f(β̃2) > . . . > f(β̃t). Note that uC(f) = 1 if
f does not decrease over chain C.

Now we define the inversion force u(f) of the function f . By definition put

u(f) = max
C⊂En

k

uC(f).

Obviously, for any function f we get 1 ≤ u(f) ≤ d(f) + 1. Moreover, f is non-
monotone iff u(f) ≥ 2.

Finally, we define the inversion force u(B) of the basis B. By definition put

u(B) = max
f∈B

u(f).

Theorem 1. Suppose B is the complete basis of the form (∗). Then there exists
the constant c(B) such that for any finite k-valued logic function system F the
inequalities⌈

logu(B)(d(F ) + 1)
⌉
− c(B) ≤ IB(F ) ≤

⌈
logu(B)(d(F ) + 1)

⌉
hold.

The upper bound estimation follows directly from Theorem 2 from [4].
The lower bound estimation is based on the following four lemmas.

Lemma 1. Let A = (a1, a2, . . . , ar) be a sequence of elements from {0, 1 . . . , k−1}.
Suppose there exists l ∈ N such that for any subsequence (ai1 , ai2 , . . . , ait) of A such
that ai1 > ai2 > . . . > ait , the inequality t ≤ l holds. Then A can be partitioned into
l disjoint non-decreasing subsequences.

Proof. The proof is by induction over l.
If l = 1 then A does not decrease. Hence, sequence A itself is the partition into

l subsequences.
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Assume Lemma statement is valid for all l, l ≤ l′ − 1. Let us prove it for l = l′.
If sequence A does not contain any subsequence ai1 , ai2 , . . . , ail′ with exact l′

components such that ai1 > ai2 > . . . > ail′ then using the inductive assumption
we obtain that Lemma statement for l′ holds. Let A contain s subsequenses of the
length l′, s > 0. They are

ai(1,1), ai(2,1), . . . , ai(l′,1);

ai(1,2), ai(2,2), . . . , ai(l′,2);

· · ·

ai(1,s), ai(2,s), . . . , ai(l′,s).

Note that inequality i(1, j1) < i(1, j2) implies the relation ai(1,j1) ≤ ai(1,j2).
Assume the converse, i.e. ai(1,j1) > ai(1,j2). Then inequalities

ai(1,j1) > ai(1,j2) > ai(2,j2) > . . . > ai(l′,j2)

hold for the subsequence

ai(1,j1), ai(1,j2), ai(2,j2), . . . , ai(l′,j2)

of the length l′ + 1. That contradicts Lemma statement.
The sequence {ai(1,1), ai(1,2), . . . , ai(1,s)} is non-decreasing subsequence of A.

Consider sequence
A′ = A\{ai(1,1), ai(1,2), . . . , ai(1,s)}.

Then for any subsequence ai(1), ai(2), . . . , ai(t) of the sequence A′ such that ai(1) >
ai(2) > . . . > ai(t) inequality t ≤ l′ − 1 holds. Using the inductive assumption we
obtain that A′ can be partitioned into l − 1 disjoint non-decreasing subsequences.
Hence, sequence A can be partitioned into l disjoint non-decreasing subsequences.
This complete the proof of Lemma 1. �

Lemma 2. Let

h(x1, . . . , xn) = ω(m1(x1, . . . , xn), . . . ,ms(x1, . . . , xn)),

where m1, . . . ,ms are monotone functions. Then for any chain of tuples α̃1, α̃2, . . . , α̃r

from En
k sequence h(α̃1), h(α̃2), . . . , h(α̃r) changes values at most k(d(ω) + 1) − 1

times.

Proof. Indeed, sequence h(α̃1), h(α̃2), . . . , h(α̃r) contains at most d(ω) + 1 non-
decreasing ranges. Each of these ranges contains at most k − 1 value changes.
The sequence value decreases d(ω) times. Hence, sequence h(α̃1), h(α̃2), . . . , h(α̃r)
changes values at most (k − 1)(d(ω) + 1) + d(ω) = k(d(ω) + 1) − 1 times. �

Let B = M ∪ {ω1, . . . , ωp}, where ωi ∈ P2 \ M (i = 1, . . . , p). Let us extend
the notion of the decrease to an arbitrary basis of the form (∗). By definition put
d(B) = max{d(ω1), . . . , d(ωp)}.

Lemma 3. Let F be a k-valued logic function system. Then

d(F ) ≤ k(d(B) + 1) − 1

u(B) − 1

(
(u(B))IB(F ) − 1

)
.
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Proof. Let F = {f1, . . . , fm}, m ≥ 1, be a k-valued logic function system. Let
x1, . . . , xn be all variables in functions f1, . . . , fm. The proof is by induction over
IB(F ).

For IB(F ) = 0 all functions from F are monotone. Hence, d(F ) = 0.
Assume Lemma statement is valid for all function systems G such that IB(G) ≤

IB(F )−1. Consider arbitrary circuit S with inputs x1, . . . , xn that realizes function
system F and contains exactly IB(F ) nodes that correspond to functions from
{ω1, . . . , ωp}. Let us select the first vertex (according to any correct numeration)
corresponding to a function from {ω1, . . . , ωp}. Denote the corresponding gate by
E. Denote by h(x1, . . . , xn) the function that is calculated at the output E. Denote
by S′ a circuit with inputs y, x1, x2, . . . , xn which is obtained from the circuit S
by replacing the selected gate with one more input by variable y. Denote by G =
{g1, . . . , gm} the system of the functions that is realized at the outputs of G. We
stress that

fi(x1, . . . , xn) = gi (h(x1, . . . , xn), x1, . . . , xn) , i = 1, . . . ,m.

Moreover IB(G) ≤ IB(F ) − 1.
Consider a chain

C = (α̃1, α̃2, . . . , α̃r)

such that d(F ) = dC(F ).
Denote by C ′ the sequence of the (n + 1)-tuples

(h(α̃1), α̃1), . . . , (h(α̃r), α̃r).

Note that the sequence C ′ is not a chain. Let us decompose C ′ into chains in the
following way. By Lemma 1 the sequence h(α̃1), h(α̃2), . . . , h(α̃r) can be partitioned
into u(B) disjoint non-decreasing subsequences. Without loss of generality we can
assume that equality h(α̃i) = h(α̃i+1) implies that h(α̃i) and h(α̃i+1) belong to
the same subsequence (if not we can move element h( ˜αi+1) to the subsequence
containing h(α̃i)). This partition of the sequence h(α̃1), h(α̃2), . . . , h(α̃r) gives us
a partition of the sequence C ′ into subsequences C ′

1, C
′
2, . . . , C

′
u(B). For all j =

1, . . . , u(B), the sequence C ′
j is the chain of (n + 1)-tuples.

By inductive assumtion the inequalities

dC′
j
(G) ≤ d(G) ≤ k(d(B) + 1) − 1

u(B) − 1

(
(u(B))IB(G) − 1

)
≤ k(d(B) + 1) − 1

u(B) − 1

(
(u(B))IB(F )−1 − 1

)
are valid for j = 1, . . . , u(B).

Note that by Lemma 2 the first positions in the tuples from C ′ change values at
most k(d(B) + 1)−1 times. Now if we recall constructing the sequence C ′ partition
we can note that the number of transfers from one subsequence to another while
looking through elements of C ′ from initial to the terminal tuples is also at most
k(d(B) + 1) − 1.

Now using the equalities

fi(x1, . . . , xn) = gi (h(x1, . . . , xn), x1, . . . , xn) , i = 1, . . . ,m,
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we obtain

d(F ) = dC(F ) ≤ dC′
1
(G) + dC′

2
(G) + . . . + dC′

u(B)
(G) + k(d(B) + 1) − 1

≤ k(d(B) + 1) − 1

u(B) − 1

(
u(B)((u(B))IB(F )−1 − 1) + u(B) − 1

)
=

k(d(B) + 1) − 1

u(B) − 1

(
(u(B))IB(F ) − 1

)
.

These completes the proof of Lemma 3 �
Let

c(B) = logu(B)

k(d(B) + 1) − 1

u(B) − 1
+ 1.

Lemma 4. Let F be a k-valued logic function system. Then

IB(F ) ≥ ⌈logu(B)(d(F ) + 1)⌉ − c(B).

Proof. Lemma 3 implies

(u(B))IB(F ) − 1 ≥ d(F )
u(B) − 1

k(d(B) + 1) − 1
.

Hence,

IB(F ) ≥ logu(F )

(
d(F )

u(B) − 1

k(d(B) + 1) − 1
+ 1

)
≥ logu(F )

(
d(F )

u(B) − 1

k(d(B) + 1) − 1
+

u(B) − 1

k(d(B) + 1) − 1

)
≥ logu(B)(d(F ) + 1) − logu(B)

k(d(B) + 1) − 1

u(B) − 1

≥ ⌈logu(B)(d(F ) + 1)⌉ −
(

logu(B)

k(d(B) + 1) − 1

u(B) − 1
+ 1

)
= ⌈logu(B)(d(F ) + 1)⌉ − c(B).

These complete the proof of Lemma 4. �
Lemma 4 completes the proof of Theorem 1.
Thus, asymptotics for non-monotone complexity growth of a multi-valued logic

function system is established for arbitrary basis of the form (∗).
Let us emphasize that the constant c(B) from the lower bound from Theorem 1

is not absolute. The constant c(B) depends on basis B. Indeed, for any k, k ≥ 2
the value

⌈logu(B)(d(F ) + 1)⌉ − IB(F )

is not bounded. We can consider function f such that d(f) ≥ kN+1 and let F = {f}.
If f ∈ B, then ⌈logu(B)(d(F ) + 1)⌉ − IB(F ) ≥ ⌈logk(d(F ) + 1)⌉ − 1 > N.

Now let us generalize the problem. Let us consider a basis with arbitrary positive
weights for the non-monotone functions in it.

Theorem 2. Consider the basis B of the form (∗). Let the weights of the functions
ω1, . . . , ωp be equal to ρ1, . . . , ρp respectively. Let

ρ1
log2 u(ω1)

= min

{
ρ1

log2 u(ω1)
, . . . ,

ρp
log2 u(ωp)

}
.
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Then there exists a constant c(B) such that for any k-valued logic function system
F the inequalities

ρ1

⌈
logu(ω1)(d(F ) + 1)

⌉
− c(B) ≤ IB(F ) ≤ ρ1

⌈
logu(ω1)(d(F ) + 1)

⌉
.

are valid.

The upper bound of Theorem 2 follows from the upper bound of Theorem 1.
Indeed, consider basis B′ = M ∪ {ω1} such that the weight of the function ω1

equals ρ1, and the weight of all monotone functions are zero. Now by inequality
IB(F ) ≤ IB′(F ) we get the upper bound.

The proof of the lower bound from the Theorem 2 is similar to the proof of
the lower bound from Theorem 1. Lemma 3 should be slightly changed. Induction
should be done over the number of non-monotone elements in the circuit. Besides,
[19] contains the proof of the lower bound for the non-monotone basis with arbitrary
positive weights of non-monotone elements for Boolean function system realization.
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