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SOME SIMPLE GROUPS WHICH ARE DETERMINED BY
THEIR CHARACTER DEGREE GRAPHS

S. HEYDARI, N. AHANJIDEH

ABSTRACT. Let G be a finite group, and let p(G) be the set of prime
divisors of the irreducible character degrees of G. The character degree
graph of G, denoted by A(G), is a graph with vertex set p(G) and two
vertices a and b are adjacent in A(G), if ab divides some irreducible
character degree of G. In this paper, we are going to show that some
simple groups are uniquely determined by their orders and character
degree graphs. As a consequence of this paper, we conclude that M2 is
not determined uniquely by its order and its character degree graph.

Keywords: Character degree, minimal normal subgroup, Sylow sub-
group.

1. INTRODUCTION

Throughout this paper, we suppose that all groups are finite and G is a group.
We denote by c¢d(G), the set of irreducible character degrees of G forgetting multi-
plicities and also, the set of irreducible character degrees of G counting multiplicities
is denoted by X1(G). The set of prime divisors of |G| forgetting multiplicities is
shown by 7(G). The simple group G is called a simple K,-group if |7(G)| = n.
There are some characterization of groups according to their irreducible characters.
For example, authors in [6, 17] characterized some simple K4-groups and Mathieu
groups according to their orders and some irreducible character degrees. Also, in
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[1, 7], it was proved that some extensions of Ly(p™) are uniquely determined by
their X;. The character degree graph of G, which is shown by A(G), is a graph
with the vertex set p(G) and two vertices a and b are adjacent in A(G), if there is
some f € ¢d(G) such that ab | f. Many researchers try to know the properties of
A(G). For example, in [14, 15], it was shown that for every group G, the diameter
of A(G) is at most 3. Also, White in [16] showed that if G is a simple group, then
A(QG) is connected unless G = La(q). In [10], Khosravi and et al. introduced a new
characterization of finite groups based on the character degree graph as if G has
the same order and the character degree graph as that of a certain group M, then
G = M. Khosravi and et al., in [10], proved that the simple groups of orders less
than 6000 are uniquely determined by their character degree graphs and orders and
they in [11, 12], showed that Lo(p), La2(p?) and some simple groups are determined
by their character degree graphs and orders. In this paper, we prove the following:

Theorem 1. Let G be a finite group, and let M € {My1, Mag, Ma3z}. Then G =2 M
if and only if A(G) = A(M) and |G| = |M|. Also, A(G) = A(Mi2) and |G| = | M2
if and only if G = M1y or G =2 Ay X M.

Throughout this paper, we use the following notations: Let H be a subgroup
of G. If H is characteristic in GG, then we write H ch G. The set of all p-Sylow
subgroups of G is shown by Syl,(G). Let b be integer, a be prime and n be natural.
If a® | b and a"*! 1 b, then we write |b|, = a™. If x = vazl n;xi, where for every
1<i <N, x; € Irr(G), then those x; with n; > 0 are called irreducible constituents
of x.

In the following, we bring some lemmas, which are used in the proof of Theorem 1:

Lemma 1. [8, Theorem 6.2 and Corollary 11.29] Let N I G and x € Irr(G).
Let 0 be an irreducible constituent of xn and suppose that 61 = 0,...,0; are the
distinct conjugates of 0 in G. Then xy = ezzzl 0;, where e = [xn,0]. Also,
x(1)/6(1) | G+ ).

Lemma 2. (Ito’s theorem) [8, Theorem 6.15] Let G be a finite group, and let A be
a normal abelian subgroup of G. Then x(1) | [G : A], for all x € Irr(G).

Lemma 3. [17] Let G be a non-solvable group. Then G has a normal series 1 <
H 9 K < G such that K/H is a direct product of isomorphic non-abelian simple
groups and |G/K| | |Out(K/H)|.

Lemma 4. [17] Let G be a finite solvable group of order p1**p2®2..p,%", where
D1,D2, .-y P are distinct primes. If kp, + 11 p;* for eachi <n—1 and k > 0, then
the py-Sylow subgroup of G is normal in it.

Lemma 5. (i) [4] If G is a simple Ks-group, then G is isomorphic to one of the
following groups: As, As, L(7), La(8), L>(17), Ls(3), Us(3) or Us(2).
(i) [1, 13] If G is a simple K4-group, then G is isomorphic to one of the following
groups:
(1) A7, As, Ag, A1o, Mu1, Miz, Jo, L3(4), L3(5), L3(7), L3(8), L3(17), La(3),
S4(4)7 54(5)7 S4<7)’ 54(9); 56(2); O;@)’ G2(3); U3(4)? U3(5>7 U3(7>7
U3(8)} U3(9)7 U4(3)7 U5(2), 52(8)7 SZ(32)) 3D4(2); 2F4(2)l;
(2) La(q), where q is a prime power such that q(g>—1) = (2,q—1)2%13%2p%3p%
with v,r > 3 distinct prime numbers and for 1 <i <4, a; € N.
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(iii) [9] If G is a simple Ks-group, then G is isomorphic to one of the following
groups:

Ly(q), where \7?( = 1| =4, Ly(q), where |n((¢*> — 1)(¢* = 1))| = 4, Us(q),
where |m((¢?> — 1)(¢® + 1))| = 4, Os(q), where |n(¢* — 1)| = 4, Sz(q ), where
q = 221 and |7((q — 1)(¢* + ))| = 4, R(q), where q is an odd power of 3 and
Im((¢> = 1)(¢* —q+1))| =4 or one of the following simple groups:

|
L4(4), L4(5) 4(7), Ls(2), Ls(3), Le(2), O7(3), A11, A1z, O9(2), S6(3), Ss(2),
Us(4), U. ( ), Ua(7), Us(9), U (3), Us(2), OF (3), Og (2), Mas, J3, HS, He, McL,
3D4(3), G2(4), G2(5), G2(7), G2(9).

(iv) [9] If G is a simple Kg-group, then G is isomorphic to one of the follow-
mng groups:

Lo(q), where |7(q®> —1)| =5, L3(q), where |7((¢*> — 1)(¢®> — 1))| =5, L4(q), where
(D DGt D) =5, Tl wher [ 1) + )] = 5, Ui
where |7((g* — 1)(@® + 1)(q" — 1))| = 5, Os(q) where [(q* — 1)] = 5, Ga(q), where

(g8 —1)| = 5, S2(22™*1), where |w(22m+1 —1)(24m+2 4-1))| = 5, R(Szm“), where
|7 ((32mF — 1)(3°™*3 +1))| = 5 or one of the following groups:

A13,A14,A15,A16,M237M24,J1,Su2 Ru 0027003,F222,HN Lr(7),L6(3), 7(2)
07(4),07(5), 07(7), 09(3), S6(4), S6(5), S6(7), 95(3), Us(4), Us (5),
U5(9)7U6<3)’ U7(2)?F4(2)a 8 ( )7 8 (5)’ ;(7)

015(2), 05 (3), 035(2), * Da(4), > Da(5).

Lemma 6. Forn € {3,4,5,6}, let G be a finite K,,-group. If there is not any finite
simple group L in Lemma 5 such that w(L) C w(G), then G is solvable.

Proof. 1t follows immediately from Lemmas 3 and 5. O

2. PROOF OF THE MAIN THEOREM.

Proof. First, note that for the irreducible character degrees of the finite groups,
we refer the reader to [2]. It is obvious that if G =2 M, then A(G) = A(M) and
|G| = |M]. Thus in the following, assume that A(G) = A(M) and |G| = |M|. We
continue the proof in the following cases:

i. Let M = Mll- Then |G| = |M11| = 2432511 and A(G) = A(Mll) is as
follows:

2

/

5

N

11

Therefore there exists x € Irr(G) such that 5.11 | x(1). Now, we claim that G is
non-solvable. On the contrary, suppose that G is solvable. Then since for every
natural number k, 11k + 1 4 24,32 5, Lemma 4 shows that P < G, where P is a
11-Sylow subgroup of G. But since |P| = 11, P is abelian so, Ito’s theorem forces
x(1) | [G : P} = 2*.32.5 and hence, 5.11 | [G : P] = 2%.32.5, which is impossible.
Thus G is non-solvable. Therefore Lemma 3 shows that there is a normal series
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1 < H <K <G such that K/H is a direct product of isomorphic non-abelian
simple groups and |G/K]| | |Out(K/H)|. Now, considering |G| and the order of the
non-abelian simple K3 or Ky-groups mentioned in Lemma 5 (i,ii) implies that

K/H = A5,A6,L2(11) or M11~

Let K/H = As. Then since |Out(K/H)| = |Out(As)| = 2, |H| = 2.3.11 or 22.3.11.
Hence, Lemma 6 guarantees that H is solvable and the same argument as used
in the proof of the non-solvability of G leads us to get a contradiction. Also, the
same reasoning as above rules out K/H = Ag. Suppose that K/H = Ly(11).
Then |H| = 2.3 or 22.3. Assume that 6 € Irr(H) such that [yz,0] # 0. Then
Lemma 1 implies that x(1) = etf(1), where t = [G : Ig(0)]. Since 0(1) | |H|,
5,11 1 (1) and hence, 5.11 | et. On the other hand, Cg(H) C Ig(#). Thus
t||[G:Cg(H)]. Since G/Cq(H) — Aut(H), t | |Aut(H)|. Now, by GAP [3], we
can see that 5 and 11 dose not divide the orders of the automorphism groups of the
finite groups of orders 6 and 12. Therefore 5,11 t ¢ and so, 5.11 | e. It follows that
[x#,xu] = €%t > (5.11)2 > [G : H], which is a contradiction. These contradictions
show that K/H = Mj; and hence, H =1 and G = K = My;.

ii. Let M = Mjy. Then |G| = |Mjs| = 26.33.5.11 and A(G) = A(M;s) is as
follows:

11———5

Thus there are x, 8, « € Irr(G) such that 5.11 | x(1), 3.11 | 5(1) and 2.11 | a(1).
Now, we claim that G is non-solvable. On the contrary, suppose that G is solvable.
Then Lemma 4 and an easy calculation show that P < G, where P € Syl;; (G),
which is a contradiction by considering Ito’s theorem and x. Hence, G is non-
solvable.

Let S be a minimal normal solvable subgroup of G. Then S is a r-elementary
abelian group. Now, applying Ito’s theorem to S and y forces r = 2 or 3. Suppose
that N is a maximal normal {2, 3}-subgroup of G and let L/N be a minimal normal
subgroup of G/N such that L/N < Cg(N)N/N. Suppose that L/N is solvable.
Then for some ¢t € 7(G), L/N is a t-elementary abelian group. Now, our assumption
on N implies that ¢ # 2,3. Hence, t =5 or 11. Since N and L/N are solvable, we
conclude that L is solvable. If 11 | |L|, then the same argument as used in the proof
of the non-solvability of G leads us to get a contradiction. Thus ¢ = 5. Since |G|5 =
5and 5| |L|, 5t |G/L|. Hence, considering |G| shows that 7(G/L) C {2,3,11}.
Therefore Lemma 6 guarantees that G/L is solvable. But this is a contradiction,
because G is non-solvable and L is solvable. Hence, L/N is non-solvable and so, it
is a direct product of isomorphic non-abelian simple groups. Now, considering |G|
and Lemma 5(3,ii) shows that

(1) L/N &~ A5,A6,L2(11),M11 or Mlg.

Let C/N be a minimal normal subgroup of G'/N such that C/N < Cg/n(L/N).
Then C/N =1 or applying the same reasoning as used for L/N shows that C/N
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is isomorphic to one of the groups in 1. Assume that C'/N # 1.

Now, considering the orders of the groups mentioned in 1 shows that 5 | |L/N|.
Thus since L/NNC/N =1 and |G|s =5, 51 |C/N| and so, C/N is not isomorphic
to any groups in 1, which is a contradiction. Thus C/N = 1 so, Cg/n(L/N) =1
and hence,

G/N < Aut(L/N).

If L/N = A5 or Ag, then 11 { |Aut(L/N)|, which is a contradiction, because
11| |G/N].

Let L/N = Ly(11). Then since Aut(Ly(11)) = PGLa(11), G/N = Ly(11) or
PGLy(11). On the other hand, L/N < Cg(N)N/N < G/N. It follows that
Co(N)N = G or Cg(N)N = L. Thus considering |G|, |L| and |N| shows that
5,11 | |Ce(N)| and so, 5,11 1 |G/Ca(N)|. Let 6 € Irr(N) such that [xn,6] # 0.
Then Lemma 1 shows that x(1) = esf(1), where s = [G : I¢(0)]. Now, we can see
that 5,11 1 6(1), because 6(1) | |[N|. Moreover, since Cg(N) < I(6), the fact that
5,111 |G/Cq(N)| implies that 5,111 s = [G : Ig(0)] and hence, 5.11 | e. Thus we
obtain [xn, xn] = €?s > (11.5)2 > [G : N], which is a contradiction.

Let L/N = Mj;. Then since G/N < Aut(L/N) and Aut(My,) = My, we

conclude that G/N = L/N = Mj; and so, |[N| = 12. Now, by GAP, we can see
that w(Aut(N)) C {2,3}. Therefore 7(G/Cqa(N)) C {2,3}, because G/Cg(N) —
Aut(N). Hence, Cg(N) is non-solvable. Also, 5,11 | [Cg(N)|. On the other hand,
Ca(N)N/N < G/N 2 My;. Thus Ca(N)/Ca(N)NN 22 Cq(N)N/N = M.
Let Cq(N) = (Cg(N))'. Then since Cq(N)NN < Z(Cq(N)) and Mult(M;1) =1,
we deduce that Cg(N) = (Co(N)NN) x My1. Now, since Ca(N)NN = Z(N) is
abelian, we conclude that cd(Cg(N)) = cd(Ma1). Also, by GAP, we get |Ca(N) N
N| = |Z(N)| € {1,2,12}.

Let |Z(N)| = 2. Then |Cg(N)| = 2°.32.5.11. Let v € Irr(Cg(N)) such that
[Beo(nys 7] # 0. Then Lemma 1 implies that 5(1) = esy(1), where s = [G : Ig(7)]
and also, 11 | v(1). Now, if 3 | (1), then 3.11 divides some irreducible character
degree of My, which is a contradiction. Thus 3 | e or 3 | s. Let 3 | e. Then
e?s > 32 > [G : Cg(N)] = 6, which is a contradiction. Hence, 3 | s. So, Cg(N)
has at least 3 irreducible characters of the same degrees such that 11 divides them.
Now, since Z(N) has two irreducible characters whose degrees are 1, we deduce
that M7, has at least two irreducible characters of the same degrees such that 11
divides them. But since X;(Mj;) = {1,10,10,10,11, 16,16, 44,45,55}, we get a
contradiction.

Let |Z(N)| = |Ca(N)N N| = 1. Then Cg(N)/Ce(N)NN = Ce(N) = M.
Thus N x Cg(N) =2 N x M11 g G. 1\IOW7 since ‘N X M11| = |G|, N x M11 ~ @G.
Let 81 € Irr(N) and Bo € Irr(Mi;) such that 5 = 81 x B2. Then since 3.11 | 5(1)
and 111 |N|, 11| B2(1). Also, since in A(M1), 11 is not adjacent to 3, we conclude
that 3 | $1(1). Thus by GAP, we can see that cd(N) = {1,3} and also, N = Ay.
Hence, G = Ay x Miq, as desired.

Assume that |Z(N)| = |Cq(N)N N| = 12 = |[N|. Then N < Cg(N) and so,
Ca(N) =2 N x My;. Hence, Cq(N) = G, because |Cq(N)| = |[N x M| = |G|.
Thus N < Z(G) and so, cd(G) = c¢d(Mi1), which is a contradiction.

Now, we suppose that (Ca(N)) < Cg(N). Since Cg(N) is non-solvable, for
some natural number n, Cén)(N) = C(Gnﬂ)(N). Also, Cén)(N)N/N = Cén)(N)/Cén)(N)ﬂ

N = My;. Now, CV(N)N N < ch,)(N)(ch(N) NN), because CS(N) N
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N is abelian. Since CS”(N)/Cm (N)(Cg”’(N) N N) < Aut(CS(N) N N) and
G

C’gb)(N) NN < N, we conclude that 5,11 | |Cc(n)(N)(Cgl)(N) N N)|. Thus
G

Cowm ) (CH(N) N N)/CEH(N) N N = CEP(N)/CEY (N) 1N = M. Therefore
Cowm 0 (CH(N) N N) = CEV(N) and so, CG)(N) N N < Z(CG(N)). Hence,

since C’é”)(N) = C’gLH)(N) and Mult(My;) = 1, we deduce that C’gl)(N) =
(CSY(N) N N) x My;. On the other hand, |Co(N)N/N| = |Cq(N)/Ca(N) N
N| = |CS(N)/CEP(N) N N| = |Myy|. Thus CSP(N) NN < Ca(N) N N, be-
cause Cén)(N) < Cg(N). Hence, since |Ce(N) N N| = |Z(N)| € {1,2,12},
\Cé")(N) NAN| =1or C’én)(N) N N is an abelian group of order 2,3, 4 or 6.
Therefore [COV (V)| = 24.32.5.11,2°.32.5.11, 24.33.5.11,26.32.5.11 or 2°.3%.5.11 and
also, Cd(Cén)(N)) = cd(Mi1).

Now, if |Cé")(N)| = 2%.32.5.11, then the same argument as used when (Cg(N))' =
C¢(N) shows that G & A4 x My, as claimed.

If |Cén)(N)| = 25.32.5.11, then the same argument as used when (Cg(N)) =
Cc(N), leads us to get a contradiction. Let \Cén)(N)| =2%33.5.11 0or 2°.3%.5.11 and
let 6 € Irr(Cgl) (N)) such that [,BCgL)(N), 0] # 0. Then Lemma 1 implies that 3.11 |

0(1), which is a contradiction, because 6(1) € cd(Mi1). Also, when |C’é”)(N)| =
26.32.5.11, since C(G")(N) < Cg(N), considering |G| shows that Cg(N) = G and
so, N < Z(G). Thus G = N x My, because G/N = My; and Mult(M;;) = 1.
Hence, ¢d(G) = c¢d(M1), which is a contradiction.

These show that L/N = M5 and so, G = L & M.

iii. Let M = MQQ. Then |G| = |M22| = 27325711 and A(G) = A(Mgg) is
as follows:

11

7T——5

Hence, there exist x,8 € Irr(G) such that 7.11 | x(1) and 5.11 | g(1). If G is
solvable, then Lemma 4 and an easy calculation imply that a 11-Sylow subgroup
of G is normal in it, which contradicts Ito’s theorem. Thus G is non-solvable.

Assume that S is a minimal normal solvable subgroup of G. Then for some
r € (G), S is a r-elementary abelian group. Now, applying Ito’s theorem to S and
x leads us to see that r =2 or 3.

Assume that N is a maximal normal {2,3}-subgroup of G and suppose that
L/N is a minimal normal subgroup of G/N such that L/N < Cg(N)N/N. Then
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we claim that L/N is non-solvable. On the contrary, suppose that L/N is solvable.
Then for some ¢t € 7(G), L/N is a t-elementary abelian group. Now, our assumption
on N and the fact that |L/N| | |G| show that t = 5,7 or 11. Since L/N and N are
solvable, we conclude that L is solvable. Thus G/L is non-solvable, because G is
non-solvable. Hence, considering Lemma 3 shows that

(2) 3||G/L| and |G/L|y > 2%

Now, suppose that N is abelian. Then L/N < Cg(N)/N. It follows that there
is a t-subgroup @ of G such that L = Q@ x N < G and so, @ < G, which is a
contradiction by considering Ito’s theorem and 8 and x. Thus in the following, we
assume that NNV is non-abelian.

If t = 11, then 11 | |L|. Suppose that P € Syl;;(L). Then P ch L < G. Since
|P| = 11, P is abelian. Hence, Ito’s theorem shows that x(1) | [G : P], which is
impossible. Hence, t =5 or 7.

Suppose that t = 5. If |[L|s = |N|2 < 8, then P ch L 9 G, where P € Syl;(L).
Now, considering Ito’s theorem and § leads us to get a contradiction. Thus |L|y >
16. Hence, |G/L| | 23.32.7.11. Also, 2 implies that 22.3.7.11 | |G/L|. Now, since
G/L is non-solvable, considering Lemmas 3 and 5 shows that G/L has a normal
series 1 < H/L < K/L <4 G/L such that 377 = Ly(T) or Ly(8). Thus 11 | |H/L|
and |H/L| | 3.11 so, H/L and consequently, H is solvable and 11 | |H|. Let
P € Syl;;(H). Then P ch H < G. Now, applying Ito’s theorem to P and x leads
us to get a contradiction.

Now, suppose that t = 7. If |L|y = |N|s < 22, then a 7-Sylow subgroup of L
is normal in L. It follows that G has a normal abelian 7-Sylow subgroup. But
considering Ito’s theorem and y leads us to get a contradiction. Hence, |N|s > 8
and so, according to 2, we conclude that |[N| € {8,3.8,16, 3.16, 32, 3.32}.

Suppose that |N| € {8,3.8,16,32}. Then by GAP, we can see that 7t |[Aut(N)|.
Assume that v € Irr(L) such that [xr,7] # 0. Then Lemma 1 implies that 7 | v(1).
Let o € Irr(N) such that [yn, ] # 0. Then Lemma 1 shows that (1) = esu(1),
where s = [L : I (u)]. Now, 71 u(1), because 7 1 |N| and so, 7 | es. On the
other hand, L/Cp(N) < Aut(N). Now, since 7t |[Aut(N)|, 71 |L/Cr(N)|. Hence,
71 s =[L: I(p)], because Cr(N) C I (n). It follows that 7 | e and so, e?s >
72 > [L : N] = 7, which is a contradiction. Assume that |[N| € {3.16,3.32}. If
7 1 |Aut(N)|, then the same reasoning as above leads us to get a contradiction.
Thus 7 | |[Aut(N)|. Now, by GAP, we can see that if |N| = 3.16, then |Z(N)| = 8
and if |[N| = 3.32, then |Z(N)| = 16 or 8. Since Z(N) ch N < L, Z(N) < L.
Suppose that when |N| = 3.32, |Z(N)| = 16. Then |L/Z(N)| = 2.3.7. Now,
by replacing N with Z(N) in the above argument, we get a contradiction. Now,
assume that [N| = 3.32 and |Z(N)| = 8 and suppose that P € Syly(N). Then by
GAP, P < N hence, P ch N < L and so, P < L. Thus |L/P| = 3.7. Now, the
same reasoning as above leads us to get a contradiction.

These contradictions show that L/N is non-solvable. So, it is a direct product of
isomorphic non-abelian simple groups. Now, considering |G| and Lemma 5 shows
that

(3) L/N = A5, Ag, A7, Ag, L3(4), L2(7), L2(8), L2(11), M1y or Mas.

Let C/N be a minimal normal subgroup of G'//N such that C/N < Cg/n(L/N).
Then C'/N =1 or applying the same argument as above implies that C'/N is iso-
morphic to one of the groups in 3. Assume that C/N # 1.
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Suppose that L/N = As. Then considering |G/N| and the fact that L/N N
C/N = 1 shows that C/N = Ly(7). Set D/N := L/N xC/N. Then D/N < G/N.
Now, we claim that Cq/n(D/N) = 1. On the contrary, suppose that Cg/n(D/N) #
1 and assume that R/N is a minimal normal subgroup of G/N such that R/N <
Cg/n(D/N). Then the same argument as used for L/N forces R/N to be isomor-
phic to one of the groups in 3. But since R/NND/N = 1, considering |D/N| shows
that |[R/N| | 22.11 and so, R/N is solvable, which is a contradiction. This contradic-
tion shows that Cg/n(D/N) =1 and so, G/N — Aut(D/N) = Aut(As x L(7)) =
S5 x PGL(2,7). Now, since 111 |Ss x PGL(2,7)|, we deduce that 11 1 |G/N|, which
is a contradiction.

Also, if L/N = Lo(7), then we can see that C/N = As or Ly(11) and so,
A5 X L2(7) < G/N or L2(7) X LQ(].].) < G/N If L/N X C/N = A5 X LQ(?),
then the same argument as the previous case leads us to get a contradiction. Thus
L/N x C/N = Ly(7) x Ly(11). Now, considering |G| shows that |N| | 22. Let
¢ € Irr(C) such that [S¢,t] # 0. Then Lemma 1 shows that 5.11 | ¢(1). If N =1,
then C' = Ly(11) < G. But considering ¢(1) leads us to get a contradiction, because
cd(C) = cd(L2(11)) = {1,11,10,12,5}. Thus N # 1 and so, |[N| = 4 or 2. Let
¥ € Irr(N) such that [tc, 9] # 0. Then by Lemma 1, we obtain ¢(1) = etd(1), where
t =[C : Ic(9)]. Since N is abelian, #(1) = 1 and so, 5.11 | et. On the other hand,
t | |Aut(N)|. Now, since 5,11 1 [Aut(N)|, 5,11 t ¢ and hence, 5.11 | e. Therefore
[tn,en] = €2t > (5.11)% > [C : N] = |L2(11)], which is a contradiction.

Assume that L/N = Ly(11). Then we can see that C/N = Lo(7). Now, the
same argument as used in the previous case leads us to get a contradiction.

Suppose that L/N = Ag, A7, Ag, L2(8), L3(4) or My;. Then considering |G/N|
and the fact that L/N NC/N = 1 shows that 3 {|C/N| and so, C/N is not isomor-
phic to any groups mentioned in 3, which is a contradiction.

These contradictions imply that Cq/n(L/N) = 1 and hence, G/N < Aut(L/N).
1\IOW7 if L/N = A5, A67 A7, Ag, L3(4), LQ(?), LQ(S), Lg(ll) or M117 then considering
|Aut(L/N)| shows that 7 or 11 dose not divide |Aut(L/N)|. But this is a contra-
diction, because 7,11 | |G/N|. Therefore L/N = My and so, G = Ma,.

iv. Let M = M23. Then ‘Gl = ‘Mgg‘ = 2732571123 and A(G) = A(Mgg)
is as follows:

2=—=3

_— =

7 23

\ /

5=—11

Thus there are x, 8, a € Irr(G) such that 11.23 | x(1), 5.11 | (1) and 7.11 | a(1).
Now, if G is solvable, then Lemma 4 and an easy calculation show that a 23-Sylow
subgroup P of GG is normal in G. But applying Ito’s theorem to P and x leads us
to get a contradiction. Thus G is non-solvable. Hence, considering Lemmas 3 and
5 and |G| shows that G has a normal series 1 < H < K < G such that

K/H = A5, Ag, A7, Ag, L3(4), L2(7), L2(8), L2(11), Mi1, M2 or Mas.

Let 8,n, A € Irr(H) such that [xg,0] #0, [Bu,n] # 0 and [ag, A] # 0.
First, suppose that K/H = As. Then |G/K| | |Out(A4s)| = 2. Hence, |H| =
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24.3.7.11.23 or 25.3.7.11.23. Thus Lemma 1 implies that 11.23 | (1) and 7.11 | A(1).
If H is solvable, then the same reasoning as used in the proof of the non-solvability
of G leads us to get a contradiction. Thus H is non-solvable. Therefore considering
Lemmas 3 and 5 and |H| shows that H has a normal series 1 < N 4 R < H
such that R/N = Ly(7) or Ly(23). Let R/N = Lo(7). Then 11.23 | |N| and |N| |
22.11.23. Thus Lemma 6 shows that NNV is solvable and the same argument as proving
the non-solvability of H leads us to get a contradiction. Hence, R/N = L3(23) and
so, 7| |[N| and |N| | 22.7. Suppose that P € Syl,(N). Then P ch N < H. But
applying Ito’s theorem to P and A leads us to get a contradiction.

Let K/H = Ly(7). Then |H| = 2%.3.5.11.23 or 23.3.5.11.23 and by Lemma 1,
we have 11.23 | (1) and 5.11 | n(1). Also, the same reasoning as used in the
proof of the non-solvability of G leads us to see that H is non-solvable. So, there
is a normal series 1 < N < R < H such that R/N = As, Ly(11) or L2(23). Let
R/N = L5(23). Then 5 | |N| and |N| | 2.5. Let P € Syl;(R). Then we can check at
once P < (. But since P is abelian, applying Ito’s theorem to P and 7 leads us to
get a contradiction. Suppose that R/N = A5 or Ly(11). Then an easy calculation
shows that NNV is solvable and 23 | [N|. Let @ € Syly5(N). Then @ ch N < H and
so, ) < H. But considering Ito’s theorem and 6 leads us to get a contradiction.

Also, the same argument as the above cases rules out K/H = Lo(11).

If K/H = Ly(8), Ag, A7, As, L3(4), M11 or Mag, then we can see that 23 | |H|
and H is solvable and the same argument as used in the above cases leads us to get
a contradiction.

Thus K/H = Mss and hence, G = Mos. a
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