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SOME SIMPLE GROUPS WHICH ARE DETERMINED BY

THEIR CHARACTER DEGREE GRAPHS

S. HEYDARI, N. AHANJIDEH

Abstract. Let 𝐺 be a finite group, and let 𝜌(𝐺) be the set of prime
divisors of the irreducible character degrees of 𝐺. The character degree
graph of 𝐺, denoted by Δ(𝐺), is a graph with vertex set 𝜌(𝐺) and two
vertices 𝑎 and 𝑏 are adjacent in Δ(𝐺), if 𝑎𝑏 divides some irreducible
character degree of 𝐺. In this paper, we are going to show that some
simple groups are uniquely determined by their orders and character
degree graphs. As a consequence of this paper, we conclude that 𝑀12 is
not determined uniquely by its order and its character degree graph.

Keywords: Character degree, minimal normal subgroup, Sylow sub-
group.

1. Introduction

Throughout this paper, we suppose that all groups are finite and 𝐺 is a group.
We denote by cd(𝐺), the set of irreducible character degrees of 𝐺 forgetting multi-
plicities and also, the set of irreducible character degrees of 𝐺 counting multiplicities
is denoted by 𝑋1(𝐺). The set of prime divisors of |𝐺| forgetting multiplicities is
shown by 𝜋(𝐺). The simple group 𝐺 is called a simple 𝐾𝑛-group if |𝜋(𝐺)| = 𝑛.
There are some characterization of groups according to their irreducible characters.
For example, authors in [6, 17] characterized some simple 𝐾4-groups and Mathieu
groups according to their orders and some irreducible character degrees. Also, in
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[1, 7], it was proved that some extensions of 𝐿2(𝑝𝑛) are uniquely determined by
their 𝑋1. The character degree graph of 𝐺, which is shown by ∆(𝐺), is a graph
with the vertex set 𝜌(𝐺) and two vertices 𝑎 and 𝑏 are adjacent in ∆(𝐺), if there is
some 𝑓 ∈ cd(𝐺) such that 𝑎𝑏 | 𝑓 . Many researchers try to know the properties of
∆(𝐺). For example, in [14, 15], it was shown that for every group 𝐺, the diameter
of ∆(𝐺) is at most 3. Also, White in [16] showed that if 𝐺 is a simple group, then
∆(𝐺) is connected unless 𝐺 ∼= 𝐿2(𝑞). In [10], Khosravi and et al. introduced a new
characterization of finite groups based on the character degree graph as if 𝐺 has
the same order and the character degree graph as that of a certain group 𝑀 , then
𝐺 ∼= 𝑀 . Khosravi and et al., in [10], proved that the simple groups of orders less
than 6000 are uniquely determined by their character degree graphs and orders and
they in [11, 12], showed that 𝐿2(𝑝), 𝐿2(𝑝2) and some simple groups are determined
by their character degree graphs and orders. In this paper, we prove the following:

Theorem 1. Let 𝐺 be a finite group, and let 𝑀 ∈ {𝑀11,𝑀22,𝑀23}. Then 𝐺 ∼= 𝑀
if and only if ∆(𝐺) = ∆(𝑀) and |𝐺| = |𝑀 |. Also, ∆(𝐺) = ∆(𝑀12) and |𝐺| = |𝑀12|
if and only if 𝐺 ∼= 𝑀12 or 𝐺 ∼= 𝐴4 ×𝑀11.

Throughout this paper, we use the following notations: Let 𝐻 be a subgroup
of 𝐺. If 𝐻 is characteristic in 𝐺, then we write 𝐻 ch 𝐺. The set of all 𝑝-Sylow
subgroups of 𝐺 is shown by Syl𝑝(𝐺). Let 𝑏 be integer, 𝑎 be prime and 𝑛 be natural.

If 𝑎𝑛 | 𝑏 and 𝑎𝑛+1 - 𝑏, then we write |𝑏|𝑎 = 𝑎𝑛. If 𝜒 =
∑︀𝑁

𝑖=1 𝑛𝑖𝜒𝑖, where for every
1 ≤ 𝑖 ≤ 𝑁 , 𝜒𝑖 ∈ Irr(𝐺), then those 𝜒𝑖 with 𝑛𝑖 > 0 are called irreducible constituents
of 𝜒.

In the following, we bring some lemmas, which are used in the proof of Theorem 1:

Lemma 1. [8, Theorem 6.2 and Corollary 11.29] Let 𝑁 E 𝐺 and 𝜒 ∈ Irr(𝐺).
Let 𝜃 be an irreducible constituent of 𝜒𝑁 and suppose that 𝜃1 = 𝜃, ..., 𝜃𝑡 are the
distinct conjugates of 𝜃 in 𝐺. Then 𝜒𝑁 = 𝑒

∑︀𝑡
𝑖=1 𝜃𝑖, where 𝑒 = [𝜒𝑁 , 𝜃]. Also,

𝜒(1)/𝜃(1) | [𝐺 : 𝑁 ].

Lemma 2. (Ito’s theorem) [8, Theorem 6.15] Let 𝐺 be a finite group, and let 𝐴 be
a normal abelian subgroup of 𝐺. Then 𝜒(1) | [𝐺 : 𝐴], for all 𝜒 ∈ Irr(𝐺).

Lemma 3. [17] Let 𝐺 be a non-solvable group. Then 𝐺 has a normal series 1 E
𝐻 E 𝐾 E 𝐺 such that 𝐾/𝐻 is a direct product of isomorphic non-abelian simple
groups and |𝐺/𝐾| | |Out(𝐾/𝐻)|.

Lemma 4. [17] Let 𝐺 be a finite solvable group of order 𝑝1
𝑎1𝑝2

𝑎2 ...𝑝𝑛
𝑎𝑛 , where

𝑝1, 𝑝2, ..., 𝑝𝑛 are distinct primes. If 𝑘𝑝𝑛 + 1 - 𝑝𝑖𝑎𝑖 for each 𝑖 ≤ 𝑛−1 and 𝑘 > 0, then
the 𝑝𝑛-Sylow subgroup of 𝐺 is normal in it.

Lemma 5. (i) [4] If 𝐺 is a simple 𝐾3-group, then 𝐺 is isomorphic to one of the
following groups: 𝐴5, 𝐴6, 𝐿2(7), 𝐿2(8), 𝐿2(17), 𝐿3(3), 𝑈3(3) or 𝑈4(2).
(ii) [1, 13] If 𝐺 is a simple 𝐾4-group, then 𝐺 is isomorphic to one of the following
groups:

(1) 𝐴7, 𝐴8, 𝐴9, 𝐴10, 𝑀11, 𝑀12, 𝐽2, 𝐿3(4), 𝐿3(5), 𝐿3(7), 𝐿3(8), 𝐿3(17), 𝐿4(3),
𝑆4(4), 𝑆4(5), 𝑆4(7), 𝑆4(9), 𝑆6(2), 𝑂+

8 (2), 𝐺2(3), 𝑈3(4), 𝑈3(5), 𝑈3(7),
𝑈3(8), 𝑈3(9), 𝑈4(3), 𝑈5(2), 𝑆𝑧(8), 𝑆𝑧(32), 3𝐷4(2), 2𝐹4(2)′;

(2) 𝐿2(𝑞), where 𝑞 is a prime power such that 𝑞(𝑞2−1) = (2, 𝑞−1)2𝛼13𝛼2𝑣𝛼3𝑟𝛼4 ,
with 𝑣, 𝑟 > 3 distinct prime numbers and for 1 ≤ 𝑖 ≤ 4, 𝛼𝑖 ∈ N.
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(iii) [9] If 𝐺 is a simple 𝐾5-group, then 𝐺 is isomorphic to one of the following
groups:
𝐿2(𝑞), where |𝜋(𝑞2 − 1)| = 4, 𝐿3(𝑞), where |𝜋((𝑞2 − 1)(𝑞3 − 1))| = 4, 𝑈3(𝑞),
where |𝜋((𝑞2 − 1)(𝑞3 + 1))| = 4, 𝑂5(𝑞), where |𝜋(𝑞4 − 1)| = 4, 𝑆𝑧(𝑞), where
𝑞 = 22𝑘+1 and |𝜋((𝑞 − 1)(𝑞2 + 1))| = 4, 𝑅(𝑞), where 𝑞 is an odd power of 3 and
|𝜋((𝑞2 − 1)(𝑞2 − 𝑞 + 1))| = 4 or one of the following simple groups:
𝐿4(4), 𝐿4(5), 𝐿4(7), 𝐿5(2), 𝐿5(3), 𝐿6(2), 𝑂7(3), 𝐴11, 𝐴12, 𝑂9(2), 𝑆6(3), 𝑆8(2),
𝑈4(4), 𝑈4(5), 𝑈4(7), 𝑈4(9), 𝑈5(3), 𝑈6(2), 𝑂+

8 (3), 𝑂−
8 (2), 𝑀22, 𝐽3, 𝐻𝑆, 𝐻𝑒, 𝑀𝑐𝐿,

3𝐷4(3), 𝐺2(4), 𝐺2(5), 𝐺2(7), 𝐺2(9).

(iv) [9] If 𝐺 is a simple 𝐾6-group, then 𝐺 is isomorphic to one of the follow-
ing groups:
𝐿2(𝑞), where |𝜋(𝑞2 − 1)| = 5, 𝐿3(𝑞), where |𝜋((𝑞2 − 1)(𝑞3 − 1))| = 5, 𝐿4(𝑞), where
|𝜋((𝑞2 − 1)(𝑞3 − 1)(𝑞4 − 1))| = 5, 𝑈3(𝑞), where |𝜋((𝑞2 − 1)(𝑞3 + 1))| = 5, 𝑈4(𝑞),
where |𝜋((𝑞2 − 1)(𝑞3 + 1)(𝑞4 − 1))| = 5, 𝑂5(𝑞) where |𝜋(𝑞4 − 1)| = 5, 𝐺2(𝑞), where
|𝜋(𝑞6−1)| = 5, 𝑆𝑧(22𝑚+1), where |𝜋(22𝑚+1−1)(24𝑚+2+1))| = 5, 𝑅(32𝑚+1), where
|𝜋((32𝑚+1 − 1)(36𝑚+3 + 1))| = 5 or one of the following groups:

𝐴13, 𝐴14, 𝐴15, 𝐴16,𝑀23,𝑀24, 𝐽1, 𝑆𝑢𝑧,𝑅𝑢,𝐶𝑜2, 𝐶𝑜3, 𝐹 𝑖22, 𝐻𝑁,𝐿5(7), 𝐿6(3), 𝐿7(2),

𝑂7(4), 𝑂7(5), 𝑂7(7), 𝑂9(3), 𝑆6(4), 𝑆6(5), 𝑆6(7), 𝑆8(3), 𝑈5(4), 𝑈5(5),

𝑈5(9), 𝑈6(3), 𝑈7(2), 𝐹4(2), 𝑂+
8 (4), 𝑂+

8 (5), 𝑂+
8 (7),

𝑂+
10(2), 𝑂−

8 (3), 𝑂−
10(2), 3𝐷4(4), 3𝐷4(5).

Lemma 6. For 𝑛 ∈ {3, 4, 5, 6}, let 𝐺 be a finite 𝐾𝑛-group. If there is not any finite
simple group 𝐿 in Lemma 5 such that 𝜋(𝐿) ⊆ 𝜋(𝐺), then 𝐺 is solvable.

Proof. It follows immediately from Lemmas 3 and 5. �

2. Proof of the main Theorem.

Proof. First, note that for the irreducible character degrees of the finite groups,
we refer the reader to [2]. It is obvious that if 𝐺 ∼= 𝑀 , then ∆(𝐺) = ∆(𝑀) and
|𝐺| = |𝑀 |. Thus in the following, assume that ∆(𝐺) = ∆(𝑀) and |𝐺| = |𝑀 |. We
continue the proof in the following cases:

i. Let 𝑀 = 𝑀11. Then |𝐺| = |𝑀11| = 24.32.5.11 and ∆(𝐺) = ∆(𝑀11) is as
follows:

3 5

2

11

Therefore there exists 𝜒 ∈ Irr(𝐺) such that 5.11 | 𝜒(1). Now, we claim that 𝐺 is
non-solvable. On the contrary, suppose that 𝐺 is solvable. Then since for every
natural number 𝑘, 11𝑘 + 1 - 24, 32, 5, Lemma 4 shows that 𝑃 E 𝐺, where 𝑃 is a
11-Sylow subgroup of 𝐺. But since |𝑃 | = 11, 𝑃 is abelian so, Ito’s theorem forces
𝜒(1) | [𝐺 : 𝑃 ] = 24.32.5 and hence, 5.11 | [𝐺 : 𝑃 ] = 24.32.5, which is impossible.
Thus 𝐺 is non-solvable. Therefore Lemma 3 shows that there is a normal series
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1 E 𝐻 E 𝐾 E 𝐺 such that 𝐾/𝐻 is a direct product of isomorphic non-abelian
simple groups and |𝐺/𝐾| | |Out(𝐾/𝐻)|. Now, considering |𝐺| and the order of the
non-abelian simple 𝐾3 or 𝐾4-groups mentioned in Lemma 5 (i,ii) implies that

𝐾/𝐻 ∼= 𝐴5, 𝐴6, 𝐿2(11) or 𝑀11.

Let 𝐾/𝐻 ∼= 𝐴5. Then since |Out(𝐾/𝐻)| = |Out(𝐴5)| = 2, |𝐻| = 2.3.11 or 22.3.11.
Hence, Lemma 6 guarantees that 𝐻 is solvable and the same argument as used
in the proof of the non-solvability of 𝐺 leads us to get a contradiction. Also, the
same reasoning as above rules out 𝐾/𝐻 ∼= 𝐴6. Suppose that 𝐾/𝐻 ∼= 𝐿2(11).
Then |𝐻| = 2.3 or 22.3. Assume that 𝜃 ∈ Irr(𝐻) such that [𝜒𝐻 , 𝜃] ̸= 0. Then
Lemma 1 implies that 𝜒(1) = 𝑒𝑡𝜃(1), where 𝑡 = [𝐺 : 𝐼𝐺(𝜃)]. Since 𝜃(1) | |𝐻|,
5, 11 - 𝜃(1) and hence, 5.11 | 𝑒𝑡. On the other hand, 𝐶𝐺(𝐻) ⊆ 𝐼𝐺(𝜃). Thus
𝑡 | [𝐺 : 𝐶𝐺(𝐻)]. Since 𝐺/𝐶𝐺(𝐻) →˓ Aut(𝐻), 𝑡 | |Aut(𝐻)|. Now, by GAP [3], we
can see that 5 and 11 dose not divide the orders of the automorphism groups of the
finite groups of orders 6 and 12. Therefore 5, 11 - 𝑡 and so, 5.11 | 𝑒. It follows that
[𝜒𝐻 , 𝜒𝐻 ] = 𝑒2𝑡 ≥ (5.11)2 > [𝐺 : 𝐻], which is a contradiction. These contradictions
show that 𝐾/𝐻 ∼= 𝑀11 and hence, 𝐻 = 1 and 𝐺 = 𝐾 ∼= 𝑀11.

ii. Let 𝑀 = 𝑀12. Then |𝐺| = |𝑀12| = 26.33.5.11 and ∆(𝐺) = ∆(𝑀12) is as
follows:

2 3

511

Thus there are 𝜒, 𝛽, 𝛼 ∈ Irr(𝐺) such that 5.11 | 𝜒(1), 3.11 | 𝛽(1) and 2.11 | 𝛼(1).
Now, we claim that 𝐺 is non-solvable. On the contrary, suppose that 𝐺 is solvable.
Then Lemma 4 and an easy calculation show that 𝑃 E 𝐺, where 𝑃 ∈ Syl11(𝐺),
which is a contradiction by considering Ito’s theorem and 𝜒. Hence, 𝐺 is non-
solvable.

Let 𝑆 be a minimal normal solvable subgroup of 𝐺. Then 𝑆 is a 𝑟-elementary
abelian group. Now, applying Ito’s theorem to 𝑆 and 𝜒 forces 𝑟 = 2 or 3. Suppose
that 𝑁 is a maximal normal {2, 3}-subgroup of 𝐺 and let 𝐿/𝑁 be a minimal normal
subgroup of 𝐺/𝑁 such that 𝐿/𝑁 ≤ 𝐶𝐺(𝑁)𝑁/𝑁 . Suppose that 𝐿/𝑁 is solvable.
Then for some 𝑡 ∈ 𝜋(𝐺), 𝐿/𝑁 is a 𝑡-elementary abelian group. Now, our assumption
on 𝑁 implies that 𝑡 ̸= 2, 3. Hence, 𝑡 = 5 or 11. Since 𝑁 and 𝐿/𝑁 are solvable, we
conclude that 𝐿 is solvable. If 11 | |𝐿|, then the same argument as used in the proof
of the non-solvability of 𝐺 leads us to get a contradiction. Thus 𝑡 = 5. Since |𝐺|5 =
5 and 5 | |𝐿|, 5 - |𝐺/𝐿|. Hence, considering |𝐺| shows that 𝜋(𝐺/𝐿) ⊆ {2, 3, 11}.
Therefore Lemma 6 guarantees that 𝐺/𝐿 is solvable. But this is a contradiction,
because 𝐺 is non-solvable and 𝐿 is solvable. Hence, 𝐿/𝑁 is non-solvable and so, it
is a direct product of isomorphic non-abelian simple groups. Now, considering |𝐺|
and Lemma 5(i,ii) shows that

𝐿/𝑁 ∼= 𝐴5, 𝐴6, 𝐿2(11),𝑀11 or 𝑀12.(1)

Let 𝐶/𝑁 be a minimal normal subgroup of 𝐺/𝑁 such that 𝐶/𝑁 ≤ 𝐶𝐺/𝑁 (𝐿/𝑁).
Then 𝐶/𝑁 = 1 or applying the same reasoning as used for 𝐿/𝑁 shows that 𝐶/𝑁



1294 S. HEYDARI, N. AHANJIDEH

is isomorphic to one of the groups in 1. Assume that 𝐶/𝑁 ̸= 1.
Now, considering the orders of the groups mentioned in 1 shows that 5 | |𝐿/𝑁 |.

Thus since 𝐿/𝑁 ∩𝐶/𝑁 = 1 and |𝐺|5 = 5, 5 - |𝐶/𝑁 | and so, 𝐶/𝑁 is not isomorphic
to any groups in 1, which is a contradiction. Thus 𝐶/𝑁 = 1 so, 𝐶𝐺/𝑁 (𝐿/𝑁) = 1
and hence,

𝐺/𝑁 →˓ Aut(𝐿/𝑁).

If 𝐿/𝑁 ∼= 𝐴5 or 𝐴6, then 11 - |Aut(𝐿/𝑁)|, which is a contradiction, because
11 | |𝐺/𝑁 |.

Let 𝐿/𝑁 ∼= 𝐿2(11). Then since Aut(𝐿2(11)) = 𝑃𝐺𝐿2(11), 𝐺/𝑁 ∼= 𝐿2(11) or
𝑃𝐺𝐿2(11). On the other hand, 𝐿/𝑁 ≤ 𝐶𝐺(𝑁)𝑁/𝑁 ≤ 𝐺/𝑁 . It follows that
𝐶𝐺(𝑁)𝑁 ∼= 𝐺 or 𝐶𝐺(𝑁)𝑁 ∼= 𝐿. Thus considering |𝐺|, |𝐿| and |𝑁 | shows that
5, 11 | |𝐶𝐺(𝑁)| and so, 5, 11 - |𝐺/𝐶𝐺(𝑁)|. Let 𝜃 ∈ Irr(𝑁) such that [𝜒𝑁 , 𝜃] ̸= 0.
Then Lemma 1 shows that 𝜒(1) = 𝑒𝑠𝜃(1), where 𝑠 = [𝐺 : 𝐼𝐺(𝜃)]. Now, we can see
that 5, 11 - 𝜃(1), because 𝜃(1) | |𝑁 |. Moreover, since 𝐶𝐺(𝑁) ≤ 𝐼𝐺(𝜃), the fact that
5, 11 - |𝐺/𝐶𝐺(𝑁)| implies that 5, 11 - 𝑠 = [𝐺 : 𝐼𝐺(𝜃)] and hence, 5.11 | 𝑒. Thus we
obtain [𝜒𝑁 , 𝜒𝑁 ] = 𝑒2𝑠 ≥ (11.5)2 > [𝐺 : 𝑁 ], which is a contradiction.

Let 𝐿/𝑁 ∼= 𝑀11. Then since 𝐺/𝑁 →˓ Aut(𝐿/𝑁) and Aut(𝑀11) = 𝑀11, we
conclude that 𝐺/𝑁 ∼= 𝐿/𝑁 ∼= 𝑀11 and so, |𝑁 | = 12. Now, by GAP, we can see
that 𝜋(Aut(𝑁)) ⊆ {2, 3}. Therefore 𝜋(𝐺/𝐶𝐺(𝑁)) ⊆ {2, 3}, because 𝐺/𝐶𝐺(𝑁) →˓
Aut(𝑁). Hence, 𝐶𝐺(𝑁) is non-solvable. Also, 5, 11 | |𝐶𝐺(𝑁)|. On the other hand,
𝐶𝐺(𝑁)𝑁/𝑁 ≤ 𝐺/𝑁 ∼= 𝑀11. Thus 𝐶𝐺(𝑁)/𝐶𝐺(𝑁) ∩𝑁 ∼= 𝐶𝐺(𝑁)𝑁/𝑁 ∼= 𝑀11.
Let 𝐶𝐺(𝑁) = (𝐶𝐺(𝑁))′. Then since 𝐶𝐺(𝑁)∩𝑁 ≤ 𝑍(𝐶𝐺(𝑁)) and Mult(𝑀11) = 1,
we deduce that 𝐶𝐺(𝑁) ∼= (𝐶𝐺(𝑁) ∩𝑁) ×𝑀11. Now, since 𝐶𝐺(𝑁) ∩𝑁 = 𝑍(𝑁) is
abelian, we conclude that cd(𝐶𝐺(𝑁)) = cd(𝑀11). Also, by GAP, we get |𝐶𝐺(𝑁) ∩
𝑁 | = |𝑍(𝑁)| ∈ {1, 2, 12}.

Let |𝑍(𝑁)| = 2. Then |𝐶𝐺(𝑁)| = 25.32.5.11. Let 𝛾 ∈ Irr(𝐶𝐺(𝑁)) such that
[𝛽𝐶𝐺(𝑁), 𝛾] ̸= 0. Then Lemma 1 implies that 𝛽(1) = 𝑒𝑠𝛾(1), where 𝑠 = [𝐺 : 𝐼𝐺(𝛾)]
and also, 11 | 𝛾(1). Now, if 3 | 𝛾(1), then 3.11 divides some irreducible character
degree of 𝑀11, which is a contradiction. Thus 3 | 𝑒 or 3 | 𝑠. Let 3 | 𝑒. Then
𝑒2𝑠 ≥ 32 > [𝐺 : 𝐶𝐺(𝑁)] = 6, which is a contradiction. Hence, 3 | 𝑠. So, 𝐶𝐺(𝑁)
has at least 3 irreducible characters of the same degrees such that 11 divides them.
Now, since 𝑍(𝑁) has two irreducible characters whose degrees are 1, we deduce
that 𝑀11 has at least two irreducible characters of the same degrees such that 11
divides them. But since 𝑋1(𝑀11) = {1, 10, 10, 10, 11, 16, 16, 44, 45, 55}, we get a
contradiction.

Let |𝑍(𝑁)| = |𝐶𝐺(𝑁) ∩ 𝑁 | = 1. Then 𝐶𝐺(𝑁)/𝐶𝐺(𝑁) ∩ 𝑁 = 𝐶𝐺(𝑁) ∼= 𝑀11.
Thus 𝑁 × 𝐶𝐺(𝑁) ∼= 𝑁 ×𝑀11 E 𝐺. Now, since |𝑁 ×𝑀11| = |𝐺|, 𝑁 ×𝑀11

∼= 𝐺.
Let 𝛽1 ∈ Irr(𝑁) and 𝛽2 ∈ Irr(𝑀11) such that 𝛽 = 𝛽1 × 𝛽2. Then since 3.11 | 𝛽(1)
and 11 - |𝑁 |, 11 | 𝛽2(1). Also, since in ∆(𝑀11), 11 is not adjacent to 3, we conclude
that 3 | 𝛽1(1). Thus by GAP, we can see that cd(𝑁) = {1, 3} and also, 𝑁 ∼= 𝐴4.
Hence, 𝐺 ∼= 𝐴4 ×𝑀11, as desired.

Assume that |𝑍(𝑁)| = |𝐶𝐺(𝑁) ∩ 𝑁 | = 12 = |𝑁 |. Then 𝑁 ≤ 𝐶𝐺(𝑁) and so,
𝐶𝐺(𝑁) ∼= 𝑁 × 𝑀11. Hence, 𝐶𝐺(𝑁) = 𝐺, because |𝐶𝐺(𝑁)| = |𝑁 × 𝑀11| = |𝐺|.
Thus 𝑁 ≤ 𝑍(𝐺) and so, cd(𝐺) = cd(𝑀11), which is a contradiction.

Now, we suppose that (𝐶𝐺(𝑁))′ < 𝐶𝐺(𝑁). Since 𝐶𝐺(𝑁) is non-solvable, for

some natural number 𝑛, 𝐶
(𝑛)
𝐺 (𝑁) = 𝐶

(𝑛+1)
𝐺 (𝑁). Also, 𝐶

(𝑛)
𝐺 (𝑁)𝑁/𝑁 ∼= 𝐶

(𝑛)
𝐺 (𝑁)/𝐶

(𝑛)
𝐺 (𝑁)∩

𝑁 ∼= 𝑀11. Now, 𝐶
(𝑛)
𝐺 (𝑁) ∩ 𝑁 ≤ 𝐶

𝐶
(𝑛)
𝐺 (𝑁)

(𝐶
(𝑛)
𝐺 (𝑁) ∩𝑁), because 𝐶

(𝑛)
𝐺 (𝑁) ∩
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𝑁 is abelian. Since 𝐶
(𝑛)
𝐺 (𝑁)/𝐶

𝐶
(𝑛)
𝐺 (𝑁)

(𝐶
(𝑛)
𝐺 (𝑁) ∩ 𝑁) ≤ Aut(𝐶

(𝑛)
𝐺 (𝑁) ∩ 𝑁) and

𝐶
(𝑛)
𝐺 (𝑁) ∩ 𝑁 ≤ 𝑁 , we conclude that 5, 11 | |𝐶

𝐶
(𝑛)
𝐺 (𝑁)

(𝐶
(𝑛)
𝐺 (𝑁) ∩ 𝑁)|. Thus

𝐶
𝐶

(𝑛)
𝐺 (𝑁)

(𝐶
(𝑛)
𝐺 (𝑁) ∩ 𝑁)/𝐶

(𝑛)
𝐺 (𝑁) ∩ 𝑁 ∼= 𝐶

(𝑛)
𝐺 (𝑁)/𝐶

(𝑛)
𝐺 (𝑁) ∩ 𝑁 ∼= 𝑀11. Therefore

𝐶
𝐶

(𝑛)
𝐺 (𝑁)

(𝐶
(𝑛)
𝐺 (𝑁) ∩ 𝑁) = 𝐶

(𝑛)
𝐺 (𝑁) and so, 𝐶

(𝑛)
𝐺 (𝑁) ∩ 𝑁 ≤ 𝑍(𝐶

(𝑛)
𝐺 (𝑁)). Hence,

since 𝐶
(𝑛)
𝐺 (𝑁) = 𝐶

(𝑛+1)
𝐺 (𝑁) and Mult(𝑀11) = 1, we deduce that 𝐶

(𝑛)
𝐺 (𝑁) ∼=

(𝐶
(𝑛)
𝐺 (𝑁) ∩ 𝑁) × 𝑀11. On the other hand, |𝐶𝐺(𝑁)𝑁/𝑁 | = |𝐶𝐺(𝑁)/𝐶𝐺(𝑁) ∩

𝑁 | = |𝐶(𝑛)
𝐺 (𝑁)/𝐶

(𝑛)
𝐺 (𝑁) ∩ 𝑁 | = |𝑀11|. Thus 𝐶

(𝑛)
𝐺 (𝑁) ∩ 𝑁 < 𝐶𝐺(𝑁) ∩ 𝑁 , be-

cause 𝐶
(𝑛)
𝐺 (𝑁) < 𝐶𝐺(𝑁). Hence, since |𝐶𝐺(𝑁) ∩ 𝑁 | = |𝑍(𝑁)| ∈ {1, 2, 12},

|𝐶(𝑛)
𝐺 (𝑁) ∩ 𝑁 | = 1 or 𝐶

(𝑛)
𝐺 (𝑁) ∩ 𝑁 is an abelian group of order 2, 3, 4 or 6.

Therefore |𝐶(𝑛)
𝐺 (𝑁)| = 24.32.5.11, 25.32.5.11, 24.33.5.11, 26.32.5.11 or 25.33.5.11 and

also, cd(𝐶
(𝑛)
𝐺 (𝑁)) = cd(𝑀11).

Now, if |𝐶(𝑛)
𝐺 (𝑁)| = 24.32.5.11, then the same argument as used when (𝐶𝐺(𝑁))′ =

𝐶𝐺(𝑁) shows that 𝐺 ∼= 𝐴4 ×𝑀11, as claimed.

If |𝐶(𝑛)
𝐺 (𝑁)| = 25.32.5.11, then the same argument as used when (𝐶𝐺(𝑁))′ =

𝐶𝐺(𝑁), leads us to get a contradiction. Let |𝐶(𝑛)
𝐺 (𝑁)| = 24.33.5.11 or 25.33.5.11 and

let 𝜃 ∈ Irr(𝐶
(𝑛)
𝐺 (𝑁)) such that [𝛽

𝐶
(𝑛)
𝐺 (𝑁)

, 𝜃] ̸= 0. Then Lemma 1 implies that 3.11 |

𝜃(1), which is a contradiction, because 𝜃(1) ∈ cd(𝑀11). Also, when |𝐶(𝑛)
𝐺 (𝑁)| =

26.32.5.11, since 𝐶
(𝑛)
𝐺 (𝑁) < 𝐶𝐺(𝑁), considering |𝐺| shows that 𝐶𝐺(𝑁) = 𝐺 and

so, 𝑁 ≤ 𝑍(𝐺). Thus 𝐺 ∼= 𝑁 × 𝑀11, because 𝐺/𝑁 ∼= 𝑀11 and Mult(𝑀11) = 1.
Hence, cd(𝐺) = cd(𝑀11), which is a contradiction.

These show that 𝐿/𝑁 ∼= 𝑀12 and so, 𝐺 = 𝐿 ∼= 𝑀12.

iii. Let 𝑀 = 𝑀22. Then |𝐺| = |𝑀22| = 27.32.5.7.11 and ∆(𝐺) = ∆(𝑀22) is
as follows:

2 3

57

11

Hence, there exist 𝜒, 𝛽 ∈ Irr(𝐺) such that 7.11 | 𝜒(1) and 5.11 | 𝛽(1). If 𝐺 is
solvable, then Lemma 4 and an easy calculation imply that a 11-Sylow subgroup
of 𝐺 is normal in it, which contradicts Ito’s theorem. Thus 𝐺 is non-solvable.

Assume that 𝑆 is a minimal normal solvable subgroup of 𝐺. Then for some
𝑟 ∈ 𝜋(𝐺), 𝑆 is a 𝑟-elementary abelian group. Now, applying Ito’s theorem to 𝑆 and
𝜒 leads us to see that 𝑟 = 2 or 3.

Assume that 𝑁 is a maximal normal {2, 3}-subgroup of 𝐺 and suppose that
𝐿/𝑁 is a minimal normal subgroup of 𝐺/𝑁 such that 𝐿/𝑁 ≤ 𝐶𝐺(𝑁)𝑁/𝑁 . Then
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we claim that 𝐿/𝑁 is non-solvable. On the contrary, suppose that 𝐿/𝑁 is solvable.
Then for some 𝑡 ∈ 𝜋(𝐺), 𝐿/𝑁 is a 𝑡-elementary abelian group. Now, our assumption
on 𝑁 and the fact that |𝐿/𝑁 | | |𝐺| show that 𝑡 = 5, 7 or 11. Since 𝐿/𝑁 and 𝑁 are
solvable, we conclude that 𝐿 is solvable. Thus 𝐺/𝐿 is non-solvable, because 𝐺 is
non-solvable. Hence, considering Lemma 3 shows that

3 | |𝐺/𝐿| and |𝐺/𝐿|2 ≥ 22.(2)

Now, suppose that 𝑁 is abelian. Then 𝐿/𝑁 ≤ 𝐶𝐺(𝑁)/𝑁 . It follows that there
is a 𝑡-subgroup 𝑄 of 𝐺 such that 𝐿 = 𝑄 × 𝑁 E 𝐺 and so, 𝑄 E 𝐺, which is a
contradiction by considering Ito’s theorem and 𝛽 and 𝜒. Thus in the following, we
assume that 𝑁 is non-abelian.

If 𝑡 = 11, then 11 | |𝐿|. Suppose that 𝑃 ∈ Syl11(𝐿). Then 𝑃 ch 𝐿 E 𝐺. Since
|𝑃 | = 11, 𝑃 is abelian. Hence, Ito’s theorem shows that 𝜒(1) | [𝐺 : 𝑃 ], which is
impossible. Hence, 𝑡 = 5 or 7.

Suppose that 𝑡 = 5. If |𝐿|2 = |𝑁 |2 ≤ 8, then 𝑃 ch 𝐿 E 𝐺, where 𝑃 ∈ Syl5(𝐿).
Now, considering Ito’s theorem and 𝛽 leads us to get a contradiction. Thus |𝐿|2 ≥
16. Hence, |𝐺/𝐿| | 23.32.7.11. Also, 2 implies that 22.3.7.11 | |𝐺/𝐿|. Now, since
𝐺/𝐿 is non-solvable, considering Lemmas 3 and 5 shows that 𝐺/𝐿 has a normal

series 1 E 𝐻/𝐿 E 𝐾/𝐿 E 𝐺/𝐿 such that 𝐾/𝐿
𝐻/𝐿

∼= 𝐿2(7) or 𝐿2(8). Thus 11 | |𝐻/𝐿|
and |𝐻/𝐿| | 3.11 so, 𝐻/𝐿 and consequently, 𝐻 is solvable and 11 | |𝐻|. Let
𝑃 ∈ Syl11(𝐻). Then 𝑃 ch 𝐻 E 𝐺. Now, applying Ito’s theorem to 𝑃 and 𝜒 leads
us to get a contradiction.

Now, suppose that 𝑡 = 7. If |𝐿|2 = |𝑁 |2 ≤ 22, then a 7-Sylow subgroup of 𝐿
is normal in 𝐿. It follows that 𝐺 has a normal abelian 7-Sylow subgroup. But
considering Ito’s theorem and 𝜒 leads us to get a contradiction. Hence, |𝑁 |2 ≥ 8
and so, according to 2, we conclude that |𝑁 | ∈ {8, 3.8, 16, 3.16, 32, 3.32}.

Suppose that |𝑁 | ∈ {8, 3.8, 16, 32}. Then by GAP, we can see that 7 - |Aut(𝑁)|.
Assume that 𝛾 ∈ Irr(𝐿) such that [𝜒𝐿, 𝛾] ̸= 0. Then Lemma 1 implies that 7 | 𝛾(1).
Let 𝜇 ∈ Irr(𝑁) such that [𝛾𝑁 , 𝜇] ̸= 0. Then Lemma 1 shows that 𝛾(1) = 𝑒𝑠𝜇(1),
where 𝑠 = [𝐿 : 𝐼𝐿(𝜇)]. Now, 7 - 𝜇(1), because 7 - |𝑁 | and so, 7 | 𝑒𝑠. On the
other hand, 𝐿/𝐶𝐿(𝑁) →˓ Aut(𝑁). Now, since 7 - |Aut(𝑁)|, 7 - |𝐿/𝐶𝐿(𝑁)|. Hence,
7 - 𝑠 = [𝐿 : 𝐼𝐿(𝜇)], because 𝐶𝐿(𝑁) ⊆ 𝐼𝐿(𝜇). It follows that 7 | 𝑒 and so, 𝑒2𝑠 ≥
72 > [𝐿 : 𝑁 ] = 7, which is a contradiction. Assume that |𝑁 | ∈ {3.16, 3.32}. If
7 - |Aut(𝑁)|, then the same reasoning as above leads us to get a contradiction.
Thus 7 | |Aut(𝑁)|. Now, by GAP, we can see that if |𝑁 | = 3.16, then |𝑍(𝑁)| = 8
and if |𝑁 | = 3.32, then |𝑍(𝑁)| = 16 or 8. Since 𝑍(𝑁) ch 𝑁 E 𝐿, 𝑍(𝑁) E 𝐿.
Suppose that when |𝑁 | = 3.32, |𝑍(𝑁)| = 16. Then |𝐿/𝑍(𝑁)| = 2.3.7. Now,
by replacing 𝑁 with 𝑍(𝑁) in the above argument, we get a contradiction. Now,
assume that |𝑁 | = 3.32 and |𝑍(𝑁)| = 8 and suppose that 𝑃 ∈ Syl2(𝑁). Then by
GAP, 𝑃 E 𝑁 hence, 𝑃 ch 𝑁 E 𝐿 and so, 𝑃 E 𝐿. Thus |𝐿/𝑃 | = 3.7. Now, the
same reasoning as above leads us to get a contradiction.

These contradictions show that 𝐿/𝑁 is non-solvable. So, it is a direct product of
isomorphic non-abelian simple groups. Now, considering |𝐺| and Lemma 5 shows
that

𝐿/𝑁 ∼= 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐿3(4), 𝐿2(7), 𝐿2(8), 𝐿2(11),𝑀11 or 𝑀22.(3)

Let 𝐶/𝑁 be a minimal normal subgroup of 𝐺/𝑁 such that 𝐶/𝑁 ≤ 𝐶𝐺/𝑁 (𝐿/𝑁).
Then 𝐶/𝑁 = 1 or applying the same argument as above implies that 𝐶/𝑁 is iso-
morphic to one of the groups in 3. Assume that 𝐶/𝑁 ̸= 1.
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Suppose that 𝐿/𝑁 ∼= 𝐴5. Then considering |𝐺/𝑁 | and the fact that 𝐿/𝑁 ∩
𝐶/𝑁 = 1 shows that 𝐶/𝑁 ∼= 𝐿2(7). Set 𝐷/𝑁 := 𝐿/𝑁 ×𝐶/𝑁 . Then 𝐷/𝑁 E 𝐺/𝑁 .
Now, we claim that 𝐶𝐺/𝑁 (𝐷/𝑁) = 1. On the contrary, suppose that 𝐶𝐺/𝑁 (𝐷/𝑁) ̸=
1 and assume that 𝑅/𝑁 is a minimal normal subgroup of 𝐺/𝑁 such that 𝑅/𝑁 ≤
𝐶𝐺/𝑁 (𝐷/𝑁). Then the same argument as used for 𝐿/𝑁 forces 𝑅/𝑁 to be isomor-
phic to one of the groups in 3. But since 𝑅/𝑁 ∩𝐷/𝑁 = 1, considering |𝐷/𝑁 | shows
that |𝑅/𝑁 | | 22.11 and so, 𝑅/𝑁 is solvable, which is a contradiction. This contradic-
tion shows that 𝐶𝐺/𝑁 (𝐷/𝑁) = 1 and so, 𝐺/𝑁 →˓ Aut(𝐷/𝑁) = Aut(𝐴5×𝐿2(7)) =
𝑆5×𝑃𝐺𝐿(2, 7). Now, since 11 - |𝑆5×𝑃𝐺𝐿(2, 7)|, we deduce that 11 - |𝐺/𝑁 |, which
is a contradiction.

Also, if 𝐿/𝑁 ∼= 𝐿2(7), then we can see that 𝐶/𝑁 ∼= 𝐴5 or 𝐿2(11) and so,
𝐴5 × 𝐿2(7) E 𝐺/𝑁 or 𝐿2(7) × 𝐿2(11) E 𝐺/𝑁 . If 𝐿/𝑁 × 𝐶/𝑁 ∼= 𝐴5 × 𝐿2(7),
then the same argument as the previous case leads us to get a contradiction. Thus
𝐿/𝑁 × 𝐶/𝑁 ∼= 𝐿2(7) × 𝐿2(11). Now, considering |𝐺| shows that |𝑁 | | 22. Let
𝜄 ∈ Irr(𝐶) such that [𝛽𝐶 , 𝜄] ̸= 0. Then Lemma 1 shows that 5.11 | 𝜄(1). If 𝑁 = 1,
then 𝐶 ∼= 𝐿2(11) E 𝐺. But considering 𝜄(1) leads us to get a contradiction, because
cd(𝐶) = cd(𝐿2(11)) = {1, 11, 10, 12, 5}. Thus 𝑁 ̸= 1 and so, |𝑁 | = 4 or 2. Let
𝜗 ∈ Irr(𝑁) such that [𝜄𝐶 , 𝜗] ̸= 0. Then by Lemma 1, we obtain 𝜄(1) = 𝑒𝑡𝜗(1), where
𝑡 = [𝐶 : 𝐼𝐶(𝜗)]. Since 𝑁 is abelian, 𝜗(1) = 1 and so, 5.11 | 𝑒𝑡. On the other hand,
𝑡 | |Aut(𝑁)|. Now, since 5, 11 - |Aut(𝑁)|, 5, 11 - 𝑡 and hence, 5.11 | 𝑒. Therefore
[𝜄𝑁 , 𝜄𝑁 ] = 𝑒2𝑡 ≥ (5.11)2 > [𝐶 : 𝑁 ] = |𝐿2(11)|, which is a contradiction.

Assume that 𝐿/𝑁 ∼= 𝐿2(11). Then we can see that 𝐶/𝑁 ∼= 𝐿2(7). Now, the
same argument as used in the previous case leads us to get a contradiction.

Suppose that 𝐿/𝑁 ∼= 𝐴6, 𝐴7, 𝐴8, 𝐿2(8), 𝐿3(4) or 𝑀11. Then considering |𝐺/𝑁 |
and the fact that 𝐿/𝑁 ∩𝐶/𝑁 = 1 shows that 3 - |𝐶/𝑁 | and so, 𝐶/𝑁 is not isomor-
phic to any groups mentioned in 3, which is a contradiction.

These contradictions imply that 𝐶𝐺/𝑁 (𝐿/𝑁) = 1 and hence, 𝐺/𝑁 →˓ Aut(𝐿/𝑁).
Now, if 𝐿/𝑁 ∼= 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐿3(4), 𝐿2(7), 𝐿2(8), 𝐿2(11) or 𝑀11, then considering
|Aut(𝐿/𝑁)| shows that 7 or 11 dose not divide |Aut(𝐿/𝑁)|. But this is a contra-
diction, because 7, 11 | |𝐺/𝑁 |. Therefore 𝐿/𝑁 ∼= 𝑀22 and so, 𝐺 ∼= 𝑀22.

iv. Let 𝑀 = 𝑀23. Then |𝐺| = |𝑀23| = 27.32.5.7.11.23 and ∆(𝐺) = ∆(𝑀23)
is as follows:
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Thus there are 𝜒, 𝛽, 𝛼 ∈ Irr(𝐺) such that 11.23 | 𝜒(1), 5.11 | 𝛽(1) and 7.11 | 𝛼(1).
Now, if 𝐺 is solvable, then Lemma 4 and an easy calculation show that a 23-Sylow
subgroup 𝑃 of 𝐺 is normal in 𝐺. But applying Ito’s theorem to 𝑃 and 𝜒 leads us
to get a contradiction. Thus 𝐺 is non-solvable. Hence, considering Lemmas 3 and
5 and |𝐺| shows that 𝐺 has a normal series 1 E 𝐻 E 𝐾 E 𝐺 such that

𝐾/𝐻 ∼= 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐿3(4), 𝐿2(7), 𝐿2(8), 𝐿2(11),𝑀11,𝑀22 or 𝑀23.

Let 𝜃, 𝜂, 𝜆 ∈ Irr(𝐻) such that [𝜒𝐻 , 𝜃] ̸= 0, [𝛽𝐻 , 𝜂] ̸= 0 and [𝛼𝐻 , 𝜆] ̸= 0.
First, suppose that 𝐾/𝐻 ∼= 𝐴5. Then |𝐺/𝐾| | |Out(𝐴5)| = 2. Hence, |𝐻| =
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24.3.7.11.23 or 25.3.7.11.23. Thus Lemma 1 implies that 11.23 | 𝜃(1) and 7.11 | 𝜆(1).
If 𝐻 is solvable, then the same reasoning as used in the proof of the non-solvability
of 𝐺 leads us to get a contradiction. Thus 𝐻 is non-solvable. Therefore considering
Lemmas 3 and 5 and |𝐻| shows that 𝐻 has a normal series 1 E 𝑁 E 𝑅 E 𝐻
such that 𝑅/𝑁 ∼= 𝐿2(7) or 𝐿2(23). Let 𝑅/𝑁 ∼= 𝐿2(7). Then 11.23 | |𝑁 | and |𝑁 | |
22.11.23. Thus Lemma 6 shows that 𝑁 is solvable and the same argument as proving
the non-solvability of 𝐻 leads us to get a contradiction. Hence, 𝑅/𝑁 ∼= 𝐿2(23) and
so, 7 | |𝑁 | and |𝑁 | | 22.7. Suppose that 𝑃 ∈ Syl7(𝑁). Then 𝑃 ch 𝑁 E 𝐻. But
applying Ito’s theorem to 𝑃 and 𝜆 leads us to get a contradiction.

Let 𝐾/𝐻 ∼= 𝐿2(7). Then |𝐻| = 24.3.5.11.23 or 23.3.5.11.23 and by Lemma 1,
we have 11.23 | 𝜃(1) and 5.11 | 𝜂(1). Also, the same reasoning as used in the
proof of the non-solvability of 𝐺 leads us to see that 𝐻 is non-solvable. So, there
is a normal series 1 E 𝑁 E 𝑅 E 𝐻 such that 𝑅/𝑁 ∼= 𝐴5, 𝐿2(11) or 𝐿2(23). Let
𝑅/𝑁 ∼= 𝐿2(23). Then 5 | |𝑁 | and |𝑁 | | 2.5. Let 𝑃 ∈ Syl5(𝑅). Then we can check at
once 𝑃 E 𝐺. But since 𝑃 is abelian, applying Ito’s theorem to 𝑃 and 𝜂 leads us to
get a contradiction. Suppose that 𝑅/𝑁 ∼= 𝐴5 or 𝐿2(11). Then an easy calculation
shows that 𝑁 is solvable and 23 | |𝑁 |. Let 𝑄 ∈ Syl23(𝑁). Then 𝑄 ch 𝑁 E 𝐻 and
so, 𝑄 E 𝐻. But considering Ito’s theorem and 𝜃 leads us to get a contradiction.

Also, the same argument as the above cases rules out 𝐾/𝐻 ∼= 𝐿2(11).
If 𝐾/𝐻 ∼= 𝐿2(8), 𝐴6, 𝐴7, 𝐴8, 𝐿3(4),𝑀11 or 𝑀22, then we can see that 23 | |𝐻|

and 𝐻 is solvable and the same argument as used in the above cases leads us to get
a contradiction.

Thus 𝐾/𝐻 ∼= 𝑀23 and hence, 𝐺 ∼= 𝑀23. �
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