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ON RECOGNITION BY SPECTRUM OF SYMMETRIC GROUPS

I.B. GORSHKOV, A.N. GRISHKOV

Abstract. The spectrum of a group is the set of its element orders.
A finite group G is said to be recognizable by spectrum if every finite
group with the same spectrum is isomorphic to G. We prove that if
n ∈ {15, 16, 18, 21, 27} then symmetric groups Symn are recognizable by
spectrum.
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1. Introduction

Let G be a finite group, π(G) be the set of prime divisors of its order, ω(G)
be the spectrum of G, i. e. the set of its element orders. The Gruenberg-Kegel
graph, or the prime graph, GK(G) is defined as follows. The vertex set of the
graph is π(G). Two distinct primes p and q of π(G) seen as verticies of the graph
GK(G), are connected by an edge if and only if pq ∈ ω(G). A group G is said to
be recognizable by spectrum (shortly, recognizable) if for every finite group L the
equality ω(L) = ω(G) implies that L ≃ G. Two groups are said to be isospectral if
they have the same spectra. Denote the symmetric group of degree n by Symn.

It was proved in [1, 2, 3, 4] that if n ∈ {2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14} then the
group Symn is recognizable. It was shown in [5] that Symp is recognizable where
p is a prime and p > 13, there were also obtained strong constraints on a group
with the same spectrum as Symp+1. It was shown in [6] that Symn is recognizable
if n ̸∈ {2, 3, 4, 5, 6, 8, 10, 15, 16, 18, 21, 27, 33, 35, 39, 45}, there it was also proved
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that if Sym16 is recognizable then the groups Sym33, Sym35, Sym39, Sym45 are
recognizable too.

In this paper we prove recognizability of the symmetric groups

Symn, n ∈ {15, 16, 18, 21, 27}.

Theorem 1. The group Symn, where n ∈ {15, 16, 18, 21, 27}, is recognizable.

Corollary 1. The group Symn, where n ∈ {33, 35, 39, 45}, is recognizable.

Corollary 2. The recognizability problem for Symn, n ̸= 10, is solved.

2. Preliminaries

Lemma 1 ([7, Lemma 2.2]). Let S = P1 × ...× Pr, where Pi are isomorphic non-
Abelian simple groups. Then Aut(S) ≃ (Aut(P1)× ...×Aut(Pr)).Symr.

Lemma 2 ([8, Theorem 3.1]). Given a Frobenius group G with kernel A and
complement B, we have

(a) A is nilpotent;
(b) every Sylow p-subgroup of B is a cyclic group for an odd prime p, and a

cyclic or generalized quaternion group for p = 2.

Lemma 3 ([9, Proposition 1]). Let G be a finite group, t(G) ≥ 3, and let K be
the maximal normal soluble subgroup of G. Then for every subset ρ of primes in
π(G) such that |ρ| ≥ 3 and all primes in ρ are pairwise nonadjacent in GK(G), the
intersection π(K) ∩ ρ contains at most one number. In particular, G is insoluble.

Lemma 4 ([10, Lemma 3.6]). Let s and p be distinct primes, a group H be a
semidirect product of a normal p-subgroup T and a cyclic subgroup C = ⟨g⟩ of
order s, and let [T, g] ̸= 1. Suppose that H acts faithfully on a vector space V of
positive characteristic t not equal to p. If the minimal polynomial of g on V does
not equal xs − 1, then

(i) CT (g) ̸= 1;
(ii) T is non-Abelian;
(iii) p = 2 and s = 22

δ

+ 1 is a Fermat prime.

Lemma 5 ([11, Lemma 14]). Any odd element from π(Out(P )) where P is any
simple group, either belongs to the spectrum of P or does not exceed m/2, where
m = maxp∈π(P )p.

Lemma 6 ([5, Lemma 6]). Let H be a finite group and let V be a proper normal
subgroup of H such that H/V is isomorphic to Altm. Then ω(H) * ω(Symm)
provided that m ≥ 6 and m ̸= 8.

Lemma 7 ([5]). Recognizability of the symmetric group of degree r + 1, where
r ≥ 17 is prime, amounts to the following: for every proper covering G = N.A of
an arbitrary finite group N by a group A isomorphic to Symr or Altr, the inequality
ω(G) ̸= ω(Symr+1) holds.

Lemma 8 ([6, Theorem 2]). If Sym16 is recognizable then the groups

Sym33, Sym35, Sym39, Sym45

are recognizable too.
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Lemma 9 ([12, Lemma 1]). If a Frobenius group FC with kernal F and cyclic
complement C = ⟨c⟩ of order n acts faithfully on a vector space V of nonzero
characteristic p coprime with the order of F then the natural semidirect product
V C contains an element of order p · n.

3. Proof of Main Theorem for Sym15

Proposition 1. The group Sym15 is recognizable.

Let ω = ω(G) = ω(Sym15), K be the maximal normal soluble subgroup of G,
S = Soc(G/K) ≃ S1 × ...×Sn, where Si, 1 ≤ i ≤ n are non-Abelian simple groups.
Obviously, the prime divisors of |S| are not greater than 13. Using the classification
of finite simple groups it is not hard to obtain the full list of all finite simple groups
L with the property π(L) ⊆ {2, 3, 5, 7, 11, 13} (see [13]).

Lemma 10. The group S is a finite simple group.

Proof. Let G = G/K, G̃ = G/S. Obviously, G ≤ Aut(S) and G̃ ≤ Out(S). Suppose
that n > 1. By Lemma 3 we may assume that there exists p ∈ {11, 13} such that
p ̸∈ π(K). Suppose that |G̃| is divisible by p. Then G contains an element g of
order p that acts by conjugation on S and induces an outer automorphism. We
have Out(S) ≃ Out(P1) × ... × Out(Pr), where the groups Pj are direct products
of isomorphic Si. For some j, therefore, g ∈ Out(Pj). It follows by Lemma 1 that
g ∈ Out(Si) or Sg

i ̸= Si. By [13], for all non-Abelian finite simple groups R with the
property π(R) ⊆ {2, 3, 5, 7, 11, 13} except for R ≃ L3(3), we have {5, 7}∩π(R) ̸= ∅.
Assume that there exists 1 ≤ i ≤ n such that Si ̸≃ L3(3), we can assume that
i = 1. Suppose that Sg

1 = S1. By Lemma 5, g is not an outer automorphism of
a group Sj , j ∈ {1, ..., n}. Hence S1 ≤ CG(g) and so G has an element whose
order is equal to pt, where t ∈ {5, 7} ∩ π(S1}, but pt ̸∈ ω. Thus S1 ̸= Sg

1 . Let
x = hhghg2

...hgp−1

, h ∈ S1, |h| ∈ {5, 7} ∩ π(S1). It is easy to check that x ∈ CG(g),
|x| = |h|. Hence G contains an element y and |y| = p|h|, but p|h| ̸∈ ω and so
Si ≃ L3(3) for all 1 ≤ i ≤ n. We have {3, 13} ⊂ π(L3(3)). The group S has an
element of order 39, since n > 1, but 39 ̸∈ ω.Thus p ∈ π(S).

Suppose that there exists Si such that 13 ∈ π(Si). By [13], for all non-Abelian
finite simple groups R with the property π(R) ⊆ {2, 3, 5, 7, 11, 13}, we have {3, 5}∩
π(R) ̸= ∅. Let g ∈ Si, |g| = 13, h ∈ Sj , i ̸= j, |h| ∈ {3, 5}∩π(Sj). Then |gh| = 13|h|,
but 13|h| ̸∈ ω. Hence 11 ∈ π(S). It is easy to check that there exists x ∈ S and
|x| = 11t, where t ∈ {5, 7} ∩ π(S); a contradiction. Then n = 1. �

By Lemma 10, we may assume that S is a non-Abelian finite simple group and
π(S) ⊆ {2, 3, 5, 7, 11, 13}.

Lemma 11. 11, 13 ∈ π(S).

Proof. Assume that 13 ̸∈ π(S). It follows from Lemmas 3, 5 and [14] that {5, 7, 11} ⊆
π(S), {5, 7, 11} ∩ π(|G|/|S|) = ∅. By Lemmas 5 and 10 we have 13 ∈ π(K).
Hence 35 ∈ ω(S). From [13] and [14], it follows that S ≃ Alt12. Note that S
contains a subgroup T isomorphic to a Frobenius group with kernel of order 11 and
complement of order 5. Let P ∈ Syl13(K), N = NG(P ). Since NG(P )/NK(P ) ≃
G/K, {5, 11} ∩ π(K) = ∅ and the Schur-Zassenhaus theorem, we see that there
exists T̃ ≤ N such that T̃ ≃ T . Let N = N/Φ(P ) and T isomorphic to T . From
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Lemma 4 it follows that N contains an element of order 13t, where t ∈ {5, 11}, but
ω(N) ⊆ ω; a contradiction.

Assume that 11 ̸∈ π(S). It follows from Lemma 3 that {5, 7, 13} ⊆ π(S) and
{5, 7, 13} ∩ π(|G|/|S|) = ∅. Hence 35 ∈ ω(S). By [13] and [14], there are no such
groups. �

From [13] and Lemma 11 it follows that S is isomorphic to one of the groups
L5(3), L6(3), Alt13, Alt14, Alt15, Alt16, Suz, Fi22.

Lemma 12. S ̸∈ {L5(3), L6(3), Alt16, F i22}.

Proof. Note that 121 ∈ ω(L5(3))\ω ⊆ ω(L6(3)), 16 ∈ ω(Fi22)\ω, 63 ∈ ω(Alt16)\ω.
Hence S ̸∈ {L5(3), L6(3), Alt16, F i22}. �

Thus the group S is isomorphic to one of the groups Alt13, Alt14, Suz or Alt15.
Assume that S ∈ {Alt13, Alt14, Suz}.

Lemma 13. 11, 13 ̸∈ π(K).

Proof. Suppose that π(K) ∩ {11, 13} ̸= ∅. Let p ∈ π(K) ∩ {11, 13}, H = Op′(K).
There exists a normal p-subgroup T in a group G/H. Since 5p ̸∈ ω(G), we have a
group have a Frobenius group TM with kernal T and complement M ∈ Syl5(G/H).
From Lemma 2 it follows that M is cyclic. But N ∈ Syl5(S) is elementary Abelian
group of order 25 and N ≤ M/(M ∩ (K/H)); a contradiction. �

Lemma 14. 5, 7 ̸∈ π(K).

Proof. Suppose that π(K)∩{5, 7} ≠ ∅. Let p ∈ π(K)∩{5, 7}, H be a Hall {3, 5, 7}-
subgroup of K. Since NG(H)/NK(H) ≃ G/K and ω(NK(H)) ⊆ ω, we may assume
that H▹G. Since 13t ̸∈ ω for t ∈ {3, 5, 7}, Lemma 2 implies that H is nilpotent. Let
G̃ = G/O2(K), K̃ = K/O2(K), T ∈ Syl2(K̃). Assume that exists g ∈ G̃, |g| = 13

and g acts on T nontrivially. From Lemma 4, it follows that in G̃ there is a element
of order 13p, but 13p ̸∈ ω. Hence if g ∈ NG̃(T ), |g| = 13, then g ∈ CG̃(T ). The
group S is generated by elements of order 13. Thus T.S is a central extension of
T with S. Therefore G̃/H̃ contains a subgroup isomorphic to one of the groups
Alt13, 2.Alt13, Suz, 2.Suz. From the tables of 5 and 7-modular characters of Alt13,
2.Alt13, Suz, and 2.Suz (see [14]), it follows that G has an element of order 11p,
but 11p ̸∈ ω(G); a contradiction. �

Lemma 15. 2, 3 ∈ π(K).

Proof. Since 13 · 2 ∈ ω(G) \ ω(Aut(S)) and 13 ̸∈ π(K), we have 2 ∈ π(K). Since
7 · 5 · 3 ̸∈ ω(Aut(S)) and {5, 7} ∩ π(K) = ∅, we have 3 ∈ π(K). �

Lemma 16. S ̸∈ {Alt13, Alt14, Suz}.

Proof. By Lemmas 13, 14 and 15, π(K) = {2, 3}. Put R0 = 1, R1 = O2(G), R2 =
O2,3(G), R3 = O2,3,2(G), and so forth. For some n, we have Rn = K for the first
time, and it is obvious that n ≥ 2. Put G = G/Rn−2 and K = K/Rn−2. Then K is
a group in which the Sylow p-subgroup for p = 2 or 3 is normal. Suppose that p = 2.
Then G̃ = G/Rn−1 possesses a nontrivial normal 3-subgroup K̃ = K/Rn−1. Note
that G̃/K̃ contains a subgroup T isomorphic to one of the groups Alt13, Suz. Since
39 ̸∈ ω, the action of T on K̃ by conjugations is faithful. The table of 3-modular
characters of Suz (see [14]) implies that CK(g) ̸= 1, |g| = 13. Hence T ≃ Alt13. The
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table of 3-modular characters of Alt13 (see [14]) implies that every chief factor of G
lying in K̃ is a 12-dimensional irreducible representation over a field of characteristic
3, in which the dimension of the space of fixed points of elements of order 11 is
equal to 2. Since there is a complement to K̃ in G̃ (see [15]), it follows that Alt13
acts on P = Rn−1/Rn−2. It is clear from the table of 2-modular characters of Alt13
(see [14]) that CP (x) ̸= 1 for an element x ∈ Alt13 of order 11. Thus CK(x) is an
extension of a nontrivial 2-group by a 3-group of rank at least 2, and thus it contains
an element of order 6. By the choice of x we deduce that G contains an element of
order 66; thus p = 3. In this case T = Rn−1/Rn−2 is a 3-group which contains its
centralizer in K̃ = K/Rn−1. Assume that there exists g ∈ G̃, |g| = 13, and g acts on
K̃ nontrivially. From Lemma 4, it follows that 39 ∈ ω(G), but 39 ̸∈ ω. The group S

is generated by 13-elements. Thus the group G̃ contains a subgroup isomorphic to
K̃ ×S or H × (2.S), for some group H. Let us show that in the second case K̃ is of
order 2. Since G contains no elements of order 4 · 13, it follows that K̃ is of period
2. If K̃ is noncyclic then CT (ỹ) ̸= 1 for some ỹ in K̃. As above, an element of G̃ of
order 11 centralizes in CT (ỹ) some nontrivial element, and consequently G contains
an element of order 66; a contradiction. Put N = 2.S if G̃ = 2.S, and N = S if
G̃ = K̃×S. In each case, since G contains no elements of order 8·7, while G must, it
follows that Rn−2 ̸= 1. The table of 3-modular characters (see [14]) implies that N
acts trivially on K. Furthermore, as in the case p = 2, we deduce that for elements
x of N of order 11 the group CRn−1/Rn−3

(x) contains an element of order 22. Thus
G contains an element of order 66; this is a contradiction. �

Therefore S ≃ Alt15. By Lemma 6 it follows that the subgroup K is trivial.
Since ω(S) ̸= ω and Aut(S) = Sym15, we see that G ≃ Sym15. The proposition is
proved.

4. Proof of Main Theorem for Sym16

Proposition 2. The group Sym16 is recognizable.

Let ω = ω(G) = ω(Sym16), K be the maximal normal soluble subgroup of G,
S = Soc(G/K) ≃ S1 × ...×Sn, where Si, 1 ≤ i ≤ n are non-Abelian simple groups.
Obviously, the prime divisors of |S| are not greater than 13. Using the classification
of finite simple groups it is not hard to obtain the full list of all finite simple groups
L with the property π(L) ⊆ {2, 3, 5, 7, 11, 13} (see [13]).

Lemma 17. 13 ̸∈ π(K).

Proof. Let G = G/K, G̃ = G/S. Suppose that 13 ∈ π(K). Then, from Lemma 3 we
have {7, 11}∩π(K) = ∅. Let p ∈ {5, 7, 11}. Using Frattini argument we can obtain
that in G/O13′(K) there exists a subgroup T.P such that T is isomorphic to Sylow
13-subgroup of K and P is isomorphic to Sylow p-subgroup of G/K. By Lemma 2
it follows that P and Sylow p-subgroups of the group G/K are cyclic of order p.
Suppose that 11 ∈ π(G̃). Let g ∈ G, |g| = 11 and the image of g in G̃ is not trivial.
Since 11 ̸∈ π(Out(Si)) for all 1 ≤ i ≤ n, we have Sg

i ̸= Si for some i. The order of
any non-Abelian finite simple group R with property π(R) ⊆ {2, 3, 5, 7, 11, 13} is
divisible by 5, 7 or 13(see [13]). Suppose that p ∈ {5, 7}∩ π(Si). Then the Sylow p-
subgroups of group G are non-cyclic. Hence {5, 7}∩π(Si) = ∅. From [13] it follows
that Si ≃ L3(3) and 13 ∈ π(Si). In the same way as in proof of Lemma 10, we
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obtain that in G there is element of order 13 · 11, but 13 · 11 ̸∈ ω. Thus 11 ∈ π(S).
It is easy to prove that 7 ∈ π(S). Since 77 ̸∈ ω it follows that there exists Si such
that 7, 11 ∈ π(Si). From [13] and the fact that the Sylow 5, 7 and 11-subgroups
of S are cyclic, we see that Si ≃ M22 or U6(2). Since {5, 7, 11} ⊆ π(Si), we have
S ≃ Si. From [16] we have R < L2(11) < M22 < U6(2), where R is a Frobenius
group with kernel of order 11 and complement of order 5. Let T be a Hall {13, 5}-
subgroup of K. Using the Frattini argument we obtain that G contains a section
isomorphic to T.R. From Lemma 4 it follows that 65 ∈ ω(T.R) or 143 ∈ ω(T.R); a
contradiction. �

Lemma 18. The group S is a finite simple group.

Proof. Let G = G/K, G̃ = G/S. Suppose that n > 1. From Lemma 17 we have
13 ∈ π(G). By Lemma 3, it follows that there exists p ∈ {7, 11}∩π(G). Suppose that
13 ∈ π(G̃). Then there exists g ∈ G such that |g| = 13 and g acts by conjugation
on S and induces an outer automorphism. By [13], for all non-Abelian finite simple
groups R with property π(R) ⊆ {2, 3, 5, 7, 11, 13} except when R ≃ L3(3), we have
{5, 7} ∩ π(R) ̸= ∅. Assume that there exists 1 ≤ i ≤ n such that Si ̸≃ L3(3), we
can assume that i = 1. Suppose that Sg

1 = S1. By Lemma 5, g is not an outer
automorphism of a group Sj , j ∈ {1, ..., n}. Hence S1 ≤ CG(g) and so G has an
element of order pt, where t ∈ {5, 7} ∩ π(S1}, but pt ̸∈ ω. Thus S1 ̸= Sg

1 . Let
x = hhghg2

...hgp−1

, h ∈ S1, |h| ∈ {5, 7} ∩ π(S1). It is easy to check that x ∈ CG(g),
|x| = |h|. Hence G has an element x such that |x| = p|h|, but p|h| ̸∈ ω and so
Si ≃ L3(3) for all 1 ≤ i ≤ n. Since p ̸∈ π(L3(3)), it follows that p ∈ π(G̃). It is
easy to check that 13p ∈ ω(G); a contradiction. Hence 13, p ∈ π(Si). If n > 1 then
{65, 91, 143} ∩ ω(G) ̸= ∅; a contradiction. �

From [13], Lemmas 17 and 3 it follows that S is isomorphic to one of the groups
L2(13), L2(27), G2(3), 3D4(2), Sz(8), L2(64), U4(5), L3(9), S6(3), O7(3), O+

8 (3),
G2(4), S4(8), L5(3), L6(3), Alt13, Alt14, Alt15, Alt16, Suz, Fi22.

Lemma 19. S ̸∈ {L2(64), U4(5), L5(3), L6(3), L3(9), S4(8)}.

Proof. Note that 65 ∈ ω(L2(64)) \ ω, 52 ∈ ω(U4(5)) \ ω, 121 ∈ ω(L5(3)) \ ω ⊆
ω(L6(3)), 91 ∈ ω(L3(9)) \ ω, 65 ∈ ω(S4(8)) \ ω; a contradiction. �

Lemma 20. S ̸∈ Ω = {L2(13), L2(27), G2(3),
3D4(2), Sz(8), S6(3), O7(3), O

+
8 (3),

G2(4), Alt13, Alt14, Alt15}.

Proof. Groups from Ω have no elements of order 55 (see [14]), it follows that {5, 11}∩
π(K) ̸= ∅. From [16] we have that in the groups G2(3), O7(3), O

+
8 (3), G2(4) there

exists a subgroup isomorphic to L2(13), in the group S6(3) there exists a subgroup
isomorphic to L2(27), in the groups Alt14, Alt15 there exists a subgroup isomorphic
Alt13. Thus to prove the Lemma, it suffices to prove that ω(K.L)\ω(G) ̸= ∅ where
L ∈ {L2(13), L2(27),

3 D4(2), Sz(8), Alt13}, there exists an element g and |g| ̸∈ ω.
Let p ∈ π(K)∩{11, 5}, P ∈ Sylp(K). Without loss of generality it can be assumed

that P ▹ G and CK(P ) ≤ P . Suppose that in G/P there exists an element g of
order 13 and K/P ̸≤ CG/P (g). From Lemma 4 it follows that G contains element
of order 13p, but 13p ̸∈ ω; a contradiction. Since for all elements x ∈ G/P of order
13 we have that x acts trivially on K/P and has no fixed point on P . Since S is a
simple group, we see that all elements of order 13 generated S. Therefore, (K/P ).S
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is a central extension of K/P with S. Note that (K/P ).S contains a subgroup S or
the Schur multiplier of S.

Suppose that S ∈ {L2(27),
3 D4(2), Sz(8)}. From the tables of characters of S and

the Schur multiplier it follows that G has an element of order 13p, but 13p ̸∈ ω(G);
contradiction.

Suppose that S ≃ L2(13). Since 11 ̸∈ π(S), we can assume that p = 11. From the
tables of characters of S and the Schur multiplier it follows that G has an element
of order 13 · 11 or 7 · 11; contradiction.

Therefore, S ≃ Alt13. From the tables of 5 and 11-modular characters of Alt13
and 2.Alt13 (see [14]) it follows that the element of order 13 acts with no fixed
points only on the 12-dimensional permutation module, but in this case centralizes
of an element of order 18 is nontrivial and hence 18p ∈ ω; a contradiction. �

Therefore, S ≃ Alt16. By Lemma 6 it follows that the subgroup K is trivial.
Hence ω(S) ̸= ω and Aut(S) = Sym16 we see that G ≃ Sym16. The proposition is
proved.

5. Proof of Main Theorem for Sym18

Proposition 3. The group Sym18 is recognizable.

From Lemma 7 it follows that if ω(G) = ω(Sym18) where G ̸≃ Sym18, then
G ≃ K.Alt17 or K.Sym17 where K is a soluble group. Since 17t ̸∈ ω, for all
t ∈ π(K), using Lemma 2 we can see that K is nilpotent. Since 77 ̸∈ ω(Sym17)
we obtain {7, 11} ∩ π(K) ̸= ∅. Let p ∈ {7, 11} ∩ π(K), P ∈ Sylp(K). We can
assume that K ≃ P . From the tables of 7 and 11-modular characters of Alt14
(see [14]) it follows that G has an element g of order pt, t ∈ {7, 11} \ {p}. Note
that R.Alt6 ≤ CG(g

p) where R is a p-group. From the tables of 7 and 11-modular
characters of Alt6 (see [14]) it follows that CG(g) has an element of order 3t. Hence
3 ·7 ·11 ∈ ω(G); a contradiction. Therefore, G ≃ Sym18. The proposition is proved.

6. Proof of Main Theorem for Sym21

Proposition 4. The group Sym21 is recognizable.

Let ω = ω(G) = ω(Sym21), K be the maximal normal soluble subgroup of G,
S = Soc(G/K) ≃ S1 × ...×Sn, where Si, 1 ≤ i ≤ n are non-Abelian simple groups.
Obviously, the prime divisors of |S| are not greater then 19. Using the classification
of finite simple groups it is not hard to obtain a full list of all finite simple groups
L with π(L) ⊆ {2, 3, 5, 7, 11, 13, 17, 19} (see [13]).

Lemma 21. The group S is a finite simple group.

Proof. Let G = G/K, G̃ = G/S. Obviously G ≤ Aut(S) and G̃ ≤ Out(S). Suppose
that n > 1. By Lemma 3 we may assume that there exists p ∈ {17, 19} and p ̸∈
π(K). Suppose that |G̃| is divisible by p. Then G contains an element g of order
p that acts by conjugation on S and induces an outer automorphism. By Lemma
5, g is not an outer automorphism of a group Si, 1 ≤ i ≤ n. By [13], for all
non-Abelian finite simple groups R with property π(R) ⊆ {2, 3, 5, 7, 11, 13, 17, 19}
except when R ≃ L2(17), we have {5, 7, 13} ∩ π(R) ̸= ∅. Assume that there exists
1 ≤ i ≤ n such that Si ̸≃ L2(17), we can assume that i = 1. Suppose that Sg

1 = S1.
Hence S1 ≤ CG(g) and so G has an element whose order is equal to pt, where
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t ∈ {5, 7, 13} ∩ π(S1}, but pt ̸∈ ω. Thus S1 ̸= Sg
1 . Let x = hhghg2

...hgp−1

, h ∈
S1, |h| ∈ {5, 7, 13} ∩ π(S1). It is easy to check that x ∈ CG(g), |x| = |h|. Hence
G has an element x such that |x| = p|h|, but p|h| ̸∈ ω and so Si ≃ L2(17) for all
1 ≤ i ≤ n. We have {9, 17} ⊂ ω(L2(17)). The group S has an element of order 9 ·17
since n > 1, but 9 · 17 ̸∈ ω.

Thus p ∈ π(S). Without loss of generality it can be assumed that p ∈ π(S1). It
is easy to see that there exists x ∈ S and |x| = pt, where t ∈ {5, 7, 9, 13} ∩ ω(S2); a
contradiction. Then n = 1. �
Lemma 22. 19 ∈ π(S).

Proof. Assume that 19 ̸∈ π(S). Then {5, 7, 11, 13, 17} ⊂ π(S) and

{7, 13} ∩ π(|G|/|S|) = ∅.

Hence 7 ·13 ∈ ω(S). From [13] and [14] it follows that there are no such groups. �
Lemma 23. 13, 17 ∈ π(S).

Proof. Suppose that 17 ̸∈ π(S). Then {11, 13, 19} ⊂ π(S). From [13] it follows that
there are no such groups.

Suppose that 13 ̸∈ π(S). Then {11, 17, 19} ⊂ π(S). From [13] and Lemmas 22
and 23 it follows that there are no such groups. �

From [13] it follows that S is isomorphic to one of the groups

Altn, 19 ≤ n ≤ 22,2 E6(2).

Lemma 24. S ̸≃ Alt22.

Proof. Note that 57 ∈ ω(Alt22) but ω has no such elements; contradiction. �
Lemma 25. S ̸≃2 E6(2).

Proof. Group 2E6(2) have no elements of order 91 (see [14]), it follows that {7, 13}∩
π(K) ̸= ∅. From [16] we have that in the group 2E6(2) there exists a subgroup T
isomorphic to O−

8 (2).
Let p ∈ π(K)∩{7, 13}, P ∈ Sylp(K). Without loss of generality it can be assumed

that P ▹ G and CK(P ) ≤ P . Suppose that in G/P there exists an element g of
order 17 and K/P ̸≤ CG/P (g). From Lemma 4 it follows that G contains element
of order 17p, but 17p ̸∈ ω; a contradiction. Hence for all elements x ∈ G/P of order
17 we have that x acts trivially on K/P and has no fixed point on P . Since T is a
simple group, we see that all elements of order 17 generated T . Therefore, (K/P ).T
is a central extension of K/P with T . Note that (K/P ).T contains a subgroup T
or the Schur multiplier of T . From the tables of p-modular characters of T and
the Schur multiplier (see [14]), it follows that G has an element of order 17p, but
17p ̸∈ ω(G); contradiction. �
Lemma 26. S ̸∈ {Alt19, Alt20}.

Proof. Let S ∈ {Alt19, Alt20}, H be a Hall 2′-subgroup of K. Since 13 · 5 · 3 ̸∈
ω(Aut(S)), we see that H is not trivial. Without loss of generality it can be assumed
that H ▹ G. Since 19p ̸∈ ω, p ∈ π(H), by Lemma 2 the subgroup H is nilpotent.
Note that there exists R < S such that R is isomorphic to a Frobenius group with
kernel order 19 and complement order 9. Since π(K/H) ⊆ {2}, we see that R acts
on H. If {3, 13} ∩ π(H) ̸= ∅ then by Lemma 9 we obtain that H.R has an element
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x and |x| ∈ {57, 27, 117, 247}; a contradiction. Since 13 · 5 · 3, 11 · 7 · 3 ̸∈ ω(G/K) we
see that π(H) = {5, 7} or π(H) = {5, 11}. From the table of 5-modular characters
of Alt13 and 2.Alt13 (see [14]) it follows that G has an element of order 11 · 5 · 7; a
contradiction. �

Therefore, S ≃ Alt21. By Lemma 6 it follows that K is trivial. Since ω(S) ̸= ω
and Aut(S) = Sym21, we see that G ≃ Sym21. The proposition is proved.

7. Proof of Main Theorem for Sym27

Proposition 5. The group Sym27 is recognizable.

Let ω = ω(G) = ω(Sym27), K be the maximal normal soluble subgroup of G,
S = Soc(G/K) ≃ S1 × ...×Sn, where Si, 1 ≤ i ≤ n are non-Abelian simple groups.
Obviously, the prime divisors of |S| are not greater then 23. Using the classification
of finite simple groups it is not hard to obtain a full list of all finite simple groups
L with the property π(L) ⊆ {2, 3, 5, 7, 11, 13, 17, 19, 23} (see [13]).

Lemma 27. 23 ̸∈ π(K).

Proof. Let G = G/K, G̃ = G/S. Suppose that 23 ∈ π(K). From Lemma 3 we
have {11, 13, 17, 19}∩π(K) = ∅. By Lemma 2 and the Frattini argument it follows
that a Sylow p-subgroup of G/K is cyclic, for any p ∈ {5, 7, 11, 13, 17, 19}. Assume
that 19 ∈ π(G̃). Let g ∈ G, |g| = 19 and the image of g in G̃ is not trivial.
Since 19 ̸∈ π(Out(Si)) for all 1 ≤ i ≤ n, we obtain that there exists 1 ≤ i ≤ n
such that Sg

i ̸= Si. By [13], for all non-Abelian finite simple groups R with the
property π(R) ⊆ {2, 3, 5, 7, 11, 13, 17, 19, 23}, we have {5, 7, 11, 13, 17} ∩ π(R) ̸= ∅.
Let p ∈ {5, 7, 11, 13, 17} ∩ π(Si). Then a Sylow p-subgroup P of G is not cyclic; a
contradiction. Thus 19 ∈ π(S). It is easy to see that 17 ∈ π(S). Since 19 · 17 ̸∈ ω
we obtain that there exists Si such that 19, 17 ∈ π(Si). We have that a Sylow t-
subgroup of Si must be cyclic for all t ∈ {5, 7, 11, 13, 17} ∩ π(Si). By [13] and [14]
it follows that there are no such groups. �
Lemma 28. The group S is a finite simple group.

Proof. Let G = G/K, G̃ = G/S. Suppose that n > 1. From Lemma 27 we have
23 ∈ π(G). Suppose that 23 ∈ π(G̃). Then there exists g ∈ G such that |g| = 23
and g acts by conjugation on S and induces an outer automorphism. It follows
by Lemma 1 that g ∈ Out(Si) or Sg

i ̸= Si. By [13], for all non-Abelian finite
simple groups R with the property π(R) ⊆ {2, 3, 5, 7, 11, 13, 17, 19, 23}, we have
{5, 7, 11, 13, 17}∩π(R) ̸= ∅. Suppose that there exists 1 ≤ i ≤ n such that Sg

i = Si,
we can assume that i = 1. By Lemma 5, g is not an outer automorphism of a group
Sj , j ∈ {1, ..., n}. Hence S1 ≤ CG(g) and so G has an element whose order is
equal to 23t, where t ∈ {5, 7, 11, 13, 17} ∩ π(S1), but 23t ̸∈ ω. Thus S1 ̸= Sg

1 . Let
x = hhghg2

...hgp−1

, h ∈ S1, |h| ∈ {5, 7, 11, 13, 17} ∩ π(S1). It is easy to check that
x ∈ CG(g), |x| = |h|. Hence G has an element x and |x| = 23|h|, but 23|h| ̸∈ ω; a
contradiction. Hence 23 ∈ π(Si). If n > 1 then 23t ∈ ω, t ∈ {5, 7, 11, 13, 17}∩π(Sj);
contradiction. �

From [13] and Lemma 3 it follows that S is isomorphic to one of the groups Fi23,
Alt23, Alt24, Alt25, Alt26, Alt27, Alt28.

Lemma 29. S ̸≃ Fi23.



120 I.B. GORSHKOV, A.N. GRISHKOV

Proof. Suppose that S ≃ Fi23. Since 19 ̸∈ π(Fi23), we obtain 19 ∈ π(K). From
Lemma 3, it follows that 11, 23 ̸∈ π(K). From [16] we obtain that in S there exists
a Frobenius group with kernel order 23 and complement of order 11. By Lemma 4
we have that 19 · 11 ∈ ω or 19 · 23 ∈ ω; a contradiction. �

Hence S contains a subgroup isomorphic to Alt23.

Lemma 30. The set π(K) has no elements greater than 7. In particular S ̸≃ Alt23.

Proof. Since 11·13 ̸∈ ω(Aut(Alt23)), we see that if S ≃ Alt23 then {11, 13}∩π(K) ̸=
∅. Suppose that in π(K) there is a number p ∈ {11, 13, 17, 19}. Let H be a Hall
{2, 3}′-subgroup of K. We can assume that H▹G and CK(H) ≤ H. Since 23t ̸∈ ω,
for any t ∈ π(H), then using Lemma 2 we see that H is nilpotent. Suppose that
there exists g ∈ G/H, |g| = 23 and K/H ̸≤ CG/H(g). From Lemma 4 it follows
that in 23p ∈ ω; a contradiction. Thus any element of order 23 of G/H acts trivially
on K/H and has no fixed points on H. Since S is a simple group, it follows that
S is generated by elements of order 23. Thus (K/H).S is a central extension of
K/H with S. Suppose that p = 11. Note that G/K contains Frobenius group with
kernel of order 23 and complement of order 11. By Lemma 9 we see that 121 ∈ ω
or 253 ∈ ω; contradiction. Let h ∈ G, |h| = 11 and the image h of h in G/H is
not trivial. Note that CG/H(h) contains a subgroup isomorphic to Alt10 or 2.Alt10.
Since a Sylow 5-subgroup of Alt10 is elementary Abelian it follows that in CG(h)
there exist elements of order 5p. Thus in G there exists element of order 55p; a
contradiction. �

Hence S has a subgroup isomorphic to Alt24.

Lemma 31. 5, 7 ̸∈ π(K). In particular S ≃ Alt26 or S ≃ Alt27.

Proof. We have 19 · 7 ̸∈ ω(Aut(Alt25)) ⊇ ω(Aut(Alt24)). Thus if S ≃ Alt24 or
Alt25, then 7 ∈ π(K). Suppose that p ∈ {5, 7} ∩ π(K) ̸= ∅. Let H be a Hall
{2, 3}′-subgroup of K. We can assume that H ▹G and CK(H) ≤ H. Since 23t ̸∈ ω
for any t ∈ π(H), using Lemma 2 we see that H is nilpotent. Suppose that there
exists g ∈ G/H, |g| = 23 and K/H ̸≤ CG/H(g). From 4 it follows that 23p ∈ ω; a
contradiction. Thus any element of order 23 of G/H acts trivially on K/H and has
no fixed points on H. Since S is a simple group, it follows that S is generated by
elements of order 23. Thus (K/H).S is a central extension of K/H with S. In G/H
there exists a subgroup isomorphic to Alt12 or 2.Alt12. From the table of 5 and
7-modular characters of Alt12, 2.Alt13, Alt8, and 2.Alt8 (see [14]) it follows that G
has an element of order 66pr, r ∈ {5, 7} \ {p}; a contradiction. �

Lemma 32. S ≃ Alt27.

Proof. Suppose that S ≃ Alt26. We have 3·5·19 ̸∈ ω(Out(Alt26)). Since 5, 7 ̸∈ π(K),
it follows that 3 ∈ π(K), and 3 ∈ π(CK(g)), g ∈ G, |g| = 19. Let C = CG(g). We can
assume that a Sylow 3-subgroup P of C ∩K is normal in C and 3 ̸∈ π((C ∩K)/P ).
In C/P there exists a Frobenius group R with kernel of order 7 and complement of
order 3. From 9 it follows that 9 ∈ ω(C) or 21 ∈ ω(C). Thus 9 ·19 ∈ ω or 21 ·19 ∈ ω;
a contradiction. �

Therefore, S ≃ Alt27. By Lemma 6 it follows that the subgroup K is trivial.
Hence ω(S) ̸= ω and Aut(S) = Sym27, we see that G ≃ Sym27. The proposition is
proved.
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8. Proof of Main Theorem and Corollaries

The theorem follows from Propositions 1–5. The corollary 1 follows from Propo-
sition 2 and Lemma 8. The corollary 2 follows from Theorem and [1]–[6].
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