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ACYCLIC 3-CHOOSABILITY OF PLANAR GRAPHS
WITH NO CYCLES OF LENGTH FROM 4 TO 11

O.V. BORODIN, A.O. IVANOVA

Abstract. Every planar graph is known to be acyclically 7-choosable
and is conjectured to be acyclically 5-choosable (Borodin et al., 2002).
This conjecture if proved would imply both Borodin’s acyclic 5-color
theorem (1979) and Thomassen’s 5-choosability theorem (1994). However,
as yet it has been verified only for several restricted classes of graphs.
Some sufficient conditions are also obtained for a planar graph to be
acyclically 4- and 3-choosable.

In particular, a planar graph of girth at least 7 is acyclically 3-colorable
(Borodin, Kostochka and Woodall, 1999) and acyclically 3-choosable
(Borodin et al., 2010). A natural measure of sparseness, introduced by
Erdős and Steinberg, is the absence of k-cycles, where 4 ≤ k ≤ C. Here,
we prove that every planar graph with no cycles of length from 4 to 11
is acyclically 3-choosable.
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1. Introduction

By V (G) and E(G) denote the sets of vertices and edges of a graph G, respectively.
The girth of G, i.e. the length of a shortest cycle in G, is denoted by g(G).

A (proper) k-coloring of G is a mapping f : V (G) −→ {1, 2, . . . , k} such that
f(x) 6= f(y) whenever x and y are adjacent in G.

By the Grötzsch theorem, every planar triangle-free graph is 3-colorable. In
1976, Steinberg conjectured that every planar graph without 4-cycles and 5-cycles
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is 3-colorable. This conjecture remains unsettled. Erdös (see [25]) suggested the
following relaxation of this problem: does there exist a constant C such that the
absence of cycles with size from 4 to C in a planar graph guarantees its 3-colorability?
The best result in this direction is C ≤ 7 due to Borodin et al. [12].

Now suppose each vertex v of a graph G is given a list L(v) of admissible colors,
represented by positive integers. The G-list L is choosable if there is a proper vertex
coloring of G such that a color of each vertex v belongs to L(v). A graph G is said
to be k-choosable if every G-list L is choosable provided that |L(v)| ≥ k for each
v ∈ V (G).

Thomassen [26] proved a famous theorem that each planar graph is 5-choosable,
and Voigt [28] showed that this bound is best possible. Margit Voigt constructed the
following non-3-choosable planar graphs: of girth at least 4 (in [29]), and without
4-cycles and 5-cycles (in [30]). On the other hand, it is known that a planar graph
is 3-choosable if its girth is at least 5 (Thomassen [27]) or it has no cycles of length
from 4 to 9 (Borodin [2]).

A proper vertex coloring of a graph is acyclic if every cycle uses at least three
colors (Grünbaum [19]). Borodin [1] proved Grünbaum’s conjecture that every
planar graph is acyclically 5-colorable. This bound is best possible; moreover, there
are bipartite 2-degenerate planar graphs G which are not acyclically 4-colorable
(Kostochka and Mel’nikov [21]). Acyclic colorings turned out to be useful in obtaining
results about other types of colorings; for a survey see monographs [20, 17].

Borodin et al. [9] proved that every planar graph is acyclically 7-choosable and
conjectured a common extension of Borodin’s [1] and Thomassen’s results [26]:

Conjecture 1. Every planar graph is acyclically 5-choosable.

However, this challenging conjecture seems to be difficult. As yet, it has been
verified only for several restricted classes of planar graphs. Some sufficient conditions
are also obtained for a planar graph to be acyclically 4- and 3-colorable or choosable.
The minimum k with the property that a graph G is acyclically k-colorable (acyc-
lically k-choosable) is denoted by a(G) (by al(G)).

In particular, Borodin, Kostochka and Woodall [8] showed that if G is a planar
graph of girth g then a(G) ≤ 4 if g ≥ 5 and a(G) ≤ 3 if g ≥ 7. Note that the first
of these results is best possible in terms of girth due to the construction in [21].
Borodin proved a(G) ≤ 4 for G having neither 4- nor 6-cycles (in [3]) and neither
4- nor 5-cycles (in [4]).

Recently, al(G) ≤ 4 was proved in the following cases: if g ≥ 5 (Montassier [22]),
or if G has no 4-, 5- and 6-cycles, or no 4-, 5- and 7-cycles, or no 4-, 5- and
intersecting 3-cycles (Montassier, Raspaud and Wang [23]), or no 4-, 5- and 8-
cycles (Chen and Raspaud [15]), or no 4-, 6- and 7-cycles, or else no 4-, 6- and
8-cycles (Chen, Raspaud and Wang [16]), or neither 4-cycles nor 6-cycles adjacent
to a triangle (Borodin, Ivanova, and Raspaud [10]). Note that [10] obviously covers
most of the above mentioned results in [8, 22, 23, 16, 3].

Moreover, al(G) ≤ 3 was proved if g ≥ 7 (Borodin et al. [6]) or if G has
no cycles of length from 4 to 12 (Borodin [5] and, independently, Hocquard and
Montassier [18]).

The purpose of this paper is to improve the result in [5, 18] as follows:

Theorem 2. Every planar graph with no cycles of length from 4 to 11 is acyclically
3-choosable.
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The choosability version of Steinberg-Erdös problem is to find the smallest Cl

such that each planar graph without cycles of length from 4 to Cl is 3-choosable.
Borodin [2] proved that Cl ≤ 9 and Voigt [30] proved that Cl ≥ 6. It seems natural
to ask a similar question about the acyclic 3-choosability:

Problem 1. Find the smallest Cl
a such that each planar graph without cycles of

length from 4 to Cl
a is acyclically 3-choosable.

It follows from [30] and Theorem 2 that 6 ≤ Cl
a ≤ 11. Since the acyclic 3-

choosability is a stronger property of a graph than the proper 3-choosability, one
can expect that Cl

a > 6. Note that Borodin’s bound Cl ≤ 9 proved in [2] remains
the best known for over fifteen years, and the proof of Theorem 2 is non-trivial, so
we would like to ask the following cautious question:

Problem 2. Is it true or not that each planar graph without cycles of length from
4 to 10 is acyclically 3-choosable?

A distinctive feature of our proof of Theorem 2 is that a charge of vertices can
be transferred along ”feeding paths” to an unlimited distance. This kind of ”global”
discharging was introduced by Borodin, Ivanova, and Kostochka in [13] and used
in [13, 14] to improve results in [7, 11] about homomorphisms of sparse graphs to
the circulant C(5; 1, 2) and cycle C5.

2. Proof of Theorem 2

Suppose a graph G∗ with a list L is a counterexample to Theorem 2 on the fewest
vertices. Clearly, G∗ is connected and has no 1-vertices.

If G∗ is 2-connected, then we put G+ = G = G∗. Otherwise, let G+ be a pendant
block, w+ be the cut-vertex of G∗ that belongs to G+, and f+ be the face of G+

that is not a face of G∗. Clearly, w+ belongs to the boundary of f+. Now we put
G = G+ − w+.

By F (G+), d(v), and r(f) denote the set of faces of G+, the degree of a vertex
v in G+, and the size of face f in G+, respectively.

From Euler’s formula |V (G+)| − |E(G+)| + |F (G+)| = 2, using well-known
relations ∑

v∈V (G+)

d(v) = 2|E(G+)| =
∑

f∈F (G+)

r(f),

we have

∑

v∈V (G+)

(5d(v)− 12) +
∑

f∈F (G+)

(r(f)− 12) = −24.

We set the initial charge of every vertex v ∈ V (G+) − w+ and face f ∈ F (G+)
to be ch(v) = 5d(v)− 12 and ch(f) = r(f)− 12, respectively. If w+ exists, then we
put ch(w+) = 5d(w+) + 11.

Note that only 2-vertices and 3-faces of G+ except for vertex w+ have a negative
initial charge. Then we use a discharging procedure leading to a final charge ch∗

such that

∑

x∈V (G+)∪F (G+)

ch∗(x) =
∑

x∈V (G+)∪F (G+)

ch(x) < 0. (1)



278 O.V. BORODIN, A.O. IVANOVA

Based on the structural properties of G, we shall get a contradiction with (1) by
proving that ch∗(x) ≥ 0 for every x ∈ V (G+) ∪ F (G+).

2.1. Structural properties of the minimum counterexample. Recall that all
degrees are considered in G+ and observe that d(w+) ≥ 2 since G+ is a pendant
block.

Lemma 1. No 2-vertex v in G belongs to a 3-cycle.

Proof. It suffices to acyclically color the graph G∗ − v according to list L, and
then color v differently from its neighbors. 2

Lemma 2. G has no two adjacent 2-vertices. 2

A triplet is a 3-face incident with three 3-vertices of G. (So, a triplet is not
incident with w+ if w+ exists.) A garland (see Fig. 1) is a non-empty sequence of
triplets Gk = T1, . . . , Tk, where Ti = xiyizi, 1 ≤ i ≤ k ≥ 1, such that zi is adjacent
to xi+1 whenever 1 ≤ i ≤ k − 1, while x1 is adjacent to a 2-vertex x′1 6= w+. The
neighbor of x′1 not belonging to T1 is denoted by x′′1 . By y′i denote the neighbor of
yi such that y′i /∈ Ti, where 1 ≤ i ≤ k, and let z′k be the neighbor of zk lying outside
Tk.
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Fig. 1. Garland Gk

The following lemma shows the key idea in the proof of Theorem 2.

Lemma 3. Suppose Gk is a garland, c is an acyclic L-coloring of G∗ − x′1, and
L(x′1) = {1, 2, 3}; then

(i) w.l.o.g., c(x′′1) = 1,
(ii) each of the 3k vertices of Gk has the same set {1, 2, 3} of admissible colors,

and
(iii) c(z′k) = c(y′i) = 1 whenever 1 ≤ i ≤ k.

Proof. Induction on k.
STEP 1. We are easily done if c(x1) 6= c(x′′1), so suppose c(x1) = c(x′′1). If

c(x′′1) > 3 then it suffices to put c(x′1) ∈ {1, 2, 3} \ {c(y1), c(z1)}, so we can assume
that c(x′′1) = 1 and there are bicolored (1, 2)- or (1, 3)-cycles in G if we put c(x′1) = 2
or c(x′1) = 3, respectively. By symmetry, we can assume that c(y1) = 2, c(z1) = 3
and c(y′1) = c(x2) = 1.

If, say, 4 ∈ L(x1) then it suffices to color x1 with 4. If 4 ∈ L(y1) then we can
recolor y1 with 4 and put c(x′1) = 2. Similarly, if 4 ∈ L(z1) then we can recolor z1

with 4 and put c(x′1) = 3. So, L(x1) = L(y1) = L(z1) = {1, 2, 3}.
STEP i+1, 1 ≤ i ≤ k−1. Suppose L(v) = {1, 2, 3} whenever v ∈ T1∪T2∪. . .∪Ti,

and c(v) = 1 whenever v ∈ {y′1, . . . , y′i, z′i}.
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Let a coloring c2 be obtained from c by putting c2(x1) = . . . = c2(xi) = 1,
c2(x′1) = c2(z1) = . . . = c2(zi) = 2, and c2(y1) = . . . = c2(yi) = 3; this can create
only a (2, 1)-path through x′1. A coloring c3 is defined by swapping numbers 2 and
3 on {x′1} ∪ T1 ∪ T2 ∪ . . . ∪ Ti in coloring c2.

Arguing as in Step 1, we see from c2 and c3 that: (a) c(xi+1) = 1, {c(yi+1), c(zi+1)} =
{2, 3}, (b) c(y′i+1) = c(xi+2) = 1, where xk+1 = z′k, and (c) L(xi+1) = L(yi+1) =
L(zi+1) = {1, 2, 3}. 2

Corollary 1. No garland can close on itself; more specifically, none of vertices y′k,
z′k in Gk can coincide with one of y1, . . . , yk−1.

Proof. It suffices to note (see Fig. 2) that c(y′k) = c(z′k) = 1 while none of
y1, . . . , yk−1 is colored 1 due to Lemma 3. 2
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Fig. 2. Closing of FP : y′k = yi, where i < k

Lemma 4. At most one edge can join a garland to a 2-vertex of G.

Proof. Let a garland Gk be the smallest counterexample. This means that none of
y′1, . . . , y

′
k−1 is a 2-vertex. By symmetry between y′k and z′k, suppose that d(z′k) = 2,

where vertices x′1 and z′k may be distinct or coincide (see Fig. 3). Note that z′k is
distinct from y′k due to the absence of adjacent 3-cycles in G and from y′1, . . . , y

′
k−1

by the assumption just made.
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Fig. 3. Closing of FP : z′k = x′1

Take the coloring c3 described in the proof of Lemma 3 (in which all xi’s, yi’s,
and zi’s, where 1 ≤ i ≤ k, are colored with 1, 2 and 3, respectively). We see that
c3(x′1) = 3 while c3(z′k) = 1, which already implies that x′1 6= z′k. By z′′k denote the
neighbor of z′k other than zk. We also remember from Lemma 3 that c3(z′′k ) = 3.

Let c4 be obtained from c3 by putting c4(x′1) = c4(z′k) = 2 and swapping colors
on the path x1z1x2z2 . . . xkzk. (The latter can be done since z′k is adjacent to none
of y′1, . . . , y

′
k.) It is easy to see that c4 is an acyclic L-coloring of G∗; a contradiction.

2

Corollary 2. No triplet is incident with more than one edge going to a 2-vertex of
G. 2
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We now introduce a notion crucial for our proof. Let v be a 2-vertex of G adjacent
to v1 and v2. A feeding path FPi(v) for v, where i ∈ {1, 2}, is a garland Gk with the
smallest k such that x′1 = v, x1 = vi, and at least one of y′k, z′k, say z′k, does not
belong to a triplet. Then z′k is called a sponsor of v along FPi(v) and denoted by
Si(v).

For each of the two edges vv1 and vv2, we start constructing a feeding path
FPi(v) for v. If, say, v1 does not belong to a triplet, then FP1(v) is trivial and
consists of just one edge vv1. Suppose v1 ∈ T1, then we put x1 = v1, T1 =
{x1, y1, z1}. Now if at least one of y′1 and z′1 is not in a certain triplet, then this
vertex is declared the (first) sponsor of v. Otherwise, using the standard notation
for a garland, we consider a triplet T2 that contains z′1 = x2, and so on.

By Lemma 4, the feeding path we are constructing cannot come to v along edge
vv2. By Corollary 1, our garland cannot arrive at a triplet already included in it.
Since G is finite, we shall eventually finish our feeding path FP1(v) that starts
with edge vv1 by finding S1(v). Arguing the same, we get the second feeding path
FP2(v) and sponsor S2(v) for v.

Corollary 3. No two feeding paths can intersect except possibly in their sponsors
or their initial 2-vertex.

Proof. Suppose we have feeding paths FP1 = v . . . S(v) and FP2 = w . . . S(w)
with a vertex z in common such that z belongs to a triplet. This contradicts
Lemma 4. 2

In turn, Corollary 3 implies

Corollary 4. No edge can belong to more than one feeding path. 2

The following lemma has common features with Lemma 4 but is a bit more
technical.

Lemma 5. No 3-cycle has two 3-vertices of G that are sponsors.

Proof. Take a garland Gk = T1, . . . , Tk such that d(x′1) = d(z′k) = 2 (it is not
excluded that x′1 = z′k) and suppose that precisely one of its vertices yq, 1 ≤ q ≤ k,
is ”spoilt” by having d(yq) ≥ 4. Denote this object by Gq

k (see Fig. 4).
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Fig. 4. Quasigarland Gq
k

We have to prove that Gq
k does not exist. Indeed, we see a feeding path for x′1

formed by a subgarland Gq−1 of Gq
k, with a sponsor xq, and also a feeding path

FP (z′k) for z′k, with a sponsor zq, formed by the sequence Tk, . . . , Tq+1 of triplets
belonging to Gq

k.
Let c be an L-coloring of G∗ − x′1. By Lemma 3, we can assume that c(x′′1) = 1

and L(v) = {1, 2, 3} for each v ∈ {x′1} ∪ Gq−1. Similarly, since FP (z′k) is a garland,
we have L(v) = {α, β, γ} for each v ∈ {z′k} ∪ Tk ∪ . . . ∪ Tq+1.

Let a coloring ct, where t ∈ {2, 3}, be obtained from c by putting ct(x′1) = t and
ct(xi) = 1, ct(yi) = 5 − t, ct(zi) = t for each 1 ≤ i ≤ q − 1. Note that coloring ct
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should create a (1, t)-cycle through x′1, for otherwise we have nothing to prove. In
particular, this implies that c(xq) = 1 and {c(yq), c(zq)} = {2, 3}. By symmetry, we
can assume that c(yq) = 2, c(zq) = 3.

Now the idea is to modify c3 so as to direct the dangerous (1, 3)-path along the
rest of Gq

k towards z′k and there to do a final recoloring that could prevent us from
any bicolored cycles in G∗.

It follows from c3 that c(xq+1) = 1 if q < k or c(z′k) = 1 if q = k. Hence, {1, 3} ⊆
{α, β, γ} in both cases. So, for each q + 1 ≤ i ≤ k we have {c(xi), c(yi), c(zi)} =
{1, β, 3}.

CASE 1. c(yq+1) = . . . = c(yk) = β. Clearly, we are done unless c(z′k) = 1 and
c(z′′k ) = 3. Now if L(xq) 6= {1, 2, 3}, then it suffices to modify c3 to an acyclic L-
coloring c′3 by recoloring xq with a color from L(xq)\{1, 2, 3}. By symmetry, we can
assume L(xq) = L(zq) = {1, 2, 3}. In this case we modify c3 as follows: c′3(xi) = 3,
c′3(zi) = 1, for 1 ≤ i ≤ k, and, of course, c′3(x

′
1) = 2, c′3(z

′
k) = β.

CASE 2. c(yq+1) = . . . = c(yr) = β, where r < k, while c(yr+1) = 3 (see
Fig. 5). Clearly, we are done unless c(y′r+1) = 1. If so, our proof splits. Note that
c(zr+1) = β. By z∗r+1 denote vertex xr+2 if r + 2 ≤ k or z′k otherwise.
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Fig. 5. Coloring c3 of Gq
k in Case 2

Subcase 2.1. c(z∗r+1) = 1. Here, we recolor yr+1 with β and zr+1 with 3. If
r + 1 < k then we repeat Case 2 with bigger r. If r + 1 = k, we go to Case 1.

Subcase 2.2. c(z∗r+1) = 3 (see Fig. 6). Here, we obtain an acyclic L-coloring of
G by recoloring yr+1 with β, all zi’s and xi’s for 1 ≤ i ≤ r + 1 with 1 and 3,
respectively, followed by recoloring x′1 with 2. 2
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Fig. 6. Coloring c′3 in Subcase 2.2

2.2. Completing the proof of Theorem 2. We discharge the vertices of G as
follows:

R1: Each 2-vertex v gets charge 1 along each feeding path started at v.

R2: Every 3-face f gets from each incident vertex v the following charge:
(i) 2 if d(v) = 3 and is a sponsor,
(ii) 3 if d(v) = 3 and v is not a sponsor,
(iii) 4 if d(v) ≥ 4.

Finally, we discharge the cut-vertex w+ of G+ as follows:

R3: w+ gives charge 1 along each feeding path started at w+ and gives charge
4 to every incident 3-face of G+.



282 O.V. BORODIN, A.O. IVANOVA

Now check that ch∗(x) ≥ 0 for every x ∈ V (G+) ∪ F (G+).

CASE 1. f ∈ F (G+). If r(f) ≥ 12 then ch∗(f) = ch(f) = r(f)−12 ≥ 0. Suppose
that f = xyz, so ch(f) = r(f)− 12 = −9. We have to check that f gets at least 9
from x, y, and z by R2 and R3. Note that at most one of x, y, and z is a sponsor of
degree 3 different from w+ due to Lemma 5, thus giving as little as 2 to f . If none
of these is such a sponsor, then ch∗(f) ≥ −9 + 3 × 3 = 0. Otherwise, f is not a
triplet since no sponsor belongs to a triplet by definition, so f gets 4 from at least
one of its incident vertices, and we have ch∗(f) ≥ −9 + 2 + 3 + 4 = 0.

CASE 2. v ∈ V (G). If d(v) = 2 then ch∗(v) = −2 + 2 × 1 = 0 by R1. Recall
that if d(v) ≥ 3 and v is adjacent to a vertex w such that edge vw does not belong
to a 3-face, then v sends at most 1 along edge vw by R1, since feeding paths do
not split due to Corollary 4. Also note that v is not incident with two consecutive
3-faces since G has no 4-cycles.

Suppose that d(v) = 3; if v does not belong to a 3-face then ch∗(v) ≥ ch(v) −
3 × 1 = 0. Otherwise, v either gives 2 to its incident 3-face by R2(i) and sends at
most 1 along its non-triangular edge by R1 (if v is a sponsor), or gives 3 by R2(ii),
so ch∗(v) ≥ 0 in both cases.

Finally, suppose that d(v) = d ≥ 4; then ch(v) = 5d − 12 ≥ 8. Let t be the
number of 3-faces incident with v; we know that t ≤ bd

2c. This implies by R1 and
R2(iii) that ch∗(v) ≥ 5d− 12− 4t− (d− 2t)× 1 = 4d− 12− 2t ≥ 3(d− 4) ≥ 0.

CASE 3. ch∗(w+) ≥ 5d + 11− 4t− (d− 2t)× 1 = 4d + 11− 2t ≥ 3d + 11 > 0.

So, after discharging according to rules R1–R3 the charge of each vertex and face
of G+ becomes non-negative, contrary to (1).

This completes the proof of Theorem 2.
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