

V. S. Monakhov, I. L. Sokhor, Finite groups with formational subnormal primary subgroups of bounded exponent, $Cu6.$ электрон. матем. изв., 2023, том 20, выпуск 2, 785–796

DOI: 10.33048/semi.2023.20.046

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 18.220.6.168 20 ноября 2024 г., 02:39:19

 $S@MR$ ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ MATEMATUYECKUE USBECTUS

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

 T OM 20, \mathcal{N} ², cmp. 785-796 (2023) SQK 512.54 DOI 10.33048/semi.2023.20.046 MSC 20D35

FINITE GROUPS WITH FORMATIONAL SUBNORMAL PRIMARY SUBGROUPS OF BOUNDED EXPONENT

V.S. MONAKHOV, I.L. SOKHOR

ABSTRACT. Let \mathfrak{U}_k be the class of all supersoluble groups in which exponents are not divided by the $(k+1)$ -th powers of primes. We investigate the classes $w\mathfrak{U}_k$ and $v\mathfrak{U}_k$ that contain all finite groups in which every Sylow and, respectively, every cyclic primary subgroup is \mathfrak{U}_k -subnormal. We prove that $w\mathfrak{U}_k$ and $v\mathfrak{U}_k$ are subgroup-closed saturated formations and obtain the characterizations of these formations.

Keywords: finite group, primary subgroup, subnormal subgroup.

1. Introduction

All groups in this paper are finite. A primary group is a group of prime power order. All fragments of the theory of group classes that we used correspond to [1].

Let $\mathfrak F$ be a non-empty formation. A subgroup H of a group G is called $\mathfrak F$ subnormal in G if either $G = H$ or there is a subgroup chain

$$
(1) \tH = H_0 \lessdot \ldots \lessdot H_i \lessdot H_{i+1} \lessdot \ldots \lessdot H_n = G
$$

such that $H_{i+1}/(H_i)_{H_{i+1}} \in \mathfrak{F}$ for all i, [1, Definition 6.1.2]. We write $X \ll Y$ if X is a maximal subgroup of a group Y, and $X_Y = \cap_{y \in Y} X^y$ is the core of a subgroup X in a group Y. If \mathfrak{X} and \mathfrak{Y} are formations and $\mathfrak{X} \subseteq \mathfrak{Y}$, then, clearly, every \mathfrak{X} subnormal subgroup is 20-subnormal. If \mathfrak{F} is a soluble formation (i.e. all groups in $\mathfrak F$ are soluble) and H is a soluble $\mathfrak F$ -subnormal subgroup of a group G, then G is soluble, [2, Lemma 2.13].

Monakhov, V.S., Sokhor, I.L. Finite groups with formational subnormal primary subgroups of bounded exponent.

[©] 2023 Monakhov V.S., Sokhor I.L.

This work is supported by the Belarusian Republican Foundation for Fundamental Research (Grant Φ 23PH Φ -237).

Received Ferbruary, 15, 2023, published October, 5, 2023.

Let $\mathbb P$ be the set of all primes. If $|H_{i+1}: H_i| \in \mathbb P$ for every i in (1), then H is P-subnormal in G , [3, Definition 1].

The class of groups with all Sylow subgroups (all cyclic primary subgroups) \mathfrak{F} subnormal is denoted by $\mathcal{W}(\mathcal{F})$, respectively). If $\mathcal{F} = \mathcal{U}$ is the formation of all supersoluble groups, then the class $w\mathfrak{U}$ ($v\mathfrak{U}$) coincides with the class of all groups in which every Sylow subgroup (every cyclic primary subgroup, respectively) is Psubnormal, [6, lemma 1.12]. The classes $\mathbf{w}\mathfrak{U}$ and $\mathbf{v}\mathfrak{U}$ are quite well investigated [3]-[9]. In particular, these classes are subgroup-closed saturated formations, wU ⊂ vU and every group from $v\mathfrak{U}$ has a Sylow tower of supersoluble type. The inclusion w⊥ ⊂ v⊥ is proper, every biprimary minimal non-supersoluble group with noncyclic non-normal Sylow subgroup belongs to $v\mathfrak{U}\setminus w\mathfrak{U}$, see [9, Example 2, Example 3].

The exponent of a group G is the least common multiple of the orders of all elements of G and denoted by $\exp(G)$. The set of all positive integers is denoted by N and the set of all positive integers not divided by the $(k + 1)$ -th powers of primes for $k \in \mathbb{N}$ is denoted by \mathbb{N}_k . If $\mathfrak X$ is a formation, then $\mathfrak X_k$ is the class of all groups from $\mathfrak X$ with exponents from $\mathbb N_k$. It is clear that $\mathfrak X_k = \mathfrak X \cap \mathfrak E_k$, where $\mathfrak E$ is the formation of all finite groups.

Introduce the following classes of groups:

- \mathfrak{U}_k is the class of all supersoluble groups with exponents from \mathbb{N}_k ;
- $w\mathfrak{U}_k = w(\mathfrak{U}_k)$ is the class of all groups in which every Sylow subgroup is \mathfrak{U}_k -subnormal;
- $v \mathfrak{U}_k = v(\mathfrak{U}_k)$ is the class of all groups in which every cyclic primary subgroup is \mathfrak{U}_k -subnormal.

Since $\mathfrak{U}_k \subset \mathfrak{U}$, we have w $\mathfrak{U}_k \subset \mathfrak{W} \mathfrak{U}$ and $\mathfrak{V} \mathfrak{U}_k \subset \mathfrak{V} \mathfrak{U}$. Hence groups in w \mathfrak{U}_k and $\mathfrak{V} \mathfrak{U}_k$ possess the properties of groups from $w\mathfrak{U}$ and $v\mathfrak{U}$, respectively. In particular, groups in w \mathfrak{U}_k and $\mathfrak{V}\mathfrak{U}_k$ have Sylow towers of supersoluble type. In addition, $\mathfrak{W}_k \subset \mathfrak{V}\mathfrak{U}_k$ (Lemma 10) and this inclusion is proper for every k (Example 4).

Although \mathfrak{U}_k is a subgroup-closed non-saturated formation, $w\mathfrak{U}_k$ and $v\mathfrak{U}_k$ are subgroup-closed saturated formations (Proposition 1 and Proposition 2). The following theorems contain the characterizations of groups from these formations.

Theorem 1. For a group G, the following statements are equivalent.

- (1) Every Sylow subgroup of G is \mathfrak{U}_k -subnormal in G, i. e. $G \in \mathfrak{W}\mathfrak{U}_k$.
- (2) $G/\Phi(G) \in (\mathfrak{w}\mathfrak{U}_k)_k;$
- (3) $A/\Phi(A) \in \mathfrak{U}_k$ for every metanilpotent subgroup A of G;
- (4) $B/\Phi(B) \in \mathfrak{U}_k$ for every biprimary subgroup B of G.

Corollary 1. If $G \in \mathfrak{W}\mathfrak{U}_k$, then $G/F(G) \in \mathcal{A}_k$.

Here A_k is the class of all groups with abelian Sylow subgroups of exponent from \mathbb{N}_k .

Corollary 2. For a metanilpotent group G , the following statements are equivalent.

- (1) Every Sylow subgroup of G is \mathfrak{U}_k -subnormal in G.
- (2) $G/\Phi(G) \in \mathfrak{U}_k$
- (3) $G \in \mathfrak{U}$ and $G/F(G) \in \mathfrak{A}_k$.

Here \mathfrak{A}_k is the class of all abelian groups with exponents from \mathbb{N}_k .

Theorem 2. For a group G, the following statements are equivalent.

(1) Every cyclic primary subgroup of G is \mathfrak{U}_k -subnormal in G, i.e. $G \in \mathcal{V}\mathfrak{U}_k$.

 (2) $G/\Phi(G) \in (\text{v}\mathfrak{U}_k)_k$.

- (3) $A/\Phi(A) \in \mathfrak{U}_k$ for every subgroup A with nilpotent derived subgroup.
- (4) $B/\Phi(B) \in \mathfrak{U}_k$ for every biprimary subgroup B with cyclic Sylow subgroup.

Corollary 3. $\mathfrak{U} \cap \mathrm{w}\mathfrak{U}_k = \mathfrak{N}^2 \cap \mathrm{w}\mathfrak{U}_k = \mathfrak{U} \cap \mathrm{v}\mathfrak{U}_k = \mathfrak{N}\mathfrak{A} \cap \mathrm{v}\mathfrak{U}_k$. In particular, every Sylow subgroup of a supersoluble group G is \mathfrak{U}_k -subnormal in G if and only if every cyclic primary subgroup of G is \mathfrak{U}_k -subnormal in G.

Here \mathfrak{N}^2 is the class of all metanilpotent groups and $\mathfrak{N}\mathfrak{A}$ is the class of all groups with nilpotent derived subgroup. Both of these classes are subgroup-closed saturated formations.

2. Preliminaries

Throughout this paper, k denotes an positive integer. We write $H \leq G$ ($H \leq G$) if H is a (proper) subgroup of G. A subgroup H of G is non-trivial if $H \neq 1$ and $H \neq G$. By $\pi(k)$ we denote the set of all primes dividing k. For a group G, $\pi(G) = \pi(|G|)$, where |G| is the order of G. If

$$
|G| = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}, \ p_1 < p_2 < \dots < p_n,
$$

and G has a normal series $G = G_0 \ge G_1 \ge \ldots \ge G_{n-1} \ge G_n = 1$ such that G_{i-1}/G_i is isomorphic to a Sylow p_i -subgroup of G for every i, then we say that G has a Sylow tower of supersoluble type. It is easy to check that the class $\mathfrak D$ of all groups with Sylow tower of supersoluble type is a subgroup-closed saturated Fitting formation. The class $\mathcal A$ of all groups with abelian Sylow subgroups is a subgroup-closed formation, but it is not a saturated formation and it is not a Fitting formation.

The greatest common divisor (gcd) and the least common multiple (lcm) of integers a and b are denoted by (a, b) and $[a, b]$, respectively. We repeatedly use the following simplest properties of \mathbb{N}_k .

Lemma 1. (1) If $n \in \mathbb{N}_k$ and d divides n, then $d \in \mathbb{N}_k$ and $n/d \in \mathbb{N}_k$. (2) If $a, b \in \mathbb{N}_k$, then $(a, b) \in \mathbb{N}_k$ and $[a, b] \in \mathbb{N}_k$.

Lemma 2. (1) $\pi(G) = \pi(\exp(G))$ and $\exp(G)$ divides |G|.

(2) The exponent of G is equal to lcm of orders of primary elements of G.

(3) If H is a subgroup of G and N is a normal subgroup of G, then $\exp(H)$ and $\exp(G/N)$ divide $\exp(G)$.

(4) If $G = G_1 \times G_2$, where $G_1 \leq G$ and $G_2 \leq G$, then $\exp(G) = [\exp(G_1), \exp(G_2)]$.

Proof. (1) For every $p \in \pi(G)$, there is an element of order p in G by Sylow's Theorem. Hence $\pi(G) = \pi(\exp(G))$. In view of Lagrange's Theorem, the order of every element of G divides $|G|$. Therefore $exp(G)$ divides $|G|$ by Lemma 1 (2).

(2) Assume that $\pi(G) = \{p_1, p_2, \ldots, p_m\}$, $p_1 < p_2 < \ldots < p_m$, and $\exp(G) =$ $p_1^{n_1}p_2^{n_2} \ldots p_m^{n_m}$. For every $i = 1, 2, \ldots, m$, there is an element x_i in G such that $|x_i| = p_i^{n_i} t_i$ and p_i does not divide t_i . It is clear that $x_i^{t_i}$ is a primary element of order $p_i^{n_i}$ and $[x_1^{t_i}, x_2^{t_2}, \ldots, x_m^{t_m}] = \exp(G)$.

(3) This statement true in view of Lagrange's Theorem.

(4) According to Statement (3), $exp(G_1)$ and $exp(G_2)$ divide $exp(G)$. Hence $[\exp(G_1), \exp(G_2)]$ divides $\exp(G)$. Since any element $g \in G$ can be represented as $g = g_1 g_2$, where $g_1 \in G_1$, $g_2 \in G_2$ and $|g| = |[g_1|, |g_2|]$, we conclude that $\exp(G)$ divides $[\exp(G_1), \exp(G_2)]$. Consequently, $[\exp(G_1), \exp(G_2)] = \exp(G)$. \Box

A class $\mathfrak X$ is saturated if $G \in \mathfrak X$ whenever $G/\Phi(G) \in \mathfrak X$. Here $\Phi(G)$ is the Frattini subgroup of a group G. If $H \in \mathfrak{X}$ whenever $H \leq G$ and $G \in \mathfrak{X}$, then \mathfrak{X} is a subgroup-closed class.

Lemma 3. (1) \mathfrak{E}_k is a subgroup-closed formation.

(2) If $\mathfrak X$ is a (subgroup-closed) formation, then $\mathfrak X_k = \mathfrak X \cap \mathfrak E_k$ is a (subgroup-closed) formation.

(3) If \mathfrak{X} and \mathfrak{Y} are formations, then $(\mathfrak{X} \cap \mathfrak{Y})_k = \mathfrak{X}_k \cap \mathfrak{Y}_k$ and $(\mathfrak{X}\mathfrak{Y})_k \subset \mathfrak{X}_k \mathfrak{Y}_k$.

Proof. (1) Assume that $G \in \mathfrak{E}_k$ and N is a normal subgroup of G. Then $\exp(G) \in$ \mathbb{N}_k and $\exp(G/N)$ divides $\exp(G)$ by Lemma 2(3). Hence $\exp(G/N) \in \mathbb{N}_k$ by Lemma 1 (1), and $G/N \in \mathfrak{E}_k$. Consequently, \mathfrak{E}_k is a homomorph.

Let N_1 and N_2 be normal subgroups of G and let G/N_1 , $G/N_2 \in \mathfrak{E}_k$. By Remak's Lemma, $G/(N_1 \cap N_2)$ is isomorphic to a subgroup which is a subdirect product of the direct product $G/N_1 \times G/N_2$. Since $\exp(G/N_i) \in N_k$ for $i = 1, 2$ and $\exp(G/N_1 \times G/N_2)$ G/N_2 = $[\exp(G/N_1), \exp(G/N_2)]$ by Lemma 2(4), we get $\exp(G/N_1 \times G/N_2) \in \mathbb{N}_k$ by Lemma 1 (2). Consequently, \mathfrak{E}_k is a formation.

Assume that $G \in \mathfrak{E}_k$ and H is a subgroup of G. In that case, $\exp(G) \in \mathbb{N}_k$ and $\exp(H)$ divides $\exp(G)$. Consequently, $\exp(H) \in \mathbb{N}_k$ by Lemma 1 (1) and $H \in \mathfrak{E}_k$. Thus \mathfrak{E}_k is a subgroup-closed formation.

(2) Since the intersection of (subgroup-closed) formations is a (subgroup-closed) formation and in view of Statement (1), Statement (2) is true.

(3) Let $G \in (\mathfrak{X} \cap \mathfrak{Y})_k$. In that case, $G \in (\mathfrak{X} \cap \mathfrak{Y})$ and $\exp(G) \in \mathbb{N}_k$. Hence $G \in \mathfrak{X}_k$ $\{u \in \mathfrak{Y}_k\}$. It follows that $G \in \mathfrak{X}_k \cap \mathfrak{Y}_k$ and $(\mathfrak{X} \cap \mathfrak{Y})_k \subseteq \mathfrak{X}_k \cap \mathfrak{Y}_k$. Now assume that $G \in \mathfrak{X}_k \cap \mathfrak{Y}_k$. Then $G \in \mathfrak{X}_k \subseteq \mathfrak{X}$ and $G \in \mathfrak{Y}_k \subseteq \mathfrak{Y}$, $\exp(G) \in \mathbb{N}_k$. Therefore $G \in (\mathfrak{X} \cap \mathfrak{Y})_k$ and $(\mathfrak{X} \cap \mathfrak{Y})_k = \mathfrak{X}_k \cap \mathfrak{Y}_k$.

Let $G \in (\mathfrak{X}\mathfrak{Y})_k$. In that case, $G \in \mathfrak{X}\mathfrak{Y}$ \mathfrak{u} exp $(G) \in \mathbb{N}_k$. Since $G \in \mathfrak{X}\mathfrak{Y}$, we get $G^{2j} \in \mathfrak{X}$. From $\exp(G) \in \mathbb{N}_k$ it follows that $\exp(G^{2j}) \in \mathbb{N}_k$ and $\exp(G/G^{2j}) \in \mathbb{N}_k$. Hence $G^{ \mathfrak{Y}} \in \mathfrak{X}_k,$ $G/G^{ \mathfrak{Y}} \in \mathfrak{Y}_k$ and $G^{ \mathfrak{Y}_k } \leq G^{ \mathfrak{Y}_k }$. But $\mathfrak{Y}_k \subseteq \mathfrak{Y}$. Therefore $G^{ \mathfrak{Y}} \leq G^{ \mathfrak{Y}_k }$. Consequently, $G^{\mathfrak{Y}_k} = G^{\mathfrak{Y}}$ and $G \in \mathfrak{X}_k \mathfrak{Y}_k$. Thus, $(\mathfrak{X}\mathfrak{Y})_k \subseteq \mathfrak{X}_k \mathfrak{Y}_k$.

Example 1. Note that the reverse inclusion in Lemma 3 (3) does not hold, an example is $D_8 \in \mathfrak{N}_1 \mathfrak{N}_1 \setminus (\mathfrak{NN})_1$. Here D_8 is the dihedral group of order 8.

Note that $w\mathfrak{U}_k$ and $(w\mathfrak{U})_k$ are distinct classes: $w\mathfrak{U}_k = w(\mathfrak{U}_k)$ is the class of all groups in which every Sylow subgroup is \mathfrak{U}_k -subnormal; the class $(\mathfrak{w}\mathfrak{U})_k = \mathfrak{w}\mathfrak{U} \cap \mathfrak{E}_k$ consists of all groups with U-subnormal Sylow subgroups and exponent that is not divided by the $(k + 1)$ -th powers of primes.

Similarly, $v\mathfrak{U}_k$ and $(v\mathfrak{U})_k$ are also distinct classes: $v\mathfrak{U}_k = v(\mathfrak{U}_k)$ is the class of all groups in which every primary cyclic subgroup is \mathfrak{U}_k -subnormal; $(v\mathfrak{U})_k = v\mathfrak{U} \cap \mathfrak{E}_k$ consists of all groups with U-subnormal primary cyclic subgroups and exponent that is not divided by the $(k + 1)$ -th powers of primes.

Lemma 4. (1) $(w\mathfrak{U})_k$ and $(v\mathfrak{U})_k$ are subgroup-closed formations for any k. (2) $(w \mathfrak{U})_k \subset w \mathfrak{U}_k$ and $(v \mathfrak{U})_k \subset v \mathfrak{U}_k$ for any k.

Proof. (1) Since w \mathfrak{U} and $\mathfrak{V}\mathfrak{U}$ are subgroup-closed saturated formations, $(\mathfrak{w}\mathfrak{U})_k =$ $w\mathfrak{U}\cap\mathfrak{E}_k$ and $(v\mathfrak{U})_k = v\mathfrak{U}\cap\mathfrak{E}_k$, we deduce that $(w\mathfrak{U})_k$ and $(v\mathfrak{U})_k$ are subgroupclosed formations by Lemma 3 (2).

(2) Let $G \in (\mathfrak{w}\mathfrak{U})_k$. In that case, $\exp(G) \in \mathbb{N}_k$ and every Sylow subgroup of G is $\mathfrak U$ -subnormal in G. Assume that R is a Sylow subgroup of G. By hypothesis, there

is a subgroup chain

$$
R = H_0 \ll \ldots \ll H_i \ll H_{i+1} \ll \ldots \ll H_n = G
$$

such that $H_{i+1}/(H_i)_{H_{i+1}} \in \mathfrak{U}$ for every i. By Lemma 1, $\exp\left(H_{i+1}/(H_i)_{H_{i+1}}\right) \in \mathbb{N}_k$. Hence $H_{i+1}/(H_i)_{H_{i+1}} \in \mathfrak{U}_k$ for every i. Thus R is \mathfrak{U}_k -subnormal in G and $G \in \mathfrak{W}\mathfrak{U}_k$.

Let $G \in (\mathcal{V} \mathfrak{U})_k$. Then $\exp(G) \in \mathbb{N}_k$ and every cyclic primary subgroup of G is \mathfrak{U} -subnormal in G. Assume that A is a cyclic primary subgroup of G. By hypothesis, there is a subgroup chain $A = H_0 \ll \ldots \ll H_i \ll H_{i+1} \ll \ldots \ll H_n = G$ such that $H_{i+1}/(H_i)_{H_{i+1}} \in \mathfrak{U}$ for every i. Since $\exp\left(H_{i+1}/(H_i)_{H_{i+1}}\right) \in \mathbb{N}_k$, we get $H_{i+1}/(H_i)_{H_{i+1}}$ $\in \mathfrak{U}_k$ for every i. Therefore A is \mathfrak{U}_k -subnormal in G and $G \in$ $\mathsf{v}\mathfrak{U}_k$. \square

Example 2. In Lemma $4(2)$, the inclusion is proper. In the non-cyclic group $G = C_3 \rtimes C_{2^{k+1}} = \langle a, b \mid a^3 = b^{2^{k+1}} = 1, a^b = a^2 \rangle$, a Sylow 3-subgroup C_3 is normal. Therefore C_3 is \mathfrak{U}_1 -subnormal in G . A Sylow 2-subgroup $C_{2^{k+1}}$ is also \mathfrak{U}_1 -subnormal in G, since

$$
(C_{2^{k+1}})_G \cong C_{2^k}, \ \ G/(C_{2^{k+1}})_G \cong S_3 \in \mathfrak{U}_1.
$$

Thus, $G \in \mathfrak{w}\mathfrak{U}_1 \subset \mathfrak{w}\mathfrak{U}_k$, but $G \notin (\mathfrak{w}\mathfrak{U})_k$ in view of $\exp(G) = 3 \cdot 2^{k+1}$.

Remind the properties of $\mathfrak F$ -subnormal subgroups that we use.

Lemma 5. Let \mathfrak{F} be a formation, let H and K be subgroups of G and let N be a normal subgroup of G. The following statement hold.

(1) If K is $\mathfrak F$ -subnormal in H and H is $\mathfrak F$ -subnormal in G, then K is $\mathfrak F$ -subnormal in G $[1, 6.1.6(1)].$

(2) If K/N is \mathfrak{F} -subnormal in G/N , then K is \mathfrak{F} -subnormal in G [1, 6.1.6(2)].

(3) If H is $\mathfrak F$ -subnormal in G, then HN/N is $\mathfrak F$ -subnormal in G/N [1, 6.1.6(3)].

(4) If $\mathfrak F$ is a subgroup-closed formation and H is $\mathfrak F$ -subnormal in G, then $H \cap K$ is $\mathfrak{F}\text{-}subnormal$ in K $[1, 6.1.7(2)].$

(5) If $\mathfrak F$ is a subgroup-closed formation and H and K are $\mathfrak F$ -subnormal in G, then $H \cap K$ is \mathfrak{F} -subnormal in G [1, 6.1.7(3)].

Lemma 6. If \mathfrak{F} is a subgroup-closed formation and H is \mathfrak{F} -subnormal in G, then $H^{\mathfrak{F}}$ is subnormal in G.

Proof. Use induction on |G|. If $H = G$, then $H^{\mathfrak{F}} = G^{\mathfrak{F}}$ is normal in G. Let H be a proper subgroup of G . In that case, there is a maximal subgroup M of G such that M contains H and $G^{\mathfrak{F}}$. By induction, $H^{\mathfrak{F}}$ is subnormal in M. Since $H^{\mathfrak{F}} < G^{\mathfrak{F}} < M$, we deduce that $H^{\mathfrak{F}}$ is subnormal in $G^{\mathfrak{F}}$. But $G^{\mathfrak{F}}$ is normal in G. Therefore $H^{\mathfrak{F}}$ is subnormal in G . \Box

Lemma 7. If H is a subnormal subgroup of a soluble group G, then H is \mathfrak{U}_1 -subnormal in G.

Proof. Assume that H is a subnormal subgroup of a soluble group G. In that case, there is a composition series such that

$$
1 = H_0 \le H_1 \le \ldots \le H_j = H \le H_{j+1} \le \ldots \le H_m = G.
$$

Since G is soluble, we get $|H_{j+1}/(H_j)_{H_{j+1}}| = |H_{j+1}/H_j| \in \mathbb{P}$ and $H_{j+1}/H_j \in \mathfrak{U}_k$. Therefore H is \mathfrak{U}_k -subnormal in G.

Example 3. In the Frobenius group $F_5 = C_5 \rtimes C_4$, a Sylow subgroup C_4 is \mathfrak{U} -subnormal, but C_4 is not \mathfrak{U}_1 -subnormal and not subnormal.

We repeatedly use the following lemma.

Lemma 8. If H is a non-normal subgroup of a soluble group G and $|G : H| = r \in \mathbb{P}$, then $G/H_G \cong C_r \rtimes C_t$, where t divides $r-1$. In particular, G/H_G is supersoluble.

Proof. According to $|G : H| \in \mathbb{P}$, we deduce that H is a maximal subgroup of G and $\overline{G} = G/H_G$ is a soluble primitive group. Therefore $\overline{G} = \overline{N} \rtimes \overline{H}$, where $\overline{N} = F(\overline{G}) = C_{\overline{G}}(\overline{N})$ is the unique minimal normal subgroup of \overline{G} , $\overline{H} = H/H_G$ is a maximal subgroup of \overline{G} . Hence

$$
|\overline{N}|=|\overline{G}:\overline{H}|=|G:H|=r,\ \overline{N}\cong C_r,\ N_{\overline{G}}(\overline{N})/C_{\overline{G}}(\overline{N})=\overline{G}/\overline{N}\cong \overline{H}
$$

and \overline{H} is isomorphic to a subgroup of the automorphism group of \overline{N} . Therefore $\overline{H} \cong C_t$ and t divides $r-1$. Thus, $G/H_G \cong C_r \rtimes C_t$, in particular, G/H_G is supersoluble. \Box

3. GROUPS WITH \mathfrak{U}_k -SUBNORMAL SYLOW SUBGROUPS

We repeatedly use the following properties of groups with \mathfrak{U} -subnormal Sylow subgroups.

Lemma 9. (1) A group $G \in \mathbb{W}$ if and only if every metanilpotent subgroup of G is supersoluble, [6, Theorem 2.6 (2)]. In particular, $\mathfrak{U} = \mathfrak{w} \mathfrak{U} \cap \mathfrak{N}^2$.

(2) A group $G \in \mathcal{W} \mathcal{U}$ if and only if every biprimary subgroup of G is supersoluble, [4, Theorem B (1)], [9, Theorem 1 (2)].

(3) If $G \in \mathbb{W} \mathfrak{U}$, then G has a Sylow tower of supersoluble type and every Sylow subgroup of $G/F(G)$ is abelian, [3, Proposition 2.8; Theorem 2.13 (3)].

(4) Every minimal non-supersoluble subgroup of G is threeprimary if and only if $G \in \mathbb{W} \mathfrak{U}, [9, \text{Corollary } 1 (2)]$.

Proposition 1. will use a subgroup-closed saturated formation.

Proof. By Lemma 3(2), \mathfrak{U}_k is a subgroup-closed formation. Therefore $w\mathfrak{U}_k$ is a subgroup-closed formation by [10, Theorem 3.1 (5)].

Now we prove that $w\mathfrak{U}_k$ is a saturated formation. Assume the contrary and let G be a group of least order such that $G/\Phi(G) \in \mathcal{W}\mathcal{U}_k$ and $G \notin \mathcal{W}\mathcal{U}_k$.

Assume that $N \neq 1$ is a normal subgroup of G and $\Phi(G/N) = K/N$. Since

$$
\Phi(G)N/N = \left(\cap_{M\leq G}M\right)N/N \leq \left(\cap_{N\leq H\leq G}H\right)/N = \Phi(G/N) = K/N,
$$

we get $\Phi(G)N \leq K$. Since

$$
G/K \cong (G/\Phi(G))/(K/\Phi(G)),\ G/\Phi(G) \in w\mathfrak{U}_k
$$

and $w\mathfrak{U}_k$ is a homomorph, we have $G/K \in w\mathfrak{U}_k$. Hence

$$
(G/N)/(\Phi(G/N)) = (G/N)/(K/N) \cong G/K \in \mathfrak{w}\mathfrak{U}_k.
$$

Since $|G/N| < |G|$, we get $G/N \in \mathfrak{w}\mathfrak{U}_k$. Thus $G/N \in \mathfrak{w}\mathfrak{U}_k$ for every non-identity normal subgroup N of G. Since $w\mathfrak{U}_k$ is a formation, G has the unique minimal normal subgroup.

Since G has a Sylow tower of supersoluble type, a Sylow r -subgroup R of G is normal in G for $r = \max \pi(G)$. It is clear that $R = F(G)$ and $O_p(G) = 1$ for all $p \in \pi(G) \setminus \{r\}$. In view of Lemma 7, R is \mathfrak{U}_k -subnormal in G.

Let Q be a Sylow q-subgroup of G for $q \neq r$. Since $G/\Phi(G) \in \mathfrak{w}\mathfrak{U}_k$, we deduce that $Q\Phi(G)/\Phi(G)$ is \mathfrak{U}_k -subnormal in $G/\Phi(G)$. By Lemma 6,

$$
(Q\Phi(G)/\Phi(G))^{\mathfrak{U}_k} = Q^{\mathfrak{U}_k} \Phi(G)/\Phi(G)
$$

is subnormal in $G/\Phi(G)$. Consequently,

$$
Q^{\mathfrak{U}_k} \Phi(G) / \Phi(G) \le F(G/\Phi(G)) = F(G)/\Phi(G), \ Q^{\mathfrak{U}_k} = 1.
$$

Therefore exponents of all Sylow r'-subgroup of G belong to \mathbb{N}_k . Since QR/R is a Sylow q-subgroup of $G/R \in \mathfrak{w}\mathfrak{U}_k$, QR/R is \mathfrak{U}_k -subnormal in G/R . According to Lemma 5 (2), QR is \mathfrak{U}_k -subnormal in G. In view of $QR \leq G \in \mathfrak{w}\mathfrak{U}$, we have Q is $\mathfrak{U}\text{-subnormal in }QR.$ Therefore there is a subgroup chain

$$
Q = M_0 \lessdot M_1 \lessdot \ldots \lessdot M_i \lessdot M_{i+1} \lessdot \ldots \lessdot M_n = QR
$$

such that $|M_{i+1}: M_i| \in \mathbb{P}$ for every i. Denote $M_i = A$ and $M_{i+1} = B$. Clearly, $|B : A| = r$. In view of Lemma 8, $B/A_B \cong C_r \rtimes C_t$, where t divides $r - 1$. Since $\exp(Q) \in \mathbb{N}_k$, we deduce that $\exp(B/A_B) \in \mathbb{N}_k$ and $B/A_B \in \mathfrak{U}_k$. Hence Q is \mathfrak{U}_k -subnormal in QR . Consequently, Q is \mathfrak{U}_k -subnormal in G by Lemma 5 (1). Thus all Sylow subgroups of G are \mathfrak{U}_k -subnormal in G and $G \in \mathfrak{w}\mathfrak{U}_k$.

Proof of Theorem 1. (1) \Rightarrow (2): Assume that every Sylow subgroup of G is \mathfrak{U}_k -subnormal in G, i.e. $G \in \mathbb{W}\mathfrak{U}_k$. Use induction on $|G|$ to prove $G/\Phi(G) \in (\mathbb{W}\mathfrak{U}_k)_k$. Suppose that there is a maximal subgroup M of G such that $M_G = 1$. In that case, G is a primitive group, $\Phi(G) = 1$, $G = F(G) \rtimes M$, where $F(G)$ is the unique minimal normal subgroup of G . Since G has a Sylow tower of supersoluble type, a Sylow r-subgroup R is normal in G for $r = \max \pi(G)$. Hence $R = F(G)$ and R is an elementary abelian r-subgroup. If Q is a Sylow q-subgroup of G for $q \neq r$, Q is \mathfrak{U}_k -subnormal in G and $Q^{\mathfrak{U}_k}$ is subnormal in G by Lemma 6. Therefore $Q^{\mathfrak{U}_k} \leq$ $F(G) = R$ in view of [11, Theorem 2.2]. Consequently, $Q^{\mathfrak{U}_k} = 1$ and the exponent of every Sylow r' -subgroup of G belongs to \mathbb{N}_k . Thus all Sylow subgroups of G have exponents from \mathbb{N}_k and $G \in (\mathfrak{w}\mathfrak{U}_k)_k$ by Lemma 2(2).

Now assume that $M_G \neq 1$ for every maximal subgroup M of G. Since $G/M_G \in$ $w\mathfrak{U}_k$, by induction,

$$
(G/M_G)/\Phi(G/M_G) \in (\mathfrak{w}\mathfrak{U}_k)_k.
$$

But G/M_G is a primitive group, hence $\Phi(G/M_G) = 1$ and $G/M_G \in (w\mathfrak{U}_k)_k$ for every maximal subgroup M of G. Since $\Phi(G) = \bigcap_{M \le G} M_G$ and $(w \mathfrak{U}_k)_k$ is a formation, we get $G/\Phi(G) \in (\mathfrak{w}\mathfrak{U}_k)_k$.

 $(1) \leftarrow (2)$: Let $G/\Phi(G) \in (\mathfrak{w}\mathfrak{U}_k)_k$. Since $(\mathfrak{w}\mathfrak{U}_k)_k \subseteq \mathfrak{w}\mathfrak{U}_k$ and $\mathfrak{w}\mathfrak{U}_k$ is a saturated formation in view of Proposition 1, we get $G \in \mathbb{W}\mathfrak{U}_k$.

Thus, $(1) \Leftrightarrow (2)$ is proved.

 $(1) \Rightarrow (3)$: Assume that $G \in \mathcal{U}_k$ and A is a metanilpotent subgroup of G. In that case, $G \in \mathbb{W} \mathfrak{U}$, and by Lemma 9(1), $A \in \mathfrak{U}$. Since $\mathbb{W} \mathfrak{U}_k$ is a subgroup-closed formation in view of Proposition 1, we get $A \in \mathcal{W} \mathcal{U}_k$. According proved Statement $(1) \Rightarrow (2), A/\Phi(A) \in (w\mathfrak{U}_k)_k$. Consequently, $A/\Phi(A) \in \mathfrak{U} \cap (w\mathfrak{U}_k)_k \subseteq \mathfrak{U}_k$.

 $(1) \Leftarrow (3)$: Let $A/\Phi(A) \in \mathfrak{U}_k$ for every metanilpotent subgroup A of G. Since $\mathfrak{U}_k \subseteq \mathfrak{U}$, every metanilpotent subgroup A of G is supersoluble. In view of Lemma 9 (1), $G \in \mathbb{W} \mathfrak{U}$. Choose G of least order such that $G \in \mathbb{W} \mathfrak{U} \setminus \mathbb{W} \mathfrak{U}_k$. Since $G \in \mathbb{W} \mathfrak{U}$, a Sylow r-subgroup R of G is normal in G for $r = \max \pi(G)$. In view of Lemma 7, R is \mathfrak{U}_k -subnormal in G. Assume that Q is a Sylow q-subgroup of G for $q \neq r$. In that case, $R \rtimes Q$ is metanilpotent and $R \rtimes Q/\Phi(R \rtimes Q) \in \mathfrak{U}_k \subseteq \mathfrak{W}\mathfrak{U}_k$ by the choice of G. Since $w\mathfrak{U}_k$ is a saturated formation by Proposition 1, we get $R \rtimes Q \in$ w \mathfrak{U}_k . Hence QR is a proper subgroup of G and Q is \mathfrak{U}_k -subnormal in QR . Let U_1/R be a metanilpotent subgroup of G/R . Since $(|U_1/R|, |R|) = 1$, by the Schur-Zassenhaus Theorem, there is a subgroup U such that $U_1 = R \rtimes U$ and $U_1/R \cong U$ is metanilpotent. By the choice of $G, U/\Phi(U) \in \mathfrak{U}_k$. Hence

$$
(U_1/R)/\Phi(U_1/R)\cong U/\Phi(U)\in\mathfrak{U}_k.
$$

Thus G/R satisfies Statement (3) and $G/R \in \mathbb{W}\mathfrak{U}_k$ by the choice of G. Hence a Sylow subgroup QR/R is \mathfrak{U}_k -subnormal in G/R . According to Lemma 5 (2), QR is \mathfrak{U}_k -subnormal in G, and Q is \mathfrak{U}_k -subnormal in G by Lemma 5 (1). Thus all Sylow subgroups of G is \mathfrak{U}_k -subnormal in G and $G \in \mathfrak{W}\mathfrak{U}_k$.

Statement $(1) \Leftrightarrow (3)$ is proved.

 $(1) \Rightarrow (4)$: Assume that $G \in \mathbb{W}\mathfrak{U}_k$ and B is a biprimary subgroup of G. In that case, $G \in \mathbb{W} \mathfrak{U}$, and by Lemma 9(2), B is supersoluble. Since $\mathbb{W} \mathfrak{U}_k$ is a subgroupclosed formation by Proposition 1, we have $B \in w\mathfrak{U}_k$. By proved Statement (1) \Rightarrow $(2), B/\Phi(B) \in (\mathfrak{w}\mathfrak{U}_k)_k$. Consequently, $B/\Phi(B) \in \mathfrak{U} \cap (\mathfrak{w}\mathfrak{U}_k)_k \subseteq \mathfrak{U}_k$.

 $(1) \leftarrow (4)$: Let G be a group of least order such that $B/\Phi(B) \in \mathfrak{U}_k$ for every biprimary subgroup B of G and $G \notin \mathfrak{w}\mathfrak{U}_k$. In that case, G has a Sylow q-subgroup Q for a prime $q \in \pi(G)$ that is not \mathfrak{U}_k -subnormal in G. Since $\mathfrak{U}_k \subseteq \mathfrak{U}$, every biprimary subgroup of G is supersoluble. By Lemma 9(2), $G \in \mathcal{U}$, in particular, G has a Sylow tower of supersoluble type. Consequently, for $r = \max \pi(G)$, a Sylow r-subgroup R of G is normal in G. In view of Lemma 7, R is \mathfrak{U}_k -subnormal in G and $r > q$. By the choice of G, $QR/\Phi(QR) \in \mathfrak{U}_k \subseteq \mathfrak{W}\mathfrak{U}_k$. Hence $QR \in \mathfrak{W}\mathfrak{U}_k$ by Proposition 1, in particular, Q is \mathfrak{U}_k -subnormal in QR and $QR < G$. Assume that H/R is a biprimary subgroup of G/R . By the Schur-Zassenhaus Theorem, there is a biprimary subgroup B of H such that $H = R \rtimes B$, $H/R \cong B$. By the choice of $G, B/\Phi(B) \in \mathfrak{U}_k$. Therefore

$$
(H/R)/\Phi(H/R) \cong B/\Phi(B) \in \mathfrak{U}_k.
$$

By induction, $G/R \in \mathfrak{W} \mathfrak{U}_k$, hence QR/R is \mathfrak{U}_k -subnormal in G/R . It follows that QR is \mathfrak{U}_k -subnormal in G by Lemma 5 (2), and Q is \mathfrak{U}_k -subnormal in G by Lemma 5 (1), a contradiction.

Statement $(1) \Leftrightarrow (4)$ is proved.

$$
\qquad \qquad \Box
$$

Proof of Corollary 1. Since $G \in \forall \mathfrak{U}_k \subset \forall \mathfrak{U}$, we get $G/F(G) \in \mathcal{A}$ by Lemma 9 (3). In view of theorem 1 ((1) \Rightarrow (2)) $G/\Phi(G) \in (\mathfrak{w}\mathfrak{U}_k)_k$. Therefore

$$
G/F(G) \cong (G/\Phi(G))/(F(G)/\Phi(G)) \in \mathcal{A} \cap (\mathbf{w}\mathfrak{U}_k)_k \subseteq \mathcal{A}_k.
$$

Proof of Corollary 2. (1) \Leftrightarrow (2): If $G \in \mathfrak{N}^2$ and every Sylow subgroup of G is \mathfrak{U}_k -subnormal in G, then $G/\Phi(G) \in \mathfrak{U}_k$ by Theorem 1 ((1) \Rightarrow (3)). Conversely, if $G/\Phi(G) \in \mathfrak{U}_k$, then $G \in \mathfrak{W}\mathfrak{U}_k$ by Theorem $1((1) \Leftarrow (2)).$

 $(1) \Leftrightarrow (3)$: If $G \in \mathfrak{N}^2 \cap w\mathfrak{U}_k$, then $G/\Phi(G) \in \mathfrak{U}_k$ by proved Statement $(1) \Rightarrow (2)$. Since $G/F(G)$ is abelian, we get $G/F(G) \cong (G/\Phi(G))/(F(G)/\Phi(G)) \in \mathfrak{A} \cap \mathfrak{U}_k =$ \mathfrak{A}_k . Conversely, let $G/F(G) \in \mathfrak{A}_k$ and let $G \in \mathfrak{U}$. Use induction on $|G|$ to prove that every Sylow subgroup of G is \mathfrak{U}_k -subnormal in G. Assume that P is a Sylow p-subgroup and N is a minimal normal subgroup of G such that $|N| = r$ and $r = \max \pi(G)$. By induction, PN/N is \mathfrak{U}_k -subnormal in G/N . Hence PN is \mathfrak{U}_k subnormal in G and $p < r$. Since

$$
F(G) \leq C_G(N), \; PN/C_{PN}(N) = PN/(PN \cap C_G(N)) \cong PC_G(N)/C_G(N) \leq
$$

$$
\leq G/C_G(N) \cong (G/F(G))/(C_G(N)/F(G)) \in \mathfrak{A}_k,
$$

and $G/C_G(N)$ is cyclic, we deduce that $PN/C_{PN}(N)$ is cyclic and $|PN/C_{PN}(N)| =$
 $p^t \leq p^k$. Next,

 $C_{PN}(N) = P_1 \times N$, $P_1 = P_{PN} \leq P \leq PN$, $PN/P_1 \cong C_r \rtimes C_{p^t} \in \mathfrak{U}_k$,

therefore P \mathfrak{U}_k -subnormal in PN. By Lemma 5 (1), P is \mathfrak{U}_k -subnormal in G. \Box

4. GROUPS WITH \mathfrak{U}_k -SUBNORMAL CYCLIC PRIMARY SUBGROUPS

Groups with $\mathfrak{U}\text{-subnormal cyclic primary subgroups were first considered in [4].}$ The class of such groups was later denoted by vU. In Introduction, we indicate that $w\mathfrak{U} \subset v\mathfrak{U}$ and this inclusion is proper.

Lemma 10. w $\mathfrak{U}_k \subset \mathrm{V} \mathfrak{U}_k$.

Proof. Let $G \in \mathbb{W}\mathfrak{U}_k$. Then every Sylow subgroup of G is \mathfrak{U}_k -subnormal in G. In view of Lemma 7, every p-subgroup is \mathfrak{U}_1 -subnormal in a Sylow p-subgroup. Hence every primary subgroup of G is \mathfrak{U}_k -subnormal in G and $G \in \mathcal{V}\mathfrak{U}_k$.

Example 4. In $GL(3,7)$, there is a non-abelian subgroup Q of order $3³$ and exponent 3 that acts irreducibly on an elementary abelian group P of order $7³$ [12]. The semidirect product $G = P \rtimes Q$ is a minimal non-supersoluble group and $G \in \mathcal{V}$ according to [9, Corollary 2(2)]. It corresponds to the group from [13, Theorem 9 (Type 10)]. Since $\exp(G) = 3 \cdot 7$, we have $G \in \mathcal{V}(\mathcal{U})$. Biprimary groups in w \mathfrak{U} are supersoluble, therefore $G \notin \mathfrak{w}\mathfrak{U}$, and $G \notin \mathfrak{w}\mathfrak{U}_1$. Clearly, $G \in \mathfrak{v}\mathfrak{U}_k \setminus \mathfrak{w}\mathfrak{U}_k$ for any k .

We repeatedly use the following properties of groups with $\mathfrak{U}\text{-}$ subnormal primary cyclic subgroups.

Lemma 11. (1) A group $G \in \forall \mathcal{U}$ if and only if every subgroup of G with nilpotent derived subgroup is supersoluble, [6, Theorem 2.6 (1)], [9, Theorem 2 (1)]. In particular, $\mathfrak{U} = \mathbf{V}\mathfrak{U} \cap \mathfrak{N}\mathfrak{A}$.

(2) A group $G \in \forall \mathfrak{U}$ if and only if every biprimary subgroup of G with cyclic Sylow subgroup is supersoluble, [4, Theorem B (3)], [9, Theorem 2 (2)].

(3) The quotient group $H/H^{\mathfrak{U}}$ is non-cyclic for every minimal non-supersoluble subgroup H of G if and only if $G \in \nu\mathfrak{U}$, [9, Corollary 2(2)].

(4) w $\mathfrak{U} = \nu \mathfrak{U} \cap \mathfrak{N}$ and every group of v \mathfrak{U} has a Sylow tower of supersoluble *type*, [9, Theorem $3(1)$].

Proposition 2. v \mathfrak{U}_k is a subgroup-closed saturated formation.

Proof. By Lemma 3(2), \mathfrak{U}_k is a subgroup-closed formation. Therefore \mathfrak{U}_k is a subgroup-closed formation by [7, Theorem A (3)].

Now we prove that $\mathsf{v}\mathfrak{U}_k$ is a saturated formation. Assume the contrary and let G be a group of least order such that $G/\Phi(G) \in \forall \mathfrak{U}_k$ and $G \notin \forall \mathfrak{U}_k$. By analogy with the proof of Proposition 1, we can easily prove that G has the unique minimal normal subgroup. Since G has a Sylow tower of supersoluble type, a Sylow r-subgroup R is normal in G for $r = \max \pi(G)$. It is clear that $R = F(G)$ and $O_p(G) = 1$ for all $p \in \pi(G) \setminus \{r\}.$

Let A be a cyclic q-subgroup for a prime $q \in \pi(G)$. If $q = r$, then A is \mathfrak{U}_k subnormal in G in view of Lemma 7. Analogously, if $A \n\t\leq \n\t\Phi(G)$, then A is \mathfrak{U}_k . subnormal in G by Lemma 7. Assume that $q \neq r$ and A is not contained in $\Phi(G)$.

Since $G/\Phi(G) \in \mathcal{V}\mathcal{U}_k$, we deduce that $A\Phi(G)/\Phi(G)$ is \mathcal{U}_k -subnormal in $G/\Phi(G)$. By Lemma 6,

$$
(A\Phi(G)/\Phi(G))^{\mathfrak{U}_k} = A^{\mathfrak{U}_k} \Phi(G)/\Phi(G)
$$

is subnormal in $G/\Phi(G)$. Consequently,

$$
A^{\mathfrak{U}_k} \Phi(G) / \Phi(G) \le F(G/\Phi(G)) = F(G)/\Phi(G) = R/\Phi(G), A^{\mathfrak{U}_k} = 1.
$$

Therefore $A \in \mathfrak{U}_k$. Since AR/R is a cyclic q-subgroup of $G/R \in \mathcal{U}_k$, we deduce that AR/R is \mathfrak{U}_k -subnormal in G/R . By Lemma 5 (2), AR is \mathfrak{U}_k -subnormal in G. Since $AR \leq G \in \mathcal{V}U$, we get A is \mathcal{L} -subnormal in AR. Hence there is a subgroup chain

$$
A = M_0 \ll M_1 \ll \ldots \ll M_i \ll M_{i+1} \ll \ldots \ll M_n = AR
$$

such that $|M_{i+1}: M_i| \in \mathbb{P}$ for every i. Denote $M_i = H$ and $M_{i+1} = K$. Clearly, $|K : H| = r$. It follows that $K/H_K \cong C_r \rtimes C_t$, where t divides $r - 1$ in view of Lemma 8. Since $\exp(A) \in \mathbb{N}_k$, we have $\exp(K/H_K) \in \mathbb{N}_k$ and $K/H_K \in \mathfrak{U}_k$. Hence A is \mathfrak{U}_k -subnormal in AR. Consequently, A is \mathfrak{U}_k -subnormal in G by Lemma 5 (1). Thus all primary cyclic subgroups of G are \mathfrak{U}_k -subnormal in G and $G \in \mathcal{V}\mathfrak{U}_k$. \Box

Proof of Theorem 2. (1) \Rightarrow (2): Let $G \in \forall \mathfrak{U}_k$. Use induction on |G| to prove $G/\Phi(G) \in (v\mathfrak{U}_k)_k$. Suppose that there is a maximal subgroup M of G such that $M_G = 1$. In that case, G is a primitive group, $\Phi(G) = 1$, $G = F(G) \rtimes M$, where $F(G)$ is the unique minimal normal subgroup of G. In view of Lemma 11 (1), a Sylow r-subgroup R is normal in G for $r = \max \pi(G)$. Hence $R = F(G)$ and R is an elementary abelian r-subgroup.

Let A be a cyclic q-subgroup for a prime $q \in \pi(G)$, $q \neq r$. In that case, A is \mathfrak{U}_k subnormal in G, and by Lemma 6, $A^{\mathfrak{U}_k}$ is subnormal in G. Hence $A^{\mathfrak{U}_k} \leq F(G) = R$ by [11, Theorem 2.2]. Consequently, $A^{\mathfrak{U}_k} = 1$ and the exponent of every primary cyclic r'-subgroup belongs to \mathbb{N}_k . Thus all primary cyclic subgroups of G have exponents from \mathbb{N}_k and $G \in (\mathsf{V}\mathfrak{U}_k)_k$ by Lemma 2 (2).

Now assume that $M_G \neq 1$ for every maximal subgroup M of G. Since $G/M_G \in$ $v\mathfrak{U}_k$, we get $(G/M_G)/\Phi(G/M_G) \in (v\mathfrak{U}_k)_k$ by induction. But G/M_G is a primitive group, therefore $\Phi(G/M_G) = 1$ and $G/M_G \in (v\mathfrak{U}_k)_k$ for every maximal subgroup M of G. Since $\Phi(G) = \bigcap_{M \leq G} M_G$ and $(\nu \mathfrak{U}_k)_k$ is a formation, we conclude that $G/\Phi(G) \in (\text{v}\mathfrak{U}_k)_k.$

 $(1) \leftarrow (2)$: Let $G/\Phi(G) \in (v\mathfrak{U}_k)_k$. Since $(v\mathfrak{U}_k)_k \subseteq v\mathfrak{U}_k$ and $v\mathfrak{U}_k$ is a saturated formation by Proposition 2, we get $G \in \mathcal{V} \mathcal{U}_k$.

Statement $(1) \Leftrightarrow (2)$ is proved.

 $(1) \Rightarrow (3)$: Assume that $G \in \mathcal{U}_k$ and A is a subgroup of G with nilpotent derived subgroup. In that case, $G \in \forall \mathfrak{U}$, and by Lemma 11 (1), $A \in \mathfrak{U}$. By proved Statement $(1) \Rightarrow (2), A/\Phi(A) \in (\nu \mathfrak{U}_k)_k$. Consequently, $A/\Phi(A) \in \mathfrak{U} \cap (\nu \mathfrak{U}_k)_k \subseteq \mathfrak{U}_k$.

 $(1) \Leftarrow (3)$: Let $A/\Phi(A) \in \mathfrak{U}_k$ for every subgroup A of G with nilpotent derived subgroup. Since $\mathfrak{U}_k \subseteq \mathfrak{U}$, every subgroup A of G with nilpotent derived subgroup is supersoluble. In view of Lemma 11 (1), $G \in \mathcal{V} \mathcal{U}$. Choose a group G of least order such that $G \in \nu \mathfrak{U} \setminus \nu \mathfrak{U}_k$. Since $G \in \nu \mathfrak{U}$, a Sylow r-subgroup R of G is normal in G for $r = \max \pi(G)$. In view of Lemma 7, every cyclic r-subgroup of G is \mathfrak{U}_k -subnormal in G. Let H be a cyclic q-subgroup of G for a prime $q \in \pi(G)$, $q \neq r$. The derived subgroup $(R \rtimes H)' \leq R \in \mathfrak{N}$. Therefore by the choice of G , $R \rtimes H/\Phi(R \rtimes H) \in \mathfrak{U}_k \subseteq \mathfrak{w}\mathfrak{U}_k$. By Proposition 2, we get $R \rtimes H \in \mathfrak{w}\mathfrak{U}_k$. Hence HR is a proper subgroup of G and H is \mathfrak{U}_k -subnormal in HR.

Let U_1/R be a subgroup with nilpotent derived subgroup in G/R . Since $(|U_1/R|, |R|) = 1$, by the Schur-Zassenhaus theorem, there is a subgroup U such that $U_1 = R \rtimes U$ and $U_1/R \cong U$ has the derived subgroup. By the choice of G, $U/\Phi(U) \in \mathfrak{U}_k$. Hence

$$
(U_1/R)/\Phi(U_1/R)\cong U/\Phi(U)\in\mathfrak{U}_k.
$$

Thus G/R satisfies Statement (3) and $G/R \in \mathcal{V}(\mathcal{U}_k)$ by the choice of G. Therefore HR is \mathfrak{U}_k -subnormal in G by Lemma 5 (2), and H is \mathfrak{U}_k -subnormal in G by Lemma 5 (1). Thus, $G \in \mathsf{V}\mathfrak{U}_k$.

Statement $(1) \Leftrightarrow (3)$ is proved.

 $(1) \Rightarrow (4)$: Assume that $G \in \mathcal{U}_k$ and B is a biprimary subgroup with cyclic Sylow subgroup in G. In that case, $G \in \mathcal{V}(\mathcal{U})$, and by Lemma 11 (2), B is supersoluble. Since v \mathfrak{U}_k is a subgroup-closed formation by Proposition 2, we get $B \in \mathcal{V}\mathfrak{U}_k$. According to proved Statement (1) \Rightarrow (3), we have $B/\Phi(B) \in \mathfrak{U} \cap (\mathfrak{w}\mathfrak{U}_k)_k \subseteq \mathfrak{U}_k$.

 $(1) \leftarrow (4)$: Let G be a group of least order such that $B/\Phi(B) \in \mathfrak{U}_k$ for every biprimary B with cyclic Sylow subgroup and $G \notin v\mathfrak{U}_k$. In that case, G contains a cyclic q-subgroup H for a prime $q \in \pi(G)$ that is not \mathfrak{U}_k -subnormal in G. Since $\mathfrak{U}_k \subseteq \mathfrak{U}$, every biprimary subgroup with cyclic Sylow subgroup in G is supersoluble. By Lemma 11 (2), $G \in \forall \mathfrak{U}$, in particular, G has a Sylow tower of supersoluble type. Consequently, a Sylow r-subgroup R of G is normal in G for $r = \max \pi(G)$. In view of Lemma 7, R is \mathfrak{U}_k -subnormal in G and $r > q$. By the choice of G, $HR/\Phi(HR) \in$ $\mathfrak{U}_k \subseteq \mathfrak{V}\mathfrak{U}_k$. Hence $HR \in \mathfrak{V}\mathfrak{U}_k$ by Proposition 2. Consequently, HR is a proper subgroup of G and H is \mathfrak{U}_k -subnormal in HR. Let K_1/R be a biprimary subgroup with cyclic Sylow subgroup in G/R . By the Schur-Zassenhaus theorem, there is a biprimary subgroup K with cyclic Sylow subgroup in K_1 such that $K_1 = R \rtimes K$ and $K_1/R \cong K$. By the choice of $G, K/\Phi(K) \in \mathfrak{U}_k$. Therefore

$$
(K_1/R)/\Phi(K_1/R)\cong K/\Phi(K)\in\mathfrak{U}_k.
$$

By induction, $G/R \in v\mathfrak{U}_k$. It follows that HR/R is \mathfrak{U}_k -subnormal in G/R . Hence HR is \mathfrak{U}_k -subnormal in G by Lemma 5(2), and H is \mathfrak{U}_k -subnormal in G by Lemma 5 (1), a contradiction.

Statement $(1) \Leftrightarrow (4)$ is proved.

Proof of Corollary 3. Since every supersoluble group is metanilpotent, we have $\mathfrak{U} \cap$ $w\mathfrak{U}_k \subseteq \mathfrak{N}^2 \cap w\mathfrak{U}_k$. If $G \in \mathfrak{N}^2 \cap w\mathfrak{U}_k$, then $G/\Phi(G) \in \mathfrak{U}_k$ by Theorem $1((1) \Rightarrow (3))$. Now $G \in \mathfrak{U}$ and $\mathfrak{U} \cap w\mathfrak{U}_k \supseteq \mathfrak{N}^2 \cap w\mathfrak{U}_k$. Hence $\mathfrak{U} \cap w\mathfrak{U}_k = \mathfrak{N}^2 \cap w\mathfrak{U}_k$.

Since the derived subgroup of a supersoluble group is nilpotent, we get $\mathfrak{U} \cap \mathsf{v} \mathfrak{U}_k \subseteq$ $\mathfrak{N}\mathfrak{A} \cap \mathfrak{v}\mathfrak{U}_k$. If $G \in \mathfrak{N}\mathfrak{A} \cap \mathfrak{v}\mathfrak{U}_k$, then $G/\Phi(G) \in \mathfrak{U}_k$ by Theorem $2((1) \Rightarrow (3))$. Now $G \in \mathfrak{U}$ and $\mathfrak{U} \cap \mathrm{v}\mathfrak{U}_k \supseteq \mathfrak{N}\mathfrak{A} \cap \mathrm{v}\mathfrak{U}_k$. Hence $\mathfrak{U} \cap \mathrm{v}\mathfrak{U}_k = \mathfrak{N}\mathfrak{A} \cap \mathrm{v}\mathfrak{U}_k$.

In view of Lemma 10, w $\mathfrak{U}_k \subset \mathsf{V}\mathfrak{U}_k$. Therefore $\mathfrak{U} \cap \mathsf{W}\mathfrak{U}_k \subseteq \mathfrak{U} \cap \mathsf{V}\mathfrak{U}_k$.

Conversely, let $G \in \mathfrak{U} \cap \mathrm{v}\mathfrak{U}_k$. By Theorem $2((1) \Rightarrow (2)), G/\Phi(G) \in \mathfrak{U} \cap (\mathrm{v}\mathfrak{U}_k)_k \subseteq$ $\mathfrak{U}_k \subseteq \mathfrak{U} \cap \mathrm{w}\mathfrak{U}_k$, and $G \in \mathfrak{U} \cap \mathrm{w}\mathfrak{U}_k$ since $\mathfrak{U} \cap \mathrm{w}\mathfrak{U}_k$ is a saturated formation.

Since $\mathfrak{U} \cap w \mathfrak{U}_k = \mathfrak{U} \cap v \mathfrak{U}_k$, it follows that every Sylow subgroup of a supersoluble group G is \mathfrak{U}_k -subnormal in G if and only if every cyclic primary subgroup of G is \mathfrak{U}_k -subnormal in G.

REFERENCES

- [1] A. Ballester-Bolinches, L.M. Ezquerro, Classes of finite groups, Springer, Dordrecht, 2006. Zbl 1102.20016
- [2] V.S. Monakhov, I.L. Sokhor, On groups with formational subnormal Sylow subgroups, J. Group Theory, 21:2 (2018) 273-287. Zbl 1468.20041
- [3] A.F. Vasil'ev, T.I. Vasil'eva, V.N. Tyutyanov, On the finite groups of supersoluble type, Sib. Math. J., 51:6 (2010) 1004-1012. Zbl 1226.20013
- [4] V.S. Monakhov, V.N. Kniahina, Finite groups with P-subnormal subgroups, Ric. Mat., 62:2 (2013) 307-323. Zbl 1306.20015
- [5] V.N. Kniahina, V.S. Monakhov, On supersolvability of finite groups with P-subnormal subgroups, Int. J. Group Theory, 2:4 (2013) 21-29. Zbl 1306.20014
- [6] V.S. Monakhov, Finite groups with abnormal and U-subnormal subgroups, Sib. Math. J., 57:2 (2016) 352-363. Zbl 1384.20016
- [7] V.I. Murashka, Classes of finite groups with generalized subnormal cyclic primary subgroups, Sib. Math. J., 55:6 (2014) 1105-1115. Zbl 1344.20028
- [8] V.S. Monakhov, I.L. Sokhor, Finite groups with formation subnormal primary subgroups, Sib. Math. J., 58:4 (2017), 663-671. Zbl 1421.20002
- [9] V.S. Monakhov, *Three formations over* \mathfrak{U} , Math. Notes, **110**:3 (2021), 339-346. Zbl 7431854
- [10] A.F. Vasil'ev, T.I. Vasil'eva, A.S. Vegera, Finite groups with generalized subnormal embedding of Sylow subgroups, Sib. Math. J., 57:2 (2016), 200-212. Zbl 1393.20006
- [11] I.M. Isaacs, Finite group theory, AMS, Providence, 2008. Zbl 1169.20001
- [12] D.M. Bloom, The subgroups of $PSL(3,q)$ for odd q, Trans. Am. Math. Soc., 127 (1967), 150178. Zbl 0153.03702
- [13] A. Ballester-Bolinches, R. Esteban-Romero, On minimal non-supersoluble groups, Rev. Mat. Iberoam., 23:1 (2007), 127-142. Zbl 1126.20013

Victor Stepanovich Monakhov, Irina Leonidovna Sokhor Francisk Skorina Gomel State University, Kirova Str. 119, 246019, Gomel, Belarus

Email address: victor.monakhov@gmail.com, irina.sokhor@gmail.com