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DUAL NULL FIELD METHOD FOR DIRICHLET PROBLEMS OF
LAPLACE’S EQUATION IN CIRCULAR DOMAINS WITH
CIRCULAR HOLES

M.G. LEE, L.P. ZHANG, 7.C. LI, A.L. KAZAKOV

ABsTrRACT. The dual techniques have been widely used in many engi-
neering papers, to deal with singularity and ill-conditioning of the bound-
ary element method (BEM). In this paper, we consider Laplace’s equa-
tion with circular domains with one circular hole. The explicit algebraic
equations of the first and second kinds of the null field method (NFM) are
provided for applications. Traditionally, the first and the second kinds of
the NFM are used for the Dirichlet and the Neumann problems, respec-
tively. To bypass the degenerate scales of Dirichlet problems, however,
the second and the first kinds of the NFM are used for the exterior and
the interior boundaries, simultaneously, called the dual NFM (DNFM) in
this paper. The excellent stability and the optimal convergence rates are
explored in this paper. By using the simple Gaussian elimination or the
iteration methods, numerical solutions can be easily obtained. Recently,
the study on degenerate scales is active, many removal techniques are
proposed, where the advanced solution methods may be needed, such as
the truncated singular value decomposition (TSVD) and the overdeter-
mined systems. In contrast, the solution methods of the DNFM in this
paper are much simpler, with a little risk of the algorithm singularity
from degenerate scales.
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1. INTRODUCTION

For Dirichlet problems by the boundary element methods (BEM) and the boun-
dary integral equation methods (BIEM), there may exist the algorithm singularity
for some geometric domains, to cause a failure in yielding the unique solutions,
called the degenerate scale problems (or simply the degenerate scales). To overcome
the degenerate scales, the dual techniques were proposed and reported in many
engineering papers. A review paper was given in Chen and Hong [4] in 1999,
accompanied by 249 references. Also, the dual techniques of BEM were applied to
crack singularity in Portela, Aliabadi and Rooke [20]. The algebraic equations can
be easily found, and the unique numerical results may be solved by the Gaussian
elimination, or iteration methods. In fact, the dual techniques are the early removal
techniques to bypass the degenerate scales. The simple solution methods of dual
techniques are advantageous over other advanced removal techniques, such as [3,
9, 11, 10]. So far, it seems to exist no strict theoretical analysis for the dual
techniques. In this paper, the null field method (NFM) for Laplace’s equation is
discussed, and the circular domains with one circular hole are confined. The goal
is to provide some theoretical analysis for dual techniques of NFM (DNFM), thus
to fill some gap between analysis and computation. The algorithm singularity,
unique solutions, error bounds, convergence rates, condition numbers, and stability
are explored in this paper, while analysis of algorithm singularity of the dual BEM
is reported in Chen et al. [5] by using the singular value decomposition (SVD).

In [3, 9, 11, 10], to deal with the degenerate scales for Dirichlet problems, the
advanced techniques of solution methods may be solicited, such as the truncated
singular value decomposition (TSVD) and the overdetermined systems. There may
raise questions: Can the degenerate scales be removed by the NFM itself? Can
the simple Gaussian elimination be used, to reach the optimal stability? Based
on the Green representation formula (2.9) and its derivatives (2.14) shown later,
the first and the second kinds of NFM are derived, respectively, and the explicit
computational formulas of the NFM can be derived for circular and elliptic domains
(see [10, 14, 21]). In classic algorithms, the first kind NFM is used for Dirichlet
problems; the second kind NFM for Neumann problems. The algorithms using both
(2.9) and (2.14) together are called the “dual" boundary element method (BEM) in
[4, 5, 20], and the “dual" techniques of NFM (simply denoted as the DNFM) in this
paper. For the circular domains with circular holes, the second kind of the NFM
(simply as the second kind NFM) are developed in [10] for Neumann problems,
with the explicit algebraic equations. The first kind NFM in [14] may also be
applied to Neumann problems, and the numerical performance is as good as that
of the second kind NFM, see [10]. Hence, the second kind NFM can also be applied
for Dirichlet problems. After a study in Section 2, when the second and the first
kind NFMs are applied for the exterior and the interior boundaries, respectively,
the algorithms of the DNFM have a little risk of the algorithm singularity from
degenerate scales. Such algorithms are called the dual techniques (such as the
DNFM) in this paper. Not only are the numerical solutions solved easily by the
simple Gaussian elimination (or iteration methods), but also the optimal stability
can be reached. Note that the algorithms of the DNFM are analogous to those for
the mixed problems in [21]. The optimal convergence rates can be achieved by the
DNFM. The DNFM can also be applied to eigenvalue problems for circular domains
with circular holes [2].
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The study on degenerate scale problems is still active, many techniques are
proposed to remove the degenerate scales, where the advanced solution methods
may be needed, such as the truncated singular value decomposition (TSVD) and
the overdetermined systems. Nevertheless, the solution methods of the DNFM in
this paper are much simpler, with a little risk of the algorithm singularity from
degenerate scales. Interestingly, from the outcome of this paper, the degenerate
scales can be removed by the NFM itself via dual techniques.

This paper is organized as follows. In the next section, the first and the second
kinds of the NFM are introduced according to [14, 10] for circular domains with
one circular hole, and the dual techniques of NFM (denoted as the DNFM) are
proposed. In Section 3, the degenerate scales of the DNFM are studied, and in
Section 4, the analysis of stability and error is explored. In Section 5, numerical
experiments of the DNFM are reported, and in the last section, a few concluding
remarks are made.

2. NuLL FIELD METHODS AND DUAL TECHNIQUES

2.1. The First Kind NFM. Consider Laplace’s equation in circular domains with
one circular hole. The discussions for circular domains with multiple circular holes
are similar. Denote the disks Sr and Sk, with radius R and R;, respectively. Let
Sk, C Sg, and the eccentric circular domains Sr and Sgr, have different origins.
Define the annular solution domain S = Sg\ Sgr, with the exterior and the interior
boundaries 0Sg and 0Sg,. Denote two systems of polar coordinates by (p,6) and
(p,0) with origins (0,0) and (z1,y1) of Sk and Sg,, respectively. There exist the
following conversion relations,

(2.1) p= \/(,66039—1—1‘1)2—|—(ﬁsin§—|—y1)2, cosf = w,
p

(2.2) p=+(pcosh —x1)2 + (psinf — y)?, cosf = %__yl
p

On the exterior boundary 0Sg, suppose that there exist the approximations of
Fourier expansions,

M
(2.3) U~ ag + Z{ak coskf + by sinkf} on OSg,
k=1
ou Ou M
(2.4) 2 g, =P +};{pk coskf + g sinkf} on OSg,

where ag, br, pr and g are coefficients. On the interior boundary 0Sg,, similarly
suppose

N
(2.5) U~ dg + Z{&k cos kf + by sinkf} on OSg,,
k=1
(2.6) 9 _ _ 2 s —i—EN:{_ cos kO + gp sinkf} on 0S
- Y = o7 ~ Do e Dk gk Ry

where @y, by, pr, and g, are coefficients, and v and o are the outer normals of 9Sg
and 0Sg,, respectively. In (2.3)-(2.6), (r,0) and (7,0) are two systems of polar
coordinates of S and Sg, with origins (0,0) and (x1,y1), respectively.
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Denote two nodes, x = Q = (x,y) = (p,0) and y = P = (£,n) = (r,¢), where
z = pcosf,y = psinf, £ = Rcos¢ and n = Rsin¢. Then p = /22 + 32 and
r = /& +n% The fundamental solutions (FS) of Laplace’s equation are given
by In|PQ| = In\/p%® —2pRcos(f — ¢) + R2. Based on the Green representation
formulas [1], there exist different field equations,

—2mu(Q), QE€S,
Ju(y) 0ln |PQ)| )
0 [ forait e - { G G50

where P(y) € (SU0S), and Q(x) are the field nodes (or simply nodes) in three
different locations. The series expansions of the FS are given by (see [7]),

(28)  In[PQ[=In[P(y) — Q(x)| = In[P(r,¢) — Q(p,0)]

Ui(x,y)zlnr—zl(g)”cosn(e—gb), p<r,
n:ln r

=U(x,y) = .

f(r) cosn(f — @), P>y

Utlx,y) =lnp— )~ p

(]2

n=1

[Pk

where x = (p,0), y = (r, ¢), and the superscripts “e” and “/” designate the exterior
and the interior field nodes x, respectively. Based on the third equation of (2.7),
the first kind NFM can be derived from

eo [ U oy = [ )2 by, xe s
OSRUOSR 81/}’ OSRUOSR 81/}’

where expansions (2.8) are used, and S°¢ is the complementary domain of S U 95.

First, consider the exterior field nodes x = (p, ) with p > r = R. The explicit
algebraic equations of the first kind NFM for the exterior field nodes are obtained
in [14], as

M
(2.10) Lewt(p,0;7,0) = —% Z(E)k(ak cos k6 + by, sin k6)
k=1
N
1 R1
+§ ; ? (@ cos kO + by sin k6)
M
R 1 R,
—{R(ln P)Po — 3 kZ:l %(;) (px cos k8 + gy, sin k0)
Ri~1 R
1
+Ri(Inp)py — - Z %(?) (pr. cos k@ + G, sin kﬁ)}

ol
Il

1
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Next, consider the exterior field nodes x = (p,f) with p < # = R;. The other
explicit algebraic equations of the first kind NFM are obtained in [14], as
N o _

_z _ 1 p
2.11 L; : = —ay — — E
( ) Z’I’Lt(p’97p7 6) a’o 2 k:1(R1

)’“(ak cos kf + by, sin k)
1 & p
+ao + 3 kE (E)k(ak cos k6 + by, sin k6)

N
R,
{Rl(ln R1)po — EX Z pk cos kf + Gy sin k)

w\H
m‘b\

R 1
YR R)py — =S (2 k0 k0 } —0,
(In R)po kz::lk(R) (pr; cos kO + g, sin ko)
where the common factor 27 are canceled. By the first equation with @ € S of the
Green formula (2.7) as used in the boundary element methods (BEM), the solution
at the interior field nodes, x = (p,0) € S, is expressed by

(2.12) u(x) = u(p,0)

1 duly) U (x,y) }
= Ux,y —u(y)——= 7 doy, xX€S.
271' BSRUasRl { ( ) 67’ ( ) 87’ y

Then the explicit solution in S is also given in [14] as

(2.13) s n = unrw(p,0:7,0) = ag R(ln R~ (1)

< R
(ﬁ)k(ak cos kB + by, sin k6) + (==

o B 2P

)k (@, cos kO + by, sin k0)
M
R 1. p
—&—5 g %(E) (pi cos kO + gy, sin k)

N
+R1 Z %(—1) (ﬁk COSs k0_+q_k Sinké)7 (Tv 9) € S

Explicit formulas (2.10) and (2.11) are derived directly from (2.9) by means of the
expansions (2.3)-(2.6) and (2.8). Equations (2.10), (2.11) and (2.13) are called the
explicit field (i.e., algebraic) equations of the first kind NFM. In this paper, only
Dirichlet problems are confined, where the coefficients, ax, by, ax and by, in (2.3)
and (2.5) are given. Once the unknown coefficients, px, qr, Pr and Gk, have been
obtained from (2.10) and (2.11), the interior solutions are provided by (2.13).

2.2. The Second Kind NFM. The normal derivatives of the Green formulas
(2.9) are given by

9 du(y)
(2.14) — / U(x,y) do
3Vx{ dSRUBSE, vy Y
_/ u(y)w dgy} -0, x€5°
dSRUOSE, vy
where 6%}( = 6% for p > R and % = —8% for p < Ry. Based on (2.14), the second

kind NFM is developed in [10], where two explicit algebraic equations for exterior
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field nodes are provided as

M Rk
Z E( (ay, cos kO + by, sin k)

_ 0
(215) Demt(P79QP7 9) - k+1
k=1 P

dp

M\H

Lert(p; 9 P;

ay cos((k 4+ 1)8 — 6) + by, sin((k + 1)0 — 9))

x>
M=
N

=
e

Eal

+ ?’%
-

N—
A

1
2
R 1~ R R _
- (*)p0+fZ(—)k+1(pkcosk9+qksink0)+(f1)]50cos(0—0)
p 2e="p p
1<~ R
- Ukt (5 g — =
+2;( =) (kcos((k—i—l)ﬁ 0) + G, sin((k + 1)@ 9))} 0,
and
(2.16) Dint( 0~*0’)——Qﬁ- ( 9,79)_ﬂ5, (p,0;p,0)
- int(0, V3 P, - 877 int (0 V5 P, _8ﬁ int (0 V35 P,
1 N ~k—1
=—§Zk( ) (@ cos kO + by, sin k0)
k=1 Ry
1 M pktfl B
+§;k( o )(akcos(( —1)0 + ) + by, sin(( —1)9+9))
LA
+§ ;(ng)k L (py cos kO 4 Gy, sin k6)
1 p
1 P k-1 _ 7 : _ 7)) —
+2;(R) (pkcos((k 1)0 + 8) + gi, sin((k 1)e+9)) 0.

Although Egs. (2.10), (2.11), (2.15) and (2.16) are derived from (2.9) and (2.14),
where the nodes @) are located outside of S, they are still valid for the nodes on
the domain boundary, @ € 95, under a certain smoothness of the solutions (e.g.,
u € H3(0S)Au, € H?(S)). Although Eq. (2.13) is derived from (2.12), where the
nodes ) are inside of S, the solutions of (2.13) and their normal derivatives are still
valid for the nodes @ € 95, under the same smoothness of the solutions. A strict
analysis is explored in [14, 10]. Since the solutions (2.13) are harmonic functions
to satisfy Laplace’s equation already, the unique solutions of Dirichlet problems
can be obtained directly by satisfying (2.3) & (2.5). Under a consistent condition,
however, the solutions of Neumann problems by satisfying (2.4) & (2.6) are existent
and solvable, see [10]. Such algorithms are called the interior field method (IFM)
of the first and the second kinds, respectively. It is proved in [8, 10] that the IFM
is the special case of the NFM at @ € 0S. From computed results and theoretical
analysis, the stability of the NFM is optimal among all nodes used in the NFM.
Hence, the NFM is replaced by the IFM in many applications, see [8, 9, 11, 10, 14].

2.3. Dual Null Field Methods. Traditionally, the first and the second kinds
of the NFM are used for the Dirichlet and Neumann problems, respectively, see
[14, 10]. The first kind NFM may also be applied to Neumann problems, where
Egs. (2.4) and (2.6) are given with known coefficients pg, qx, pr and g¢x, but the
coefficients ag, by, ar and by are sought. The numerical performance is as good as
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that by the second kind NFM, see [10]. Hence, we may also apply (2.15) and (2.16)
of the second kind NFM for Dirichlet problems, where the coefficients ay, b, ax
and by, are given, but the coefficients py, qi, pr and g are sought. When two kinds
of NFMs are applied for exterior and interior boundaries, there are four types, I-
I, II-11, I-IT and II-I, where I and II denote the first and the second kind NFMs,
respectively, and their appearances before and behind from “-" denote the exterior
and the interior boundaries, respectively.

First, consider (2.10) and (2.11) of the first kind NFM in [14] for the exterior
and the interior boundaries, respectively,

_( Rlnp Rilnp Do Jo\ _~

o roge (T e (w0 (B)
where fy and fy are the rest parts of algebraic equations without py and pg. The
algorithm singularity occurs from degenerate scales, if and only if the zero deter-
minant of the matrix of the leading coefficients py and pg in (2.17). For type I-I,
the singularity happens when p = R = 1, which is an important case of degener-
ate scales in applications, called Degenerate Case I in [11]. A complete analysis
of algorithm singularity is explored in [11], to discover a new Degenerate Case ITI
called.

For Dirichlet problems, we may use both of the second kind NFM for the exterior
and the interior boundaries, respectively, and obtain from (2.15) and (2.16),

o B R—}cos(ﬁfﬁ_) Po fo\ =
wo e (§ RN () (B)

Next, we also use the first and second kinds of NFM for the exterior and interior
circular boundaries, respectively, and obtain from (2.10) and (2.16),

_ ( BRlnp Rilnp Po fo ) _5
wo o (P Y (n )L (8) g

For types II-II and I-II, the singularity always happens. Hence, the second kind
NFM can not be used for the interior boundary of Dirichlet problems.

Lastly, let us apply the second and first kinds of NFM for the exterior and interior
circular boundaries, respectively, and obtain from (2.15) and (2.11),

(E Eeos(0-0) ) [ po B _a
oo e (B, B0 ) () (B
From the analysis in the next section, type II-I is effective to overcome degenerate
scales. This kind combination of two kinds of the NFM is called the dual NFM
(denoted as the DNFM) in this paper. The numerical solutions can be obtained
easily by using the Gaussian elimination or iteration methods. More importantly,
the optimal stability and optimal convergence rates can be reached, and given
in Section 4. Note that these approaches are analogous to deal with the mixed
problems by the NFM in [21]. The theoretical analysis and numerical performance
of Type II-I in (2.20) are the goals of this paper.

For the DNFM, Eqgs. (2.15) and (2.11) are denoted simply as

(2.21) Dewt(p,0;p,0) =0, on OSg,

(2.22) Lint(p,0;0,0) =0 on OSg,.
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For better stability, the field nodes (p,0) are confined on the same circle, i.e.,
p = constant, based on the analysis in [11]. We may choose 2(M + N)+2 collocation
equations uniformly located on the exterior and the interior circles, p= R+¢ > R
and p = Ry — &. For (2.21) and (2.22), the collocation equations are given by

1 oz .. ,
(223) MDewt(R-FE,jh,pjjaj) = Mf(jh), 7 :0,17...,2M,
(224) ,Cmt(pj,f)j;Rl — g,]h) = g(]h), ] = O, 17 ...,2N,
where € > 0,6 € [0,Ry), h = 21\24% and h = 21\2,% The factor 7 is used in (2.23)

for optimal convergence rates, based on the mixed Dirichlet and the Neumann
conditions in [12, 15, 16]. The corresponding polar coordinates (p;, ;) and (p;, ;)
in (2.23) and (2.24) can be evaluated from (R; — €,jh) and (R + ¢, jh), based on
(2.1) and (2.2). Egs. (2.23) and (2.24) are denoted as the following linear algebraic

equations,
(2.25) Ax =Db,

where the matrix A € R™*" the unknown vector x (€ R"™) = {pk, qx, Pk, G }©
and n = 2(M + N +1). The unknown coefficients in x can be solved from (2.25)
directly, if the matrix A is nonsingular. Once all the coefficients are known, the
explicit solutions in S are given in (2.13).

2.4. Derivatives of the First Kind NFM along Other Directions. The type
II-T of the dual techniques implies that the hypersingularity is applied to the exterior
circular boundary. Can we find other kinds of dual techniques? The second kind
NFM is derived based on (2.14), where % are the derivatives along the radial

direction v. In fact, we may have other directional derivatives %, denoted as
9 du(y)
(2.26) 7{ / U(x,y) do
Olx dSRUBSE, vy v
) d

ou _
—/ u(y)¥ o—y} =0, xe8°
SRUASR, Vy

where /5 is any direction in x. Since only the degenerate scales are our concern,
we derive the algebraic equations only related to the leading coefficients of py and
Po from (2.26). By following [10], we have from (2.15)

P _
(227) 5 {~R(np)po — Ra(np)po)} = —R%O cos(f, p) — Rl% cos(, p).
Denote the angle £ of ¢ from x axis, there exist the equalities,

(2.28) cos(€,p) = cos(f — &), cos(¥, p) = cos( — &).

The leading coeflicients py and pg in (2.15) are modified from (2.27) as

(2.29) R% cos(f — &) + le% cos(f — €).

Other dual techniques may be designed, where %Lem =0 and L;,; = 0 are used
for the exterior and the interior boundaries, respectively. Then Egs. (2.20) are
modified, as

o Eeost0-6) Beos@-6) \ (), () _g
(2.30) 11 ‘I'—(}’émR "Rin Ry )(ﬁo)+(fg>_0'
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When £ is along the radial direction vy, we have £ = 6, Egs. (2.30) lead to (2.20).
When / is along the radian direction #, we have £ = 0+ 7 and cos(0 —§) = cos(§) =
0. Egs (2.30) lead to

. 0 B gin(f — 6) Do 1 ~
—I:= P 0 ) =
ey r= (G O () () <o

The zero determinant of matrix of leading coefficients in (2.31) occurs,

(2.32) Det(IT* — 1) = — i (In R) sin(f — ) = 0,

p

provided that R = 1. Hence, type I1* — I of dual techniques fails to overcome De-
generate Case I, if ¢ is along the radian direction 6. For the general dual techniques
with £ # 0 but  # 6 + 5, by following similar arguments above, we may prove
the non-singularity of the coefficient matrix in (2.30), to also bypass the degener-
ate scales. However, the corresponding algorithms are more complicated, so that
they are not effective for real applications, compared with (2.20). We write this
conclusion as a proposition.

Proposition 2.1. The general dual techniques (2.30) fail to overcome the De-
generate Case I, if  is along the radian direction 6. The algorithms of the dual
techniques (2.20) of type II-I are the simplest among (2.30), if £ is not along the
radian direction 6.

We may solicit higher order derivatives on the NFM for the exterior boundary
conditions, to have

0" / du(y)
2.33 Ux,y do
( ) a(Vx)k{ dSRUISR, ( ) vy v
6U(X,y) q
— u(y) ————=doy ¢ = 0,x € S,
/asRuasR1 &) vy y}

where £ > 1. When Eq. (2.33) is used for the exterior boundary, the degenerate
scales can also be removed. However, they are not recommended, since the corres-
ponding algorithms are much more complicated, and since higher supper-singularity
is involved wherein.

3. ANALYSIS ON DEGENERATE SCALES FOR THE DNFM

The discrete form from (2.20) of type II-I is denoted as

R R ~ .
(3.1) —Do + _71 COS(ej — (9]')]50 + fo(pj,ej; ag, b, ...,qk) =0, j=0,1,....,2M,

Pj Pj
(32) R(lnR)pO + Rl(ln Rl)pO + f_()(ﬁ;ka 0_;’ ag, bkv ) Qk) =0, .7 = Oa 1, ey 2Na
where P(p;,0;) = P(p;,0;). In fact, Equations (3.1) and (3.2) are the discrete
forms of (2.23) and (2.24). For simplicity in analysis, the factors - in (2.23) are
omitted, since they do not affect on the matrix singularity. Denote the matrix and



402 M.G. LEE, L.P. ZHANG, Z.C. L1, A.L. KAZAKOV

vectors related to pg and pg of (3.1) and (3.2) as

R _
oo ES cos(fo — o)
p—Rl S cos(0y — 01)
R i) cos(&é}w — O2ar)
P2M P2M D
(3.3) Tdegy = ( pg ) ,
RInR R1 In R1
RInR R1 In R1
RInR R1 In R1

where y = (po,po)?, and the matrix Tgeg € R"*? with n = 2(M + N + 1).
The algorithm singularity of degenerate scales is defined in [11], provided that the
constants pg and pg can not be determined uniquely from (3.1) and (3.2), which is
equivalent to the deficiency of matrix Tqeg

(3.4) rank(Tgeg) < 1.

Equation (3.4) indicates that two column vectors of Tgeg are parallel to each other,
thus causing a singularity of the discrete matrix of (3.1) and (3.2). If rank(Tgeg) =
1, all exterior nodes are called pitfall nodes of degenerate scales, and there occurs
a singularity of matrix A in (2.25), see [11].

3.1. Basic Theorem. First, we study the usual collocation nodes, where exterior
field nodes are all located on the same circle: p > R and p = constant in (2.23).
We have the following theorem.

Theorem 3.1. Suppose that the second and the first kinds of NFM (i.e., (2.15) and
(2.11)) are used for the exterior and the interior circular boundaries, respectively.
For p = R + € with constant € > 0 and M > 1 in (38.1), there does not exist the
algorithm singularity from degenerate scales.

Proof. The algorithm singularity from degenerate scales occurs if and only if only
the zero determinant of the leading coefficients py and pg of (2.20) occurs,

nf; IR cos(0 —0)} =0,
p

(3.5) Det(II — I) = RRy{

where R > R; >0, p >0 and p > 0. Eq. (3.5) leads to
(3.6) pln Ry = p(In R) cos(0 — ).

Without loss of generality, let (p,0) and (p, 6) be two polar coordinate systems at
0(0,0) and O(—a,0) with a > 0, respectively, see Figure 1. First, for the concentric
boundaries, dSg and 0Sg, have the same origin (0,0) (i.e., @ = 0). Then we have
p=pand 6 =0. Eq. (3.6) leads to

(3.7) pln Ry = pln R,

which is impossible since R; < R. This implies that there does not exist any
degenerate scale for the concentric boundaries. Next, when R = 1, we have In R = 0
and InR; < InR = 0, to confirm the invalidity of (3.6). Note that the exterior
boundary with radius R = 1 is the important case of degenerate scales in the NFM,
called Degenerate Case I in [11], which is removed successfully in the dual type II-I.
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F1c. 1. The distances p and p of the exterior field P to two origins
O and O.

Below, we discuss the eccentric boundaries (i.e., a # 0) with R # 1, and seek all
nodes to satisfy (3.6), called the pitfall nodes in [11]. Consider the triangle AOPO
consisting of O(0,0), P(p, ) and O(—a,0), see Figure 1. The distance a between O
and O is given by
(3.8) a® = p® 4 p? — 2ppcos(h — 0).

Then we have
2, =2 2
(3.9) cos( — 0) = w.
2pp

Combining (3.6) and (3.9) gives
(3.10) 25°In Ry = (In R)(p* + p* — a?).
For R # 1, we have

In Ry

InR
Since p > a, one root p of (3.11) is found by

| p?—a? /p —a2
(312) 21nR1

provided that

(3.11) (2 —1)p* =p* —d>

In Ry

InR

Eq. (3.13) indicates p # 1 since Ry < R # 1. From the symmetry, two field nodes
P*(p,0) and P~(p, —0)( # 0, 7) may have the same p of (3.12). Hence, there exist,
at most, two field nodes to satisfy (3.5). When M > 1, the number of collocation
equations in (3.1) is 2M + 1 > 3. When p = constant, there are, at least, two
different values p of nodes from (2.2). Then not all pars [p, p] can satisfy (3.11), so
that the left two column vectors from (3.3) are linearly independent to each other.

(3.13) w=
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Hence rank(Tgeg) = 2, and the discrete matrices from leading coefficients py and
Do are nonsingular, thus to remove the degenerate scales. This completes the proof
of Theorem 3.1. (]

Based on Theorem 3.1, for p = constant, all degenerate scales, including Degene-
rate Case I, can be bypassed, when M > 1 in (2.23). This is significant, compared
with the singularity of the NFM (i.e., type I-I) at p = R = 1, called Degenerate
Case I in [11].

3.2. Degenerate Case IITA. Theorem 3.1 confirms no degenerate scales under
condition p = constant. It is challenging to seek all kinds of degenerate scales of
the dual techniques, as done in [11] for the NFM. In this subsection, we assume
p > R, but do not confine p = constant. To this end, let us first study condition
(3.13) more in detail. Since R = 1 is excluded in pitfall nodes, there exist only two
cases from (3.13),

(3.14) 2In Ry <InR for R <1, called Case III,
(3.15) 2InR; > InR (i.e., R? > R) for R>1, called Case IVA.

Since R? < R1R < R for R < 1, Eq. (3.14) holds. Case III for R; < R < 1 and
Case IV for 1 < Ry < R are called in [11, p.163]. Since Eq. (3.15) is a special of
Case IV under condition, R? > R > 1, and then called Case IVA in this paper.
Therefore, there may have the solution p from (3.12), under R < 1 or R? > R > 1.
Otherwise, no solution of (3.11) exists. From (2.2), for the one g, at most, two field
nodes (p, #) and (p, —6) may be found. We may follow the analytic outlines in |11,
Section 3.3], to find all pitfall nodes to satisfy (3.5). The pitfall nodes are defined
by the nodes (p, 8%) of (3.12) to satisfy the conditions of the solution region Qp of
nodes P(p, p) (see Figure 2)

(3.16) p—a<p<pta, p>R,

which is given in [11, Lemma 3.1].
Below, we will consider the general choices of the exterior nodes p > R, which
are not confined on the same circle as those in (2.23). We choose
Vh . Vh

(3.17) 2 Deat(B+€j,05:05,05) = 57

to replace (2.23), where €;(> 0) are not constant, and 0 < 6; < 6,41 < 2m. A
similar model to the degenerate Case IIT in [11] can be found for R < 1, but under
more a specific limitation of R, Ry and a, given in Lemma 3.2 below.

fo(ej)v .] = 07 17 "'72M7

Lemma 3.1. There does not exist any pitfall node for Case IVA of (3.15), but may
exist pitfall nodes for Case III of (3.14).

Proof. We have from (3.11) and (3.16)

(3.18) plp —a)? < p? —a® < plp+a)?,
where p is given in (3.13). Egs. (3.18) lead to
(3.19) pp—a)<p+a, p—a<pu(p+a).

Then we have

(3:20) (m=Dp<(p+1)a, —(1+pa<(p—1)p,
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f p=p+
= a _
A p=r p=p
R+a _
p=p—a
R
R—a
0 R >
F1a. 2. The solution region Qg of P(p,p) with p > Rand p—a <
p<pta.
to give
1 1
(3.21) By B
n—1 w—1
where the ratio in front of @ is given from p in (3.13)
p41 214 In Ry In Ry
(3.22) - = ek Ty T
n— ZW —-1-1 niv; —in ln R
Since p > a we have from the right hand of (3.21)
w1
2 <p<
(3.23) a<p< i

to give from (3.22)

1<p,—|—1 :lan'
T u—1 ln%

(3.24)

Since Ry < R and In £ < 0, there must be In Ry < 0 and Ry < 1, based on (3.24).
In this case, multiplying In %(< 0) to both sides of (3.24) leads to

(3.25) InRi —InR=1In % > 1ln Ry,
and then
(3.26) ImhR<0, R<1.

This implies Case IIT of (3.14) for possible pitfall nodes.
Next, for Case IVA of (3.15), since R? > R, we have Ry > 1, and then

In Rl

Ry
lnR

(3.27)

)

which is against (3.24). Hence, Case IVA is excluded in pitfall nodes and degenerate
scales. This completes the proof of Lemma 3.1. O
To find the pitfall nodes in Case III of (3.14), we have the following lemma.
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Lemma 3.2. There may exist the pitfall nodes for Case III(Ry < R < 1), when
the following condition is satisfied,
(3.28) R<R =R 0<a<R-R.
Proof. For Ry < R < 1in Case III, since Z—ﬂ > 0 from (3.24), the left side of (3.21)
is satisfied automatically. Then only one condition remains from the right side of
(3.21), which leads to

p+1  InRy

(3.29) R<p<——a

p—1" ln%&’

where we have added p > R. Eq. (3.29) gives a specific relation among a, R; and
R,

InR
(3.30) RS%%@
n B
R
Eq. (3.30) is rewritten as
i R
(331) 1nR1:1nﬁ1<2
' lnRi1 InR; — R

Since R; < R < 1, we have

(3.32) In
Hence, we obtain

(3.33)

to give the condition for pitfall nodes existing for Case III,
(3.34) R<R =R 0<a<R-R.

This is the desired result (3.28), and completes the proof of Lemma 3.2. O
Note that for the concentric boundaries, a = 0, the condition (3.28) is invalid,
due to Ry < R. Denote the function

a
3.35 =R, T=—
(3.35) 6r) = RI", 7=,
where 0 < 7 < 1 — %, since 0 < a < R — R;. The derivatives are positive,

¢'(1) = —(InRy)R; ™" > 0. Hence, to relax the limitation of R by (3.28), we may
choose a larger 7 = %. We do not intend to seek the optimal choice of 7, but rather
take T = % for example. Choose a = % and R < 1. Then since R; < %, Condition
(3.28) leads to

(3.36) ngmgungf

From (3.36) we have R < 0.5 = R*. Hence for 7 = %, there do not exist degenerate
scales for R > 1, different from Degenerate Case III for all R < 1 in [11]. Then,
a new Degenerate Case IITA with R < R* < 1 can be found from the following
theorem.
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Theorem 3.2. Suppose that Eqs. (3.17) and (2.24) are used for the exterior and
the interior circular boundaries, respectively. For Case III(R; < R < 1) under
condition (3.28), there does exist the algorithm singularity from degenerate scales,
called Degenerate Scale I11A.

Proof. Eq. (3.12) is denoted as a hyperbolic curve of second order,

2 =2
(3.37) -
a (ﬁ)

Since p > 0 and p > 0, the function (3.12) is confined to be the hyperbolic curve in

the first quarter. Since R; < R < 1, we have 11’;1}} > 1, to give

In Rl
InR

(3.38) =2 —1>1.

Hence we have from (3.12)

2 _ 42
(3.39) p=4 Y /P — a2 <p.

"

Then, the nodes with p = p are excluded from pitfall nodes. Since the nodes with
p = p are located on the vertical line x = —%, the pitfall nodes are located only
on the left plane with » < —5. Hence, the contour of pitfall nodes is not a closed
curve, different from that for Degenerate Case III in [11, Figures 10 and 11].
Next, we find the contour of all pitfall nodes under condition (3.28). The hyper-

bolic curve has an asymptotic line in the first quarter with p > 0 and p > 0,

~_ P
3.40 p=— pn>1
(240 Vi
Other two lines are given in Figure 2,
(3.41) p=p—a, p=R.

Since p > 1, the intersection nodes of three lines in (3.40) and (3.41) formulate a
triangle AABC, see Figure 3. Denote the nodes by pars (p,5). Two vertices of
AABC are on p = R, and given by A(R, R—a) and B(R, %) The third vertex of

AABC is found as C(p*, p—#) with p* = =% The curve of (3.12) satisfying (3.28)
Vi

will cross the triangle AABC, to confirm the degenerate scales existing. This cross
segment of this curve is denoted by QT in Figure 3, where the left boundary point

is denoted by Q(R, ,/ RQ;‘IZ ). From g > 1 and Lemma 3.2, there exist the bounds,

R? —a? R
(3.42) R—a< T
Iz VHE
Hence the left boundary point, Q(R, R2;“2 ), of 62? is located within the vertical

segment AB. Since the curve éT of hyperbolic lines can not reach BC of the
asymptotic line (3.40), the monotonously increasing curve EQ-T must have the right
boundary point T on AC, see Figure 3. If all different 2M +1 nodes (p, p) are chosen
on the curve QT', the singularity occurs for (3.17) and (2.24), called Degenerate Case
ITTA. This completes the proof of Theorem 3.2. (]
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+

p=p
p=p—a
1
p=mp
R T
a
A

0 a R 1 =7

FiG. 3. Pitfall nodes € Qg of Case IITA with Ry < R < 1, where

p=1/E5% with p > 1.

3.3. An Example of Degenerate Case IITA. Below, to explain Theorem 3.2,
we provide an example of degenerate Case IIIA, where the pitfall nodes P(p, %) =
P(p,0%) of (3.12) satisfy (3.28). Choose R = 0.4,a = 0.2 and R; = 0.19. Eq.
(3.36) is satisfied, since Ry = 0.19 > 0.42 = R2. We have from (3.13) and (3.29)

In R1 In R1
3.43 =2 —1=262, 04=R<p< = 0.446.
( ) w lnR ) SpPpS In %a

Hence the pitfall notes are found for p € [0.4,0.446]. Then p is given as (3.12), and
0 is obtained from Figure 1,

72— p?—a?

(3.44) cosf = 2pa

For p = R = 0.4, we have from (3.12)

_ p% — a? 0.42 —0.22
3.45 = =4/ —— =0.2140
(3.45) p= . 562 :

and then from (3.44)

(0.2140)% — (0.4)% — (0.2)2
4 50 = = —0. )
(3.46) cos 2% 0.4 % 02 0.9637

Then we have § = 164.5°, and find the node QT = (0.4,164.5°) in Figure 4, which
corresponds to the left boundary point @ of curve é? in Figure 3. Hence, when
p € [0.4,0.446], the pitfall nodes (p, 6) are located with 6 € [164.5°,195.5°], very
closely to the most left exterior boundary point at (—R, 0). If the exterior boundary
0Spg is alike a face of human being, the contour of pitfall nodes of this degenerate
example just alike the edge of the left ear, see Figure 4.

When the general collocation equations (3.17) are used to replace (2.23), and
when all 2M + 1 pitfall nodes (p;, 0;) are chosen, the algorithm singularity of (2.25)
must occur, due to the above analysis. The numerical solutions can be obtained via
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Ay

=y

F1G. 4. An ear-edge contour of full paths of pitfall nodes for Case
IIIA, where points Q* respond to point @ in Figure 3.

the truncated singular value decomposition (TSVD), where large condition numbers
are obtained, see [11]. Moreover, the accuracy of numerical solutions from this
Degenerate Case IITA is poor, since the pitfall nodes are located, only nearly to
point (—R,0). Therefore, we do not provide the detailed algorithms, nor carry out
the computation as done in [11].

Let us compare Degenerate Case IITA to the Degenerate Case III in [11]. The
Degenerate Case III exists for all cases of R < 1, and their pitfall nodes are located
on an exterior closed contour. In contrast, the Degenerate Case IIIA exists for
R < R* < 1 under the limitation (3.28), and their pitfall nodes are located only
on the left plane x < —%. Hence, the Degenerate Case IIIA is rarely useful in
applications, because the 2M + 1 exterior nodes should be located on a closed
contour, for better accuracy.

In summary, the dual techniques, type II-1, has a little risk of degenerate scales.
Degenerate Case I can be avoided if p = R + ¢ with constant ¢ > 0 and M > 1.
Degenerate Case IITA will not happen, if the exterior field nodes are located on a
closed contour. For other cases, Degenerate Case IIIA is very rare to happen; see
the example in Section 3.3. Hence, the possibility of algorithm singularity is very
slight, compared with Degenerate Case III of the NFM given in [11]. This provides
a strict analysis of dual techniques for unique solutions and the non-singularity of
the dual algorithms, thus to remove the degenerate scales. For algorithm singularity
of the dual BEM, an analysis using the SVD is reported in [5].

Remark 3.1. For the CHEEF [2, 3|, type I-I is chosen, accompanied with only
one more equation of (2.15) at node (p*, 6*),

(3.47) Dewi(p*,0%:p%,0%) =0, p* > R.

Eq. (3.47) can be regarded as an extra-constraint of the unknown coefficients, py
and pg. For type I-I, we may solicit the conservative law in [9],

(348) Rp() + Rlﬁo = 0,
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which is called the conservative schemes. Evidently, Eq. (3.48) is much simpler
than (3.47). By using the overdetermined system (see [10]), the stability is as good
as that of the dual techniques in Section 4.1, and the optimal convergence rates can
be achieved by following [8, 13]. Hence, the conservative schemes are more effective
than the CHEEF in application; details will appear elsewhere.

4. ANALYSIS FOR DUAL TECHNIQUES

For numerical algorithms, the existence and unique solutions are essential. How-
ever, the errors and stability are the core of numerical analysis and scientific com-
puting. In this section, for the dual techniques, type II-I, not only can the best
stability be obtained, but also the optimal convergence rates may be achieved.

4.1. Stability Analysis. For simplicity, we consider a simple case: (a) M = N,
(b) the symmetric cases with ¢x = gr = 0, and (c) the same system of polar
coordinates (i.e.,(5,0) = (p,0)). In this case, there exist no degenerate scales, since
Eq. (3.7) does not hold. We choose the IFM, and obtain from (2.15) at p = R,

(4.1) Dewt(p, 0 3R Z ark cos k6 — 3R Z akk k cos ko
1 R 1. R
_ - Y . _ AU g _
{Po+2;PkCOSk9+(R)Po+2k_1pk(R) COS]@@} 0,
and from (2.11) at p = Ry,
1 1< R
_ . . 5 Lyk
(4.2) Lint(p,0) = ag —aog — 3 Zak cos k6 + 3 ’;ak(ﬁ) cos k6
Ry
{ (In Ry)po — 72 k:pk coskf + R(In R)po
k=1
M

R 1, Ry,

- Z —(=)"pg cos kb ; = 0.

) —~k R }
Eqgs. (4.1) and (4.2) lead to

M
Ry, 1 Ry
(43)  po+ (o + 5 (o + Pu(5) ) coskl = f1(0),
k=1

(RO 4 pey) cos k0 = f2(6),

> =

1
(4.4) —R(InR)po — Ri(InR1)po + 3 ;

where the functions f1(f) and f2(0) are independent of py and pr. We choose
2M + 2 collocation equations,

/W5 /W5
(4.5) 5 Dewt(Rojh) = Y2 (i), §=0,1,.... M,
(46) w/wjﬁint(Rlyjh> = ,/wj g(jh), ] = O, 1, ...,M,
where h = %, and weights wo = 1 and w; = 2 for j > 1. Eqgs. (4.5) and (4.6)

lead to the linear algebraic equations,
(4.7) Fx = b,
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where the matrix F € R"*", the unknown vector x(€ R"™) = [po, Pk, Q&> Do, Pr> @k *
and n = 2M +2. The unknown coefficients can be obtained by solving (4.7). Denote
matrix B = Diag[Bo, By, ...Bm], where the matrices By € R?*? are defined as

L 1R’y
— M M R
(4.8) Bo ( “R(mR) —Ri(inRy) ) :
1 1 L(&)Hl
(4.9) Bk:( R e MVB >7 k=1,2,..., M.
2\ (%) %
Lemma 4.1. For matrices By in (4.9) and (4.8), there exist the bounds,
_ 1
(4.10) oy <C, o > Coqp
1 _ 1
(4.11) o < C%, o > o3 E>1,

where C and co(> 0) are two positive constants independent of M, and a,f are two
singular values of matrices By.

Proof. The determinant of Bg in (4.8) is given by

R
Ry

To find two singular values USE of matrix Bg, we seek the eigenvalues of matrix
BIBy, denoted by

(4.12) Det(Bg) = %(mR —InRy) = R—ln( ) > 0.

Ry
Rﬁ + R?(In R)? ﬁlfg
iz 5 + RRi(InR)(In Ry) VeAla

From (4.12), we have the determinant

_ RR;(InR)(In Ry)
(4.13) BTB, = ( )2 > .

+ R2 thl)

2
(4.14) Det(BEBo) = {Det(Bo)}? = ﬁ{ln(ﬁ)]ﬂ > 0.
M? Ry
Since matrix B By is symmetric and positive definite, we have
(4.15) A*(BTBO) <\ (B3Bo) + /\_(BTBO)
1
—+R2(1nR) }2—|—R2(1nR1) <cC,

M2
and then from (4.14)

M2

Det(BTBy) 1
4.16 A (BiBg) = ———2 " > g
( ) 0 ( 0) )\J(BEBo) = Co M2
The desired results (4.10) follow from

(4.17) oif =0 (Bi) = /N (BIBy), k=0,1,.., M.

Next, we prove (4.11). The determinant of (4.9) is given by
Ry Ry o
1—(— > 1.
QkM[ (R> I>0, k=
The matrices BIBy(k > 1) are denoted by

(4.18) Det(By) =

2
wi mEmol( | BB (e
. k Pk 4 1 (R )k:+1 + RRl (R1 )k) Ry Ry (Rl )2k+2
M2\ R R k2 M2\ R
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Similarly, we have

1{1 R®* Ri o, R} RS

Ry 1
N BEB) < {p + (F et ap () T <O B2

R
and then from (4.18)

Det(ByBy) _ {Det(By)}” 1
A (BIBx) A/ (BfBy) — M2

(4.20) A, (BEBy) =

The desired results (4.11) follow from (4.17), and this completes the proof of Lemma
4.1. O
First, we cite the following lemma from [14].

Lemma 4.2. There exists the orthogonality of discrete Fourier series for k, ¢ < N,

oM +1, k=(=0,

(4.21) ij cos(kjh) cos((jh) = ¢ M + 3, k=0>1,
j=0 0, k#¢,
where h = 2]\24’:_1, and the weights wo = 1 and w; =2 for j > 1.

Theorem 4.1. Let (p,0) = (p,0) and M = N be given. For the dual techniques
from (4.5) and (4.6) at nodes Q € 3S, the condition number has the bound,

(4.22) Cond = O(M).
Proof. We have
N
(4.23) xTFTFx = Z wj{ D2 (R, jh) + Emt(thh)}

Jj=0

where the weights wo = 1 and w; = 2 for j > 1. We obtain from Lemma 4.2

(424) Zw] e'rt a]h)

7=0
M

M 1 Ry 2
ﬁz wi{m + (B + 5 3 (e + Pr(H)H) cos kjn

J=0 k=1
M M
= %Z {PO‘*’(%) %Z(Pk +pk(};1)k+1)coskjh}
i—0 —1
J " R
{Po +( z:: Do + Do = Hl)cosﬁjh}

ij: k+1) }
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Similarly, we have

M
(4'25) ijﬁzznt(Rl’.]h)
§=0
M M
1 1 R’ 2
Jzzjow]{ R(In R)py — R1(In Ry)po + 5 ;(%(ka( 7 Lk —l—kal)cos(k]h)}
:(M+1){ 2(R(In R)po + Ri(In R1)p 2+1§:ipR +pR)2}
2 0 1 1)Po) 12 12 Pk kivi)” .

Combining (4.23)-(4.25) yields
1 2 R
(4.26) x"FTFx = (M + f){ﬁ(m + ()P0)” + 2(R(ln R)po + Ry (In Ry)po)?
M
1 52 Ry 1 Rip |~ e
ué{ TR+ RS+ B )
N

1
= (2M + 1)xIBIBoxo + (M + §) Z xF BT Brxy,
k=1
where vectors xi = (pg,Pr)”, and matrices By are defined in (4.8) and (4.9). Since

<TFTFx . xTFTFx
(4.27) Tmax(F) =y [max ==, omin(F) =y /min —7-—,

where vector x = [Xg, X1, ...xMm|7 . We have from (4.26), (4.27) and Lemma 4.1,

(4.28) Omax(F) = 1/ Amax(FTF) < CV Mo (B) < CVM,

4.29 Tein(F) = +/ Amin (FTF) > cov/ Momin(B) > —2_

(4.29) (F) (FTF) = co (B) > NiTi

where ¢o(> 0) and C are two constants independent of M. The desired result (4.22)
follows from (4.28) and (4.29). This completes the proof of Theorem 4.1. d

4.2. Brief Error Analysis. The NFM at nodes Q € 0S is equivalent to the
interior filed method (IFM), which can be classified as the Trefftz method (TM),
see [8, 10]. We may derive the error bounds by following the outlines of analysis
in [13, 16]. In the dual techniques, the first kind NFM (2.11) at Q@ € O0Sg, is
used, which is equivalent to the solution (2.13) satisfying the Dirichlet condition
u = f on OSg,, while the second kind NFM (2.15) at Q@ € 0Sg is used, which
is equivalent to the solution (2.13) satisfying the Neumann condition u, = g on
0Sg. The dual techniques may be regarded as the Trefftz method for the mixed
boundary value problems (simply called the mixed problems) of both Dirichlet and
Neumann conditions in [12, 15, 16]. Define the energy

(4.30) I(v) = w? /as (v, — g(v))?ds + /as (v — f)3ds,

where v = up;_ v is given in (2.13), and f is the known function (2.5) with the given
coefficients @, and by,. However, the function g(v) in (2.4) is not given explicitly,
since py and ¢ are unknown and to be sought. For the Dirichlet condition (2.3)
absenting in (4.30), the coefficients a; and by, are still given in advance. Then, for
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(2.15) and (2.11), only coefficients, pg, gk, Pr and G, are unknowns, and the total
number of unknowns is still 2(M + N + 1). The weight w = 7 in (4.30) is optimal
in convergence for the mixed problems of Dirichlet and the Neumann conditions,
see [12, 15, 16]. Denote the set of (2.13) as Vj;_ny with the unknown coefficients
Pk, k, Pk and gx. Based on the equivalence of (2.15) and (2.11) to the the solution
(2.13) of the mixed problem, the dual techniques may read: To seek up;_n such
that
(4.31) I(upr—n) = min I(v).

veEVM-N
When there exist the numerical integrations, Eq. (4.31) leads to

(4.32) Iupi—n) = ain Iw),
where

AL 9 _ 2 2
(4.33) i) = w / o (= g0)ds ¢ / o, 0 1

where Tasﬁ and T{)sﬁ are the approximations by the trapezoidal (or Gaussian)
2 1
rule.
Let us estimate the errors of the dual techniques. First, assume that the solution
is smooth such that
(4.34) (uw € HP(OSR)) A (u, € HP(OSR)), p > 2,
(4.35) (u € H1(OSR,)) A (up € HTH(0SR,)), q> 2.

Second, we assume that the Fourier expansion coefficients ag, by, @ and by in (2.3)
and (2.5) are given exactly,

1 27 1 2m L
(4.36) o= [ w(R0)d0, G— - / w(Ry,0)dd,
2m Jo 2m Jo
1 27 1 2
(4.37) ay = 7/ u(R,0)coskbdf, by, = f/ u(R, 8)sin k6db,
m™Jo T Jo
1 27 _ o 1 27 _ o
(4.38) ay = —/ u(Ry1,0) coskfdl, by, = —/ u(Ry1,0)sin kOd6.
™ Jo ™ Jo

For the exterior boundary condition (2.4), denote the unknown function g(v) and
the solution derivatives,

M
(4.39) g(v) = 1, (v) = Dupr(8SR) = po + Z{pk coskf + g sinkf}, on OSg,
k=1

(4.40) w, = Duw(asR) =po+ Z{pk coskf + qxsinkf}, on OSg.
k=1

Their errors are given by

(4.41) DRy = uy, — g(v) = Duso(9Sr) — Dun(9SR)

= Z {pr cos kO + gy sin kG}.
k=M+1
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We obtain the bounds from [13]

(4.42) IDRu 0,085 = [I(Duse — Duns)lo,08, < C v llp—1,085-

1
Mp-1
Define the norm
(4.43) Ju—vllg =+V1(v),

where I(v) is given in (4.30). Since f = u on dSg, and u, = Duo.(dSg), we have
from (4.41),

(4.44) {llu—vl§}

= w? / (v — uy, + Duse (3SR) — g(v))?ds + / (u —v)%ds
OSRr BSRl

= w? / (uy, — v, — DRyy)?ds + / (u —v)?ds.
ISR aSRl
From (4.31), there exists the bound,

(445)  Jlu—un-nlls < inf {w]u, —v, = DRullogss + l[u—vlo0ss, }-
vEVM N

j— 1 — * * . . . . .
Let w = 7 and v = u},_ 5, where u},_ v is the solution with true Fourier expansion
coefficients. Then we obtain the optimal convergence rates,

(4.46) lu = upnr—nllo < wllww = (upr—n)v = DRallo,0ss + [lu = (uhs—n)
1

= 77 (Ba-nw)vlloosy + IDRullo.055) + | Rar—nullo.oss, -

where (Ry/—nu), is the remainder of derivatives (u};_5).. Based on (4.46), (4.42)
and [16, 13, 21], we may obtain the following theorem.

0,05k,

Theorem 4.2. Suppose that the smooth solution satisfy (4.34) and (4.35), and
that the exact Fourier expansion coefficients ay, by, ax and by as in (4.36)-(4.38) are
given. Then there exist the error bounds of the solutions from the dual techniques,
(2.15) at p= R and (2.11) at p = Ry,

" 1
(447) = warwlls < Ol

lp.osy + 1w llp-1.055)

1
+g Ulullgosa, + lluslle-1.08r,)},
where C' is a constant independent of M and N.

5. NUMERICAL EXPERIMENTS

5.1. For Model Problem. Choose the simple Dirichlet boundaries of (2.3) and
(2.5)

(5.1) u=ayp=1 on Sg, u=a9=0 on OSg,.

Model Problem of Dirichlet problems of Laplace’s equation is defined by (5.1) with
R =25 and R; = 1. The true solution of Model Problem is found in [14, 19]

1 16ﬁ2+1+8;3cos§}

T 22 p2 + 16 +8pcosf
where (p, ) are the polar coordinates of Sg, with the origin (—1,0), and (p, 0) are
obtained from the transformation (2.1). The normal derivatives can be obtained

(5.2) uModel (p’ 9) _ uModel (ﬁ’ é)
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from (5.2) in [14]. We carry out the computation by the dual techniques. By using
symmetry, the interior solutions are given from (2.13),

(5.3)  unm-~n =un-n(p,0;p,0) = ap — R(In R)py — R1(In p)po

Ri~~1 Ry
7215 = kaOka—F?;E(p)kaObk@ (r,0) € S.

Also two explicit equations are given from (2.15) and (2.11),

0 = R R
9y Lot (0:0:0.0) = ~{ (o + (5 )pocos(6 = 6)

4) D, :0.0) =
(5 ) E-Lt(pvowovo) 8[)

1L R 1R
+=) (5) g cos kb 4+ = E (—_1 Vet L5y cos((k 4 1)0 — 0)} =0, p>R,
2 p 2 o
=1 k=1
and

(5.5) Emt(p, 0:5,0) = —ao + ao — {Rl(ln R1)po + R(In R)po

Rl (=-)* coskaEil( )k Coske}—() 0<R
2 kRp kRSP o=

The number of unknown coefficients is M + N + 2. In computation, we choose the
nodes Q € SrUOSER,, and obtain the following M + M + 2 collocation equations,

1 . _ = .
(56) ,/ijDeIt(R,]AH;pj,Qj) :0, J 20,1,...,M,
(5.7) .ﬁw-cmt(pj,ej;Rl,jAé) =0, j=0,1,..,N,
where Af = 2M+1’ A) = 2N+1, and wo = 1 and w; = 2(j > 1) from the stability

analysis in Section 4.1. Eqgs. (5.6) and (5.7) lead to the linear algebraic equations,
(5.8) Ax =D,

where the matrices A € R™*", the vector x(€ R") = {py,pr} and n = M + N +2.
The Gaussian elimination is used to seek the coefficients p, and p, and the solution
is given by (5.3). Note that for the same Model problem of Dirichlet problem of
Laplace’s equation, Eq. (5.6) is different from that in [14]. The derivatives (5.4) are
of the second kind NFM. The second kind NFM is usually applied to the Neumann
problems in [10], where coefficients aj and @, are unknown. In contrast, coefficients
pr and P in (5.3) are unknown.

Define the norm of errors as

1 1 1

(5:9) el = {5z levl5.sn + lellisn, 325 lelln = {llellGsn + IllEsn, 7
where ¢ = u — up;—n. The condition number and the effective condition number
are defined in [17] by

(5.10) Cond = Jmax, Cond_eff = M,

Omin Omin HX”
where ||x|| is the 2- norm of vector x, and omax and o, are the maximal and the
minimal singular values of matrix A, respectively. The effective condition number
Cond _eff is smaller and even much smaller than the Cond for numerical partial dif-
ferential equations (PDE). The Cond_ eff is a better criterion for numerical stability
than the Cond, and a systematic analysis is reported in Li et al. [17].
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For Model Problem, different IV are chosen for M = 20, and errors and condition
numbers are listed in Tablel.

N llello, s 5 |\€\|0,SR1 llevllo,sp HEUHU,sRl Cond | Cond_eff
2 8.23E-08 7.19E-02 8.49E-02 2.13E-01 26.36 3.67
4 2.89E-07 2.84E-03 2.23E-03 1.32E-02 40.68 6.78
6 4.69E-07 1.28E-04 6.12E-05 8.39E-04 55.06 10.01
8 5.36E-07 | 6.24E-06 4.98E-06 5.33E-05 69.25 13.23
10 5.48E-07 | 3.17E-07 4.50E-06 3.39E-06 83.33 16.45
12 5.49E-07 1.58E-08 4.48E-06 2.40E-07 97.35 19.67
14 5.49E-07 6.42E-10 4.48E-06 7.67E-08 111.32 22.88
16 5.49E-07 1.50E-11 4.48E-06 7.49E-08 125.28 26.09
18 5.49E-07 1.11E-13 4.48E-06 7.48E-08 139.21 29.29
20 5.49E-07 2.78E-14 4.48E-06 7.48E-08 153.14 32.50

TABLE 1. Errors and condition numbers for Model Problem by
the dual techniques with M = 20.

From Table 1, we can see that N = 10 is a good choice, since the boundary error
decreases insignificantly for N > 10. Hence, a better match between M and N is
found as (M, N) = (2,1), which is reasonable since the ratio of radius between the
large circle and small circle is (R, Ry) = (2.5,1). By using (M : N) = (2: 1), the
errors and condition numbers are listed in Table 2, and the coefficients in Table 3.

M [ N |l llello,sg | llello.sg, llelln llevllo,sg | llevllo,sg, llell = Cond | Cond_eff
4 | 2 |[ 1.62E-01 | 4.37E-02 | 1.68E-01 || 3.61E-01 | 3.54B-01 | 1.00B-01 || 20.54 413
12 | 6 || 2.29E-04 | 1.21E-04 | 2.59E-04 || 1.17E-03 | 8.92E-04 | 1.56E-04 || 50.65 10.01
20 | 10 || 5.48E-07 | 3.17E-07 | 6.33E-07 || 4.50E-06 | 3.39E-06 | 3.89E-07 || 83.33 16.45

28 | 14 1.54E-09 | 9.16E-10 | 1.79E-09 1.75E-08 1.33E-08 1.11E-09 115.91 22.88
36 | 18 4.69E-12 | 2.83E-12 | 5.48E-12 6.84E-11 5.24E-11 3.41E-12 148.43 29.29
44 | 22 3.70E-14 | 1.73E-14 | 4.09E-14 2.69E-13 2.23E-13 1.83E-14 180.93 35.70

TABLE 2. Errors and condition numbers for Model Problem by
the dual techniques with (M : N) = (2:1).

From Table 2, we may find the following asymptotes,
(5.11) |lello,05, = O(0.503™), |lello,055, = O(0.498"), |le[ln = O(0.502"),
(5.12) |levllo.05, = O(0.550™), |levllo,05, = O(0.553™), |le|laz = O(0.545™),
(5.13) Cond(A) =0(M), Cond_eff(A) =O(M).
The condition numbers O (M) in (5.13) coincide perfectly with Theorem 4.1, and the
known bound Cond_eff < Cond from [17]. The exponential convergence in (5.11)
and (5.12) is consistent with the error analysis in Section 4.2, since the solution

(5.2) of the model problem is highly smooth. Moreover, the coefficients in Table
3 agree with those in [14, Table 3].

5.2. For Degenerate Case I. Degenerate Case I is defined by (5.1) with R =1
and R; = 0.4 in [11]. The true solution of Degenerate Case I can be obtained from
(5.2) via a scale transformation,
L {16(0%)2 + 1+ 8()cosf

= n — = —

2In2 () +16 +8(g%) cos b
1 nf 100p% + 1 + 20pcos @
~ 2In2 " '6.2552 + 16 4+ 205 cos 0’

(5.14) uDegCase (P, 9) _ uDegCase(ﬁ, g)
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Pk k Pk
5.77078016355585E-01 7/ 7
-5.77078016355583E-01 | 23 | -1.37586120243466E-07
2.88539008177792E-01 | 24 | 6.87930607609056E-08
-1.44269504088894E-01 | 25 | -3.43965295477178E-08
7.21347520444478E-02 | 26 | 1.71982655942852E-08
-3.60673760222241E-02 | 27 | -8.59913229814495E-09
1.80336880111133E-02 | 28 | 4.29956688554378E-09
-9.01684400555583E-03 | 29 | -2.14978273379107E-09
4.50842200277847E-03 | 30 | 1.07489198006346E-09
-2.25421100138814E-03 | 31 | -5.37445469411618E-10
10 | 1.12710550069400E-03 | 32 | 2.68723563599604E-10
11 | -5.63552750346028E-04 | 33 | -1.34361123372839E-10
12 | 2.81776375173099E-04 | 34 | 6.71812040006617E-11
13 | -1.40888187585722E-04 | 35 | -3.35897953096800E-11
14 | 7.04440937930987E-05 | 36 | 1.67951970273208E-11
15 | -3.52220468960927E-05 | 37 | -8.39693427485934F-12
16 | 1.76110234484511E-05 | 38 | 4.19851901261732E-12
17 | -8.80551172376346E-06 | 39 | -2.09773153859011E-12
18 | 4.40275586215541E-06 | 40 | 1.04777161262283E-12
19 | -2.20137793053615E-06 | 41 | -5.20003217803839E-13
20 | 1.10068896582678F-06 | 42 | 2.54517235615278F-13
21 | -5.50344482320820E-07 | 43 | -1.14031784777390E-13
22 | 2.75172241847966E-07 | 44 | 3.30950302757752E-14

O 00~ U W= O3

k Dk k Dk

0 -1.44269504088896E+00 / /

1 7.21347520444480E-01 12 | -1.71982648393315E-07
2 -1.80336880111119E-01 13 4.29956594728619E-08
3 4.50842200277808E-02 14 -1.07489211644045E-08
4 -1.12710550069452E-02 15 2.68723203976677E-09

5 2.81776375173729E-03 16 -6.71805379975541E-10
6 -7.04440937930649E-04 17 1.67961000712086E-10

7 1.76110234486329E-04 18 -4.19865452084764E-11
8 -4.40275586217425E-05 19 1.04978988826540E-11

9 1.10068896537037E-05 20 -2.62342366797244FE-12
10 -2.75172241389339E-06 21 6.44444241894304E-13

11 6.87930607284316E-07 22 -1.20762991620560E-13

TABLE 3. The coefficients py, and p, at (M : N) = (44 : 22) in
Table 2, where “bold” digits highlight the same as those in [14,
Table 3].

where (p, ) are the polar coordinates of Sk, with the origin (—0.4,0), and (p,6)
are obtained from the transformation (2.1), and given by

= = psin O
(5.15) p= \/(ﬁcos0 —0.4)2 + (psin®)?, cosf = %

For Degenerate Case I, errors and condition numbers are listed in Table 4.

M [ N || llello,sg [ llello,sg, llelln llevllo.sg | llevllo,sg, lell e Cond | Cond_eff
4 | 2 |[ 1.60E-01 | 4.37E-02 | 1.66E-01 || 9.16E-01 | 9.11E-01 | 2.33E-01 || 24.73 3.64
12 | 6 || 2.29E-04 | 1.21E-04 | 2.59E-04 || 2.93E-03 | 2.23E-03 | 2.73E-04 || 70.22 10.01

20 | 10 5.48E-07 | 3.17E-07 | 6.33E-07 1.12E-05 8.48E-06 6.45E-07 115.82 16.45
28 | 14 1.54E-09 | 9.16E-10 | 1.79E-09 4.38E-08 3.33E-08 1.81E-09 161.27 22.88
36 | 18 4.69E-12 | 2.83E-12 | 5.48E-12 1.71E-10 1.31E-10 5.53E-12 206.65 29.29
44 | 22 2.93E-14 | 3.52E-14 | 4.58E-14 6.80E-13 5.68E-13 3.85E-14 252.00 35.70

TABLE 4. Errors and condition numbers For Degenerate Model I
by the dual techniques with M = 2N, where ¢ = u — up;_ -
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From Table 4, we may find the following asymptotes,

(5.16) |lgllo,05, = O(0.497™), |lello,055, = O(0.513M), |le]ln = O(0.504M),
(5.17) llevllo,os, = O0.500M), |leyllo,05,, = O(0.502™), ||z = O(0.500™),
(5.18) Cond(A)=0(M), Cond eff(A)=O0O(M).

We can see that the numerical performance for Degenerate Case I is as good as that
for Model Problem in Section 5.1, to verify the analysis of dual techniques in this
paper. The coefficients are also listed in Table 5; they also agree with those in [11,

Table 3] by the NFM with € = € = 0 via the truncated singular value decomposition
(TSVD). We only list the leading coefficients from Table 5,

(5.19) p1 =-1.44269504088896,

-3.60673760222242, p; = 1.80336880111120,

Po
where “bold" digits highlight the same as those in [11, Table |. For Degenerate Case

I in [11, Table 3], the TSVD is more complicated than the Gaussian elimination
used in the dual techniques. This is an advantage of dual techniques, which have

been widely used in engineering computation (see [4, 20]).

k Pk k Pk

0 1.44269504088895E+00 / /

1 -1.44269504088896E+4-00 | 23 | -3.43965304247170E-07
2 7.21347520444478E-01 24 1.71982652283100E-07
3 -3.60673760222249E-01 25 | -8.59913267445459E-08
4 1.80336880111115E-01 26 4.29956634897546E-08
5 -9.01684400555537E-02 27 | -2.14978317721785E-08
6 4.50842200277822E-02 28 1.07489153440605E-08
7 -2.25421100138959E-02 29 | -5.37445824887292E-09
8 1.12710550069496E-02 30 2.68722897199011E-09
9 -5.63552750347122E-03 31 | -1.34361463719127E-09
10 2.81776375173187E-03 32 6.71807235285920E-10
11 -1.40888187586139E-03 33 | -3.35904084406186E-10
12 7.04440937929368E-04 34 1.67951265507791E-10
13 -3.52220468964682E-04 35 | -8.39760091473842E-11
14 1.76110234485279E-04 36 4.19871039179853E-11
15 -8.80551172455331E-05 37 | -2.09937852904675E-11
16 4.40275586266996E-05 38 1.04955242032292E-11
17 -2.20137793174572E-05 39 | -5.24648315503994E-12
18 1.10068896618736E-05 40 2.61914324090401E-12
19 -5.50344483388396E-06 41 | -1.30232700286596E-12
20 2.75172241898938E-06 42 6.34882450342706E-13
21 -1.37586121131514E-06 43 | -2.87495539804123E-13
22 6.87930606670598E-07 44 8.17477928136056E-14
k Dk k Dk

0 -3.60673760222242E+00 / /

1 1.80336880111120E4-00 12 | -4.29956632247978E-07
2 -4.50842200277797E-01 13 1.07489166060012E-07
3 1.12710550069449E-01 14 | -2.68722920754338E-08
4 -2.81776375173650E-02 15 6.71807072740393E-09
5 7.04440937933192E-03 16 | -1.67951497170469E-09
6 -1.76110234483112E-03 17 4.19888322895912E-10
7 4.40275586213233E-04 18 | -1.04984733471751E-10
8 -1.10068896557114E-04 19 2.62054465583958E-11
9 2.75172241307462E-05 20 | -6.51422362232812E-12
10 -6.87930602418822E-06 21 1.63203912190157E-12
11 1.71982651817981E-06 22 | -3.09432167389101E-13

TABLE 5. The coefficients of (M, N) = (44,22) in Table 4.
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6. CONCLUDING REMARKS

Let us give a few remarks, to address the novelties of this paper.

1. Although the dual techniques have been widely used in engineering computa-
tion, to deal with algorithm singularity (see [4, 20]), there exists no strict analysis.
For Laplace’s equation in circular domains with circular holes, the second and the
first kind NFM are used for the exterior and the interior boundaries, respectively,
called the dual techniques in this paper, to remove the degenerate scales. This paper
is devoted to explore a theoretical analysis to fill up some gap between theory and
computation [4, 20].

2. In [11], for type I-I of the first kind NFM, two kinds of degenerate scales are
found, (1) Degenerate Case I with p = R = 1, and (2) Degenerate Case III for
Ry < R < 1, where the field nodes may be located on a closed contour outside of
0Sg. From Theorem 3.1, when M > 1 and the (2M + 1) field nodes are located on
the same circle outside of S, the popular degenerate Case I of [11] can be always
bypassed. The dual techniques of this paper is significant in real applications,
because Degenerate Case I no longer exists.

3. There does exist Degenerate Scale IITA of dual techniques. From Lemma 3.2,
a limitation R < R* < 1 is given in (3.28). The pitfall nodes are located only on
the left plane x < —5. Since stability and accuracy are the important criteria for
applications, Degenerate Scale ITTA is rarely useful in applications. However, the
theoretical analysis of all pitfall nodes is essential for the dual techniques.

4. The stability analysis of dual techniques is explored in Theorem 4.1, to reach
excellent stability. The error bounds are also provided in Theorem 4.2, to also
achieve the optimal convergence rates. The theoretical analysis has been supported
by the numerical experiments in Section 5.

5. For dual techniques, the solution methods are simple, since the simple Gauss-
ian elimination, or the iteration methods, can be employed. A sequential paper
of the DNFM is developed for elliptic domains with one elliptic hole, where more
discovers are reported. Moreover, the dual NFM can be applied to multiple holes,
circular, elliptic and arbitrary with smooth boundary. For polygonal holes and the
interior holes with corners, the dual NFM is still valid to guarantee the unique
solutions, provided that the suitable singular solutions near corners are introduced
into the algorithms, see [18, Section 5.4]. More exploration appears elsewhere. For
eigenvalue problems by the first kind NFM, the superfluous eigenvalues are infinite,
and more severe difficulties are encountered in numerical computation [2]. Hence,
the dual techniques may be more significant and important for eigenvalue problems.
More papers and references can be found from Taiwan NTOU/MSV group.
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