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Abstract. The authors present their recently developed complete version
of the Pontryagin maximum principle for a class of infinite-horizon optimal
control problems arising in economics. The main distinguishing feature of
the result is that the adjoint variable is explicitly specified by a formula
analogous to the Cauchy formula for solutions of linear differential systems.
In certain situations this formula implies the ‘standard’ transversality con-
ditions at infinity. Moreover, it can serve as an alternative to them. Exam-
ples demonstrate the advantages of the proposed version of the maximum
principle. In particular, its applications are considered to Halkin’s example,
to Ramsey’s optimal economic growth model, and to a basic model for opti-
mal extraction of a non-renewable resource. Also presented is an economic
interpretation of the characterization obtained for the adjoint variable.
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1. Introduction

To the best of our knowledge, Pontryagin first announced his celebrated max-
imum principle for problems of optimal control in 1956 at a session of the USSR
Academy of Sciences on Scientific Problems in Computer-Aided Manufacturing
(see [47]). Then in 1961 Pontryagin and his collaborators published the seminal
monograph The mathematical theory of optimal processes, which established the
foundations of the new theory (see [48]). Starting from this time the theory of
optimal control began its rapid development.

As indicated already in Pontryagin’s lecture [47], the so-called adjoint variable
plays a main role in the relations of the maximum principle. It enables one to deter-
mine the values of an optimal control via the maximum condition. The behaviour of
the adjoint variable is governed by the adjoint system. However, the adjoint system
has infinitely many solutions, and the particular solution of it that corresponds to
the optimal control under consideration is usually determined by additional bound-
ary conditions known as transversality conditions. This explains the role of the
transversality conditions and suggests a standard way to complete the relations of
the maximum principle.

In the last decades, the Pontryagin maximum principle has been extended to
various classes of problems. One of the important classes of optimal control prob-
lems for which numerous attempts to develop the maximum principle have been
made is the class of infinite-horizon problems arising in economics. Typically, the
initial state is fixed and the terminal state (at infinity) is free in such problems,
while the utility functional to be maximized is given by an improper integral on
the time interval [0,∞). The last circumstance gives rise to specific mathematical
features of the problems. More precisely, let x∗( · ) be an optimal trajectory and let
(ψ0, ψ( · )) be a pair of adjoint variables corresponding to x∗( · ) according to the
maximum principle. Although the state of the system at infinity is not constrained,
such problems can be abnormal (that is, ψ0 = 0), and the ‘standard’ transversality
conditions at infinity, of the form

lim
t→∞

ψ(t) = 0 or lim
t→∞

⟨ψ(t), x∗(t)⟩ = 0,

may fail. The results justifying validity of these relations were obtained only under
rather restrictive assumptions (see [22], [35], [42], [44], [51], [54], [62]) that make
them inapplicable to many particular economic problems.

We remark that an additional characterization of the adjoint variable ψ( · ) is
critically important for the efficient use of the maximum principle, because without
complementary conditions the set of extremals satisfying the maximum principle
may be ‘too broad’ in the general case. Furthermore, a number of known examples
(see [11], [26], [37], [44]) clearly demonstrate that complementary conditions for the
adjoint variable which differ from the standard transversality conditions must be
involved.

The aim of this paper is to present recent results of the authors which develop
another view of the Pontryagin optimality conditions for infinite-horizon optimal
control problems arising in economics, especially with regard to the correct deter-
mination of the adjoint variable ψ( · ).
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The main distinguishing feature of the version obtained for the maximum prin-
ciple is that the adjoint variable is explicitly specified by a formula which resembles
the Cauchy formula for solutions of linear differential systems. In certain situations
this formula implies the standard transversality conditions at infinity. Moreover,
it can serve as an alternative to them. Another important feature of the version
obtained for the maximum principle is that it is proved under weak regularity
assumptions. This makes it possible to directly apply it to some meaningful eco-
nomic models. A third feature of the proposed approach is that it is also applicable
to problems in which infinite objective values may appear. In this case the con-
cept of overtaking optimality is employed, which is important for many economic
considerations.

The paper is organized as follows. In § 2 we give a rigorous formulation of the
problem, introduce the notion of optimality used in this paper, and formulate and
discuss our main result— the normal-form version of the maximum principle with
an explicitly specified solution of the adjoint equation. Here we also present two
illustrative examples. The first is Halkin’s classical example in which the stan-
dard transversality conditions at infinity are violated while all optimal controls in
the problem are determined by the explicit representation obtained for the adjoint
variable. The second example clarifies the role of our main growth assumption.
Together, these two examples demonstrate the alternative character of the descrip-
tion obtained for the adjoint variable, compared with the standard transversality
conditions at infinity.

In § 3 we specialize the main result for several classes of problems in terms of
growth rates of the functions involved. This enables us to formulate conditions
implying the standard transversality conditions at infinity in terms of the growth
rate conditions.

Section 4 is devoted to applications of our main result in economics. Here the
economic meaning of the Cauchy-type formula obtained is discussed in detail. In
the case of autonomous problems with exponential discounting we establish a con-
nection between the Cauchy-type formula and Michel’s asymptotic condition for the
Hamiltonian (see [44]). Then we apply our main result to two important economic
problems: Ramsey’s optimal economic growth model and a basic model of optimal
extraction of a non-renewable resource. Ramsey’s model is the most important
theoretical construct in modern growth theory. The analysis of Ramsey’s model
presented in the economic literature is usually based on the assumption that the
standard transversality condition holds as a necessary condition for optimality.
However, as a rule this fact is not rigorously justified (see [19], § 2.6, for example).
Here we present a rigorous analysis of the Ramsey model based on application of the
version of the maximum principle developed. The basic model of optimal extrac-
tion of a non-renewable resource provides an example of an infinite-horizon optimal
control problem in economics in which the standard transversality conditions at
infinity fail while a correct characterization of the adjoint variable is provided by
the Cauchy-type formula.

We conclude the paper with a brief bibliographical survey in § 5.
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2. Statement of the problem and the main result

2.1. Statement of the problem. Let G be a non-empty open convex subset
of Rn and let

f : [0,∞)×G× Rm → Rn and f0 : [0,∞)×G× Rm → R1

be given functions.
Consider the following optimal control problem (P):

J(x( · ), u( · )) =
∫ ∞

0

f0(t, x(t), u(t)) dt→ max, (1)

ẋ(t) = f(t, x(t), u(t)), x(0) = x0, (2)
u(t) ∈ U(t). (3)

Here x(t) = (x1(t), . . . , xn(t))∈Rn is a phase vector, u(t) = (u1(t), . . . , um(t))∈Rm

is a control vector at time t ⩾ 0, x0 ∈ G is a fixed initial state, and U : [0,∞) ⇒ Rm

is a multivalued map with non-empty values.
Infinite-horizon optimal control problems of type (P) arise in different areas

of economics, in particular, in the theory of economic growth [19]. Typically, in
economic applications the components of the vector x(t) can be interpreted as values
of various capital stocks, while the components of the vector u(t) can be interpreted
as values of different kinds of investments at the time t ⩾ 0.

As far as we know, it was Ramsey [49] who first considered (in the 1920s) the
problem of optimization of economic growth as a variational problem of maximizing
an integral functional on an infinite time horizon. This direction of research was con-
tinued by Cass [27], Koopmans [43], Shell [56], and Arrow and Kurz [3], and became
the standard method for investigating optimal economic growth models. Neverthe-
less, the theory of first-order necessary optimality conditions for infinite-horizon
problems is still less developed than that in the finite-horizon case.

It is well known that the proper choice of the present-value ‘shadow prices func-
tion’ (adjoint variable) ψ( · ) along the optimal trajectory x∗( · ) plays a crucial role
in the identification of the corresponding optimal investment policy u∗( · ) in the
problem (P). Indeed, if such a function ψ : [0,∞) → Rn is known,1 then the opti-
mal investment policy u∗( · ) can be determined by maximizing the instantaneous
present net value utility on the time interval [0,∞):

f0(t, x∗(t), u∗(t)) + ⟨ψ(t), f(t, x∗(t), u∗(t))⟩
a.e.= sup

u∈U(t)

{
f0(t, x∗(t), u) + ⟨ψ(t), f(t, x∗(t), u)⟩

}
. (4)

Here the first term f0(t, x∗(t), u∗(t)) on the left-hand side of (4) represents
the present-value utility flow, while the second term ⟨ψ(t), f(t, x∗(t), u∗(t))⟩ is the
present-value increment of the capital stock x∗(t) at the time t ⩾ 0. Thus, one can
say that (P) is, in fact, a problem of determining an appropriate shadow prices
function ψ( · ).

1Recall that in economics the ‘shadow price’ of capital is equal to the present discounted value
of future marginal products (see [19], Chap. 2).
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Note that for the finite-horizon counterpart of the problem (P) the Pontrya-
gin maximum principle provides a unique function ψ( · ) for which the maximum
condition (4) holds.

Let us recall this classical result in optimal control theory [48]. Define the
Hamilton–Pontryagin function H : [0,∞)×G×Rm×R1×Rn → R1 for the prob-
lem (P) in the standard way:

H (t, x, u, ψ0, ψ) = ψ0f0(t, x, u) + ⟨ψ, f(t, x, u)⟩,
t ∈ [0,∞), x ∈ G, u ∈ Rm, ψ0 ∈ R1, ψ ∈ Rn.

In the normal case, that is, when ψ0 = 1, we will omit ψ0 and write simply
H (t, x, u, ψ) instead of H (t, x, u, 1, ψ).

Now consider the following problem (PT ) on a fixed finite time interval [0, T ],
T > 0:

JT (x( · ), u( · )) =
∫ T

0

f0(t, x(t), u(t)) dt→ max,

ẋ(t) = f(t, x(t), u(t)), x(0) = x0,

u(t) ∈ U(t).

Here all the data in the problem (PT ) are the same as in (P). The only difference
is that (PT ) is considered on the finite time interval [0, T ]. Then the Pontryagin
maximum principle asserts that, under suitable regularity assumptions, for any
optimal admissible pair (xT ( · ), uT ( · )) in the problem (PT ) there is an absolutely
continuous function (adjoint variable) ψT : [0, T ] → Rn for which the maximum
condition (4) is satisfied. This function ψT ( · ) is uniquely defined as the solution
of the normal-form adjoint system

ψ̇(t) = −Hx(t, xT (t), uT (t), ψ(t)) (5)

with boundary condition
ψ(T ) = 0. (6)

The condition (6) is known in optimal control theory as the transversality con-
dition for free terminal state. This condition identifies the function ψT ( · ) uniquely
among all functions ψ( · ) which together with the admissible pair (xT ( · ), uT ( · ))
satisfy the core conditions of the maximum principle: the adjoint system (5) and
the maximum condition (4) (with the subscript ∗ replaced by T ) .

This result motivated numerous attempts to extend the maximum principle for
the problem (PT ) to the infinite-horizon problem (P) by involving ‘natural’ ana-
logues of the transversality condition (6), in particular of the form

lim
t→∞

ψ(t) = 0 (7)

or
lim

t→∞
⟨ψ(t), x∗(t)⟩ = 0. (8)
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Nevertheless, the positive results in this direction were obtained only under addi-
tional conditions that make them inapplicable to many particular problems (see the
bibliographical comments in § 5). Moreover, as Halkin [37] pointed out by means
of counterexamples, although the phase state at infinity is not constrained in the
problem (P), such problems could be abnormal (that is, ψ0 = 0), and complemen-
tary conditions of the form (7) or (8) may fail to be fulfilled for the ‘right’ adjoint
function for which the core conditions of the maximum principle hold.

We should also mention another asymptotic condition of the form

lim
t→∞

H(t, x∗(t), ψ0, ψ(t)) = 0 (9)

on the adjoint variable. This was proved by Michel (see [44]) in the specific case
when the problem (P) is autonomous with exponential discounting, that is,

f(t, x, u) ≡ f(x, u), f0(t, x, u) = e−ρtg(x, u),

x ∈ G, u ∈ U(t) ≡ U, t ⩾ 0,

the discount rate ρ is an arbitrary real number (not necessarily positive), and the
optimal value of the functional is finite. Here

H(t, x∗(t), ψ0, ψ(t)) = sup
u∈U

H (t, x∗(t), u, ψ0, ψ(t))

is the Hamiltonian. The condition (9) is similar to the transversality in time con-
dition

H(T, xT (T ), ψ0, ψ(T )) = 0,

which is well known for finite-horizon optimal control problems with free terminal
time T > 0 (see [48]).

Let us return to the conditions (5) and (6) for the adjoint variable in the
finite-horizon problem (PT ). It is easy to see that by the Cauchy formula for
linear differential systems (see [38]), the adjoint system (5) and the transversality
condition (6) give the representation

ψ(t) = ZT (t)
∫ T

t

[ZT (s)]−1f0
x(s, xT (s), uT (s)) ds, t ∈ [0, T ]. (10)

Here ZT ( · ) is the (normalized at t = 0) fundamental matrix solution on [0, T ] of
the linear system

ż(t) = −[fx(t, xT (t), uT (t))]∗z(t). (11)

This means that the columns of the matrix function ZT ( · ) are linearly independent
solutions of (11) on [0, T ] and ZT (0) = I, where I is the identity matrix.

The pointwise representation (10) suggests a ‘natural’ candidate for an appro-
priate adjoint function ψ( · ) in the problem (P). Indeed, replacing (xT ( · ), uT ( · ))
by (x∗( · ), u∗( · )) in (10) and formally passing to the limit as T →∞ (which can be
justified under appropriate conditions that guarantee convergence of the integral
in (12)), we obtain the expression

ψ(t) = Z∗(t)
∫ ∞

t

[Z∗(s)]−1f0
x(s, x∗(s), u∗(s)) ds, t ⩾ 0, (12)
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where Z∗( · ) is now the (normalized at t = 0) fundamental matrix solution of the
linear system

ż(t) = −
[
fx(t, x∗(t), u∗(t))

]∗
z(t), t ∈ [0,∞).

Clearly, in the infinite-horizon case the formula (12) is a direct analogue of the
Cauchy formula (10) for the adjoint function in the problem (PT ). However, (12)
cannot be reduced to the asymptotic conditions (7) or (8). This explicit formula
does not assume or imply the standard transversality conditions (7) or (8), which
may be inconsistent with the core conditions of the maximum principle. Never-
theless, for particular classes of problems it may imply (7) and/or (8), as will be
seen below. If the problem (P) is autonomous with exponential discounting and
the optimal value of the functional is finite, then the explicit formula (12) can also
imply the asymptotic condition (9). It turns out that the Cauchy-type formula (12)
can be justified as part of necessary optimality conditions for the problem (P) under
mild regularity and growth assumptions, and it can serve as an alternative to (7)
and (8).

Let us now refine the formulation of the problem (P).
The following assumption applies throughout our paper and will not always be

explicitly mentioned.

Assumption (A0). For almost every t ∈ [0,∞) the derivatives fx(t, x, u) and
f0

x(t, x, u) exist for all (x, u) ∈ G × Rm, and the functions f( · , · , · ), f0( · , · , · ),
fx( · , · , · ), and f0

x( · , · , · ) are Lebesgue–Borel measurable (LB-measurable) with
respect to (t, u) for every x ∈ G, and continuous with respect to x for almost every
t ∈ [0,∞) and every u ∈ Rm. The multivalued map U( · ) is LB-measurable.

The LB-measurability with respect to (t, u) (see [31], Definition 6.33) means
that the functions (and sets) with this property are measurable with respect to the
σ-algebra generated by the Cartesian product of the Lebesgue σ-algebra on [0,∞)
and the Borel σ-algebra on Rm. It is important to note that for any LB-measurable
function g : [0,∞) × Rm → Rn, the superposition t 7→ g(t, u(t)) with a Lebesgue
measurable function u : [0,∞) → Rm is Lebesgue measurable (see [31], Proposi-
tion 6.34). The LB-measurability of the multivalued map U( · ) means that the
set

graphU( · ) = {(t, u) ∈ [0,∞)× Rm : u ∈ U(t)}
is an LB-measurable subset of [0,∞)× Rm.

Remark 1. In some situations it is natural (and convenient) to consider prob-
lems (P) with functions f( · , · , · ) and f0( · , · , · ) which are defined only for
(t, u) ∈ graphU( · ), where U( · ) is an LB-measurable multivalued map. In this
case the LB-measurability of f( · , · , · ) and f0( · , · , · ) with respect to (t, u) means
that these functions are measurable with respect to the relative σ-algebra induced
in graphU( · ) by the σ-algebra of all LB-measurable subsets of [0,∞)× Rm. This
is equivalent to the LB-measurability of the functions f( · , · , · ) and f0( · , · , · )
extended as arbitrary constants from graphU( · ) to [0,∞)× Rm for all x ∈ G.

As a control we take any Lebesgue measurable function u : [0,∞) → Rm satis-
fying (3) for all t ⩾ 0. If u( · ) is a control, then the corresponding trajectory x( · )
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is a locally absolutely continuous solution of (2) which (if it exists) is defined with
values in G on some (maximal) finite or infinite time interval [0, τ), τ > 0. The
local absolute continuity of x( · ) means that x( · ) is absolutely continuous on any
compact subinterval [0, T ] of its domain of definition [0, τ).

By definition, a pair (x( · ), u( · )), where u( · ) is a control and x( · ) is the corres-
ponding trajectory, is an admissible pair in the problem (P) if the trajectory x( · )
is defined on the whole time interval [0,∞) and the function t 7→ f0(t, x(t), u(t)) is
locally integrable on [0,∞) (that is, it is integrable on any finite time interval [0, T ],
T > 0). Thus, for any admissible pair (x( · ), u( · )) and any T > 0 the integral

JT (x( · ), u( · )) :=
∫ T

0

f0(t, x(t), u(t)) dt

is well defined. If (x( · ), u( · )) is an admissible pair, then we refer to u( · ) as an
admissible control and to x( · ) as the corresponding admissible trajectory.

We now recall two basic concepts of optimality used in the literature (see [26],
for instance).

In the first, the integral in (1) is understood in the improper sense, that is, for
an arbitrary admissible pair (x( · ), u( · )), by definition,

J(x( · ), u( · )) = lim
T→∞

∫ T

0

f0(t, x(t), u(t)) dt,

if this limit exists.

Definition 2. An admissible pair (x∗( · ), u∗( · )) is said to be strongly optimal in
the problem (P) if the corresponding integral in (1) converges (to a finite number),
and for any other admissible pair (x( · ), u( · ))

J(x∗( · ), u∗( · )) ⩾ lim sup
T→∞

∫ T

0

f0(t, x(t), u(t)) dt.

In the second definition, the integral in (1) is not necessarily convergent.

Definition 3. An admissible pair (x∗( · ), u∗( · )) is said to be finitely optimal in
the problem (P) if for any T > 0 this pair (restricted to [0, T ]) is optimal in the
following optimal control problem (QT ) with fixed initial and final states:

JT (x( · ), u( · )) =
∫ T

0

f0(t, x(t), u(t)) dt→ max,

ẋ(t) = f(t, x(t), u(t)), x(0) = x0, x(T ) = x∗(T ),

u(t) ∈ U(t).

It is easy to see that strong optimality implies finite optimality.
The following weak regularity assumption plays a key role for the validity of

the general version of the Pontryagin maximum principle for a finitely optimal pair
(x∗( · ), u∗( · )) in the problem (P) (one can find similar assumptions for problems
with finite time-horizons in [30], Chap. 5, and [31], Hypothesis 22.25).
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Assumption (A1). There exist a continuous function γ : [0,∞) → (0,∞) and
a locally integrable function φ : [0,∞) → R1, such that

{x : ∥x− x∗(t)∥ ⩽ γ(t)} ⊂ G for all t ⩾ 0

and for almost every t ∈ [0,∞)

max
{x : ∥x−x∗(t)∥⩽γ(t)}

{
∥fx(t, x, u∗(t))∥+ ∥f0

x(t, x, u∗(t))∥
}

⩽ φ(t). (13)

Note that if (x∗( · ), u∗( · )) is an admissible pair and Assumption (A1) holds,
then x∗( · ) is the unique trajectory corresponding to u∗( · ) (see [36], Chap. 1,
Theorem 2).

Remark 4. Assumption (A1) holds automatically under the standard regularity
conditions that u∗( · ) ∈ L∞loc[0,∞), U(t) ≡ U for t ⩾ 0, and the functions fx( · , · , · )
and f0

x( · , · , · ) are measurable with respect to t, continuous with respect to (x, u),
and locally bounded. Here local boundedness of these functions of t, x, and u (take
ϕ( · , · , · ) to represent them) means that for every T > 0, every compact set D ⊂ G,
and every bounded set V ⊂ U there exists a number M such that ∥ϕ(t, x, u)∥ ⩽ M
for almost all t ∈ [0, T ] and all x ∈ D and u ∈ V .

If Assumption (A1) holds, then any finitely optimal admissible pair (x∗( · ), u∗( · ))
satisfies the following general version of the maximum principle, which is proved
in [37] under the standard regularity conditions.

Theorem 5. Let (x∗( · ), u∗( · )) be a finitely optimal admissible pair in the prob-
lem (P) and let Assumption (A1) be valid. Then there is a non-vanishing pair of
adjoint variables (ψ0, ψ( · )), with ψ0 ⩾ 0 and a locally absolutely continuous func-
tion ψ( · ) : [0,∞) → Rn , such that the core conditions of the maximum principle
hold, that is,

(i) ψ( · ) is a solution of the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ0, ψ(t)),

(ii) the maximum condition is satisfied,

H (t, x∗(t), u∗(t), ψ0, ψ(t)) a.e.= sup
u∈U(t)

H (t, x∗(t), u, ψ0, ψ(t)).

The main points in the proof of this theorem are essentially the same as in
Halkin’s original result (see [37], Theorem 4.2). The necessary changes are given
in [16].

Theorem 5 provides the most general known version of the maximum principle for
the problem (P). Nevertheless, this theorem establishes only the core conditions (i)
and (ii) of the maximum principle without any additional characterizations of the
adjoint variables (ψ0, ψ( · )). Due to this circumstance, the relations of Theorem 5
are incomplete, and, as a rule, application of the theorem to particular problems
is ineffective (see the discussion in Example 9 below). To complete the relations
of Theorem 5 we need to employ a stronger concept of optimality and to use an
additional growth assumption.
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The following concept of optimality appears to be the most useful among the
numerous alternative definitions proposed in the context of economics. It takes an
intermediate place between finite optimality and strong optimality (see [26]).

Definition 6. The admissible pair (x∗( · ), u∗( · )) is said to be weakly overtaking
optimal if for arbitrary ε > 0 and T > 0 and any other admissible pair (x( · ), u( · ))
there is a T ′ > T such that∫ T ′

0

f0(t, x∗(t), u∗(t)) dt ⩾
∫ T ′

0

f0(t, x(t), u(t)) dt− ε.

The following growth assumption for an admissible pair (x∗( · ), u∗( · )) was intro-
duced in [15] as an extension of the so-called dominating discount condition (see [7],
[9]–[11], [14], [17]).

Assumption (A2). There exist a number β > 0 together with an integrable func-
tion λ : [0,∞) → R1 such that for every ζ ∈ G with ∥ζ − x0∥ < β the equation (2)
with u( · ) = u∗( · ) and initial condition x(0) = ζ (instead of x(0) = x0) has a solu-
tion x(ζ; · ) with values in G on [0,∞), and

max
x∈[x(ζ;t),x∗(t)]

∣∣⟨f0
x(t, x, u∗(t)), x(ζ; t)− x∗(t)⟩

∣∣ a.e.
⩽ ∥ζ − x0∥λ(t).

Here [x(ζ; t), x∗(t)] is the line segment between the points x(ζ; t) and x∗(t).

By the Lipschitz dependence of the solution x(ζ; t) on the initial condition ζ,
the inequality ∥x(ζ; t)− x∗(t)∥ ⩽ l(t)∥ζ − x0∥ always holds, with l( · ) independent
of ζ. The function λ( · ) incorporates the growth of this Lipschitz constant and the
growth of the derivative of the objective integrand in a neighbourhood of the pair
under consideration. The real assumption here is actually that λ( · ) is integrable.

Note that the constant β > 0 and the integrable function λ( · ) may depend on
the admissible pair (x∗( · ), u∗( · )) in (A2). In some cases Assumption (A2) can be
a priori justified for all optimal (or even for all admissible) pairs (x∗( · ), u∗( · ))
in (P), taken together with their own constants β and functions λ( · ) (see the
examples in § 4).

The following auxiliary result (see [16], Lemma 3.2) implies that the integral
in (12) is finite.

Lemma 7. Let (A1) and (A2) be satisfied. Then the following estimation holds:∥∥[Z∗(t)]−1f0
x(t, x∗(t), u∗(t))

∥∥ ⩽
√
nλ(t) for a.e. t ⩾ 0. (14)

By Lemma 7 and the integrability of λ( · ), the function ψ : [0,∞) → Rn defined
by (12) is locally absolutely continuous. By direct differentiation we verify that the
so-defined function ψ( · ) satisfies on [0,∞) the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ(t)).
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2.2. Main result. The following version of the Pontryagin maximum principle
for the infinite-horizon problem (P) is the main result in this paper.

Theorem 8. Let (x∗( · ), u∗( · )) be a weakly overtaking optimal pair in the prob-
lem (P). Assume that the regularity Assumption (A1) and the growth Assump-
tion (A2) are satisfied. Then the vector function ψ : [0,∞) → Rn defined by (12) is
(locally) absolutely continuous and satisfies the core conditions of the normal-form
maximum principle, that is,

(i) ψ( · ) is a solution of the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ(t)), (15)

(ii) the maximum condition is satisfied,

H (t, x∗(t), u∗(t), ψ(t)) a.e.= sup
u∈U(t)

H (t, x∗(t), u, ψ(t)). (16)

The rather technical proof of Theorem 8 is presented in detail in [16].
An important feature of Theorem 8 is that it is proved under weak regularity

assumptions. This makes it possible to apply it directly to some meaningful eco-
nomic models. Here the admissible controls u( · ) are not necessarily bounded (even
in a local sense), and the functions f( · , · , · ) and f0( · , · , · ) are not necessarily
continuous with respect to the variable u. Instead, we assume that the functions
f( · , · , · ), f0( · , · , · ), and the multivalued map U( · ) are LB-measurable with
respect to the variables (t, u), while their partial derivatives fx( · , · , u∗( · )) and
f0

x( · , · , u∗( · )) are locally integrally bounded in some (t, x)-tube in a neighbour-
hood of the graph of the optimal trajectory x∗( · ) under consideration. From the
practical point of view (especially in economics), considering LB-measurable func-
tions f( · , · , · ) and f0( · , · , · ) is important, since it allows for their discontinuity
with respect to the control. Such a discontinuity appears, for example, when the
cost of a positive control (say, maintenance) is fixed, and by a jump goes to zero
if a zero control is applied. The unboundedness of admissible controls u( · ) allows
one to treat some economic problems (such as problems of optimal exploitation of
renewable or non-renewable resources) in their most natural settings when the rate
of extraction of the resource satisfies only an integral constraint in an L-space.

We remark that the maximum principle (‘extended maximum principle’) for
finite horizon problems with LB-measurable data f( · , · , · ) and f0( · , · , · ) and not
necessarily bounded admissible controls u( · ) was established by Clarke (see [30]
and [31]) by methods of non-smooth analysis. Our proof of Theorem 8 employs
a modification of the classical needle variations technique and makes essential use
of the Yankov–von Neumann–Aumann selection theorem (see [40], Theorem 2.14).
The use of simple needle variations enables us to treat the case of the unbounded
time interval [0,∞).

Another useful feature of our main result is that it applies to problems with
infinite objective integral (1), where the notion of overtaking optimality is adopted.

It is easy to see that under the assumptions of Theorem 8 together with the
additional assumption that ∥Z∗(t)∥ ⩽ c for some constant c ⩾ 0 and all suffi-
ciently large t, the formula (12) immediately implies the ‘standard’ asymptotic
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condition (7). In § 3 we consider some other situations when the formula (12)
implies the ‘standard’ asymptotic conditions (7) and (8). In § 4 we establish a link
between (12) and the condition (9).

The convergence of the integral in (12) immediately implies that the adjoint
function ψ( · ) defined in (12) satisfies the asymptotic relation

lim
t→∞

[Z∗(t)]−1ψ(t) = 0. (17)

Even more, it is straightforward to prove that under the assumptions of Theorem 8
the function ψ( · ) defined by (12) is the unique solution of the adjoint equation (15)
that satisfies (17). Indeed, if ψ( · ) and ψ̃( · ) are two solutions of (15) satisfying (17),
then

d

dt
(ψ(t)− ψ̃(t)) = −[fx(t, x∗(t), u∗(t))]∗(ψ(t)− ψ̃(t)).

From this, for any t ⩾ 0 we get that

ψ(0)− ψ̃(0) = [Z∗(t)]−1(ψ(t)− ψ̃(t)).

Since the right-hand side converges to zero as t → ∞, we have ψ(0) − ψ̃(0) = 0,
which implies that ψ( · ) = ψ̃( · ).

Another direct corollary of the convergence of the integral in (12) is the equality

ψ(0) =
∫ ∞

0

[Z∗(s)]−1f0
x(s, x∗(s), u∗(s)) ds. (18)

Then since ψ( · ) is a solution of the linear differential system (15), we have

ψ(t) = Z∗(t)ψ(0)− Z∗(t)
∫ t

0

[Z∗(s)]−1f0
x(s, x∗(s), u∗(s)) ds, t ⩾ 0. (19)

Obviously, (18) and (19) imply (12). Thus, under the assumptions of Theorem 8
the function ψ( · ) defined by (12) is the only solution of the adjoint equation (15)
that satisfies the initial condition (18).

2.3. Two illustrative examples. The first example is Halkin’s original example
(see [37], § 5). It demonstrates the completeness of the conditions of Theorem 8 and
the advantage of (12) in comparison with the asymptotic conditions (7), (8), and (9).
The second example clarifies the role of Assumption (A2) in Theorem 8. Together,
these examples illustrate the alternative character of the Cauchy-type formula (12)
in comparison with the standard transversality conditions (7) and (8).

Example 9 (Halkin’s example). Consider the following problem (P1):

J(x( · ), u( · )) =
∫ ∞

0

(1− x(t))u(t) dt→ max, (20)

ẋ(t) = (1− x(t))u(t), x(0) = 0,

u(t) ∈ [0, 1].

This example is interesting in that it shows that the standard asymptotic con-
ditions (7) and (8) are inconsistent with the core conditions (i) and (ii) of the
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maximum principle (see Theorem 5), while the asymptotic condition (9) does not
bear any substantial information in this case. Let us clarify this statement.

For any T > 0 and for an arbitrary admissible pair (x( · ), u( · )) we have

JT (x( · ), u( · )) =
∫ T

0

ẋ(t) dt = x(T ) = 1− exp
{
−

∫ T

0

u(t) dt
}
. (21)

This implies that an admissible pair (x∗( · ), u∗( · )) is weakly overtaking optimal
(also strongly optimal)2 if and only if

∫∞
0
u∗(t) dt = ∞. Also, note that x∗(t) → 1

as t→∞.
According to Theorem 5, any optimal admissible pair (x∗( · ), u∗( · )) satisfies,

together with the corresponding adjoint function ψ( · ), the adjoint equation in (i)
and the maximum condition in (ii), which in this particular case take the forms

ψ̇(t) = (ψ(t) + ψ0)u∗(t), (22)

(1− x∗(t))(ψ(t) + ψ0)u∗(t)
a.e.= max

u∈[0,1]
{(1− x∗(t))(ψ(t) + ψ0)u} (23)

for some ψ0 ⩾ 0. From the adjoint equation (22) we obtain

ψ(t) = (ψ(0) + ψ0) exp
{∫ t

0

u∗(s) ds
}
− ψ0.

Thus, for all t ⩾ 0 and u ∈ [0, 1] we have

H (t, x∗(t), u, ψ0, ψ(t)) = (1− x∗(t))(ψ(t) + ψ0)u = (ψ0 + ψ(0))u.

Since (23) implies that

(ψ0 + ψ(0))u∗(t)
a.e.= max

u∈[0,1]
(ψ0 + ψ(0))u

and any strongly optimal control u∗( · ) cannot be identically zero, we must have
ψ0 + ψ(0) ⩾ 0. If ψ0 + ψ(0) = 0, then without loss of generality we can set ψ0 = 1
and ψ(0) = −1. Then both (7) and (8) are obviously violated. If ψ0 + ψ(0) > 0,
then ψ(t) → +∞ as t → +∞, and again both (7) and (8) are violated. Thus, for
an arbitrary optimal admissible pair (x∗( · ), u∗( · )) both the conditions (7) and (8)
are inconsistent with the core conditions of the maximum principle.

We note that by [44] the asymptotic condition for the Hamiltonian (9) is a nec-
essary optimality condition in Halkin’s example. However, this condition does not
give us any useful information in this case.

Indeed, in view of our above analysis this condition holds only in the case when
ψ0 + ψ(0) = 0 or, equivalently, ψ0 = 1 and ψ(0) = −1. But in this case the core
conditions (i) and (ii) of the maximum principle and the condition (9) hold trivially
along any admissible pair, and hence they do not provide any useful information.

2We mention that in this example every admissible control is obviously finitely optimal. Thus,
the concept of finite optimality is too weak here.
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Now let us apply Theorem 8 with G = R1. Fix an arbitrary admissible pair
(x∗( · ), u∗( · )). Assumptions (A0) and (A1) are obviously fulfilled (see Remark 4).
In order to check Assumption (A2), we note that

x(ζ; t) = 1− (1− ζ) exp
{
−

∫ t

0

u∗(s) ds
}

and f0
x(t, x, u∗(t)) = −u∗(t)

for all t ⩾ 0. Hence,

max
x∈[x(ζ;t),x∗(t)]

|⟨f0
x(t, x, u∗(t)), x(ζ; t)− x∗(t)⟩|

a.e.= |ζ − x0|λ(t),

where

λ(t) = u∗(t) exp
{
−

∫ t

0

u∗(s) ds
}

for all t ⩾ 0.

The function λ( · ) is integrable on [0,∞), so the condition (A2) is also satisfied.
We recall that in view of the explicit formula x∗(t) = 1 − exp

{
−

∫ t

0
u∗(s) ds

}
,

t ⩾ 0, the maximum condition (23) in the normal case ψ0 = 1 has the form

(1 + ψ(0))u∗(t)
a.e.= max

u∈[0,1]
{(1 + ψ(0))u}. (24)

The formula (12) for the adjoint variable gives us that

ψ(t) = exp
{∫ t

0

u∗(s) ds
} ∫ ∞

t

exp
{
−

∫ s

0

u∗(τ) dτ
}

(−u∗(s)) ds

= exp
{∫ t

0

u∗(s) ds
}[

lim
T→∞

exp
{
−

∫ T

0

u∗(s) ds
}

− exp
{
−

∫ t

0

u∗(s) ds
}]
, t ⩾ 0.

We consider two cases. First, if
∫∞
0
u∗(t) dt = ∞ (that is, u∗( · ) is optimal), then

ψ(t) = −1 for all t ⩾ 0, and thus the maximum condition (24) is obviously satisfied.
Second, if

∫∞
0
u∗(t) dt is finite (that is, u∗( · ) is not optimal), then ψ(t) > −1 for

all t ⩾ 0, and (24) implies that u∗(t) = 1 for almost every t ⩾ 0, which contradicts
the assumption that

∫∞
0
u∗(t) dt <∞.

Summarizing, Theorem 8 provides a complete characterization of all optimal
controls in the problem (P1), while the core conditions of the maximum principle
are inconsistent with the standard asymptotic conditions (7) and (8), while the
asymptotic condition (9) is uninformative (satisfied by any admissible control).

As can be easily seen, if for the admissible pair (x∗( · ), u∗( · )) Assumption (A1)
holds and the integral

I∗(t) =
∫ ∞

t

Z−1
∗ (s)f0

x(s, x∗(s), u∗(s)) ds, t ⩾ 0, (25)

converges, then the function ψ( · ) (see (12)) is defined. If, moreover, the pair
(x∗( · ), u∗( · )) is weakly overtaking optimal and the stronger condition (A2) holds
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(see Lemma 7), then all the assumptions of Theorem 8 are satisfied, and thus the
normal-form maximum principle holds with the adjoint variable ψ( · ) given by (12).
Since convergence of the integral (25) is sufficient for defining the function ψ( · ),
it is natural to ask whether Assumption (A2) in Theorem 8 could be relaxed to
convergence of the improper integral (25).

The analysis of the problem below shows that convergence of the integral (25)
(together with (A1)) is not enough for validity of Theorem 8, although the func-
tion ψ( · ) defined by (12) is locally absolutely continuous and satisfies the adjoint
equation (15) and the transversality conditions (7) and (8) in this case.

Example 10. Consider the following problem (P2):

J(x( · ), u( · )) =
∫ ∞

0

e−t[u(t)− 5x(t)2] dt→ max,

ẋ(t) = [u(t) + x(t)]ϕ(x(t)), x(0) = 0,

u(t) ∈ [0, 1].

Here ϕ : R1 → [0, 1] is a C∞(R1)-function such that

ϕ(x) =

{
1 if |x| ⩽ 1,
0 if |x| ⩾ 2.

Let G = (−∞,∞). Obviously, (P2) is a particular case of the problem (P),
and the condition (A1) holds for any admissible pair (x∗( · ), u∗( · )) in (P2) (see
Remark 4).

We show that the pair (x∗( · ), u∗( · )) with x∗(t) ≡ 0 and u∗(t)
a.e.= 0 for t ⩾ 0 is

the unique optimal pair in (P2). Indeed, by Theorem 3.6 in [18] there is an optimal
admissible pair (x∗( · ), u∗( · )) in (P2). Assume that u∗( · ) is non-vanishing on a set
of positive measure. Then for the corresponding optimal trajectory x∗( · ) there is
a unique time τ > 0 such that x∗(τ) = 1.

Consider the following auxiliary problem (P2τ ):

Jτ (x( · ), u( · )) =
∫ τ

0

e−t[u(t)− 5x(t)2] dt→ max,

ẋ(t) = [u(t) + x(t)]ϕ(x(t)), x(0) = 0, x(τ) = 1,

u(t) ∈ [0, 1].

Here all the data in (P2τ ) are the same as in (P2), and the only difference is that
(P2τ ) is considered on the fixed time interval [0, τ ] with the terminal condition
x(τ) = 1.

As can be easily seen, the pair (x∗( · ), u∗( · )) that is optimal in (P2), is also
optimal in the problem (P2τ ). Hence, according to the classical Pontryagin maxi-
mum principle [48], for problems on finite time intervals with fixed endpoints there
are adjoint variables ψ0 ⩾ 0 and ψ( · ) not vanishing simultaneously such that the
absolutely continuous function ψ( · ) is a solution on [0, τ ] of the adjoint system

ψ̇(t) = 10ψ0e−tx∗(t)− ψ(t) (26)
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and for almost every t ∈ [0, τ ] the maximum condition holds:

u∗(t)
(
ψ0e−t + ψ(t)

)
= max{0, ψ0e−t + ψ(t)}. (27)

Here we have used the fact that x∗(t) < 1 for all t < τ , and hence ϕx(x∗(t)) ≡ 0
for all t ∈ [0, τ ].

If ψ0 = 0, then ψ(t) = ψ(0)e−t for t ⩾ 0 by (26). Due to the maximum
condition (27), this implies that either u∗(t)

a.e.= 0 (if ψ(0) < 0) or u∗(t)
a.e.= 1

(if ψ(0) > 0). By assumption u∗( · ) is non-vanishing on a set of positive measure.
Hence u∗(t)

a.e.= 1 for t ∈ [0, τ ].
Substituting u∗(t)

a.e.= 1 into the control system, we get that x∗(t) = et − 1 for
t ∈ [0, τ ]. This implies that τ = log 2. Further, by direct calculation we get that

Jτ (x∗( · ), u∗( · )) =
∫ log 2

0

e−t[1− 5(e2t − 2et + 1)] dt

= −4
∫ log 2

0

e−t dt− 5
∫ log 2

0

et dt+ 10
∫ log 2

0

dt = 10 log 2− 7 < 0.

(28)

Since x∗(log 2) = 1 and x∗(t) ⩾ 1 for t ⩾ log 2, we find that∫ ∞

log 2

e−t[u∗(t)− 5x∗(t)2] dt < 0.

Hence
J(x∗( · ), u∗( · )) < Jτ (x∗( · ), u∗( · )) < 0,

which contradicts the optimality of the pair (x∗( · ), u∗( · )) in the problem (P2).
Thus, either ψ0 > 0 or u∗(t)

a.e.= 0, t ⩾ 0.
Consider the case ψ0 > 0. In this case we can assume without loss of generality

that ψ0 = 1/10. By (26),

ψ(t) = e−t

[
ψ(0) +

∫ t

0

x∗(s) ds
]
, t ∈ [0, τ ].

This implies that

ψ0e−t + ψ(t) = e−t

[
1
10

+ ψ(0) +
∫ t

0

x∗(s) ds
]
, t ∈ [0, τ ].

If ψ(0) > −1/10, then by the maximum condition (27) we get that u∗(t)
a.e.= 1,

t ∈ [0, τ ]. But, as we showed above, J(x∗( · ), u∗( · )) < 0 in this case, which
contradicts the optimality of the pair (x∗( · ), u∗( · )).

If ψ(0) ⩽ −1/10, then by the maximum condition (27) we get that the control
u∗( · ) is vanishing on some interval [0, τ1] with τ1 < τ , and then u∗(t) = 1 for
almost every t ∈ [τ1, τ ]. In this case x∗(t) ≡ 0 on the time interval [0, τ1], and
x∗(t) = et−τ1 − 1 for all t ∈ [τ1, τ ]. This implies that τ = τ1 + log 2. Hence, in this
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case we find that

Jτ (x∗( · ), u∗( · )) =
∫ τ1+log 2

τ1

e−t[1− 5(e2(t−τ1) − 2et−τ1 + 1)] dt

= e−τ1

∫ log 2

0

e−t[1− 5(e2t − 2et + 1)] dt < 0

(see (28)). But this again contradicts the optimality of the pair (x∗( · ), u∗( · )) in
the problem (P2).

Thus, we have proved that (x∗( · ), u∗( · )) with x∗(t) ≡ 0 and u∗(t)
a.e.= 0 for t ⩾ 0

is the unique strongly optimal pair in (P2).
Along the pair (x∗( · ), u∗( · )) we have

f0
x(t, x∗(t), u∗(t)) = −10x∗(t)e−t ≡ 0, t ⩾ 0.

Thus, for any t ⩾ 0 the integral (25) converges absolutely, I∗(t) ≡ 0 for t ⩾ 0, and
the adjoint function ψ( · ) defined by (12) is also vanishing: ψ(t) ≡ 0 for t ⩾ 0.
However, the maximum condition (16) (that is, (27) with ψ0 = 1 in the present
example) does not hold for u∗(t) ≡ 0, t ⩾ 0, with the adjoint variable ψ(t) ≡ 0,
t ⩾ 0. Thus, the assertion of Theorem 8 fails in the case of the problem (P2). The
reason for this phenomenon is the violation of the growth condition (A2) for the
pair x∗(t) ≡ 0, u∗(t)

a.e.= 0, t ⩾ 0.
Nevertheless, all the assumptions of the general maximum principle (see Theo-

rem 5) are satisfied for the problem (P2). In particular, the pair (x∗( · ), u∗( · )) with
x∗(t) ≡ 0 and u∗(t)

a.e.= 0 for t ⩾ 0, which is strongly optimal in (P2), satisfies the
conditions (15) and (16) of the general maximum principle with the adjoint vari-
ables ψ0 = 1 and ψ(t) = −e−t, t ⩾ 0. Obviously, this adjoint variable satisfies both
the asymptotic conditions (7) and (8). Thus, the normal form of the maximum
principle holds, although the correct adjoint function is not provided by (12). The
explanation is that Assumption (A2) is not only used to ensure the convergence of
the integral in (25) but is also essential in the proof of Theorem 8.

Example 10 also shows that the formula (12) is not implied by the asymptotic
conditions (7) or (8).

3. Problems with dominating discount

As Example 10 shows, Assumption (A2) plays an essential role in Theorem 8.
In this section we consider a class of infinite-horizon problems (P) for which condi-
tions ensuring (A2) can be expressed in terms of the growth rates of the functions
involved. Use of the growth rates allows us also to describe some situations when
the explicit formula (12) implies the asymptotic conditions (7) and (8).

In addition to (A1) (see also Remark 4) we make the following assumptions.

Assumption (B1). There exist numbers µ ⩾ 0, r ⩾ 0, β > 0, ρ ∈ R1, ν ∈ R1,
and c ⩾ 0 such that

(B1.i) ∥x∗(t)∥ ⩽ ceµt for all t ⩾ 0;
(B1.ii) for any ζ ∈ G with ∥ζ − x0∥ < β the equation (2) with u( · ) = u∗( · ) and

initial condition x(0) = ζ (instead of x(0) = x0) has a solution x(ζ; · ) with values
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in G on [0,∞), and moreover,

∥x(ζ; t)− x∗(t)∥ ⩽ c∥ζ − x0∥eνt, t ⩾ 0, (29)

and

∥f0
x(t, y, u∗(t))∥ ⩽ c(1 + ∥y∥r)e−ρt for any t ⩾ 0 and y ∈ [x(ζ; t), x∗(t)].

Some comments about the above assumptions follow. The first inequality in
Assumption (B1.ii) specifies the known fact that the solution of a system of ordi-
nary differential equations has a Lipschitz dependence on the initial condition, and
it is required in addition that the Lipschitz constant depend exponentially (with
rate ν) on the time horizon. Note that the number ν can be negative. The factor
e−ρt in the second inequality in Assumption (B1.ii) indicates that the objective inte-
grand may contain a ‘discount’ factor with the (possibly negative) discount rate ρ.
Assumption (B1.i) requires a priori information about the exponential growth rate
of the optimal trajectory, which can often be obtained in economic contexts.

While Assumption (B1) is needed mainly to define the constants ρ, r, µ, and ν,
the next assumption imposes a certain relationship among them, which is called
the dominating discount condition (see [7], [9]–[11], [14], [17]).

Assumption (B2).
ρ > ν + rmax{µ, ν}.

In Lemma 5.1 of [15] it was proved that Assumptions (B1) and (B2) imply (A2).
Thus, the following corollary of Theorem 8 holds.

Corollary 11. The assertions of Theorem 8 hold under Assumptions (A1), (B1),
and (B2).

We mention that although the dominating discount condition (B2) may be easier
to check than (A2), its satisfaction depends on the time scale chosen (see [45]
or [15], Part 3, § 5). In contrast, Assumption (A2) is invariant with respect to any
diffeomorphic change of the time variable. Indeed, if the time variable is changed as
t = ξ(s) for s ⩾ 0 (where ξ( · ) maps [0,∞) to itself diffeomorphically), then it can
be directly checked that in the resulting problem Assumption (A2) is fulfilled with
the function λ̃(s) = λ(ξ(s))ξ̇(s), s ⩾ 0, which is integrable if and only if λ( · ) is.

Below, in §§ 3.1 and 3.2, we consider two more specific classes of problems where
the dominating discount condition can be verified in a more convenient way: prob-
lems for one-sided Lipschitz systems and problems for systems with regular lin-
earization.

3.1. Problems with one-sided Lipschitz dynamics. Assumption (B1), and
hence also (B2), can be verified in a more convenient way for systems with one-sided
Lipschitz right-hand sides. The result below essentially extends the result obtained
previously in [14], § 4, and therefore we present it in somewhat greater detail. First,
we recall the following definition.
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Definition 12. A function f( · , · , · ) with values f(t, x, u) in Rn and defined for
x ∈ G and (t, u) ∈ graphU( · ) is said to be one-sided Lipschitz with respect to x
(uniformly with respect to (t, u) ∈ graphU( · )) if there exists a ν ∈ R1 such that

⟨f(t, x, u)− f(t, y, u), x− y⟩ ⩽ ν∥x− y∥2

for all x, y ∈ G and (t, u) ∈ graphU( · ).

Note that the constant ν can be negative.
The following property is an important well-known property of one-sided Lips-

chitz systems.

Lemma 13. For any control u( · ) and any two solutions x1( · ) and x2( · ) of the
equation ẋ(t) = f(t, x(t), u(t)) with values in G and defined on an interval [τ, T ],

∥x1(t)− x2(t)∥ ⩽ eν(t−τ)∥x1(τ)− x2(τ)∥ for any t ∈ [τ, T ].

This property allows us to prove the following lemma.

Lemma 14. If f( · , · , · ) is one-sided Lipschitz, then

∥Z∗(τ)[Z∗(s)]−1∥ ⩽
√
n eν(s−τ) for all τ, s ∈ [0,∞), τ ⩽ s.

Proof. Let us fix an arbitrary τ and s as in the formulation of the lemma. Let xi( · )
be the solution of the equation ẋ(t) = f(t, x(t), u∗(t)) with xi(τ) = x∗(τ) + αei,
where ei is the ith canonical unit vector in Rn and α is a positive scalar. Clearly,
xi( · ) exists in G on [τ, s] for all sufficient small α > 0.

It is a known (see [2], Chap. 2.5.6, for example) that under our standing assump-
tions

xi(t) = x∗(t) + αyi(t) + o(α, t), t ∈ [τ, s],

where ∥o(α, t)∥/α → 0 as α → 0 uniformly with respect to t ∈ [τ, s], and yi( · )
is the solution of the equation ẏ(t) = fx(t, x∗(t), u∗(t))y(t) with y(τ) = ei. This
solution, however, has the form yi(t) = [Z∗(τ)∗]−1Z∗(t)∗ei. That is, yi(t) is the ith
row of the matrix Z∗(τ)[Z∗(t)]−1. Hence

∥Z∗(τ)[Z∗(s)]−1∥ =
( n∑

i=1

∥yi(s)∥2
)1/2

=
( n∑

i=1

(
∥xi(s)− x∗(s)− o(α, t)∥

α

)2)1/2

.

Using Lemma 13 and taking the limit as α→ 0, we get the desired inequality. □

Using Lemma 14 and Assumption (B2), we can estimate the norm of the adjoint
vector ψ(t), t ⩾ 0, defined by (12) as follows:

∥ψ(t)∥ ⩽
∫ ∞

t

∥Z∗(t)[Z∗(s)]−1∥ ∥f0
x(s, x∗(s), u∗(s))∥ ds

⩽
∫ ∞

t

√
n eν(s−t)κ(1 + cr1e

µrs)e−ρs ds ⩽ c3e
−(ρ−rµ)t, (30)
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where c3 ⩾ 0 is a suitable constant. This estimation leads to the next corollary of
Theorem 8. In its formulation we use the weighted space L∞(eγt; [0,∞)) consisting
of all measurable functions ψ : [0,∞) → Rn for which the norm

∥ψ( · )∥∞,γ := ess sup
t∈[0,∞)

eγt∥ψ(t)∥

is finite.

Corollary 15. Assume that the function f( · , · , · ) is one-sided Lipschitz in the
sense of Definition 12. Let (x∗( · ), u∗( · )) be a weakly overtaking optimal pair in
the problem (P), and let Assumptions (A1) and (B1) hold without requiring the
inequality (29). Assume also that (B2) holds with the number ν in Definition 12.
Then the function ψ : [0,∞) → Rn defined by (12) is locally absolutely continuous,
and the conditions (i) and (ii) in Theorem 8 are satisfied. Moreover, the function
ψ( · ) is the unique solution of the adjoint equation (15) belonging to the weighted
space L∞(e(ρ−rµ)t; [0,∞)).

Proof. The inequality in Lemma 13, applied with x1( · ) = x∗( · ), x2( · ) = x(ζ; · ),
and τ = 0, implies (29) in (B1). Then Assumption (A2) holds by Corollary 11.
Thus, the first part of the corollary follows from Theorem 8.

The inequality (30) establishes that ψ( · ) ∈ L∞(e(ρ−rµ)t; [0,∞)). Let ψ̃( · ) be
another solution of (15) which belongs to L∞(e(ρ−rµ)t; [0,∞)). Then for any t ⩾ 0
we have

ψ(0)− ψ̃(0) = [Z∗(t)]−1(ψ(t)− ψ̃(t)).

Hence,

∥ψ(0)− ψ̃(0)∥ ⩽ ∥[Z∗(t)]−1∥(∥ψ(t)∥+ ∥ψ̃(t)∥)

⩽
√
n eνte−(ρ−rµ)t(∥ψ( · )∥∞,ρ−rµ + ∥ψ̃( · )∥∞,ρ−rµ)

⩽ c4e
−(ρ−ν−rµ)t, t ⩾ 0,

for an appropriate constant c4 ⩾ 0 (which may depend on ψ̃( · )). Since the
right-hand side goes to zero as t→∞, we get that ∥ψ(0)− ψ̃(0)∥ = 0. □

The next corollary connects the relation

ψ( · ) ∈ L∞(e(ρ−rµ)t; [0,∞))

provided by Corollary 15 with the asymptotic conditions (7) and (8).

Corollary 16. If the assumptions of Corollary 15 hold and also ρ > rµ, then (7)
is valid. Moreover, if in addition to the assumptions of Corollary 15 the stronger
inequality ρ > (r+1)µ holds, then both asymptotic conditions (7) and (8) are valid.

Proof. Note first that since µ ⩾ 0 and r ⩾ 0 (see (B1)), both ρ > rµ and
ρ > (r + 1)µ imply that ρ > 0. Under the assumptions of Corollary 15 we have
ψ( · ) ∈ L∞(e(ρ−rµ)t; [0,∞)). This means that there is a constant c3 ⩾ 0 such that
the inequality (30) holds. Hence, the inequality ρ > rµ implies the asymptotic con-
dition (7) in this case. Further, due to the condition (B1.i) we have ∥x∗(t)∥ ⩽ ceµt

for t ⩾ 0. Therefore, the stronger inequality ρ > (r + 1)µ implies both asymptotic
conditions (7) and (8) in this case. □
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3.2. Systems with regular linearization. Here we consider another special
case where Assumption (B1) takes a more explicit form.

First we recall a few facts from the stability theory of linear systems (for more
details see [28] and [33], for example). Consider a linear differential system

ẏ(t) = A(t)y(t), (31)

where t ∈ [0,∞), y ∈ Rn, and all the components of the real n × n matrix func-
tion A( · ) are bounded measurable functions.

Let y( · ) be a non-zero solution of the system (31). Then

λ̃ = lim sup
t→∞

1
t

log ∥y(t)∥

is called the characteristic Lyapunov exponent or, briefly, the characteristic expo-
nent of the solution y( · ). The characteristic exponent λ̃ of any non-zero solution
y( · ) of (31) is finite. The set of characteristic exponents corresponding to all
non-zero solutions of (31) is called the spectrum of the system. The spectrum
always consists of at most n different numbers.

The solutions of (31) form a finite-dimensional linear space of dimension n. Any
basis of this space (any set of n linearly independent solutions y1( · ), . . . , yn( · )) is
called a fundamental system of solutions of (31). A fundamental system of solutions
y1( · ), . . . , yn( · ) is said to be normal if the sum of the characteristic exponents
of these solutions y1( · ), . . . , yn( · ) is minimal among all fundamental systems of
solutions of (31).

It turns out that a normal fundamental system of solutions of (31) always exists.
If y1( · ), . . . , yn( · ) is a normal fundamental system of solutions, then its character-
istic exponents cover the whole spectrum of (31). This means that for any number
λ̃ in the spectrum λ̃1, . . . , λ̃l of the system (31) there exists a solution in the set
y1( · ), . . . , yn( · ) that has this number as its characteristic exponent. Note that
different members yj( · ) and yk( · ) of the fundamental system y1( · ), . . . , yn( · ) may
have the same characteristic exponent. Denote by ns the multiplicity of the charac-
teristic exponent λ̃s, s = 1, . . . , l, in the spectrum of (31). Any normal fundamental
system contains the same number ns of solutions of (31) with characteristic number
λ̃s, 1 ⩽ s ⩽ l, in the Lyapunov spectrum of (31).

Let

σ =
l∑

s=1

nsλ̃s.

The linear system (31) is said to be regular if

σ = lim inf
t→∞

1
t

∫ t

0

traceA(s) ds,

where traceA(s) is the sum of all the elements of A(s) on the principal diagonal.
Note that a differential system (31) with constant matrix A(t) ≡ A, t ⩾ 0, is

always regular. In this case the maximal element λ of the spectrum of (31) equals
the maximal real part of the eigenvalues of A. Another important class of regular



984 S.M. Aseev and V.M. Veliov

differential systems consists of systems (31) with periodic components (with the
same period) of the matrix A( · ).

It is known (for example, see [33]), that if the system (31) is regular, then for
any ε > 0

∥Z∗(τ)[Z∗(s)]−1∥ ⩽ c(ε)eλ(s−τ)+εs for any τ, s ∈ [0,∞), τ ⩽ s. (32)

The inequality (32) is similar to the inequality in the assertion of Lemma 14
above. As in the case of Lemma 14, (32) leads to the following corollary of Theo-
rem 8.

Corollary 17. Let (x∗( · ), u∗( · )) be a weakly overtaking optimal pair in the prob-
lem (P), and let Assumptions (A1) and (B1) hold for this pair, except without
requiring (29). Let the linearized system

ẏ(t) = fx(t, x∗(t), u∗(t))y (33)

be regular. Assume also that (B2) holds with ν greater than or equal to the maxi-
mal element λ of the spectrum of (33). Then the function ψ : [0,∞) → Rn defined
by (12) is locally absolutely continuous and the conditions (15) and (16) in Theo-
rem 8 are satisfied. Moreover, ψ( · ) is the unique solution in L∞(e(ρ−rµ)t; [0,∞))
of the adjoint system (15).

Essentially, the proof repeats the argument in the proof of Lemma 14 above (see
also [10], § 5, and [14], Corollary 2).

Like Corollary 16, the following result connects the relation ψ( · ) ∈ L∞(e(ρ−rµ)t;
[0,∞)) provided by Corollary 17 with the asymptotic conditions (7) and (8).

Corollary 18. If the assumptions of Corollary 17 hold and also ρ > rµ, then
the asymptotic condition (7) is valid. Moreover, if in addition to the assumptions
of Corollary 17 the stronger inequality ρ > (r + 1)µ holds, then both asymptotic
conditions (7) and (8) are valid.

4. Applications in economics

In this section we discuss economic interpretations of the adjoint variable ψ( · )
given by (12) in view of Theorem 8 and in comparison with the dynamic program-
ming principle [20]. Then we present applications of Theorem 8 to two basic optimal
economic growth models.

4.1. Economic interpretations. First, we note that the traditional interpreta-
tion of the components of the adjoint vector ψ(t), t ⩾ 0, as the present-value shadow
prices of the corresponding components (types) of the optimal capital stock x∗(t) is
based on the identification of the present net value of the capital stock vector x∗(t)
with the value V (t, x∗(t)) of the optimal value function V ( · , · ), and on subsequent
use of the dynamic programming method (see [34] and [1], Chap. 7). Let us recall
these standard constructions in optimal control theory.
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Consider the following family {(P(τ, ζ))}τ⩾0,ζ∈G of optimal control problems:

Jτ (x( · ), u( · )) =
∫ ∞

τ

f0(s, x(s), u(s)) ds→ max,

ẋ(t) = f(t, x(t), u(t)), x(τ) = ζ, u(t) ∈ U(t).

Here, the initial time τ ⩾ 0 and the initial state ζ ∈ G are regarded as param-
eters. Admissible pairs (x( · ), u( · )) in the problem (P(τ, ζ)) are defined as in the
problem (P), but with the initial data (τ, ζ) instead of (0, x0). Thus, P (0, x0) is
identical to (P).

Assume now that the problem (P(τ, ζ)) has a strongly optimal solution for any
(τ, ζ) ∈ [0,∞) × G. Then we can define the corresponding optimal value function
V ( · , · ) of the variables τ ∈ [0,∞] and ζ ∈ G as follows:

V (τ, ζ) = max
(x( · ),u( · ))

Jτ (x( · ), u( · )). (34)

Here the maximum is taken over all admissible pairs (x( · ), u( · )) in the prob-
lem (P(τ, ζ)).

Let (x∗( · ), u∗( · )) be a strongly optimal pair in (P). If V ( · , · ) is a twice contin-
uously differentiable function in some open neighbourhood of graphx∗( · ), then by
applying the dynamic programming approach, it is not difficult to show that all the
conditions of the maximum principle (Theorem 5) hold in the normal form (ψ0 = 1)
with the adjoint variable ψ( · ) defined along the optimal trajectory x∗( · ) by

ψ(t) =
∂V (t, x∗(t))

∂x
, t ⩾ 0. (35)

By the definition of the value function V ( · , · ), one can identify the present value
of the capital vector ζ ∈ G at time τ ⩾ 0 with V (τ, ζ). Then by (35), at each time
t ⩾ 0 the components of ψ(t) can be interpreted as the present-value marginal
prices (also called shadow prices) of the corresponding components of the capital
vector x∗(t). This observation gives an economic meaning to the relations of the
maximum principle.

Note that the optimal value function V ( · , · ) is not necessarily differentiable.
However, the differentiability of V (t, · ) at the point x∗(t), t ⩾ 0, is of critical
importance for the interpretation of the vector ψ(t) that appears in the maximum
principle relations (Theorem 5) as the vector of marginal prices. Indeed, ψ(t) being
the marginal price vector at x∗(t) means that

V (t, x∗(t) + ∆x) = V (t, x∗(t)) + ⟨ψ(t),∆x⟩+ o(∥∆x∥)

for any increment vector ∆x, where o(∥∆x∥)/∥∆x∥ → 0 as ∆x → 0. This implies
the (Fréchet) differentiability of V (t, · ) at x∗(t).

It turns out that under the assumptions of Theorem 8 the adjoint variable ψ( · )
defined by (12) can be interpreted as the function of integrated intertemporal prices,
without any a priori assumptions about the optimal value function V ( · , · ). We
explain this interpretation in the next paragraphs.
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Let (x( · ), u( · )) be an admissible (not necessarily optimal) pair in (P) for
which Assumption (A1) holds (with (x( · ), u( · )) instead of (x∗( · ), u∗( · )); see also
Remark 4). Fix an arbitrary s > 0. By the theorems on continuous dependence
and differentiability of solutions of the Cauchy problem with respect to the
initial conditions (see [2], § 2.5.5 and § 2.5.6), for any τ ∈ [0, s) there is an open
neighbourhood Vs(τ) ⊂ G of x(τ) such that for any ζ ∈ V (τ) the solution x(τ, ζ; · )
of the Cauchy problem

ẋ(t) = f(t, x(t), u(t)), x(τ) = ζ,

exists on [τ, s] and has values in G, and the function x(τ, · ; s) : V (τ) → Rn is
continuously (Fréchet) differentiable. Moreover, the following equality holds:

xζ(τ, x(τ); s) = [Z(τ)[Z(s)]−1]∗, (36)

where (consistently with our previous notation) Z(t) is the fundamental matrix
solution of the linear differential equation

ż(t) = −[fx(t, x(t), u(t))]∗z(t)

normalized at t = 0, so that [Z(τ)[Z(s)]−1]∗ is the state transition (Cauchy) matrix
of the linearized system

ẏ(t) = fx(t, x(t), u(t))y.

Now we define the intertemporal instantaneous utility function π(τ, · ; s) on V (τ)
by

π(τ, ζ, s) = f0(s, x(τ, ζ; s), u(s)), ζ ∈ V (τ). (37)

In essence, π(τ, ζ, s) is the instantaneous utility gained at the time s by the capital
stock ζ at the time τ after transition of the system from the state ζ to the state
x(τ, ζ; s) via the control u( · ) given on the time interval [τ, s]. Hence, one can
interpret the vector πζ(τ, x(τ), s) as the vector of intertemporal prices corresponding
to the capital stock x(τ).

Due to the properties of the functions f0( · , · , · ) and x(τ, · ; s), the function
π(τ, ·, s) defined by (37) is differentiable at x(τ). Using the chain rule and taking
into account the equality x(τ, x(τ), s) = x(s) and (36), we get that

πζ(τ, x(τ), s) =
[
[f0

x(s, x(s), u(s))]∗xζ(τ, x(τ); s)
]∗

=
[
[f0

x(s, x(s), u(s))]∗[Z(τ)[Z(s)]−1]∗
]∗

= Z(τ)[Z(s)]−1f0
x(s, x(s), u(s)). (38)

Note that s> 0 was arbitrarily chosen, and thus the function (t, s) 7→ πζ(t, x(t), s)
is defined for all s > 0 and t ∈ [0, s). Moreover, the representation (38) implies
that this function is Lebesgue measurable. Thus, we can define the function

µ(t) =
∫ ∞

t

πζ(t, x(t), s) ds, t ⩾ 0, (39)

provided that the integral converges for any t ⩾ 0. Therefore, the integrated
intertemporal prices function µ( · ) is defined by (39) along any (not necessarily
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optimal) admissible trajectory x( · ) in the problem (P). Note that only Assump-
tion (A1) and the convergence of the improper integral in (39) are needed to define
the integrated intertemporal prices function µ( · ). We require no smoothness, Lips-
chitzness, continuity, nor even finiteness assumptions on the corresponding optimal
value function V ( · , · ) in a neighbourhood of the admissible trajectory x( · ) under
consideration.

Now let (x∗( · ), u∗( · )) be a weakly overtaking optimal admissible pair in (P)
and let Assumption (A1) be satisfied for this pair. The matrix function Z( · ) and
the function µ( · ) associated with the pair (x∗( · ), u∗( · )) will be denoted by Z∗( · )
and µ∗( · ), respectively. From (38) and (39) we have

µ∗(t) = Z∗(t)
∫ ∞

t

[Z∗(s)]−1f0
x(s, x∗(s), u∗(s)) ds, t ⩾ 0. (40)

If the above integral is finite for every t ⩾ 0, then µ∗( · ) coincides with the function
ψ( · ) defined in (12) and appearing in the formulation of Theorem 8. Observe that
if Assumption (A2) also holds for (x∗( · ), u∗( · )), then by Lemma 7 the improper
integral in (40) converges for any t ⩾ 0, and thus µ∗( · ) = ψ( · ) is well defined
on [0,∞). Hence, under Assumptions (A1) and (A2) the adjoint variable ψ( · ) in
Theorem 8 coincides with the integrated intertemporal prices function µ∗( · ).

Assumption (A2) is sufficient but not necessary for the finiteness of the integral
in (40) for all t ⩾ 0. Given also that the function µ∗( · ) has the economic mean-
ing of the integrated intertemporal prices function, it is natural to ask whether
Assumption (A2) in Theorem 8 can be relaxed to the condition of convergence of
the improper integral in (12) or (40). The answer to this question is negative, as
Example 10 shows. It can happen (if (A2) fails) that for a unique strongly optimal
admissible pair (x∗( · ), u∗( · )) in the problem (P) Assumption (A1) is satisfied, the
corresponding improper integral in (12) converges absolutely, and the general max-
imum principle (Theorem 5) holds in the normal form with an adjoint variable ψ( · )
which is not equal to the integrated intertemporal prices function µ( · ), although
µ( · ) is well defined by (40). Thus, in general the adjoint variable ψ( · ) that appears
in the normal-form conditions of the general maximum principle (Theorem 5) can
be something different from the integrated intertemporal prices function µ( · ), while
under the conditions of Theorem 8 these functions coincide. Assumption (A2) is
not only needed to ensure the finiteness of µ∗( · ) via Lemma 7; it is also essential
for the proof of Theorem 8.

Consider now a weakly overtaking optimal admissible pair (x∗( · ), u∗( · )) in (P)
for which the assumptions of Theorem 8 (that is, Assumptions (A1) and (A2)) are
satisfied, and in addition, J(x∗( · ), u∗( · )) in (1) is finite. In this case the assertion
of Theorem 8 can be strengthened.

By (A2), there is an open neighbourhood Ω of the set graphx∗( · ) such that the
integral below converges for any (τ, ζ) ∈ Ω, and hence the following conditional
value function W ( · , · ) : Ω → R1 is well defined:

W (τ, ζ) =
∫ ∞

τ

π(τ, ζ; s) ds, (τ, ζ) ∈ Ω.
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Note that the optimal value function V ( · , · ) (see (34)) is not necessarily defined in
this case. In essence, the quantity W (τ, ζ), (τ, ζ) ∈ Ω, has the economic meaning
of the integrated intertemporal value of the capital vector ζ at the time τ (under
the condition that the given investment plan u∗( · ) is realized for the initial capital
vector ζ at the initial time τ on the whole infinite time interval [τ,∞)).

The following result strengthens the assertion of Theorem 8 under the additional
assumption of convergence of the improper integral in (1).

Theorem 19. Let (x∗( · ), u∗( · )) be a locally weakly overtaking optimal pair in the
problem (P) for which Assumptions (A1) and (A2) are satisfied, and suppose that
the integral in (1) converges to the finite value J(x∗( · ), u∗( · )). Then the following
assertions hold.

(i) For any t ⩾ 0 the partial (Fréchet) derivative Wx(t, x∗(t)) exists. Moreover,
the vector function ψ( · ) : [0,∞) → Rn defined by

ψ(t) = Wx(t, x∗(t)), t ⩾ 0,

is locally absolutely continuous and satisfies the core conditions (15) and (16) of
the maximum principle in the normal form for the problem (P).

(ii) The partial derivative Wt(t, x∗(t)) exists for almost every t ⩾ 0, and

Wt(t, x∗(t)) + sup
u∈U(t)

{⟨Wx(t, x∗(t)), f(t, x∗(t), u)⟩+ f0(t, x∗(t), u)}
a.e.= 0.

The proof in [5] (§ 2) of Theorem 19 is based on the theorem on differentiability of
solutions of the Cauchy problem with respect to the initial conditions, Theorem 8,
and the fact that under the conditions of Theorem 19 we have Wx(t, x∗(t)) ≡ µ(t),
t ⩾ 0 (see (39)) and the equality (40).

In essence, the assertion (i) of the theorem is a reformulation of Theorem 8
in the economic terms of the function W ( · , · ) under the additional assumption that
the integral J(x∗( · ), u∗( · )) converges. However, the assertion (ii) is a complemen-
tary fact. In particular, it lets us connect the adjoint variable ψ( · ) in Theorem 19
with Michel’s asymptotic condition (9).

Corollary 20. Assume that the conditions of Theorem 19 are satisfied and that
the problem (P) is autonomous with exponential discounting, that is,

f(t, x, u) ≡ f(x, u), f0(t, x, u) ≡ e−ρtg(x, u), and U(t) ≡ U

for all t ⩾ 0, x ∈ G, and u ∈ Rm , where ρ ∈ R1 is not necessarily positive. Then
the following stationarity condition holds:

H (t, x∗(t), u∗(t), ψ(t)) a.e.= ρ

∫ ∞

t

e−ρsg(x∗(s), u∗(s)) ds, t ⩾ 0. (41)

Proof. Indeed, for all t ⩾ 0 we have

W (t, x∗(t)) = e−ρt

∫ ∞

t

e−ρ(s−t)g(x∗(s), u∗(s)) ds = e−ρtW (0, x∗(t)).
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Hence

Wt(t, x∗(t)) = −ρe−ρtW (0, x∗(t)) = −ρ
∫ ∞

t

e−ρsg(x∗(s), u∗(s)) ds, t ⩾ 0.

By virtue of assertions (i) and (ii) of Theorem 19, this implies (41). □

Finally, note that if the problem (P) is autonomous with discounting, and the
usual regularity assumptions hold for the weakly overtaking optimal control u∗( · )
and the functions f( · , · ) and g( · , · ) (see Remark 4), then the core conditions
(15) and (16) of the normal-form maximum principle imply that the function

h( · ) : h(t) = H(t, x∗(t), ψ(t)) = sup
u∈U

H (t, x∗(t), u, ψ(t)), t ⩾ 0,

is locally absolutely continuous and

ḣ(t) a.e.=
∂H(t, x∗(t), ψ(t))

∂t
= −ρg(x∗(t), u∗(t)), t ⩾ 0

(see [48], Chap. 2). Since the functional J(x∗( · ), u∗( · )) converges in Theorem 19,
the conditions (9) and (41) are equivalent in this case.

4.2. Two economic examples.

Example 21 (Ramsey’s model). This example demonstrates the applicability of
Theorem 8 to the Ramsey model of optimal economic growth (see [19], Chap. 2).
This model is the most important construct in the modern theory of economic
growth. It was first presented by Ramsey [49] in 1928 and then developed by
Cass [27] and Koopmans [43] in the 1960s. It is also known in the literature as
the Ramsey–Cass–Koopmans model. Here for simplicity of presentation we restrict
our consideration to the canonical setting of the model with the Cobb–Douglas
production function and the iso-elastic instantaneous utility function. For the case
of the general neoclassical production function, see [23].

Below we present a rigorous analysis of the Ramsey model based on Theo-
rem 8. We show that Theorem 8 is applicable, and hence the core conditions of the
normal-form maximum principle hold with the adjoint variable ψ( · ) specified by
the formula (12). In this case (12) directly implies the asymptotic conditions (7)
and (8).

Consider a closed aggregated economy that at each moment of time t ⩾ 0 pro-
duces a single homogeneous product in the quantity Y (t) > 0 in accordance with
the Cobb–Douglas production function (see [19], Chap. 1):

Y (t) = AK(t)αL(t)1−α. (42)

Here A > 0 is a technological coefficient, 0 < α < 1 is the output elasticity of
capital, and K(t) > 0 and L(t) > 0 are the capital stock and the labour force
available at the time t ⩾ 0, respectively.

In a closed economy, at each moment of time t ⩾ 0 a part I(t) = u(t)Y (t), u(t) ∈
[0, 1), of the product produced is invested, while the remaining (non-vanishing) part



990 S.M. Aseev and V.M. Veliov

C(t) = (1−u(t))Y (t) is consumed. Therefore, the capital dynamics can be described
by the following differential equation:

K̇(t) = u(t)Y (t)− δ̃K, K(0) = K0 > 0, (43)

where δ̃ > 0 is the capital depreciation rate.
Assume that the labor resource L( · ) grows exponentially, that is,

L̇(t) = µL(t), L(0) = L0 > 0, (44)

where µ ⩾ 0 is a constant. Assume also that the instantaneous utility function
g : (0,∞) → R1 is iso-elastic (see [19], Chap. 2). In this case

g(c) =


c1−σ − 1

1− σ
, σ > 0, σ ̸= 1,

log c, σ = 1,
(45)

where c > 0 is the per-capita consumption. Then with the new (capital-labour
ratio) variable x(t) = K(t)/L(t), t ⩾ 0, we arrive at the following optimal con-
trol problem (P3) in view of (42)–(45) and the homogeneity of the Cobb–Douglas
production function (42):

J(x( · ), u( · )) =
∫ ∞

0

e−ρtg((1− u(t))Ax(t)α) dt→ max, (46)

ẋ(t) = u(t)Ax(t)α − δx(t), x(0) = x0 =
K0

L0
, (47)

u(t) ∈ [0, 1). (48)

Here ρ > 0 is the social discount rate,

(1− u(t))Ax(t)α =
C(t)
L(t)

is the per-capita consumption at the time t ⩾ 0, and δ = δ̃ + µ > 0 is the adjusted
depreciation rate.

Let G = (0,∞). Then any measurable function u : [0,∞) → [0, 1) is an admissi-
ble control in the problem (P3). Indeed, by (47) the trajectory x( · ) corresponding
to u( · ) is defined on [0,∞) with values in G, and the integrand in (46), that is, the
function t 7→ e−ρtg((1−u(t))Ax(t)α), is locally integrable on [0,∞). Thus, the tra-
jectory x( · ) is admissible. Moreover, by (45), (47), and (48) the integrand in (46) is
bounded above by an exponentially decreasing function (uniformly with respect to
all admissible pairs (x( · ), u( · ))). Hence, there is a decreasing non-negative func-
tion ω : [0,∞) → R1 with limt→∞ ω(t) = 0 such that for any 0 ⩽ T < T ′ the
following inequality holds:∫ T ′

T

e−ρtg((1− u(t))Ax(t)α) dt ⩽ ω(T )

(see [7], § 2, Assumption (A3)). This implies that for any admissible pair (x( · ), u( · ))
the improper integral in (46) either converges to a finite number or diverges to −∞,
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and J(x( · ), u( · )) ⩽ ω(0) (see [7], § 2). Hence, in the case of the problem (P3)
the concepts of strong optimality and weak overtaking optimality coincide. So
everywhere below in this example we understand optimality of an admissible pair
(x∗( · ), u∗( · )) in the problem (P3) in the strong sense. In particular, if an optimal
admissible pair (x∗( · ), u∗( · )) exists, then J(x∗( · ), u∗( · )) is finite.

We define an auxiliary state variable y( · ) via the Bernoulli transformation:

y(t) = x(t)1−α, t ⩾ 0.

Then it can be easily seen that in terms of the state variable y( · ) the problem (P3)
takes the following equivalent form (P̃3):

J̃(y( · ), u( · )) =
∫ ∞

0

e−ρtg((1− u(t))Ay(t)α/(1−α)) dt→ max,

ẏ(t) = (1− α)Au(t)− (1− α)δy(t), y(0) = y0 = x1−α
0 , (49)

u(t) ∈ [0, 1). (50)

For the problem (P̃3) we again let G = (0,∞). Since

f(t, y, u) := (1− α)Au− (1− α)δy and f0(t, y, u) := e−ρtg((1− u)Ayα/(1−α)),

t ⩾ 0, y ∈ G, u ∈ [0, 1),

in this problem, Assumption (A0) holds for these functions and the multivalued
map U( · ): U(t) ≡ [0, 1), t ⩾ 0 (see Remark 1). Obviously, an arbitrary measurable
function u : [0,∞) → R1 satisfying the pointwise constraint (50) is an admissible
control in (P̃3). Thus, (P̃3) is a particular case of the problem (P).

Further, in (P̃3) for all t ⩾ 0, y > 0, and u ∈ [0, 1) we have fy(t, y, u) ≡ −(1−α)δ,
and moreover

f0
y (t, y, u) = e−ρt dg((1− u)Ayα/(1−α))

dc

(1− u)Aαyα/(1−α)−1

1− α

=
(1− u)Ae−ρtαyα/(1−α)−1

1− α
[(1− u)Ayα/(1−α)]−σ

=
αe−ρt

(1− α)y
[(1− u)Ayα/(1−α)]1−σ

if σ > 0 and σ ̸= 1, and

f0
y (t, y, u) =

αe−ρt

(1− α)y

if σ = 1.
Thus, for any σ > 0 and all t ⩾ 0, y > 0, and u ∈ [0, 1) we have

f0
y (t, y, u) =

αe−ρt

(1− α)y
[(1− u)Ayα/(1−α)]1−σ. (51)

Hence, Assumption (A1) is satisfied for any admissible pair (y∗( · ), u∗( · )) in (P̃3).
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Note that the control system (49) in (P̃3) is linear. Hence, for an arbitrary
admissible control u∗( · ) and any initial state y(0) = ζ > 0 the corresponding
admissible trajectory y(ζ; · ) is given by the Cauchy formula

y(ζ; t) = e−(1−α)δtζ + (1− α)Ae−(1−α)δt

∫ t

0

e(1−α)δsu∗(s) ds, t ⩾ 0. (52)

Let us show that Assumption (A2) is also satisfied for any optimal admissible
pair (y∗( · ), u∗( · )) in (P̃3) (if such a pair exists).

Take an arbitrary admissible pair (y∗( · ), u∗( · )) such that J̃(y∗( · ), u∗( · ))>−∞,
and let β = y0/2. Then by (51) and (52), for any ζ such that |ζ − y0| < β and all
t ⩾ 0 we get that

max
y∈[y(ζ;t),y∗(t)]

|f0
y (t, y, u∗(t))(y(ζ; t)− y∗(t))|

=
α

1− α
max

y∈[y(ζ;t),y∗(t)]

e−ρte−(1−α)δt|ζ − y0|[(1− u∗(t))Ayα/(1−α)]1−σ

y

⩽
α|ζ − y0|

1− α
max

y∈[y(ζ;t),y∗(t)]

e−ρt[(1− u∗(t))Ayα/(1−α)]1−σ

y0/2 + (1− α)A
∫ t

0
e(1−α)δsu∗(s) ds

⩽
2α|ζ − y0|
y0(1− α)

max
y∈[y(ζ;t),y∗(t)]

{e−ρt[(1− u∗(t))Ayα/(1−α)]1−σ} = |ζ − y0|λ(t),

where

λ(t) =
2α

y0(1− α)
max

y∈[y(ζ;t),y∗(t)]
{e−ρt[(1− u∗(t))Ayα/(1−α)]1−σ}. (53)

Note that for any t ⩾ 0 and ζ ∈ [y0−β, y0 +β] the formula (52) (where the integral
term is non-negative) implies the chain of inequalities

1
2
y∗(t) ⩽ y

(
1
2
y0; t

)
⩽ y(ζ; t) ⩽ y

(
3
2
y0; t

)
⩽

3
2
y∗(t). (54)

Due to the choice of β we have ζ ∈ [y0/2, 3y0/2]. The monotonicity of the function
ζ 7→ y(ζ; t) implies that y(ζ; t) ∈ [y(y0/2; t), y(3y0/2; t)], which together with (54)
gives [y(ζ; t), y∗(t)] ⊂ [y∗(t)/2, 3y∗(t)/2]. Thus,

λ(t) ⩽
2α

y0(1− α)
max

y∈[y∗(t)/2,3y∗(t)/2]
{e−ρt[(1− u∗(t))Ayα/(1−α)]1−σ}, t ⩾ 0.

In view of the monotonicity of the function in the braces with respect to y (it is
non-increasing for σ ∈ (0, 1] and non-decreasing for σ ⩾ 1) we have

0 ⩽ λ(t) ⩽
2α

y0(1− α)
e−ρt max

{(
1
2

)α(1−σ)/(1−α)

,

(
3
2

)α(1−σ)/(1−α)}
× [(1− u∗(t))Ay∗(t)α/(1−α)]1−σ. (55)

Since J̃(y∗( · ), u∗( · )) > −∞, the function

t 7→ e−ρtg
(
(1− u∗(t))Ay∗(t)α/(1−α)

)



Another view of the maximum principle 993

is integrable on [0,∞). Then the function

t 7→ e−ρt[(1−u∗(t))Ay∗(t)α/(1−α)]1−σ = e−ρt
[
1+(1−σ)g

(
(1−u∗(t))Ay∗(t)α/(1−α)

)]
is also integrable. By (55) this implies that the function λ( · ) defined in (53) is
integrable on [0,∞). Thus, Assumption (A2) is satisfied for arbitrary σ > 0 and
all admissible pairs (y∗( · ), u∗( · )) with J̃(y∗( · ), u∗( · )) > −∞.

Therefore, for arbitrary σ > 0 and any optimal admissible pair (y∗( · ), u∗( · ))
in (P̃3) all the assumptions of Theorem 8 are satisfied. Hence, for any opti-
mal admissible pair (y∗( · ), u∗( · )) in (P̃3) the core conditions (15) and (16) of
the normal-form maximum principle hold with the adjoint variable ψ( · ) specified
by (12) (see (51) and (52)):

ψ(t) =
αe(1−α)δt

1− α

∫ ∞

t

e−(1−α)δse−ρs[(1− u∗(s))Ay∗(s)α/(1−α)]1−σ

y∗(s)
ds

=
αe(1−α)δt

1− α

∫ ∞

t

e−ρs[(1− u∗(s))Ay∗(s)α/(1−α)]1−σ

y0 + (1− α)A
∫ s

0
e(1−α)δτu∗(τ) dτ

ds, t ⩾ 0.

Replacing
∫ s

0
on the right-hand side with

∫ t

0
(which is not larger) and using (52),

we obtain the following relations:

0 < ψ(t)y∗(t) ⩽
α

(1− α)

∫ ∞

t

e−ρs[(1− u∗(s))Ay∗(s)α/(1−α)]1−σ ds

=
α

(1− α)

∫ ∞

t

e−ρs
[
1 + (1− σ)g

(
(1− u∗(s))Ay∗(s)α/(1−α)

)]
ds

=
αe−ρt

(1− α)ρ
+
α(1− σ)

1− α

∫ ∞

t

e−ρsg
(
(1− u∗(s))Ay∗(s)α/(1−α)

)
ds. (56)

Note that (56) is stronger than the asymptotic condition (8).
Introducing the current-value adjoint variable p( · ), p(t) = eρtψ(t), t ⩾ 0, we

now arrive at the current-value adjoint system

ṗ(t) =
(
(1− α)δ + ρ

)
p(t)− α

(1− α)y(t)
[(1− u∗(t))Ay(t)α/(1−α)]1−σ (57)

(see (i) in Theorem 8 and (51)) and the current-value maximum condition

(1− α)Au∗(t)p(t) + g
(
(1− u∗(t))Ay∗(t)α/(1−α)

)
a.e.= max

u∈[0,1)

{
(1− α)Aup(t) + g

(
(1− u)Ay∗(t)α/(1−α)

)}
(58)

(see (ii) in Theorem 8).
Since for any σ > 0 the iso-elastic function g( · ) is strictly concave (see (45)), the

current-value maximum condition (58) implies that u∗(t)
a.e.= u∗(y∗(t), p(t)), where

for any y > 0 and p > 0 the feedback u∗(y, p) is defined via the unique solution of
the equation

(1− α)Ap+
d

du
g
(
(1− u)Ayα/(1−α)

)
= (1− α)Ap− (Ayα/(1−α))1−σ

(1− u)σ
= 0,
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that is,

u∗(y, p) =


1− yα(1−σ)/(σ(1−α))

A(1− α)1/σp1/σ
if p >

1
A(1− α)

yα(1−σ)/(1−α),

0 if p ⩽
1

A(1− α)
yα(1−σ)/(1−α).

(59)

Substituting u∗(y(t), p(t)) defined in (59) into the control system (49) and into
the adjoint system (57) in place of u∗(t), we arrive at the following normal-form
current-value Hamiltonian system of the maximum principle:

ẏ(t) = (1− α)Au∗(y(t), p(t))− (1− α)δy(t), (60)

ṗ(t) =
(
(1− α)δ + ρ

)
p(t)− α

(1− α)y(t)
[(1− u∗(y(t), p(t)))Ay(t)α/(1−α)]1−σ. (61)

By Theorem 8 an optimal admissible trajectory y∗( · ) (if there is any) together
with the corresponding current-value adjoint variable p( · ) must satisfy the sys-
tem (60), (61), as well as the initial condition y(0) = y0 = x1−α

0 and the esti-
mate (56).

By the linearity of the equation (49) and the concavity of the iso-elastic function
g( · ) for any σ > 0 (see (45)), the Hamiltonian in the problem (P̃3) is a con-
cave function of the state variable y > 0. This fact, together with (56), implies
that all the conditions in Arrow’s theorem on sufficient conditions for optimality
(see [53], Theorem 10) are satisfied. Thus, any solution (y∗( · ), p( · )) of the sys-
tem (60), (61) on [0,∞) which satisfies the initial condition y(0) = y0 = x1−α

0 and
the estimate (56) corresponds to the optimal admissible pair (y∗( · ), u∗( · )), where
u∗(t) = u∗(y∗(t), p(t)), t ⩾ 0. Thus, the assertion of Theorem 8 is necessary and
sufficient (a criterion) for the optimality of an admissible pair (y∗( · ), u∗( · )) in (P̃3).

A direct analysis (which we omit here) shows that for any σ > 0 and an arbi-
trary initial condition y0 > 0 there is a unique solution (y∗( · ), p( · )) of the sys-
tem (60), (61) which satisfies both the initial condition y(0) = y0 and the esti-
mate (56). Hence, for any initial state y0 > 0 there is a unique optimal admissible
pair (y∗( · ), u∗( · )) in (P̃3). It can also be shown that the solution (y∗( · ), p( · ))
tends asymptotically to the unique equilibrium (ŷ, p̂) (of saddle type) of the sys-
tem (60), (61). Since p(t) → p̂ and y∗(t) → ŷ as t → ∞, it is obvious that both
standard asymptotic conditions (7) and (8) hold in this example.

Finally, returning to the initial state variable x∗(t) = y∗(t)1/(1−α), t ⩾ 0, we get
a unique optimal admissible pair (x∗( · ), u∗( · )) in the problem (P3).

Example 22 (Model of optimal extraction of a non-renewable resource). Here we
apply Theorem 8 to the basic model of optimal extraction of a non-renewable
resource. We remark that the issue of the optimal use of an exhaustible resource was
first raised by Hotelling [39] in 1931. A model involving both man-made capital and
an exhaustible resource (now commonly called the Dasgupta–Heal–Solow–Stiglitz
(DHSS) model) was subsequently developed in a series of papers (see [32], [59], [60]).
A complete analysis of the DHSS model in the case of constant return to scale and
no capital depreciation was presented in [21]. An application of Theorem 8 to the
DHSS model with logarithmic instantaneous utility function, arbitrary return to
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scale, and capital depreciation can be found in [6]. Here we consider the case of
a non-renewable (not necessarily completely extractable) resource. For simplicity
we do not consider any man-made capital.

Consider the following problem (P4):

J(x( · ), u( · )) =
∫ ∞

0

e−ρtg(u(t)(x(t)− a)) dt→ max, (62)

ẋ(t) = −u(t)(x(t)− a), x(0) = x0 > a, (63)
u(t) ∈ (0,∞). (64)

Here x(t) is the stock of a non-renewable resource at the time t ⩾ 0, and a ⩾ 0
is the non-extractable part of the stock. In the case a = 0 the resource can be
asymptotically exhausted, while in the case a > 0 it can be depleted only up to the
given minimal level a > 0 (for technological (or some other) reasons). Further, u(t)
is the (non-vanishing) rate of extraction of the part x(t)− a of the total stock x(t)
of resource available for exploitation at the time t ⩾ 0. All the extracted amount
u(t)(x(t) − a) of the resource at each moment of time t ⩾ 0 is consumed. Thus,
c(t) = u(t)(x(t) − a), t ⩾ 0, is the corresponding amount of consumption. As in
Example 21, we assume that ρ > 0 is the social discount rate, and the instantaneous
utility function g( · ) is iso-elastic (see (45)).

Let G = (a,∞). Obviously, Assumption (A0) holds for the corresponding func-
tions f( · , · , · ) and f0( · , · , · ) in the problem (P4),

f(t, x, u) = −u(x− a) and f0(t, x, u) = e−ρtg(u(x− a)),

t ⩾ 0, x > a, u ∈ (0,∞),

and the multivalued map U( · ): U(t) ≡ (0,∞), t ⩾ 0 (see Remark 1). Thus, (P4)
is a particular case of the problem (P).

By (63), for any locally integrable function u : [0,∞) → (0,∞) and an arbitrary
initial state ζ > a the corresponding solution x(ζ, · ) of the Cauchy problem (63) is
defined by the formula

x(ζ, t) = (ζ − a) exp
{
−

∫ t

0

u(s) ds
}

+ a, t ⩾ 0. (65)

Hence, any locally integrable function u( · ) satisfying the pointwise constraint (64)
is an admissible control in (P4).

Since for any σ > 0 and all t ⩾ 0, x > a,and u ∈ (0,∞) in (P4) we have

fx(t, x, u) ≡ −u, f0
x(t, x, u) = e−ρtu1−σ(x− a)−σ,

Assumption (A1) is also satisfied in (P4) for any admissible pair (x∗( · ), u∗( · )).
Let (u( · ), x( · )) be an arbitrary admissible pair. In the case σ = 1, by (63) we

have g(u(t)(x(t)− a)) = log(−ẋ(t)) ⩽ −ẋ(t) for almost every t ⩾ 0, and hence for
any 0 ⩽ T < T ′∫ T ′

T

e−ρt log(u(t)(x(t)− a)) dt ⩽ −
∫ T ′

T

e−ρtẋ(t) dt ⩽ (x0 − a)e−ρT . (66)
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In the case σ < 1 we have

g(c) =
c1−σ − 1

1− σ
⩽

c

1− σ
, c > 0,

and hence for any 0 ⩽ T < T ′∫ T ′

T

e−ρt (u(t)(x(t)− a))1−σ − 1
1− σ

dt ⩽
∫ T ′

T

e−ρt−ẋ(t)
1− σ

dt ⩽
x0 − a

1− σ
e−ρT . (67)

In the case σ > 1 we have g(u(t)(x(t)− a)) ⩽ 1/(σ− 1) for almost every t ⩾ 0, and
hence for every 0 ⩽ T < T ′∫ T ′

T

e−ρt (u(t)(x(t)− a))1−σ − 1
1− σ

dt ⩽
1

σ − 1
e−ρT . (68)

By (66), (67), and (68), for any σ > 0 there is a decreasing non-negative function
ω : [0,∞) → R1 with limt→∞ ω(t) = 0 such that for an arbitrary admissible pair
(x( · ), u( · )) the following estimate holds:∫ T ′

T

e−ρtg(u(t)x(t)) dt ⩽ ω(T ), 0 ⩽ T < T ′. (69)

As in Example 21 above, the estimate (69) implies that for any admissible pair
(x( · ), u( · )) the improper integral in (62) either converges to a finite number or
diverges to −∞, and J(x( · ), u( · )) ⩽ ω(0). Hence, in the problem (P4) for any
σ > 0 the concepts of strong optimality and weak overtaking optimality coincide.
Therefore, everywhere below in this example we understand optimality of an admis-
sible pair (x∗( · ), u∗( · )) in the problem (P4) in the strong sense. In particular, if an
optimal admissible pair (x∗( · ), u∗( · )) exists, then J(x∗( · ), u∗( · )) is finite. This
fact will be used later.

Below we focus our analysis on the case σ ̸= 1, since the case of a logarithmic
instantaneous utility (σ = 1) was considered in [5], Example 3, and [6], § 5.

Fix an optimal admissible pair (x∗( · ), u∗( · )) in (P4) (if such a pair exists). We
shall show that Assumption (A2) is satisfied for this pair. Let β = (x0 − a)/2.
Taking into account that the function ζ 7→ x(ζ; t) is monotone increasing and the
function x 7→ (x−a)−σ is monotone decreasing, we get that for ζ ∈ [x0−β, x0+β] =
[(x0 + a)/2, (3x0 − a)/2]

max
x∈[x(ζ;t),x∗(t)]

|f0
x(t, x, u∗(t))(x(ζ; t)− x∗(t))|

⩽ |ζ − x0| exp
{
−

∫ t

0

u∗(s) ds
}
e−ρtu∗(t)1−σ max

x∈[x(ζ;t),x∗(t)]
(x− a)−σ

⩽ |ζ − x0| exp
{
−

∫ t

0

u∗(s) ds
}
e−ρtu∗(t)1−σ

(
x

(
x0 + a

2
; t

)
− a

)−σ

= |ζ − x0|
(
x0 + a

2

)−σ

e−ρt

[
u∗(t) exp

{
−

∫ t

0

u∗(s) ds
}]1−σ

⩽ |ζ − x0|
(
x0 + a

2

)−σ

e−ρt

(
−ẋ∗(t)
x0 − a

)1−σ

= |ζ − x0|λ(t), t ⩾ 0,
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where the function

λ(t) =
(
x0 + a

2

)−σ

e−ρt

(
−ẋ∗(t)
x0 − a

)1−σ

, t ⩾ 0,

is integrable on [0,∞) because of the integrability of the function

t 7→ e−ρt(−ẋ∗(t))1−σ = e−ρt
(
1 + (1− σ)g(u∗(t)(x∗(t)− a))

)
.

Thus, Assumption (A2) holds with β = (x0 − a)/2 and the function λ( · ) defined
above.

Then by Theorem 8, for any optimal admissible pair (x∗( · ), u∗( · )) (if there is
one) the core conditions (15) and (16) of the normal-form maximum principle hold
with an adjoint variable ψ( · ) of the form

ψ(t) = exp
{∫ t

0

u∗(s) ds
} ∫ ∞

t

e−ρsu∗(s)1−σ(x0 − a)−σ

× exp
{
−(1− σ)

∫ s

0

u∗(ξ) dξ
}
ds, t ⩾ 0. (70)

If an optimal control u∗( · ) does exist, then according to (16) we have

Hu(t, x∗(t), u∗(t), ψ(t)) a.e.= 0

on [0,∞), where the Hamilton–Pontryagin function has the form

H (t, x, u, ψ) =
e−ρt(u1−σ(x− a)1−σ − 1)

1− σ
− ψu(x− a),

t ⩾ 0, x > a, u > 0.

Differentiating with respect to u, we get that

e−ρtu∗(t)−σ(x∗(t)− a)−σ − ψ(t) a.e.= 0, t ⩾ 0.

Substituting the expressions (65) (with ζ = x0) and (70) for x∗(t) and ψ(t), we get
that

u∗(t)−σ a.e.= eρt exp
{

(1− σ)
∫ t

0

u∗(s) ds
}

×
∫ ∞

t

e−ρsu∗(s)1−σ exp
{
−(1− σ)

∫ s

0

u∗(ξ) dξ
}
ds, t ⩾ 0. (71)

In view of the absolute convergence of the integral in (71), the last expression implies
that u∗( · ) is (equivalent to) a locally absolutely continuous function on [0,∞).

Further, by (65) the equality (71) implies that

u∗(t)−σ =
eρt exp

{
(1− σ)

∫ t

0
u∗(s) ds

}
(x0 − a)1−σ

∫ ∞

t

e−ρs(u∗(s)(x∗(s)− a))1−σ ds

=
eρt

(x∗(t)− a)1−σ

∫ ∞

t

e−ρs(u∗(s)(x∗(s)− a))1−σ ds, t ⩾ 0.
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Hence

u∗(t) =
e−ρt(u∗(t)(x∗(s)− a))1−σ∫∞

t
e−ρs(u∗(s)(x∗(s)− a))1−σ ds

= −ż(t), t ⩾ 0, (72)

where the locally absolutely continuous function z( · ) is defined by

z(t) = log
∫ ∞

t

e−ρs
(
u∗(s)(x∗(s)− a)

)1−σ
ds, t ⩾ 0.

Integrating (72) on an arbitrary time interval [0, T ], T > 0, we get that∫ T

0

u∗(s) ds = log
∫ ∞

0

e−ρs
(
u∗(s)(x∗(s)− a)

)1−σ
ds

− log
∫ ∞

T

e−ρs
(
u∗(s)(x∗(s)− a)

)1−σ
ds.

Since (x∗( · ), u∗( · )) is an optimal admissible pair, the first term on the right-hand
side is finite, while the second converges to −∞. Thus, we have

∫∞
0
u∗(s) ds = ∞.

Differentiating (71) with respect to t and utilizing the same expression for u−σ
∗ (t),

we conclude that for almost every t ⩾ 0 the function u∗( · ) satisfies the equality

−σu∗(t)−σ−1u̇∗(t) = ρu∗(t)−σ − u∗(t)1−σ + (1− σ)u∗(t)1−σ.

Dividing by −σu∗(t)−σ−1, we get that u∗( · ) is a locally absolutely continuous
solution of the differential equation

u̇(t) = u(t)2 − ρ

σ
u(t).

The general solution of this simple Riccati equation is

u∗(t) = e−ρt/σ

[
c− σ

ρ
(1− e−ρt/σ)

]−1

, t ⩾ 0,

where c is a constant (equal to u∗(0)−1). Since u∗( · ) takes only positive values, this
expression for u∗( · ) implies that c ⩾ σ/ρ, and due to the equality

∫∞
0
u∗(s) ds = ∞

we get finally that c = σ/ρ. Thus, we conclude that application of Theorem 8 deter-
mines a unique admissible pair (x∗( · ), u∗( · )) which is ‘suspectable’ for optimality
in the problem (P4) (see (65)):

x∗(t) = (x0 − a)e−ρt/σ + a, u∗(t) ≡
ρ

σ
, t ⩾ 0. (73)

Note that the explicit formula (70) for the corresponding adjoint variable ψ( · )
gives us that

ψ(t) ≡
(
ρ(x0 − a)

σ

)−σ

, t ⩾ 0. (74)

We show that the admissible pair (x∗( · ), u∗( · )) defined in (73) is indeed optimal
in (P4). To do this consider the function Φ: [0,∞)× (0,∞) → R1 defined by

Φ(t, y) = e−ρtg(y)− ψ(t)y, t ⩾ 0, y > 0,
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where ψ( · ) is given by (74). It is easy to see that for any t ⩾ 0 the strict concavity of
the iso-elastic function g( · ) (see (45)) implies that the function Φ(t, · ) has a unique
point y∗(t) of global maximum on (0,∞). For any t ⩾ 0 the point y∗(t) is the unique
solution of the equation e−ρtgy(y) = ψ(t). Since gy(y) = y−σ, y > 0 (see (45)), we
get by solving this equation that

y∗(t) =
(
eρtψ(t)

)−1/σ =
ρ(x0 − a)e−ρt/σ

σ
, t ⩾ 0

(see (74)). However, by (73),

(x∗(t)− a)u∗(t) =
ρ(x0 − a)e−ρt/σ

σ
= y∗(t), t ⩾ 0.

Thus, we have proved the global inequality

e−ρtg(u∗(t)(x∗(t)− a))− ψ(t)u∗(t)(x∗(t)− a)

⩾ e−ρtg(u(x− a))− ψ(t)u(x− a), t ⩾ 0, x > 0, u > 0. (75)

Now let (x( · ), u( · )) be another arbitrary admissible pair. Then by (75) we have

e−ρtg(u∗(t)(x∗(t)− a))− e−ρtg(u(t)(x(t)− a))

⩾

(
ρ(x0 − a)

σ

)−σ

[u∗(t)(x∗(t)− a)− u(t)(x(t)− a)], t ⩾ 0

(see (74)). Integrating the last inequality on an arbitrary time interval [0, T ], T > 0,
we get that∫ T

0

e−ρtg(u∗(t)(x∗(t)− a)) dt−
∫ T

0

e−ρtg(u(t)(x(t)− a)) dt

⩾

(
ρ(x0 − a)

σ

)−σ ∫ T

0

[u∗(t)(x∗(t)− a)− u(t)(x(t)− a)] dt

=
(
ρ(x0 − a)

σ

)−σ(
x(T )− x∗(T )

)
, T ⩾ 0.

Passing to the limit as T → ∞ and taking into account that limT→∞ x∗(T ) = a
and x(T ) ⩾ a, we find that∫ ∞

0

e−ρtg(u∗(t)(x∗(t)− a)) dt ⩾ lim sup
T→∞

∫ T

0

e−ρtg(u(t)(x(t)− a)) dt.

Hence, (x∗( · ), u∗( · )) is indeed the (unique) optimal admissible pair in the prob-
lem (P4).

Thus, we have proved that for any σ > 0 with σ ̸= 1, the asymptotic condition (7)
always fails in this example in view of (73) and (74). Moreover, since x∗(t) → a
as t→∞ (see (73)), the asymptotic condition (8) also fails if a > 0, while it holds
if a = 0. Therefore, if σ > 0, σ ̸= 1, and a > 0, then the explicit formula (12)
plays the role of an alternative to the asymptotic conditions (7) and (8), which are
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both inconsistent with the core conditions (15) and (16) of the maximum principle.
The same phenomenon, that is, the simultaneous violation of both the standard
asymptotic conditions (7) and (8), can be observed also in the case when σ = 1
and a > 0 (see [5], Example 3, and [6], § 5). In the last case the optimal extraction
rate u∗( · ) coincides with the classical Hotelling rule (see [39]), that is, u∗(t) ≡ ρ,
t ⩾ 0. In the case of σ > 0 with σ ̸= 1 considered above, the optimal extraction
rate u∗( · ) is given by the adjusted Hotelling rule (corresponding to the value of σ),
that is, u∗(t) ≡ ρ/σ, t ⩾ 0 (see (73)).

5. Bibliographical comments

To the best of our knowledge, optimal control problems with infinite time horizon
were first considered in Chap. 4 of the fundamental monograph [48]. The problem
considered there is completely autonomous, involves no discounting, satisfies the
usual regularity assumptions (see Remark 4), and contains the additional asymp-
totic terminal condition limt→∞ x(t) = x1, where x1 is a given asymptotic terminal
state in Rn. The approach proposed in [48] is potentially applicable to a broad scope
of infinite-horizon optimal control problems, in particular, to the problem (P) with
free terminal state in the focus of the present paper. This approach is based on the
construction of an ‘initial cone’ Kt0 at the initial time t0 instead of the ‘limiting
cone’ Kt1 at the terminal time t1 (which does not exist in the infinite-horizon case).
The initial cone Kt0 is constructed in the same way as the limiting cone Kt1 at the
terminal time t1 in the case of a finite-horizon problem on the time interval [t0, t1],
t0 < t1. This construction is based on the classical needle variations technique
(see [48]). The only difference from the finite-horizon case is that the increment of
the principal linear part of the varied trajectory is transmitted (by solving a system
of variational equations) to the initial moment t0 rather than to the terminal time
t1 (which does not exist). All other points of this construction are essentially the
same as in the finite-horizon case. When the initial cone Kt0 has been constructed,
the subsequent application of a topological result and the separation theorem pro-
vides a corresponding version of the maximum principle (see [48] for details). Note
that this construction employs only the property of finite optimality of the optimal
control u∗( · ) under consideration. Therefore, when applied to the problem (P), this
construction leads to exactly the same result as the general version of the maximum
principle for the problem (P) that was developed later by Halkin (see [37]).

Halkin’s paper [37] considers the problem (P) with free terminal state at infin-
ity under the usual regularity assumptions (see Remark 4). The integral func-
tional (1) is not assumed there to be finite. The approach in [37] is based on
consideration of the family in Definition 3 of auxiliary optimal control problems
(QT ) on the finite time intervals [0, T ], T > 0. The finite optimality of the admis-
sible pairs (x∗( · ), u∗( · )) in the problem (P) implies that on any finite time inter-
val [0, T ], T > 0, the core conditions of the Pontryagin maximum principle for
the pair (x∗( · ), u∗( · )) hold with a corresponding non-vanishing pair of adjoint
variables ψ0

T ⩾ 0, ψT ( · ). This implies the validity of the core conditions of the
infinite-horizon maximum principle after taking the limit as T → ∞ in the con-
ditions of the maximum principle for these auxiliary problems (QT ) (see details
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in [26] and [37]). No additional characterizations of the adjoint variables ψ0 and
ψ( · ) such as normality of the problem and/or some boundary conditions at infinity
are provided in [37]. Moreover, [37] presents two counterexamples demonstrating
possible pathologies in the relations of the general version of the maximum princi-
ple for the problem (P), namely, the possible abnormality of the problem (ψ0 = 0
in this case) and the possible violation of the standard asymptotic conditions (7)
and (8).

Apparently, [56] and [37] were the first papers in which the authors demonstrated
by means of counterexamples that abnormality is possible, that the ‘natural’ asymp-
totic conditions (7) and (8) may be violated in the case of infinite-horizon problems
with free terminal state at infinity. Since the discount rate ρ is equal to zero in these
counterexamples, for a long time the opinion was common in the economic litera-
ture that such pathologies were possible only in problems without time discounting
(for example, see [19], §A.3.9, and [29], Chap. 9). However, many ‘pathological’
examples with positive discount rate are known nowadays (for example, see [11],
Chap. 1, § 6, and [44], § 2), including models developed quite recently and having
clear economic interpretations (see [16], § 4, [5], Example 3, [6], § 2.2, and Exam-
ple 22 in § 4).

After the publication of [37] many authors attempted to develop normal-form
versions of the maximum principle for the problem (P) and to characterize, under
various additional assumptions, the asymptotic behaviour of the adjoint variable
for which the maximum condition (4) is satisfied. The first positive results in this
direction were obtained in [17] and [22].

In [17], a particular case of the problem (P) is investigated in which the control
system is linear and autonomous:

ẋ(t) = Fx(t) + u(t), x(0) = x0.

The constraining set U ⊂ Rn is convex and compact, and the instantaneous utility
function has the form

f0(t, x, u) = e−ρtg(x, u), t ⩾ 0, x ∈ Rn, u ∈ U,

with a positive discount rate ρ and a function g( · , · ) which is locally Lipschitz with
respect to both variables x and u.3 The authors assume that the following domi-
nating discount condition holds:

ρ > (r + 1)λF . (76)

Here λF is the greatest real part of the eigenvalues of the n × n matrix F , and r
is a non-negative number that characterizes the growth of the function g( · , · ) in
terms of its generalized gradient ∂g( · , · ) (in the sense of Clarke [30]; see [17] for
more details):

∥ζ∥ ⩽ κ(1 + ∥(x, u)∥r) for any ζ ∈ ∂g(x, u), x ∈ G, u ∈ U.
3Here and below, for uniformity we use notation sometimes slightly different from that used

in the original papers under discussion.
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Note that the generalized gradient is taken here with respect to both variables, x
and u.

Since ρ > 0, it is easy to see that the condition (76) guarantees the convergence
of the functional J(x( · ), u( · )) for any admissible pair (x( · ), u( · )). Accordingly,
the concept of strong optimality is employed in [17].

In the case of r > 0, the authors of [17] proposed a normal-form version of the
Pontryagin maximum principle which contains a characterization of the behaviour
of the adjoint variable ψ( · ) in terms of convergence of the improper integral:∫ ∞

0

e(q−1)ρt∥ψ(t)∥q dt <∞. (77)

Here the constant q > 1 is defined by the equality 1/q + 1/(r + 1) = 1. As pointed
out in [17], (77) implies that the asymptotic condition (7) holds.

Later the result obtained in [17] was generalized and strengthened using different
methods (which also differ from the method in [17]) in the series of papers [7],
[9]–[11], [14], [23]. In these papers a few different (non-equivalent) extensions of the
condition (76) to the case of non-linear problems (P) were proposed, and various
normal-form versions of the maximum principle with adjoint variable ψ( · ) specified
explicitly by (12) were developed. Here we mention only that in the linear case
(considered in [17]) the dominating discount condition (76) implies the validity
of Assumption (B2) in § 3, and hence of (A2). In this case, by Theorem 8 the
core conditions (15) and (16) of the normal-form maximum principle hold with
the adjoint variable ψ( · ) specified by the formula (12), and this directly implies
the estimate (77) (see [11], § 16, and [12]). Moreover, since ρ > 0, (12) implies both
asymptotic conditions (7) and (8) in this case (see [11], § 12, and Corollary 18).

In [22] a version of first-order necessary optimality conditions containing the
asymptotic condition at infinity (8) was obtained for the infinite-horizon dynamic
optimization problem of the form

J(x( · )) =
∫ ∞

0

f0(t, x(t), ẋ(t)) dt→ max, (78)

(x(t), ẋ(t)) ∈ K, x(0) = x0. (79)

Here the set K ⊂ R2n is assumed to be convex and closed with non-empty interior,
the function f0 : [0,∞) × K → R1 is jointly concave in the variables x, ẋ for all
t ⩾ 0, and the optimal trajectory x∗( · ) is assumed to take values in the interior of
the set domV (t, · ) for all t ⩾ 0, where

domV (t, · ) = {x0 ∈ Rn : V (t, x0) <∞}

is the effective set of the optimal value function V (t, · ):

V (t, x0) = sup
{∫ ∞

t

f0(s, x(s), ẋ(s)) ds : (x(s), ẋ(s)) ∈ K for s ⩾ t; x(t) = x0

}
.

Under the assumptions made, the problem (78), (79) is ‘completely convex’. In
particular, the optimal value function V ( · , · ) in it is concave with respect to the
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variable x0 for all t ⩾ 0, and the set of all admissible trajectories is convex in the
space C([0, T ],Rn) for any T > 0.

The main result of [22] states that there exists an adjoint variable ψ( · ) corres-
ponding to the optimal trajectory x∗( · ) such that

ψ(t) ∈ ∂xV (t, x∗(t)), t ⩾ 0. (80)

Here ∂xV (t, x∗(t)) is the partial subdifferential (in the sense of convex analysis)
of the concave function V (t, · ) at the point x∗(t) for fixed t. Further, a certain
generalized Euler equation and the asymptotic condition (8) were derived from (80)
in [22] under certain additional assumptions. In particular, it was assumed that
the phase vector x is non-negative and the function f0( · , · , · ) is monotone in the
variable ẋ (see [22] for more details).

The question of whether asymptotic conditions of the form (8) hold for the
problem (78), (79) was considered in [42] without convexity assumptions in the
situation when the optimal trajectory x∗( · ) is regular and interior and the control
system satisfies a homogeneity condition.

The next step in developing complementary necessary conditions characterizing
the asymptotic behaviour of the adjoint variable ψ( · ) was due to Michel in 1982
(see [44]). In the special case when the problem (P) is autonomous with exponential
discounting (that is, f(t, x, u) ≡ f(x, u), f0(t, x, u) ≡ e−ρtg(x, u), and U(t) ≡ U ,
where ρ ∈ R1 is not necessarily positive) and under the assumption that the opti-
mal value J(x∗( · ), u∗( · )) is finite, he established the validity of the asymptotic
condition (9) for any strongly optimal admissible trajectory x∗( · ). This asymp-
totic condition is analogous to the transversality condition with respect to time
in problems with free final time [48]. Since the standard regularity conditions are
employed (see Remark 4), in this case (9) is equivalent to the stationarity condition

H(t, x∗(t), ψ0, ψ(t)) = ψ0ρ

∫ ∞

t

e−ρsg(x∗(s), u∗(s)) ds, t ⩾ 0. (81)

Note that the adjoint variable ψ0 can be equal to zero here, and an example of an
autonomous problem (P) with positive discount rate (ρ > 0) in which the equality
ψ0 = 0 necessarily holds was presented in [44], § 2. The complementary character
of the condition (9) was demonstrated in [11], Example 6.6. A generalization of
Michel’s result to the case when the instantaneous utility f0( · , · , · ) depends on
the variable t in a more general way was developed in [55], using a slightly modified
argument. A normal-form version of the maximum principle with adjoint variable
ψ( · ) having all positive components and including the condition (41) was also
obtained in [13] under certain assumptions of monotonicity type.

In some cases, in particular, when the function g( · , · ) is non-negative and there
exists a neighbourhood V of 0 in Rn such that V ⊂ f(x∗(t), U) for all large
enough times t, the asymptotic condition (9) implies (7). Nevertheless, being
one-dimensional, the condition (9) (as well as (81)) cannot provide a full set of
complementary conditions for the adjoint variable ψ( · ) in the general multidimen-
sional case.

The relationship between the explicit formula (12) and the asymptotic condi-
tion (9) was discussed in Corollary 20 (see also [5] and [4]).
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In [62] Ye obtained the stationarity condition (81) in the case of a non-smooth
problem (P) with discounting (provided that the autonomous functions f( · , · ) and
g( · , · ) are Lipschitz with respect to the phase variable x uniformly with respect
to u and Borel measurable with respect to u, and the function g( · , · ) is bounded).

The main result in [62] provided a version of the maximum principle with the
asymptotic conditions (7) and (9) under the additional assumption that

ρ > max
{

0, sup
x,y∈G, u∈U

⟨x− y, f(x, u)− f(y, u)⟩
∥x− y∥2

}
. (82)

This assumption means that ρ is positive and ρ > ν, where ν is the one-sided
Lipschitz constant of the vector function f( · , · ) with respect to the phase variable x
(see Definition 12). It is easy to see that if the functions f( · , · ), fx( · , · ), g( · , · ),
and gx( · , · ) are continuous with respect to x, the function g( · , · ) is Lipschitz with
respect to x uniformly with respect to u (this implies that r = 0 in (B1)), and (82)
holds, then by Theorem 8 the core conditions (15) and (16) of the normal-form
maximum principle hold together with the adjoint variable ψ( · ) specified via (12)
(see Lemma 15). In this case the formula (12) implies the asymptotic condition (7).

In [58], Smirnov characterized the asymptotic behaviour of the adjoint variable
ψ( · ) in terms of Lyapunov exponents (see [28], [33], and § 3.2 for the relevant def-
initions from stability theory). The main assumption of [58] is that the system of
variational equations considered along a particular optimal pair (x∗( · ), u∗( · )) is
regular. In this case, under certain additional assumptions4 it was proved in [58]
that the characteristic Lyapunov exponent of the adjoint variable ψ( · ) correspond-
ing to the optimal pair (x∗( · ), u∗( · )) under consideration is non-positive (see [58],
Theorem 3.1). However, this result does not guarantee the normality of the opti-
mal control problem nor the satisfaction of the asymptotic conditions (7) or (8).
As pointed out in [58] by means of a counterexample, regularity of the system of
variational equations is essential here.

In [51] Seierstad considered (as a minimum problem) an infinite-horizon optimal
control problem that is more general than (P). The statement of this problem
includes a non-autonomous non-smooth control system

ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U,

an initial condition x(0) = x0 ∈ Rn, and equality- and inequality-type terminal
boundary constraints at infinity that are imposed on some of the phase coordinates
xi(∞), i = 1, . . . ,m (it is assumed that x(t) ∈ Rn, m < n, and that the correspond-
ing limits xi(∞) = limt→∞ xi(t), i = 1, . . . ,m, exist). The problem considered in
[51] consists in minimization of a terminal functional of the form

J(πx(∞)) =
m∑

i=1

νix
i(∞).

4We remark that in [58] an important condition used in the proof is missing from the formu-
lation of the main result. Namely, the gradient of the integrand must be bounded: ∥b(t)∥ ⩽ K
for almost every t ⩾ 0 (see [58], Theorem 3.1). Example 10.4 in [51] shows that this condition is
essential.
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Here π is the m× n matrix of the operator of projection onto the subspace of the
first m coordinates in Rn, and νi, i = 1, . . . ,m, are real numbers.

In [51] a version of the maximum principle that contains a full set of asymptotic
conditions at infinity was presented, though under rather restrictive growth con-
ditions and some other assumptions. In application to the problem (P) with free
right-hand endpoint, this result implies the normality of the maximum principle
and the validity of the asymptotic condition (7). For a discussion of the growth
conditions in [51] see [11], § 16.

We note also that a version of the maximum principle containing a full set of
asymptotic conditions at infinity was obtained in [52] for a smooth infinite-horizon
optimal control problem with inequality-type state constraints and with terminal
conditions on the states at infinity. However, the growth conditions in [52] are very
restrictive.

For an autonomous problem (P) with exponential discounting, an approach
based on approximations of it by a specially constructed sequence {(Pk)}∞k=1 of
finite-horizon problems on time intervals [0, Tk] with Tk > 0 and limk→∞ Tk = ∞
was developed in [9]–[11] and [13]. In this case on any finite time interval [0, T ]
with T > 0, the sequence of optimal controls {uk( · )} (which do exist) in the
approximating problems (Pk), k = 1, 2, . . . , converges weakly in L1([0, T ],Rm) (or
in another suitable sense) to the optimal control u∗( · ) under consideration in the
problem (P). The necessary optimality conditions for (P) are obtained by passing
to the limit as k →∞ in the relations of the Pontryagin maximum principle for the
approximating problems (Pk). It was proved in [9]–[11] that the maximum prin-
ciple holds in normal form with the adjoint variable ψ( · ) specified by (12) under
some conditions of dominating discount type. A similar characterization of the
adjoint variable ψ( · ) was obtained by means of this technique also in the so-called
‘monotone case’ (see [13] and [11] for details). The main constructions and results
in [9]–[11] were extended in [7] and [23].

Although the method of finite-horizon approximations enables us to develop
different versions of the normal-form maximum principle that contain full sets of
necessary conditions for the problem (P), there are inherent limitations for the
applicability of this approach. In particular, application of this approximation
technique assumes conditions guaranteeing the existence of solutions in the cor-
responding finite-horizon approximating problems. Moreover, it is required that
the improper integral in the functional (1) converge uniformly with respect to all
admissible pairs (for example, see the condition (A3) in [11]). In many cases of
interest, assumptions of this type either fail or cannot easily be verified a priori.
For instance, in problems without discounting and in certain models of endoge-
nous economic growth (especially with declining discount rates) the corresponding
integral utility functional may diverge to infinity.

For deriving first-order necessary optimality conditions for infinite-horizon opti-
mal control problems, an approach based on methods in the general theory of
extremal problems (see [41]) was recently obtained by Pickenhain in [45] and [46]
(in the linear-quadratic case) and by Tauchnitz [61] (in the general non-linear case).
The key idea of this approach is to introduce certain weighted Sobolev spaces as
state spaces and certain weighted Lebesgue spaces as control spaces. The value of
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the functional is assumed to be finite and the optimality of an admissible control
u∗( · ) ∈ L∞

(
[0,∞),Rm

)
is understood in the strong sense. The general version

of the maximum principle obtained using this approach (see [61], Theorem 4.1) is
not necessarily normal (the case ψ0 = 0 is not excluded). It involves an adjoint
variable ψ( · ) belonging to the corresponding weighted function space (that is, sat-
isfying a certain exponential growth condition). In this sense the result extends
a result in [17]. Both the asymptotic conditions (7) and (8) follow from the fact
that ψ( · ) is in the corresponding weighted function space. However, this character-
ization does not necessarily uniquely determine an adjoint function satisfying the
maximum principle.

In the linear-quadratic case the corresponding maximum principle holds in nor-
mal form (see [46], Theorem 5). The normal-form version of the maximum principle
with adjoint variable specified by the Cauchy-type formula (12) was obtained in [61],
Theorem 6.1, under an additional ‘stability’-type condition (see the condition (A3)
in [61]). It was also shown in [61], Example 6.2, that all the assumptions of the last
result can be satisfied for an optimal admissible pair (x∗( · ), u∗( · )) in this exam-
ple, while the assumptions of Theorem 8 fail. However, the weighted Sobolev and
Lebesgue spaces in this example are constructed using an a priori known optimal
pair (x∗( · ), u∗( · )) in this case.

Methods from the general theory of extremal problems were also used in the
earlier paper [24] by Brodskii to develop a variant of the maximum principle for
an infinite-horizon problem with terminal and mixed control-state constraints. The
result there was obtained under very restrictive growth assumptions, and it does
not imply the normality of the problem. In the case of a free terminal state at
infinity, the result involves the asymptotic condition (7).

The relationship between the maximum principle with infinite-horizon and the
dynamic programming method was studied in [25] and [50]. In the case when
the optimal value function V ( · , · ) is locally Lipschitz with respect to the state vari-
able x, some normal versions of the maximum principle together with sensitivity-
type relations involving generalized gradients of V ( · , · ) were obtained.

The normal-form version of the Pontryagin maximum principle for the prob-
lem (P) with adjoint variable specified by the Cauchy-type formula (12) in our
paper (see Theorem 8) was developed recently by the authors in [14]–[16]. The
approach in these papers is based on the classical needle variations technique and
the Yankov–von Neumann–Aumann selection theorem (see [40], Theorem 2.14).
The main results obtained using this approach have been presented here, includ-
ing economic applications (§ 4). The advantage of our approach is that it can be
applied under less restrictive regularity and growth assumptions than approaches
like the approximations-based technique or the methods of the general theory of
extremal problems. In particular, this method can justify the Cauchy-type for-
mula as a part of the Pontryagin necessary conditions for optimality even in the
case when the optimal value of the functional is infinite. The notion of weakly
overtaking optimality (see [26]) can be used in this case.

The importance of the Cauchy-type formula (12) is determined not only by the
fact that in some cases it can imply the standard asymptotic conditions (7), (8),
and (9), or provide even more complete information about the adjoint variable
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ψ( · ), but also by the fact that in cases when the asymptotic conditions (7) and (8)
are inconsistent with the core conditions (15) and (16) of the maximum principle,
the formula (12) can serve as an alternative to them. As was shown in [4], [5], and
our § 4, the formula (12) also provides the possibility of interpreting the adjoint
variable ψ( · ) as the integrated intertemporal price function.

We mention that the same approach has also proved to be productive for dis-
tributed control systems, as shown in [57] for a class of age-structured optimal
control problems, and for discrete-time problems with infinite horizons, as shown
in [8].
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