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1. Introduction

In this paper we give an overview of results on homotopy finiteness of differential
graded (DG) categories and on smooth categorical compactifications.

According to one of the approaches to non-commutative algebraic geometry,
a non-commutative space is a triangulated DG (or A∞-) category which admits
a single generator ([19], [27]).

By a theorem of Bondal and Van den Bergh ([5], Theorem 3.1.1) and by results
of Keller [17], for any separated scheme X of finite type over a field k there is a DG
k-algebra A, defined up to a Morita equivalence, such that

D(QCoh(X)) ≃ D(A).

Here D(A) is the derived category of (right) DG A-modules. This equivalence
identifies the full subcategories of perfect complexes (which are exactly the compact
objects): Dperf(X) ≃ Dperf(A). Let us denote by Perf(X) the DG enhancement
(see [3]) of the triangulated categoryDperf(X). The DG category Perf(X) is treated
as a non-commutative space associated with X.

It is known (see [27], Proposition 3.30, and [22], Proposition 3.13) that a scheme
X is smooth (respectively, proper) if and only if the DG category Perf(X) is smooth
(respectively, proper). Thus, these basic geometric properties of X are reflected by
the DG category Perf(X). The notions of smoothness and properness for DG
categories are recalled in § 2.

The situation is quite different for the DG category Db
coh(X) ⊃ Perf(X) — an

enhancement of the derived category of coherent sheaves. Namely, the following
theorem has been proven by Lunts.

Theorem 1.1 ([22], Theorem 6.3). Let X be a separated scheme of finite type over
a perfect field k. Then the DG category Db

coh(X) is smooth.

This is quite surprising: the scheme X can have arbitrary singularities and even
be non-reduced, but the DG category Db

coh(X) is always smooth.
The class of smooth DG categories contains some ‘large’ examples. For example,

the field of rational functions k(x1, . . . , xn) is a smooth DG algebra. It is natural
to try to impose some conditions on a smooth DG category so that it is ‘finitely
presented’ in an appropriate sense.

Toën and Vaquié [36] introduced the class of so-called homotopically finitely
presented (homotopically finite) DG categories.

Definition 1.2 [36]. 1) A DG algebra A is homotopically finite if in the homotopy
category of DG algebras A there is a retract of a free graded algebra k⟨x1, . . . , xn⟩
with differential satisfying the condition

dxi ∈ k⟨x1, . . . , xi−1⟩, 1 6 i 6 n.

2) A small DG category is homotopically finite if it is Morita equivalent to
a smooth DG algebra which is homotopically finite.

See § 2 for a more detailed discussion, in particular for the notion of a retract.
The homotopically finite DG categories play the same role in the Morita homotopy
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category of DG categories as the perfect A -modules play in the derived category of
all A -modules (where A is some small DG category). Also, their analogue in the
homotopy category of CW complexes is the category of so-called finitely dominated
spaces, which are homotopy retracts of finite CW complexes (see [38], [39], and [37]).

The basic facts about homotopically finite DG categories are recalled in § 2. Here
we mention that if a DG category is hfp, then it is smooth. On the other hand, if
a DG category is smooth and proper, then it is homotopically finite.

The main result of [8] is the following theorem.

Theorem 1.3 ([8], Theorem 1.4). Let Y be a separated scheme of finite type over
a field k of characteristic zero. Then the DG category Db

coh(Y ) is homotopically
finite.

The statement of this theorem was previously conjectured by Kontsevich at the
conference at the University of Miami in 2010.1

In [8] a similar result is also proved for coherent matrix factorizations [11]. For
any regular function W on Y we have a Z/2-graded DG category Dabs

coh(X,W ) — an
enhancement of the absolute derived category of coherent matrix factorizations
of W .

Theorem 1.4 ([8], Theorem 1.5). Let Y be a separated scheme of finite type over
a field k of characteristic zero, and let W be a regular function on Y . Then the
Z/2-graded DG category Dabs

coh(Y,W ) is homotopically finite.

There is a particularly nice class of homotopically finite DG categories: those
which admit a so-called smooth categorical compactification. We recall that a DG
quasi-functor F : A → B between small DG categories is a DG bimodule NF ∈
A - Mod -B, such that for each object X ∈ A the DG B-module NF (X,−) is
quasi-isomorphic to a representable module.

Definition 1.5. A smooth categorical compactification of a DG category A is
a DG quasi-functor F : C → A , where the DG category C is smooth and proper,
the extension of scalars functor F ∗ : Perf(C ) → Perf(A ) is a Verdier localization
(up to direct summands), and its kernel is generated by a single object.

The motivation for the term ‘smooth categorical compactification’ is as follows.
Suppose that Y is smooth, and Y ⊃ Y is a usual (algebro-geometric) smooth com-
pactification. Then the restriction functor Db

coh(Y ) → Db
coh(Y ) is a smooth cate-

gorical compactification.
One can show that the existence of a smooth categorical compactification implies

homotopy finiteness (see Corollary 2.9). In the recent paper [9] the author gives
examples of homotopically finite DG categories which do not admit a smooth cat-
egorical compactification.

In [8] the following theorem is proved, which is stronger than Theorems 1.3
and 1.4.

Theorem 1.6 ([8], Theorem 1.8). Let Y be a separated scheme of finite type over
a field k of characteristic zero. Then:

1Workshop on homological mirror symmetry and related topics (University of Miami, 2010),
Discussion session.
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1) the DG category Db
coh(Y ) has a smooth categorical compactification of the

form Db
coh(Ỹ )→ Db

coh(Y ), where Ỹ is a smooth and proper variety;
2) for any regular function W ∈ O(Y ) the D(Z/2-)G category Dabs(Y,W ) has

a Z/2-graded smooth categorical compactification CW → Dabs(X,W ), with a semi-
orthogonal decomposition CW = ⟨Dabs(V1,W1), . . . , Dabs(Vm,Wm)⟩, where each Vi

is a k-smooth variety and the morphisms Wi : Vi → A1
k are proper.

The general idea of the proof of Theorem 1.6 is motivated by the following
conjecture of Bondal and Orlov.

Conjecture 1.7 [4]. Let Y be a variety with rational singularities, and let f : X → Y
be a resolution of singularities (recall that rationality of singularities means that
Rf∗OX

∼= OY ). Then the functor Rf∗ : Db
coh(X)→ Db

coh(Y ) is a localization.

If we are able to prove Conjecture 1.7 and also to show that the kernel of the
localization is generated by a single object, then choosing any smooth compactifi-
cation X of X, we get a smooth categorical compactification Db

coh(X) of Db
coh(Y ).

Unfortunately, we have not been able to prove Conjecture 1.7 in general, but the
technique developed in [8] allows us to prove it in a certain class of cases.

Theorem 1.8 ([8], Theorem 1.10). Suppose that Y has rational singularities,
Z ⊂ Y is a closed smooth subscheme, and the blow-up X = BlZ Y is smooth, so
that f : X → Y is a resolution of singularities. Let us denote by T = f−1(Z)
the exceptional divisor, by p : T → Z the induced morphism, and by j : T → X
the embedding. Suppose that Rf∗In

T = In
Z for n > 1. Then the functor

Rf∗ : Db
coh(X) → Db

coh(Y ) is a localization, and its kernel is generated by the
subcategory j∗((p∗Db

coh(Z))⊥).

A more general version of this result is Theorem 7.20. It can be applied, for
example, when Y ⊂ Am is a cone over some projective embedding of a smooth
Fano variety, and Z = {0} ⊂ Y is the origin.

For an arbitrary scheme Y (separated, of finite type) the idea is to use the
so-called categorical resolution constructed by Kuznetsov and Lunts [21]. It plays
the same role as the derived category of the resolution of rational singularities, and
it exists for any separated scheme of finite type. Surprisingly, in this framework
we are able to prove the analogue of Conjecture 1.7, which allows us to prove
Theorem 1.6. We note that even if Y has rational singularities, we still use the
categorical resolution to obtain the smooth categorical compactification.

This overview is organized as follows.
In § 2 we discuss the notions of homotopy finiteness of DG categories and smooth

categorical compactifications, and also formulate some basic results related to these
notions.

In § 3 we recall the Neeman criterion for a functor to be a localization, and we
introduce homological epimorphisms of DG categories (in the terminology of [14]
and [28]), which generalize localizations.

In § 4 we recall the notion of gluing DG categories via a bimodule.
In § 5 we recall the notions of coderived category and absolute derived category.

We formulate basic results about them for locally Noetherian Abelian categories,
in particular, the statement about compact generation.
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Section 6 is devoted to specific convenient enhancements for derived categories
of coherent sheaves and absolute derived categories of coherent matrix factoriza-
tions. For these enhancements, we have natural DG direct image functors (not just
quasi-functors) for a proper morphism.

In § 6.3 we introduce the category of nice ringed spaces. Its objects are pairs
(X,AX), where X is a separated Noetherian scheme and AX is a coherent sheaf
of OX -algebras satisfying a certain additional condition. We discuss the (co)derived
categories of (quasi-)coherent sheaves on nice ringed spaces, and functors between
them.

Section 7 is devoted to the proof of Theorem 1.6 (see Theorem 7.23).

2. Homotopy theory of DG algebras and DG categories

For an introduction to DG categories, we refer the reader to [17]. Our basic
reference for model categories is [15]. The references for model structures on DG
algebras and DG categories are [34] and [35]. The notion of homotopy finiteness is
taken from [36]. The references for DG quotients are [6] and [18].

We fix some base field k. We will consider either Z-graded or Z/2-graded DG
categories. The latter can be treated as DG categories over k[u±1], where u has
degree 2. These two cases are parallel for our discussion. If we do not specify
the grading, then we mean that everything holds in both frameworks. We write ⊗
for ⊗k. Also, for a homogeneous element v of a graded vector space V , we denote
by |v| its grading.

All DG modules are assumed to be right modules unless otherwise stated. Given
a small DG category A , we denote by Mod -A the DG category of right DG
modules (it is denoted by Dif A in [17], § 1.2). We denote by A - Mod = Mod -A op

the DG category of left A -modules. We have a fully faithful Yoneda embedding
functor A → Mod -A . For any DG category T (not necessarily small) the k-linear
category H0(T ) has the same objects as T , and the morphisms are given by

H0(T )(X,Y ) = H0(T (X,Y )).

It is shown in [17], Lemma 2.2, that the category H0(Mod -A ) is naturally tri-
angulated. The derived category D(A ) is defined to be the Verdier quotient
of H0(Mod -A ) by the full triangulated subcategory of acyclic DG modules.

It is also convenient to define the category Z0(T ) for any DG category T , simi-
larly to H0(T ). Here for a complex K • of vector spaces we denote the vector space
of closed elements of degree zero by Z0(K •).

By results in [17], § 3, the full subcategory H0(Acycl(A )) of acyclic DG modules
in H0(Mod -A ) is both left and right admissible. Recall that an A -module M
is said to be h-projective (respectively, h-injective) if it is in the left (respectively,
right) orthogonal to H0(Acycl(A )). We denote by h-proj(A ) ⊂ Mod -A the full
DG subcategory of h-projective A -modules. In particular, we have an equiva-
lence D(A ) ≃ H0(h-proj(A )). This allows us to define the left derived functor
LF : D(A ) → D(B) of any exact functor F : H0(Mod -A ) → H0(Mod -B) to be
the composition

D(A ) ∼−→ H0(h-proj(A )) F−→ H0(Mod -B)→ D(B).
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The tensor product bifunctor

−⊗A − : Mod -A ⊗A - Mod→ Mod -k

is given by

M ⊗A N = Coker
( ⊕

X,Y ∈A

M(Y )⊗A (X,Y )⊗N(Y ) ν−→
⊕

X∈A

M(X)⊗N(X)
)
,

where ν(m⊗ f ⊗ n) = mf ⊗ n−m⊗ fn.
Given small DG categories A and B, we denote by A - Mod -B the DG category

Mod -(A op ⊗ B) of A -B-bimodules. Then an A -B-bimodule N defines a DG
functor

−⊗A N : Mod -A → Mod -B,

given by
(M ⊗A N)(X) = M ⊗A N(−, X).

This DG functor induces an exact functor

−⊗AN : H0(Mod -A )→ H0(Mod -A ).

We denote by −
L
⊗A N : D(A )→ D(B) the left derived functor.

Similarly, for an A -B-bimodule M and a B-C -bimodule N , their tensor product
M ⊗B N ∈ A - Mod -C is given by

(M ⊗B N)(X,Y ) = M(X,−)⊗B N(−, Y ).

Deriving the resulting bifunctor on either side gives the same bi-exact bifunctor

D(A op ⊗B)×D(Bop ⊗ C )→ D(A op ⊗ C ).

We denote the full DG subcategory of semi-free finitely generated modules by
S Ffg(A ) ⊂ Mod -A . That is, a module M is in S Ffg(A ) if it has a finite
filtration by DG submodules such that all the subquotients are isomorphic to
shifts of representable DG modules. In particular, all representable A -modules are
in S Ffg(A ). In fact, S Ffg(A ) ⊂ h-proj(A ), and the category H0(S Ffg(A ))
is identified with the full triangulated subcategory of D(A ) generated by repre-
sentable modules via shifts and cones (note that the category H0(S Ffg(A )) is not
necessarily Karoubi-closed). We recall that a DG category A is said to be weakly
(respectively, strongly) pre-triangulated if the Yoneda functor A → S Ffg(A ) is
a quasi-equivalence (respectively, a DG equivalence). In particular, for a weakly
pre-triangulated DG category, the category H0(A ) is triangulated. By defini-
tion [3], an enhancement of a triangulated category T is a weakly pre-triangulated
DG category A , together with an exact equivalence H0(A ) ≃ T .

We recall that the triangulated subcategory Dperf(A ) ⊂ D(A ) is defined to be
the Karoubi completion of H0(S Ffg(A )) inside D(A ). In fact, the triangulated
category D(A ) is compactly generated (see [17], § 4.2) and the subcategory D(A )c
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of compact objects coincides with Dperf(A ) (see [32], [25], Lemma 2.2, and [17],
Theorem 5.3).

We denote by dgalgk the category of DG algebras over k. By [16] it has a model
structure, with weak equivalences being quasi-isomorphisms and fibrations being
surjections. This model category is finitely generated in the terminology of [15]. Its
finite-cell objects are as follows.

Definition 2.1 [36]. A finite-cell DG algebra B is a DG algebra which is isomorphic
as a graded algebra to a free algebra of finite type:

Bgr ∼= k⟨x1, . . . , xn⟩,

and moreover,
dxi ∈ k⟨x1, . . . , xi−1⟩, 1 6 i 6 n.

We recall that for a category C , an object X ∈ C is called a retract of an object
Y ∈ C if there exist morphisms f : X → Y and g : Y → X such that gf = idX .

The following definition is due to Toën and Vaquié [36]. It makes sense for all
finitely generated model categories.

Definition 2.2 [36]. A DG algebra A is homotopically finitely presented (homo-
topically finite) if in the homotopy category Ho(dgalgk) the object A is a retract of
some finite-cell DG algebra B.

We recall the notions of smoothness and properness.

Definition 2.3 [19]. 1) A DG algebraA is smooth over k if the diagonalA-A-bimod-
ule is perfect:

A ∈ Dperf(A⊗Aop).

2) A DG algebra A is proper over k if A ∈ Dperf(k), or in other words, the total
cohomology of A is finite-dimensional.

We have the following implications, which were proved in [36].

Theorem 2.4 [36]. 1) If a DG algebra is homotopically finite over k, then it is
smooth.

2) If a DG algebra is smooth and proper over k, then it is homotopically finite.
3) If DG algebras A and A′ are Morita equivalent and A is hfp, then so is A′ .

Part 3) of the above theorem implies that we can talk about homotopy finiteness
of small DG categories. We can also consider the category of small DG categories
dgcatk, and define weak equivalences as Morita equivalences. Tabuada [35] has
constructed the corresponding model structure, which is again finitely generated.
We denote by HoM (dgcatk) the corresponding homotopy category.

By [34] there is another model structure on dgcatk, with weak equivalences
being quasi-equivalences. We denote by Ho(dgcatk) the corresponding homotopy
category.

Definition 2.5. A DG category B is called a finite-cell category if:
i) B has a finite number of objects;
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ii) the graded category Bgr is freely generated by a finite number of morphisms
f1, . . . , fn;

iii) dfi ∈ k⟨f1, . . . fi−1⟩, 1 6 i 6 n.

Homotopically finite DG categories are defined in the same way.

Definition 2.6. A small DG category A is homotopically finite if in the homotopy
category HoM (dgcatk) the object A is a retract of a finite-cell DG category.

By [36], Corollary 2.12, a DG category is homotopically finite if and only if it is
Morita equivalent to a homotopically finite DG algebra.

Remark 2.7. The notions of smoothness and properness make sense for all small
DG categories, and statements 1) and 2) of Theorem 2.4 are also true for small DG
categories.

The following result holds.

Proposition 2.8 ([8], Proposition 2.8). Let C be a small DG category which is hfp,
and let E ∈ Ob(C ) be an object. Then the DG quotient C /E is also homotopically
finite.

In the Introduction we defined the notion of a smooth categorical compactifica-
tion (Definition 1.5). We have the following corollary.

Corollary 2.9. Assume that a small DG category A has a smooth categorical
compactification (see Definition 1.5). Then A is homotopically finite.

Proof. Indeed, this follows directly from Proposition 2.8 and Theorem 2.4. �

3. Homological epimorphisms and localizations

We recall the following result of Neeman on the localizations of compactly gener-
ated triangulated categories. If T is a compactly generated triangulated category,
then T c ⊂ T denotes the full triangulated subcategory of compact objects.

Theorem 3.1 [26]. Let T and S be compactly generated triangulated categories,
and let F : T → S be an exact functor commuting with small direct sums and
preserving compact objects. The following are equivalent:

(i) the induced functor F c : T c → S c is a localization up to direct summands
(that is, it is a localization onto its image, and the Karoubi completion of the image
coincides with S c);

(ii) the functor F : T → S is a localization, and its kernel is generated (as
a localizing subcategory) by its intersection with T c .

We will restrict ourselves to triangulated categories with a DG enhancement.
We need to specify our notation.

Notational convention. For a DG functor Φ: A → B between small DG cate-
gories we denote by Φ∗ : D(B) → D(A ) the restriction of scalars functor. Its left
adjoint, the extension of scalars, is denoted by Φ∗ : D(A ) → D(B). We denote
by IA ∈ A - Mod -A the diagonal bimodule given by IA (X,Y ) = A (Y,X). When
it does not lead to confusion, we also denote this bimodule by A , as well as its
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various restrictions of scalars. For example, the extension of scalars functor above
can be written as

Φ∗(−) = −
L
⊗A B.

The following notion of a homological epimorphism is a straightforward general-
ization of the corresponding notions from [14] (the case of associative rings) and [28]
(the case of DG algebras).

Definition 3.2. A DG functor Φ: A → B between small DG categories is a homo-
logical epimorphism if the extension of scalars functor

Φ∗ : D(A )→ D(B)

is a localization.

Remark 3.3. An exact functor F : T → S between (not necessarily small) trian-
gulated categories is a localization if the induced functor F : T / ker(F ) → S is
an equivalence, which is in general hard to verify (for example, Conjecture 1.7
is a statement of this kind). However, if we assume moreover that the functor F
has a left (respectively, right) adjoint G, then the condition on F to be a localization
is equivalent to the condition on G to be fully faithful.

The property of a functor to be a homological epimorphism has several reformu-
lations.

Proposition 3.4 ([8], Proposition 3.4). Let Φ: A → B be a DG functor between
small DG categories. The following are equivalent:

(i) Φ is a homological epimorphism;
(ii) the restriction of scalars functor Φ∗ : D(B)→ D(A ) is fully faithful;
(iii) for any X,Y ∈ Ob(B) the natural (composition) morphism

B(Φ(−), Y )
L
⊗A B(X,Φ(−))→ B(X,Y )

is an isomorphism in D(k);
(iv) the natural morphism

B
L
⊗A B = (Φ⊗ Φop)∗IA → IB (3.1)

is an isomorphism in D(B ⊗Bop).

Corollary 3.5. If Φ: A → B is a homological epimorphism and A is smooth,
then B is also smooth.

Proof. By the definition of smoothness, the bimodule IA ∈ D(A ⊗A op) is perfect.
The extension of scalars functor always preserves perfect complexes. Hence, condi-
tion (iv) in Proposition 3.4 implies that IB ∈ D(B⊗Bop) is also perfect, and thus
B is smooth. �

We note that the properties of being a homological epimorphism and of being
quasi-fully-faithful are dual to each other (see [8], Proposition 3.6). We recall that
a DG functor Φ: A → B is said to be quasi-fully-faithful if the morphisms

Φ(X,Y ) : A (X,Y )→ B(Φ(X),Φ(Y )), X, Y ∈ A ,

are quasi-isomorphisms.
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Definition 3.6. We call a DG functor Φ: A → B between small DG categories
a localization if the functor Φ∗ : Dperf(A )→ Dperf(B) is a Verdier localization up
to direct summands.

Theorem 3.1 directly implies the following.

Corollary 3.7. Let Φ: A → B be a functor between small DG categories. The
following are equivalent:

(i) Φ is a localization;
(ii) Φ is a homological epimorphism and the kernel of Φ∗ : D(A ) → D(B) is

generated (as a localizing subcategory) by its intersection with Dperf(A ).

We finish this section by mentioning a situation when a homological epimorphism
is automatically a localization.

Lemma 3.8. For a commutative square

A
F1−−−−→ B

G1

y G2

y
C

F2−−−−→ D

of DG functors, let F1 and F2 be quasi-fully-faithful, let G1 be a localization, let
G2 be a homological epimorphism, and let the induced functor G2 : B/F1(A ) →
D/F2(C ) be a Morita equivalence. Then G2 is a localization. Moreover, there is an
identification of subcategories

ker(G∗2 : Dperf(B)→ Dperf(D)) = F ∗1 (ker(G∗1 : Dperf(A )→ Dperf(C ))).

Proof. By Corollary 3.7, we only need to show that ker(G∗2 : D(B) → D(D)) is
identified with F ∗1 (ker(G∗1 : D(A )→ D(C ))). Let

pr1 : B → B/F1(A ) and pr2 : D → D/F2(C )

denote the projection DG functors. We have semi-orthogonal decompositions

D(B) = ⟨pr1∗D(B/F1(A )), F ∗1D(A )⟩ and D(D) = ⟨pr2∗D(D/F2(C )), F ∗2D(C )⟩.
(3.2)

The functor G∗2 : D(B)→ D(D) is compatible with the semi-orthogonal decompo-
sitions (3.2), and it induces the functors G

∗
2 and G∗1 on the components. By our

assumptions, the functor G
∗
2 is an equivalence. It follows that ker(G∗2 : D(B) →

D(D)) is contained in F ∗1 (D(A )). �

4. Gluing of DG categories

First we recall the notion of gluing, following the notation of [27].

Definition 4.1. Let A and B be small DG categories, and let M ∈ D(A ⊗Bop)
be a bimodule.
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1) Define the DG category C = A M B as follows. First, Ob(A M B) =
Ob(A ) ⊔Ob(B). The complexes of morphisms are defined by

C (X,Y ) =


A (X,Y ) for X,Y ∈ A ;
B(X,Y ) for X,Y ∈ B;
M(X,Y ) for X ∈ A , Y ∈ B;
0 for X ∈ B, Y ∈ A .

The composition in A M B is given by the compositions in A and B and by the
bimodule structure on M .

2) The DG category A M B is defined as follows. Its objects are triples
(X,Y, µ), where X ∈ Ob(A ), Y ∈ Ob(B), and µ ∈ M0(X,Y ) is a cocycle of
degree zero. The graded k-modules of morphisms are defined by

Hom((X,Y, µ), (X ′, Y ′, µ′)) = A (X,X ′)⊕B(Y, Y ′)⊕M(X,Y ′)[−1].

The differential is given by the formula

d(f1, f2, f12) =
(
d(f1), d(f2),−d(f12)− f2µ+ µ′f1

)
.

The composition is given by

(f1, f2, f12) ◦ (g1, g2, g12) = (f1 ◦ g1, f2 ◦ g2, f12g1 + (−1)|f2|f2g12).

These two versions of gluing are related to each other as follows.

Proposition 4.2. 1) There is a natural fully faithful DG functor

Φ: A M B → S Ffg(A M B), (X,Y, µ) 7→ Cone(hX
µ−→ hY ).

Moreover, Φ is a Morita equivalence.
2) If both A and B are weakly (respectively, strongly) pre-triangulated, then Φ

is a quasi-equivalence (respectively, a DG equivalence).

Proof. Straightforward checking. �

Remark 4.3. It follows from 1) in Proposition 4.2 that for any DG functor
F : A M B → C , where C is strongly pre-triangulated, we have a natural DG
functor

F ′ : A M B → C , where F ′(X,Y, µ) = Cone(F (µ) : F (X)→ F (Y ))

(the DG functor F ′ is well defined up to a canonical DG isomorphism). Below we
use this observation implicitly.

We give the following definition.

Definition 4.4. A semi-orthogonal decomposition of a DG category B is a pair of
DG functors F1 : A1 → B and F2 : A2 → B such that F1 and F2 are quasi-fully-
faithful and the triangulated category Dperf(B) has a semi-orthogonal decomposi-
tion

Dperf(B) = ⟨F ∗1Dperf(A1), F ∗2Dperf(A2)⟩.
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If these conditions are satisfied, then we write B = ⟨F1(A1), F2(A2)⟩. We also
write B = ⟨A1,A2⟩ if the DG functors F1 and F2 are either clear from the context
or are irrelevant.

We will use the following special case of the gluing construction.

Definition 4.5. Suppose that we are given a pair of DG functors between small
DG categories

A
F1←− C

F2−→ B.

Take the B-A -bimodule
M := B

L
⊗C A ,

where the derived tensor product is computed via bar resolution. We put

A (C ) B := A M B and A (C ) B := A M B.

5. Exotic derived categories

In this section we recall the notions of absolute derived and coderived categories.
Exotic derived categories were introduced by Positselski ([29], [30]). The case of
a locally Noetherian Abelian category was also studied earlier by Krause [20].

Definition 5.1. Let C be an exact category with exact small coproducts. Denote
by K(C ) the homotopy category of complexes of objects in C . Define the full
subcategory of co-acyclic complexes co-Acycl(C ) ⊂ K(C ) to be the localizing sub-
category generated by the totalizations of short exact sequences of complexes. Then
the coderived category is defined as the quotient

Dco(C ) := K(C )/ co-Acycl(C ).

Here by a ‘totalization’ of a short exact sequence of complexes we mean the
sum-total complex of the corresponding bicomplex (in this bicomplex the non-zero
columns are given by the terms of the short exact sequence, and they are placed
in degrees −1, 0, and 1). A localizing subcategory of a triangulated category with
small coproducts (that is, a cocomplete category) is by definition a full triangulated
subcategory which is closed under small coproducts.

Note that an acyclic complex bounded below is always co-acyclic, hence we have
a natural functor

D+(C )→ Dco(C ).

We will be mostly interested in locally Noetherian Abelian categories ([12], [13]).
Recall that an Abelian category C is locally Noetherian if it has exact directed
colimits (AB5), and a (small) generating set of Noetherian objects. For such a cat-
egory C we denote by Cf ⊂ C the full (essentially small) subcategory of Noetherian
objects. Also, we denote by Db

f (C ) ⊂ Db(C ) the subcategory of complexes with
bounded Noetherian cohomology.

The basic example of a locally Noetherian category is the category C = QCoh(X)
of quasi-coherent sheaves on a Noetherian scheme X. In this case Cf = Coh(X).
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Theorem 5.2. Let C be a locally Noetherian Abelian category. Then the following
statements hold.

1) There is a semi-orthogonal decomposition

K(C ) = ⟨K(Inj(C )), co-Acycl(C )⟩,

where K(Inj(C )) is the homotopy category of complexes with injective components.
2) The functor D+(C )→ Dco(C ) is fully faithful.
3) The category Dco(C ) is compactly generated, and the subcategory of compact

objects coincides with the essential image of the composition

Db
f (C )→ D+(C )→ Dco(C ).

Proof. The statement 1) is proved in [30], § 3.7, in a different but analogous context.
It also follows from [31], Corollary A.6.2, after reversion of arrows.

The statement 2) is proved in [31], Lemma A.1.2, (a).
The statement 3) follows from 1) and [20], Proposition 2.3. �

We will use the following terminology borrowed from [7], § 2.

Definition 5.3. 1) A Z+-category is a pair (C ,W ), where C is a category and
W : idC → idC is a natural transformation.

2) A Z+-functor between Z+-categories (C1,W1) and (C2,W2) is a functor
F : C1 → C2 such that (W2)F (X) = F ((W1)X) for any object X ∈ C1.

We will say that a Z+-category (C ,W ) is additive (respectively, Abelian,
exact, . . . ) if the underlying category C is additive (respectively, Abelian, exact, . . . ),
and similarly for Z+-functors.

Definition 5.4. Let (C ,W ) be an additive Z+-category. A matrix factorization is
a pair (F, δ), where F = F ev ⊕ F odd is a Z/2-graded object in C and δ : F → F
is an odd morphism such that δ2 = WF .

The matrix factorizations form a Z/2-graded DG category which we denote by
MFdg(C ,W ). This DG category is strongly pre-triangulated. Let K(C ,W ) be its
homotopy category.

Suppose that C is moreover Abelian. If C is small, then we define the triangu-
lated subcategory Acycl(W ) ⊂ K(C ,W ) of absolutely acyclic matrix factorizations
to be the subcategory generated by the totalizations of short exact sequences of
matrix factorizations. The absolute derived category is defined as the quotient

Dabs(C ,W ) := K(C ,W )/Acycl(W ).

Remark 5.5. Note that by the definition of the category Dabs(C ,W ), it has a nat-
ural DG enhancement given by the DG quotient MFdg(C ,W )/Acycldg(W ), where
Acycldg(W ) is the full DG subcategory of absolutely acyclic matrix factorizations.

If C has exact small coproducts, then we define the subcategory co-Acycl(W ) ⊂
K(C ,W ) to be the localizing subcategory generated by totalizations of short exact
sequences. In this case the coderived category is defined as the quotient

K(C ,W )/ co-Acycl(W ).
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Theorem 5.6. Let (C ,W ) be a locally Noetherian Abelian Z+-category. Then the
following statements hold.

1) There is a semi-orthogonal decomposition

K(C ,W ) = ⟨K(Inj(C ),W ), co-Acycl(W )⟩,

where K(Inj(C ),W ) is the homotopy category of matrix factorizations with injective
components.

2) The category Dco(C ,W ) is compactly generated, and the subcategory of com-
pact objects is the Karoubi completion of the essential image of the functor

Dabs(Cf ,W )→ Dco(C ,W ),

which is fully faithful.

Proof. The statement 1) is proved in [30], § 3.7, in a different but analogous context.
The statement 2) is proved in the same way as Proposition 1.5, (d) in [11]. �

In the special case when C = QCohX for some Noetherian separated scheme
X and W is given by multiplication by a regular function on X, we write
Dco(QCoh(X,W )) or just Dco(X,W ) instead of Dco(QCohX,W ). We also write
Dabs(Coh(X,W )) or Dabs

coh(X,W ) instead of Dabs(CohX,W ).

6. Coherent sheaves and coherent matrix factorizations

6.1. Coherent sheaves. Fix some base field k. Let X be a separated Noethe-
rian scheme over k. Recall that the category QCoh(X) is locally Noetherian and
Coh(X) ⊂ QCoh(X) is exactly its subcategory of Noetherian objects. Hence, by 3)
in Theorem 5.2 the triangulated category Db

coh(X) is exactly the subcategory of
compact objects in the coderived category Dco(X) := Dco(QCoh(X)).

We will need the following enhancement of Dco(X). Denote by Flasque(X) ⊂
QCoh(X) the subcategory of all flasque quasi-coherent sheaves. It is closed under
small coproducts, extensions, and cokernels of injections. It contains the category
of injective acyclic quasi-coherent sheaves: Inj(X) ⊂ Flasque(X). It follows that
one has the semi-orthogonal decomposition

K(Flasque(X)) = ⟨K(Inj(X)), co-Acycl(Flasque(X))⟩.

Therefore, we have

Dco(X) ∼= K(Flasque(X))/ co-Acycl(Flasque(X)).

Let us denote by Com(A ) the DG category of (unbounded) complexes of objects
in A , where A is any additive k-linear category. Then one has a natural DG
enhancement of Dco(X):

Dco(X) ∼= Ho
(
Com(Flasque(X))/Comco-ac(Flasque(X))

)
.

The set-theoretic issues are resolved in the same way as in Appendix A of [23].
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Further, for a morphism f : X → Y of Noetherian separated k-schemes one has
a natural DG functor

f∗ : Com(Flasque(X))→ Com(Flasque(Y )),

which takes Comco-ac(Flasque(X)) to Comco-ac(Flasque(Y )). Hence we have a nat-
ural DG functor

f∗ : Com(Flasque(X))/Comco-ac(Flasque(X))

→ Com(Flasque(Y ))/Comco-ac(Flasque(Y )).

Now let Db(X) := Comb
coh(Flasque(X)) ⊂ Com(Flasque(X)) be a full DG sub-

category consisting of complexes which are isomorphic to an object of Db(Coh(X))
in Dco(X). As in Appendix A of [23], we may assume that these DG categories are
small, and we have well-defined pushforward DG functors f∗ : Db(X ′)→ Db(X) for
any proper morphism f : X ′ → X. We clearly have

Db
coh(X) ∼= Ho(Db(X)).

Moreover, we have natural isomorphisms of DG functors (fg)∗ ∼= f∗g∗ for compos-
able proper morphisms f and g.

We recall some results on the triangulated category Db
coh(X) and the DG cate-

gory Db(X).

Definition 6.1 ([5] and [33]). Let T be a small triangulated category and E ∈ T
an object. Take the recursively defined sequence {Tn}n>0 of full subcategories
of T , where
• T0 consists of direct summands of finite direct sums of shifts of E;
• Tn+1 consists of direct summands of objects F such that there exists an

exact triangle

F ′ → F → F ′′ → F ′[1],

with F ′ ∈ Tn and F ′′ ∈ T0.
Then E is called a strong generator if Tn = T for n≫ 0.

Theorem 6.2 [33]. If a scheme X is separated of finite type over a field k, then
the triangulated category Db

coh(X) has a strong generator.

In the case of perfect fields there is a stronger result by Lunts.

Theorem 6.3 [22]. Let X be a separated scheme of finite type over a perfect field k.
Then the DG category Db(X) is smooth.

Our main result on derived categories of coherent sheaves (Theorem 1.3) is
stronger than Theorem 6.3, but it requires the assumption that the base field has
characteristic zero.
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6.2. Coherent matrix factorizations. For matrix factorizations the general
picture looks roughly similar. By Theorem 5.6 the (Z/2-graded) category of coher-
ent matrix factorizations Dabs

coh(X,W ) is (up to direct summands) the subcategory
of compact objects in Dco(X,W ).

For the derived functors between the (absolute derived and coderived) categories
of matrix factorizations there are two approaches: the technique in Appendix A
of [8] and the approach in [1]. They yield the same result (see [1], the proof of
Proposition 2.22 and Remark 4.4). Below we freely use these derived functors just
as for the usual derived categories of (quasi-)coherent sheaves.

As above, we can construct a system of enhancements Dabs(X,W ) of the tri-
angulated categories Dabs

coh(X,W ). Namely, one has a (Z/2)-graded DG category
Flasque(X,W ) ⊂ QCoh(X,W ) of flasque matrix factorizations, and its full DG
subcategory

Flasque(X,W )co-ac ⊂ Flasque(X,W )

of co-acyclic flasque matrix factorizations. This gives us a natural enhancement of
Dco(QCoh(X,W )):

Dco(QCoh(X,W )) ∼= Ho(Flasque(X,W )/Flasque(X,W )co-ac).

Again, for any morphism f : X → Y and any function W on Y we have a natural
DG functor

f∗ : Flasque(X, f∗W )/Flasque(X, f∗W )co-ac

→ Flasque(Y,W )/Flasque(Y,W )co-ac.

Further, we have a full DG subcategory Flasque(X,W )coh ⊂ Flasque(X,W )
consisting of matrix factorizations which are in the essential image of the inclusion
Dabs

coh(X,W ) ⊂ Dco(QCoh(X,W )). Putting

Dabs(X,W ) := Flasque(X,W )coh/Flasque(X,W )co-ac,

we have
Dabs

coh(X,W ) ∼= Ho(Dabs(X,W )).

By Proposition A.4 in [8], for any proper morphism f : X → Y and any func-
tion W on Y the functor f∗ : Dco(X, f∗W ) → Dco(Y,W ) takes Dabs

coh(X, f∗W ))
to Dabs

coh(Y,W ).
As in the previous subsection, we may (and will) assume that all the DG cat-

egories Dabs(X,W ) are small, and for any proper morphism f : X → Y and any
function W on Y one has the DG functor f∗ : Dabs(X, f∗W )→ Dabs(Y,W ). Again,
we have natural isomorphisms of DG functors (fg)∗ ∼= f∗g∗.

For completeness, we formulate the analogues of Theorems 6.2 and 6.3 which
were proved in [8].

Theorem 6.4 ([8], Theorem 7.5). Let X be a separated scheme of finite type over
a field k, and let W ∈ O(X) be a regular function. Then the triangulated category
Dabs

coh(X,W ) has a strong generator.
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Theorem 6.5 ([8], Theorem 7.7). Let X be a separated scheme of finite type over
a perfect field k, and let W : X → A1 be a regular function. Denote by t the coor-
dinate on A1 . Assume that the scheme (X ×k[t] k(t))red has a smooth stratification
over k(t) (this holds automatically if k has characteristic zero).

Then the DG category Dabs(X,W ) is smooth as a Z/2-graded DG category.

Our main result on the absolute derived categories of coherent matrix factoriza-
tions (Theorem 1.4) is stronger than Theorem 6.5 but again requires the assumption
of zero characteristic.

6.3. Nice ringed spaces. In this subsection we define the category of nice ringed
spaces, and we discuss coherent sheaves and matrix factorizations on them.

Definition 6.6. 1) A nice ringed space over k is a pair (S,AS) consisting of
a Noetherian separated k-scheme S and a coherent sheaf AS of (unital) OS-algebras
with the following property:
• there exists a coherent sheaf of nilpotent two-sided ideals I ⊂ AS such that

there is an isomorphism of OS-algebras

AS/I ∼=
n⊕

i=1

OS/Ji,

where Ji ⊂ OS are some coherent sheaves of ideals.
2) A morphism of nice ringed spaces from (S,AS) to (S′,AS′) is a pair (f, ϕ),

where f : S → S′ is a morphism of schemes and ϕ : f∗AY → AS is a (possibly
non-unital) morphism of OS-algebras.

The composition of morphisms is defined in the natural way. Each Noetherian
separated k-scheme S can be considered as a nice ringed space (S,OS).

For a nice ringed space (S,AS) denote by QCoh(AS) (respectively, Coh(AS))
the Abelian category of right AS-modules which are OS-quasi-coherent (respec-
tively, OS-coherent). We denote by Mod -AS the category of all sheaves of right
AS-modules.

Proposition 6.7 ([8], Proposition 7.9). Let (S,AS) be a nice ringed space.
1) The Abelian category QCoh(AS) is locally Noetherian, and the Noetherian

objects in it form the subcategory Coh(AS). In particular, it has enough injective
objects.

2) The Abelian category Mod -AS is locally Noetherian.
3) An object I ∈ QCoh(AS) is injective in the category QCoh(AS) if and only

if it is injective in the category Mod -AS . In particular, in this case the restriction
I|U to any open subscheme U ⊂ S is injective in QCoh((AS)|U ).

For a morphism (f, φ) : (X,AX)→ (Y,AY ) of nice ringed spaces we have a direct
image functor (f, φ)∗ : QCoh(AX) → QCoh(AY ), which is left exact and com-
mutes with small coproducts. More precisely, for F ∈ QCoh(AX) we first take the
f∗(AX)-module f∗(F ) and then put

(f, φ)∗(F ) := f∗(F ) · ψ(1),

where ψ : AY → f∗(AX) corresponds to φ by adjunction.
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Proposition 6.8. Let (f, φ) : (X,AX) → (Y,AY ) be a morphism of nice ringed
spaces. Suppose that the morphism f : X → Y is proper. Then the functor
(f, φ)∗ : Dco(QCoh(AX))→ Dco(QCoh(AY )) takes Db

coh(AX) to Db
coh(AY ).

Proof. By 3) in Proposition 6.7 each injective quasi-coherent AX -module is a flasque
sheaf. It follows that for any F ∈ Db

coh(AX) we have R(f, φ)∗(F ) = Rf∗(F )·ψ(1),
where ψ : AY → f∗AX is as above. But the restriction of scalars of Rf∗(F ) (from
f∗AX to OY ) is in Db

coh(Y ) (since f is proper). Hence we have R(f, φ)∗(F ) ∈
Db

coh(AY ). �

As in § 6.1, we define a small DG category Db(AX), which is an enhancement
ofDb

coh(AX) for any nice ringed space (X,AX). Moreover, for any proper morphism
f : (X,AX)→ (Y,AY ) we have a DG functor f∗ : Db(AX)→ Db(AY ), and (fg)∗ ∼=
f∗g∗.

Now let (S,AS) be a ringed space and let W ∈ O(S) be a regular function.
We regard W also as a central section of AS (that is, for any open subset U ⊂ S
the element W|U ∈ AS(U) lies in the centre of the algebra AS(U)). Then by
Theorem 5.6 the category Dabs

coh(AX ,W ) = Dabs(Coh(AX ,W )) is (up to direct
summands) the subcategory of compact objects in Dco(QCoh(AX ,W )).

Proposition 6.9. Let f : (X,AX)→ (Y,AY ) be a morphism of nice ringed spaces
and let W ∈ O(Y ) be a regular function. Suppose that the morphism f : X → Y is
proper. Then the functor

f∗ : Dco(QCoh(AX , f
∗W ))→ Dco(QCoh(AY ,W ))

takes Dabs
coh(AX ,W ) to Dabs

coh(AY ,W ).

Proof. This follows from Proposition A.4 in [8] and Propositions 6.7 and 6.8. �

As in § 6.2, we define a Z/2-graded small DG category Dabs
coh(AX ,W ) for each nice

ringed space (X,AX) and eachW ∈O(X). For any proper morphism f : (X,AX)→
(Y,AY ) and anyW ∈O(Y ) we have a DG functor Dabs

coh(AX , f
∗W )→Dabs

coh(AY ,W ),
and (fg)∗ ∼= f∗g∗.

7. Smooth categorical compactifications of geometric categories

In this section we construct smooth categorical compactifications (see Defini-
tion 1.5) for derived categories of coherent sheaves and absolute derived categories
of coherent matrix factorizations.

7.1. Auslander-type construction: coherent sheaves. The construction we
present in this subsection is due to Kuznetsov and Lunts [21].

Let S be a Noetherian scheme, let τ ⊂ OS be a sheaf of ideals, and let n > 0
be an integer such that τn = 0. Starting with such a triple (S, τ, n), we define
a coherent sheaf of OS-algebras:

A = AS = AS,τ,n :=
⊕

16i,j6n

Aij , Aij := τmax(i−j,0)/τn+1−j .
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The multiplication
Ajk ⊗OS

Aij → Aik

is induced by the multiplication in OS . We denote by

ei = 1 ∈ Aii = OS/τ
n+1−i

the orthogonal idempotents such that e1 + · · ·+ en = 1A .
Let S0⊂S be the subscheme defined by the ideal τ , so that Sred ⊆ S0 ⊆ S.

Proposition 7.1. The pair (S,AS,τ,n) is a nice ringed space.

Below we will say that (S,AS) is obtained from the triple (S, τS , n) by the
Auslander-type construction.

We have a morphism of nice ringed spaces

ρS : (S,AS)→ S,

which is the identity on S, and the map OS → AS is f 7→ f · e1.
Also, for each 1 6 k 6 n we denote by ik : S0 → (S,AS) the natural morphism

which is given by the inclusion S0 ↪→ S and the projection

AS → AS/⟨e1, . . . , ek−1, ek+1, . . . , en⟩ ∼= OS0 .

Proposition 7.2 ([8], Proposition 8.2). The exact functor ρS∗ : Coh(AS)→Coh(S)
is a localization of Abelian categories, and its kernel is generated (as a Serre sub-
category) by the subcategories ik∗(CohS0), 2 6 k 6 n.

In particular, the DG functor ρS∗ : Db(AS) → Db(S) is a localization, and its
kernel is generated by ik∗(Db(S0)), 2 6 k 6 n.

Suppose that n > 1. Denote by S′ ⊂ S the subscheme defined by the ideal τn−1.
Applying the Auslander-type construction to the triple (S′, τ, n− 1), we get a nice
ringed space (S′,AS′). Note that AS′ is identified with the (non-unital) subalgebra
(1− e1)AS(1− e1) ⊂ AS . Hence we have a natural morphism

e : (S,AS)→ (S,AS′).

Proposition 7.3. The functors

i1∗ : Db(S0)→ Db(AS) and e∗ : Db(AS′)→ Db(AS)

are quasi-fully-faithful, and they give a semi-orthogonal decomposition

Db(AS) := ⟨i1∗(Db(S0)), e∗(Db(AS′))⟩.

Induction yields a semi-orthogonal decomposition

Db(AS) = ⟨Db(S0), . . . ,Db(S0)⟩,

where the number of copies is n.

Proof. This is proved in [21], Proposition 5.14 and Corollary 5.15. �
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Proposition 7.4. Suppose that S0 is smooth and proper over k. Then the DG
category Db(AS) is smooth and proper.

Proof. This is proved in [21], Theorem 5.20 and Proposition 5.17. �

By definition, a morphism of triples f : (T, τT , n) → (S, τS , n) is a morphism
f : T → S such that f−1(τS) ⊂ τT . It induces a natural morphism of nice ringed
spaces f̃ : (T,AT )→ (S,AS).

Proposition 7.5 ([8], Proposition 8.5). Let f : (T, τT , n) → (S, τS , n) be a mor-
phism of triples. Then:

1) ρS f̃ = fρT ;
2) f̃ ik = ikf0 for 1 6 k 6 n;
3) the functor f̃∗ : Db(AT ) → Db(AS) is compatible with the semi-orthogonal

decompositions

Db(AT ) = ⟨Db(T0), . . . ,Db(T0)⟩ and Db(AS) = ⟨Db(S0), . . . ,Db(S0)⟩.

Moreover, all the induced functors on the semi-orthogonal components are isomor-
phic to f0∗ .

7.2. Auslander-type construction: coherent matrix factorizations. Now
let (S, τ, n) be a triple as above, let (S,AS) be the corresponding nice ringed space,
and let W ∈ O(S) be a regular function on S. Denote by W0 (respectively, W ′)
the pullback of W on S0 (respectively, S′).

Proposition 7.6 ([8], Proposition 8.6). The DG functor

ρS∗ : Dabs(AS ,W )→ Dabs(S,W )

is a localization, and its kernel is generated by ik∗(Dabs(S0,WS0)), 2 6 k 6 n.

Proof. This follows from Proposition 7.2 and [8], Proposition A.6. �

Proposition 7.7 ([8], Proposition 8.7). The functors

i1∗ : Dabs(S0,W0)→ Dabs(AS ,W ) and e∗ : Dabs(S0,W0)→ Dabs(AS ,W )

are quasi-fully-faithful, and give a semi-orthogonal decomposition

Dabs(AS ,W ) := ⟨i1∗(Dabs(S0,W0)), e∗(Dabs(AS′ ,W
′))⟩.

Induction yields a semi-orthogonal decomposition

Dabs(AS ,W ) = ⟨Dabs(S0,W0), . . . ,Dabs(S0,W0)⟩,

where the number of copies is n.

Proposition 7.8 ([8], Proposition 8.8). Suppose that S0 is smooth and the mor-
phism W0 : S0 → A1 is proper. Then the Z/2-graded DG category Dabs(AS ,W ) is
smooth and proper.
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Proposition 7.9. Let f : (T, τT , n) → (S, τS , n) be a morphism of triples and let
f̃ : (T,AT )→ (S,AS) be the corresponding morphism of nice ringed spaces. Let W
be a regular function on S .

Then the functor f̃∗ : Dabs(AT , f
∗W ) → Dabs(AS ,W ) is compatible with the

semi-orthogonal decompositions

Dabs(AT , f
∗W ) = ⟨Dabs(T0, f

∗
0W0), . . . ,Dabs(T0, f

∗
0W0)⟩

and
Dabs(AS ,W ) = ⟨Dabs(S0,W0), . . . ,Dabs(S0,W0)⟩.

Moreover, all the induced functors on the semi-orthogonal components are isomor-
phic to f0∗ .

Proof. This is completely analogous to the proof of 3) in Proposition 7.5. �

7.3. Categorical blow-ups: coherent sheaves. Let f : X → Y be a proper
morphism of Noetherian separated schemes. The following definition is taken
from [21].

Definition 7.10 ([21], Definition 6.1). Let f : X → Y be a proper morphism.
A closed subscheme S ⊂ Y is called a non-rational locus of Y with respect to f if
the natural morphism

IS → Rf∗If−1(S)

is an isomorphism in Db
coh(Y ).

Proposition 7.11 ([21], Lemma 6.3). Let f : X → Y be the blow-up of a sheaf of
ideals I on Y . Then for m sufficiently large the closed subscheme of Y defined by
the ideal Im is a non-rational locus of Y with respect to f .

Let S be a non-rational locus of Y with respect to a proper morphism f : X → Y .
Let T := f−1(S) ⊂ X, and denote by i : S → Y and j : T → X the closed embed-
dings and by p : T → S the morphism induced by f . We have a commutative
diagram

Db(X)
j∗←−−−− Db(T )

f∗

y p∗

y
Db(Y ) i∗←−−−− Db(S)

(7.1)

of DG functors.
We put

Dcoh(X,S) := Db(X) (Db(T )) Db(S)

(as in Definition 4.5). By 1) in Lemma 5.6 of [8] this commutative diagram induces
a natural DG functor

π∗ : Dcoh(X,S)→ Db(Y ).

Similarly, we have the DG category

Dcoh,T (X,S) := Db
T (X) (Db(T )) Db(S)
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and a DG functor
π∗ : Dcoh,T (X,S)→ Db

S(Y ),

which we denote by the same symbol. We have a commutative diagram

Dcoh,T (X,S) −−−−→ Dcoh(X,S)

π∗

y π∗

y
Db

S(Y ) −−−−→ Db(Y )

(7.2)

of DG functors.
Clearly, the horizontal arrows in (7.2) are quasi-fully-faithful DG functors.

Proposition 7.12 ([8], Proposition 8.12). The DG functors

π∗ : Dcoh(X,S)→ Db(Y ) and π∗ : Dcoh,T (X,S)→ Db
S(Y )

are homological epimorphisms.

By 1) in Lemma 5.7 of [8] we have a DG quasi-functor

Φ: Db(T )→ Dcoh,T (X,S).

Moreover, the composition π∗Φ: Db(T )→ Db
S(Y ) is zero in Ho(dgcatk).

Our main result in this subsection reduces to the following statement.

Theorem 7.13 ([8], Theorem 8.13). In the above notation, suppose that all the
infinitesimal neighbourhoods Sn ⊂ Y , n > 1, are non-rational loci of Y with respect
to f . Then the DG functor

π∗ : Dcoh,T (X,S)→ Db(S)

is a localization, and its kernel is generated by the image of the DG quasi-functor
Φ: Db(T )→Dcoh,T (X,S).

2) Suppose that, moreover, the morphism f is an isomorphism outside S . Then
the DG functor

π∗ : Dcoh(X,S)→ Db(Y )

is a localization, and again the kernel of π∗ is generated by the image of the com-
position Φ: Db(T )→ Dcoh,T (X,S) ↪→ Dcoh(X,S).

The proof of Theorem 7.13 consists of several steps.

Lemma 7.14. Part 2) of Theorem 7.13 follows from part 1).

Proof. Note that we have quasi-equivalences

Dcoh(X,S)/Dcoh,T (X,S) ∼−→ Db(X \ T ) and Db(Y )/Db(S) ∼−→ Db(Y \ S).

By the assumption of part 2) of Theorem 7.13, the pushforward Db(X \ T ) →
Db(Y \S) is a quasi-equivalence. The assertion is obtained from a direct application
of Lemma 3.8 to the commutative square (7.2). �
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Lemma 7.15 ([8], Lemma 8.15). Let Q be a Noetherian separated scheme and let
Z ⊂ Q be a closed subscheme. Then the natural DG functor

colimn Db(Zn)→ Db
Z(Q)

is a quasi-equivalence.

Denote by im,n : Sm → Sn, in : Sn → Y , jm,n : Tm → Tn, and jn : Tn → X the
natural inclusions. Also, denote by pn : Tn → Sn the natural projections. For any
0 < m < n we have a commutative diagram

Tm
jm,n−−−−→ Tn

jn−−−−→ X

pm

y pn

y f

y
Sm

im,n−−−−→ Sn
in−−−−→ Y

Let
Dn := Dcoh(Tn, S).

We have natural DG functors Jm,n : Dm → Dn and Jn : Dn → D . Also, we have
the functors Pn : Dn → Db(Sn) defined in the same way as the functors π∗ above.
Moreover, all these DG functors fit into the commutative diagrams

Dm
Jm,n−−−−→ Dn

Jn−−−−→ Dcoh,T (X,S)

Pm

y Pn

y π∗

y
Db(Sm)

im,n∗−−−−→ Db(Sn) in∗−−−−→ Db
S(Y )

Corollary 7.16 ([8], Corollary 8.16). The natural DG functor

colimn Dn → Dcoh,T (X,S)

is a quasi-equivalence.

Since by our assumption, S is a non-rational locus of Sn with respect to
pn : Tn → Sn, we have by Proposition 7.12 that the DG functor Pn : Dn → Db(Sn)
is a homological epimorphism.

As above, we have the DG quasi-functors Φn : Db(T )→ Dn, n > 1. Furthermore,

Jm,nΦm = Φn and JnΦn = Φ in Ho(dgcatk).

Lemma 7.17. Suppose that all the DG functors

Pn : Dn → Db(Sn)

are localizations, and the kernel of Pn is generated by Φn(Db(T )). Then the functor

π∗ : Dcoh,T (X,S)→ Db
coh,S(Y )

is also a localization and its kernel is generated by Φ(Db(T )).
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Proof. Indeed, by assumption the DG functor

Pn : Dn/Φn(Db(T ))→ Db(Sn)

is a quasi-equivalence. Hence the DG functor

Dcoh,T (X,S)/Φ(Db(T )) = (colimn Dn)/Φ(Db(T ))

= colimn(Dn/Φn(Db(T )))→ colimn Db(Sn) ∼= Db
S(Y )

is a quasi-equivalence (because the DG quotient commutes with colimits, which is
seen from the explicit construction in [6], § 3.1). �

Hence, to finish the proof of the theorem we need to show that the DG func-
tors Pn are localizations with prescribed kernels. Let us start with the functor P1.

Lemma 7.18. The DG quasi-functor Φ1 : Db(T )→ D1 is quasi-fully-faithful, there
is a semi-orthogonal decomposition

[D1] = ⟨Db
coh(S),Φ1(Db

coh(T ))⟩,

and the functor [P1] is the left semi-orthogonal projection onto Db
coh(S). In partic-

ular, the DG functor P1 is a localization, and its kernel is generated by Φ1(Db(T )).

Proof. This is a direct application of Lemma 5.10 in [8], with A = Db(T ), B =
Db(S), and F = π∗. �

The following lemma is the key technical point in the proof of Theorem 7.13.
Its proof is quite involved technically and uses the Auslander-type construction,
although this construction is not mentioned in the formulation.

Lemma 7.19 ([8], Lemma 8.19). Let g : U → V be a proper morphism of Noethe-
rian separated schemes, and let Z ⊂ V be a non-rational locus of V with respect
to g . Suppose also that U ′ (respectively, V ′) is a square-zero thickening of U (respec-
tively, V ), and that the diagram

U
ιU−−−−→ U ′

g

y g′
y

V
ιV−−−−→ V ′

commutes. Assume that Z is also a non-rational locus of V ′ with respect to g′ .
Then there is a commutative square

Dcoh(U,Z) JU−−−−→ Dcoh(U ′, Z)

G

y G′

y
Db(V ) ιV ∗−−−−→ Db(V ′)

of DG functors. If the DG functor G is a localization, then the DG functor G′ is
also a localization, and its kernel is generated by JU (kerG).
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Proof of Theorem 7.13. By Lemmas 7.18 and 7.19 we get by induction that each
DG functor Pn : Dcoh(Tn, S) → Db(Sn) is a localization, and kerPn is gener-
ated by J1,nΦ1(Db(T )) = Φn(Db(T )). Therefore, by Lemma 7.17 the DG func-
tor π∗ : Dcoh,T (X,S) → Db

S(Y ) is also a localization, and Φ(Db(T )) generates its
kernel. This proves part 1) of the theorem.

By Lemma 7.14 part 1) implies part 2). �

We also formulate here a result analogous to Theorem 7.13 but technically sim-
pler to prove.

Theorem 7.20. 1) Let f : X → Y be a proper morphism such that Rf∗OX
∼= OY .

Assume that there is a subscheme S ⊂ Y such that all its infinitesimal neighbour-
hoods Sn , n > 1, are non-rational loci of Y with respect to f . Again, there is
a Cartesian square

X
j←−−−− T

f

y p

y
Y

i←−−−− S

Assume that the functor Rp∗ : Db
coh(T )→ Db

coh(S) is a localization. Then the func-
tor Rf∗ : Db

coh,T (X)→ Db
coh,S(Y ) is also a localization, and ker(Rf∗) is generated

by j∗(ker(Rp∗)).
2) Suppose that, moreover, the morphism f is an isomorphism outside S . Then

the functor Rf∗ : Db
coh(X) → Db

coh(Y ) is a localization, and ker(Rf∗) is generated
by j∗(ker(Rp∗)).

Proof. By analogy with Lemma 7.14, we reduce part 2) to part 1).
The proof of part 1) follows essentially the same steps as for part 1) in Theo-

rem 7.13, but it simplifies considerably because we do not need to consider gluings.
Thus, instead of Dcoh(X,S) we have Db(X), and instead of Dcoh(Tn, S) we have
Db(Tn). Lemma 7.18 is not needed in this context because we have already assumed
that Rp∗ is a localization. In the key technical step, Lemma 7.19, we assume that
the morphisms g and g′ satisfy Rg∗OU = OV and Rg′∗OU ′ = OV ′ , and we take
Db(U) (respectively, Db(U ′)) instead of Dcoh(U,Z) (respectively, Dcoh(U ′, Z)). All
the other arguments are the same. �

7.4. Categorical blow-ups: matrix factorizations. As above, suppose that S
is a non-rational locus of Y with respect to a proper morphism f : X → Y . Again
we have T := f−1(S) ⊂ X, and we denote by i : S → Y and j : T → X the closed
embeddings and by p : T → S the morphism induced by f .

We fix a regular functionW ∈ O(Y ), and we denote byWX ∈ O(X), WS ∈ O(S),
WT ∈ O(T ), and so on, the pullbacks of W under the natural morphisms.

We have a commutative diagram

Dabs(X,WX)
j∗←−−−− Dabs(T,WT )

f∗

y p∗

y
Dabs(Y,W ) i∗←−−−− Dabs(S,WS)
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of DG functors. Let

Dcoh(X,S,W ) := Dabs(X,WX) (Dabs(T,WT )) Dabs(S,WS).

Again, we have a natural DG functor

π∗ : Dcoh(X,S,W )→ Dabs(Y,W ).

Similarly, we have the DG category

Dcoh,T (X,S,W ) := Dabs
T (X,WX) (Dabs(T,WT )) Dabs(S,WS)

and the DG functor

π∗ : Dcoh,T (X,S,W )→ Dabs
S (Y,W ),

which we denote by the same letter. There is a commutative diagram

Dcoh,T (X,S,W ) −−−−→ Dcoh(X,S,W )

π∗

y π∗

y
Dabs

S (Y,W ) −−−−→ Dabs(Y,W )

(7.3)

of DG functors, and the horizontal arrows in (7.3) are quasi-fully-faithful.

Proposition 7.21 ([8], Proposition 8.23). The DG functors

π∗ : Dcoh(X,S,W )→ Dabs(Y,W ) and π∗ : Dcoh,T (X,S,W )→ Dabs
S (Y )

are homological epimorphisms.

Again we have a quasi-functor

Φ: Dabs(T,WT )→ Dcoh,T (X,S,W ),

and the composition π∗Φ: Db(T )→ Db
S(Y ) is zero in Ho(dgcatk).

Our main result in this subsection reduces to the following statement.

Theorem 7.22 ([8], Theorem 8.24). 1) In the above notation, suppose that all
infinitesimal neighbourhoods Sn ⊂ Y , n > 1, are non-rational loci of Y with respect
to f . Then the DG functor

π∗ : Dcoh,T (X,S,W )→ Dabs(Y,W )

is a localization, and its kernel is generated by the image of the quasi-functor

Φ: Dabs(T,WT )→ Dcoh,T (X,S,W ).

2) Suppose that, moreover, the morphism f is an isomorphism outside S . Then
the DG functor

π∗ : Dcoh(X,S,W )→ Dabs(Y,W )

is a localization, and again the kernel of π∗ is generated by the image of the com-
position

Φ: Dabs(T,WT )→ Dcoh,T (X,S,W )→ Dcoh(X,S,W ).

The proof essentially follows the same plan as the proof of Theorem 7.13 (see § 8.4
in [8]).
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7.5. The construction of a smooth categorical compactification. In this
subsection we sketch the proof of the following theorem.

Theorem 7.23. Let Y be a smooth separated scheme of finite type over a field k
of characteristic zero. Then:

1) the DG category Db(Y ) has a smooth categorical compactification of the form
Db(Ỹ )→ Db(Y ), where Ỹ is a smooth and proper variety;

2) for any regular function W ∈ O(Y ) the D(Z/2-)G category Dabs(Y,W ) has
a Z/2-graded smooth categorical compactification CW → Dabs(X,W ) with a semi-
orthogonal decomposition

CW = ⟨Dabs(V1,W1), . . . ,Dabs(Vm,Wm)⟩,

where each Vi is a k-smooth variety, and the morphisms Wi : Vi → A1
k are smooth.

Sketch of the proof. 1) First, we may assume that the scheme Y is proper. Indeed, if
Y is not proper, then by the Nagata theorem [24] we can take some compactification
Y ⊂ Y , so that the restriction DG functor Db(Y ) → Db(Y ) is a localization, and
the kernel Db

Y \Y (Y ) is generated by a single object. Thus, Y can be replaced by Y .
From now on, we assume that Y is proper. By Theorem 4.15 in [27], it is

sufficient to construct a smooth categorical compactification C → Db(Y ) such that
C has a semi-orthogonal decomposition C = ⟨Db(X1), . . . ,Db(Xm)⟩, where each
Xi is a smooth and proper variety. We will obtain the DG category C by the
same construction as the Kuznetsov–Lunts categorical resolution [21], with a slight
restriction on the choice of the integer parameters (see below). Also, our description
is a bit different because we are dealing with derived categories of coherent sheaves
instead of perfect complexes.

By Theorem 1.6 in [2] there is a sequence of blow-ups with smooth centres

Yn → Yn−1 → · · · → Y1 → Y

such that (Yn)red is smooth. We proceed by induction on n.
The base of induction is n = 0. In this case Yred is smooth and proper.

Take the nilpotent radical I ⊂ OY and assume that I l = 0. Applying the
Auslander-type construction to the triple (Y,I , l), we get a nice ringed space
(Y,AY ) with a morphism ρY : (Y,AY ) → Y . By Proposition 7.2 the DG func-
tor ρY ∗ : Db(AY )→ Db(Y ) is a localization, and the kernel is generated by a single
object. By Proposition 7.4 the DG category Db(AY ) is smooth and proper, and by
Proposition 7.3 it has a semi-orthogonal decomposition

Db(AY ) = ⟨Db(Yred), . . . ,Db(Yred)⟩,

where the number of components is l. This proves the induction base.
Now assume that the assertion has been proved for some n. We prove it for

n+ 1. Assume that the first blow-up f : X = Y1 → Y has a smooth centre Z ⊂ Y .
By Proposition 7.11 there is an l > 0 such that for all k > l the infinitesimal
neighbourhood Zk of Z is a non-rational locus of Y with respect to f . As in § 7.3
we have a DG category Dcoh(X,Zl), and by Theorem 7.13 the DG functor

π∗ : Dcoh(X,Zl)→ Db(Y )
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is a localization, and ker(π∗) is generated by a single object.
We would like to modify the DG category Dcoh(X,Zl). Let D := f−1(Z). Then

Dl = f−1(Zl). Take the nice ringed spaces (Dl,ADl
) and (Zl,AZl

) associated to
the triples (Dl, ID, l) and (Zl, IZ , l), respectively. We have a commutative diagram

X
j←−−−− Dl

ρDl←−−−− (Dl,ADl
)

f

y p

y p̃

y
Y

i←−−−− Zl

ρZl←−−−− (Zl,AZl
)

Let
Dcoh(X,AZl

) := Db(X) (Db(ADl
)) Db(AZl

).

By 1) in Lemma 5.8 of [8] we have the DG functor

ρ(X,Zl) : Dcoh(X,AZl
)→ Dcoh(X,Zl),

and by 2) in the same lemma together with Proposition 7.2 the functor ρ(X,Zl) is
a localization, with its kernel generated by a single object. Hence the composition

π̃∗ := π∗ ◦ ρ(X,Zl) : Dcoh(X,AZl
)→ Db(Y )

is also a localization, with its kernel generated by a single object.
By the induction hypothesis, there is a smooth categorical compactification

π′∗ : C ′ → Db(X), with a semi-orthogonal decomposition

C ′ = ⟨Db(X1), . . . ,Db(Xm′)⟩.

One can define a smooth and proper DG category C as a suitable gluing of Db(AZl
)

and C ′, and then construct the desired localization C → Db(Y ) (the details are
contained in the proof of Theorem 8.31 in [8]). This completes the induction step,
and with it the proof of part 1) of the theorem.

Part 2) is proved in a completely analogous way. We first reduce to the case
when the morphism W : Y → A1 is proper, and then proceed as in the proof of
part 1).

Theorem 7.23 is proved. �

Remark 7.24. In the proof of Theorem 7.23 we chose a parameter k > 0 such that
the subscheme Zk ⊂ Y is a non-rational locus of Y with respect to f : X → Y , and
so are all the infinitesimal neighbourhoods Zl with l > k. In the construction of
a categorical resolution in [21] it is only needed that Zk is a non-rational locus.
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