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Abstract. The problem of analytic continuation is considered for the Lau-
ricella function F

(N)
D , a generalized hypergeometric functions of N complex

variables. For an arbitrary N a complete set of formulae is given for its
analytic continuation outside the boundary of the unit polydisk, where it
is defined originally by an N -variate hypergeometric series. Such formulae
represent F

(N)
D in suitable subdomains of CN in terms of other generalized

hypergeometric series, which solve the same system of partial differential
equations as F

(N)
D . These hypergeometric series are the N -dimensional ana-

logue of Kummer’s solutions in the theory of Gauss’s classical hypergeomet-
ric equation. The use of this function in the theory of the Riemann–Hilbert
problem and its applications to the Schwarz–Christoffel parameter problem
and problems in plasma physics are also discussed.
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1. Introduction

1.1. The Lauricella function F
(N)
D . Hypergeometric functions of two or more

variables arise in many areas of modern mathematics, and they enable one to solve
constructively many topical problems important for theory and applications. The
basis for the theory of such functions was laid in [1]–[6] at the end of the 19th cen-
tury, and it was further developed by a number of well-known authors (for instance,
see the original papers and monographs [7]–[29]). We should note the significant
progress made in the general theory of hypergeometric functions of several vari-
ables. Particular functions in this class that are interesting in their own right have
also traditionally been objects of great attention.

In this paper we consider the function F
(N)
D (a1, . . . , aN ; b, c; z1, . . . , zN ) intro-

duced by Lauricella [6] (see also [13], [23], [27]) as one of the most natural general-
izations of the Gauss hypergeometric function F (a, b; c; z) to the case of N complex
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variables (z1, . . . , zN ) =: z ∈ CN and complex parameters (a1, . . . , aN ) =: a ∈ CN ,
b, and c. Recall that the Gauss function (of a single complex variable z) is defined
by the series

F (a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)kk!
zk, (1.1)

which converges in the unit disk U := {z ∈ C : |z| < 1}. Outside U this function is
an analytic continuation of (1.1). Here the expression (a)k, called the Pochhammer
symbol, is defined in terms of the gamma function Γ(s) by

(a)k :=
Γ(a+ k)

Γ(a)
. (1.2)

For an integer k > 0 it is a product of the form

(a)0 = 1, (a)k = a(a+ 1) · · · (a+ k − 1), k = 1, 2, . . . .

It is assumed in (1.1) that the parameters a, b, and c can take arbitrary complex
values, with the exception that c cannot be a non-positive integer (c /∈ Z−).

The function F (a, b; c; z) is a solution u(z) of Gauss’s equation

z(1− z)u′′(z) + [c− (a+ b+ 1)z]u′(z)− abu(z) = 0, (1.3)

which is holomorphic at z = 0. This is an equation of Fuchs class with three
(regular) singular points z = 0, 1, and ∞. There is a detailed presentation of the
theory of the Gauss function and equation (1.3) in [30] and [31].

The Lauricella function, which we denote by F (N)
D (a; b, c; z) for brevity, is defined

for c /∈ Z− by the N -variate hypergeometric series

F
(N)
D (a; b, c; z) :=

∞∑
|k|=0

(b)|k|(a1)k1 · · · (aN )kN

(c)|k|k1! · · · kN !
zk1
1 · · · zkN

N , (1.4)

which converges in the unit polydisk UN := {z ∈ CN: |zj | < 1, j = 1, . . . , N}. The
sum in (1.4) is taken over the multi-indices k := (k1, . . . , kN ) with non-negative
integer components kj > 0, j = 1, . . . , N , and we define |k| :=

∑N
j=1 kj .

The function F
(N)
D satisfies the following system of N linear partial differential

equations of second order with respect to the variables zj (see [6], and also [13], [23],
[27]):

zj(1− zj)
∂2u

∂zj
2

+ (1− zj)
N∑′

k=1

zk
∂2u

∂zj ∂zk

+ [c− (1 + aj + b)zj ]
∂u

∂zj
− aj

N∑′

k=1

zk
∂u

∂zk
− ajbu = 0, j = 1, . . . , N, (1.5)

where a prime on a summation sign means that the sum is taken for k ̸= j, and
the parameters a, b, and c appear in the expressions for the coefficients of these
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equations. It is known [6], [13] that the general solution of (1.5) depends only on
N + 1 arbitrary complex constants, so the system is overdetermined. For short
we will occasionally denote the Lauricella system of equations (1.5) by E

(N)
D . Its

singular set M is the union of the hyperplanes

M
(τ)
j := {z ∈ CN

: zj = τ},

where τ ∈ S := {0, 1,∞}, and the hyperplanes Mj,l := {z ∈ CN
: zj = zl}; here

j, l = 1, . . . , N , l ̸= j, and the extended space CN
is defined by CN

= C× · · · × C
(N factors).

Points in the singular set M that lie in the intersection of two or more of the
above hyperplanes will be important in what follows. We let

z(1,∞,0)
p,q := ( 1, . . . , 1︸ ︷︷ ︸

p

,∞, . . . ,∞︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
N−p−q

)

be the point in the singular set with the first p components equal to 1, the next
q components equal to ∞, and the remaining N − p − q components equal to 0.
Furthermore, we let

z(1,0)
p := z(1,∞,0)

p,0 = ( 1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
N−p

)

and

z(∞,0)
q := z(1,∞,0)

0,q = (∞, . . . ,∞︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
N−q

).

Finally, let z(1) := (1, . . . , 1) and z(∞) := (∞, . . . ,∞) denote the points in M
(τ)
j

with all N components zj equal to 1 or ∞, respectively. Note that, for exam-
ple, z(1,0)

p lies in the intersection of the hyperplanes M
(1)
j and Mj,l for j, l = 1, . . . , p,

and of the hyperplanes M
(0)
j and Mj,l for j, l = p + 1, . . . , N , where l ̸= j. In

turn, z(1) lies in the intersection of the hyperplanes M
(1)
j for j = 1, . . . , N , and in

the intersection of all the hyperplanes Mj,l for j, l = 1, . . . , N , where l ̸= j.
If we look at the system (1.5) assuming that the function u(z) in question is

independent of z2, . . . , zN and we set the corresponding parameters a2, . . . , aN equal
to 0, then the system reduces to Gauss’s hypergeometric equation. This is in
full agreement with the observation that in the case of one variable (that is, for
N = 1) the Lauricella series (1.4) becomes the hypergeometric series for the Gauss
function. We note also that in the case of two variables (for N = 2) the generalized
hypergeometric series (1.4) has a special name, the Appell function, and is denoted
by F1(a, a′; b, c; z, ζ) (see [7], [30]).

We also present the integral representation ([13], p. 49),

F
(N)
D (a; b, c; z) =

Γ(c)
Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1∏N
j=1(1− tzj)aj

dt, (1.6)
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which holds in the domain

LN := {z ∈ CN: | arg(1− zj)| < π, j = 1, . . . , N},

where the right-hand side of (1.6) is a single-valued function, and it is assumed
there that Re b > 0 and Re(c− b) > 0. In the case of one variable, the denominator
of the integrand in (1.6) contains a single factor and (1.6) transforms into Euler’s
well-known formula for the Gauss function (see [30], [31]).

Introduced as a formal generalization of (1.1), the Lauricella function F
(N)
D

became one of the most commonly used representatives of the class of multivariate
hypergeometric functions. The many papers devoted to investigating it (or its spe-
cial cases for particular N or sets of parameters; see [10], [11], [13], [17], [23], [32],
and others) have revealed its deep connections with algebra and partial differential
equations. The interest in F

(N)
D has also been stimulated by the numerous and

diverse applications it has found. These applications include problems in astro-
physics [33], quantum field theory [34], [35], relativistic mechanics [36], relativity
theory [37], [38], as well as some problems in information transmission theory [39],
probability theory and mathematical statistics [13], [40]–[42], modelling Brownian
motion [43], string theory [44] and conformal field theory [45]–[47], calculation of
Feynman diagrams [48]–[51], and the mechanics of deformable bodies [52]. We
remark that many of the above applications are connected with the integral rep-
resentation (1.6). It is easy to see that hyperelliptic integrals can be expressed in
terms of the function F (N)

D with half-integer parameters a = (a1, . . . , aN ), b, and c.
Thus, the Lauricella function gives us yet another tool (in addition to multidimen-
sional Θ-series [53]) for the study of such integrals. As concerns calculations of
hyperelliptic integrals using F (N)

D , see [54]–[56].
Let us now discuss the contents of our paper, where analytic continuation of

the series (1.4) is one of the central questions. For the extended function we shall
use the same notation F

(N)
D (a; b, c; z). We start with an integral representation of

Mellin–Barnes type [7], [13]:

F
(N)
D (a; b, c; z) =

Γ(c)

(2πi)NΓ(b)
∏N

j=1 Γ(aj)

×
∫

L

Γ(b+ |t|)
Γ(c+ |t|)

( N∏
j=1

Γ(aj + tj)Γ(−tj)(−zj)tj

)
dt, (1.7)

where t = (t1, . . . , tN ), |t| =
∑N

j=1 tj , dt = dt1 · · · dtN , and L = L1 × · · · ×LN ,
with Lj a standard contour in the tj-plane which is a deformed imaginary axis,
that is, it connects −i∞ and +i∞ but is curved so that among all the poles of the
integrand only the poles of Γ(−tj) lie to the right of Lj . Formally speaking, this
representation, like the Euler representation (1.6), gives an analytic continuation of
the series (1.4). However, (1.6) and (1.7) can in fact only be regarded as interme-
diate constructions, and the most adequate tools for the qualitative analysis and
calculation of F (N)

D outside UN are its representations by certain other generalized
hypergeometric series converging in suitable subdomains of CN \UN and solving the
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system (1.5). We will call such representations of F (N)
D formulae for analytic con-

tinuation. We derive such formulae in § 2, where we present results from [57]–[61].
It was noted in [62] that an effective calculation of the Lauricella function F

(N)
D

outside UN is a key aspect in solving the well-known problem of finding the param-
eters of the Schwarz–Christoffel integral. We consider this application of the theory
of the function F (N)

D in § 5.
Section 3, which reproduces results in [63] and [64], is devoted to applications

of the Lauricella function F
(N)
D to the derivation of a new representation for the

solution of the Riemann–Hilbert problem. This possibility has been opened by
the Jacobi-type formula for F (N)

D found in [57], [65], [66]. In § 4 we show how these
advances in the Riemann–Hilbert problem can be used in the solution of a particular
problem of this type in a complicated domain arising in plasma physics; the results
in § 4 mostly follow [67].

Before describing the central topics of this paper in greater detail (see §§ 1.3, 1.4,
and 1.5), we consider the place of the Lauricella function F (N)

D in the general theory
of hypergeometric functions of several variables.

1.2. Multivariate hypergeometric functions and systems of equations.
According to Horn’s approach [5], a power series

χ(z1, . . . , zN ) =
∑
k∈Zn

Λ(k1, . . . , kN )zk1
1 · · · zkN

N ,

or briefly
χ(z) =

∑
k∈Zn

Λ(k)zk, (1.8)

is said to be hypergeometric if the ratio of any two adjacent coefficients is a rational
function of the components of the summation index k := (k1, . . . , kN ), that is, for
all j = 1, . . . , N

Λ(k + ej)
Λ(k)

=
Pj(k)
Qj(k)

, (1.9)

where Pj(x) and Qj(x) are some polynomials in the N variables (x1, . . . , xN ) =: x,
and ej := (0, . . . , 1, . . . , 0) denote the vectors with jth component equal to 1 and
the others equal to 0 (for instance, see [15], [20], [28]).

The general form of the coefficients Λ(k) satisfying (1.9) is given by the Ore–Sato
theorem [8], [22], which shows that Λ(k) is a certain product of Γ-functions and
a multiplier of the form

λk1
1 · · ·λkN

N R(k1, . . . , kN ) (1.10)

(which has no crucial importance for the properties of the series), where R is a ratio-
nal function and λj ∈ C. The series χ(z) defined by (1.8) and (1.9) can be shown
to solve the following system of partial differential equations [5], [7], [68]:

Qj(θ)
(
z−1
j χ(z)

)
= Pj(θ)χ(z), j = 1, . . . , N, (1.11)

where the differential operators Pj(θ) and Qj(θ) are obtained by substituting the
components of the vector θ := (θ1, . . . , θN ), θs := zs ∂/∂zs, as the arguments of
the polynomials Pj and Qj in (1.9).
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It is easy to see that the coefficients of the Lauricella series (1.4), which are given
by

Λ(k) =
(b)|k|(a1)k1 · · · (aN )kN

(c)|k|k1! · · · kN !
, (1.12)

satisfy the relations (1.9) for

Pj(x) = (b+ |x|)(aj + xj) and Qj(x) = (c+ |x|)(1 + xj), |x| =
N∑

l=1

xl,

so that (1.4) belongs to the family of Horn hypergeometric series. The system (1.11)
corresponding to such Pj and Qj has the form(
c+

N∑
m=1

θm

)
(1 + θj)

(
z−1
j χ(z)

)
=

(
b+

N∑
m=1

θm

)
(aj + θj)χ(z), j = 1, . . . , N.

Setting θs = zs ∂/∂zs, removing parentheses, and bearing in mind that(
1 + zj

∂

∂zj

)(
z−1
j χ(z)

)
=

∂

∂zj
χ(z),

we arrive at (1.5), which therefore is a system in the class of Horn hypergeometric
systems.

We note that the property (1.9) holds also for the other series FA, FB , and FC

introduced by Lauricella, and of course for their special cases, the Appell series,
the Kampé de Feriet functions, and many other well-known hypergeometric series
(see [7], [13], [15], [30]).

General hypergeometric functions can alternatively be defined as solutions of the
hypergeometric A-systems of Gelfand, Kapranov, and Zelevinsky ([16], [18], [24]).
A system of this type is defined by an r×M integer matrix A = {asj} and a set of
complex parameters (b1, . . . , br) =: b ∈ Cr, where it is assumed that the columns
of A generate the lattice Zr and that for some vector (h1, . . . , hr) ∈ Zr we have∑r

s=1 hsasj = 1, j = 1, . . . ,M . The matrix A is associated with the sublattice
L ⊂ ZM defined by

L :=
{

(g1, . . . , gM ) =: g ∈ ZM:
M∑

j=1

gjasj = 0, s = 1, . . . , r
}
. (1.13)

The Gelfand–Kapranov–Zelevinsky system consists of r first-order equations

M∑
j=1

asjwj
∂ψ(w)
∂wj

= bsψ(w), s = 1, . . . , r, (1.14)

and an infinite set of equations of order at most M :

∏
j:gj>0

(
∂

∂wj

)gj

ψ(w) =
∏

j:gj<0

(
∂

∂wj

)−gj

ψ(w), g ∈ L, (1.15)
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each of which corresponds to an element g = (g1, . . . , gM ) of L, where the product
on the left-hand side of (1.15) involves only the positive components gj of g and
the one on the right-hand side involves the negative components. The unknown
in (1.14) and (1.15) is a complex scalar function ψ(w) of the vector-valued argument
(w1, . . . , wM ) =: w ∈ CM .

We note that one solution of (1.14), (1.15), that is, one generalized hypergeo-
metric function in the sense of Gelfand, Kapranov, and Zelevinsky, is given by the
(formal) power series

ψ(w) =
∑
g∈L

M∏
j=1

w
gj+γj

j

Γ(1 + gj + γj)
, (1.16)

where L is the lattice (1.13), and the vector γ = (γ1, . . . , γM ) is connected with the
matrix A and the parameter vector b = (b1, . . . , br) by the equalities

bs =
M∑

j=1

asjγj , s = 1, . . . , r. (1.17)

The systems (1.14), (1.15) gave new impetus to the development of the multidi-
mensional theory of hypergeometric functions in the 1980s. These systems and the
corresponding series (1.16) were the subject of many investigations, some aspects
of which were reflected in [69]–[71]. We remark that the systems arise in a natural
way in the theory of algebraic equations [70] (see [28] for other applications). The
systems (1.14), (1.15) are holonomic (have a finite number of linearly independent
solutions) for a fairly general matrix A with the above properties and an arbitrary
set of parameters b (see [18]). Concerning the monodromy groups of these systems,
see [71] and the literature cited there.

The Horn series (1.8) and the Gelfand–Kapranov–Zelevinsky series (1.16) are
closely connected, as pointed out in [20]: each series of the form (1.16) can be
represented as a product of a monomial and a Horn series whose coefficients do
not contain ‘non-essential’ multipliers of the form (1.10). We can demonstrate this
connection in the case of the Lauricella function F (N)

D : to do this we reformulate its
definition (1.4) in terms of a series (1.16) and find the corresponding system (1.14)
(see also [70]). Using (1.2) and the equality

Γ(a+ k)
Γ(a)

=
(−1)kΓ(1− a)
Γ(1− a− k)

, (1.18)

we can easily rewrite (1.4) as

F
(N)
D (a; b, c; z) = Γ(c)Γ(1− b)

N∏
j=1

Γ(1− aj)
( 2(N+1)∏

j=1

w
−γj

j

)
ψD(w), (1.19)

where ψD(w) is the series of form (1.16)

ψD(w) :=
∞∑

g∈LD

2(N+1)∏
j=1

w
gj+γj

j

Γ(1 + gj + γj)
, (1.20)
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with (γ1, . . . , γ2N+2) =: γ the parameter vector defined in terms of a, b, and c by

γ = (−b, c− 1,−a1, . . . ,−aN , 0, . . . , 0) (1.21)

and with the sum taken over the lattice LD generated by the rows of theN×(2N+2)
matrix

LD =


−1 1 −1 0 . . . 0 1 0 . . . 0
−1 1 0 −1 . . . 0 0 1 . . . 0

...
...

...
...

. . .
...

...
...

. . . 0
−1 1 0 0 . . . −1 0 0 . . . 1

 , (1.22)

that is, any g ∈ LD has the form g = kLD, where k = (k1, . . . , kN ) ∈ ZN , and
the variables z = (z1, . . . , zN ) and w = (w1, . . . , w2N+2) in (1.19) and (1.20) are
connected by the relations

zs =
w2wN+s+2

w1ws+2
, s = 1, . . . , N. (1.23)

Now we write out a Gelfand–Kapranov–Zelevinsky system satisfied by the
series (1.20). By using (1.13) it is easy to see that the rows as = (as1, . . . , asM )
of the matrix AD = {asj}, s = 1, . . . , N + 2, j = 1, . . . ,M , where M = 2(N + 1),
satisfy the following linear system of algebraic equations with matrix LD in (1.22):

LDaT
s = 0 (1.24)

(the superscript T denotes transposition). From (1.24) we see that we can take AD

to be the (N + 2)× (2N + 2) matrix

AD =



1 0 . . . 0 0 1 1 . . . 1
0 1 . . . 0 0 −1 −1 . . . −1
...

...
. . . 0 0 1 0 . . . 0

...
...

. . . 0 0 0 1 . . . 0
...

...
. . . 1 0 0 0

. . . 0
...

...
. . . 0 1 0 0 . . . 1


(1.25)

whose first N +2 columns form the corresponding identity matrix, and the remain-
ing N columns form a matrix with two rows consisting of 1s and minus 1s, respec-
tively, while the other rows form the N × N identity submatrix. We note that
AD = {αsj} satisfies the above general conditions for matrices defining A-systems,
and in particular, we can set (h1, . . . , hr) = (1, . . . , 1) because it is obvious that∑N+2

s=1 αsj = 1 for j = 1, . . . , 2N + 2.
From (1.21), (1.25), and (1.17) we see that the first equations (1.14) of the

Gelfand–Kapranov–Zelevinsky system for ψD(w) in the representation (1.19) have
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the form

w1
∂ψD

∂w1
+

2N+2∑
j=N+3

wj
∂ψD

∂wj
+ bψD = 0,

w2
∂ψD

∂w2
−

2N+2∑
j=N+3

wj
∂ψD

∂wj
+ (1− c)ψD = 0,

ws
∂ψD

∂ws
+ ws+N

∂ψD

∂ws+N
+ as−2ψD = 0, s = 3, . . . , N + 2.

(1.26)

In the second group of equations (1.15) the lattice L must be taken to be the
lattice LD generated by the rows of the matrix (1.22).

An important part of the theory of hypergeometric functions of several variables
concerns their representations by contour integrals of Euler–Pochhammer type,
Mellin–Barnes type, or other types (for instance, see [7], [12], [13], [27], [72]). Such
an integral representation can be taken as the definition of a certain class of hyper-
geometric functions. Integral representations will be important for our purposes in
this paper.

The above arguments show that the Lauricella function can be viewed both from
the standpoint of Horn systems and from the standpoint of A-systems. In this paper
we take the first point of view.

We note further that for Horn series, and for the Lauricalla function in particular,
authors often use notation indicating the basis in the lattice (1.13). For example,
the coefficients (1.12) of the series defining F (N)

D can be written in the form

Λ(k) = Γ(c)Γ(1− b)
N∏

j=1

Γ(1− aj)
2(N+1)∏

j=1

1
Γ(1 + k · qj + γj)

,

where k = (k1, . . . , kN ) is a multi-index, qj is the jth column of the matrix LD in
(1.22), the dot · denotes the scalar product, and the vector γ = (γ1, . . . , γ2N+2) is
expressed using (1.21) in terms of the parameters of the Lauricella function (1.4).
Nevertheless, in what follows we hold to the traditional notation involving products
of Pochhammer symbols (1.2), because then the results we are going to discuss can
be expressed in a more compact form.

1.3. Formulae for analytic continuation of the Lauricella function. In
spite of the great progress made in the general theory of hypergeometric functions,
quite a few important questions which are well understood for the Gauss function
have long remained unresolved in the multidimensional case.

One of the unresolved questions for the Lauricella function F
(N)
D , already men-

tioned in § 1.1, is the problem of its analytic continuation. This is the problem of
finding representations of the form

F
(N)
D (a; b, c; z) =

N∑
j=0

λjuj(a; b, c; z), z /∈ UN , (1.27)



Lauricella hypergeometric function 951

outside the polydisk UN , where the functions uj(a; b, c; z) are generalized hyperge-
ometric series (distinct from the original function) which satisfy the same system
(1.5) as F (N)

D , and the coefficients λj are independent of a1, . . . , aN , b, and c and do
not vanish simultaneously. We call representations of the form (1.27) formulae for
analytic continuation. This is the sense in which analytic continuation of hyper-
geometric functions is understood in the fundamental papers [73], [74], as well as
in [7], [10], [11], [13], [30], [31], [75], and other papers. Note that the right-hand side
of (1.27) contains N + 1 terms, because this is the number of linearly independent
solutions of (1.5). These formulae are a direct generalization of the corresponding
representations for the Gauss function (see [30], [31]), which we discuss below in
this subsection.

The problem of finding representations (1.27) for F (N)
D is a particular case of

the general problem of analytic continuation arising in the theory of multivari-
ate hypergeometric functions and the theory of systems of equations satisfied by
these functions. This problem (which is closely related to calculating the mon-
odromy group) consists in finding a complete set of solutions of a hypergeometric
system of differential equations in a neighbourhood of each point of CN and in
finding explicit formulae expressing the connections between two such sets defined
in neighbourhoods of different points. Questions of the monodromy of the Lau-
ricella function F

(N)
D were investigated in [17], [76]–[78]. The problem of its ana-

lytic continuation has been considered by many authors. In the cases N = 2 and
N = 3 important results were obtained by Erdélyi [10], Olsson [11], and Exton [13].
For arbitrary N a complete set of formulae of the form (1.27) was constructed in
[57]–[61]. Such representations hold in domains that, in totality, cover the whole
of CN away from certain hyperplanes. It should be noted that the methods of
analytic continuation in those papers made essential use of the form of the coef-
ficients of the hypergeometric series (1.4). A way to effectively construct analytic
continuations of general power series without relying on the specific form of their
coefficients is opened by methods based on Padé approximations and their gener-
alizations developed in [79]–[81].

In the single-variable case, that is, for the Gauss function, the problem of analytic
continuation was brought to conclusion in the 19th century in well-known works.
First of all, for the hypergeometric equation (1.1) we have the set of Kummer’s
canonical solutions [30], [31], [73], which are the ‘simplest’ solutions of this equation.
We present here two functions in this set which (for c− a− b /∈ Z) form a complete
system in a neighbourhood of the singular point z = 1:

u
(1)
1 (a, b; c; z) = F (a, b; a+ b− c+ 1; 1− z), (1.28)

u
(1)
2 (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c− a− b+ 1; 1− z), (1.29)

and also another pair of functions which (for b− a /∈ Z) form a complete system in
a neighbourhood of z = ∞:

u
(∞)
1 (a, b; c; z) = (−z)−aF (a, 1− c+ a; 1− b+ a; z−1), (1.30)

u
(∞)
2 (a, b; c; z) = (−z)−bF (b, 1− c+ b; 1− a+ b; z−1). (1.31)
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Near z = 0 the following two functions form a complete system (provided that
c /∈ Z):

u
(0)
1 (a, b; c; z) = F (a, b; c; z), u

(0)
2 (a, b; c; z) = z1−cF (1 + a− c, 1 + b− c; 2− c; z).

(1.32)
In (1.28)–(1.32), F denotes the hypergeometric series (1.1), and the superscripts in
the notation for the functions u(0)

j , u(1)
j , and u(∞)

j , j = 1, 2, indicate the point near
which they are defined. The general solution of (1.3) is expressed near these points
as a linear combination of the corresponding two canonical solutions.

For example, in constructing an analytic continuation of the function u
(0)
1 (z) =

F (a, b; c; z), which is a solution of (1.3) holomorphic at z = 0, into the domain

K := {z ∈ C : |z − 1| < 1, | arg(1− z)| < π} (1.33)

we obtain a representation of the form (1.27):

F (a, b; c; z) = A1u
(1)
1 (a, b; c; z) + A2u

(1)
2 (a, b; c; z), (1.34)

where the functions u(1)
1 and u

(1)
2 can be found from (1.28) and (1.29), and the

coefficients A1 and A2 are given by

A1 =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

and A2 =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
, (1.35)

with c− a− b assumed not to be an integer.
In a similar way, for analytic continuation of the function u

(0)
1 (z) = F (a, b; c; z)

into the domain
V := {z ∈ C : |z| > 1, | arg(−z)| < π} (1.36)

we have the following formula of the form (1.27):

F (a, b; c; z) = B1u
(∞)
1 (a, b; c; z) + B2u

(∞)
2 (a, b; c; z), (1.37)

where u(∞)
1 and u

(∞)
2 can be found from (1.30) and (1.31), and the coefficients B1

and B2 are given by

B1 =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

and B2 =
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(1.38)

when a− b is not an integer.
Note that all canonical solutions of Gauss’s equation (1.3) are expressed in terms

of hypergeometric series of the form (1.1). But the system (1.5) lacks a similar
property even for N = 2. In the case of two variables (recall that this system is
then denoted by E(2)

D ) it is satisfied by the Appell function F (2)
D = F1(a, a′; b, c; z, ζ),

F1(a, a′; b, c; z, ζ) =
∞∑

k,n=0

(b)k+n(a)k(a′)n

(c)k+nk!n!
zkζn, |z| < 1, |ζ| < 1 (1.39)

(z and ζ are variables and a, a′, b, and c are parameters), which is a holomor-
phic solution in a neighbourhood of (z, ζ) = (0, 0). The problem of constructing
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an analogue of Kummer’s canonical solutions for E(2)
D has been considered begin-

ning with [4] (see [10] for a detailed survey of investigations in this direction).
A set of canonical solutions of E(2)

D which can be expressed in terms of the Appell
series (1.39) is presented in [7]. Erdélyi [10] showed that the functions in [7] are not
sufficient for describing the general solution of the system E

(2)
D , and he proved that

the required additional canonical solutions can be expressed in terms of a bivariate
hypergeometric series

G(a, a′; b, c; z, ζ) =
∞∑

k,n=0

(b)n−k(a)k(a′)n

(c)n−kk!n!
zkζn, |z| < 1, |ζ| < 1, (1.40)

which cannot be reduced to (1.39). This series, which is of central importance
in the theory of the Appell function F1, had previously been indicated in [9] (in
a slightly different form) as the function G2 in the so-called Horn’s list, a list
of essentially different hypergeometric series of two variables (see also [30]). The
difference of indices n− k in (1.40) can take negative values. Note that, in view of
the property (1.18) of the gamma function, the Pochhammer symbol (a)k defined
in (1.2) can be expressed for negative integer values of k by

(a)k = (−1)k[(1− a)(2− a) · · · ((1− a)− k − 1)]−1, k = −1,−2, . . . . (1.41)

Let us consider the system (1.5) for N = 2 more closely in a neighbourhood of
the point (z, ζ) = (∞,∞). For this system the analogue of Kummer’s canonical
solutions (1.30), (1.31) in the domain

V2 := {(z, ζ) ∈ C2 : |z| > |ζ| > 1, | arg(−z)| < π; | arg(−ζ)| < π} (1.42)

is given by the functions (see [10] and [11])

U
(∞)
0 (a, a′; b, c; z, ζ) = (−z)−a(−ζ)−a′

× F1

(
a, a′; 1− c+ a+ a′, 1− b+ a+ a′;

1
z
,
1
ζ

)
, (1.43)

U
(∞)
1 (a, a′; b, c; z, ζ) = (−z)−a(−ζ)a−b

×G

(
a, 1− c+ b; b− a, 1 + b− a− a′;

ζ

z
,
1
ζ

)
, (1.44)

U
(∞)
2 (a, a′; b, c; z, ζ) = (−z)−bF1

(
1− c+ b, a′; b, 1 + b− a;

1
z
,
ζ

z

)
, (1.45)

two of which can be expressed in terms of the Appell series (1.39), while the third
can be expressed in terms of the Horn series (1.40). (In the notation of V2 the super-
script indicates that we are in the case of two variables.) The functions (1.43)–(1.45)
form a complete system of linearly independent solutions of the system E

(2)
D in V2,

provided that
b− a /∈ Z, b− a− a′ /∈ Z. (1.46)

Furthermore, the series F1 on the right-hand side of (1.43) converges in a whole
neighbourhood of the point (∞,∞), namely, for |z| > 1 and |ζ| > 1, while the
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two series G and F1 in (1.44) and (1.45) converge only for |z| > |ζ| > 1. Thus,
bearing in mind that the right-hand sides of (1.43)–(1.45) contain branching factors,
we see that V2 is the domain where all three functions U

(∞)
j , j = 0, 1, 2, are

well defined (and single valued). Since the system E
(2)
D is clearly preserved by

interchanging z and ζ (and interchanging the parameters a and a′ at the same
time), by using (1.43)–(1.45) we also can indicate a complete system of canonical
solutions in the domain

Ṽ2 := {(z, ζ) ∈ C2 : (ζ, z) ∈ V2} = {|ζ| > |z| > 1, | arg(−z)| < π; | arg(−ζ)| < π}.
(1.47)

Such solutions there are given by

U
(∞)

0 (a, a′; b, c; z, ζ) and Ũ
(∞)

j (a, a′; b, c; z, ζ) := U
(∞)

j (a′, a; b, c; ζ, z), j = 1, 2,
(1.48)

provided that b− a′ /∈ Z and b− a− a′ /∈ Z. We note that the canonical solutions
of E(2)

D in a neighbourhood of (z, ζ) = (1, 1) that were constructed in [10] and [11],
like (1.43)–(1.45) and (1.48), have the form of power series, but now in powers of
1− z and 1− ζ.

On the other hand, it is possible that the general solution of the system E
(2)
D

contains not only powers of z, ζ, 1 − z, and 1 − ζ, but also logarithms of these
quantities. Such cases are said to be resonant or logarithmic, and they occur when
any of the following numbers is an integer:

c− a− a′ − b, c− a− b, c− a′ − b, b− a− a′, b− a, b− a′. (1.49)

For example, if b−a ∈ Z or b−a−a′ ∈ Z, then we cannot define a complete system of
canonical solutions of E(2)

D using the formulae (1.43)–(1.45), and the corresponding
modified functions (see [61] and also § 2.5) will contain the logarithms log z and
log ζ in addition to powers zm and ζk.

Olsson [11] constructed a complete system of formulae for analytic continua-
tion (1.27) of the Appell function F1 in non-resonant, or non-logarithmic cases. For
instance, if (1.46) holds, then we have the following representation in the domain V2

defined in (1.42) (see [11]):

F1(a, a′; b, c; z, ζ) =
2∑

j=0

λjU
(∞)

j (z, ζ), (1.50)

where the functions U
(∞)

j (z, ζ) are given by (1.43)–(1.45) and the coefficients λj

have the expressions

λ0 =
Γ(c)Γ(b− a− a′)
Γ(b)Γ(c− a− a′)

, λ1 =
Γ(c)Γ(b− a)Γ(a+ a′ − b)

Γ(a′)Γ(c− b)Γ(b)
,

λ2 =
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

.

(1.51)

A formula for analytic continuation into the domain Ṽ2 defined in (1.47) can be
obtained from (1.50), (1.51) by replacing U

(∞)
j (z, ζ) by Ũ

(∞)
j (z, ζ), j = 1, 2, and
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interchanging a and a′ in (1.51). We underscore that, generally speaking, the
conditions (1.46) ensuring (1.50) do not rule out resonant cases. For example,
if (1.46) is satisfied but b−a′ ∈ Z, then the representation for F1 in the domain Ṽ2

contains the logarithms of z and ζ.
The resonant cases of the system E

(2)
D must be considered separately, because

the results in [10] and [11] do not extend directly to these cases. Such an investi-
gation was carried out in [61], where complete systems of canonical solutions and
formulae for analytic continuation of F1 were constructed in resonant cases of E(2)

D

corresponding to integer numbers in (1.49).
In [11] the Appell function F1 was analytically continued using a procedure

based on re-expanding series (see also [7], [82]). The approach in [11] was used
by Exton [13] to deduce formulae for analytic continuation in the case of three
variables (N = 3). In [13] an (essentially complete) set of representations of the
form (1.27) was found for N = 3 in the non-logarithmic case. However, this is
a laborious approach, which meets with considerable difficulties even for N = 3,
and moreover, we actually cannot use this method to treat logarithmic cases of the
system E

(N)
D for N > 2.

In our § 2 we present a complete set of formulae for analytic continuation of the
Lauricella function F

(N)
D of an arbitrary number N of variables. The subdomains

of CN where these formulae hold totally cover CN (away from certain hyperplanes).
To derive continuation formulae we use representations in the form of Mellin–Barnes
type integrals for F (N)

D (see § 2.1). Formulae for analytic continuation into neigh-
bourhoods of the points z(∞,0)

q , z(1,0)
p , and z(1,∞,0)

p,q are derived in § 2.2, 2.3, and 2.4,
respectively. These subsections are an extended version of [57]–[60]. Some facts con-
cerning the resonant case are given in § 2.5 (the reader can find a detailed analysis
for N = 2 in [61]).

1.4. Schwarz–Christoffel parameter problem and analytic continuation
of F

(N)
D . The effective construction of a conformal mapping of a complicated

domain B onto a canonical domain (a half-plane, a disk, the exterior of a disk)
is usually a difficult problem. However, when such a mapping is known, substan-
tive new possibilities sometimes emerge for the investigation of many theoretical
and applied problems (for instance, see [83]–[91]), in particular, for the solution
of boundary-value problems in the original domain B. In this connection many
papers developing and improving methods for conformal mappings have appeared
(for example, [92]–[100]).

As is well known, the general approach to constructing conformal mappings of
simply connected polygonal domains is based on the Schwarz–Christoffel integral
(see [92], [93], [97], [99], [101]–[104]). For a mapping µ : H+ conf−−−→ B of a half-plane
onto an N -gonal domain B with internal angles πβj at the vertices zj this integral
has the form

z = µ(ζ) = K0

∫ ζ

ζ̃

N∏
j=1

(t− ζj)βj−1 dt+ K1, (1.52)

where K0 and K1 = µ(ζ̃) are constants and the ζj := µ−1(zj) are the inverse
images of the vertices of B. According to Riemann’s theorem [102], [104], three
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of the quantities ζj can be prescribed arbitrarily (with preservation of the direc-
tion of a circuit around the domain) on the real line R = ∂H+, but finding the
other N − 3 points is difficult. This limits the scope of applications of the analytic
representation (1.52) (for example, see [97], [102], [105]–[108] on this topic).

Methods for calculating the unknown parameters of the Schwarz–Christoffel inte-
gral (besides the inverse images ζj , these parameters include the coefficient K0) are
indicated in [92]–[94], [97], [105], [109]. Finding them becomes especially difficult
in the case of crowding, when the ζj are very unevenly distributed (see [107] and
also [97], [105], [110], [111]). In our case of a mapping of a half-plane, crowding
in R is understood with respect to the spherical metric [93], [97], [103]. It should
be noted that in applications the situation of crowding is most often encountered in
the use of the Schwarz–Christoffel integral. The crowding problem has been treated
in [62], [99], [105], and [111]–[113], but it is still far from a comprehensive solution.

Our hopes are that the results in § 4 on analytic continuation of the Lauricella
function F

(N)
D can be instrumental for making significant progress in the solution

of the crowding problem. We remark that connections between the theory of the
function F (N)

D and the Schwarz–Christoffel parameter problem were pointed out in
[62] (and also in [111], in the particular case of a pentagonal domain). Here we
present the corresponding arguments from [62] (see also § 5).

We can form a system of equations for the parameters (see [93]) by integrating
in (1.52) over the intervals (ζk, ζk+1) and equating the absolute values of the inte-
grals obtained to the corresponding lengths Lk := |zk+1 − zk| of the sides of the
boundary ∂B:∣∣∣∣K0

∫ ζk+1

ζk

N∏
j=1

(t− ζj)βj−1 dt

∣∣∣∣ = Lk, k = 1, . . . , N − 2, (1.53)

where we assume that all the vertices zj , j = 1, . . . , N − 2, are finite. Such
non-linear systems are usually solved via Newton-type iterative procedures, and we
need a high-precision algorithm for calculating the left-hand sides of the equations
(1.53) in order that such procedures converge efficiently. After obvious changes of
variables and use of an Euler-type representation (1.6), we express the left-hand
sides of (1.53) in terms of the Lauricella function F (n)

D with n = N − 3, where each
equation is characterized by its own set of parameters and the variables of F (n)

D ,
the parameters are expressed in terms of the characteristics βj of the angles of the
polygon, and the variables are expressed in terms of the inverse images ζj of its
vertices. It should be stressed that when crowding occurs, the arguments of the
functions F (n)

D vary outside the unit polydisk, so that we cannot use the representa-
tion (1.4) to calculate the values of these functions. A fairly effective algorithm for
such calculations is provided by the formulae of type (1.27) for analytic continuation
which we present in § 2. In § 5 we show that the left-hand sides of (1.53), regarded
as functions of ζ1, . . . , ζN , are related one to another in the sense that they are
solutions of the same Lauricella system (1.5), and we present explicit expressions
for them in terms of the functions involved in the representations (1.27). In § 5 we
also give an example of solving the Schwarz–Christoffel parameter problem and of
constructing a conformal mapping in the case of crowding.
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We note that to get a sound initial approximation for the unknown inverse
images we can use asymptotic expressions for them corresponding to limiting cases
of the structure of the polygon B. Such asymptotic formulae can be deduced using
the constructive results in [114] and [115] on variation of a conformal mapping under
singular deformations of the domain. For a pentagonal domain such formulae were
found in [62] and [111].

1.5. Riemann–Hilbert problem and Jacobi-type formulae. The differential
relations holding for hypergeometric functions are very important (see [116]). One
such relation in the theory of the Gauss function F (a, b; c; z) is the familiar Jacobi
identity [117] (see also [30]). It has a direct generalization to the case of F (N)

D ,
in the form of a system of differential relations found in [57], [65], [66], and we
call them Jacobi-type formulae. By using such formulae we can find [63], [64]
a new type of representation for the solutions of the Riemann–Hilbert problem with
piecewise constant data, which we discuss below. This representation has the form
of a Schwarz–Christoffel integral, which is significantly different from Cauchy-type
integrals arising in commonly used representations for solutions of boundary-value
problems for analytic functions.

Starting from the fundamental papers [74] and [118], many authors ([119]–[124])
have considered the Riemann–Hilbert boundary problem which consists in finding
an analytic function F (z) = u(x, y) + iv(x, y) in a domain B ⊂ C from a given
relation

pu− qv = r (1.54)

between its real and imaginary parts on the boundary ∂B (where p, q, and r are
real functions). Results in the classical theory of this problem and methods for
solving it are presented, for instance, in the treatises [125]–[127] (see also the books
[97] and [128]–[130]). The problem (1.54) has many applications to mechanics,
electrodynamics, stochastic processes, approximation theory, and so on; some of
its applications are listed in [126] and [131]–[140]. For contemporary theoretical
investigations of the problem and some of its generalizations, see [141]–[146], for
example.

To solve the Riemann–Hilbert problem (1.54) constructively, it is useful to use
a conformal mapping of the original domain B onto, say, the half-plane H+ (or
a disk, or the exterior of a disk). Then the solution of the transformed problem can
be written out in a closed form in terms of Cauchy-type integrals (see [125]–[127]).
In particular, using this approach we can adequately take into account the compli-
cated geometry of the domain B.

Starting from Riemann’s paper [74] (see also [93], [131], [133], [147]), many
authors have noted that the solution of a Riemann–Hilbert problem has a clear
geometric interpretation. For example, in the simplest case when p, q, and r are con-
stant, the condition (1.54) is the equation of a straight line in the plane w = u+ iv.
This observation suggests that a solution of the Riemann–Hilbert problem with
piecewise constant data can be interpreted geometrically as a conformal mapping
of the original domain onto a (not necessarily schlicht) polygonal domain. We note
that the representation of a solution P+(ζ) as a Schwarz–Christoffel integral that
was constructed in [63] and [64] (see also [62]) on the basis of a Jacobi-type formula
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for the Lauricella function [57], [65], [66], is a realization of this interpretation of
a Riemann–Hilbert problem with piecewise constant data.

Before we present this representation, we introduce some further notation. We
write the boundary condition in the Riemann–Hilbert problem (1.54) as

Re
[
h(z′)F (z′)

]
= r(z′), z′ ∈ ∂B,

where h(z′) := p(z′)+iq(z′). After a conformal mapping z = Φ(ζ) of the domain B
onto H+ the unknown function F (z) is transformed into

P+(ζ) = F ◦ Φ−1(ζ),

and the piecewise constant functions h(z′) and r(z′) become

χ(ξ) = h ◦ Φ−1(ξ) and σ(ξ) = r ◦ Φ−1(ξ), ξ ∈ R,

respectively, which are also piecewise constant (on the real line R = ∂H+). Thus,
in view of this notation the boundary condition in the Riemann–Hilbert problem
in H+ has the form

Re[χ(ξ)P+(ξ)] = σ(ξ), ξ ∈ R. (1.55)

We denote the set of points of discontinuity of χ(ξ) or σ(ξ) by

Ξ := {ξ0, ξ1, . . . , ξN}, (1.56)

where ξ1, . . . , ξN are finite points in R, ξk+1 > ξk, and ξ0 is the (unique) point at
infinity. A representation of P+(ζ) which realizes the geometric interpretation of
the solution of the Riemann–Hilbert problem has the form (see [63], [64])

P+(ζ) = K0

∫ ζ N∏
j=1

(t− ξj)γj−1P (t) dt+ K1, (1.57)

where P (ζ) is a polynomial with real coefficients and with degree depending on
the number of points of discontinuity of χ(ξ) and on the index κ of the prob-
lem, the fractional parts of the exponents γj are expressed in terms of the jumps
of the argument of χ(ξ) at points of discontinuity, and the integer parts of γj are
determined by some additional conditions.

The Schwarz–Christoffel integral in (1.57) has two important (and beneficial)
properties. First, as we have already mentioned, it provides a clear geometric inter-
pretation for P+(ζ) by showing that this function realizes a conformal mapping
of the upper half-plane H+ onto a non-schlicht polygonal domain M (see [93]).
Here the mapping w = P+(ζ) takes points in Ξ and real zeros of P (ζ) to cor-
ner points of the boundary of M , while complex zeros of P (ζ) in H+ are taken
to interior branch points of this domain. Second, the integral (1.57) is much
more effective for calculations than the traditional representations of a solution of
the Riemann–Hilbert problem via Cauchy-type integrals (see [111], [140] on this).
These features are useful for applications. For example, many important problems
in mechanics ([131], [132], [148]–[150]) and plasma physics ([67], [134], [151]) reduce
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to a Riemann–Hilbert problem with piecewise constant data. We should note that
a solution P+(ζ) of a Riemann–Hilbert problem in H+ that has these properties
can also be constructed for boundary data h(z′) and σ(z′) in (1.55) which belong
to certain wider classes.

Furthermore, in many papers (for instance, [93], [131], [133], [148]–[153]) solu-
tions of Riemann–Hilbert boundary problems, including ones arising in connection
with applied problems, were expressed by means of Schwarz–Christoffel integrals,
but the proof of such a representation for arbitrary piecewise constant data of the
problem and formulae for the parameters of the integrand were apparently first
obtained in [63] and [64]. We devote our § 3 to a presentation of results from these
papers.

2. Analytic continuation of the Lauricella function

2.1. Representations by Mellin–Barnes contour integrals. In this sub-
section we present two representations by (one-dimensional) contour integrals of
Mellin–Barnes type for the function F (N)

D (a; b, c; z). Then on this basis we obtain in
§§ 2.2–2.4 a system of analytic continuation formulae of the form (1.27). We remark
that Mellin–Barnes integrals and various generalizations of them play an important
role in the theory of hypergeometric and other special functions (see [28]–[31], [154]).

2.1.1. The first representation of F (N)
D . We consider the domain

SN
1 := {z ∈ CN: | arg(−z1)| < π; |zk| < 1, k = 2, . . . , N}, (2.1)

introduce the notation z′1 := (z2, . . . , zN ) and a′1 := (a2, . . . , aN ), and define the
function

f(a; b, c; z, s) :=
Γ(a1 + s)Γ(b+ s)Γ(−s)

Γ(c+ s)

× (−z1)sF
(N−1)
D (a′1; b+ s, c+ s; z′1), z ∈ SN

1 , s ∈ C. (2.2)

The function F
(N−1)
D (a′1; b + s, c + s; z′1) in (2.2) is defined by the series (1.4) for

the corresponding values of the parameters and variables.
The following result establishes the first integral representation of Mellin–Barnes

type for the Lauricella function F (N)
D .

Proposition 1. The Lauricella function F
(N)
D (a; b, c; z) defined by the series (1.4)

can be represented for z ∈ UN ∩ SN
1 as a contour integral of Mellin–Barnes type:

F
(N)
D (a; b, c; z) =

Γ(c)
2πiΓ(a1)Γ(b)

∫ +i∞

−i∞
f(a; b, c; z, s) ds, (2.3)

where f is given by (2.2) and the contour of integration in (2.3) is chosen so that
the poles s(0)k = k , k ∈ Z+ , and the poles s(1)k = −a1 − k , s(2)k = −b − k , k ∈ Z+ ,
of the function f(s) lie to the right and to the left of it, respectively (see Fig. 1).
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Figure 1. The contour of integration in the Mellin–Barnes representation (2.3).

Proof. Let L denote the contour of integration in (2.3), and let Ln be the part of
it between the points −(n + 1/2)i and (n + 1/2)i, where n ∈ N, that is, Ln is the
curve

Ln :=
{
s ∈ L : | Im s| 6 n+

1
2

}
,

and moreover, let C+
n be a semicircle (centred at the origin) with radius n+ 1/2 in

the right half-plane which is oriented clockwise. Using the well-known identity

Γ(−s) =
−π

Γ(1 + s) sinπs

(see [30]), we can write the function in (2.2) in a form

f(a; b, c; z, s) = −Γ(a1 + s)Γ(b+ s)
Γ(c+ s)Γ(1 + s)

F
(N−1)
D (a′1; b+ s, c+ s; z′1)

π(−z1)s

sinπs
(2.4)

more convenient for asymptotic analysis, and we can consider the integral

In(a; b, c; z) :=
∫

Ln∪C+
n

f(a; b, c; z, s) ds. (2.5)

The known asymptotic formula

Γ(a+ s) = O(ss+a−1/2e−s), s→∞, | arg s| < π

(see [30], § 1.18), for the gamma function gives us the following estimate for the
first fraction in (2.4):

Γ(a1 + s)Γ(b+ s)
Γ(c+ s)Γ(1 + s)

= O(sa1+b−c−1), s→∞, | arg s| < π. (2.6)

It is easy to verify that for the Lauricella function in (2.4) we have the asymptotic
relation

F
(N−1)
D (a′1; b+ s, c+ s; z′1) = O(1), s→∞. (2.7)
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We find an estimate on the curve C+
n for the third factor on the right-hand side

of (2.4). Let s = (n + 1/2)eiθ and (−z1)s = exp(s log(−z1)), where log(−z1) :=
log |z1|+ i arg(−z1) and | arg(−z1)| 6 π− δ for some small positive δ by the condi-
tions of the proposition. Then it is easy to verify that

(−z1)s

sinπθ
= O

(
exp

[
−

(
n+

1
2

)
(− cos θ log |z1|+ δ| sin θ|)

])
, n→∞. (2.8)

From (2.6)–(2.8) we obtain the following asymptotic formula for the function (2.4)
on the curve C+

n :

|f(s)| = O
(
na1+b−c−1 exp

[
−n(− cos θ log |z1|+ δ| sin θ|)

])
, (2.9)

s ∈ C+
n , n→∞,

where we use the notation f(s) := f(a; b, c; z, s). Hence if |z1| < 1 and therefore
log |z1| < 0, then for all values of s = (n+1/2)eiθ and θ ∈ [−π/2, π/2] the integrand
in (2.5) tends exponentially to 0 as n→∞.

We write the integral in (2.5) as∫
Ln∪C+

n

f(s) ds =
∫

Ln

f(s) ds+
∫

C+
n

f(s) ds,

where the first integral on the right approaches
∫

L
f(s) ds as n → ∞, while the

second tends to 0 because of (2.9). Thus,∫
L

f(s) ds = lim
n→∞

∫
Ln∪C+

n

f(s) ds. (2.10)

To calculate the integral on the right-hand side of (2.10), we discuss the properties
of the function (2.2) in its dependence on the complex variable s with the other vari-
ables fixed. Recall that the gamma function Γ(s) has simple zeros at non-positive
integer points s = −k, k ∈ Z+, and the residues there are given by

res
s=−k

Γ(s) =
(−1)k

k!
, k ∈ Z+ (2.11)

(see [30] and [31]). Also note that the function F̃ (s) := F
(N−1)
D (a′1; b+ s, c+ s; z′1)/

Γ(c + s) is clearly regular with respect to s on the whole finite plane. In view of
the above, it follows from (2.2) that f(s) has simple zeros at the points s(0)k = k,
k ∈ Z+, and its residues there are given by

res
s=s

(0)
k

f(s) = −Γ(a1 + k)Γ(b+ k)
Γ(c+ k)k!

zk
1F

(N−1)
D (a′1; b+ k, c+ k; z′1). (2.12)

The integral on the right-hand side of (2.10) is −2πi times the sum of the residues
of the integrand f(s) in the domain bounded by the contour Ln ∪ C+

n :∫
Ln∪C+

n

f(s) ds = −2πi
n∑

k=0

res
s=s

(0)
k

f(s). (2.13)
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Using (2.10)–(2.13) and the definition of the Pochhammer symbol (1.2), we obtain

∫
L

f(s) ds = 2πi
Γ(a1)Γ(b)

Γ(c)

∞∑
k=0

(a1)k(b)k

(c)kk!
zk
1F

(N−1)
D (a′1; b+ k, c+ k; z′1). (2.14)

We verify (2.3) by dividing both sides by the coefficient of the sum on the right and
observing that this sum is equal to F (N)

D (a; b, c; z):

F
(N)
D (a; b; c; z) =

∞∑
k=0

(a1)k(b)k

(c)kk!
zk
1F

(N−1)
D (a′1; b+ k, c+ k; z′1). �

A particular case of the representation (2.3) for N = 2, that is, for the Appell
function F1, was presented in [7], for instance. For arbitrary N this representa-
tion is perhaps not new either. By applying it successively to functions FD with
fewer variables in the integrand in (2.3), we can obtain the N -fold Mellin–Barnes
integral (1.7), which was derived (in a somewhat different way), for example, in [13].

It is easy to see that the integral representation (2.3) in Proposition 1 realizes an
analytic continuation of the Lauricella function originally defined by the series (1.4),
into the domain SN

1 , in which the right-hand side of (2.3) is a holomorphic function
of z.

2.1.2. The second representation of F (N)
D . We now derive another Mellin–Barnes

type representation for F (N)
D (a; b, c; z), which will be used for constructing an ana-

lytic continuation of it in cases when one or more variables zj are close to 1.
We recall a well-known identity established by Barnes’s lemma [30], [31]:

Γ(α+ γ)Γ(β + γ)
Γ(α+ β + γ + δ)

=
1

Γ(α+ δ)Γ(β + δ) · 2πi

×
∫ +i∞

−i∞
Γ(α+ t)Γ(β + t)Γ(γ − t)Γ(δ − t) dt, (2.15)

where the integration path has been deformed (if necessary) so that the poles of the
product Γ(γ − t)Γ(δ − t), that is, the points t = γ + k and t = δ + k with k ∈ Z+,
and the poles of the product Γ(α + t)Γ(β + t), that is, the points t = −α − k and
t = −β−k with k ∈ Z+, lie to the right and to the left of it, respectively. We write
a factor in (2.2) as a series

Γ(a1 + s)Γ(b+ s)
Γ(c+ s)

F
(N−1)
D (a′1; b+ s, c+ s; z′1)

=
∞∑

|k2,N |=0

Γ(a1 + s)Γ(b+ s+ |k2,N |)
Γ(c+ s+ |k2,N |)

(a2)k2 · · · (aN )kN

k2! · · · kN !
zk2
2 · · · zkN

N ,

where |k2,N | =
∑N

j=2 kj . Applying (2.15) with α = a1, β = b + |k2,N |, γ = s, and
δ = c − a1 − b to the combination of gamma functions on the right-hand side, we
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establish the equality

Γ(a1 + s)Γ(b+ s)
Γ(c+ s)

F
(N−1)
D (a′1; b+ s, c+ s; z′1) =

1
2πiΓ(c− a1)Γ(c− b)

×
∫ +i∞

−i∞
Γ(a1 + t)Γ(b+ t)Γ(s− t)Γ(c− a1 − b− t)

× F
(N−1)
D (a′1; b+ t; c− a1; z′1) dt. (2.16)

Rewriting the definition (2.2) of f with (2.16) taken into account and substituting
the new expression for f into (2.3), we obtain a representation of F (N)

D as a double
integral. Interchanging the integrations with respect to s and t, using the known
formula ∫ +i∞

−i∞
Γ(−s)Γ(s− t)(−z)s ds = Γ(−t)(1− z)t

(see [31]), and setting

g(a; b, c; z, s) := Γ(a1 + s)Γ(b+ s)Γ(−s)Γ(c− a1 − b− s)(1− z1)s

× F
(N−1)
D (a′1; b+ s, c− a1; z′1), (2.17)

we arrive at the following result, which establishes the second representation of
Mellin–Barnes type for F (N)

D in our paper.

Proposition 2. The Lauricella function F (N)
D (a; b, c; z) defined by (1.4) has a rep-

resentation for z ∈ {| arg(1−z1)| < π, |zk| < 1, k = 2, . . . , N} as a contour integral
of Mellin–Barnes type

F
(N)
D (a; b, c; z) =

Γ(c)
2πiΓ(a1)Γ(b)Γ(c− a1)Γ(c− b)

∫ +i∞

−i∞
g(a; b, c; z, s) ds, (2.18)

where the integrand has the form (2.17) and the contour of integration is chosen so
that the poles

s
(1)
k = k and s

(2)
k = c− a1 − b+ k, k ∈ Z+, (2.19)

and the poles s(3)k = −a1 − k , s(4)k = −b − k , k ∈ Z+ , of the function g(s) :=
g(a; b, c; z, s) lie to the right and to the left of it, respectively (see Fig. 2).

The integrand g(s) has the poles indicated in Proposition 2 because the gamma
function Γ(s) has poles at s ∈ Z−. The function F̃ (s) :=F

(N−1)
D (a′1; b+ s, c− a1; z′1)

is clearly regular in the finite part of the s-plane, hence the integrand g(s) has no
singular points other than the poles (2.19) to the right of the contour of integration
in (2.18).

2.2. Analytic continuation into a neighbourhood of z(∞,0)
q . In this sub-

section, we present a complete set of formulae for analytic continuation of the
form (1.27) for the function F

(N)
D (a; b, c; z) for all N > 2 into a neighbourhood of

z(∞,0)
q ∈ CN , where q = 1, . . . , N . First of all, on the basis of proposition 1 we

construct such formulae for a neighbourhood of z(∞,0)
1 = (∞, 0, . . . , 0).
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Figure 2. The contour of integration in the Mellin–Barnes representation (2.18).

2.2.1. A formula for analytic continuation with respect to z1 into a neighbourhood
of (∞, 0, . . . , 0). Using the integral (2.3), we obtain a representation of F (N)

D as
a sum of two hypergeometric series which converge exponentially in the domain

DN
1 := {z ∈ CN: |z1| > 1, | arg(−z1)| < π; |zk| < 1, k = 2, . . . , N};

this is a part of the domain SN
1 defined in (2.1). Assuming that b − a1 is not an

integer and expressing the integral in (2.3) as an (infinite) sum of the residues at
the simple poles s(1)k and s(2)k of f(s), k ∈ Z+, we arrive at the following result.

Proposition 3. If the function F
(N)
D (a; b, c; z) has parameters such that b− a1 is

not an integer, then it has the representation

F
(N)
D (a; b, c; z) = C0u0(a; b, c; z) + C1u1(a; b, c; z), (2.20)

where u0 and u1 are defined by

u0(a; b, c; z) = (−z1)−a1

∞∑
k=0

(a1)k(1 + a1 − c)k

k! (1 + a1 − b)k

× z−k
1 F

(N−1)
D (a′1; b− a1 − k, c− a1 − k; z′1) (2.21)

and

u1(a; b, c; z) = (−z1)−bF
(N)
D

(
1− c+ b, a2, . . . , aN ; b, 1 + b− a1;

1
z1
,
z2
z1
, . . . ,

zN

z1

)
,

(2.22)

and the coefficients C0 and C1 are

C0 =
Γ(c)Γ(b− a1)
Γ(b)Γ(c− a1)

and C1 =
Γ(c)Γ(a1 − b)
Γ(a1)Γ(c− b)

. (2.23)

The formulae (2.20)–(2.23) give an analytic continuation of the series (1.4) into
the domain DN

1 .
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We can show that the series (2.21) converges in DN
1 using methods presented,

for instance, in [13]. The representation (2.22) holds in DN
1 because it is obvious

that for a vector z in this domain the argument (1/z1, z2/z1, . . . , zN/z1) of the
function F (N)

D in (2.22) lies in the polydisk UN .
Note that Proposition 2 gives a formula for analytic continuation of (1.4) with

respect to the variable z1, whose absolute value for z ∈ DN
1 is greater than 1. On

the other hand, the function u1 in (2.22) is obviously defined in the wider domain

D̃N
1 := {z ∈ CN: |z1| > 1, | arg(−z1)| < π; |z1| > · · · > |zN |},

where all the variables zj , j = 1, . . . , N , can simultaneously take values with abso-
lute value greater than 1. Thus, in (2.20) only the function u0 must be continued
with respect to the variables zj with j = 2, . . . , N . The case when b − a1 ∈ Z,
which we excluded in the above proposition, is a resonant case of the Lauricella
system (1.5) and must be dealt with separately (see § 2.5), because it is easy to see
that the relations (2.20)–(2.23) cannot be applied directly to it.

2.2.2. Some notation. Before considering formulae for analytic continuation of F (N)
D

with respect to the remaining variables z2, . . . , zN , we introduce some needed nota-
tion. Let

hj := (a1, . . . , aj−1, 1−c+b, aj+1, . . . , aN ) and as,l := (as, as+1, . . . , al), (2.24)

where a1, . . . , aN , b, and c are the parameters of the Lauricella function. By the
modulus of a vector we will mean the sum of its components, so that, for example,

|as,j | :=
j∑

l=s

al and |a| := |a1,N | =
N∑

l=1

al. (2.25)

We define the quantities

z−1 :=
(

1
z1
, . . . ,

1
zN

)
and z−1

q :=
(

1
z1
, . . . ,

1
zq
, zq+1, . . . , zN

)
, (2.26)

and the following transformation of vectors z = (z1, . . . , zN ):

Yj(z) :=
(
z1
zj
, . . . ,

zj−1

zj
, zj ,

zj

zj+1
, . . . ,

zj

zN

)
. (2.27)

Thus, for instance,

Y1(z) :=
(
z1,

z1
z2
, . . . ,

z1
zN

)
and Yj(z−1) :=

(
zj

z1
, . . . ,

zj

zj−1
,

1
zj
,
zj+1

zj
, . . . ,

zN

zj

)
.

(2.28)
We will also use the notation

|ks,j | :=
j∑

l=s

kl (2.29)
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for a partial sum of components of the multi-index k = (k1, . . . , kN ), and moreover,
we will use shorthand notation for the following products:

k! := k1! · · · kN !, (a)k := (a1)k1 · · · (aN )kN
, zk := zk1

1 · · · zkN

N . (2.30)

Now we write out a generalized hypergeometric series which has appeared pre-
viously, for example, in [13]:

G(N,j)(a; b, c; z) :=
∞∑

|k|=0

(b)|kj |(a)k
(c)|kj |k!

zk, (2.31)

where |kj | := |kj,N |−|k1,j−1| and the parameter j can take the values 1, . . . , N+1.
In (2.31) the quantity |kj | can be negative. Recall that for negative integers k the
Pochhammer symbol (a)k defined in (1.2) is expressed as the product (1.41).

For all j = 1, . . . , N +1 the domain of convergence of the series (2.31) is the unit
polydisk UN . For j = 1 and j = N +1 the function G(N,j), has obvious expressions
in terms of the Lauricella function:

G(N,1)(a; b; c; z) = F
(N)
D (a; b; c; z), G(N,N+1)(a; b; c; z) = F

(N)
D (a; 1− c; 1− b; z),

and for N = 2 and j = 1 this function coincides with (1.40).
We also set

VN
q := {z ∈ CN : |z1| > · · · > |zq| > 1, | arg(−zj)| < π, j = 1, . . . , q;

|zl| < 1, l = q + 1, . . . , N}, q = 1, . . . , N, (2.32)

and

VN := VN
N = {z ∈ CN: |z1| > · · · > |zN | > 1, | arg(−zj)| < π, j = 1, . . . , N}.

(2.33)

2.2.3. Formulae for analytic continuation of F (N)
D into a neighbourhood of the

point (∞, . . . ,∞, 0, . . . , 0). Applying Proposition 2 to the functions F (N−1)
D on the

right-hand side of (2.21) and to similar functions of fewer variables arising after such
an application, we arrive at the following result, which lets us extend the Lauricella
function F (N)

D (a; b, c; z) into the domains VN
q , q = 1, . . . , N , defined in (2.32).

Theorem 1. If the Lauricella function has parameters satisfying

b− |a1,j | /∈ Z, j = 1, . . . , q (2.34)

(recall that |a1,j | =
∑j

l=1 al), then an analytic continuation of the series (1.4) into
the domain VN

q is described by the formula

F
(N)
D (a; b, c; z) =

q∑
j=0

Bq,jU
(∞,0)

q,j (a; b, c; z), (2.35)

where the functions U
(∞,0)

q,j are defined by

U
(∞,0)

q,0 (a; b, c; z) :=
( q∏

l=1

(−zl)−al

)
G(N,q+1)(a; b− |a1,q|, c− |a1,q|; z−1

q ) (2.36)
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and

U
(∞,0)

q,j (a; b, c; z) := (−zj)|a1,j−1|−b

( j−1∏
l=1

(−zl)−al

)
×G(N,j)

(
hj ; b− |a1,j−1|, 1 + b− |a1,j |; Yj(z−1)

)
, j = 1, . . . , q, (2.37)

G(N,j) is the series (2.31), the vectors hj , z−1
q , and Yj(z−1) are defined in (2.24),

(2.26), and (2.28), respectively, and the coefficients Bq,j are

Bq,0 =
Γ(c)Γ(b− |a1,q|)
Γ(b)Γ(c− |a1,q|)

, Bq,j =
Γ(c)Γ(b− |a1,j−1|)Γ(|a1,j | − b)

Γ(aj)Γ(b)Γ(c− b)
, j = 1, . . . , q.

(2.38)
The functions (2.36) and (2.37) are linearly independent solutions of the Lauricella
system of differential equations (1.5) in the domain VN

q .

In resonant cases, when one or more of the numbers b− |a1,j |, j = 1, . . . , q, are
integers, we cannot use (2.35)–(2.38). These cases require separate consideration
and can be treated by carrying out suitable limiting procedures in (2.35)–(2.38).
However, the method used in [61] for analytic continuation of the Appell func-
tion F1, that is, for N = 2, is more convenient. We give an illustration of that
method in § 2.5. In those cases formulae for analytic continuation of F (N)

D contain
not only powers of the variables zj , but also their logarithms.

Theorem 1 is proved by induction on the number of variables of the Lauricella
function. For example, we give a proof of an important special case of this theo-
rem, a formula for continuation of F (N)

D into the domain VN in (2.33), that is, for
continuation with respect to all the variables zj into a neighbourhood of infinity.

Theorem 2. If (2.34) is satisfied for q = N , that is, none of the numbers

b− |a1,j |, j = 1, . . . , N,

are integers (here |a1,j | =
∑j

l=1 al), then an analytic continuation of the series (1.4)
into the domain VN is given by

F
(N)
D (a; b, c; z) =

N∑
j=0

BjU
(∞)

j (a; b, c; z), (2.39)

where the functions U
(∞)
0 := U

(∞,0)
N,0 and U

(∞)
j := U

(∞,0)
N,j are defined by

U
(∞)
0 (a; b, c; z) =

( N∏
l=1

(−zl)−al

)
F

(N)
D (a; 1 + |a| − c, 1 + |a| − b; z−1) (2.40)

and

U
(∞)

j (a; b, c; z) = (−zj)|a1,j−1|−b

( j−1∏
l=1

(−zl)−al

)
×G(N,j)(hj ; b− |a1,j−1|, 1 + b− |a1,j |; Yj(z−1)), j = 1, . . . , N, (2.41)
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F
(N)
D and G(N,j) in (2.40) and (2.41) are the respective series (1.4) and (2.31), the

vectors hj , z−1 , and Yj(z−1) are defined in (2.24), (2.26), and (2.28), respectively,
and the coefficients Bj are

B0 =
Γ(c)Γ(b− |a|)
Γ(b)Γ(c− |a|)

, Bj =
Γ(c)Γ(b− |a1,j−1|)Γ(|a1,j | − b)

Γ(aj)Γ(b)Γ(c− b)
, j = 1, . . . , N.

(2.42)
The functions (2.40) and (2.41) are linearly independent solutions of the Lauricella
system of differential equations (1.5) in the domain VN .

Proof. We prove the relations (2.39)–(2.42) using induction on the number N of
variables of the function F (N)

D .
First of all, note that for N = 1, that is, when the Lauricella function coin-

cides with the Gauss function, the relations (2.39)–(2.42) in the theorem are the
well-known formulae (1.30), (1.31), (1.37), and (1.38) realizing an analytic con-
tinuation of F (a, b; c; z) into the exterior of the unit disk. In fact, for N = 1
the right-hand side of (2.39), like the right-hand side of (1.37), contains only the
two terms B0U

(∞)
0 and B1U

(∞)
1 , and the formulae (2.40) and (2.41) determin-

ing U
(∞)
0 and U

(∞)
1 become the canonical Kummer solutions (1.30) and (1.31),

respectively. Furthermore, the equalities (2.42), from which we can determine the
coefficients B0 and B1, coincide with the equalities (1.38) determining B1 and B2.
The formula (2.33) for the domain VN becomes the equality (1.36) for the domain V,
where we have (1.30), (1.31), (1.37), and (1.38).

Now assume that the theorem holds for the Lauricella function of N−1 variables
and let us verify (2.39)–(2.42) for the Lauricalla function of N variables. To do this
we use the representation (2.20) for F (N)

D which was established in Proposition 3.
First of all, note that the function u1 and the coefficient C1 in (2.20) defined in
(2.22) and (2.23), coincide with the function U

(∞)
1 and the coefficient B1 in (2.39)

defined in (2.41) and (2.42) for j = 1, that is, the second term in (2.20) satisfies
the equality

C1u1(a; b, c; z) = B1U
(∞)
1 (a; b, c; z). (2.43)

Next we verify that an analytic continuation of the first term in (2.20) (which is
equal to C0u0(a; b, c; z)) with respect to z2, . . . , zN gives the sum (2.39) without the
term B1U

(∞)
1 , that is, we verify the equality

C0u0(a; b, c; z) = B0U
(∞)
0 (a; b, c; z) +

N∑
j=2

BjU
(∞)

j (a; b, c; z). (2.44)

Applying the relations (2.39)–(2.42) (which, recall, are assumed to hold for N − 1
variables) to the functions F (N−1)

D (a′1; b−a1−k1, c−a1−k1; z′1) in (2.21), we obtain
formulae for analytic continuation of these functions in the form

F
(N−1)
D (a′1; b− a1 − k1, c− a1 − k1; z′1) =

N∑′

j=0

B̃jŨ
(∞)

j (a; b, c, k1; z′1), (2.45)
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where the prime on a summation sign means that the term corresponding to j = 1
is omitted, the functions Ũ

(∞)
j are defined by

Ũ
(∞)

0 (a; b, c, k1; z′1) :=
( N∏

l=2

(−zl)−al

)
× F

(N)
D

(
a2; 1 + |a| − c+ k1, 1 + |a| − b+ k1;

1
z′1

)
(2.46)

and

Ũ
(∞)

j (a; b, c, k1; z′1) := (−zj)|a1,j−1|−b+k1

( j−1∏
l=2

(−zl)−al

)
×G(N−1,j)

(
h̃j ; b− |a1,j−1| − k1, 1− |a1,j |+ b− k1; Yj−1

(
1
z′1

))
, (2.47)

j = 2, . . . , N,

and the coefficients B̃j = B̃j(k1) are

B̃0(k1) =
Γ(c− a1 − k1)Γ(b− |a| − k1)
Γ(b− a1 − k1)Γ(c− |a| − k1)

(2.48)

and

B̃j(k1) =
Γ(c− a1 − k1)Γ(b− |a1,j−1| − k1)Γ(|a1,j | − b+ k1)

Γ(aj)Γ(b− a1 − k1)Γ(c− b)
, j = 2, . . . , N.

(2.49)

The quantities h̃j and Yj−1(1/z′1) in (2.47) are defined by

h̃j = (a2, . . . , aj−1, 1− c+ b, aj+1, . . . , aN ), j = 2, . . . , N,

Yj−1

(
1
z′1

)
=

(
zj

z2
, . . . ,

zj

zj−1
,

1
zj
,
zj+1

zj
, . . . ,

zN

zj

)
, j = 2, . . . , N.

In particular, for j = 2

h̃2 = (1− c+ b, a3, . . . , aN ), Y1

(
1
z′1

)
=

(
1
z2
,
z3
z2
, . . . ,

zN

z2

)
.

Substituting (2.45)–(2.49) in (2.21) and multiplying by C0, we obtain

C0u0(a; b, c; z) = Q0(a; b, c; z) +
N∑

j=2

Qj(a; b, c; z), (2.50)

where

Qj(a; b, c; z) := C0(−z1)−a1

∞∑
k1=0

(a1)k1(1 + a1 − c)k1

k1! (1 + a1 − b)k1

× z−k1
1 B̃j(k1)Ũ

(∞)
j (a; b, c, k1; z′1). (2.51)
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We will show that for j = 0 and j = 2, . . . , N we have

Qj(a; b, c; z) = BjU
(∞)

j (a; b, c; z), (2.52)

where the functions U
(∞)

j are defined by (2.40) and (2.41) and the coefficients Bj

are defined by (2.42).
I) Let us verify (2.52) for j = 0. To do this we transform the right-hand side

of (2.51) for j = 0 and show that it is equal to B0U
(∞)

0 . Setting j = 0 in (2.51)
and substituting the values of Ũ

(∞)
0 and B̃0 from (2.46) and (2.48), we obtain

Q0(a; b, c; z) =
Γ(c)Γ(b− a1)
Γ(b)Γ(c− a1)

(−z1)−a1

( N∏
l=2

(−zl)−al

)

×
∞∑

k1=0

(a1)k1(1 + a1 − c)k1

k1! (1 + a1 − b)k1

Γ(c− a1 − k1)Γ(b− |a| − k1)
Γ(b− a1 − k1)Γ(c− |a| − k1)

× z−k1
1 F

(N−1)
D (a′1; 1 + |a| − c+ k1, 1 + |a| − b+ k1; z′1). (2.53)

The following equalities are obtained using (1.18):

Γ(b− a1)
(1 + a1 − b)k1Γ(b− a1 − k1)

= (−1)k1 ,
Γ(c− a1)

(1 + a1 − c)k1Γ(c− a1 − k1)
= (−1)k1 .

(2.54)
Taking them into account, we transform (2.53) into

Q0(a; b, c; z) =
Γ(c)
Γ(b)

( N∏
l=1

(−zl)−al

) ∞∑
k1=0

(a1)k1

k1!
Γ(b− |a| − k1)
Γ(c− |a| − k1)

× z−k1
1 F

(N−1)
D (a′1; 1 + |a| − c+ k1, 1 + |a| − b+ k1; z′1). (2.55)

Expressing the functionsF (N−1)
D in (2.55) in terms of the hypergeometric series (1.4),

we obtain

Q0(a; b, c; z) =
Γ(c)
Γ(b)

( N∏
l=1

(−zl)−al

)

×
∞∑

|k|=0

Γ(b− |a| − k1)(1 + |a| − c+ k1)|k2,N |

Γ(c− |a| − k1)(1 + |a| − b+ k1)|k2,N |

(a1)k1 · · · (aN )kN

k1! · · · kN !
z−k1
1 · · · z−kN

N .

(2.56)

Now we can use the equalities (which follow from (1.18))

Γ(b− |a| − k1)
(1 + |a| − b+ k1)|k2,N |

= (−1)k1
Γ(b− |a|)

(1 + |a| − b)|k|
,

Γ(c− |a| − k1)
(1 + |a| − c+ k1)|k2,N |

= (−1)k1
Γ(c− |a|)

(1 + |a| − c)|k|
,
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and rewrite Q0 in the form

Q0(a; b, c; z) =
Γ(c)Γ(b− |a|)
Γ(b)Γ(c− |a|)

( N∏
l=1

(−zl)−al

)
F

(N)
D (a; 1 + |a| − c, 1 + |a| − b; z−1),

so that in view of (2.40) and (2.42) we arrive at the equality (2.52) for j = 0.
II) Next we verify (2.52) for all j = 2, . . . , N . To do this we transform the

right-hand side of (2.51) to the form BjU
(∞)

j . Substituting into (2.51) the expres-
sions from (2.47) and (2.48) for Ũ

(∞)
j and B̃j , j = 2, . . . , N , we obtain

Qj(a; b, c; z) =
Γ(c)Γ(b− a1)

Γ(b)Γ(c− a1)Γ(aj)Γ(c− b)
(−z1)−a1(−zj)|a1,j−1|−b

( j−1∏
l=2

(−zl)−al

)

×
∞∑

k1=0

(a1)k1(1 + a1 − c)k1

k1! (1 + a1 − b)k1

× Γ(c− a1 − k1)Γ(b− |a1,j−1| − k1)Γ(|a1,j | − b+ k1)
Γ(b− a1 − k1)

× z−k1
1 G(N−1,j−1)

(
h̃j ; b− |a1,j−1| − k1, 1− |a1,j |+ b− k1; Yj−1

(
1
z′1

))
.

(2.57)

Transforming this and taking (2.54) into account, we obtain

Qj(a; b, c; z) =
Γ(c)

Γ(b)Γ(aj)Γ(c− b)
(−zj)|a1,j−1|−b

( j−1∏
l=1

(−zl)−al

)

×
∞∑

k1=0

(a1)k1

k1!
Γ(b− |a1,j−1| − k1)Γ(|a1,j | − b+ k1)(−1)k1

(
zj

z1

)k1

×G(N−1,j−1)

(
h̃j ; b− |a1,j−1| − k1, 1− |a1,j |+ b− k1; Yj−1

(
1
z′1

))
. (2.58)

Expressing the functions G(N−1,j−1) in (2.58) as hypergeometric series (2.31),

G(N−1,j−1)

(
h̃j ; b− |a1,j−1| − k1, 1− |a1,j |+ b− k1; Yj−1

(
1
z′1

))
=

∞∑
|k2,N |=0

(b− |a1,j−1| − k1)|kj,N |−|k2,j−1|(a2)k2 · · · (1− c+ b)kj · · · (aN )kN

(1 + b− |a1,j | − k1)|kj,N |−|k2,j−1|k2! · · · kN !

×
(
zj

z2

)k2

· · ·
(

zj

zj−1

)kj−1
(

1
zj

)kj
(
zj+1

zj

)kj+1

· · ·
(
zN

zj

)kN

,
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we get that

Qj(a; b, c; z) =
Γ(c)

Γ(b)Γ(aj)Γ(c− b)
(−zj)|a1,j−1|−b

( j−1∏
l=1

(−zl)−al

)

×
∞∑

|k|=0

Γ(b− |a1,j−1| − k1)Γ(|a1,j | − b+ k1)(b− |a1,j−1| − k1)|kj,N |−|k2,j−1|

(1− |a1,j |+ b− k1)|kj,N |−|k2,j−1|

×
(a1)k1 · · · (1− c+ b)kj

· · · (aN )kN

k1! · · · kN !
(−1)k1

×
(
zj

z1

)k1

· · ·
(

zj

zj−1

)kj−1
(

1
zj

)kj
(
zj+1

zj

)kj+1

· · ·
(
zN

zj

)kN

.

From the equalities

Γ(b− |a1,j−1| − k1)(b− |a1,j−1| − k1)|kj,N |−|k2,j−1|

= Γ(b− |a1,j−1|)(b− |a1,j−1|)|kj,N |−|k1,j−1|,

Γ(|a1,j | − b+ k1)
(1− |a1,j |+ b− k1)|kj,N |−|k2,j−1|

= (−1)k1
Γ(|a1,j | − b)

(1− |a1,j |+ b)|kj,N |−|k1,j−1|
,

we can rewrite Qj as

Qj(a; b, c; z) =
Γ(c)Γ(b− |a1,j−1|)Γ(|a1,j | − b)

Γ(aj)Γ(b)Γ(c− b)

× (−zj)|a1,j−1|−b

( j−1∏
l=1

(−zl)−al

)
G(N,j)

(
gj ; b− |a1,j−1|, 1− |a1,j |+ b; Yj(z−1)

)
,

and thereby verify (2.52) for all j = 2, . . . , N .
Substituting (2.43), (2.50), and (2.52) into (2.20), we obtain the required repre-

sentation (2.39) for the Lauricella function.
The fact that the functions U

(∞)
j , j = 0, . . . , N , are solutions of the Lauricella

system of differential equations (1.5) can be checked by direct substitution of (2.40)
and (2.41) into (1.5), and Theorem 2 is proved. �

Let SN be the symmetric group on an N -element set, and let σ(z) be the result
of the action of some σ ∈ SN on the vector z, that is, the vector obtained by
a rearrangement of the components of z. Using Theorems 1 and 2, we can establish
by simple arguments formulae for analytic continuation of the Lauricella function
into domains of the form

VN
q,σ := {z ∈ CN: σ(z) ∈ VN

q } and VN
σ := {z ∈ CN: σ(z) ∈ VN},

respectively, where σ is an arbitrary element of SN . In fact, bearing in mind the
equality

F
(N)
D (a; b, c; z) = F

(N)
D (σ(a); b, c;σ(z)), (2.59)

which is a direct consequence of (1.4), and the observation that the inclusion
z ∈ VN

q,σ (or z ∈ VN
σ ) means by definition that σ(z) ∈ VN

q (respectively, σ(z) ∈ VN ),
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we see that an analytic continuation of F (N)
D into the domain VN

q,σ (respectively,
into VN

σ ) is realized by the formula (2.35) (respectively, (2.39)), where the vector a
on the right-hand side is replaced by σ(a) and z is replaced by σ(z). Further-
more, the functions U

(∞,0)
q,j (σ(a); b, c;σ(z)), q, j = 0, . . . , N , obtained from (2.36)

and (2.37) by the permutation σ ∈ SN of the components of z and a, are linearly
independent solutions of the Lauricella system of differential equations (1.5).

2.3. Analytic continuation into a neighbourhood of z(1,0)
p .

2.3.1. The hypergeometric series P(N,p) and Q
(N,p)
j and their convergence domains.

In this subsection, for the function F (N)
D (a; b, c; z) with arbitrary N > 2 we present

a complete set of formulae for analytic continuation of the form (1.27) into a neigh-
bourhood of the points z(1,0)

p ∈ CN , where p = 1, . . . , N .
We start by writing the hypergeometric series that appear in the formulae for

such continuations. It will be shown below in §§ 2.3.2 and 2.3.4 that in the process
of analytic continuation there arise not only the series G(N,j) defined by (2.31) but
also the two N -variate hypergeometric series

P(N,p)(a; b, c1, c2; z) :=
∞∑

|k|=0

(b)|k|
(c1)|k1,p|(c2)|kp+1,N |

(a)k
k!

zk, (2.60)

Q
(N,p)
j (a; b, c; z) :=

∞∑
|k|=0

(b)λ(k,p,j)

(c)λ(k,p,j)

(aj + |kp+1,N |)kj

(aj)kj

(a)k
k!

zk, (2.61)

where j = 1, . . . , p, the quantities |ks,l| are defined in (2.29), and

λ(k, p, j) := |kj,p| − |k1,j−1|. (2.62)

The convergence domains P(N,p) and Q(N,p)
j of the series P(N,p) and Q

(N,p)
j , j =

1, . . . , p, respectively, are defined by

P(N,p) := {z ∈ CN: |zs|+ |zl| < 1 ∀ s = 1, . . . , p, ∀ l = p+ 1, . . . , N}, (2.63)

and

Q(N,p)
j := {z ∈ CN : |zs| < 1, s = 1, . . . , p; |zj |+ |zl| < 1 ∀ l = p+ 1, . . . , N}.

(2.64)

It is easy to see that for p = N the series P(N,p) coincides with the definition (1.4) of
the Lauricella function F (N)

D , and Q
(N,p)
j becomes the series G(N,j) given by (2.31).

2.3.2. A formula for analytic continuation with respect to z1 into a neighbourhood
of (1, 0, . . . , 0). Assuming that c− a1 − b is not an integer and writing the integral
in (2.18) as an (infinite) sum of the residues at the simple poles s(1)k and s(2)k of g(s),
k ∈ Z+, we arrive at the following result.
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Proposition 4. If the function F
(N)
D (a; b, c; z) given by (1.4) has parameters such

that c−a1− b is not an integer, then an analytic continuation of it into the domain

GN := {|1− z1|+ |zj | < 1, j = 2, . . . , N ; | arg(1− zj)| < π, j = 1, . . . , p}

is given by
F

(N)
D (a; b, c; z) = D0v0(a; b, c; z) +D1v1(a; b, c; z), (2.65)

where v0 and v1 are defined by

v0(a; b, c; z) =
∞∑

k=0

(a1)k(b)k

k! (1 + a1 + b− c)k
(1− z1)kF

(N−1)
D (a′1; b+ k, c− a1; z′1)

(2.66)

and

v1(a; b, c; z) = (1− z1)c−a1−b

( p∏
l=2

(1− zl)−al

)
×Q

(N,p)
1

(
c− |a1,p|, a2, . . . , aN ; c− b, 1 + c− a1 − b;

1− z1,
1− z1
1− z2

, . . . ,
1− z1
1− zp

, zp+1, . . . , zN

)
(2.67)

(here |a1,p| =
∑p

l=1 al) and the coefficients D0 and D1 are

D0 =
Γ(c)Γ(c− a1 − b)
Γ(c− a1)Γ(c− b)

and D1 =
Γ(c)Γ(a1 + b− c)

Γ(a1)Γ(b)
. (2.68)

The convergence of the series (2.66) for v0 in GN can be proved using methods
described in [13]. The representation (2.67) for v1 holds in GN because if z ∈ GN ,
then the argument of the function Q

(N,p)
1 in (2.67) is easily seen to vary in the

domain Q(N,p)
1 defined in (2.64). The case c−a1−b ∈ Z excluded in this proposition

is a resonant case for the Lauricella system (1.5) and must be considered separately
(see § 2.5), because (2.65)–(2.68) are easily seen not to be applicable and must be
modified.

2.3.3. Auxiliary notation. Proposition 4 provides an adequate representation for
the Lauricella function F (N)

D (a; b, c; z) in the case when z1 is close to 1 and the other
variables zj , j = 2, . . . , N , lie in the unit polydisk. Before we derive formulae for
analytic continuation of F (N)

D with respect to the variables zj , j = 2, . . . , N , into
a neighbourhood of 1, we define the vectors

1− z := (1− z1, . . . , 1− zN ),
1− zp := (1− z1, . . . , 1− zp, zp+1, . . . , zN ),

(2.69)

rp = rp(z) := (z1, . . . , zp),
gj,p := (a1, . . . , aj−1, c− |a1,p|, aj+1, . . . , aN ),

gj := gj,N = (a1, . . . , aj−1, c− |a|, aj+1, . . . , aN )
(2.70)
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(here the quantities |as,j | are given in (2.25)), and the transformations of z

Z N,p
j (z) =

(
Yj(1− rp(z)), zp+1, . . . , zN

)
, j = 1, . . . , p, (2.71)

where Yj is given by (2.27), that is,

Yj(1− rp(z)) =
(

1− z1
1− zj

, . . . ,
1− zj−1

1− zj
, 1− zj ,

1− zj

1− zj+1
, . . . ,

1− zj

1− zp

)
(2.72)

for j = 1, . . . , p, while for p = N

Yj(1− z) =
(

1− z1
1− zj

, . . . ,
1− zj−1

1− zj
, 1− zj ,

1− zj

1− zj+1
, . . . ,

1− zj

1− zN

)
(2.73)

for j = 1, . . . , N . Let KN
p be the domain

KN
p = {z ∈ CN: 0 < |1− z1| < · · · < |1− zp| < 1;

|1− zs|+ |zl| < 1, | arg(1− zs)| < π ∀ s = 1, . . . , p, ∀ l = p+ 1, . . . , N}.
(2.74)

For p = N we set KN := KN
N .

2.3.4. Formulae for analytic continuation of F (N)
D into a neighbourhood of (1, . . . , 1,

0, . . . , 0). Applying Proposition 4 to the functions F (N−1)
D in (2.66) and to similar

functions of fewer variables arising as a result, we arrive at the following theorem,
which leads to an analytic continuation of the Lauricella function F

(N)
D (a; b, c; z)

into the domains KN
p defined by (2.74).

Theorem 3. If the Lauricella function F
(N)
D has parameters such that

c− |a1,j | − b /∈ Z, j = 1, . . . , p,

that is, none of the numbers c− |a1,j | − b are integers (here |a1,j | =
∑j

l=1 al), then
an analytic continuation of the series (1.4) into the domain KN

p is given by

F
(N)
D (a; b, c; z) =

p∑
j=0

Ap,jU
(1,0)

p,0 (a; b, c; z), (2.75)

where the functions U
(1,0)

p,j are defined by

U
(1,0)

p,0 (a; b, c; z) = P(N,p)(a; b, 1 + |a1,p|+ b− c, c− |a1,p|;1− zp) (2.76)

and for j = 1, . . . , p,

U
(1,0)

p,j (a; b, c; z) = (1− zj)c−|a1,j |−b

( p∏
l=j+1

(1− zl)−al

)
×Q

(N,p)
j

(
gj,p; c− |a1,j−1| − b, 1 + c− |a1,j | − b,Z N,p

j (z)
)
,

(2.77)
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the series P(N,p) and Q
(N,p)
j are defined in (2.60) and (2.61), the vectors gj , 1−zp ,

and Z N,p
j (z) are given in (2.70), (2.69), and (2.71), (2.72), and the coefficients Ap,j

are

Ap,0 =
Γ(c)Γ(c− |a1,p| − b)
Γ(c− |a1,p|)Γ(c− b)

,

Ap,j =
Γ(c)Γ(c− |a1,j−1| − b)Γ(|a1,j |+ b− c)

Γ(aj)Γ(b)Γ(c− b)
, j = 1, . . . , p.

(2.78)

The functions (2.76) and (2.77) are linearly independent particular solutions of the
Lauricella system of differential equations (1.5).

Theorem 3 yields formulae for continuation of F (N)
D into the domain KN , that is,

into a neighbourhood of 1 with respect to all the variables zj . More precisely, the
following theorem holds.

Theorem 4. If none of the numbers c − |a1,j | − b, j = 1, . . . , N , are integers
(here |a1,j | =

∑j
l=1 al), then an analytic continuation of the series (1.4) into the

domain KN is given by

F
(N)
D (a; b, c; z) =

N∑
j=0

AjU
(1)
0 (a; b, c; z), (2.79)

where the functions U
(1)
0 := U

(1,0)
N,0 and U

(1)
j := U

(1,0)
N,j are defined by

U
(1)
0 (a; b, c; z) = F

(N)
D (a; b, 1 + |a|+ b− c;1− z), (2.80)

and for j = 1, . . . , N by

U
(1)

j (a; b, c; z) = (1− zj)c−|a1,j |−b

( N∏
l=j+1

(1− zl)−al

)
×G(N,j)

(
gj ; c− |a1,j−1| − b, 1 + c− |a1,j | − b,Yj(1− z)

)
, (2.81)

F
(N)
D and G(N,j) in (2.80) and (2.81) are the respective series (1.4) and (2.31), the

vectors gj , 1 − z, and Yj(1 − z) are defined in (2.70), (2.69), and (2.73), and the
coefficients Aj are

A0 =
Γ(c)Γ(c− |a| − b)
Γ(c− |a|)Γ(c− b)

,

Aj =
Γ(c)Γ(c− |a1,j−1| − b)Γ(|a1,j |+ b− c)

Γ(aj)Γ(b)Γ(c− b)
, j = 1, . . . , N.

(2.82)

The functions (2.80) and (2.81) are linearly independent solutions of the Lauricella
system of differential equations (1.5).

Theorems 3 and 4 are proved by induction on the number of variables of the
Lauricella function. These proofs are quite similar to the proof of Theorem 2, and
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we do not give them here. The restrictions on the parameters of F (N)
D in Theorems 3

and 4, which exclude resonant cases, can be circumvented, for instance, by carrying
out suitable limiting procedures or by using the approach in [61] (see also § 2.5).

It follows from Theorem 3 and the equality (2.59) that formulae for analytic con-
tinuation of F (N)

D (a; b, c; z) into domains of the form KN
p,σ := {z ∈ CN: σ(z) ∈ KN

p },
where the KN

p are defined by (2.74) and σ ∈ SN , have the form (2.75) with a
replaced by σ(a) and z replaced by σ(z) on the right-hand side. Furthermore, the
functions U

(1,0)
p,j (σ(a); b, c;σ(z)), p, j = 0, . . . , N , obtained from (2.76) and (2.77)

by applying the permutation σ ∈ SN to z and the parameter a, are linearly inde-
pendent particular solutions of the Lauricella system of differential equations (1.5).

2.4. Analytic continuation into a neighbourhood of z(1,∞,0)
p,q . In this sub-

section we give a complete set of formulae of the form (1.27) for analytic continu-
ation of the function F

(N)
D (a; b, c; z) with arbitrary N > 2 into neighbourhoods of

the points z(1,∞,0)
p,q ∈ CN

, p, q = 0, . . . , N .

2.4.1. The hypergeometric series F (N,p,m), G
(N,p,m)
j , and H

(N,p)
j and their con-

vergence domains. We start with generalized hypergeometric series involved in the
formulae for such an analytic continuation. First we introduce notation for the fol-
lowing quantities, which are expressed in terms of the partial sum (2.29) of compo-
nents of the multi-index k:

κ(k, p, j) := |k1,p| − |kp+1,j |+ |kj+1,N |, µ(k, p, j) := −κ(k, p, j),
τ(k, p, j) := |kp+1,j | − |kj+1,N |.

(2.83)

The required hypergeometric series F (N,p,m)(a; b, c1, c2; z), G
(N,p,m)
j (a; b, c; z), and

H
(N,p)

j (a; b, c; z) are defined by the following formulae, where we use the notation
(2.29), (2.30), (2.62), and (2.83):

F (N,p,m)(a; b, c1, c2; z) :=
∞∑

|k|=0

(b)τ(k,p,m)

(c1)µ(k,p,m)(c2)|k1,p|

(a)k
k!

zk, (2.84)

G
(N,p,m)
j (a; b, c; z) :=

∞∑
|k|=0

(b)λ(k,p,j)

(c)λ(k,p,j)

(aj + |km+1,N | − |kp+1,m|)kj

(aj)kj

(a)k
k!

zk,

(2.85)

H
(N,p)

j (a; b, c; z) :=
∞∑

|k|=0

(b)κ(k,p,j)

(c)κ(k,p,j)

(aj + |k1,p|)kj

(aj)kj

(a)k
k!

zk. (2.86)

In (2.85) we assume that j can take the values 1, 2, . . . , p, while in (2.86) it can take
the values p+ 1, p+ 2, . . . , N , and the index m in (2.84) and (2.85) also lies in the
segment from p+ 1 to N .

Proposition 5. The series (2.84), (2.85), and (2.86) converge in the domains
FN,p,m , GN,p,m

j , and HN,p
j , respectively, which have the representations

FN,p,m =
⋃

δ∈(0,1)

FN,p,m(δ), GN,p,m
j =

⋃
δ∈(0,1)

GN,p,m
j (δ), HN,p

j =
⋃

δ∈(0,1)

HN,p
j (δ),
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where for each δ ∈ (0, 1) the auxiliary multicircular domains FN,p,m(δ), GN,p,m
j (δ),

and HN,p
j (δ) are defined by

FN,p,m(δ) := {z ∈ CN: |zs| < δ, s = 1, . . . , p; |zl| < (1 + δ)−1,

l = p+ 1, . . . ,m; |zq| < 1− δ, q = m+ 1, . . . , N},

GN,p,m
j (δ) := {z ∈ CN: |zl| < 1, l = 1, . . . , p, l ̸= j, |zj | < δ;

|zs| < (1 + δ)−1, s = p+ 1, . . . ,m,
|zs| < 1− δ, s = m+ 1, . . . , N},

and

HN,p
j (δ) := {z ∈ CN: |zl| < δ, l = 1, . . . , p, |zj | < 1− δ;

|zs| < 1, s = p+ 1, . . . , N, s ̸= j}.

Proof. To prove the above convergence properties we use the approach described, for
instance, in [13]. For each of the N -variate hypergeometric series (2.84)–(2.86) we
consider the set of conjugate radii of convergence, which are positive quantities rj ,
j = 1, . . . , N , such that the corresponding series converges for |zj | < rj , j =
1, . . . , N , and diverges when the reverse inequalities hold (see [155] and [156] for
details on the convergence of N -fold power series). Following [13], we calculate the
quantities rj for the series (2.84)–(2.86) by the formulae

rj = |Φj(k)|−1,

where

Φj(k) = lim
ε→∞

fj(εk), fj(k) =
A(k1, . . . , kj + 1, . . . , kN )

A(k)
, j = 1, . . . , N,

A(k) = A(k1, . . . , kN ) being the general form for the coefficients. For example,
consider the series (2.84), with coefficients of the form

A(k) =
(b)τ(k,p,m)

(c1)µ(k,p,m)(c2)|k1,p|

(a)k
k!

.

We see that

rs =
|k1,p|
r

for s = 1, . . . , p,

rl =
r∣∣ |kp+1,m| − |km+1,N |

∣∣ for l = p+ 1, . . . ,m,

rq =

∣∣ |kp+1,m| − |km+1,N |
∣∣

r
for q = m+ 1, . . . , N,

where r :=
∣∣ |k1,p| − |kp+1,m| + |km+1,N |

∣∣. Hence (1 + rs)rl = 1 and rq − rs = 1
for s, l, and q in the indicated segments. In this way we show that the series (2.84)
is convergent on each set FN,p,m(δ) for δ ∈ (0, 1), and therefore on FN,p,m. The
proof of the other two assertions of the proposition is similar. �
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2.4.2. Domains and elementary transformations. Let

WN,p,m :=
⋃

δ∈(0,1)

WN,p,m(δ), (2.87)

where for each fixed δ ∈ (0, 1) the auxiliary domain WN,p,m(δ) is given by

WN,p,m(δ) := {z ∈ CN: 0 < |1− z1| < · · · < |1− zp| < δ;
| arg(1− zj)| < π, j = 1, . . . , p;
|zp+1| > · · · > |zm| > 1 + δ;
| arg(−zj)| < π, j = p+ 1, . . . ,m;
|zj | < 1− δ, j = m+ 1, . . . , N}. (2.88)

Here the integer parameter p takes the values 0, . . . ,m, where m = 0, . . . , N , and
if p = 0, then in (2.88) there are no restrictions on the variables zj for j = 1, . . . , p,
while if p = m, then there are no restrictions on the zj for j = p+ 1, . . . ,m.

We define cone domains coinciding with WN,p,m up to certain symmetries by

WN,p,m
σ := {z ∈ CN: σ(z) ∈ WN,p,m}, (2.89)

where we recall that σ(z) is the result of the action on z of some element σ of the
symmetric group SN over an N -element set.

For the vectors rp(z) in (2.70) and for

sp,m = sp,m(z) := (zp+1, . . . , zm) (2.90)

the transformations analogous to (2.26) and (2.27) and compositions of them are
defined in an obvious way. For example, we have the equality (2.72) and

Yj(s−1
p,m) =

(
zj

zp+1
, . . . ,

zj

zj−1
,

1
zj
,
zj+1

zj
, . . . ,

zm

zj

)
, j = p+ 1, . . . ,m. (2.91)

We will also use the auxiliary functions Z
(N,p,m)

j (z) defined for m = 1, . . . , N
and p, j = 0, . . . ,m by the formulae

Z
(N,p,m)
0 (z) := (z1 − 1, . . . , zp − 1, z−1

p+1, . . . , z
−1
m , zm+1, . . . , zN ), (2.92)

Z
(N,p,m)

j (z) :=
(
Yj(1− rp(z)), z−1

p+1, . . . , z
−1
m , zm+1, . . . , zN

)
(2.93)

for j = 1, . . . , p, and

Z
(N,p,m)

j (z) :=
(
z1 − 1
zj

, . . . ,
zp − 1
zj

,Yj(s−1
p,m), zm+1, . . . , zN

)
(2.94)

for j = p + 1, . . . ,m; here we have used the definitions (2.72), (2.90), and (2.91),
and expressions of the form f = (p1, . . . , pn,q) or f = (p, q1, . . . , qm), where p =
(p1, . . . , pn) and q = (q1, . . . , qm), mean that f = (p1, . . . , pn, q1, . . . , qm). If p = 0,
then we use the equalities (2.92) and (2.94) to define the functions Z

(N,p,m)
j (z),
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but if p = N , then these functions are found from (2.92) and (2.93), while (2.94) is
not used in the definition.

Now consider the vectors gj,m and hj,p, which are expressed in terms of the
parameters a1, . . . , aN , b, and c of the Lauricella function by means of the equalities

gj,m := (a1, . . . , aj−1, c− |a1,m|, aj+1, . . . , aN ) (2.95)

for j = 1, . . . , p and

hj,p := (a1, . . . , aj−1, 1− c+ |a1,p|+ b, aj+1, . . . , aN ) (2.96)

for j = p+ 1, . . . ,m, where the quantities |as,l| are defined by (2.25). In § 2.4.3 the
vectors (2.92)–(2.94) and (2.95), (2.96) play the role of the variables and the param-
eters, respectively, of the generalized hypergeometric functions used in the formulae
for analytic continuation of the series (1.4).

2.4.3. Formulae for analytic continuation. Using Theorem 1, we extend the func-
tions U

(1,0)
p,j mentioned in Theorem 3, j = 0, . . . , p, into a neighbourhood of infinity

and thereby obtain formulae for analytic continuation of the Lauricella function
F

(N)
D into a neighbourhood of the point z(1,∞,0)

p,q .

We express the definitions (2.60) and (2.61) of the series P(N,p) and Q
(N,p)
j in

the form

P(N,p)(a; b, c1, c2; z) =
∞∑

|k1,p|=0

(b)|k1,p|

(c1)|k1,p|

(a1)k1 · · · (ap)kp

k1! · · · kp!

× zk1
1 · · · zkp

p F
(N−p)
D (ap+1, . . . , aN ; b+ |k1,p|, c2; zp+1, . . . , zN

)
,

Q
(N,p)
j (a; b, c; z) =

∞∑
|k|=0

(b)λ(k,p,j)

(c)λ(k,p,j)

(a1)k1 · · · (ap)kp

k1! · · · kp!

× zk1
1 · · · zkp

p F
(N−p)
D (ap+1, . . . , aN ; aj + kj , aj ; zp+1, . . . , zN ),

and then we represent the functions U
(1,0)

p,j , j = 0, . . . , p, given by (2.76) and (2.77)
in the form

U
(1,0)

p,0 (a; b, c; z) =
∞∑

|k1,p|=0

(b)|k1,p|

(1 + |a1,p|+ b− c)|k1,p|

(a1)k1 · · · (ap)kp

k1! · · · kp!

× (1− z1)k1 · · · (1− zp)kp

× F
(N−p)
D (ap+1, . . . , aN ; b+ |k1,p|, c− |a1,p|; zp+1, . . . , zN ) (2.97)
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and

U
(1,0)

p,j (a; b, c; z) = (1− zj)c−|a1,j |−b

( p∏
l=j+1

(1− zl)−al

)

×
∞∑

|k1,p|=0

(c− |a1,j−1| − b)λ(k,p,j)

(1 + c− |a1,j | − b)λ(k,p,j)

(a1)k1 · · · (c− |a1,p|)kj
· · · (ap)kp

k1! · · · kp!

×
(

1− z1
1− zj

)k1

· · ·
(

1− zj−1

1− zj

)kj−1

(1− zj)kj

(
1− zj

1− zj+1

)kj+1

· · ·
(

1− zj

1− zp

)kp

× F
(N−p)
D (ap+1, . . . , aN ; c− |a1,p|+ kj , c− |a1,p|; zp+1, . . . , zN ), j = 1, . . . , p.

(2.98)

Continuing the functions F (N−p)
D in (2.97) and (2.98) analytically by the formulae

(2.35)–(2.38), we arrive at the following result establishing formulae for analytic
continuation of F (N)

D (a; b, c; z) into the domains WN,p,m of the form (2.87), where
below we use the notation from §§ 2.4.1 and 2.4.2 and the quantities |as,j | are
defined by (2.25).

Theorem 5. If none of the numbers

c− |a1,j | − b, j = 1, . . . , p, b− |ap+1,j |, j = p+ 1, . . . , N,

are integers, then an analytic continuation of (1.4) into the domains WN,p,m with
arbitrary m = 0, . . . , N and p = 0, . . . ,m is given by the formula

F
(N)
D (a; b, c; z) =

m∑
j=0

Ap,m
j U

(N,p,m)
j (a; b, c; z), (2.99)

where for j = 0, . . . , p the functions U
(N,p,m)

j are defined by

U
(N,p,m)
0 (a; b, c; z) :=

( m∏
l=p+1

(−zl)−al

)
×F(N,p,m)

(
a; 1 + |a1,m| − c, 1 + |ap+1,m| − b, 1 + |a1,p|+ b− c; Z (N,p,m)

0 (z)
)
,

(2.100)

U
(N,p,m)

j (a; b, c; z) := (1− zj)c−|a1,j |−b

( p∏
l=j+1

(1− zl)−al

)( m∏
l=p+1

(−zl)−al

)
× G

(N,p,m)
j

(
gj,m; c− |a1,j−1| − b, 1 + c− |a1,j | − b; Z (N,p,m)

j (z)
)
, (2.101)

and for j = p+ 1, . . . ,m they are defined by

U
(N,p,m)

j (a; b, c; z) := (−zj)|ap+1,j−1|−b

( j−1∏
l=p+1

(−zl)−al

)
×H

(N,p,m)
j

(
hj,p; b− |ap+1,j−1|, 1 + b− |ap+1,j |; Z (N,p,m)

j (z)
)
, (2.102)
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the series F (N,p,m) , G
(N,p,m)
j , and H

(N,p)
j are defined in (2.84)–(2.86), and the

vectors Z
(N,p,m)

j (z), gj,m , and hj,p are given in (2.92)–(2.96).
For j = 0, . . . , p the coefficients Ap,m

j in (2.99) are

Ap,m
0 =

Γ(c)Γ(b− |ap+1,m|)Γ(c− |a1,p| − b)
Γ(b)Γ(c− |a1,m|)Γ(c− b)

,

Ap,m
j =

Γ(c)Γ(c− |a1,j−1| − b)Γ(|a1,j |+ b− c)
Γ(aj)Γ(b)Γ(c− b)

, j = 1, . . . , p,
(2.103)

while for j = p+ 1, . . . ,m they are

Ap,m
j =

Γ(c)Γ(b− |ap+1,j−1|)Γ(|ap+1,j | − b)
Γ(aj)Γ(b)Γ(c− b)

. (2.104)

The functions U
(N,p,m)

j given by (2.100)–(2.102) are linearly independent solutions
of the Lauricella system of differential equations (1.5).

The proof of the formulae (2.99)–(2.104) for analytic continuation uses induction
on the number of variables of the Lauricella function and is quite similar to the
proof of Theorem 2. We can see that the functions U

(N,p,m)
j , j = 0, . . . ,m, are

particular solutions of (1.5) by substituting (2.100)–(2.102) directly into (1.5). The
restrictions on the parameters of the function F

(N)
D in Theorem 5, which exclude

resonant (logarithmic) cases, can be circumvented by means of suitable limiting
procedures or by the approach in [61] (see also § 2.5).

Using simple arguments, we can deduce from Theorem 5 formulae for analytic
continuation of the Lauricella function into the domains WN,p,m

σ defined by (2.89)
form = 0, . . . , N , p = 0, . . . ,m, and σ ∈ SN , where we recall that SN is the symmet-
ric group over an N -element set. In fact, in view of the symmetry property (2.59)
of the Lauricella function, which is a direct consequence of the definition (1.4), and
the fact that z ∈ WN,p,m

σ means by definition that σ(z) ∈ WN,p,m, we see that
an analytic continuation of F (N)

D into the domain WN,p,m
σ is realized by the for-

mula (2.99) with the parameter a replaced by σ(a) and the argument z replaced
by σ(z) on the right-hand side (that is, in the coefficients Ap,m

j = Ap,m
j (a; b, c; z)

and the functions U
(N,p,m)

j (a; b, c; z) given by (2.100)–(2.104)). Also, the functions
U

(N,p,m)
j,σ := U

(N,p,m)
j

(
σ(a); b, c;σ(z)

)
obtained from (2.100)–(2.102) by applying

σ ∈ SN are linearly independent particular solutions of (1.5).
We can show that

A(N) := {U (N,p,m)
j,σ , m = 1, . . . , N, p = 0, . . . ,m, σ ∈ SN} (2.105)

is a complete set of solutions of the Lauricella system of differential equations (1.5)
in the domain W :=

⋃
m,p,σ W(N,p,m)

σ . For N = 1 the functions in A(N) become
the well-known solutions found by Kummer for the classical hypergeometric equa-
tion [30], [31]. For N = 2 such a system of solutions was constructed in [10] and [11],
and for N = 3 it was indicated in [13], apart from certain exceptions. For N > 3
the complete set of functions in A(N) was found in [57]–[60].
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2.5. Logarithmic case. As mentioned above, the formulae in § 1.3 for analytic
continuation of the Gauss function, as well as the formulae in Theorems 1–5 for con-
tinuation of the Lauricella function, must be modified for the special resonant sets
of values of the parameters. Such resonant cases requiring special consideration
are also said to be logarithmic because the solutions of Gauss’s equation (1.3) and
of the Lauricella system of differential equations (1.5) contain logarithmic terms
in addition to power terms. We start with several known results for the Gauss
function.

2.5.1. Analytic continuation of the Gauss function in the logarithmic case. If the
parameters a, b, and c of the hypergeometric equation (1.3) are such that c− a− b
is an integer, then we cannot define two linearly independent solutions u(1)

1 and u(1)
2

of (1.3) using (1.28) and (1.29). In fact, if c− a− b = 0, then it is easy to see that
the right-hand sides of (1.28) and (1.29) are equal. Further, if c− a− b ∈ Z \ {0},
then the third parameter of some function F in these formulae is a non-positive
integer −m, and all the terms of the hypergeometric series (1.1) for this function,
beginning with the mth, become infinite. Clearly, an analogous remark also applies
to (1.30) and (1.31), which do not define two linearly independent solutions u(∞)

1

and u(∞)
2 for integer b− a.

In the above special cases, when at least one of the relations

c− a− b ∈ Z, b− a ∈ Z

holds for a, b, and c, a solution of the hypergeometric equation (1.3) contains log-
arithms of z and 1 − z in addition to powers of them. To define analogues of the
canonical solutions (1.28)–(1.31) in the logarithmic case it is convenient to consider
the series

F±log(a, b; 1−m; z) :=
m−1∑
k=0

(a)k(b)k

k! (1−m)k
zk

+
(−1)m

(m− 1)!

∞∑
k=m

(a)k(b)k

k! (k −m)!
[h±k (a, b,m)− log(±z)]zk,

(2.106)

where the numbers h±k (a, b,m) are defined by

h+
k (a, b,m) := h̃k − ψ(b+ k), h−k (a, b,m) := h̃k − ψ(1− b− k),

h̃k := ψ(1−m+ k) + ψ(1 + k)− ψ(a+ k),
(2.107)

ψ(s) = Γ′(s)/Γ(s) being the logarithmic derivative of the gamma function, with the
first sum in (2.106) taken to be 0 for m = 0 and 1 for m = 1. Using the series F±log
defined by (2.106) and (2.107), we can simplify the standard notation for canonical
solutions and the formulae for analytic continuation that can be found in [30], for
instance.

Let c = a + b + m, where m ∈ Z+ is arbitrary. Then the following functions
play the role of the canonical solutions (1.28) and (1.29) of the equation (1.3) in
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a neighbourhood of z = 1:

u
(1)
1 (a, b; a+ b+m; z) = F+

log(a, b; 1−m; 1− z), (2.108)

u
(1)
2 (a, b; a+ b+m; z) = (1− z)mF (a+m, b+m; 1 +m; 1− z). (2.109)

On the other hand, if c = a+ b−m, where m ∈ Z+, then

u
(1)
1 (a, b; a+ b−m; z) = F (a, b; 1 +m; 1− z), (2.110)

u
(1)
2 (a, b; a+ b−m; z) = (1− z)−mF+

log(a−m, b−m; 1−m; 1− z). (2.111)

Let b = a + m for some non-negative integer m. Then the role of the canonical
solutions (1.30) and (1.31) of (1.3) in a neighbourhood of z = ∞ is played by

u
(∞)
1 (a, a+m; c; z) = (−z)−aF−log(a, 1− c+ a; 1−m; z−1), (2.112)

u
(∞)
2 (a, a+m; c; z) = (−z)−a−mF (a+m, 1− c+ a+m; 1 +m; z−1). (2.113)

But if a = b+m, where m ∈ Z+, then the system of canonical solutions of (1.3) is

u
(∞)
1 (b+m, b; c; z) = (−z)−b−mF (b+m, 1− c+ b+m; 1 +m; z−1), (2.114)

u
(∞)
2 (b+m, b; c; z) = (−z)−bF−log(b, 1− c+ b; 1−m; z−1). (2.115)

The functions u(1)
j and u

(∞)
j defined by (2.108)–(2.115), j = 1, 2, form a basis

for analytic continuation of the series (1.1) into the exterior of the unit disk in the
case when the parameters a, b, and c are connected by the above special relations.
Namely, the formula for analytic continuation of F (a, b; c; z) into the domain (1.33)
in the case when c = a+ b+m for m ∈ Z+ has the form

F (a, b; a+ b+m; z) = A1u
(1)
1 (a, b; a+ b+m; z), A1 =

Γ(a+ b+m)(m− 1)!
Γ(a+m)Γ(b+m)

,

(2.116)
where u(1)

1 is given by (2.108), while if c = a+ b−m for m ∈ N, then

F (a, b; a+ b−m; z) = A2u
(1)
2 (a, b; a+ b−m; z), A2 =

Γ(a+ b−m)(m− 1)!
Γ(a)Γ(b)

.

(2.117)
The formula for analytic continuation of the series (1.1) into the domain (1.36)

in the case when b = a+m with m ∈ Z+ has the form

F (a, a+m; c; z) = B1u
(∞)
1 (a, a+m; c; z), B1 =

Γ(c)(m− 1)!
Γ(a+m)Γ(c− a)

, (2.118)

where the function u
(∞)
1 is given by (2.112). But if a = b + m with m ∈ N, then

a continuation into the domain (1.36) is given by

F (b+m, b; c; z) = B2u
(∞)
2 (b+m, a; c; z), B2 =

Γ(c)(m− 1)!
Γ(b+m)Γ(c− b)

, (2.119)

where the function u(∞)
2 is defined in (2.115).

Note that the formulae (2.116)–(2.119) for analytic continuation in the logarith-
mic case contain only one canonical solution of (1.3), while in the general case the
right-hand sides of (1.34) and (1.37) involve two canonical solutions.
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2.5.2. Analytic continuation of the Appell function F1 in the logarithmic case. In
Theorems 1–5 giving formulae for analytic continuation of F (N)

D the restrictions
on the parameters of the function exclude the resonant, or logarithmic case. We
discuss this case in this subsection.

We show the necessity of a separate discussion of this case by taking the example
of Theorems 1 and 2. We will show that the formulae (2.35) and (2.39) for analytic
continuation cannot be used directly in the case when for some index k and some
integer m we have

b− |a1,k| = m, m ∈ Z. (2.120)

Note that the formulae (2.35) and (2.39) in Theorems 1 and 2 for analytic con-
tinuation into domains with large absolute values of the variables zk contain two
types of hypergeometric series F (N)

D and G(N,j), j = 1, . . . , N , defined by (1.4)
and (2.31), respectively. It is easy to see that non-positive integer values of c are
‘singular’ for the Lauricella series (1.4). In fact, if c = −m with m ∈ Z+, then
from the definition (1.2) of the Pochhammer symbol it follows that all the terms
in (1.4) with |k| (the sum of the components of the multi-index) greater than m
become infinite. As regards the series G(N,j), j = 1, . . . , N , non-positive integer
values c ∈ Z− and positive integer values b ∈ N are singular for them. Recalling
also that the gamma function Γ(s) has poles at s ∈ Z−, we easily see that if for
some index k the restrictions on the parameters of the Lauricella function indicated
in Theorems 1 and 2 do not hold, so that b− |a1,k| = m for some m ∈ Z, then the
quantity Bq,kU

(∞,0)
q,k and one of the neighbouring terms in the formula (2.35) are

not defined, and similarly, the quantity BkU
(∞)

k and one of the neighbouring terms
are not defined in (2.39). Hence, if in Theorems 1 and 2 the conditions imposed
on the parameters are not satisfied, so that a resonant case occurs, then the cor-
responding representations (2.35) and (2.39) cannot be used. In particular, the
formula (1.50), (1.51) for analytic continuation of the Appell function F1 (which
is the special case of Theorem 2 for N = 2) cannot be applied directly. Thus, the
resonant case of values of the parameters must be considered separately.

To construct formulae for analytic continuation of the Lauricella function F (N)
D in

resonant cases, we use first of all the Mellin–Barnes representations in Propositions 1
and 2, and then with their help we obtain analogues of Propositions 3 and 4. Here
one must take into account that the integrands in the formulae (2.3) and (2.18)
have not only simple but also double poles. The rest of the argument is mostly the
same as in deducing the analytic continuation results in Theorems 1–5.

In this paper we do not write out the complete set of formulae for analytic contin-
uation of F (N)

D in the resonant case. In § 5 we use such formulae (for resonant cases
of the parameters of F (N)

D ) for high-precision calculation of the parameters of the
Schwarz–Christoffel integral when there is crowding. One example here is a modi-
fication of the formula (1.50) for analytic continuation of the Appell function F1 in
the logarithmic case (for a complete set of formulae for analytic continuation of F1

see [61]).
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We start with the following analogue of the function G in (1.40) for non-positive
integer values of c:

G−log(a, a
′; b, 1−m; z, ζ) :=

∞∑
k=0

{ m+k−1∑
n=0

(b)n−k(a)k(a′)n

(1−m)n−kk!n!
zkζn

+
(−1)m

(m− 1)!

∞∑
n=m+k

(b)n−k(a)k(a′)n

(n− k −m)! k!n!
[κ−k,n − log(−ζ)]zkζn

}
, (2.121)

where the quantities κ−k,n are given by

κ−k,n := ψ(1 + n) + ψ(1−m+ n− k)− ψ(1− a′ − n) + ψ(b+ n− k). (2.122)

Now let b = a +m, where m ∈ Z+. In this case the following three functions are
the analogues of the solutions (1.43)–(1.45):

U
(∞)
0 (a, a′; a+m, c; z, ζ) = (−z)−a(−ζ)−a′

× F1

(
a, a′; 1− c+ a+ a′, 1 + a′ −m;

1
z
,
1
ζ

)
, (2.123)

U
(∞)
1 (a, a′; a+m, c; z, ζ) = (−z)−a(−ζ)−m

×G−log

(
a, 1− c+ a+m;m, 1− a′ +m;

ζ

z
,
1
ζ

)
, (2.124)

U
(∞)
2 (a, a′; a+m, c; z, ζ) = (−z)−bF1

(
1− c+ a+m, a′; a+m, 1 +m;

1
z
,
ζ

z

)
,

(2.125)

where the generalized hypergeometric series G−log is defined in (2.121), (2.122).
A formula extending the Appell function F1 into the domain V2 defined in (2.33)
has the form

F1(a, a′; a+m, c; z, ζ) = B0U
(∞)
0 (a, a′; a+m, c; z, ζ)+B1U

(∞)
1 (a, a′; a+m, c; z, ζ),

(2.126)
where the coefficients B0 and B1 are

B0 =
Γ(c)Γ(m− a′)

Γ(a+m)Γ(c− a− a′)
and B1 =

Γ(c)Γ(a′ −m)(m− 1)!
Γ(a′)Γ(a+m)Γ(c− a−m)

.

Note that only two (of the three) linearly independent solutions of the system E
(2)
D

are involved in (2.126).

3. Jacobi-type formulae for the Lauricella function F
(N)
D

and their application to the Riemann–Hilbert problem

3.1. Jacobi identity for the Gauss function F (a, b; c; z) and its generaliza-
tion for F

(N)
D . In Gauss’s equation (1.3) we replace the parameters a, b, and c by
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a−1, b−1, and c−1, respectively, so that the function u(z) = F (a−1, b−1; c−1; z)
is now a solution, and we rewrite the new equation as

d

dz

[
zc−1(1− z)a+b−c du(z)

dz

]
= (a− 1)(b− 1)zc−2(1− z)a+b−c−1u(z). (3.1)

Using the differentiation formula

d

dz
F (a− 1, b− 1; c− 1; z) =

(a− 1)(b− 1)
c− 1

F (a, b; c; z),

we arrive at the familiar Jacobi identity for the Gauss function [117] (see also [30]):

d

dz
[zc−1(1− z)a+b−cF (a, b; c; z)] = (c−1)zc−2(1− z)a+b−c−1F (a−1, b−1; c−1; z).

(3.2)
The above arguments (also presented in [30], for instance) show that (3.2) is a con-
sequence of Gauss’s differential equation (1.3).

To state a generalization of the Jacobi identity (3.2) for the Lauricella function
F

(N)
D (a; b, c; z) (see [57], [65], [66]), we introduce some further notation. First of all,

let
ej := (0, . . . , 1, . . . , 0)

denote the vector with jth component 1 and the others equal to 0. Subtracting ej

from a vector a = (a1, . . . , aN ) decreases the jth component of a by 1, that is,

a− ej = (a1, . . . , aj−1, aj − 1, aj+1, . . . , aN ). (3.3)

Similarly, the vector obtained from the one in (3.3) by increasing its sth component
(s ̸= j) by 1 can be expressed as

a− ej + es = (a1, . . . , aj − 1, . . . , as + 1, . . . , aN ). (3.4)

The vectors a′j and z′j are obtained from a and z by eliminating the jth component:

a′j := (a1, . . . , aj−1, aj+1, . . . , aN ), z′j := (z1, . . . , zj−1, zj+1, . . . , zN ). (3.5)

As in the previous sections, the modulus of a vector is understood to be the sum
of its components; for example, for a′j in (3.5) we have

|a′j | :=
∑

16s6N, s̸=j

as.

The following statement establishes an analogue of the identity (3.2) for the
Lauricella function.

Theorem 6. The Lauricella function F
(N)
D (a; b, c; z) satisfies the following differ-

ential equations of Jacobi type:

∂

∂zj

{[ N∏′

p=1

(zj − zp)ap

]
z

c−|a′j |−1

j (1− zj)aj+b−cF
(N)
D (a; b, c; z)

}

=
[ N∏′

p=1

(zj − zp)ap−1

]
z

c−|a′j |−2

j (1− zj)aj+b−c−1Rj(a; b, c; z), j = 1, . . . , N,

(3.6)
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where Rj is given by

Rj(a; b, c; z) =
[ N∏′

p=1

(zj − zp)
][

(c− 1)F (N)
D (a− ej ; b− 1, c− 1; z)

+
N∑′

s=1

as
zs(1− zs)
zj − zs

F
(N)
D (a− ej + es; b, c; z)

]
, (3.7)

and a prime on a summation (or a product) sign means that s ̸= j (p ̸= j ).

A detailed proof of Theorem 6 was given in [59] and [66] using induction on the
numberN of variables of the Lauricella function F (N)

D , and we do not present it here.
We show only that if N = 1, then the relations (3.6), (3.7) in Theorem 6 become
the Jacobi identity (3.2) for the Gauss function F . In fact, for N = 1 the system
of formulae (3.6), (3.7) reduces to a single equality. The vector-valued parameter a
and argument z of the Lauricella function now consist of one component each and
become the scalar parameter a and argument z of the Gauss function. Thus, we
must set |a′j | = 0 in (3.6). Furthermore, the products with respect to p involved
in (3.6) and (3.7) do not contain factors, and the sum with respect to s in (3.7) does
not contain terms. By the standard convention such products should be set equal
to 1 and such sums should be set equal to 0. In view of the above, we arrive at
the identity (3.2) by substituting F (a, b; c; z) in place of F (1)

D in the left-hand side
of (3.6) and substituting R1(a; b, c; z) = (c− 1)F (a− 1, b− 1; c− 1; z) from (3.7) in
the right-hand side.

We note that some differential relations for the Appell function F1 considered
in [157] are close to the ones established in Theorem 6 when we take N = 2 there.

Just as in the derivation of (1.3) from (3.2), we can start from the Jacobi-type
formulae (3.6), (3.7) and obtain a system of partial differential equations for F (N)

D .
This system has a form different from the standard one (1.5) and is given by the
following theorem.

Theorem 7. The Lauricella function F
(N)
D (a; b, c; z) satisfies the following system

of partial differential equations with respect to the variables zj , j = 1, . . . , N :

∂2u

∂z2
j

+
(
c− |a′j |
zj

+
aj + b− c+ 1

zj − 1
+

N∑′

s=1

as

zj − zs

)
∂u

∂zj

+
aj

zj(zj − 1)

N∑′

s=1

zs(1− zs)
zj − zs

∂u

∂zs
+

ajbu

zj(zj − 1)
= 0, j = 1, . . . , N, (3.8)

where a prime on a summation sign indicates that the sum is taken for s ̸= j .

Proof. We consider the function

ũ(a; b, c; z) := F
(N)
D (a− ej ; b− 1, c− 1; z) (3.9)
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and observe that the functions F (N)
D on the right-hand side of (3.7) are expressed

as follows in terms of the derivatives of ũ:

F
(N)
D (a− ej + es; b, c; z) =

c− 1
as(b− 1)

∂ũ

∂zs
, j ̸= s,

F
(N)
D (a; b, c; z) =

c− 1
(aj − 1)(b− 1)

∂ũ

∂zj
,

(3.10)

as follows from the definition (3.9) and the relation

∂

∂zj
F

(N)
D (a; b; c; z) =

ajb

c
F

(N)
D (a + ej ; b+ 1, c+ 1; z), (3.11)

where we recall that the vectors a−ej and a−ej+es in (3.9) and (3.10) were defined
in (3.3) and (3.4), respectively. Substituting (3.9) and (3.10) into the formulae (3.6)
and (3.7) with index j, we arrive at an equation satisfied by ũ. In it we replace
aj , b, and c by aj + 1, b+ 1, and c+ 1, respectively, bearing in mind that ũ is then
transformed into u = F

(N)
D (a; b, c; z). Then Theorem 7 is obtained by using the

property (2.59) of F (N)
D . �

Note also that if aj = 1, that is, the vector parameter of the Lauricella function
has the form ã = (a1, . . . , aj−1, 1, aj−1, . . . , aN ), then Rj on the right-hand side
of (3.6) is a polynomial of degree N − 1 in zj . In fact, then the functions

F
(N)
D (ã− ej ; b− 1, c− 1; z), F

(N)
D (ã− ej + es; b, c; z)

in the definition of Rj are independent of zj , because (3.3) and (3.4) show that

ã− ej = (a1, . . . , aj−1, 0, aj+1, . . . , aN )

and

ã− ej + es = (a1, . . . , aj−1, 0, aj+1, . . . , as + 1, . . . , aN ).

Thus, Rj is a polynomial of the form

Rj(a; b, c; z) =
∏

16p6N, p̸=j

(zj − zp)
[
(c− 1)F (N−1)

D (a′j ; b− 1, c− 1; z′j)

+
∑

16s6N, s̸=j

as
zs(1− zs)
zj − zs

F
(N−1)
D (a′j,s; b, c; z

′
j)

]
, (3.12)

where a′j,s is the vector obtained from a by adding one to the sth component and
omitting the jth component, that is, a′j,s := (a1, . . . , aj−1, aj+1, . . . , as +1, . . . , aN ),
s ̸= j, and the vectors a′j and z′j are defined in (3.5).

It follows from the above that the right-hand side of (3.6) with index j becomes
much simpler when aj = 1: it is then a product of binomials and the explicit
polynomial (3.12). This important special case of Theorem 6 is a basis for the
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representation (1.57) for the solution of the Riemann–Hilbert problem (which we
mentioned in the Introduction and will also discuss below in this section). Thus,
it is a link between the theory of the Lauricella function and the theory of the
Riemann–Hilbert problem.

For a more convenient further presentation we assume that aN = 1, and we write
the (j = N)th Jacobi-type identity for the function F (N)

D of the form

F
(N)
D ( a1, . . . , aN−1︸ ︷︷ ︸

=a

, 1; b, c; z1, . . . , zN−1︸ ︷︷ ︸
=z

, w), (3.13)

where we have changed to w the notation for the variable zN corresponding to
aN = 1.

In what follows we use the following vector notation for the parameters and
arguments of the function (3.13):

a := (a1, . . . , aN−1), z := (z1, . . . , zN−1), (3.14)

and we also need the vector gotten from a by increasing the sth component by 1:

a + es = (a1, . . . , as−1, as + 1, as+1, . . . , aN−1); (3.15)

here es = (0, . . . , 1, . . . , 0) is the (N − 1)-dimensional vector with sth component 1
and the others equal to 0. By the modulus of a vector we mean (as above) the sum
of its components; for example, for the vector a in (3.14) we have |a| :=

∑N−1
s=1 as.

Now we state a needed consequence of Theorem 6.

Theorem 8. The following formula of Jacobi type holds for the Lauricella func-
tion (3.13):

∂

∂w

{[ N−1∏
j=1

(w − zj)aj

]
wc−|a|−1(1− w)1+b−cF

(N)
D (a, 1; b, c; z, w)

}

=
[ N−1∏

j=1

(w − zj)aj−1

]
wc−|a|−2(1− w)b−cR(a; b, c; z, w), (3.16)

where R(a; b, c; z, w) is a polynomial in w of degree N − 1 defined by

R(a; b, c; z, w) =
[ N−1∏

j=1

(w − zj)
](
λ0 +

N−1∑
s=1

λs

w − zs

)
, (3.17)

with coefficients λs , s = 0, . . . , N − 1, independent of w and expressible in terms of
the Lauricella function of N − 1 variables by the formulae

λ0 := (c− 1)F (N−1)
D (a; b− 1, c− 1; z),

λs := aszs(1− zs)F
(N−1)
D (a + es; b, c; z), s = 1, . . . , N − 1,

(3.18)

with the vectors a, z, and a + es defined in (3.14) and (3.15).
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It is easy to see that for N = 1 the relations (3.16)–(3.18) become the following
equality, which is a consequence of the Jacobi identity (3.2) for the Gauss function
with a = 1:

d

dz
[zc−1(1− z)1+b−cF (1, b; c; z)] = (c− 1)zc−2(1− z)b−c. (3.19)

In fact, let N = 1, so that the Lauricella function (3.13) coincides with F (1, b; c; z).
Then since a in (3.14) has N − 1 components, we set |a| = 0 in (3.16), and we take
the products with respect to j and the sums with respect to s in (3.16) and (3.17) to
be equal to 1 and 0, respectively (because the upper limit is smaller than the lower
limit). Taking this into account, we get from (3.17) and (3.18) that R = λ0 = c−1,
and thus we see that the identity (3.16) for N = 1 coincides with (3.19).

We can obtain N similar representations for the polynomial R in the following
way. Differentiating on the left-hand side in (3.16) and taking (3.11) into account,
we compare the result with the right-hand side and find the following expression
for R:

R(a; b, c; z, w) = w(1− w)
[ N−1∏

j=1

(w − zj)
][
b

c
F

(N)
D (a, 2; b+ 1, c+ 1; z, w)

+
( N−1∑

s=1

as

w − zs
+
c− |a| − 1

w
− 1 + b− c

1− w

)
F

(N)
D (a, 1; b, c; z, w)

]
. (3.20)

Since this expression is a polynomial of degree N−1 by Theorem 8, we can represent
it in the Lagrange form in terms of the values at N arbitrary points. It is convenient
to take points in the set {0, 1, a1, . . . , aN−1} because the values of R there are
easy to calculate using (3.20). In this way we find N representations for R, one of
which is

R(a; b, c; z, w) = w

[ N−1∏
j=1

(w − zj)
](

c− |a| − 1
w

Λ0 +
N−1∑
s=1

as(1− zs)
w − zs

Λs

)
,

where Λ0 = F
(N)
D (a; b, c; z), Λs = F

(N)
D (a + es; b, c; z), s = 1, . . . , N − 1, and the

vector of parameters a + es is defined by (3.15).

3.2. Statement of the Riemann–Hilbert problem in H+ with piecewise
constant data. Let Lk denote the intervals of the real line R lying between con-
secutive points in the set Ξ in (1.56): Lk = (ξk, ξk+1), k = 0, . . . , N , where we recall
that ξ0 = ξN+1 is the point at infinity. By the formulae

χ(ξ) = χk and σ(ξ) = σk, ξ ∈ Lk, k = 0, . . . , N, (3.21)

we introduce complex and real piecewise constant functions χ(ξ) and σ(ξ) on R,
which will be the data in the problem below, where the χk ̸= 0 and σk are some
constants. We also fix a set of non-negative integers

G := {n0, n1, . . . , nN}, nk ∈ Z+, k = 0, . . . , N, (3.22)
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and with each point ξk ∈ Ξ we associate the number nk ∈ G; in what follows
this number will characterize the integer part of the growth exponent at ξk of the
solution P+(ζ) of the Riemann–Hilbert problem.

We remark that on each interval Lk, k = 0, . . . , N , the argument of the function
χ(ξ) in (3.21) takes the constant value argχk, which is determined up to a quantity
2πmk, wheremk is an arbitrary integer. Since χ(ξ) is discontinuous, the integersmk

corresponding to different intervals Lk are in no way connected. We fix arbitrary
values of the mk, k = 0, . . . , N , and thereby branches of the function argχ(ξ) on
each interval Lk, and then we calculate the jumps of argχ(ξ) (more precisely, of
the branches chosen) at points in Ξ by

δk :=
argχk − argχk−1

π
, k = 1, . . . , N, δ0 := −argχ0 − argχN

π
. (3.23)

We also calculate the fractional and integer parts of the jumps δk defined in (3.23):

[0, 1) ∋ αk := {δk}, βk := [δk], k = 0, . . . , N ; (3.24)

and we consider the jumps of the function ρ(ξ) = σ(ξ)/χ(ξ) at the points in Ξ:

ρk =
σk+1

χk+1
− σk

χk
, k = 0, . . . , N.

We also consider the quantity

ΘN :=
π

2
− argχN . (3.25)

It is assumed that the numbers n0 and α0 corresponding to the point ξ0 at infinity
do not vanish simultaneously. Since α0 ∈ [0, 1) and n0 ∈ Z+, this means that
α0 + n0 ̸= 0, and moreover, there are no finite points ξk ∈ Ξ such that nk = 0 and
αk = 0 but at the same time ρk ̸= 0. Thus, we assume that we always have the
conditions

1) α0 + n0 ̸= 0, 2) ̸ ∃ k = 1, . . . , N : nk = 0, αk = 0, ρk ̸= 0. (3.26)

Let H + denote the class of functions analytic in H+ that are continuous in H+ \Ξ,
where Ξ is the set of points (1.56) on the real line at which χ(ξ) or σ(ξ) is discon-
tinuous.

The Riemann–Hilbert problem under consideration is the problem of finding
a function P+ ∈ H + which is analytic in the upper half-plane from the boundary
condition

Re[χ(ξ)P+(ξ)] = σ(ξ), ξ ∈ R \ Ξ, (3.27)

on the real line, where χ and σ are defined in (3.21), and it is assumed that at
points in Ξ the function P+ satisfies the growth conditions

P+(ζ) =

{
O

(
(ζ − ξk)αk−nk

)
if nk ̸= 0,

O(1) if nk = 0,
ζ → ξk (k = 1, . . . , N), (3.28)

P+(ζ) = O(ζα0+n0), ζ →∞. (3.29)
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Because of the presence of the numbers nk, the conditions (3.28) and (3.29) allow the
solution P+(ζ) to have non-integrable powerlike growth in general. This version
of the Riemann–Hilbert problem can appropriately be called singular.

The following theorem (see [140] and [64]) establishes the solvability of the
Riemann–Hilbert problem and a representation for its solution in terms of Cauchy-
type integrals. It was proved using methods going back to Gakhov [126] and
Muskhelishvili [125].

Theorem 9. The following results hold for the Riemann–Hilbert problem (3.27)–
(3.29) under consideration with piecewise constant data (3.21) satisfying the condi-
tions (3.26).

i) If the index κ defined by

κ := n0 − β0 +
N∑

k=1

(βk + nk) (3.30)

is non-negative, then the solution P+ ∈ H + has the form

P+(ζ) = X+(ζ)Pκ(ζ) + N +(ζ), (3.31)

where X+(ζ)Pκ(ζ) =: Ψ+(ζ) is the general solution of the homogeneous problem,
X+(ζ) is the canonical function defined by

X+(ζ) = eiΘN

N∏
k=1

(ζ − ξk)αk−nk , (3.32)

the constant ΘN is given by (3.25), Pκ(ζ) is an arbitrary polynomial of degree κ
with real coefficients, and the function N +(ζ) is a particular solution of the inho-
mogeneous problem and is found as follows:

N +(ζ) =
N∑

k=0

N +
k (ζ), (3.33)

N +
k (ζ) =

σkX
+(ζ)

χkπi

∫
Lk

dt

X+(t)(t− ζ)
, k = 1, . . . , N − 1, (3.34)

N +
0 (ζ) =

σ0X
+(ζ)(ζ − τ∗)κ

χ0πi

∫
L0

(t− τ∗)−κ

X+(t)(t− ζ)
dt,

N +
N (ζ) =

σNX
+(ζ)(ζ − τ∗)κ

χNπi

∫
LN

(t− τ∗)−κ

X+(t)(t− ζ)
dt,

(3.35)

τ∗, τ
∗ ∈ R being arbitrary points on the respective intervals (ξ1,+∞) and (−∞, ξN ).

ii) If κ = −1, then the unique solution of the problem is

P+(ζ) = N +(ζ), (3.36)

where the function N +(ζ) is defined by (3.33)–(3.35) with κ = 0 set formally
in (3.35).
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iii) If κ < −1 and the solvability conditions

N∑
m=0

Bkm
σm

χm
= 0, k = 0, 1, . . . , |κ| − 2, where Bkm :=

∫
Lm

tk

X+(t)
dt, (3.37)

are satisfied, then the unique solution of the problem is (3.36). But if κ < −1 and
the conditions (3.37) fail, then this Riemann–Hilbert problem is unsolvable.

Assume that the first condition in (3.26) does not hold and α0 = n0 = 0. Then
it is easy to see from the equality

α0 + n0 = κ +
N∑

k=1

(αk − nk), (3.38)

which follows from (3.23), (3.24), and (3.30), that the integrals N +
0 (ζ) and N +

N (ζ)
over infinite intervals in (3.35) are divergent (we consider the case when κ > 0).
If in addition ρ0 ̸= 0, then the condition (3.29) in Theorem 9 must be replaced by
P+(ζ) = O(log ζ) as ζ → ∞, and κ + 1 must replace κ in the formulae (3.35)
for N +

0 (ζ) and N +
N (ζ). Then all the assertions of the theorem hold. But if

α0 = n0 = 0 and ρ0 = 0, then in (3.35) we set τ∗ = τ∗ and regard the sum
N +

0 (ζ) + N +
N (ζ) =: S (ζ) in the sense of the principal value of the integral, which

is easily shown to exist. Now the function N +(ζ) involved in the theorem will be
calculated by the formula

N +(ζ) = S (ζ) +
N−1∑
k=1

N +
k (ζ),

where, as before, N +
k (ζ) is defined by (3.34). After this modification of the func-

tion N +(ζ) all the assertions of Theorem 9 hold. The relation (3.29) is transformed
into P+(ζ) = O(1) as ζ →∞. We note also that if the second condition in (3.26)
fails at one of the finite points ξk ∈ Ξ, then the form of the solution given in Theo-
rem 9 is preserved, but at ξk the asymptotic behaviour of the function P+(ζ) will
be logarithmic rather than powerlike as in (3.28).

We can show that if in the formula (3.35) for N +
0 we replace τ∗ by τ̃ ̸= τ∗

and denote this function by Ñ +
0 , then the difference Ñ +

0 −N +
0 is the product of

a polynomial of degree κ−1 with real coefficients and the canonical function X+(ζ)
(so that it satisfies the conditions of the homogeneous Riemann–Hilbert boundary
problem). A similar observation is valid for N +

N . Thus, the presence of τ∗ and τ∗

in (3.35) does not affect the total number (= κ + 1) of arbitrary real constants
determining the solution of the Riemann–Hilbert problem in Theorem 9.

3.3. Schwarz–Christoffel integral representation of the solution of the
Riemann–Hilbert problem. The aim of this subsection is a theorem on repre-
senting the solution of the Riemann–Hilbert problem by an integral (1.52), a the-
orem which gives explicitly all the quantities in the integrand. Before stating this
theorem, we introduce some notation.
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Consider the vector a := (a0, . . . , aN ) with components aj connected with the
data of the Riemann–Hilbert problem (3.27)–(3.29) by the relations

a0 := κ, aj := αj − nj , j = 1, . . . , N, (3.39)

where we recall that the quantities αj are to be found from (3.24) and (3.23), and
the nj are non-negative integers in the set (3.22). We let ak, k = 1, . . . , N − 1, be
the vectors obtained from a by omitting the components a0, ak, and ak+1, that is,

ak := (a1, . . . , ak−1, ak+2, . . . , aN ), (3.40)

and let a0 and aN be defined by

a0 = aN := (a0, a2, . . . , aN−1). (3.41)

Consider the vectors as
k obtained by increasing the component as of ak by 1

(provided that s ̸= k, k+ 1 if k = 1, . . . , N − 1 and s ̸= 1, N if k = 0 or N), that is,

as
k := (a1, . . . , ak−1, ak+2, . . . , as−1, as + 1, as+1, . . . , aN ), k = 1, . . . , N − 1,

as
0 = as

N := (a0, a2, . . . , as−1, as + 1, as+1, . . . , aN−1),

a0
0 = a0

N := (a0 + 1, a2, . . . , aN−1).
(3.42)

Let bk and ck, k = 0, . . . , N , be numbers defined as follows:

b0 := |α| − |n|+ κ, c0 := |α2,N | − |n2,N |+ κ + 1; (3.43)
bk := 1 + nk − αk, ck := 2 + nk + nk+1 − αk − αk+1, k = 1, . . . , N − 1;

(3.44)

bN := |α| − |n|+ κ, cN := |α1,N−1| − |n1,N−1|+ κ + 1; (3.45)

as usual, here

|αk,l| =
l∑

j=k

αj , |α| = |α1,N |, |nk,l| =
l∑

j=k

nj , |n| = |n1,N |. (3.46)

We define the quantities |βk,l| and |β|, where β := (β1, . . . , βN ), in a similar way.
The vectors uk, k = 0, . . . , N , have the form

u0 := (u0
0, u

0
2, . . . , u

0
N−1), uN := (uN

0 , u
N
2 , . . . , u

N
N−1), (3.47)

uk := (uk
1 , . . . , u

k
k−1, u

k
k+2, . . . , u

k
N ), k = 1, . . . , N − 1, (3.48)

where the uk
j are the quantities defined by

u0
0 :=

ξN − τ∗
ξN − ξ1

, u0
j :=

ξN − ξj
ξN − ξ1

, j = 2, . . . , N − 1, (3.49)

uk
j :=

ξk+1 − ξk
ξj − ξk

, k = 1, . . . , N − 1, j = 1, . . . , N, j ̸= k, k + 1, (3.50)

uN
0 :=

τ∗ − ξ1
ξN − ξ1

, uN
j :=

ξj − ξ1
ξN − ξ1

, j = 2, . . . , N − 1, (3.51)
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τ∗ and τ∗ are the same as in Theorem 9, and the points ξj , j = 1, . . . , N , are in the
set Ξ in (1.56) of points of discontinuity of the boundary data χ(ξ) and σ(ξ) in
the Riemann–Hilbert problem (3.27)–(3.29).

Let Λk be the quantities defined by

Λ0 := −eiπ(β0−n0)
σ0

π|χ0|
B(b0, c0 − b0)(ξN − ξ1)−b0 ,

ΛN :=
σN

π|χN |
B(bN , cN − bN )(ξN − ξ1)−bN ,

Λk := −eiπ(|βk+1,N |+|nk+1,N |) σk

π|χk|
B(bk, ck − bk)

× (ξk+1 − ξk)ck−1
∏

16j6N
j ̸=k,k+1

|ξk − ξj |−aj , k = 1, . . . , N − 1,

(3.52)

where B(α, β) is the beta function [30]

B(α, β) =
Γ(α)Γ(β)
Γ(α+ β)

.

We also define the quantities µk
s by

µ0
−1 = (c0 − 1)(ξ1 − ξN )F (N−1)

D (a0; b0 − 1, c0 − 1;u0),

µ0
0 = a0(ξN − τ∗)(τ∗ − ξ1)F

(N−1)
D (a0

0; b0, c0;u0),

µ0
s = as(ξN − ξs)(ξs − ξ1)F

(N−1)
D (as

0; b0, c0;u0), s = 2, . . . , N − 1,

µN
−1 = (cN − 1)(ξN − ξ1)F

(N−1)
D (aN ; bN − 1, cN − 1;uN ),

µN
0 = a0(τ∗ − ξ1)(ξN − τ∗)F (N−1)

D (a0
N ; bN , cN ;uN ),

µN
s = as(ξs − ξ1)(ξN − ξs)F

(N−1)
D (as

N ; bN , cN ;uN ), s = 2, . . . , N − 1,

µk
−1 = (ck − 1)F (N−2)

D (ak; bk − 1, ck − 1;uk),

µk
s = as

ξs − ξk+1

ξk − ξs
F

(N−2)
D (as

k; bk, ck;uk), s = 1, . . . , N, s ̸= k, k + 1.

(3.53)

Recall that the quantities ak, as
k, bk, ck, and uk in these formulae are defined

by (3.39)–(3.51) in terms of the data of the Riemann–Hilbert problem (3.27)–(3.29).
The next theorem gives a representation of the solution of the Riemann–Hilbert

problem as a Schwarz–Christoffel integral.

Theorem 10. The following assertions hold for the solution P+(ζ) of the
Riemann–Hilbert problem (3.27)–(3.29) in H+ with piecewise constant data (3.21)
satisfying (3.26).

i) If the index κ defined by (3.30) is non-negative, then the solution P+ ∈ H +

has a representation as a Schwarz–Christoffel integral:

P+(ζ) = eiΘN

∫ ζ

ζ∗

N∏
j=1

(t− ξj)αj−nj−1R(t) dt+ w∗, (3.54)
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where R(ζ) is a polynomial of degree N + κ− 1 with real coefficients which has the
form

R(ζ) = Q(ζ) + T (ζ), (3.55)

Q(ζ) is a polynomial of degree N + κ − 1 defined in terms of an arbitrary polyno-
mial Pκ(ζ) of degree κ with real coefficients by

Q(ζ) =
N∏

j=1

(ζ − ξj)
(
Pκ(ζ)

N∑
s=1

αs − ns

ζ − ξs
+ P ′κ(ζ)

)
, (3.56)

and

T (ζ) =
[ N−1∏

j=2

(ζ − ξj)
][

Λ0(ζ − τ∗)κ
(
µ0
−1 +

µ0
0

ζ − τ∗
+

N−1∑
s=2

µ0
s

ζ − ξs

)

+ ΛN (ζ − τ∗)κ
(
µN
−1 +

µN
0

ζ − τ∗
+

N−1∑
s=2

µN
s

ζ − ξs

)]

+
N−1∑
k=1

Λk

[ ∏
16j6N
j ̸=k,k+1

(ζ − ξj)
][
µk
−1 + (ζ − ξk)

∑
16s6N
s ̸=k,k+1

µk
s

ζ − ξs

]
(3.57)

is a real polynomial of degree N + κ − 2, with the coefficients Λk and µk
s defined

by (3.52) and (3.53). The formula (3.54) involves the constants ΘN in (3.25) and
constants ζ∗ and w∗ such that P+(ζ∗) = w∗ .

ii) If κ = −1, then the unique solution of the problem is expressed by the
Schwarz–Christoffel integral (3.54), (3.55), where Q(ζ) ≡ 0 in the formula (3.55)
for R(ζ).

iii) If κ < −1, then a solution exists if and only if the conditions (3.37) are
satisfied. If they are, then the solution can be found using the same formula as for
κ = −1.

Before turning to a discussion of the proof of this theorem, we note that if the
solution P+ of the Riemann–Hilbert problem in question is finite at some point
ξk ∈ Ξ (and therefore is continuous in the intersection of a neighbourhood of ξk
with the closed half-plane H+), then we can set ζ∗ = ξk in (3.55), and we can
find w∗ = P+(ζ∗) directly from the boundary condition of the Riemann–Hilbert
problem. In fact, extending the boundary condition (3.27) to ξk by continuity from
the left and right and setting w∗ = P+(ξk), we obtain the following system of two
(linear) equations with respect to w∗:

Re(χk−1w
∗) = σk−1, Re(χkw

∗) = σk.

It is easy to verify that the system is satisfied by

w∗ = P+(ξk) = i
χkσk−1 − χk−1σk

Im(χkχk−1)
, (3.58)

which we take to be the constant of integration in (3.54) for ζ∗ = ξk; in the
formula (3.58) we assume that Im(χkχk−1) ̸= 0.
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We note also that the function

N +(ζ) = eiΘN

∫ ζ

ζ∗

N∏
j=1

(t− ξj)αj−nj−1T (t) dt+ w∗, (3.59)

where the polynomial T (ζ) can be found from (3.57), is a particular solution of
the inhomogeneous Riemann–Hilbert problem (3.27)–(3.29), and the functions

Ψ+
m(ζ) = eiΘN

∫ ζ

ζ∗

N∏
j=1

(t− ξj)αj−nj−1Qm(t) dt, m = 0, . . . ,κ,

with the polynomials Qm(ζ) given by

Qm(ζ) = ζm
N∏

j=1

(ζ − ξj)
( N∑

s=1

αs − ns

ζ − ξs
+
m

ζ

)
,

are (for κ > 0) linearly independent solutions of the corresponding homogeneous
problem.

If we formally set κ = 0 in the expression (3.57) for the polynomial T (ζ), then
(3.54) and (3.59) will still produce the general solution of the (inhomogeneous)
Riemann–Hilbert problem (3.27)–(3.29) and a particular solution of it, respectively.
Then the expression for T (ζ) will be slightly simpler; in particular, there will be
no additional quantities τ∗ and τ∗ in it.

The representation (3.54) as a Schwarz–Christoffel integral shows that the func-
tion P+(ζ) realizes a conformal mapping of the upper half-plane H+ onto some
simply connected non-schlicht polygonal domain M (for instance, see [93]). The
interior branch points of M are the images of complex zeros of R(ζ) (in H+) under
the mapping w = P+(ζ), and the boundary corner points of M are the images
of the points ξk ∈ Ξ, and also of the real zeros of R(ζ) under this mapping. The
internal angle of M at the boundary point wk = P+(ξk), k ̸= 0, is equal to
πγk := π(αk−nk) if R(ξk) ̸= 0, and to π(γk +ρ) if R(ξk) = 0, where ρ is the order
of the zero of R at ξk. The angle at a point w̃ := P+(ξ̃), where ξ̃ ∈ R and R(ξ̃) = 0
but ξ̃ /∈ Ξ, is equal to π(ρ̃+ 1), where ρ̃ is the order of the zero of R at ξ̃. In this
way Theorem 10 gives a clear geometric interpretation of the solution P+(ζ) of
this Riemann–Hilbert problem.

3.4. Application of Jacobi-type formulae to the derivation of a new rep-
resentation for the solution of the Riemann–Hilbert problem. First of
all, avoiding technical details, we describe our approach to the derivation of the
representation (3.54) under the assumption that the index κ defined by (3.30) is
non-negative, that is, the condition i) in Theorem 10 is satisfied. We transform the
derivatives of Ψ+(ζ) and N +(ζ) into products of binomials and a polynomial.

Differentiating Ψ+(ζ) = X+(ζ)Pκ(ζ), where X+(ζ) is the canonical function
(3.32) and Pκ(ζ) is a real polynomial of degree κ, we get after simple transforma-
tions that

d

dζ
Ψ+(ζ) =

N∏
j=1

(t− ξj)αj−nj−1Q(ζ), (3.60)

where Q(ζ) is the polynomial defined by (3.56).
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Next we transform the derivative of each function N +
k (ζ) in (3.33). Using

a change of variables that takes the interval Lk into (0, 1), and using the integral
representation (1.6) for the Lauricella function, we express all the functions N +

k (ζ)
in terms of the functions F (N)

D (with sets of parameters and variables depending
on k). Applying the version of a Jacobi-type formula indicated in Theorem 8
to the expressions obtained for N +

k (ζ), we transform the derivatives dN +
k (ζ)/dζ

into the required form of a product of binomials and some explicit polynomial Tk(ζ):

d

dζ
N +

k (ζ) =
N∏

j=1

(ζ − ξj)αj−nj−1Tk(ζ). (3.61)

Noting that for different values of k the derivatives (3.61) differ only in the form
of the polynomial Tk(ζ), we add the equalities (3.61) and, in view of (3.33), obtain
the desired representation for dN +(ζ)/dζ:

d

dζ
N +(ζ) =

N∏
j=1

(t− ξj)αj−nj−1T (ζ), T (ζ) =
N∑

k=0

Tk(ζ). (3.62)

Adding (3.60) and (3.62), we find the desired representation for dP+(ζ)/dζ. Inte-
grating it, we obtain (3.54).

All these transformations were thoroughly described in [59] and [64]. For exam-
ple, we present the argument for N +

0 . By (3.32) and (3.35) the function N +
0 (ζ)

has the following representation in terms of a Cauchy-type integral:

N +
0 (ζ) =

σ0

χ0πi

[
(ζ−τ∗)κ

N∏
j=1

(ζ−ξj)αj−nj

] ∫ ξ1

−∞

(t− τ∗)−κ dt∏N
j=1(t− ξj)αj−nj (t− ζ)

. (3.63)

Making a change of the variables t, ζ to the new variables τ , w by the formulae

t(τ) = ξN + (ξ1 − ξN )τ−1 and ζ(w) = ξN + (ξ1 − ξN )w, (3.64)

we obtain

N +
0 (ζ(w)) = − σ0

χ0πi
wαN−nN (w − 1)α1−n1

×
[(
w − ξN − τ∗

ξN − ξ1

)κ N−1∏
j=2

(
w − ξN − ξj

ξN − ξ1

)αj−nj
]

×
∫ 1

0

[(
1− ξN − τ∗

ξN − ξ1
τ

)κ N−1∏
j=2

(
1− ξN − ξj

ξN − ξ1
τ

)αj−nj

(1− wτ)
]−1

× τ |α|−|n|+κ−1(1− τ)n1−α1 dτ,

where we recall that |α| =
∑N

s=1 αs and |n| =
∑N

s=1 ns. Rewriting the above
formula for N +

0 while taking into account the notation (3.42), (3.43), (3.49) and
using the Euler-type representation (1.6) for the Lauricella function, we obtain the
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expression

N +
0

(
ζ(w)

)
= − σ0

χ0πi
B(b0, c0 − b0)wc0−|a0|−1(w − 1)1+b0−c0

×
[ ∏

06j6N−1
j ̸=1

(w − u0
j )

aj

]
F

(N)
D (a0, 1; b0, c0;u0, w). (3.65)

Differentiating (3.65) and using the Jacobi-type formula (3.16)–(3.18), we obtain
an expression for the derivative:

d

dw
N +

0

(
ζ(w)

)
=

σ0

χ0πi
B(b0, c0 − b0)wc0−|a0|−2(w − 1)b0−c0

×
[ ∏

06j6N−1
j ̸=1

(w − u0
j )

aj−1

]
R0(w), (3.66)

where R0(w) is a polynomial in w defined by

R0(w) =
[ ∏

06j6N−1
j ̸=1

(w − u0
j )

](
λ0
−1 +

∑
06j6N−1

j ̸=1

λ0
s

w − u0
s

)
, (3.67)

with

λ0
−1 = (c0 − 1)F (N−1)

D (a0; b0 − 1, c0 − 1;u0),

λ0
s = asu

0
s(1− u0

s)F
(N−1)
D (as

0; b0, c0;u0), s = 0, 2, . . . , N − 1.
(3.68)

In (3.66) and (3.67) we make the substitution inverse to ζ(w) in (3.64):

w(ζ) =
ζ − ξN
ξ1 − ξN

,
d

dζ
=

1
ξ1 − ξN

d

dw
, (3.69)

and then in view of the equality − argχ0 − π(|α| − |n|) = − argχN + π(|β| + |n|)
following from (3.23), (3.24), and (3.30), we obtain

d

dζ
N +

0 (ζ) = eiΘN

[ N∏
j=1

(ζ − ξj)αj−nj−1

]
T0(ζ), (3.70)

where ΘN is the constant in (3.25) and T0(ζ) is a polynomial of degree N + κ − 2
defined by

T0(ζ) = Λ0

[
(ζ − τ∗)κ

N−1∏
j=2

(ζ − ξj)
](
µ0
−1 +

µ0
0

ζ − τ∗
+

N−1∑
s=2

µ0
s

ζ − ξs

)
, (3.71)

with coefficients Λ0 and µ0
s determined from the data of the Riemann–Hilbert prob-

lem (3.27)–(3.29) by the equalities (3.52) and (3.53) in the notation (3.39)–(3.50).
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Similar arguments show that

d

dζ
N +

k (ζ) = eiΘN

[ N∏
j=1

(ζ − ξj)αj−nj−1

]
Tk(ζ), (3.72)

where Tk(ζ) is the polynomial defined by

Tk(ζ) = Λk

[ ∏
16j6N
j ̸=k,k+1

(ζ − ξj)
]

×
[
µk
−1 + (ζ − ξk)

∑
16s6N
s̸=k,k+1

µk
s

ζ − ξs

]
, k = 1, . . . , N − 1, (3.73)

TN (ζ) = ΛN

[
(ζ − τ∗)κ

N−1∏
j=2

(ζ − ξj)
](
µN
−1 +

µN
0

ζ − τ∗
+

N−1∑
s=2

µN
s

ζ − ξs

)
. (3.74)

Adding the equalities (3.60) and (3.70), (3.72) for k = 0, . . . , N , taking (3.71)
and (3.74) into account, and integrating the result, we arrive at the representa-
tion (3.54).

Parts ii) and iii) of Theorem 10 are proved quite similarly. There we must bear
in mind the assertion of Theorem 9 in the case when the index κ is negative.
Theorem 10 is proved.

4. Applications to plasma physics

4.1. A model of magnetic reconnection and the statement of the corre-
sponding Riemann–Hilbert problem. Many explosion-like processes studied
in stellar physics take place in a rarefied plasma, when magnetic forces dominate
other forces (gas-dynamic, gravitational, and so on), and large amounts of energy
are released as a result of the magnetic reconnection phenomenon, which means
a fundamental change in the configuration of the magnetic field [158]–[160]. The
central mathematical problem in the investigation of such processes is often an effec-
tive calculation of the magnetic field for this or that plasma configuration [160].

In this section we present a solution of the Riemann–Hilbert problem in a compli-
cated polygonal domain (see [67], [111]) which arises in modelling magnetic recon-
nection near a disintegrating current layer in the corona of the Sun. According to
contemporary views, it is the destruction of this layer that leads to solar flares [160].
The unknown analytic function F (z) in this problem describes the magnetic field
in the exterior of the configuration of currents shown in Fig. 3. The horizontal
cuts Γ−0 and Γ+

0 correspond to two parts of the disintegrating current layer, and
the four slanted cuts Γj , j = 1, . . . , 4, depict the shock waves associated with the
layer. Thus, the configuration of currents Γ = Y +∪Y − is a union of two Y -formed
components:

Y + := Γ+
0 ∪ Γ1 ∪ Γ4, Y − := {z : − z ∈ Y +}, (4.1)
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Figure 3. The system of cuts Γ = ∂Y .

where Y + consists of the horizontal cut Γ+
0 and the slanted cuts Γ1 and Γ4,

Γ+
0 = {z : Re z ∈ [a, b], Im z = 0},

Γ1 = {z : z = b+ tρeiπα, t ∈ [0, 1]}, Γ4 = {z : z ∈ Γ1},

while Y − is obtained as a mirror reflection of Y + in the y-axis.
In the domain Y := C\Γ (see Fig. 3) we consider the stationary planar magnetic

field
B(x, y) = (Bx(x, y), By(x, y), 0), (4.2)

which is assumed to be a divergence-free potential field. A physical justification
of such assumptions in modelling the phenomenon under consideration was given
in [160]. We also assume that the normal component of the field vanishes on the
current layer (that is, on Γ±0 ) and is equal to a fixed constant β on the shock waves
(that is, on the Γj , j = 1, . . . , 4). At infinity the modulus of the field grows linearly,
with coefficient of proportionality γ, and at the endpoints of the segments Γ±0 ,
which are free from shock waves, it is also unbounded but has minimal possible
growth. Furthermore, it is known [85] that if (4.2) is a divergence-free potential
field, then the associated function F (z) = Bx(x, y) − iBy(x, y) is analytic in the
domain Y .

The above mathematical model leads to the formulation of the Riemann–Hilbert
problem of finding a function F (z) that is analytic in Y and continuous in Y \
{∞,−a, a} and that satisfies the boundary conditions

Re[νjF (z)] = cj , z ∈ Γj , j = 0, 1, . . . , 4, (4.3)

where Γ0 := Γ+
0 ∪Γ−0 , the complex normals νj to the cuts Γj , j = 0, . . . , 4, have the

form

ν0 = i, ν1 = ieiπα, ν2 = −ie−iπα, ν3 = −ieiπα, ν4 = ie−iπα, (4.4)

and the numbers cj on the right-hand side of (4.3) are given by

c0 = 0 and cj = β, j = 1, . . . , 4. (4.5)

At the points z ∈ {∞,−a,+a} where F is discontinuous we assume that it satisfies
the growth conditions

F (z) = −iγz + o(1), z →∞, and F (z) = O
(
(z ± a)−1/2

)
, z → ±a. (4.6)
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Figure 4. Scheme of the solution of the Riemann–Hilbert problem.

The real quantities β and γ in the statement of the problem along with the num-
bers a, b, ρ, and α specifying the contour Γ are parameters of the model. This
model [67], [160] is a natural development of the model of disintegration of an
(infinite) current layer without shock waves which was investigated in [161].

4.2. The problem in one fourth of the original domain and the construc-
tion of a conformal mapping. Adding the symmetry conditions

F (z) = −F (z) and F (−z) = F (z) (4.7)

to the problem posed, we reduce it to a Riemann–Hilbert problem in one-fourth of
the domain Y , which we denote by G, that is, in the first coordinate quadrant cut
along Γ1 (see Fig. 4, (a)):

G := QI \ Γ1, QI := {z : Re z > 0, Im z > 0}. (4.8)

This Riemann–Hilbert problem is stated as follows: find an analytic function F
in G that is continuous on G \ {∞, a}, satisfies the boundary condition

Re[h(z)F (z)] = c(z), z ∈ ∂G, (4.9)

in which the coefficients h(z) and c(z) are defined by

h(z) =


i on (AB) ∪ (MC),
1 on (BM) ∪ (EA),
ieiπα on (CDE),

c(z) =

{
0 on (ABMC) ∪ (EA),
β on (ABC),

(4.10)

and satisfies the following growth conditions at the points A and M :

F (z) = −iγz + o(1), z →∞, and F (z) = O
(
(z − a)−1/2

)
, z → a; (4.11)
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the quantities β and γ here are real constants which are parameters of the model.
The geometric quantities a, b, ρ, and α are also parameters of the model.

After finding the solution F of the problem (4.9)–(4.11), we extend it to the
whole of Y using the symmetry relations (4.7) and thereby obtain a solution of the
original problem (4.3)–(4.6). We present the numerical result for the full domain Y
in the most representative form from a physics standpoint, as a family of level curves
A(x, y) = const of the magnetic potential A(x, y), which we find by the formula

A(x, y) := ImΨ(z), Ψ(z) :=
∫ z

0

F (t) dt. (4.12)

The function Ψ(z) is called a complex potential of the field. It is easy to see that
the magnetic field B is tangent to level curves of A(x, y).

A conformal mapping of one-fourth of the reconnection domain G onto the upper
half-plane was constructed in [111]. Here we present only the general scheme of
reasoning in order to indicate connections with § 5. Note that G is an (infinite)
simply connected pentagon with vertices A = ∞, B = 0, C = b (to the left of the
cut Γ1), D = b+ρeiπα, and E = b (to the right of Γ1). The internal angles at these
points with respect to G have measure

παj , j ∈ {A,B,C,D,E},

where

αA = −1
2
, αB =

1
2
, αC = 1− α, αD = 2, αE = α.

We consider the mapping Φ−1 : H+ conf−−−→ G subject to the following conditions
(which were used in [111], but are slightly different from the ones we use in § 5):

Φ−1(∞) = ∞, Φ−1(0) = 0, Φ−1(1) = b+ ρeiπα, (4.13)

that is, we assume that the vertices A, B, and D of G correspond to the boundary
points ζ = ∞, ζ = 0, and ζ = 1 of the half-plane (see Fig. 4, (a) and (b)). Letting
λ and τ denote the unknown inverse images of C and E, we express z = Φ−1(ζ) as
a Schwarz–Christoffel integral [85], [93], [104]:

Φ−1(ζ) = K

∫ ζ

0

t−1/2(t− λ)−α(t− 1)(t− τ)α−1 dt, (4.14)

where the coefficient K of the integral is easily seen to be real and positive (K > 0).
To find the unknown parameters λ, τ , and K of this integral in the usual way

(for instance, see [93] and also § 5), we form a system of non-linear transcendental
equations by equating the three given distances between vertices of the polygo-
nal boundary ∂G to their expressions calculated by (4.14). Integrating over the
segments [0, λ], [λ, 1], and [λ, τ ] in (4.14), we obtain the system of equations

K I1(λ, τ) = b, K I2(λ, τ) = r, K I3(λ, τ) = 0, (4.15)
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where the numbers Ij(λ, τ), j = 1, 2, 3, denote the integrals

I1(λ, τ) =
∫ λ

0

t−1/2(λ− t)−α(1− t)(τ − t)α−1 dt, (4.16)

I2(λ, τ) =
∫ 1

λ

t−1/2(t− λ)−α(1− t)(τ − t)α−1 dt, (4.17)

I3(λ, τ) =
∫ τ

λ

t−1/2(t− λ)−α(1− t)(τ − t)α−1 dt. (4.18)

Geometrically, the third equality in (4.15), which implies that I3(λ, τ) = 0, means
that the distance between the vertices C and E, the images of the limits of inte-
gration λ and τ , is 0 (see Fig. 4, (a) and (b)). Making changes of variables
in (4.16)–(4.18) so that the integration is over the interval [0, 1], and using the
representation (1.6) for the Lauricella function F

(N)
D , we express the integrals in

terms of this function with N = 2 variables (that is, in terms of the Appell func-
tion F1) by the formulae

I1(λ, τ) =
√
π Γ(1− α)

Γ(3/2− α)
λ1/2−ατα−1F

(2)
D

(
−1, 1− α;

1
2
,
3
2
− α;λ,

λ

τ

)
, (4.19)

I2(λ, τ) = [(1− α)(2− α)]−1λ−1/2(1− λ)2−α(τ − λ)α−1

× F
(2)
D

(
1
2
, 1− α; 1− α, 3− α;

λ− 1
λ

,
1− λ

τ − λ

)
, (4.20)

I3(λ, τ) = − π

sinπα
λ−1/2(1− λ)F (2)

D

(
1
2
,−1; 1− α, 1;−τ − λ

λ
,
τ − λ

1− λ

)
. (4.21)

Dividing the second equation by the first in (4.15), we eliminate K and thus
reduce the problem of finding the unknown parameters in the Schwarz–Christoffel
formula (4.14) to a system of two equations involving only the inverse images λ
and τ :

I2(λ, τ)
I1(λ, τ)

=
ρ

b
, I3(λ, τ) = 0, (4.22)

where the integrals Ij , j = 1, 2, 3, are found from (4.19)–(4.21). After solving (4.22),
we find the coefficient K from the first equation in (4.15) by the formula

K =
b

I1(λ, τ)
. (4.23)

Once we have found λ, τ , and K , the mapping z = Φ−1(ζ), expressed as the
Schwarz–Christoffel integral (4.14), is completely determined and we must invert
it, because we need the inverse mapping to solve the Riemann–Hilbert problem
F (z) = P ◦ Φ(z) in G. In [111] we presented an analytic method for inverting
a Schwarz–Christoffel integral in the form of a set of expansions (into power series)
with explicitly given coefficients. The method was based on a theory presented
in [115]. The convergence sets of these expansions cover in totality the closure
of the domain G of the mapping (away from infinity). Moreover, for each point
z ∈ G \ {∞} there is at least one expansion in this set that converges at z at an
exponential rate. Thus, this set of expansions is a convenient and effective tool for
calculating and investigating the mapping ζ = Φ(z).
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4.3. Solving the Riemann–Hilbert problem in the half-plane. We reduce
the original boundary-value problem (4.9)–(4.11) for an analytic function F (z) =
u(z) + iv(z) in the domain G to a similar problem in the upper half-plane H+ (see
Fig. 4) with respect to the function

w = P+(ζ) = F ◦ Φ−1(ζ)

by means of the mapping z = Φ−1(ζ). The Riemann–Hilbert problem for P+(ζ)
has the following statement: find a function P+(ζ) analytic in H+ that is contin-
uous on H+ \ {∞, a} and satisfies on the real line the boundary condition

Re[χ(ξ)P+(ξ)] = σ(ξ), ξ ∈ R \ {a}, (4.24)

where χ(ξ) = h ◦Φ−1(ξ) and σ(ξ) = c ◦Φ−1(ξ) are the complex and real piecewise
constant functions defined by

χ(ξ) =


i, ξ ∈ (AB) ∪ (MC),
1, ξ ∈ (BM) ∪ (EA),
ieiπα, ξ ∈ (CDE),

σ(ξ) =

{
0, ξ ∈ (ABMC) ∪ (EA),
β, ξ ∈ (ABC),

(4.25)
with the following growth conditions prescribed at ζ = ∞ and ζ = µ := Φ(a):

P+(ζ) = −2iγK
√
ζ+o(1), ζ →∞; P+(ζ) = O

(
(ζ−µ)−1/2

)
, ζ → µ. (4.26)

Here γ is a given coefficient (a parameter of the model), K is the coefficient of the
integral in (4.14), which we calculated in finding Φ−1, and µ denotes the inverse
image of the point M .

The boundary problem (4.24)–(4.26) is a special case of the Riemann–Hilbert
problem with piecewise constant coefficients that we considered in § 3. The five
points of discontinuity of the coefficients {ξk} are ξ0 = ∞, 0, µ, λ, τ . Calculating
the quantities αk and the index κ of the problem using the formulae (3.24), (3.23),
and (3.30), we find that

α0 = α1 = α2 =
1
2
, α3 = α, α4 =

1
2
− α, and κ = 0.

By Theorem 9, the equality κ = 0, and fact that the coefficient γ in (4.26) is given,
the problem (4.24)–(4.26) is uniquely solvable. Since the mapping Φ(z) is unique,
all this also implies that the problem (4.9)–(4.11) is uniquely solvable in G.

Using Theorem 9, i) and taking into account that κ = 0, we find the solution
of (4.24)–(4.26) as a Cauchy-type integral

P+(ζ) = X+(ζ)
[
2γK +

β

π

∫ τ

λ

t−1/2(t− µ)1/2(t− λ)−α(τ − t)α−1/2

t− ζ
dt

]
, (4.27)

where X+ is the canonical solution of the homogeneous problem and is given by

X+(ζ) = e−iπ/2ζ1/2(ζ − µ)−1/2(ζ − λ)α(ζ − τ)1/2−α, (4.28)

and the first term 2γK in the square brackets in (4.27) is found from the first
asymptotic formula in (4.26).
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The representation (4.27) can be transformed into a Schwarz–Christoffel inte-
gral by means of a Jacobi-type formula for the Lauricella function (see § 3). We do
not reproduce this transformation for (4.27), but use at once the final result of § 3
stated in Theorem 10. Applying this theorem to the problem (4.24)–(4.26) and cal-
culating P+(0) = 0 in accordance with (3.58), we obtain the desired representation
for P+(ζ) as a Schwarz–Christoffel integral:

P+(ζ) = −iγK
∫ ζ

0

t−1/2(t− µ)−3/2(t− λ)α−1(t− τ)−1/2−αR3(t) dt, (4.29)

where R3(ζ) is a third-degree polynomial of the form

R3(ζ) = (ζ − µ)(ζ − λ)(ζ − τ)− ζ(ζ − λ)(ζ − τ)
+ 2αζ(ζ − µ)(ζ − τ) + (1− 2α)ζ(ζ − µ)(ζ − λ)

+
β

γ

Γ(1− α)Γ(α+ 1/2)
π
√
πK

λ−3/2(λ− µ)−1/2(τ − λ)1/2

× [A0λ(λ− µ)ζ(ζ − µ)−A1τ(λ− µ)(ζ − µ)(ζ − λ)
+A2λ(τ − µ)ζ(ζ − λ)], (4.30)

with A0, A1, and A2 being numbers expressed in terms of the Lauricella function
of two variables F (2)

D (that is, the Appell function F1) by the formulae

A0 = F
(2)
D

(
1
2
,−1

2
;−α, 1

2
;x1, x2

)
, A1 = F

(2)
D

(
3
2
,−1

2
; 1− α,

3
2

;x1, x2

)
,

and A2 = F
(2)
D

(
1
2
,
1
2

; 1− α,
3
2

;x1, x2

)
, x1 = −τ − λ

λ
, x2 = − τ − λ

λ− µ
.

(4.31)
Using (3.58), we also see easily that

P+(λ) =
−β

sinπα
and P+(τ) =

−iβ
cosπα

. (4.32)

It follows from (4.29) that the dependence of the solution P+(β, γ; ζ) on the
parameters β and γ in the conditions (4.24)–(4.26) of the problem can be ‘factorized’
in the form

P+(β, γ; ζ) = γP̂

(
β

γ
; ζ

)
,

where

P̂

(
β

γ
; ζ

)
:= −iK

∫ ζ

0

t−1/2(t− µ)−3/2(t− λ)α−1(t− τ)−1/2−αR3(t) dt.

Hence, to understand this dependence for γ ̸= 0 we can confine ourselves to inves-
tigating the dependence of P+ on β alone with γ = 1.

We can show that as µ → 0 the formulae (4.29), (4.30) for P+(ζ) become the
solution of the Riemann–Hilbert problem constructed in [111] and corresponding to
the model in [134] of magnetic reconnection without rupture of the current layer.
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4.4. Hodograph domain for the magnetic field and numerical results for
solving the original problem in the reconnection domain. The analytic
function w = F (z) that solves the boundary-value problem (4.9)–(4.11) realizes
a conformal mapping of the original domain G onto a domain W which, following
[85], we call the hodograph domain for the magnetic field. It follows from the
representation of P+(ζ) as a Schwarz–Christoffel integral (4.29) and the formula

F (z) = P+ ◦ Φ(z) (4.33)

that the hodograph domain W is polygonal. This makes the solution of this problem
more geometrically clear and simplifies its analysis.

If the Riemann–Hilbert problem has data such that the three zeros p1, p2, and p3

of the polynomial R3(ζ) defined by (4.30), (4.31) are real, then it follows from the
representation (4.29) for P+(ζ) that W is an octagonal domain with vertices A, B,
P1, M , P2, C, P3, E (see Fig. 4, (c)), where the points C and E have the complex
coordinates P+(λ) and P+(τ) given by (4.32), respectively. The angles at these
vertices are

πδA = −π
2
, πδB =

π

2
, πδP1 = 2π, πδM = −π

2
,

πδP2 = 2π, πδC = πα, πδP3 = 2π, πδE = π

(
1
2
− α

)
,

(4.34)

and their inverse images are the points

ξA = ∞, ξB = 0, ξP1 = p1, ξM = µ,

ξP2 = p2, ξC = λ, ξP3 = p3, ξE = τ

(see Fig. 4, (b)).
But if R3(ζ) has two complex zeros p1 and p2 (p1 ∈ H+ and p2 = p1) and one

real zero p3, then the hodograph domain W still has a polygonal boundary, but it
does not lie in the plane but rather on a two-sheeted Riemann surface formed by
two copies of the w-plane cut along a curve L from P1 = P+(p1) to the point
at infinity and glued together (in the standard way). We show such a domain in
Fig. 5, in the case when p3 ∈ (λ, τ); here W is a (two-sheeted) hexagonal domain
with vertices A, B, M , C, P3, E, where C and E have complex coordinates P+(λ)
and P+(τ) given by (4.32), respectively. The angles at these six vertices are the
same as in the case when W is schlicht (see (4.34)).

To calculate the solution P+(ζ) of the Riemann–Hilbert problem in H+ as
a Schwarz–Christoffel integral (4.29), we represent it by a set of power series con-
verging in neighbourhoods of the inverse images of vertices of W indicated above
and in neighbourhoods of some regular points in this domain and on its bound-
ary. For P+(ζ) such representations can be found by expanding the integrand
in (4.29) into series in fractional powers of the variable and integrating these series
termwise. This method for calculating P+(ζ) is very convenient and effective in
practical usage.

We calculate the solution F (z) of the original Riemann–Hilbert problem (4.3)–
(4.7) in the domain G by the formula (4.33) and extend it into Y using the sym-
metry relations (4.7). Here we use the results in [111] to calculate the conformal
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Figure 5. The case when the polynomial R3(ζ) in the representation (4.29)
has complex zeros: (a) the presence of a branch point in H+ and (b) an
example of a non-schlicht hodograph domain W .

Figure 6. A solution of the Riemann–Hilbert problem; the field picture for
β = 0.

mapping Φ: G conf−−−→ H+ and then calculate the function P+(ζ) as we described
above.

In Figs. 6 and 7 we give examples of pictures of magnetic fields, that is, families
of level curves of the function A(x, y) in (4.12), which we calculated in Y by means
of the algorithm indicated above. The picture in Fig. 6 is given for γ = 1 and β = 0,
while in Fig. 7 it is given for γ = 1 and β = 0.5. The configuration of currents (see
Fig. 3) in Figs. 6 and 7 has the following geometric parameters: a = 0.4, b = 1,
ρ = 1, and πα = π/4.
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Figure 7. A solution of the Riemann–Hilbert problem; the field picture for
β = 0.5.

5. Applications to the Schwarz–Christoffel parameter problem

5.1. Representing the system of non-linear equations for the parameters
in terms of the Lauricella function. In this subsection we discuss in greater
detail the connection mentioned in § 1.4 between the theory of the function F

(N)
D

and the Schwarz–Christoffel parameter problem. In what follows we consider a con-
formal mapping µ : H+ conf−−−→ B of the half-plane H+ onto a polygonal domain B
with N + 3 vertices zj (see Fig. 8). We number the points zj , the corresponding
angles πβj , and the inverse images ζj = µ−1(zj) by indices from 0 to N + 2. The
number of vertices is such that the equations in the system for ζj can conveniently
be expressed in terms of the Lauricella function of N variables.

The mapping µ subject to the conditions

ζ0 = µ−1(z0) = 0, ζN+1 = µ−1(zN+1) = 1, and ζN+2 = µ−1(zN+2) = ∞,

is expressed as a Schwarz–Christoffel integral:

z = µ(ζ) = K0

∫ ζ

ζ̃

tβ0−1

[ N∏
j=1

(t− ζj)βj−1

]
(t− 1)βN+1−1 dt+ K1, (5.1)

where the inverse images ζj , j = 1, . . . , N , and the coefficient K0 are the unknowns.
Assuming that the zj are finite, j = 0, . . . , N + 1, so that βj ∈ (0, 2), we obtain the
following system of N + 1 equations for determining the vector x := (ζ1, . . . , ζN ) of
inverse images and the coefficient K0 (see [92], [93], [97]):

K0Ik(x) = Lk, k = 0, . . . , N, (5.2)

where the Lk = |zk+1 − zk| are the lengths of the sides of the polygon and

Ik(x) :=
∣∣∣∣∫ ζk+1

ζk

tβ0−1

[ N∏
j=1

(t− ζj)βj−1

]
(t− 1)βN+1−1 dt

∣∣∣∣. (5.3)
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Figure 8. A conformal mapping of the half-plane onto a polygonal domain.

For further arguments it is convenient to introduce the vector a and numbers b
and c connected with the characteristics βj of the angles of the polygon by the
formulae

a = (a1, . . . , aN ), aj := 1− βj , j = 1, . . . , N,

b := −1 +
N+1∑
j=0

(1− βj), c :=
N∑

j=0

(1− βj).
(5.4)

Making the change of variable t = ζk + (ζk+1 − ζk)τ , τ ∈ (0, 1), in the integrals
(5.3) and using the Euler-type representation (1.6), we express these integrals in
the form

Ik(x) = CkIk(a; b, c;x), k = 0, . . . , N, (5.5)
where the coefficients are given by

C0 =
Γ(1 + |a| − c)Γ(1− a1)

Γ(2 + |a2,N | − c)
, CN =

Γ(1− aN )Γ(c− b)
Γ(1 + c− b− aN )

,

Ck =
Γ(1− ak)Γ(1− ak+1)

Γ(2− ak − ak+1)
, k = 1, . . . , N − 1,

(5.6)

while the functions Ik(x) = Ik(a; b, c;x) are expressed in terms of F (N)
D by

I0(a; b, c;x) := ζ
1+|a2,N |−c
1

( N∏
j=2

ζ
−aj

j

)
F

(N)
D (a0; b0, c0;x0), (5.7)

Ik(a; b, c;x) := ζ
|a|−c
k (ζk+1 − ζk)1−ak−ak+1(1− ζk)c−b−1

×
k−1∏
j=1

(ζk − ζj)−aj

N∏
j=k+2

(ζj − ζk)−ajF
(N)
D (ak; bk, ck; Y1(1− xk)),

(5.8)
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and

IN (a; b, c;x) := ζ
|a|−c
N (1− ζN )c−b−aN

×
N−1∏
j=1

(ζN − ζj)−ajF
(N)
D (aN ; bN , cN ; Y1(1− xN )), (5.9)

with ak, bk, and ck expressed in terms of the quantities in (5.4) by

a0 := (a2, . . . , aN , 1 + b− c), b0 := 1 + |a| − c, c0 := 2 + |a2,N | − c, (5.10)

ak := (c− |a|, a1, . . . , ak−1, ak+2, . . . , aN , 1 + b− c),
bk := 1− ak, ck := 2− ak − ak+1,

(5.11)

aN := (c− |a|, a1, . . . , aN−1), bN := 1− aN , cN := 1 + c− b− aN , (5.12)

the vectors xk expressed in terms of the ζj , j = 1, . . . , N , by

x0 :=
(
ζ1
ζ2
, . . . ,

ζ1
ζN

, ζ1

)
, xN :=

(
1
ζN

,
ζ1
ζN

, . . . ,
ζN−1

ζN

)
,

xk :=
(
ζk+1

ζk
,
ζ1
ζk
, . . . ,

ζk−1

ζk
,
ζk+2

ζk
, . . . ,

ζN
ζk

,
1
ζk

)
, k = 1, . . . , N − 1,

(5.13)

and Y1(x) defined by (2.28).
It is easy to see that the quantities (5.7)–(5.9) are expressed in terms of the

solution U
(1)
1 of the Lauricella system of equations (1.5) with parameters (5.4) by

the formulae

I0(a; b, c;x) = U
(1)
1 (a; b, 1 + |a|+ b− c; 1− x),

Ik(a; b, c;x) = ζ−b
k U

(1)
1 (ãk; b, 1 + b− ak;xk), k = 1, . . . , N,

where ãk := (ak+1, a1, . . . , ak−1, ak+2, . . . , aN , 1 − c + b), and the function U
(1)
1

defined by (2.81) has the form

U
(1)
1 (a; b, c; z) = (1− z1)c−a1−b

( N∏
l=2

(1− zl)−al

)
× F

(N)
D

(
c− |a|, a2, . . . , aN ; c− b, 1 + c− a1 − b; Y1(1− z)

)
. (5.14)

Using Theorems 2 and 4, we can show that the quantities Ik, regarded as functions
of (ζ1, . . . , ζN ), are solutions of the system (1.5) with one and the same set of
parameters connected with the angles of the polygon by (5.4).

In a similar way it is easy to see that the integral in (5.1) over the interval between
any two points ζj and ζk (k ̸= j) can, like Ik, be expressed in terms of F (N)

D . For
example,

IN+1(x) :=
∫ ∞

1

tβ0−1
N∏

j=1

(t−ζj)βj−1(t−1)βN+1−1 dt =
Γ(b)Γ(c− b)

Γ(c)
F

(N)
D (a; b, c;x),

(5.15)
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where we use the notation (5.4), and in deducing (5.15) we made the substitution
t = 1/τ in the integral and then used the Euler-type formula (1.6).

In the case when some vertex zk is infinite, so that the characteristic βk of
some angle is negative, the integrals Ik and Ik+1 diverge and therefore the sys-
tem (5.2), (5.3) must be modified. For example, if βk ∈ (−2, 0), then the kth and
(k + 1)st equations in this system can be replaced by the two equations

K0I
±
k (x) = H±

k , (5.16)

where

I±k (x) :=
∣∣∣∣∫

Γ±k

tβ0−1
N∏

j=1

(t− ζj)βj−1(t− 1)βN+1−1 dt

∣∣∣∣, (5.17)

the contour Γ−k begins at ζk−1, continues into the upper half-plane, goes clockwise
around ζk, and (continuing into the lower half-plane) returns to ζk−1, while the
contour Γ+

k begins at ζk+1, continues into the upper half-plane, goes anticlockwise
around ζk, and (continuing into the lower half-plane) returns to ζk+1. The quantity
H−

k := |z∗k−1 − zk−1| on the right-hand side of (5.16) is the distance between the
vertex zk−1 and its reflection z∗k−1 in the side (zk, zk+1), while H+

k := |z∗k+1− zk+1|
is the distance between zk+1 and its reflection z∗k+1 in the side (zk−1, zk).

On the other hand, if βk = 0 and βk−1, βk+1 ∈ (0, 1), then the kth and (k+ 1)st
equations above can be replaced by the following equation (we use the complex
notation):

K0Ĩk(x) = zk+1 − zk−1, (5.18)

Ĩk(x) :=
∫

Γk

tβ0−1
N∏

k=1

(t− ζk)βk−1(t− 1)βN+1−1 dt, (5.19)

where the integration contour Γk joining ζk−1 and ζk+1 lies in H+ \ {ζ0, . . . , ζN+2}
(except for the endpoints). The left-hand sides of (5.16), (5.17) and (5.18), (5.19)
can be expressed in terms of the Lauricella function if instead of the representa-
tion (1.6) we use the representation for this function via integrals over Pochhammer
loop contours indicated, for instance, in [13].

The cases considered do not exhaust all possible configurations of polygonal
domains B. The reader can find details on the formation of systems of equations
for the inverse images in [93]. Below we give an example of the construction of a
conformal mapping in the case when the domain is finite and the system of equations
for the parameters of the Schwarz–Christoffel integral (5.1) has the form (5.2), (5.3).

5.2. An example of the construction of a conformal mapping in the sit-
uation of crowding. We illustrate the results in the previous subsection, § 5.1,
by giving an example of the construction of a conformal mapping of a 10-gonal
domain M which is a rectangle with two cuts1 (see Fig. 9, (a)). The vertices of M
are denoted by Mj , j = 0, . . . , 9, and the angles at these vertices are

πβj =
π

2
, j = 0, . . . , 9, j ̸= 3, 6, πβ3 = πβ6 = 2π. (5.20)

1We have borrowed the shape of the domain M from Grigor’ev’s Ph.D. thesis [162].
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Figure 9. The domains M , H+, and Π and the correspondence of points
under the mappings µ : H+ conf−−−→ M , ϕ : Π

conf−−−→ H+, and Φ: Π
conf−−−→ M .

The domain M is determined by the lengths of the sides Lj , j = 0, . . . , 7, where
we set

L2 = L3 = δ and L5 = L6 = L0 − ε.

We consider the case when ε and δ are sufficiently small, so that the long cut
‘almost’ partitions the domain into two disconnected parts, leaving only a narrow
isthmus between the vertex M6 and the side (M0,M9), and the short cut only
‘slightly’ affects the behaviour of the conformal mapping near this isthmus.

The mapping µ : H+ conf−−−→ M is normalized by the conditions

µ(0) = 0, µ(1) = L0 + iH, µ(∞) = iH (5.21)

(see Fig. 9, (a), and (b)), where H = L1 + L4 + L7 is the height of the rectangle.
The function µ(ζ) satisfying (5.21) is expressed as a Schwarz–Christoffel integral

z = µ(ζ) = −K

∫ ζ

0

(t− ζ3)(t− ζ6) dt√
t(t− ζ1)(t− ζ2)(t− ζ4)(t− ζ5)(t− ζ7)(t− 1)

, (5.22)

where the vector of inverse images (ζ1, . . . , ζ7) =: x and the coefficient K > 0 are
the unknowns. To find the ζj , k = 1, . . . , 7, we have the system of equations

Ik(x)
I0(x)

=
Lk

L0
, k = 1, . . . , 7, (5.23)
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where

Ik =
∣∣∣∣∫ ζk+1

ζk

(t− ζ3)(t− ζ6) dt√
t(t− ζ1)(t− ζ2)(t− ζ4)(t− ζ5)(t− ζ7)(t− 1)

∣∣∣∣, k = 0, . . . , 7.

After it is solved, we calculate K by the formula K = L0/I0(x), where x is the
vector of inverse images which is found from the system (5.23).

To express the elements of this system in terms of F (7)
D , we start by calculating

the quantities in (5.4), taking (5.20) into account:

a = (a1, . . . , a7) =
(

1
2
,
1
2
,−1,

1
2
,
1
2
,−1,

1
2

)
, b =

1
2
, c = 1. (5.24)

Then we use (5.24) to find the vectors in (5.11):

a0 =
(

1
2
,−1,

1
2
,
1
2
,−1,

1
2
,
1
2

)
, a1 =

(
1
2
,−1,

1
2
,
1
2
,−1,

1
2
,
1
2

)
,

a2 =
(

1
2
,
1
2
,
1
2
,
1
2
,−1,

1
2
,
1
2

)
, a3 =

(
1
2
,
1
2
,
1
2
,
1
2
,−1,

1
2
,
1
2

)
,

a4 =
(

1
2
,
1
2
,
1
2
,−1,−1,

1
2
,
1
2

)
, a5 =

(
1
2
,
1
2
,
1
2
,−1,

1
2
,
1
2
,
1
2

)
,

a6 =
(

1
2
,
1
2
,
1
2
,−1,

1
2
,
1
2
,
1
2

)
, a7 =

(
1
2
,
1
2
,
1
2
,−1,

1
2
,
1
2
,−1

)
,

(5.25)

together with the scalar quantities in (5.11):

b0 =
1
2
, c0 = 1 ; b1 =

1
2
, c1 = 1 ; b2 =

1
2
, c2 =

5
2

; b3 = 2, c3 =
5
2

;

b4 =
1
2
, c4 = 1; b5 =

1
2
, c5 =

5
2

; b6 = 2, c6 =
5
2

; b7 =
1
2
, c7 = 1.

(5.26)
Next we calculate the coefficients Ck in (5.5) by the formulae (5.6):

C0 = C1 = C4 = C7 = Γ2

(
1
2

)
= π, C2 = C3 = C5 = C6 =

Γ(1/2)
Γ(5/2)

=
4
3
.

(5.27)
We write out the vectors xk, found from (5.13):

x0 :=
(
ζ1
ζ2
, . . . ,

ζ1
ζ7
, ζ1

)
, x7 :=

(
1
ζ7
,
ζ1
ζ7
, . . . ,

ζ6
ζ7

)
,

xk :=
(
ζk+1

ζk
,
ζ1
ζk
, . . . ,

ζk−1

ζk
,
ζk+2

ζk
, . . . ,

ζ7
ζk
,

1
ζk

)
, k = 1, . . . , 6.

(5.28)

Finally, we obtain expressions for the integrals Ik in (5.23) in the form

Ik(x) = CkIk(a; b, c;x), k = 0, . . . , 7,

where Ik is found by the formulae (5.7)–(5.9) with N = 7, in which we substitute
the parameters and variables ak, bk, ck, and xk corresponding to the domain M
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and calculated by the formulae (5.25)–(5.28):

I0(x) = C0

( 7∏
j=2

ζ−aj

)
F

(7)
D (a0; b0, c0;x0),

I7(x) = C7ζ
−1/2

( 7∏
j=2

ζ−aj

)
F

(7)
D (a7; b7, c7; Y1(1− x7)),

Ik(x) := Ck
(ζk+1 − ζk)1−ak−ak+1

ζ
1/2
k (1− ζk)1/2

×
( ∏

16j67
j ̸=k,k+1

(|ζk − ζj |)−aj

)
F

(7)
D (ak; bk, ck; Y1(1− xk)), k = 1, . . . , 6.

(5.29)
We solve the system (5.23), (5.29) numerically by Newton’s method, using the
(known) method of continuation with respect to a parameter to find an initial
approximation. The key thing here is the formulae for analytic continuation of
the Lauricella function F

(7)
D in (5.29): they enable us to make a high-precision

(essentially, machine-precision) calculation of this function at each step of New-
ton’s iterative algorithm. We note that, because of the half-integer values of the
characteristics of the angles of M , we are in the resonant (logarithmic) case for
the Lauricella function.

To illustrate the mapping µ : H+ conf−−−→ M it is convenient to use the auxiliary
conformal mapping ϕ : Π conf−−−→ H+ of the rectangle Π onto the half-plane H+ (see
Fig. 9) and first map the natural Cartesian grid for Π into H+, then use the function
z = µ(ζ) to map it into M . Thus we obtain in M the image of the Cartesian grid
(originally constructed in Π) under the mapping Φ: Π conf−−−→ M . Imposing on ϕ the
conditions

ϕ(ih) = ζ7, ϕ(0) = 1, ϕ(d) = ζ1, ϕ(d+ ih) = ζ5 (5.30)

(so that the points M7, M8, M1, M5 on ∂Π are taken to points with the same
names on ∂H+), we find ϕ in the form

ϕ(w) =
ζ7(1− ζ1) sn2(k,w)− (ζ7 − ζ1)
(1− ζ1) sn2(k,w)− (ζ7 − ζ1)

, k =
[
(ζ7 − ζ5)(1− ζ1)
(ζ7 − ζ1)(1− ζ5)

]1/2

, (5.31)

where sn(k,w) is the Jacobi elliptic function with modulus k (see [163]), calculated
in terms of the parameters of the conformal mapping (5.22) by the formula in (5.31).
The length d and height h of the rectangle are equal to the elliptic integrals K(k)
and K ′(k), respectively (see [163] about these integrals).

We proceed to the calculation of the conformal mapping of M when the lengths
of sides Lj (see Fig. 9, (a)) are as follows:

L0 = 2, L1 = 0.25, L2 = L3 = 0.1, L4 = 0.5,
L5 = L6 = 2− ε, ε = 0.001, L7 = 0.25.
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Figure 10. Results of the calculation of the mapping Φ: Π
conf−−−→ M : (a) the

grid in the whole of M and (b) the scaled grid near the narrow isthmus.

We found the parameters of the Schwarz–Christoffel integral (5.22) by solving the
system (5.23), (5.29) numerically with an accuracy of 14 significant digits, using the
above method (we used the standard 16-digit significand in our computations). It
should be pointed out that, as our calculations showed, the points ζj , j = 1, . . . , 7,
are extremely unevenly distributed in the interval (0, 1), that is, we have the crowd-
ing phenomenon discussed in § 1.4. Most of the successive inverse images lie very
close together, for example,

ζ1 = 1.08006360840606× 10−11, ζ3 − ζ2 = 6.61626298018142× 10−15,

ζ6 − ζ5 = 9.86947089484393× 10−6,

and the order of the ‘smallness’ can be quite different. On the other hand, the
distance

ζ7 − ζ6 = 0.999990130323672

is close to the length of the full unit interval containing all seven inverse images.
These results illustrate nicely the term ‘crowding’: the points ζj , j = 1, . . . , 5,
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‘cluster’ on the interval (0, ζ6), whose length is less than that of (0, 1) by five orders
of magnitude, and furthermore the distance between the closest of the ζk is less
than the length of (0, ζ6) by nine orders of magnitude.

In Fig. 10, (a) we give the image of the Cartesian grid under the mapping Φ(w) =
µ ◦ ϕ(w), where z = µ(ζ) is the Schwarz–Christoffel integral (5.22) and ζ = ϕ(w)
is the auxiliary mapping (5.31) of the rectangle onto the half-plane. In Fig. 10, (b)
we give a scaled piece of Fig. 10, (a) showing in detail the conformal grid in the
narrow isthmus between the endpoint of the ‘long’ cut M6 and the side (M9,M0)
(see the notation in Fig. 9, (a)).

6. Conclusion

Integration of general hypergeometric systems of partial differential equations
is a very topical problem, interesting both theoretically and in applications. For
systems in the Horn class (1.11) we can write a particular solution in the form of
a hypergeometric series (1.8) with coefficients expressible directly in terms of the
polynomials Pj and Qj . For instance, in the case of the system (1.5) the Lauricella
function F

(N)
D defined in (1.4) and considered above is such a solution. On the

other hand, describing a basis of the space of solutions of the system (1.11) and an
analytic continuation of this basis is a well-known but difficult problem.

In § 2 we presented a solution of this problem for the Lauricella system of dif-
ferential equations (1.5). The set of solutions given by Theorems 1–5, and sym-
metries (2.105) of these solutions provide a basis in the space of solutions of (1.5)
in corresponding subdomains of CN and are the N -dimensional analogue of Kum-
mer’s solutions (1.28)–(1.32) of Gauss’s hypergeometric equation. These theorems
present a complete set of formulae of the type (1.27) for analytic continuation
of F (N)

D into the exterior of the polydisk UN . The construction of such formulae
has long attracted the attention of many authors. These formulae are an effective
tool for a qualitative analysis and calculation of F (N)

D , and thus for computing inte-
grals of the form (1.6) for all values of z ∈ CN away from certain hyperplanes. In
this paper we did not consider the question of analytic continuation of solutions
of (1.5) other than F (N)

D . Formulae for such a continuation (which is realized using
the same methods) are of interest because they provide an effective machinery for
calculating the monodromy group of the Lauricella system (1.5). We remark also
that our approach can be carried over to some other hypergeometric systems and
can also be used for analytic continuation of multivariate hypergeometric functions
in an (apparently, quite broad) class including the three other functions F (N)

A , F (N)
B ,

and F (N)
C introduced by Lauricella [6], [13].

The particular solutions of the system (1.11) presented in Theorems 1–5 are
rather complicated power series. Constructing such solutions using the method
of indeterminate coefficients is very laborious even for two variables (see [10] on
this question). It is known that multiple Mellin–Barnes integrals can be efficiently
used to find particular solutions of hypergeometric systems (see [13], [28]). How-
ever, in our paper we have used one-dimensional integrals of this type indicated
in Propositions 1 and 2, and they seem to provide a more convenient approach
to the construction of a complete set of solutions of the system (1.11) and to the
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analytic continuation of it in the form (1.27). Representations of Mellin–Barnes
type (2.3) and (2.18) reduce the problem of analytic continuation of the Lauricella
function F (N)

D into the exterior of UN to the continuation of it with respect to each
of the N variables in succession. As a result, the required formulae for analytic
continuation is obtained in N steps.

Section 3 is devoted to applications of the Lauricella function to the theory of the
Riemann–Hilbert problem. As noted in § 1.5, many authors have observed that this
problem (with piecewise constant boundary data) is connected with the Schwarz–
Christoffel integral (3.54). However, the question of finding such a representation
explicitly, including finding the polynomial R(ζ), has remained unresolved for quite
a while. For all the quantities involved in this representation we gave expressions
for them in Theorem 10 in terms of the data of the Riemann–Hilbert problem. It
is important to note we gave a closed representation for the polynomial R(ζ) in
terms of the Lauricella function F (N)

D without using any numerical procedures. The
derivation of the representation (3.54) was based on Jacobi-type formulae for F (N)

D

that amount to new advances in the theory of this function. Jacobi-type formulae
can also be interpreted as relations between so-called ‘contiguous’ Lauricella func-
tions. Moreover, they make it possible to give the hypergeometric system of partial
differential equations in the alternative form of (1.11)

The seemingly unexpected connections between the Lauricella function
F

(N)
D (a; b, c; z) and other areas in mathematics and its applications are to

a significant extent explained by the fact that any integral of the form

I(w) =
∫

L

N+3∏
k=1

(t− wk)αk−1 dt (6.1)

can be expressed in terms of this function with N variables (see [13]), where
α := (α1, . . . , αN+3) and w := (w1, . . . , wN+3) are vectors in CN+3, and the curve
of integration L either joins a pair of points wn and wm with n ̸= m or is a certain
closed loop contour on the Riemann surface of the integrand in (6.1). The param-
eters a, b, and c and the variable z are expressed in terms of the vectors α and w,
respectively, by simple expressions. The Euler-type integral representation (1.6)
for F (N)

D is an example of such a result.

The prospective applications of the function F (N)
D include the problem of ‘crowd-

ing’ for the parameters of the Schwarz–Christoffel integral, which we again point
out as a problem that has attracted the attention of many researchers (for instance,
see [97], [99]). It has many very interesting theoretical and computational aspects,
and formulae for analytic continuation of F (N)

D are a key to the analysis of these
aspects.

The author is deeply indebted for valuable discussions and profound comments
to V. I. Vlasov, S. L. Skorokhodov (Federal Research Center “Computer Science
and Control” of the Russian Academy of Sciences (RAS)), B. V. Somov (Sternberg
Astronomical Institute at Moscow State University), V. E. Nazaikinskii (Institute
for Problems in Mechanics of the RAS), A. P. Soldatov (Federal Research Center
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“Computer Science and Control” of the RAS), S. P. Suetin (Steklov Mathemati-
cal Institute of the RAS), S. Yu. Dobrokhotov, and the participants of the sem-
inar “Asymptotic Methods in Mathematical Physics” (Institute for Problems in
Mechanics of the RAS), the participants of the seminar led by A.K. Gushchin
in the Department of Mathematical Physics at the Steklov Mathematical Institute
of the RAS, and the participants of the seminar in the Department of Mathemati-
cal Analysis of the Lobachevsky Institute of Mathematics and Mechanics at Kazan
State University.
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