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Introduction

This survey gives an account of the state of the art of the theory of Ornstein–
Uhlenbeck operators and semigroups, including relatively recent achievements and
open problems. Ornstein–Uhlenbeck random processes closely connected with the
main objects are mentioned but not discussed in any detail, because this is a sep-
arate and substantial subject requiring its own survey. The main objects indi-
cated, bearing the names of two prominent scholars of the 20th century, L. Ornstein
(1880–1941) and G. Uhlenbeck (1900–1988) (for instance, see [53]), are among the
most classical objects in analysis, differential equations, mathematical physics, and
random processes. Like their close relatives— the Laplace operator ∆, the heat
semigroup, and the Wiener process (Brownian motion) — they are distinguished by
the elementary character of the basic concepts and the depth of problems connected
with them. The Ornstein–Uhlenbeck semigroup is a rather rare example of a simple
explicit expression for the solution of the multidimensional parabolic equation

∂u

∂t
= Lu,

where L is a second-order operator (the Ornstein–Uhlenbeck operator, also called
the Hermite operator), also having a simple form:

Lϕ(x) = ∆ϕ(x)− ⟨x,∇ϕ(x)⟩. (0.1)

The Ornstein–Uhlenbeck semigroup itself is defined (on various suitable classes of
functions) by the formula

Ttf(x) =
∫

Rd

f
(
e−tx−

√
1− e−2t y

)
γ(dy), (0.2)

where γ is the standard Gaussian measure on Rd, that is, the measure with density

ϱ(x) =
1

(2π)d/2
e−|x|

2/2

with respect to Lebesgue measure. It is quite remarkable that by this formula one
can also define a semigroup on infinite-dimensional spaces with Gaussian measures
without invoking Lebesgue measure, which does not exist in the infinite-dimensional
case.

In infinite-dimensional analysis, the Gaussian measure often plays the role to
which Lebesgue measure is allocated in the finite-dimensional case. Moreover,
the Ornstein–Uhlenbeck operator has a number of features similar to those of the
Laplace operator. For example, in place of the finite-dimensional integration by
parts formula ∫

Rd

f∆g dx = −
∫

Rd

⟨∇f,∇g⟩ dx

for smooth functions with compact support, the finite-dimensional formula∫
Rd

fLg dγ = −
∫

Rd

⟨∇f,∇g⟩ dγ (0.3)
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is used, which has precisely the same infinite-dimensional analogue, with gradients
taking values in the Cameron–Martin space of the measure γ (this is discussed
below). Of course, the formula (0.3) on Rd can be deduced from the previous
formula by a straightforward calculation using the explicit expression for the density
of γ, but (0.3) does not contain Lebesgue measure.

An extremely important aspect of the theory of Ornstein–Uhlenbeck semigroups
is connected with the circumstance that the standard Gaussian measure γ is invari-
ant with respect to the standard Ornstein–Uhlenbeck semigroup (the integrals
of the functions Ttf with respect to γ are constant) and satisfies the stationary
Fokker–Planck–Kolmogorov equation

L∗γ = 0,

understood in the sense of the identity∫
Rd

Lf dγ = 0, f ∈ C∞0 (Rd),

with the Ornstein–Uhlenbeck operator L. In applications, analogous equations
arise that are obtained by perturbations of the drift term −x of this equation by
non-linear terms. This subject is briefly developed in § 8.

The formula (0.1) defines the standard Ornstein–Uhlenbeck operator, but under
the same name more general second-order operators of the form

LA,Bϕ(x) =
d∑

i,j=1

αij ∂xi
∂xj

ϕ(x)−
d∑

i,j=1

βijxj ∂xi
ϕ(x) (0.4)

are also considered, where A = (αij) and B = (βij) are some constant matrices
such that A is symmetric and non-negative definite. In the coordinate-free form we
can write

LA,Bϕ(x) = trace
(
AD2ϕ(x)

)
− ⟨Bx,∇ϕ(x)⟩. (0.5)

In the case of diagonal matrices and a non-negative-definite matrix B we obtain

LA,Bϕ(x) =
d∑

i=1

αi ∂
2
xi
ϕ(x)−

d∑
i=1

βixi ∂xi
ϕ(x), (0.6)

where the αi and βi > 0 are all the eigenvalues of these matrices. If there are zeros
among them, then a particular situation arises which is not considered here (the zero
numbers βi lead to the Laplace operator with respect to part of the variables and
the zero numbers αi give a first-order operator with respect to the corresponding
variables). But if all these numbers are positive, then by a linear change of variables
one can pass to the case αi ≡ 1, which gives an operator of the form

LI,Bϕ(x) = ∆ϕ(x)− ⟨Bx,∇ϕ(x)⟩ (0.7)

with a symmetric positive-definite linear operator B. However, for applications to
linear stochastic equations

dξt = dwt −
1
2
Bξt dt
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it is necessary to consider general linear operators B, which we shall not do, with
the exception of some particular results. An operator LA,B of the form (0.6) is the
generator of the semigroup defined by the formula

Stf(x) =
∫

Rd

f
(
e−tBx−

√
1− e−2tB y

)
γσ(dy), (0.8)

where B is the diagonal matrix with entries βi and γσ is the centred Gaussian mea-
sure on Rd with covariance σ = AB−1, that is, the image of the standard Gaussian
measure under the map x 7→

√
σ x (here A is the diagonal matrix with entries αi).

As in the case of the standard Ornstein–Uhlenbeck operator, the term ‘semigroup
generator’ requires some precision, since the semigroup defined by the indicated
formula acts on different function spaces. General forms of types (0.5), (0.6),
and (0.8) of operators and semigroups become more important when we pass to
the infinite-dimensional case, where possibilities for changing variables are much
more limited. Moreover, in many problems A and B are unbounded self-adjoint
operators in the infinite-dimensional case (and often non-commuting). For instance,
here one frequently encounters suitably interpreted operators of the form (0.5).

As happens for important classical objects, Ornstein–Uhlenbeck operators and
semigroups are also encountered under other names. The Ornstein–Uhlenbeck oper-
ator is often called the Hermite operator (as well as the equation connected with
it), and in the physics literature it is also called the particle number operator. The
Ornstein–Uhlenbeck semigroup is also called the Mehler semigroup or the Hermite
semigroup. Indeed, there are grounds for this. The equation with the operator of
the form D2−xD or D2−2xD is used in Hermite’s paper [104] from 1864, where he
(somewhat later than Chebyshev [46]) considered some properties of the important
class of polynomials now called Chebyshev–Hermite polynomials or just Hermite
polynomials. The latter is especially typical for authors outside Russia, since it was
Hermite’s paper from which foreign researchers learned about these polynomials.
It should also be noted that Chebyshev’s paper rather quickly became known, all
the more so because the idea of constructing orthogonal polynomials with respect
to a scalar product with an arbitrary weight was first proposed there (hence from
a formal point of view virtually all orthogonal polynomials should have been called
Chebyshev polynomials, though in the established terminology he is given credit
only for his famous polynomials of best approximation on a closed interval and,
together with Hermite, for the polynomials discussed below for a Gaussian weight).
In 1866 the classical article by Mehler [145] appeared, in which an integral formula
for the solution to the Cauchy problem with the Hermite operator was derived.
This formula ((10) on p. 172 of [145]) has the form∫ +∞

−∞
· · ·

∫ +∞

−∞

F (y1, . . . , yν)

(
√
π

√
1− ϱ2 )ν

e−Q dy1 · · · dyν , Q =
s=ν∑
s=1

(
ϱxs − ys√

1− ϱ2

)2

.

On the next page of Mehler’s paper it is explained that if we make the change of
variables

y1 = ϱx1 +
√

1− ϱ2 z1, . . . , yν = ϱxν +
√

1− ϱ2 zν ,

then the limit of the integral as ϱ → 1 is F (x1, . . . , xν). The integral obtained
after such a change gives the now standard expression for the Ornstein–Uhlenbeck
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semigroup. It is further shown in Mehler’s paper that the kernel

E(x, y) =
1√

1− ϱ2
exp

(
2ϱxy − ϱ2(x2 + y2)

1− ϱ2

)
(0.9)

satisfies the parabolic equation

2ϱ
∂E

∂ϱ
− 2x

∂E

∂x
+
∂2E

∂x2
= 0

with respect to the variable x. The factor 2ϱ is the difference from the equation for
the Ornstein–Uhlenbeck semigroup and is connected with the use of ϱ2.

These three papers have been cited by many investigators for already a century
and a half. Closely related equations were considered in the dissertation of the
St. Petersburg researcher Wera Lebedeff (1880–1970), who in 1906 defended it in
Göttingen with Hilbert as advisor (see [156]). Upon marriage, she got the double
surname of Myller-Lebedeff and from 1910 worked at the university in Iaşi in Roma-
nia (her husband Alexandru Myller was also a student of Hilbert in the same years,
also worked at the university in Iaşi, and in 1944–1945 was its rector). Of later
work involving topics like Hermite polynomials and Mehler formulae, we should
mention the following papers of Hille, one of the founders of the theory of operator
semigroups: [105] (which contains an extensive bibliography on Hermite polynomi-
als, including works by Chebyshev, Hermite, Mehler, Lebedeff, and many others,
and also Mehler’s formula) and [106] and [108], where the terms ‘Hermite operator’
for D2− 2xD and ‘Hermite equation’ are used. In his well-known monograph [107]
on operator semigroups Hille employed the term ‘Hermite semigroups’ for general
semigroups defined by means of expansions in Hermite polynomials in the form

T (ξ)[f ](t) =
∞∑

n=1

e−ξλnfnHn(t), f(t) =
∞∑

n=1

fnHn(t).

Although in a whole series of old papers (from the 19th and the first third of
the 20th century) one encounters elliptic and parabolic equations with the Hermite
operator, such equations were not yet an object of independent study, as was the
case with the Laplace operator and the heat equation. However, we can mention
the well-known physics paper [194] by Smoluchowski, in which (in connection with
Brownian motion) he considered the equation

∂u

∂t
=
∂2u

∂x2
− β

∂

∂x
(uf(x))

with the linear coefficient βf(x) = −γx (see the formula (50) on p. 588 of [194]). For
the solution a formula was given which had already been derived by Mehler. In gen-
eral it should be noted that elliptic equations satisfied by Chebyshev–Hermite poly-
nomials have long been encountered in many physics papers on various problems.
For example, they can be found in works of the founders of quantum mechanics
(including Schrödinger [183], p. 515, and Fock [72], p. 72). In the study of harmonic
oscillators the operator

N =
d2

dx2
− x2
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arises, which is also sometimes called the Hermite operator and which is unitarily
equivalent to the Ornstein–Uhlenbeck operator (if the former is considered acting
in L2 with respect to Lebesgue measure and the latter acting in L2 with respect
to the Gaussian measure). A derivation of Mehler’s formula for the correspond-
ing integral kernel (0.9) is discussed in [212], which even presents three different
approaches, including those of Hardy and Hille, but their relative non-triviality is
explained by different original conditions: the question is not about the transfor-
mation (0.2) but about finding a generating function for the Chebyshev–Hermite
polynomials.

The situation changed after publication in 1930 of the classical paper [202] by
Uhlenbeck and Ornstein, where a model of Brownian motion with a drift was pre-
sented which soon came to be called the Ornstein–Uhlenbeck process. The second
part of this work was published in 1945 by Wang and Uhlenbeck [209] already after
the death of Ornstein. From the point of view of the theory of stochastic integral
equations developed somewhat later, this process is described by the equation

dξt = dwt −
1
2
ξt dt,

understood in the sense of the integral identity (even without stochastic integrals)

ξt = ξ0 + wt −
1
2

∫ t

0

ξs ds.

More precisely, Uhlenbeck and Ornstein were actually interested not in the process
now called by their names, but in its primitive. Their goal was a model of stochastic
motion in which trajectories would have finite velocities, which is not achieved
in the case of the classical Brownian motion with almost surely non-differentiable
trajectories. But why should we take for this the primitive of some new process and
not the usual Wiener process? Some physical explanations can be seen in [202], [64],
and [166], but it seems that an important factor is the existence of a stationary
distribution for the Ornstein–Uhlenbeck process (this is the standard Gaussian
measure). In the case of taking the primitive of the Wiener process we obtain
a process with variance tending to infinity as time increases. In [111] the opinion
was expressed that consideration of the Ornstein–Uhlenbeck process could be traced
back to Laplace, who had studied a differential equation that is a Fokker–Planck
equation for this process.

The term ‘Ornstein–Uhlenbeck process’ was already used by Doob [64]. In
his well-known monograph [166] Nelson used the terms ‘Ornstein–Uhlenbeck pro-
cess’ and ‘Ornstein–Uhlenbeck theory’ many times, and he also considered the
corresponding semigroup and operator (its generator), but without giving them
any names. I have not managed to clarify when the terms ‘Ornstein–Uhlenbeck
operator’ and ‘Ornstein–Uhlenbeck semigroup’ were first used. This terminol-
ogy perhaps emerged in the mid-1960s, in discussions of the Euclidean quantum
field theory which was rapidly developing at the time. This argument was sug-
gested to me by L. Gross. In any case, the terms were used explicitly in the
papers and the dissertation of his Ph.D. student Piech in the early 1970s [176],
and from the very beginning in the infinite-dimensional case (one of the earliest
papers in this area in the infinite-dimensional case was Umemura’s 1965 paper
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[203], where the infinite-dimensional Ornstein–Uhlenbeck operator was called the
‘infinite-dimensional Laplace operator’). Her papers (see also [175]) along with
Gross’s papers [95] and [96] greatly influenced the theory of Ornstein–Uhlenbeck
semigroups in both infinite and finite dimension. I also note that in response to
the question about the origin of this terminology, Piech mentioned the influence
of the English translation of Dynkin’s monograph [65], in which the connections
between diffusion processes and generators of their transition semigroups were stud-
ied in detail (although the particular Ornstein–Uhlenbeck process was not consid-
ered there), after which the identification of processes and their generators became
commonplace. Unfortunately, I did not ask Nelson the same question when I had
the opportunity, since I did not even think about this at the time.

In the last two decades, the number of papers investigating or applying the
Ornstein–Uhlenbeck semigroup has increased considerably, and moreover, not only
in the infinite-dimensional case where it serves as a certain substitute for the heat
semigroup and possesses remarkable properties independent of dimension, but also
in the finite-dimensional case. A substantial factor that has helped draw the atten-
tion of many researchers to the Ornstein–Uhlenbeck semigroup and operator has
been the development of the Malliavin calculus since the mid-1970s (see the sur-
veys [137], [26], [112], [170], [188], [138]). By means of this semigroup one can study
various fine functional inequalities and estimates (like the logarithmic Sobolev and
isoperimetric inequalities and their generalizations), and one can use it as an effec-
tive tool for smoothing. Considerable attention has been given to the investiga-
tion of the spectral properties of its generator, the Ornstein–Uhlenbeck operator.
Finally, a number of generalizations of this semigroup have appeared. A survey of
these investigations is given below. Due to lack of space, the bibliography below
does not include many works on the topic of this survey, although I tried to reflect in
it, at least selectively, publications of most researchers working on related questions.
I hope to prepare a more complete bibliography for a monograph in preparation.

The questions touched upon in this survey have been discussed with
many colleagues. I am particularly indebted to L. Ambrosio, V. Barbu,
G. Da Prato, D. Elworthy, W. Farris, L. Gross, Yu. G. Kondratiev, E. D. Kosov,
A. Lunardi, G. Metafune, R.A. Minlos, J. van Neerven, Yu. A. Neretin, A. Piech,
S. N. Popova, M. Röckner, B. Schmuland, A. V. Shaposhnikov, S. V. Shaposhnikov,
and F.-Y. Wang.

1. Chebyshev–Hermite polynomials and basic properties of the
Ornstein–Uhlenbeck semigroup

Many areas of mathematics and physics involve the Chebyshev–Hermite poly-
nomials (sometimes called Hermite polynomials for brevity), which are defined by
the equalities

H0 = 1, Hk(t) =
(−1)k

√
k!

et2/2 dk

dtk
e−t2/2, k > 1.

These polynomials satisfy many interesting relations (sometimes rather unobvious),
discovered over the century and a half of their investigations. For the questions we
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discuss, for example, the following relations will be useful:

H ′
k(t) =

√
kHk−1(t) = tHk(t)−

√
k + 1Hk+1(t).

A characteristic (up to a sign) property of these polynomials is that they are
obtained by applying the standard Gram–Schmidt orthogonalization procedure
to the sequence of powers 1, t, t2, . . . in the Hilbert space L2(γ) for the standard
Gaussian measure on the real line. Moreover, the system of functions {Hk} is an
orthonormal basis in L2(γ). This is not completely obvious from the construction.
One way of verifying the equality to zero of any element g ∈ L2(γ) orthogonal to
all powers tk is as follows. Consider the analytic function

f(z) =
∫
eiztg(t) γ(dt).

Differentiating with respect to z, we get that f (k)(0) = 0 for all k, whence f = 0.
Thus, the function g(t)e−t2/2 has the identically zero Fourier transform, and hence
g = 0.

We remark that the Chebyshev–Hermite polynomials are often introduced by
means of orthogonalization with the Gaussian weight π−1/2e−x2

, which does of
course lead to different functions, but the connection between these two variants is
easily established by means of the change of variable x =

√
2 y.

For the standard Gaussian measure γ = γd on Rd there is an orthonormal basis
in L2(γ) consisting of polynomials of the form

Hk1,...,kd
(x1, . . . , xd) = Hk1(x1) · · ·Hkd

(xd), ki > 0.

It is convenient to group them according to the sums k = k1 + · · ·+ kd. Of course,
to every non-negative integer k there corresponds not just one polynomial, but
finitely many pairwise orthogonal polynomials of degree k. The linear span of these
polynomials for fixed k will be denoted by Xk. The subspaces Xk are pairwise
orthogonal and give the whole of L2(γ) in a direct sum:

L2(γ) =
∞⊕

k=0

Xk.

This means that for the operators Ik of orthogonal projection onto Xk we have the
orthogonal expansion

f =
∞∑

k=0

Ik(f), f ∈ L2(γ).

As in the case of general orthogonal bases, for every function f ∈ L2(γ) the
indicated series converges in L2(γ), which in the one-dimensional case leads to
the expansion into Chebyshev–Hermite polynomials convergent in L2(γ):

f =
∞∑

k=0

akHk, ak =
∫ +∞

−∞
fHk dγ.

This formal series can be considered also for all f ∈ Lp(γ) with p > 1. Of course,
for p > 2 we still have convergence in L2(γ), but, as shown by Pollard [179], for
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every p ̸= 2 there exists a function f ∈ Lp(γ) such that its corresponding series
does not converge in Lp(γ). In the case p < 2 there even exists a function f ∈ Lp(γ)
such that lim supk→∞ |akHk(x)|1/k = r > 1 for each x (r does not depend on x).

Muckenhoupt [154] obtained sufficient conditions for convergence of expansions
in Chebyshev–Hermite polynomials almost everywhere (see Corollary 2 in [154];
one should bear in mind that the orthogonalization there is taken with the weight
π−1/2e−x2

). These conditions are of a rather restrictive nature, as is clear from
Pollard’s result. We recall that for classical Fourier series the situation is simpler
(in the sense of the formulation of the final result, but the question itself was an
open problem for half a century): convergence of the Fourier series with respect
to trigonometric functions holds almost everywhere for all functions f ∈ Lp[0, 2π]
with p > 1.

Throughout, γ will denote the standard Gaussian measure on Rd if we are con-
sidering the finite-dimensional case, or the standard Gaussian measure on the space
of sequences R∞ (the countable power of the standard Gaussian measure on the
real line). Special note will be made of cases where we are considering centred
Gaussian measures on abstract locally convex spaces.

The norm on Lp(γ) with 1 6 p 6 ∞ will be denoted by ∥f∥p.
The norm and inner product in Rd are denoted by | · | and ⟨ · , · ⟩, respectively.

Let C∞b (Rd) be the set of bounded infinitely differentiable functions with bounded
derivatives, and C∞0 (Rd) its subset of functions with compact support. The space
of bounded continuous functions on Rd is denoted by Cb(Rd) and equipped with
its usual norm ∥f∥ = supx |f(x)|. For a non-negative Borel measure µ on Rd, let
Lp

loc(µ) be the class of all µ-measurable functions f for which the function |f |p is
integrable with respect to µ on every ball. As usual, we do not distinguish between
equivalence classes and their representatives, but in some results we refer to versions
of functions with certain properties.

The simplest properties of the Ornstein–Uhlenbeck semigroup are collected in
the next theorem.

Theorem 1.1. The operators Tt form a strongly continuous contraction semigroup
on Lp(γ) for p ∈ [1,∞), that is,

Tt+s = Tt ◦ Ts, ∥Ttf∥p 6 ∥f∥p, lim
t→0

∥Ttf − f∥p = 0 ∀ f ∈ Lp(γ). (1.1)

In addition, the measure γ is invariant for Tt , that is,∫
Ttf dγ =

∫
f dγ ∀ f ∈ L1(γ), (1.2)

and, with the integral of f denoted by I(f),

lim
t→∞

∥Ttf − I(f)∥p = 0 ∀ f ∈ Lp(γ), p ∈ [1,∞). (1.3)

Finally, on the space L2(γ) the operators Tt are self-adjoint and non-negative in
the sense of quadratic forms, and on the spaces Lp(γ) they are non-negative in the
sense of ordered spaces, that is, they take non-negative functions to non-negative
functions.
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Verification of the properties (1.1)–(1.3) is completely elementary (the inequality
in (1.1) follows from Hölder’s inequality). The last relation in (1.1) is obvious for
bounded continuous functions f , and then the estimate for the norm yields the
same relation for all f in Lp(γ). Similarly for (1.3). The self-adjointness and
non-negativity of Tt on L2(γ) are obvious, as well as the non-negativity on Lp(γ)
in the sense of the pointwise comparison of functions.

Of course, for p = ∞ the estimate ∥Ttf∥∞ 6 ∥f∥∞ is also true, but the third
property (strong continuity) on L∞(γ) fails even in the one-dimensional case and
even for bounded continuous functions. To show this, it suffices to take a bounded
Lipschitz function f for which f(n) = 1 and f(e−1/nn) = 0. Such a function
obviously exists, since (1− e−1/n)n→ 1. For this function we have

|T1/nf(x)− f(e−1/nx)| 6
∫

R

∣∣f(
e−1/nx−

√
1− e−2/n y

)
− f(e−1/nx)

∣∣ γ(dy)
6 C

√
1− e−2/n ,

so the quantity ∥T1/nf − f∥∞ cannot tend to zero because f(e−1/nn)− f(n) = 1.
The integral formula for Ttf enables us to use well-known integral inequalities.

For example, from Jensen’s inequality for a convex function V we get that

V (Ttf) 6 Tt(V (f)).

In particular, for f > 0 we have

Tt log f 6 log Ttf and Tt(f log f) > Ttf log Ttf,

provided that these integrals exist.

Remark 1.2. By means of the formula

T ∗t ν(B) =
∫

Rd

TtIB(x) ν(dx)

one can define the action of the ‘adjoint’ semigroup on bounded Borel measures.
This action can be written as a composition of a homothety and a convolution, so
for t > 0 the measure T ∗t ν is absolutely continuous. Hence, the measure T ∗t ν has
a density gt ∈ L1(γ) with respect to γ. Since T ∗t ν = T ∗t−sT

∗
s ν for t > s, we have

gt = Tt−sgs. By (1.3) the measures T ∗t ν converge in variation to the measure ν(Rd)γ
as t→ +∞. As t→ 0, these measures converge weakly (but not in variation) to ν.

Remark 1.3. We remark also that γ is the unique invariant probability measure
for the semigroup {Tt}t>0, that is, if for some probability measure µ the integral
of Ttf equals the integral of f for all f ∈ Cb(Rd) and t > 0, then µ = γ. This can
be shown using different methods, in particular, it can be obtained from general
results presented in Chap. 5 of [35], but we consider a proof that can be extended
to the infinite-dimensional case. Let l(x) = ⟨x, v⟩ be a linear function on Rd. We
observe that

Tt exp
(
il(x)

)
= exp

(
ie−tl(x)

) ∫
Rd

exp
(
−

√
1− e−2t l(y)

)
γ(dy)

= exp
(
ie−tl(x)

)
exp

(
−(1− e−2t)

|v|2

2

)
.
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The equality of the integrals of exp(il) and Tt exp(il) with respect to the measure µ
means the following identity for the Fourier transform µ̃ of the measure µ, defined
as the integral of exp(il):

µ̃(e−tl) = exp
(
−e−2t |v|2

2

)
exp

(
|v|2

2

)
µ̃(l).

Letting t→ +∞, we conclude that µ̃(l) = exp(−|v|2/2), that is, µ = γ. Note that
the same conclusion holds if the measure µ is invariant with respect to a single
operator Tτ with τ > 0, since in that case it is invariant with respect to the
operators Tkτ for all k ∈ N, so the reasoning above remains in force. It also shows
that every (even signed) measure which is invariant with respect to the semigroup
{Tt}t>0 coincides with γ up to a constant factor.

It follows from the general theory of continuous operator semigroups on Banach
spaces (see, for instance, [59], [107]) that for every p ∈ [1,∞) the set

Dp(L) :=
{
f ∈ Lp(γ) : lim

t→0

1
t
(Ttf − f) exists in Lp(γ)

}
is a dense linear subspace of Lp(γ), and the linear operator with domain Dp(L)
given by

Lf := lim
t→0

1
t
(Ttf − f)

is closed, that is, has a closed graph: if fn ∈ Dp(L), fn → f , and Lfn → g in Lp(γ),
then f ∈ Dp(L) and Lf = g. This operator is called the generator of the semi-
group {Tt}t>0. In the case of the Ornstein–Uhlenbeck semigroup, L is called the
Ornstein–Uhlenbeck operator. It is convenient to write the operators Tt in the form
Tt = exp(tL), with L on L2(γ) having a non-positive quadratic form, that is, to
indicate that the corresponding operator exponential exp(tL) coincides with Tt.

For different p the domains Dp(L) are different, so from the formal point of
view we have a continuum of operators, but for r < p we obviously have Dp(L) ⊂
Dr(L), and the restriction of L from Dr(L) to Dp(L) gives its values on the smaller
subspace. Hence the operator L itself will not be equipped with any indices. We
shall see below that L is given by the differential expression indicated above in (0.1),
but using this expression requires some care, since the domains of definition of L
go beyond the classes of smooth functions.

The simplest case of calculation of the domain of L is for L2(γ). To this end
we observe the following fact, which is important in itself: the Chebyshev–Hermite
polynomials are eigenfunctions for Tt, that is, for d = 1 we have

TtHk = e−ktHk,

and in the multidimensional case, where k is a multi-index k = (k1, . . . , kd),

TtHk1,...,kd
= e−(k1+···+kd)tHk1,...,kd

,

which can be written as

TtHk = e−|k|tHk, |k| = k1 + · · ·+ kd.
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If k is a number in 0, 1, 2, . . . , then

Ttf = e−ktf, f ∈ Xk.

Theorem 1.4. The domain of L in L2(γ) for d = 1 is

D2(L) =
{
f =

∞∑
k=0

ckHk :
∞∑

k=0

k2|ck|2 <∞
}
,

and

Lf = −
∞∑

k=0

kckHk.

In the multidimensional case

D2(L) =
{
f =

∞∑
k=0

ckfk : fk ∈ Xk,

∞∑
k=0

k2∥fk∥22 <∞
}
,

Lf = −
∞∑

k=0

kfk.

Proof. These assertions are easily verified by means of the formula

Ttf =
∞∑

k=0

e−ktckHk

and an analogous formula in the multidimensional case. The specific feature of the
Hilbert case enables us to easily determine the conditions for the existence of
the limit of t−1(Ttf − f) in the norm. �

The expressions presented are very convenient in many problems, but they do not
exhibit the differential nature of L. In addition, it is not obvious from these expres-
sions without additional investigation that the class D2(L) contains the set C∞b (Rd)
or at least C∞0 (Rd). However, the inclusion C∞0 (Rd) ⊂ Dp(L) for all p <∞ can be
verified directly along with an explicit calculation of Lf for f ∈ C∞0 (Rd). For this
we employ the equality (for simplicity of expression, just in the one-dimensional
case)

f
(
e−tx−

√
1− e−2t y

)
− f(x)

=
∫ t

0

f ′
(
e−sx−

√
1− e−2s y

)(
−e−sx− e−2s(1− e−2s)−1/2y

)
ds.

After integration in y with respect to the measure γ we obtain two terms. The
first term multiplied by t−1 tends in Lp(γ) to −xf ′(x) as t → 0, as can be easily
shown by means of the Lebesgue theorem. The second term is transformed by
integration by parts with respect to y into∫ t

0

∫
f ′′

(
e−sx−

√
1− e−2s y

)
e−2s ds γ(dy).
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This expression with the factor t−1 tends to f ′′(x) in Lp(γ) as t → 0. Of course,
this remains in force for f ∈ C2

b (Rd).
Thus, for functions ϕ ∈ C∞0 (Rd) we have the expression (0.1) for Lϕ. This yields

the following equality that will also be useful below:

Ttϕ(x)− ϕ(x) =
∫ t

0

TsLϕ(x) ds (1.4)

pointwise; here the function Lϕ belongs to C∞0 (Rd) and the function TsLϕ(x) is
continuous in both arguments and bounded. Actually, this equality is true for all ϕ
in the domain of L in L1(γ).

To describe the domains of the generators of the Ornstein–Uhlenbeck semigroup
in the spaces Lp(γ) more precisely, that is, of the corresponding Ornstein–Uhlenbeck
operators, we need the Sobolev classes with respect to Gaussian measures. These
classes will be considered in the next section.

The explicit expression for Ttf implies the useful relation

∇Ttf = e−tTt∇f, (1.5)

which is frequently used in calculations.
We also note that the Ornstein–Uhlenbeck operator is connected with the diver-

gence divγ w of a vector field w = (wi) with respect to the measure γ, also denoted
by the symbol δw and given by the equality

divγ w(x) := δw(x) := div w(x)− ⟨w(x), x⟩ =
d∑

i=1

(
∂xi

wi(x)− xiw
i(x)

)
. (1.6)

The divergence divγ w of the field w with respect to the measure γ plays a role
analogous to the usual divergence divw: in the case of a smooth function f one has
the integration by parts formula∫

Rd

⟨∇f, w⟩ dγ = −
∫

Rd

f divγ w dγ,

which can be verified directly for f and w with bounded derivatives. By means of
this divergence the Ornstein–Uhlenbeck operator can be expressed in the form

Lf = divγ ∇f. (1.7)

The simple equality (1.4) is the basis for deriving a number of rather unobvi-
ous integral inequalities and estimates for distributions of functions on spaces with
Gaussian measures. Moreover, it becomes possible to extend such results to con-
siderably more general situations, acting by analogy with the Ornstein–Uhlenbeck
semigroup and operator. A thorough discussion can be found in the very informa-
tive book [120] by Ledoux; here we only give some typical examples.

Example 1.5. (i) For a function f > 0 such that f and f log f are integrable with
respect to the measure γ, where we set f(x) log f(x) := 0 if f(x) = 0, the entropy
is defined by

Entγ(f) :=
∫

Rd

f log f dγ −
∫

Rd

f dγ log
∫

Rd

f dγ.
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With the aid of Jensen’s inequality for the convex function t log t, it is not difficult
to verify that Entγ(f) > 0. Under rather broad conditions on the function f one
has the representation

Entγ(f) = −
∫ ∞

0

d

dt

(∫
Rd

Ttf log Ttf dγ

)
dt. (1.8)

It is very simple to prove this equality for functions f of class C∞b bounded away
from zero by a positive constant. In this case the expression under the integral sign
can be written as

d

dt

∫
Rd

Ttf log Ttf dγ =
∫

Rd

LTtf log Ttf dγ +
∫

Rd

LTtf dγ

= −
∫

Rd

|∇Ttf |2

Ttf
dγ,

where we have taken into account the formula (0.3), the symmetry of L in L2(γ),
and the equality L1 = 0. This implies the representation

Entγ(f) =
∫ ∞

0

∫
Rd

|∇Ttf |2

Ttf
dγ dt. (1.9)

In § 5 (see Theorem 5.1) we shall show how to use this representation to derive the
logarithmic Sobolev inequality.

(ii) Similarly, for functions f, g ∈ C∞b (Rd) we obtain a representation for the
covariance:

covγ(f, g) =
∫

Rd

(f − Ef)(g − Eg) dγ =
∫

Rd

f(g − Eg) dγ, Eg =
∫

Rd

g dγ.

Here we have

covγ(f, g) = −
∫ ∞

0

∫
Rd

fLTtg dγ dt =
∫ ∞

0

∫
Rd

⟨∇f,∇Ttg⟩ dγ.

In this formula we can use the equality ∇Ttg = e−tTt∇g, which in view of the
estimate |Tt∇g| 6 Tt|∇g| and the equality of the integrals of Tt|∇g| and |∇g|
implies the estimate

covγ(f, g) 6 Lip(f)
∫

Rd

|∇g| dγ, (1.10)

where Lip(f) is the Lipschitz constant of the function f . By passage to the limit
this estimate extends to Lipschitz functions f and locally Sobolev functions g with
gradients in L1(γ), that is, to functions in the Gaussian Sobolev class W 1,1(γ)
considered below; such a function fg is automatically integrable with respect to
the measure γ (see (2.4)).

Remark 1.6. Note that the operator L with domain D2(L) is self-adjoint in L2(γ);
on the linear span of the polynomials Hk it is essentially self-adjoint (its closure is
self-adjoint). This can be readily derived from the diagonal form of L, but it can also
be obtained as a corollary of a general theorem on the essential self-adjointness of
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the generator of a strongly continuous semigroup of self-adjoint operators, acting in
a Hilbert space on a dense linear subspace contained in the domain of the generator
and invariant with respect to the semigroup. The same reasoning gives the essential
self-adjointness of L on C∞b (Rd), and in the complex case on the linear span of the
functions of the form eilψ, where l is a linear function and ψ is a polynomial. The
class C∞0 (Rd) is not invariant with respect to the semigroup, but the operator L is
essentially self-adjoint also on this class. This follows from the fact that C∞0 (Rd)
is dense in the Sobolev space W 2,2(γ) that coincides with D2(L) as indicated in § 3.
Of course, it is also possible to give a direct proof by the well-known criterion
for essential self-adjointness of symmetric operators that consists in verifying that
the range of the operator L − iI is dense. This can easily be done on the basis
of the obvious denseness of the range of L− iI on the space of polynomials.

There is an extensive literature devoted to diverse problems involving expan-
sions in Chebyshev–Hermite functions or polynomials for the Ornstein–Uhlenbeck
operator or for the closely related Hermite operator ∆ − |x|2, estimates for norms
of such polynomials, and other properties of eigenfunctions (see the book [201] and
the papers [1], [47], [117], [118], [153]–[155], and [198], where additional references
can be found).

A functional calculus for Ornstein–Uhlenbeck operators was discussed in [81]. In
the recent paper [44] a number of results were obtained on generators of general dif-
fusion semigroups, a particular case of which is the Ornstein–Uhlenbeck semigroup.
These results are connected with functional calculus and convergence properties.

Some general properties of Ornstein–Uhlenbeck semigroups (in particular, non-
symmetric) connected with analyticity, generators, and their domains were inves-
tigated in [48], [49], [51], [92], [93], [123], [133], [159], and [200]. For applica-
tions it is useful to consider Ornstein–Uhlenbeck semigroups also on spaces of
bounded continuous functions, although strong continuity is lacking on such spaces
(see, for instance, [56], [163]). Here we do not discuss degenerate operators of
Ornstein–Uhlenbeck type and the corresponding hypoellipticity problems (see, for
instance,[173]).

The survey [205] discusses interesting connections with other semigroups con-
nected with orthogonal polynomials.

2. Gaussian Sobolev classes

We recall that the usual Sobolev class (or space) W p,r(Rd) on Rd with p ∈ [1,∞)
and r ∈ N consists of all functions f ∈ Lp(Rd) such that the generalized partial
derivatives ∂xi1

· · · ∂xik
f for all k 6 r (derivatives in the sense of D ′) are given by

functions in Lp(Rd). The space W p,r(Rd) is a Banach space with respect to the
natural Sobolev norm defined as the sum of the Lp-norms of the function itself
and all its partial derivatives up to order r inclusive. The set C∞0 (Rd) is dense
in W p,r(Rd), and hence without using generalized derivatives the space W p,r(Rd)
can be defined as the completion of C∞0 (Rd) with respect to the Sobolev norm.
To avoid confusion with the Gaussian Sobolev classes considered below, we do not
introduce any notation for the Sobolev norms on W p,r(Rd). It is readily verified
that for all functions ζ ∈ C∞0 (Rd) and f ∈ W p,r(Rd) the product ζf belongs
to W p,r(Rd). Therefore, it is natural to introduce the local Sobolev class W p,r

loc (Rd)



206 V. I. Bogachev

as the class of functions f on Rd such that ζf belongs to W p,r(Rd) for all ζ ∈
C∞0 (Rd). Of course, as in the case of Lp, we deal with equivalence classes rather
than individual functions (throughout, this will not be specified).

The construction of Sobolev classes with respect to the Gaussian measure γd is
completely analogous, and moreover, the second method (completion) turns out to
be even more intuitive, although a description by means of generalized derivatives
is also possible, as will be noted in § 4. First, for the measure γ = γd (the index d
will often be omitted, since on Rd we will consider only the standard Gaussian
measure) we introduce the weighted Sobolev norms

∥f∥p,r = ∥f∥W p,r(γ) = ∥f∥Lp(γ) +
∑
k6r

(∫
Rd

( ∑
i1,...,ik6d

|∂xi1
· · · ∂xik

f |2
)p/2

dγ

)1/p

on the space C∞0 (Rd) or on C∞b (Rd) (or on the space of polynomials). Next, we
take the completion W p,r(γ) of the space obtained (it can be verified that all the
three classes give the same completion, hence for definiteness we can assume that
first the space C∞b (Rd) is taken). An element f ∈ W p,r(γ) is a function in Lp(γ),
and the completion procedure associates with it functions ∂xi1

· · · ∂xik
f ∈ Lp(γ)

that are its generalized derivatives in the sense of D ′, as one can easily verify. It is
clear that f ∈W p,r

loc (Rd), but the function f can fail to be in the class W p,r(Rd) (the
simplest example is a non-zero constant). One can verify that the classes W p,r(γ)
admit the following characterization (the equality (2.2) follows from Meyer’s result
in § 3 about the equivalence of norms).

Theorem 2.1. The equality

W p,r(γ) = {f ∈W p,r
loc (Rd) : ∥f∥W p,r(γ) <∞} (2.1)

holds for all p ∈ [1,∞) and r ∈ N. Moreover, for p > 1

W p,2(γ) = {f ∈W p,2
loc (Rd) : ∆f − ⟨x,∇f⟩ ∈ Lp(γ)}. (2.2)

If f ∈ Lp(γ), p > 1, and t > 0, then the function Ttf is in the classes W p,r(γ)
for r > 1 and has an infinitely differentiable version (the latter assertion can be
easily verified by means of the theorem on differentiating the integral with respect
to a parameter, applied to the explicit expression for Ttf(x+s1e1 + · · ·+sded)). In
Theorem 5.8 below we give an analogous assertion in the infinite-dimensional case.

In analogy to the class BV (Rd) of functions of bounded variation, consisting of
functions f ∈ L1(Rd) whose generalized partial derivatives ∂xif are bounded mea-
sures on Rd (not necessarily given by functions), we can introduce the class BV (γ).
There are several equivalent descriptions of this class (see [80]). The first one defines
it as the set of functions f ∈ L1(γ) that are limits in L1(γ) of sequences of functions
with uniformly bounded norms in W 1,1(γ). The norm on BV (γ) can be defined by
the equality

∥f∥BV (γ) = inf
{
C : {fn} ⊂W 1,1(γ), fn → f a.e., ∥fn∥1,1 6 C

}
. (2.3)

Another description, using generalized derivatives, is this: these are functions f
in L1(γ) for which f

√∣∣log |f |
∣∣ ∈ L1(γ), and fe−|x|

2/2 ∈ BV (Rd). The third descrip-
tion, following from results in [80], is given in the proposition below in terms of the
Ornstein–Uhlenbeck semigroup.
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Proposition 2.2. A function f ∈ L1(γ) belongs to BV (γ) precisely when Ttf ∈
W 1,1(γ) for all t > 0 and

sup
t>0

∫
Rd

|∇Ttf | dγ <∞.

For the usual Sobolev spaces there are well-known embedding theorems according
to which the a priori integrability of functions inW p,r(Rd) is improved: for example,
a function inW 1,1(Rd) actually belongs not only to L1(Rd) but also to Ld/(d−1)(Rd).
This precise effect does not hold for Gaussian Sobolev classes (on the whole space),
but there is some improvement of integrability, although not of a power order but
logarithmically. In § 5 we give precise formulations. Here we mention only one
result in this direction.

Proposition 2.3. There is a number C such that for every d and every f ∈
W 1,1(γ) the inequalities ∫

Rd

|xif(x)| γ(dx) 6 C∥f∥1,1 (2.4)

hold for all i. The same inequalities are true also for all functions in BV (γ) with
the norm ∥f∥BV (γ) instead of ∥f∥1,1 .

Below we give more general and sharper estimates for embeddings in the Orlicz
class.

From (0.3) we pass to the limit and obtain the identity∫
Rd

fLg dγ = −
∫

Rd

⟨∇f,∇g⟩ dγ, (2.5)

f ∈W p,1(γ), g ∈W q,2(γ),
1
p

+
1
q

= 1.

For a function f ∈ L1(γ) with zero integral with respect to γ we introduce the
Kantorovich norm ∥f∥K,γ by

∥f∥K,γ = sup
{∫

Rd

fg dγ : g ∈ Lip1

}
, (2.6)

where Lip1 is the class of functions that are Lipschitz with constant 1. The following
inequality was obtained in [40].

Theorem 2.4. Every function f ∈ W 1,1(γ) with zero integral with respect to γ
satisfies the two-sided estimate

∥f∥2L1(γ)

2∥∇f∥L1(γ)
6 ∥f∥K,γ 6 ∥∇f∥L1(γ). (2.7)

Now we mention a result from [41], in whichW2 denotes the Kantorovich 2-metric
defined for a pair of probability measures µ and σ with finite second moments by
the equality

W 2
2 (µ, ν) = inf

∫
Rd×Rd

|x− y|2 σ(dx dy),
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where the infimum is taken over all probability measures σ on Rd × Rd with pro-
jections µ and ν to the factors.

Theorem 2.5. For all f ∈W p,1(γ)

γ(x : Ttf(x) > 2u) 6 inf
t>0

[
Kp arccos(e−t)

up
∥∇f∥p

p +
1

(e2t − 1)u log u
W 2

2 (f · γ, γ)
]
,

where f · γ is the measure with density f with respect to γ and

Kp
p =

1√
2π

∫
|x|pe−x2/2 dx.

The proof is based on a lemma that is of independent interest.

Lemma 2.6. Let u ∈W p,1(γ). Then

∥Ttu− u∥p 6 Kpct∥∇u∥p,

where

ct =
∫ t

0

e−s

√
1− e−2s

ds = arccos(e−t). (2.8)

Above we discussed the standard Sobolev classes with respect to Gaussian mea-
sures and corresponding in the infinite-dimensional case to the Cameron–Martin
norm for defining norms of derivatives (that is, the standard norm on Rn for
the standard Gaussian measure) and to the standard Ornstein–Uhlenbeck oper-
ator in the definition of Sobolev classes with its help. However, there are other
norms and modifications of the Ornstein–Uhlenbeck operator, as is natural for
applications to Ornstein–Uhlenbeck processes with different drifts (for example,
see [49]–[51], [134], [185]).

We mention that in the last years there have been active studies of the
Ornstein–Uhlenbeck semigroup on domains (see [10], [89], [99]) and Gaussian
Sobolev classes on domains, which is beyond the scope of our survey.

3. Domains and spectra of Ornstein–Uhlenbeck operators

The domain of the generator of the Ornstein–Uhlenbeck semigroup in L2(γ) was
calculated above. For a general space Lp(γ) with p ∈ (1,∞) the following assertion
is true.

Theorem 3.1. Let p ∈ (1,∞). Then

Dp(L) = W p,2(γ) =
{
f ∈W p,2

loc (Rd) : f,∆f − ⟨x,∇f⟩ ∈ Lp(γ)
}
.

Proof. We already know that C∞0 (Rd) ⊂ Dp(L) and that on C∞0 (Rd) the generator
Lf is given by the indicated differential expression. Let f ∈ Dp(L). Then for all
g ∈ C∞0 (Rd) we have ∫

Lfg dγ =
∫
fLg dγ

(here and below in the case of integration over the whole space we do not indicate
the domain of integration), whence it follows that ∆f −⟨x,∇f⟩ as a distribution is
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given by the pointwise defined function Lf ∈ Lp
loc(Rd). It is known from the theory

of elliptic equations that then f ∈W p,2
loc (Rd). From the equality (2.1) we obtain the

desired inclusion f ∈W p,2(γ).
Conversely, let f ∈ W p,2(γ). Then there exists a sequence of functions fj of

class C∞0 (Rd) convergent to f in W p,2(γ). By Meyer’s inequalities presented below
(see Theorem 3.3 for r = 2) this gives the convergence Lfj → Lf in Lp(γ), which by
the closedness of the generator and the inclusion C∞0 (Rd) ⊂ Dp(L) implies that f ∈
Dp(L) and Lf = ∆f − ⟨x,∇f⟩. It was already noted in Theorem 2.1 that W p,2(γ)
coincides with the class of functions f ∈W p,2

loc (Rd) such that ∆f −⟨x,∇f⟩ ∈ Lp(γ).
�

The domain D1(L) of the Ornstein–Uhlenbeck operator in L1(γ) has no such
explicit description.

Theorem 3.2. The set D1(L) consists of all f ∈ L1(γ) such that the distribution
∆f − ⟨x,∇f⟩ ∈ D ′(Rd) is given by a function in L1(γ). Moreover, D1(L) strictly
contains W 1,2(γ).

Proof. Let f ∈ D1(L). For every function g ∈ C∞0 (Rd) we have∫
gLf dγ = lim

t→0

1
t

∫
g(Ttf − f) dγ = lim

t→0

1
t

∫
f(Ttg − g) dγ =

∫
fLg dγ,

since the functions t−1(Ttg−g) converge pointwise to Lg and are uniformly bounded
in view of (1.4) and the inclusion Lg ∈ C∞0 (Rd). The equality obtained means
that the locally integrable function ϱLf , where ϱ is the standard Gaussian density,
coincides as a distribution with the distribution

∆(fϱ)− div(fϱx) = ϱ∆f + f∆ϱ− dfϱ− ϱ⟨∇f, x⟩ − f⟨∇ϱ, x⟩.

Since ∆ϱ(x) = dϱ(x) − |x|2ϱ(x) and ∇ϱ(x) = −ϱ(x)x, on the right-hand side we
obtain the same expression ϱLf , but with Lf in the sense of distributions.

Suppose now that f ∈ L1(γ) is a function such that the generated element
Lf ∈ D ′(Rd) is given by a γ-integrable function (which will also be denoted by Lf).
We verify that f ∈ D1(L). To do this we observe that

Ttf − f =
∫ t

0

TsLf ds (3.1)

in the sense of equality in L1(γ). Indeed, the right-hand side is defined by the
continuity of the map s 7→ TsLf with values in L1(γ). Hence, it suffices to establish
that after multiplication by a function of class C∞0 both sides have equal integrals
with respect to the measure γ. Let g ∈ C∞0 (Rd). Then∫

g(Ttf − f) dγ =
∫
f(Ttg − g) dγ,∫

g

(∫ t

0

TsLf ds

)
dγ =

∫ t

0

∫
gTsLf dγ ds =

∫ t

0

∫
TsgLf dγ ds

=
∫
Lf

∫ t

0

Tsg ds dγ.
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Our assertion will be proved if we manage to move the operator L to the func-
tion ψ obtained by integrating Tsg with respect to s over [0, t], since for functions
of class C∞0 the formula (3.1) to be proved is true. This function ψ belongs to the
class C∞b (Rd) but not to the class C∞0 (Rd), for which we are currently able to carry
out such an operation by regarding Lf as an element of D(Rd). However, in fact
the equality ∫

Lfψ dγ =
∫
fLψ dγ

is also true for functions ψ ∈ C∞b (Rd) such that Lψ and |∇ψ| are bounded, and
this is the case for our function ψ because of the boundedness of Lg and the equal-
ities

LTsg = TsLg, ∇Tsg = e−sTs∇g.

Indeed, let us take a function ζ ∈ C∞0 (Rd) equal to 1 on the unit ball and vanishing
outside the doubled ball. Letting

ζj(x) = ζ

(
x

j

)
,

we observe that
L(ζjψ) = ζjLψ + ψLζj + 2⟨∇ψ,∇ζj⟩.

In the identity ∫
Lf(ζjψ) dγ =

∫
fL(ζjψ) dγ

we can now pass to the limit as j → ∞. By the Lebesgue dominated convergence
theorem the left-hand side tends to the integral of Lfψ with respect to the mea-
sure γ. On the right-hand side, after substituting the indicated equality for L(ζjψ),
we obtain three terms. The term with ζjLψ tends to the integral of fLψ with
respect to γ. The remaining terms tend to zero as j → ∞ by the Lebesgue theo-
rem, since the functions Lζj and |∇ζj | tend pointwise to zero and for them we have
the estimates |∇ζj | 6 j−1 maxx |∇ζ(x)| and

|Lζj(x)| 6 Cj−2 + j−1|x|
∣∣∣∣∇ζ(xj

)∣∣∣∣,
where the right-hand side is uniformly bounded in view of the equality

ψ

(
x

j

)
= 0 for |x| > 2j.

Finally, the formula (3.1) implies that f ∈ D1(L), since by this formula and the
equality lims→0 ∥TsLf −Lf∥L1(γ) = 0 the functions t−1(Ttf − f)−Lf converge to
zero with respect to the norm in L1(γ).

The inclusion W 1,2(γ) ⊂ D1(L) now follows from what we have proved. Indeed,
if f ∈ W 1,2(γ), then the Sobolev derivatives ∂xi

∂xj
f belong to L1(γ). It follows

that L1(γ) also contains the functions xi∂xi
f (see Proposition 2.3). Thus, the

function Lf as a distribution is given by an element of L1(γ).
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However, the indicated inclusion is strict. This is seen from the following argu-
ment. It is known (see [58]) that there exists a Lebesgue integrable function f with
bounded support in Rd, d > 1, such that the distribution ∆f is an ordinary inte-
grable function, but the second partial derivatives ∂2

xi
f in the sense of distributions

are not integrable functions (the function f belongs to the first Sobolev class, but
not to the second). For the reader’s convenience we take from [58] an example of
such a function. Let

f(x) = η(|x|)V (|x|),

where η ∈ C∞0 (R) has support in [−1/3, 1/3], η = 1 on [−1/4, 1/4], and

V (r) =
∫ 1/2

r

s1−d

log s
ds, 0 < r 6 1.

For 0 < |x| < 1/4 we have

∇f(x) = − x

|x|d log |x|
, ∆f(x) =

1
|x|d(log |x|)2

,

hence ∆f (along with |∇f |) is an integrable function. It is important that the inte-
grable function obtained (defined by the indicated formula away from the origin)
coincides with ∆f in the sense of distributions, that is, for every function ϕ ∈ C∞0
the integral of f∆ϕ coincides with the integral of the function ϕ∆f . Indeed, it
is easy to see that f ∈ W 1,1(Rd). Therefore, it remains to compare the integrals
of −⟨∇f,∇ϕ⟩ and ϕ∆f . The simplest method is this: for a function ϕ vanishing in
a neighbourhood of zero we can just integrate by parts. In the general case, in place
of ϕ we can substitute the function ηεϕ, where ηε is a smooth function vanishing
in the ball of radius ε > 0 centred at zero, equal to 1 outside the doubled ball, and
satisfying the estimate |∇ηε| 6 Cε−1 with some constant (it is clear that this can
be achieved). The integrals of −ηε⟨∇f,∇ϕ⟩ and ηεϕ∆f tend to the integrals we
are interested in as ε → 0, and the integral of |∇ηε| |∇f | tends to zero, since it is
bounded by the integral of Cε−1|x|1−d| log |x| |−1 over the difference of the balls of
radii ε and 2ε, which obviously tends to zero. The failure of integrability of the sec-
ond derivatives in a neighbourhood of zero can also be verified by direct calculations
which reduce to a consideration of the function r−d| log r|−1 in a neighbourhood of
zero, but it can also be seen from a finer version of the Sobolev embedding theorem
for the Lorentz class and an explicit verification that the function |∇f | does not
belong to this class (see [58]). Note, however, that

|∇f | ∈ Ld/(d−1)(Rd), that is, f ∈W d/(d−1),1(Rd),

so that there is no contradiction with the usual embedding theorem.
Then Lf = ∆f−⟨f, x⟩ in the sense of distributions is also an integrable function

with compact support. As shown above, f ∈ D1(L), although f does not belong
to W 1,2(γ), since it does not even belong to W 1,2

loc (Rd). �

Below we shall need certain Orlicz classes of integrable functions. Let Φ be
a strictly increasing convex function on [0,∞) with Φ(0) = 0 such that Φ′ increases
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to infinity. The Orlicz (or Orlicz–Luxemburg) norm ∥f∥Φ of a measurable func-
tion f on a space Ω with a measure µ is defined by the formula

∥f∥Φ = inf
{
λ > 0:

∫
Ω

Φ
(
|f |
λ

)
dµ 6 1

}
.

The Orlicz space LΦ(µ) consists of all functions f with ∥f∥Φ <∞. For some Orlicz
spaces there is a tradition to use a peculiar notation.

For example, the Orlicz space L logL consists of functions f ∈ L1(γ) such that

|f | log |f | ∈ L1(γ),

where for f(x) = 0 we set |f(x)| log |f(x)| := 0. The Orlicz norm ∥g∥L log L is
defined by the formula

∥g∥L log L = inf
{
λ > 0:

∫
Rd

∫ |g(x)|/λ

0

log(1 + t) dt γ(dx) 6 1
}
.

The Orlicz space L
√

logL consists of functions f ∈ L1(γ) such that

|f |
√
| log |f | | ∈ L1(γ),

where, as above, we set |f(x)|
√
| log |f(x)| | := 0 if f(x) = 0. This space possesses

a natural complete norm

∥f∥L
√

log L = inf
{
α > 0:

∫
Rd

∫ |f(x)|/α

0

√
log(1 + s) ds γ(dx) <∞

}
.

The more general spaces Lp logs L are defined similarly.
The description of the domains of the Ornstein–Uhlenbeck operator involves the

remarkable inequalities of Meyer (see [150] and [151]), which establish the equiva-
lence of norms on Gaussian Sobolev classes: the norms defined above by means of
integral norms of derivatives are estimated from both sides by the norms generated
by powers of the Ornstein–Uhlenbeck operator. The rth-order derivative of a func-
tion f will be denoted by Drf . The gradient ∇f will be denoted also by Df for
uniformity (however, sometimes one writes ∇rf instead of Drf). We recall that
the Hilbert–Schmidt norm of the derivative Drf(x) is defined by

∥Drf(x)∥Hr :=
( ∑

16ij6d

|∂xi1
· · · ∂xir

f(x)|2
)1/2

.

Theorem 3.3. If p ∈ (1,∞) and r ∈ N, then the space W p,r(γ) coincides with
the space Hp,r(γ) := (I − L)−r/2(Lp(γ)) and there exist numbers mp,r and Mp,r

independent of d such that

mp,r∥Drf∥Lp(γ,Hr) 6 ∥(I−L)r/2f∥Lp(γ) 6 Mp,r

[
∥Drf∥Lp(γ,Hr)+∥f∥Lp(γ)

]
. (3.2)

The case p = 1 differs from p > 1. In [186] the following assertion was proved.
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Theorem 3.4. For every α > 0 there exists a number C(α) > 0 such that

∥(αI − L)1/2f∥1 6 C(α)(
√
α ∥Df∥1 + ∥f∥L log L),

∥Df∥L1(γ,H1) 6 C(α)∥(αI − L)1/2f∥L log L.

Substantial generalizations of this result were obtained in [187] for broad Orlicz
classes defined by convex functions Φ (see the definition above).

Theorem 3.5. Let αΦ′(t) 6 tΦ′′(t) 6 βΦ′(t), where 1 < α < β and the function
Φ′ is either convex or concave. Then there exist positive numbers C1 and C2 such
that

C1(∥Df∥Φ + ∥f∥Φ) 6 ∥(I − L)f∥Φ 6 C2(∥Df∥Φ + ∥f∥Φ)

for all functions of class C∞b .

Corollary 3.6. Let p > 1 and β > 0. Then the operator

(I − L)−1 : Lp logpβ L→ Lp logp(β+1/2) L

is continuous.

There are also other generalizations of the Meyer inequalities which are assertions
about multipliers in Sobolev spaces. By the use of various tools (a functional
calculus, Hilbert transforms, and so on) the boundedness of a number of operators
on Sobolev spaces has been established. We mention the following result from [110]:
the operator D(I −L)−1/2 is bounded from the Orlicz space L logα+3/2 L(γ) to the
space L logα L(γ,H) for α > 0; however, it remains unclear whether this operator
is bounded from L logα+1 L(γ) to the space L logα L(γ,H).

The so-called spectral multipliers are operators of the form ϕ(L) with a certain
function ϕ and they are defined on Chebyshev–Hermite polynomials by

ϕ(L)Hk1,...,kn
= ϕ(k1 + · · ·+ kn)Hk1,...,kn

.

The problem is to extend the operator ϕ(L) to some class of functions (like Lp or
a Sobolev class) as a bounded operator with values in some class of functions. For
example, Stein [197] proved that for the boundedness of such an operator on Lp(γ)
with 1 < p <∞ it suffices that the function ϕ be of the form

ϕ(λ) = λ

∫ ∞

0

Φ(t)e−tλ dt, λ > 0,

where the function Φ: (0,∞) → C is bounded. It is shown in [54] that it suffices
to have the following weaker condition: ϕ is analytic in a sector with some angle
greater than π|1/p− 1/2|. The case p = 1 is considered in [114].

It is proved in [204] that the operator Dα(−L)−|α|/2 with a multi-index α is
continuous on the space Lp(γd) for 1 < p < ∞ (such operators are called Riesz
transforms). Unlike Meyer’s inequality, the norm of such an operator depends not
only on p but also on the dimension d.

A number of authors have investigated the Littlewood–Paley function

gγ(f)(x) =
(∫ ∞

0

|t∇Ttf(x)|2 dt
t

)1/2

and its generalizations to higher-order derivatives (see [22] and [130]).
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There are many papers devoted to Riesz transforms and Meyer-type inequalities
(see [2], [50], [67], [74], [76], [83], [84], [97], [140], [141], [143], [158], [174], [178],
[191], [204], [214], where additional references can be found).

Remark 3.7. In this survey we consider the Ornstein–Uhlenbeck semigroup on
function spaces connected with the corresponding Gaussian measure, but it should
be noted that in the finite-dimensional case it is also defined on the usual
spaces Lp(Rd) with respect to Lebesgue measure. This follows from the fact that
the operators Tt take L∞ to L∞ (as is true for all measures equivalent to Lebesgue
measure), and also take L1(Rd) to L1(Rd), since∫

Rd

|Ttf(x)| dx 6
∫

Rd

∫
Rd

|f(e−tx+
√

1− e−2t y)| γ(dy) dx = edt

∫
Rd

|f(u)| du.

The case p > 1 is treated similarly, but it also follows from an interpolation theorem.
On the spaces Lp(Rd) with p <∞ the semigroup {Tt}t>0 is continuous, which can
be verified as in the case of the Gaussian measure, and therefore its generators have
domains D̃p(L) in Lp(Rd). By the boundedness of the Gaussian density we have the
inclusions

D̃p(L) ⊂ Dp(L),

and moreover, on D̃p(L) the action of L is given by the previous differential expres-
sion in the sense of distributions. In the case p ∈ (1,∞) the set D̃p(L) coincides
with the class of functions f ∈ W p,2

loc (Rd) such that Lf ∈ Lp(Rd). The case p = 1
is analogous to the case considered in Theorem 3.2.

We remark also that an analogous argument shows the boundedness of the oper-
ators Tt on weighted classes Lp(θ dx) with a locally integrable weight θ satisfying
the condition θ(e−tx) 6 Ktθ(x) with some constants Kt.

Let us turn to spectra of Ornstein–Uhlenbeck operators acting in the complex
spaces Lp(γ). The spectrum consists of all complex numbers λ for which the opera-
tor L−λI does not have a bounded inverse. For points λ in the complement of the
spectrum (called the resolvent set), L−λI maps Dp(L) one-to-one onto Lp(γ), and
is continuous if Dp(L) is equipped with the graph norm ∥f∥p + ∥Lf∥p. Further-
more, the operator (L − λI)−1 is continuous from Lp(γ) to Lp(γ). The difference
from invertible bounded operators is that the range of the operator (L − λI)−1 is
not the whole of the space Lp(γ) but Dp(L).

As we have seen, for p = 2 the operator L has an orthonormal eigenbasis with
eigenvalues 0,−1,−2, . . . , and the dimension d influences only the multiplicities of
these eigenvalues (in the infinite-dimensional case the kernel subspaces of non-zero
eigenvalues are infinite-dimensional), so that these non-positive integers form the
full spectrum. The answer is the same for all p ∈ (1,∞), since the eigenfunctions
are Chebyshev–Hermite polynomials belonging to all the spaces Lp(γ), and no new
points of the spectrum appear, as can easily be verified (a more general result is
given below in Theorem 3.10).

Theorem 3.8. For all p ∈ (1,∞) the spectrum of the operator (L,Dp) acting in the
complex space Lp(γ) coincides with the set {0,−1,−2, . . .} of non-positive integers.

However, the case p = 1 is special.



Ornstein–Uhlenbeck operators and semigroups 215

Theorem 3.9. The spectrum of the operator (L,D1) acting in the complex space
L1(γ) coincides with the left half-plane Re z 6 0, and moreover, all the numbers
with negative real part are eigenvalues.

Consider a general operator LA,B of the form (0.5) under the additional assump-
tion that the operator

Q := 2
∫ ∞

0

e−sBAe−sB∗ ds

exists (this is equivalent to the integrability of the function trace(e−sBAe−sB∗)
on [0,∞)) and is non-degenerate. Then it is the covariance operator of a non-
degenerate symmetric Gaussian measure µ.

The indicated operator LA,B is the generator of the strongly continuous semi-
group {St}t>0 in each space Lp(µ) with p ∈ [1,∞), on a domain Dp depending
on p, and it is given by the indicated differential expression on Dp in the sense of
distributions. The measure µ is invariant with respect to the semigroup {St}t>0.
This can be seen in different ways, for example, it suffices to verify that the integrals
with respect to µ of functions of the form LA,B exp(il) are zero, where l is a linear
function (one can deduce from this that the integral of St exp(il) does not depend
on t, which then enables us to establish the invariance of µ). Let l also denote the
vector defining the functional l in the form

l(x) = ⟨l, x⟩.

In an orthonormal eigenbasis of the operator A we have

LA,B exp(il) = −⟨Al, l⟩ exp(il) + i⟨B∗l, x⟩ exp(il).

The integral of exp(il) with respect to µ equals exp(−⟨Ql, l⟩/2), and the integral of
i⟨B∗l, x⟩ exp(il) equals ⟨Ql,B∗l⟩ exp(−⟨Ql, l⟩/2), as is easily verified by differenti-
ating the integral of exp(i⟨l + tB∗l, x⟩) at zero. Thus, the desired identity reduces
to a proof of the equality

⟨Al, l⟩ = ⟨BQl, l⟩. (3.3)

If the operator B is symmetric and commutes with A, then this equality is obtained
by the simple proof that the integral of exp(−2tB) over [0,∞) is (2B)−1. In the
general case one can see that the identity

Q = 2
∫ t

0

e−sBAe−sB∗ ds+ e−tBQe−tB∗ (3.4)

holds, because

2
∫ ∞

t

e−sBAe−sB∗ ds = 2
∫ ∞

0

e−(τ+t)BAe−(τ+t)B∗ dτ = e−tBQe−tB∗ .

Differentiating (3.4) at zero, we obtain the equality

A =
1
2
(BQ+QB∗), (3.5)

which implies (3.3).
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The existence of the operator Q is necessary and sufficient for the existence of
an invariant measure of the semigroup {St}t>0 generated by the operator LA,B (see
[57], § 6.2). Under our assumption of the non-degeneracy of A this is also equivalent
to the property that the spectrum of B lies in the open right half-plane in C. The
semigroup itself can be defined without this condition on the space of bounded
continuous (or bounded Borel) functions by a Mehler-type formula

Stf(x) = (2π)−d/2(detQt)−1/2

∫
Rd

f(e−tBx− y) exp
(
−1

2
⟨Q−1

t y, y⟩
)
dy,

Qt = 2
∫ t

0

e−sBAe−sB∗ ds.

As already mentioned, the Ornstein–Uhlenbeck semigroup is not strongly continu-
ous on these spaces.

The proof of the following general result is given in [148] (instead of invertibility
of A, the even broader condition of invertibility of the operators Qt is used there).

Theorem 3.10. Under the indicated conditions on A and B , the spectrum of the
operator (L,Dp) acting in the complex space Lp(µ) with p ∈ (1,∞) consists of its
eigenvalues and equals{

−
r∑

j=1

kjzj : kj ∈ N ∪ {0}, z1, . . . , zr are all eigenvalues of B
}
.

In addition, all eigenfunctions are polynomials.

For A = B = I (the identity operator) we obtain the set of all non-positive
integers.

It is shown in [148] that for p = 1 the spectrum coincides with the left half-plane
and all numbers with negative real part are eigenvalues (of course, there are also
non-polynomial eigenfunctions), as in Theorem 3.9.

Note an unobvious property of the spectrum in the previous theorem: it does not
depend on the matrix A (with the exception of those properties which are needed
to ensure the hypotheses of the theorem). This interesting circumstance is already
seen in the following assertion (see [148], Lemma 3.3), which underlies the proof of
Theorem 3.10.

Proposition 3.11. Let p ∈ (1,∞). Under the conditions of the previous theorem,
a number λ belongs to the spectrum of the operator (L,Dp) acting in the complex
space Lp(µ) precisely when there exists a non-zero homogeneous polynomial ψ such
that

⟨Bx,Dψ(x)⟩ = λψ(x).

In [148] the multiplicities and indices of eigenvalues of the operator (L,Dp) are
studied. In particular, the algebraic multiplicity of the eigenvalue λ equals

∑
n1λ1+···+nrλr=λ

r∏
j=1

(kj + nj − 1)!
nj ! (kj − 1)!

.
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It should be emphasized that the results presented concern the spectrum of the
Ornstein–Uhlenbeck operator acting in the spaces Lp with respect to the invariant
Gaussian measure. The situation changes radically if we consider the same operator
acting in Lp with respect to Lebesgue measure (see [147]).

The domains of the generator of the semigroup generated by LA,B acting in the
spaces Lp(µ) are investigated in [149].

Theorem 3.12. Under the conditions of Theorem 3.10 the domain of the generator
of the Ornstein–Uhlenbeck semigroup {St}t>0 generated by LA,B acting in Lp(µ)
coincides with the Sobolev class W p,2(µ).

In [149] the domain of the generator acting in Lp(Rd) is also described.

4. The infinite-dimensional case

Here we discuss infinite-dimensional analogues of some of the objects introduced
above. In subsequent sections we also mention versions of presented results for the
case of an infinite-dimensional space, and with rare exceptions the formulations do
not change, as will be noted. Only at one place, where the infinite-dimensional
analogue is so far an open question, will there be special mention of this.

Let X be a real Hausdorff locally convex space with topological dual space X∗.
A non-negative measure µ on the Borel σ-algebra B(X) of the space X is called
a Radon measure if, for every Borel set B ⊂ X, the value µ(B) equals the supremum
of the values µ(K) over compact subsets K ⊂ B. A probability Radon measure
γ on X is called a centred Gaussian measure if every continuous linear functional
l on X is a centred Gaussian random variable on (X, γ). The latter means that
the induced measure γ ◦ l−1 is either the Dirac measure at zero or has a density
of the form (2πσ)−1/2 exp

(
−t2/(2σ)

)
. On Gaussian measures, see [25] and [26].

The norm on Lp(γ) is denoted by ∥f∥p, as above in the finite-dimensional case.
It is known that for a Radon Gaussian measure the spaces Lp(γ) with p < ∞ are
separable (for arbitrary Radon measures this is false).

In the case of an infinite-dimensional space an important role is played by the
so-called Cameron–Martin space of the measure γ, defined as the set H = H(γ)
of all vectors h ∈ X such that γh ∼ γ, where γh(B) = γ(B − h). If γ is the
countable power of the standard Gaussian measure on the real line and is considered
on the space R∞ of all real sequences, then H is the standard Hilbert space l2
(for the standard Gaussian measure on Rd the Cameron–Martin space is Rd itself).
For a general Radon centred Gaussian measure, the Cameron–Martin space is also
a separable Hilbert space (see [25], Theorem 3.2.7 and Proposition 2.4.6) with the
inner product ⟨ · , · ⟩H and the norm | · |H defined by

|h|H = sup
{
l(h) :

∫
X

l2 dγ 6 1, l ∈ X∗
}
.

Let {li}∞i=1 ⊂ X∗ be an orthonormal basis in the closure X∗
γ of the set X∗ in L2(γ).

There is an orthonormal basis {ei}∞i=1 in H such that li(ej) = δi,j .
For every vector h ∈ H, there is a unique element ĥ ∈ X∗

γ such that

l(h) =
∫

X

l(x)ĥ(x) γ(dx) ∀ l ∈ X∗.
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According to the Cameron–Martin formula, for every h ∈ H the shifted measure
γ(· − h) has the density exp(ĥ− |h|2H/2) with respect to the measure γ.

Let FC∞(X) be the set of all functions ϕ on X of the form

ϕ(x) = ψ
(
l1(x), . . . , ln(x)

)
, where ψ ∈ C∞b (Rn), li ∈ X∗,

and let FC∞
0 (X) be its subclass of functions for which ψ can be chosen in C∞0 (Rn).

We observe that FC∞
0 (X) is not a linear space (unlike FC∞(X)), since a non-zero

function in C∞0 (Rn) does not have compact support as a function on Rn+1. The
class FC∞(X) is dense in Lp for every Radon measure (if p <∞).

Analogues of Chebyshev–Hermite polynomials of degree k on X are obtained
by a simple substitution of elements of X∗

γ into finite-dimensional polynomials of
degree k, that is, these are functions of the form

Hk1,...,kn
(l1, . . . , ln), li ∈ X∗

γ .

If we take an orthonormal basis in X∗
γ as {lj}, then the system of functions obtained

(for all kj > 0 and n = 0, 1, 2, . . .) will be an orthonormal basis in L2(γ). In the case
of infinite-dimensionalX∗

γ the space Xk equal to the closure of the linear span of the
polynomials Hk1,...,kn(l1, . . . , ln) with k1 + · · ·+ kn = k is also infinite-dimensional
for k > 0 (X0 consists of the constants). As in the finite-dimensional case, the
spaces Xk are pairwise orthogonal and give an orthogonal decomposition

L2(γ) =
∞⊕

k=0

Xk.

The operator of projection of L2(γ) onto Xk is denoted by Ik.
One similarly introduces the space Xk(E) of polynomial maps of degree k with

values in a separable Hilbert space E: in the space L2(γ,E) of square-integrable
E-valued maps we take the closure of the linear span of maps of the form f1v1 +
· · ·+ fnvn, where fi ∈ Xk and vi ∈ E.

It turns out that most of the results discussed can be carried over literally
to the infinite-dimensional case thanks to a remarkable result of Tsirelson, who
proved that every Radon centred Gaussian measure γ with an infinite-dimensional
Cameron–Martin space is linearly isomorphic to the standard Gaussian measure γ∞
on R∞ (the countable power of the standard Gaussian measure on the real line).
Thus, all infinite-dimensional Radon centred Gaussian measures are linearly isomor-
phic. A precise formulation is this: in the spaceX on which the measure γ is defined
there exists a Borel linear subspace of measure 1 which can be mapped one-to-one
by a Borel linear map T with a Borel inverse onto a Borel linear subspace E ⊂ R∞
of measure 1 with respect to γ∞ such that γ ◦T−1 = γ∞. Moreover, the operator T
is an isometry of the Cameron–Martin spaces of these measures. A very important
feature of Tsirelson’s result is that the isomorphism T is defined constructively: if
{ln} ⊂ X∗ is an orthogonal basis in X∗

γ , then we can take Tx =
(
ln(x)

)∞
n=1

(this
map is even continuous). The only object that is not given constructively is a sub-
space X0 on which T is injective. Of course, such isomorphisms are seldom contin-
uous in both directions, and for isomorphisms of general spaces one cannot always
obtain continuity even in one direction. Also, it usually cannot be made one-to-one
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or Borel measurable on the whole space. For example, l2 with a Gaussian measure
cannot be transformed into the Wiener measure on C[0, 1] by a Borel linear map of
the whole of l2, since such a map must be continuous, but the Wiener measure on
C[0, 1] vanishes on all continuously embedded Hilbert spaces. Further, one cannot
embed a space of a larger algebraic dimension injectively into R∞. A separable
Banach space with a Gaussian measure having a dense Cameron–Martin subspace
can be transformed by an injective continuous linear operator into the measure γ∞,
but one cannot obtain continuity of the inverse operator, since neighbourhoods of
zero in R∞ contain cylinders with finite-dimensional bases. Nevertheless, there are
enough such isomorphisms for most of the results discussed here to be insensitive
to our choice of the space and to reduce to the case of the measure γ∞ on R∞.

The Ornstein–Uhlenbeck semigroup is defined by the same formula (0.2) with
an obvious change of the domain of integration:

Ttf(x) =
∫

X

f
(
e−tx−

√
1− e−2t y

)
γ(dy). (4.1)

It can be verified similarly that this semigroup is strongly continuous and con-
tracting on the whole of Lp(γ) with p < ∞ and that all the other assertions of
Theorem 1.1 are also true. However, this does not require a new proof, but can be
obtained from the finite-dimensional case by using the fact that the set of cylindrical
functions is dense.

On the space L2(γ) the operators Tt are symmetric, so the generator L is
self-adjoint. In addition,

Tt

∣∣
Xk

= e−tkI,

so for every choice of an orthonormal basis in each subspace Xk the operator Tk on
L2(γ) becomes diagonal with the same eigenvalues e−tk as in the finite-dimensional
case (but for k > 0 these eigenvalues have infinite multiplicity).

As above, the semigroup {Tt}t>0 has generators (L,Dp) acting in Lp(γ), the
operator L is called the Ornstein–Uhlenbeck operator, and on smooth cylindrical
functions it is defined by essentially the same expression as on Rd. For the mea-
sure γ∞ this is literally the same expression, and in the general case the formula is
this: if {en} is an orthonormal basis in the Cameron–Martin space H and {ên} is
the corresponding basis in X∗

γ , then for functions of the form f = ψ(ê1, . . . , ên) we
have

Lf =
n∑

i=1

(∂2
ei
f − êi ∂eif),

where ∂h is the derivative along the vector h, that is,

∂hf(x) = lim
t→0

f(x+ th)− f(x)
t

.

For a general cylindrical function of the form f = ψ(l1, . . . , ln), where the function-
als li ∈ X∗ are not linear combinations of the êi, we have the series

Lf =
∞∑

i=1

(∂2
ei
f − êi ∂eif).
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Convergence of this series requires some justification. Below we return to this ques-
tion for more general functions in the domain of the generator (here a very typical
peculiarity of the infinite-dimensional case arises), but for cylindrical functions the
justification is not difficult. Indeed, we observe that

∂ei
f(x) =

n∑
j=1

∂xj
ψ(l1, . . . , ln)lj(ei),

∂2
ei
f(x) =

n∑
j,k=1

∂xk
∂xj

ψ(l1, . . . , ln)lj(ei)lk(ei).

Thus, for fixed j and k we obtain two series with lj(ei)lk(ei) and êi(x)lj(ei). The
first series is numerical and converges to (lj , lk)L2(γ), since

lj(ei) = (lj , êi)L2(γ),

where {êi} is a basis inX∗
γ . The second series for the same reason converges in L2(γ)

to lj , but the convergence actually holds in all of Lp(γ), as is seen from the facts
below on convergence of polynomials of fixed degree (in this case, of degree one).
We draw attention to the fact that even in the simplest situation considered we
are dealing with convergence of series in L2 and not pointwise convergence. Of
course, so far we checked only convergence of the series but not the equality of
its sum to Lf . The latter can be verified as follows. First, whatever the concrete
form of Lf , we observe that f belongs to the domain of L in all the spaces Lp by
the finite-dimensional case. Again, by virtue of known facts for Rd the expression
for Lf has the indicated form for functions of finitely many êi. The established
convergence of the series in all the spaces Lp yields the desired equality.

The Sobolev classes W p,r(γ) are now introduced as the completions of FC∞(X)
with respect to the Sobolev norms

∥f∥p,r = ∥f∥W p,r(γ) = ∥f∥Lp(γ) +
∑
k6r

(∫
X

( ∑
ij>1

|∂ei1
· · · ∂eik

f |2
)p/2

dγ

)1/p

,

where {ei} is an orthonormal basis in H. This expression can be rewritten in a more
invariant form without using bases. To do this we recall that the Hilbert–Schmidt
norm of a bounded linear operator A on H is defined by

∥A∥H =
( ∞∑

n=1

⟨Aen, Aen⟩H
)1/2

.

If ∥A∥H < ∞, then A is called a Hilbert–Schmidt operator. It is readily verified
that the quantity ∥A∥H is actually independent of our choice of a basis. The space
H of Hilbert–Schmidt operators itself becomes a separable Hilbert space with the
inner product

(A,B)H =
∞∑

n=1

⟨Aen, Ben⟩H ,
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which also does not depend on the basis. It is clear that

2(A,B)H = ∥A+B∥2H − ∥A∥2H − ∥B∥2H .

The space of Hilbert–Schmidt operators from H to a separable Hilbert space E is
defined similarly. It is equipped with the norm

∥A∥H =
( ∞∑

n=1

(Aen, Aen)E

)1/2

and with the corresponding inner product, and is denoted by the symbol H (H,E).
Let

H0 = R, H1 = H, Hn+1 = H (H,Hn).

The spaces Xk belong to all the classes W p,r(γ) (this follows from the results below,
and for p = 2 is easily verified directly by means of the equality TtIk = e−tkIk).

In addition to partial derivatives along vectors in H, one can introduce the
gradient along H and higher-order derivatives along H. The gradient DH along H
is defined by

⟨DHf(x), h⟩H = ∂hf(x).

Thus, this is just the gradient at zero of the function

h 7→ f(x+ h)

on the Hilbert space H for a fixed element x. Hence, with x we associate the vector
DHf(x) ∈ H, which yields a map from X to H. We can also differentiate this map
along H, that is, we can again consider the map

h 7→ DHf(x+ h)

for fixed x. Its derivative is an operator D2
Hf(x) on H. For a smooth cylindrical

function f this is a Hilbert–Schmidt operator. Therefore, D2
Hf takes values in

the Hilbert space H2 of Hilbert–Schmidt operators. This enables us to continue
taking derivatives along H inductively, remaining all the time in the framework of
Hilbert space-valued maps with values in the spaces Hn. Consequently, the original
function takes values in R, its first derivative along H takes values in H, the second
derivative takes values in H2, and so on.

Hence for r = 2

∥f∥p,2 = ∥f∥W p,2(γ) = ∥f∥Lp(γ) +
(∫

X

|DHf |pH dγ

)1/p

+
(∫

X

∥D2
Hf∥

p
H dγ

)1/p

.

As a result of completion, elements f ∈ W p,r(γ) have Sobolev derivatives Dk
Hf ∈

Lp(γ,Hk), obtained as the limits of the usual derivatives of smooth cylindrical
functions. These Sobolev derivatives are characterized by integration by parts for-
mulae. For example, if r = 1, then for all ϕ ∈ FC∞(X) and h ∈ H we have the
equality∫

X

∂hϕ(x)f(x) γ(dx) = −
∫

X

ϕ(x)⟨DHf(x), h⟩H γ(dx) +
∫

X

ϕ(x)f(x)ĥ(x) γ(dx).
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This identity can be taken as the definition of DHf : for f ∈ Lp(γ) the existence
of a map DHf ∈ Lp(γ,H) satisfying this identity means that f ∈W p,1(γ) and the
indicated map is the Sobolev derivative of f along H. For r > 1 the situation is
analogous. In the case p = 1 there is a minor subtlety: it is necessary to assume
in addition the integrability of the product fĥ, which follows from the relation
f ∈W 1,1(γ), but not from the relation f ∈ L1(γ).

The definition of the Sobolev classes W p,1(γ,E) of maps with values in a sep-
arable Hilbert space E is completely analogous, and then the classes W p,r(γ) can
be defined inductively:

f ∈W p,r+1(γ) if f ∈W p,r(γ) and Dr
Hf ∈W p,1(γ,Hr).

Unlike in the finite-dimensional case, no kind of Sobolev differentiability implies
continuity (except for cylindrical functions obeying the usual embedding theorems).
For example, elements f ∈ X∗

γ can fail to have continuous modifications (say, on R∞
only functionals of finitely many variables are continuous), even if they belong to
all Sobolev classes. Typical examples of functionals in X∗

γ without continuous
modifications are the function

∑∞
n=1 n

−1xn on R∞ and the stochastic integral∫ 1

0

h(t) dwt

with respect to a Wiener trajectory on C[0, 1] with the Wiener measure, where
for h we take a continuous function with unbounded variation.

Sobolev classes of Hilbert space-valued maps are useful, in particular, in that
they give natural ranges of values for derivatives. For example, the operator

DH : W p,r(γ) →W p,r−1(γ,H)

is continuous. Moreover, the very useful divergence operator

δ = divγ : W p,1(γ,H) → Lp(γ)

defined by the formula∫
X

fδv dγ = −
∫

X

⟨v,DHf⟩H dγ, f ∈ FC∞(X), (4.2)

is also continuous. In fact, the divergence operator δ is adjoint to the operator
−DH from W p′,2(γ) to W p′,1(γ,H), but of course it is necessary to show that it
takes values in Lp(γ), and not just in the dual of W p′,2(γ), which is W p,−2(γ)
(see [25], [26], [188]). We introduce the continuous operator

δ : W p,r(γ,H) →W p,r−1(γ)

similarly. If the vector field v ∈W p,1(γ,H) is written by means of an orthonormal
basis {en} in H in the form

v =
∞∑

n=1

vnen,
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then vn ∈ W p,1(γ) and the partial sums
∑N

n=1 vnen converge to v in W p,1(γ,H).
Consequently,

δv =
∞∑

n=1

[∂en
vn − ênvn] (4.3)

in the sense of convergence in Lp(γ). As in the finite-dimensional case (see (1.7)),
we have the equality

Lf = δDHf, f ∈W p,2(γ),

following from the fact that after multiplication by a smooth cylindrical function ϕ
and integration with respect to the measure γ, we obtain on both sides the integral
of −⟨DHϕ,DHf⟩H , because the integral of ϕLF equals the integral of fLϕ. Since
DHf ∈W p,1(γ,H), this equality implies the equality

Lf =
∞∑

n=1

[∂2
en
f − ên ∂en

f ]

where the series converges in Lp(γ). In particular, for the standard Gaussian mea-
sure on R∞ we obtain the same formula as in the finite-dimensional case:

Lf =
∞∑

n=1

[∂2
xn
f − xn ∂xn

f ].

If f ∈W p,r(γ) for some r > 2, then this series converges in W p,r−2(γ), since DHf ∈
W p,r−1(γ,H). However, there is a substantial difference from the finite-dimensional
case: either or both of the two series with terms ∂2

xn
f and xn ∂xn

f can fail to
converge. For example, for the function

f(x) =
∞∑

n=1

n−1(x2
n − 1),

which belongs to all the classes W p,r(γ), we have

∂2
xn
f = 2n−1.

The class BV (γ) is introduced in a special way. There are several equivalent
definitions. For example, as on Rd, one can define it as the subset of L1(γ) consisting
of the functions f for which there exists a sequence of functions in W 1,1(γ) that is
bounded in the norm of W 1,1(γ) and converges to f almost everywhere. The norm
on BV (γ) is defined by (2.3). This is equivalent to the existence of an H-valued
vector measure Λ of bounded variation such that∫

X

∂hϕf dγ =
∫

X

ϕfĥ dγ −
∫

X

ϕd⟨h,Λ⟩H ∀ϕ ∈ FC∞(X), h ∈ H.

Most of the equalities and inequalities for Ornstein–Uhlenbeck operators and
semigroups and gradients known in the finite-dimensional case for smooth functions
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and independent of dimension extend to the infinite-dimensional case by relatively
simple passage to limits. For example, (2.5) takes the form∫

X

fLg dγ = −
∫

X

⟨Df,Dg⟩H dγ, (4.4)

f ∈W p,1(γ), g ∈W q,2(γ),
1
p

+
1
q

= 1,

which will not differ at all from the finite-dimensional formula if we omit the indi-
cation of the domain of integration and the index H in the notation for the inner
product in the Cameron–Martin space and write D instead of ∇ in the case of Rd.
The formula (4.4) is one of the most important infinite-dimensional formulae for
integration by parts.

Theorem 4.1. In the infinite-dimensional case, Proposition 2.2 and Theorems
3.3–3.5 remain valid with the same constants.

As in the finite-dimensional case we have the equality

DHTtf = e−tTtDHf.

Note that in the infinite-dimensional case one can also define the action of T ∗t on
bounded Borel measures by the formula

T ∗t ν(B) =
∫

X

TtIB(x) ν(dx),

but if the measure ν is not absolutely continuous with respect to γ, then the mea-
sure T ∗t ν can be singular with respect to γ for all t. For example, if ν is the
Dirac measure at zero, then T ∗t ν is the image of γ under the homothety with coef-
ficient (1 − e−2t)1/2, but all such measures are mutually singular with γ in the
infinite-dimensional case. And if ν is given by a density f with respect to γ, then
the measure T ∗t ν is given by the density Ttf , and hence the measures T ∗t ν converge
in variation to ν(X)γ as t→ +∞ by the infinite-dimensional analogue of (1.3).

Theorem 2.5 is also valid in the infinite-dimensional case if we write |x − y|H
instead of |x− y| in the definition of the Kantorovich metric W2.

The estimate (1.10) for Lipschitz functions f is replaced by the estimate

covγ(f, g) 6 C(f)
∫

X

|DHg|H dγ, f ∈W 1,1(γ), (4.5)

for Borel functions f on X that are Lipschitz along the Cameron–Martin space H,
that is, that satisfy the condition

|f(x+ h)− f(x)| 6 C(f)|h|H , x ∈ X, h ∈ H.

For such a function f the function fg is automatically integrable with respect to the
measure γ for all g ∈ W 1,1(γ). This can be shown in various ways. For example,
one can show that in the case C(f) = 1 the function exp(cf2) is integrable if c < 1/2
and the function g belongs to the Orlicz class L

√
logL . However, one can derive

this directly from the finite-dimensional case by passing to the limit and using
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Fatou’s theorem. To do this it suffices to observe that |f | and |g| satisfy the same
conditions as f and g, so it suffices to prove the uniform boundedness of the integrals
of TtfTtg for non-negative functions, which easily reduces to finite-dimensional
approximations.

The classes BV on infinite-dimensional spaces have been actively investigated in
recent years (see [5], [80], [27], and references therein).

The spectrum of the operator L acting in Lp(γ) for p ∈ (1,∞) consists as above
of all non-positive integer eigenvalues (for non-zero numbers the kernel subspaces
are now infinite-dimensional), but the more general case of infinite-dimensional
analogues of the operators LA,B in (0.5) involves some peculiarities (see [161]).

5. Functional inequalities

A direction that has been intensively developing in the last two decades can be
briefly described as the investigation of functional inequalities for operator semi-
groups and their generators. Model examples of generators for which many inequal-
ities of this sort have been obtained are the Laplacian and the Ornstein–Uhlenbeck
operator. In this section we briefly discuss two very important properties of the
Ornstein–Uhlenbeck semigroup and its generator, expressed by inequalities (the so-
called hypercontractivity inequality and the logarithmic Sobolev inequality); more-
over, these two properties turn out to be equivalent. In passing we consider some
useful weaker inequalities, including the Poincaré inequality, and also some other
inequalities connected with embedding theorems and estimates for distribution
functions. A number of authors contributed to the discovery of these properties.
Nash’s paper [157] from 1958 is the earliest paper known to the author where
the Poincaré inequality for Gaussian measures was given explicitly with gradients
(of course, being written in terms of Hermite expansions, it becomes trivial). The
beginning of the modern intensive investigations of the logarithmic Sobolev inequal-
ity was laid by Gross’s paper [96] (where the inequality was explicitly proved with
gradients by two methods), which became very popular. Later a derivation of
it from the hypercontractivity inequality for the semigroup was found. In turn,
the property of hypercontractivity of the semigroup, that is, a certain increas-
ing of the order of integrability of a function, has been studied since the begin-
ning of the 1960s by Nelson (see [164]–[168]) and later by many other researchers
(see [91], [70], [189], and also references in [7] and [12]). In Stam’s paper [196] from
1959 an inequality was proved in the one-dimensional case that is equivalent to the
logarithmic Sobolev inequality and has the form

1
2πe

∫
|ϱ′(x)|2

ϱ(x)
dx exp

(
−2

∫
ϱ(x) log ϱ(x) dx

)
> 1

for probability densities ϱ with respect to Lebesgue measure, that is, is expressed
in terms of Fisher information and Shannon entropy. It was noted in [196] that
this inequality had been communicated by de Bruijn. However, passage to the log-
arithmic Sobolev inequality with the Gaussian measure is not achieved by a simple
change of the function, but requires additional arguments (indicated much later
in [19]; see also [7], Chap. 10), so the equivalence of the Stam estimate and the
logarithmic Sobolev inequality for the Gaussian measure was realized much later
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than the appearance of the main works on hypercontractivity and Gross’s paper.
A multidimensional analogue of Stam’s inequality, unlike the logarithmic Sobolev
inequality for the Gaussian measure, contains the dimension, so it has no direct
infinite-dimensional version. The cited paper of Stam became well-known, and at
present there are about 150 citations of it in the MathSciNet database, where only
publications over the last 20 years are taken into account. Among relatively recent
papers in this area we mention [52], [79], and [90]. In the recent monograph [15]
by Bakry, Gentil, and Ledoux these problems are discussed from a general point of
view and an extensive bibliography is given.

Let γ be a Radon centred Gaussian measure on a locally convex space X. For
example, one can assume that this is the countable power of the standard Gaussian
measure on the real line (or even simply the standard Gaussian measure on Rd).

Theorem 5.1. The following logarithmic Sobolev inequality holds for every func-
tion f ∈W 2,1(γ):∫

X

f2 log |f | dγ 6
∫

X

|DHf |2H dγ +
1
2

(∫
X

f2 dγ

)
log

(∫
X

f2 dγ

)
. (5.1)

One of the many known ways of proving the logarithmic Sobolev inequality is
based on the representation (1.9). It clearly suffices to prove the inequality for
smooth functions f on Rd with the standard Gaussian measure such that 0 < c1 6
f 6 c2 with some constants. Using (1.5) and the estimate

|Tt∇f |2 6 TtfTt

(
|∇f |2

f

)
,

which follows from the Cauchy–Bunyakovskii inequality in the integral representa-
tion for Tt, we arrive at the inequality

Entγ(f) 6
∫ ∞

0

e−2t

(∫
Rd

Tt

(
|∇f |2

f

)
dγ

)
dt =

1
2

∫
Rd

|∇f |2

f
dγ.

It remains to take f2 instead of f .
For p > 2, we obtain from (5.1) the inequality∫

X

|f |p log
(
|f |
∥f∥p

)
dγ 6

p

2

∫
X

|f |p−2|DHf |2H dγ, (5.2)

where for f ∈ W p,2(γ) such that f > 0 the right-hand side equals the integral of
the function

p

2(p− 1)
fp−1Lf .

The logarithmic Sobolev inequality is equivalent to the hypercontractivity prop-
erty.

Theorem 5.2. The Ornstein–Uhlenbeck semigroup {Tt}t>0 is hypercontractive,
that is, for all p > 1 and q > 1

∥Ttf∥q 6 ∥f∥p

for all t > 0 such that e2t > (q − 1)/(p− 1).
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Corollary 5.3. Let p > 2. Then the operator Ik : f 7→ Ik(f) from L2(γ) to Lp(γ)
is bounded and

∥Ik(f)∥p 6 (p− 1)k/2∥f∥2. (5.3)

Furthermore, for p ∈ (1,∞) the operators Ik are bounded on Lp(γ) and

∥Ik∥L (Lp(γ)) 6 (M − 1)k/2, (5.4)

where M = max{p, p/(p− 1)}.

Corollary 5.4. Let f ∈ Xk . For every α ∈ (0, k/(2e)) the inequality

γ
(
x : |f(x)| > t∥f∥2

)
6 c(α, k) exp(−αt2/k)

holds, where c(α, k) = exp(α) + k/(k − 2eα).

Corollary 5.5. The spaces Xk are closed with respect to convergence in measure.
Moreover, every sequence in

⊕m
k=0 Xk that is convergent in measure converges

in Lp(γ) for every p ∈ [1,∞). The norms in Lp(γ) with p ∈ [1,∞) are equivalent
on each space

⊕m
k=0 Xk . In addition, for each p > 0 the topology on

⊕m
k=0 Xk

induced by the metric in Lp(γ) coincides with the topology of convergence in mea-
sure. Finally, for q > p > 1,

∥f∥p 6 ∥f∥q 6

(
q − 1
p− 1

)k/2

∥f∥p ∀ f ∈ Xk. (5.5)

The same is true for the spaces Xk(E) of maps with values in a separable Hilbert
space E .

Actually, for convergence in Lp(γ) of a sequence in
⊕m

k=0 Xk it suffices that it
converge in measure on some set of positive measure (see [28], Theorem 2.2).

From Corollaries 5.3 and 5.5 it follows that the operator Ik extends to a bounded
operator Ik : Lr(γ) → Xk even for r ∈ (1, 2), and moreover,

∥Ikf∥p 6 (p− 1)k/2(r − 1)−k∥f∥r.

The Poincaré inequality for Gaussian measures asserts the following.

Theorem 5.6. The Poincaré inequality∫
X

(
f −

∫
X

f dγ

)2

dγ 6
∫

X

|DHf |2H dγ (5.6)

holds for all f ∈W 2,1(γ). In addition, if p > 1, then for all f ∈W p,1(γ)∫
X

∣∣∣∣f − ∫
X

f dγ

∣∣∣∣p dγ 6

(
π

2

)p

Mp

∫
X

|DHf |pH dγ, (5.7)

where Mp is the moment of order p of the standard Gaussian measure on the real
line.



228 V. I. Bogachev

It was shown in [102] that the hypercontractivity of the Ornstein–Uhlenbeck
semigroup is equivalent to the inequality(∫

Rd

exp(e2tTtf) dγd

)e−2t

6
∫

Rd

ef dγd

for all t > 0 and all functions f ∈ L1(γd) such that ef ∈ L1(γd).
At present various generalizations and modifications of the logarithmic Sobolev

inequality and the Poincaré inequality have been obtained for generators of semi-
groups and measures in broad classes, of which a very special case is that of the
Ornstein–Uhlenbeck operator and the Gaussian measure. This direction has been
considerably influenced by the paper [14] of Bakry and Emery, the ideas in which
have been developed by many authors. It was quite often that functional inequali-
ties discovered in the general case were new even for the special Gaussian case under
discussion. For example, in [42] (see also [20]) there is a discussion of two-sided
pointwise estimates of the form

e2t − 1
2

Φ′′(Ttf)Γ(Ttf) 6 EntΦTt
(f) 6

1− e−2t

2
Tt[Φ′′(f)Γ(f)],

where Φ is a smooth strictly convex function on some interval I such that the
function −1/Φ′′ is convex, f is a smooth function with values in the interval I,
Γ(f) = |∇f |2, and

EntΦTt
(f) = TtΦ(f)− Φ(Ttf).

Letting t→ +∞, one can obtain generalizations of the logarithmic Sobolev inequal-
ity and the Poincaré inequality from such inequalities for a suitable choice of Φ (and
taking into account that Ttf tends to the integral of f).

There are papers in which estimates are constructed on the basis of expansions
with higher-order derivatives (see, for example, [119] and the references given there),
a typical particular case being the equality for variances∫

f2 dγ −
(∫

f dγ

)2

=
n−1∑
k=0

(−1)k

k!

∫
|Dkf |2 dγ

− (−1)n−1

(n− 1)!

∫ ∞

0

2e−2nt

∫
|TtD

nf |2 dγ dt,

and also analogous equalities for compositions Φ(f).

Remark 5.7. From the point of view of operators acting in a Hilbert space, the
Ornstein–Uhlenbeck operator is completely characterized by the property that it
possesses an orthonormal eigenbasis {en}n>0 with eigenvalues −n of multiplicity dn

(equal to 1 in the one-dimensional case). However, it actually has a much richer
structure due to the possibility to consider it acting in the spaces Lp. Here for
p < ∞ it is the generator of a Markov operator semigroup, that is, a semigroup
of operators taking non-negative functions to non-negative functions and 1 to 1.
Furthermore, the operators Tt of the Ornstein–Uhlenbeck semigroup are not only
Markov but, for t > 0, also ergodic: in L2 the only eigenfunctions with eigenvalue 1



Ornstein–Uhlenbeck operators and semigroups 229

are constants. The number 1 is an isolated point of the spectrum of these operators;
this phenomenon is called the existence of a ‘spectral gap’). In the well-known
paper [189] the question was posed as to whether the existence of a spectral gap
follows from the additional property of a symmetric ergodic Markov operator T
which is called ‘hyperboundedness’ and is expressed by the inclusion

T (L2) ⊂ Lp for some p > 2.

Only recently a positive answer to this question was given in [152], and Wang [208]
strengthened this result by showing that for an ergodic Markov operator P on L2(µ)
(not necessarily symmetric) the existence of a spectral gap for the symmetrized
operator (P + P ∗)/2 is equivalent to the property that

lim
R→+∞

sup
f>0, ∥f∥261

∥f(Pf −R)+∥1 < 1

(for a hyperbounded operator this limit is zero). However, we saw above that the
Ornstein–Uhlenbeck semigroup satisfies not only the inclusion Tt(L2) ⊂ Lp but
also a sharp estimate for the norm of the embedding, which is not included in the
hyperboundedness property. The latter circumstance is important: it is shown in
Proposition 11 of [152] that for every K > 2 and ε > 0 there exists a self-adjoint
ergodic Markov operator M on L2(µ) with some measure µ that has a spectral gap
of size ε (that is, the distance from 1 to the rest of the spectrum is at least ε) such
that

∥M∥4L (L2(µ),L4(µ)) = K.

The estimate K > 2 is not by chance: it was shown earlier in [206] that for K < 2
there is an a priori estimate of the size of the spectral gap.

We also mention the following fact (see, for example, Proposition 5.4.8 in [25],
where the case p > 2 was considered, or [68], p. 75).

Theorem 5.8. Let p > 1 and f ∈ Lp(γ). Then Ttf ∈ W p,n(γ) for all t > 0 and
n > 1, the function h 7→ Ttf(x + h) is infinitely Fréchet differentiable on H for
almost every x, and

∂hTtf(x) =
e−t

√
1− e−2t

∫
X

f(e−tx+
√

1− e−2t y)ĥ(y) γ(dy),∫
X

|Dn
Hf(x)|pHn

γ(dx) 6 Cp,n
e−nt

(1− e−2t)n/2

∫
X

|f(x)|p γ(dx),

where Cp,n depends only on p and n. Moreover, by the hypercontractivity property
Ttf ∈ W q,n(γ) for all q < 1 + (p− 1)e2t . Therefore, for fixed q > 1 and n > 1 the
inclusion Ttf ∈ W q,n(γ) holds for all sufficiently large t. Analogous assertions are
true for maps with values in a separable Hilbert space.

For p = 1 this is false, as we shall see below. The first equality in Theorem 5.8
implies that if |f(x)| 6 1, then

|DHf(x)| 6 e−t

√
1− e−2t

.
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In the infinite-dimensional case the function Ttf can fail to have a continuous version
(this happens, for example, for a measurable linear function f without continuous
versions).

To consider embeddings of the spaces W 1,1(γ) and BV (γ), we need the afore-
mentioned Orlicz space L

√
logL . For the function

w(x) =
∫ x

0

(es2
− 1) ds

one also introduces the Orlicz space of functions with finite norm

∥g∥w = inf
{
α > 0:

∫
w

(
|g|
α

)
dγ 6 1

}
.

Let
u(x) =

∫ x

0

(
log(1 + s)

)1/2
ds.

Young’s inequality implies (see [80]) the inequality

∥fg∥1 6
(
∥u(|f |)∥1 + 1

)
∥g∥w. (5.8)

We present the following result from [80], with a proof.

Theorem 5.9. There is a number C1 > 0 independent of d such that the inequality

∥f∥L
√

log L 6 C1∥f∥BV (γ) (5.9)

holds for all f ∈ BV (γ), where γ = γd . In particular, this is true for all f ∈
W 1,1(γ). These assertions are also valid in the infinite-dimensional case.

Proof. Let Φ be the standard Gaussian distribution function and

Ψ(s) = Φ′(Φ−1(s)), 0 < s < 1.

It is straightforward to verify that

lim
s→0

Ψ(s)
s
√
−2 log s

= 1.

There is a number δ ∈ (0, 1/(e− 1)) such that

Ψ(s) > x

√
log

(
1 +

1
s

)
∀ s ∈ (0, δ].

Let f ∈ C∞b (Rd) and ∥f∥1,1 6 1/
√

log(1 + 1/δ) . By the familiar Gaussian isoperi-
metric inequality we have the estimate∫

Rd

|∇f | dγd >
∫ ∞

0

Ψ
(
γd(x : |f(x)| > s)

)
ds.

If s > 1/δ, then

γd

(
x : |f(x)| > s

)
6
∥f∥1
s

6
1
s

6 δ,
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and also

Ψ
(
γd(x : |f(x)| > s)

)
> γd(x : |f(x)| > s)

√
log

(
1 +

1
γd(x : |f(x)| > s)

)
.

Therefore,

1 >

√
log

(
1 +

1
δ

)
∥f∥1,1 >

√
log

(
1 +

1
δ

)
∥f∥1 + ∥∇f∥1

>

√
log

(
1 +

1
δ

) ∫ ∞

0

γd(|f | > s) ds+
∫ ∞

1/δ

γd(|f | > s)
√

log(1 + s) ds

>
∫ ∞

0

γd(|f | > s)
√

log(1 + s) ds

=
∫

Rd

∫ |f(x)|

0

√
log(1 + s) ds γd(dx).

Consequently, ∥f∥L
√

log L 6 1. Thus, the constant C1 in the formulation is com-
pletely determined by the behaviour of the function Φ. The infinite-dimensional
case follows from the finite-dimensional case. �

Corollary 5.10. For all f ∈ BV (γ), where γ = γd , the inequality

γ(x : |f(x)| > r) 6 C2∥f∥BV (γ)
1

r
√

log r
, r > 0,

holds, where C2 is some constant (independent of d). Hence this inequality is also
true in the infinite-dimensional case.

Proof. By Chebyshev’s inequality, for R > 0 we have

γd

(
x : |f(x)|

√
|f(x)| > R

)
6
J

R
,

where J is the integral of |f |
√
|f | with respect to the measure γd. This integral

can be estimated with some constant in terms of ∥f∥L
√

log L, and then in terms of
∥f∥BV (γd) by the previous theorem. Taking R = r

√
log r , we obtain the desired

inequality because of the strict monotonicity of the function r
√

log r on (1,∞). �

The proof of the following theorem was given in [80], Proposition 3.6. It employs
the following notation in the case of the measure γ = γd:

V (f) := sup
{∫

Rd

f divγ w dγ : w ∈ C∞0 (Rd,Rd), |w(x)| 6 1
}
,

where the divergence divγ w is defined by (1.6).
In the infinite-dimensional case the quantity V (f) is introduced similarly: we

consider finite-dimensional vector fields w taking values in the Cameron–Martin
space H and having the form

w = w1h1 + · · ·+ wnhn,
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where wi ∈ FC∞(X), hi ∈ H, |w(x)|H 6 1, and the divergence δw = divγ w is
defined as explained in § 4.

For functions f in the class W 1,1(γ) or BV (γ) the quantity V (f) is finite.

Theorem 5.11. Let f ∈ L
√

logL . Then Ttf ∈W 1,1(γ) for all t > 0, and

lim
t→0

∥Ttf − f∥L
√

log L = 0.

If f ∈ BV (γ), then

V (Ttf) 6 e−tV (f), lim
t→0

V (Ttf) = V (f).

We mention the following result from Proposition 3.5 in [80], and we give a proof
in order to estimate the corresponding constant.

Proposition 5.12. For every t > 0, every function f ∈ C∞b (Rd) satisfies the
inequality ∫

Rd

|∇Ttf | dγ 6 C(t)∥f∥L
√

log L,

where

C(t) = 2
e−t

(1− e−2t)1/2
.

Thus, the operator ∇Tt extends to a bounded operator from the Orlicz space L
√

logL
to the space L1(γ,Rd). The same is true in the infinite-dimensional case, and the
operator DHTt extends to a bounded operator from L

√
logL to L1(γ,H).

Proof. Let f ∈ C∞b (Rd) and h ∈ Rd, |h| = 1. From the equality

∂hf(x) =
e−t

(1− e−2t)1/2

∫
Rd

f
(
e−tx+

√
1− e−2t y

)
⟨h, y⟩ γ(dy)

and (5.8) we get that

|∂hf(x)| 6 e−t

(1− e−2t)1/2

(∥∥u ◦ |f |(e−tx+
√

1− e−2t · )
∥∥

1
+ 1

)
∥lh∥w,

where lh(x) = ⟨x, h⟩. It suffices to estimate the quantity ∥lh∥w in the one-dimensio-
nal case for h = 1. In this case it does not exceed 4, since for α = 4 the correspond-
ing integral is not greater than 1. Consequently,∫

Rd

|∇f | dγ 6
e−t

(1− e−2t)1/2

(∫
Rd

∫
Rd

u ◦ |f |
(
e−tx+

√
1− e−2t y

)
γ(dx) γ(dy) + 1

)
=

e−t

(1− e−2t)1/2

(∫
Rd

u(|f |) dγ + 1
)

6 2
e−t

(1− e−2t)1/2
,

as required. The infinite-dimensional case follows directly from the finite-dimensio-
nal case. �
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Note that one of the ways to see that the operators Tt do not take L1(γ)
to W 1,1(γ) or BV (γ) is to consider the functions

fα(x) = exp
(
αx− α2

2

)
of unit norm in L1(γ). For them, ∥Ttfα∥1,1 > αe−t. Hence even on the linear span of
these functions the norm of the operator Tt from L1(γ) to W 1,1(γ) is infinite. With
the aid of the same functions one can verify that the image of L1(γ) under Tt

does not belong to the Orlicz space L
√

logL , which contains BV (γ), because the
integrals of the functions Ttfα| log Ttfα|1/2 with respect to the measure γ tend to
infinity as α→ +∞ (observe that Ttfα = fe−tα).

For every non-negative function f ∈ L1(γd), the Chebyshev inequality and the
equality of the integrals of f and Ttf with respect to γd imply the estimate

γd

(
x : Ttf(x) > r

)
6

1
r
∥f∥L1(γ).

In particular, if the integral of f is 1, then the right-hand side equals 1/r. This
estimate can be slightly improved by putting on the right-hand side a factor α(t)
tending to zero at infinity. It turns out that it is possible to find an optimal factor
of this sort. The following fact was established in [124] (which strengthens some
earlier results from [17] and [66]).

Theorem 5.13. There is a constant C such that for all d > 1, r > 1, and t > 0
the inequality

γd(x : Ttf(x) > r) 6 Cmax
{

1,
1
t

}
1

r
√

log r
(5.10)

holds for every probability density f with respect to the measure γd . Thus, this esti-
mate holds with the same constant for Gaussian measures on infinite-dimensional
spaces.

In the proof of the theorem the properties of the Ornstein–Uhlenbeck semigroup
are used only to derive the following lemma.

Lemma 5.14. Let f be a probability density with respect to γd . Then

D2 log Ttf(x) > − 1
2t
I,

where the second derivative is understood in the sense of distributions and the
inequality holds pointwise for bounded functions f .

Proof. Suppose first that the function f is bounded (but its integral can differ
from 1). We use the representation

Ttf(x) = g1−s ∗ f(
√
s x), s = e−2t,

where g1−s is the density of the centred Gaussian measure with covariance (1−s)I.
For every unit vector v ∈ Rd we find by direct differentiation that

∂vTtf(x) = −
√
s

1− s

1
(2π(1− s))d/2

∫
⟨
√
sx− y, v⟩ exp

(
− (
√
sx− y)2

2(1− s)

)
f(y) dy,

∂2
vTtf(x) = − s

1− s
Ttf(x) +

s

(1− s)2
ψ ∗ f(

√
s x),
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where ψ(x) = ⟨x, v⟩2g1−s(x). Hence,

∂2
v log Ttf(x) =

∂2
vTtf(x)
Ttf(x)

− |∂vTtf(x)|2

(Ttf(x))2

= − s

1− s
+
s(1− s)−2Ttf(x)ψ ∗ f(

√
s x)− |∂vTtf(x)|2

(Ttf(x))2
.

By the Cauchy–Bunyakovskii inequality the second term is non-negative. It remains
to observe that s/(1−s) 6 1/(2t) since 2te−2t 6 1−e−2t. Thus, the inequality to be
proved is pointwise true for the smooth functions Tt min{f,N}(x). LettingN →∞,
we obtain the desired inequality in the sense of distributions. �

The main estimate from [124] is as follows.

Theorem 5.15. There is a constant C such that for all d > 1 and r > 1, if f is
a bounded smooth positive probability density with respect to the measure γd and

D2 log f(x) > −βI

pointwise for some number β > 0, then

γd

(
x : f(x) > r

)
6 Cmax{1, β} 1

r
√

log r
. (5.11)

A consideration of the exponential functions fα(x) = exp(αx−α2/2) shows that
the estimates obtained are sharp in the part concerning dependence on r.

Theorem 5.15 is deduced in [124] from the following assertion.

Theorem 5.16. Suppose that a random vector ξ with values in Rd has a distribu-
tion density f with respect to the measure γd and f satisfies the conditions of the
previous theorem. Then

P
(
f(ξ) ∈ (r, er]

)
6 Cmax{1, β} 1√

log r
. (5.12)

We explain how to get (5.11) from (5.12). Let η be a random vector on the same
probability space as ξ, with the standard Gaussian distribution in Rd. Then the
following relations hold, in which E denotes the expectation:

P
(
f(η) > r

)
=

∞∑
k=0

P
(
f(η) ∈ (ekr, ek+1r]

)
6

∞∑
k=0

(ekr)−1E
(
f(η)If(η)∈(ekr,ek+1r]

)
=

∞∑
k=0

(ekr)−1P
(
f(ξ) ∈ (ekr, ek+1r]

)
6

∞∑
k=0

(ekr)−1Cmax{β, 1} 1√
log(ekr)

6 C
e

e− 1
1
r

max{β, 1}√
log r

.
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However, the proof of Theorem 5.16 is highly non-trivial and is accomplished
in [124] by methods of stochastic analysis, with the aid of Itô’s formula and Gir-
sanov’s theorem. It would be interesting and useful to find an analytic proof of this
result.

If the operators Tt were mapping L1(γd) to W 1,1(γd) (which is not the case),
then the estimate (5.10) would follow from the embedding of W 1,1(γd) in the Orlicz
space (see Theorem 5.9).

In [52], some results on Sobolev inequalities were obtained in the general form

∥f∥X 6 C∥∇f∥Y ,

where X and Y are some Banach spaces with so-called rearrangement invariant
norms. Many earlier known inequalities can be represented in such a form.

We mention an interesting sharpening obtained in [16] (see also [13]) of the
inequality (5.6) for the standard Gaussian measure on Rd:∫

Rd

(
f −

∫
Rd

f dγ

)2

dγ 6
∫

Rd

|∇f |2 dγ − 1
2d

(∫
Rd

∆f dγ
)2

, f ∈ C∞0 (Rd).

For functions f ∈ W 2,1(γd) with zero integral with respect to γd this can be writ-
ten as ∫

Rd

|f |2 dγd 6
∫

Rd

|∇f |2 dγd −
1
2d

(∫
Rd

|x|2f(x) γd(dx)
)2

.

In [101] there is an interesting inequality for probability measures on Rd with densi-
ties of the form e−Φ, where Φ is a convex function; a particular case is the estimate
given above. There is also an estimate in the opposite direction:∫

Rd

(
f −

∫
Rd

f dγ

)2

dγ >

∣∣∣∣∫
Rd

∇f dγ
∣∣∣∣2 +

1
2d

(∫
Rd

∆f dγ
)2

, f ∈ C∞0 (Rd),

where on the right-hand side we have a vector integral of ∇f (see [101]).
We also mention the papers [24], [71], and [122] (where there are additional

references) connected with estimating the so-called log-Sobolev deficit

δLS(f) =
1
2

∫
Rd

|∇f |2

f
dγd − Entγd

(f).

For Borel sets E and F in Rd the following estimate is obtained in [162] with
some universal constant C:(∫

F

|Tt(fIE)|2 dγd

)1/2

6 C
t

dist(E,F )
exp

(
−dist(E,F )2

2t

)(∫
E

|f |2 dγd

)1/2

.

For results connected with such estimates, see [6].
Another important class of functional inequalities for semigroups is connected

with versions of Harnack’s inequality (see Wang’s book [207]). We mention an
inequality of Harnack type due to Wang in the particular case of the Ornstein–
Uhlenbeck semigroup we are discussing.
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Theorem 5.17. Let f ∈ Lp(γd). If p > 1, then

|Ttf(y)|p 6 Tt|f |p(x) exp
(

1
2

p

p− 1
|x− y|2

e2t − 1

)
, x, y ∈ Rd.

If 0 < p < 1 and f > 0, then

(Ttf(y))p > Ttf
p(x) exp

(
1
2

p

p− 1
|x− y|2

e2t − 1

)
, x, y ∈ Rd.

Proof. Let

ϱx,y(z) := exp
(√

1
e2t − 1

⟨y − x, z⟩ − 1
2

1
e2t − 1

|y − x|2
)
.

For p > 1, we use a change of variables and Hölder’s inequality to obtain

Ttf(y) =
∫

Rd

f
(
e−tx+

√
1− e−2t z

)
ϱx,y(z) γ(dz) 6 [Tt|f |p(x)]1/p∥ϱx,y∥q,

whence the desired estimate follows. If 0 < p < 1, then we set α := 1/p and g := fp.
The estimate proved gives us the inequality

(Ttg(y))α 6 Ttg
α(x) exp

(
1
2

α

α− 1
|x− y|2

e2t − 1

)
,

which easily implies the desired estimate. �

For f > 0 this yields the logarithmic inequality

Tt log f(x) 6 log Ttf(y) +
1
2

1
e2t − 1

|x− y|2.

The logarithmic Sobolev inequalities, Poincaré inequalities, and hypercontrac-
tivity properties connected with Gaussian measures have been considered in many
papers (see [7], [11], [12], [18], [43], [55], [62], [77], [90], [121]). It was shown
in [213] that the hypercontractivity property for the Ornstein–Uhlenbeck semigroup
is equivalent to certain estimates in Lp(Rd) for the heat equation semigroup.

6. Fractional Sobolev classes and Nikolskii–Besov classes
connected with the Ornstein–Uhlenbeck semigroup

By means of the Ornstein–Uhlenbeck semigroup one can introduce fractional
Sobolev classes. Here we mention several approaches based on powers of the
Ornstein–Uhlenbeck operator, interpolation, and ‘fractional integration by parts
formulae’. This direction is already sufficiently developed and merits a separate
survey (see [45], [85]–[88], [127]–[129], [131], and [177], where there is an extensive
bibliography).

Let γ be an arbitrary centred Gaussian measure, for example, the standard
Gaussian measure on Rd. For p > 1, f ∈ Lp(γ), and α > 0 we set

Vα(f) :=
1

Γ(α/2)

∫ ∞

0

tα/2−1e−tTtf dt = (I − L)−α/2f,
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where Γ denotes the Euler gamma-function. The scale of Sobolev classes Hp,α(γ)
with p > 1 and α > 0 is defined as follows:

Hp,α(γ) := Vα(Lp(γ)), ∥f∥Hp,α(γ) := ∥V −1
α f∥p.

Now for r < 0 we defineHp,r(γ) as the dual space ofHp′,−r(γ), where p′ = p/(p−1).
It is known that Hp,α(γ) = W p,α(γ) for p > 1 and α ∈ N.
One can verify that the family of operators Vα supplemented by the operator

V0 = I is a strongly continuous semigroup on Lp(γ).
We note a useful inequality connected with norms in Hp,α(γ) (see [188], Propo-

sition 4.10).

Proposition 6.1. Let α < β < γ . There is a number c(α, β, γ) such that

∥(I − L)βf∥p 6 c(α, β, γ)∥(I − L)αf∥(γ−β)/(γ−α)
p ∥(I − L)γf∥(β−α)/(γ−α)

p

for p > 1 and all smooth cylindrical functions (hence also for all functions for which
the indicated norms are finite).

By the multiplicative inequality in Proposition 6.1 it can be proved (see [188],
p. 92) that for every k ∈ N and ε > 0 there exists a sufficiently large number M
such that

∥Dk
Hf∥p 6 ε∥Dk+1

H f∥p +M∥f∥p, f ∈W p,k+1(γ).

For f ∈ Lp(γ) we set

Kt(f) = inf
{
∥f1∥p + t∥f2∥W p,1(γ) : f = f1 + f2, f1 ∈ Lp(γ), f2 ∈W p,1(γ)

}
and for α ∈ (0, 1) we consider the class E p,α(γ) of functions with finite norm

∥f∥E p,α(γ) :=
(∫ ∞

0

|t−αKt(f)|pt−1 dt

)1/p

.

Similarly, using the same method of interpolation between the spaces Hp,k(γ) and
Hp,k+1(γ) with integer k, one can define the classes E p,α(γ) for all real α.

As was shown by Watanabe [211] (who used an equivalent interpolation method),
for all p > 1, α ∈ R, and ε > 0 we have the continuous embeddings

E p,α+ε(γ) ⊂ Hp,α(γ) ⊂ E p,α−ε(γ).

This also gives the embeddings

Hp,α+ε(γ) ⊂ E p,α(γ) ⊂ Hp,α−ε(γ).

We now mention a number of results from the recent papers [30]–[32], [115],
and [116], where some analogues of Nikolskii and Nikolskii–Besov classes connected
with the Ornstein–Uhlenbeck semigroup were considered.

We shall use the function ct introduced in (2.8). Note that

ct 6 (2t)1/2 and lim
t→+∞

ct =
π

2
.
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Recall (see (1.6)) that for a map Φ = (Φi) ∈ C∞0 (Rd,Rd), the divergence with
respect to the measure γ is defined by divγ Φ =

∑d
i=1(∂xi

Φi − xiΦi).
The next definition and the related theorem are stated for greater clarity for the

case of the standard Gaussian measure γd on Rd, but then they will be extended
to the infinite-dimensional case upon taking into account their independence of
dimension.

Definition 6.2. Let α ∈ (0, 1], p ∈ [1,∞), and γ = γd. A function f ∈ Lp(γ)
belongs to the Gaussian Nikolskii–Besov class Bα

p (γ) if there exists a number C
such that for every map Φ ∈ C∞0 (Rd,Rd)∫

Rd

f divγ Φ dγ 6 C∥Φ∥α
q ∥ divγ Φ∥1−α

q ,

where 1/p+ 1/q = 1. Let V p,α
γ (f) be the infimum of such numbers C.

The next definition is given at once for the infinite-dimensional case.

Definition 6.3. For a function f ∈ Lp(γ), let

Up,α
γ (f) := sup

t>0
t(1−α)/2

∥∥ |DHTtf |H
∥∥

p
.

We recall (see Theorem 5.8) that for all f ∈ Lp(γ) and p > 1

Ttf ∈W p,1(γ).

In the case p = 1 let U1,α
γ (f) = ∞ if Ttf /∈W 1,1(γ) for some t > 0.

Theorem 6.4. For any f ∈ Bα
p (γ) and p ∈ [1,∞)

∥f − Ttf∥p 6 21−αC(p)αcαt V
p,α
γ (f),

where ct is defined in (2.8) and

C(p) :=
(

(2π)−1/2

∫
R
|s|pe−s2/2 ds

)1/p

. (6.1)

Passing to the limit as t→ +∞ in the previous theorem, we obtain the following
inequality of Poincaré type. Let Ef denote the integral of f with respect to γ.

Corollary 6.5. For any f ∈ Bα
p (γ) and p ∈ [1,∞)

∥f − Ef∥p 6 21−2απαC(p)αV p,α
γ (f).

We now give an analogue of the fractional Hardy–Landau–Littlewood inequality
with respect to the Gaussian measure, generalizing a similar estimate in [41] for
α = 1. The classical Hardy–Landau–Littlewood inequality with Lebesgue measure
on the real line states that

∥ϕ′∥2L1(R) 6 2∥ϕ∥L1(R)∥ϕ′′∥L1(R).
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This can be written as
∥f∥2L1(R) 6 2∥f ′∥L1(R)∥f∥K,

where for functions f with zero integral with respect to Lebesgue measure ∥f∥K is
the Kantorovich norm, defined as the supremum over 1-Lipschitz functions g of the
integrals of fg with respect to Lebesgue measure (as in (2.6), but with Lebesgue
measure instead of the Gaussian measure).

Theorem 6.6. For every function f ∈ Bα
1 (γ) with zero integral with respect to

γ = γd

∥f∥1 6 3(V 1,α
γ (f))1/(1+α)∥f∥α/(1+α)

K,γd
.

For α = 1 we obtain an estimate for functions in the class BV (γ) or W 1,1(γ).
The Gaussian Nikolskii–Besov classes have the characterization below in terms

of the behaviour of the Ornstein–Uhlenbeck semigroup near zero.

Theorem 6.7. If f ∈ Lp(γ) and p ∈ (1,∞), then V p,α
γ (f) < ∞ precisely when

Up,α
γ (f) <∞. Moreover,

Up,α
γ (f) 6 C(q)1−αV p,α

γ (f) and V p,α
γ (f) 6 (4C(p)α−1 + 1)Up,α

γ (f),

where 1/p+ 1/q = 1 and C(p) is defined by (6.1).

The implication Up,α
γ (f) <∞⇒ V p,α

γ (f) <∞ is also true for p = 1.
We now present infinite-dimensional analogues of these results. Modifications

are needed only for the results that use divergence and the Kantorovich norm. Let
FC∞(X,H) be the class of all maps Φ: X → H of the form

Φ(x) =
n∑

i=1

Ψi(g1(x), . . . , gn(x))hi, (6.2)

where Ψi ∈ C∞b (Rn), gi ∈ X∗, and hi ∈ H. Let FC∞
0 (X,H) be the subset of this

class consisting of maps for which the Ψi can be chosen to have compact support.
In the representation (6.2) we can always take the vectors hi to be orthogonal in H
and the functionals gi to be orthogonal in X∗

γ so that gi(hj) = δij . We recall that
for such vector fields the γ-divergence is defined (see (4.2) and (4.3)).

If we take an orthonormal basis {ei} in H of the form ei = l̂i, where li ∈ X∗

(see § 4), then for a map Φ ∈ FC∞(X,H) of the form

Φ(x) =
n∑

i=1

Ψi

(
l1(x), . . . , ln(x)

)
ei

we have

divγ Φ(x) =
n∑

j=1

[
∂xj

Ψj

(
l1(x), . . . , ln(x)

)
− lj(x)Ψj

(
l1(x), . . . , ln(x)

)]
.

For every map Φ ∈ FC∞
0 (X,H) its divergence divγ Φ is a bounded function.
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By analogy with (2.6), the Kantorovich norm associated with the measure γ is
defined by

∥f∥K,γ := sup
{∫

X

ϕf dγ : ϕ ∈ FC∞(X), |DHϕ|H 6 1
}

on functions f ∈ L1(γ) with zero integral with respect to γ for which this norm is
finite. This is in fact the restriction of the Kantorovich norm generated by the sub-
space H to the space of signed measures with zero value on X with respect to which
all H-Lipschitz functions are integrable (about such norms, see, for instance, [29]).
By the formula

∥f∥K,γ := ∥f − Ef∥K,γ + |Ef |
the Kantorovich norm extends naturally to the space of all γ-integrable functions f
such that ∥f − Ef∥K,γ < ∞, where Ef is the integral of f with respect to the
measure γ.

It is known (see [25]) that for every function ϕ with |DHϕ|H 6 1 and zero
integral the function exp(|ϕ|2/4) is γ-integrable, and its integral is bounded by some
universal constant. Therefore, ∥f∥K,γ <∞ under the condition that f

√
| log |f | | ∈

L1(γ). Hence, this norm is finite on the Sobolev space W 1,1(γ) and, more generally,
on BV (γ). Applying the inequality (4.5), we obtain the estimate

∥f∥K,γ 6
∥∥ |DHf |H

∥∥
L1(γ)

.

Definition 6.8. Let α ∈ (0, 1] and p ∈ [1,∞). A function f ∈ Lp(γ) belongs to
the Gaussian Nikolskii–Besov class Bα

p (γ) if there is a number C such that for every
map Φ ∈ FC∞

0 (X,H) we have∫
X

f divγ Φ dγ 6 C∥Φ∥α
q ∥ divγ Φ∥1−α

q ,

where 1/p+ 1/q = 1. Let V p,α
γ (f) be the infimum of such numbers C.

The quantity Up,α
γ (f) was already introduced in Definition 6.3 in the infinite-

dimensional case.
The quantities V p,α

γ (f) and Up,α
γ (f) do not change after adding constants to f ,

hence they can be evaluated on functions with zero integral with respect to the
measure γ.

Theorem 6.9. For every function f ∈ Bα
p (γ) with p ∈ [1,∞)

∥f − Ttf∥p 6 21−αC(p)αcαt V
p,α
γ (f),

where ct is defined by (2.8) and C(p) is defined by (6.1).

Corollary 6.10. For every function f ∈ Bα
p (γ) with p ∈ [1,∞)

∥f − Ef∥p 6 21−2απαC(p)αV p,α
γ (f).

Theorem 6.11. For every function f ∈ Bα
1 (γ) with zero integral with respect to γ

∥f∥1 6 3[V 1,α
γ (f)]1/(1+α)∥f∥α/(1+α)

K,γ .
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Theorem 6.12. A function f ∈ Lp(γ) with p ∈ (1,∞) belongs to the Gaussian
Nikolskii–Besov class Bα

p (γ) if and only if Up,α
γ (f) <∞. Moreover,

Up,α
γ (f) 6 C(q)1−αV p,α

γ (f) and V p,α
γ (f) 6 (2C(p) + 1)Up,α

γ (f),

where 1/p+ 1/q = 1 and C(p) is defined by (6.1).

The classesBα
p (γ) can be compared with the scales of Gaussian fractional Sobolev

classes defined above (there are also connections with the scales in [169], which we
do not consider here; in [169] one can find additional references).

Theorem 6.13. Let α ∈ (0, 1) and p ∈ (1,∞). For every β < α

Hp,α(γ) ⊂ Bα
p (γ) ⊂ E p,β(γ).

Moreover, there exist numbers C1 = C1(p, α, β) and C2 = C2(p, α), depending only
on the indicated parameters, such that

∥f∥E p,β(γ) 6 C1∥f∥p max
{
1, [V p,α

γ (f)]β/α∥f∥−β/α
p

}
,

V p,α
γ (f) 6 C2∥f∥Hp,α(γ).

Therefore, the continuous embeddings

Hp,α(γ) ⊂ Bα
p (γ) ⊂ Hp,α−ε(γ)

hold for all ε > 0.

Kosov [115], [116] introduced a full scale of Besov classes with respect to Gaussian
measures.

Definition 6.14. Let f ∈ Lp(γ), and let

ωγ,p(f, ε) := sup
{∫

Rn

divγ Φf dγ : Φ ∈ FC∞
0 (X,H),

∥ divγ Φ∥p/(p−1) 6 1, ∥Φ∥p/(p−1) 6 ε

}
.

The function ωγ,p(f, · ) is continuous, concave, and increasing on (0,∞).

Definition 6.15. Let α ∈ (0, 1], p ∈ [1,∞), and θ ∈ [1,∞]. The Gaussian Besov
class Bα

p,θ(γ) consists of all functions f ∈ Lp(γ) such that

V p,θ,α
γ (f) :=

(∫ ∞

0

[
r−αωγ,p(f, r)

]θ
r−1 dr

)1/θ

<∞.

For f ∈ Lp(γ) and p ∈ [1,∞) also let

aγ,p(f, t) :=
(∫∫ ∣∣f(

e−tx+
√

1− e−2t y
)
− f(x)|p γ(dx) γ(dy)

)1/p

and

Ap,θ,α
γ (f) :=

(∫ ∞

0

[
t−α/2aγ,p(f, t)

]θ
t−1 dt

)1/θ

.
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We observe that
∥f − Ttf∥p 6 aγ,p(f, t).

Now we present the two main results of [115] and [116].

Theorem 6.16. The inequality

Ap,θ,α
γ (f) 6 21−α+1/θC(p)αV p,θ,α

γ (f)

holds for every function f ∈ Bα
p,θ(γ) with p ∈ [1,∞). In addition, for p ∈ (1,∞)

the converse assertion is true: if for a function f ∈ Lp(γ) the quantity Ap,θ,α
γ (f) is

finite, then f ∈ Bα
p,θ(γ) and

V p,θ,α
γ (f) 6 2−1/θ

(
1 + C

(
p

p− 1

))
Ap,θ,α

γ (f).

Theorem 6.17. Let p ∈ (1,∞). For every function f ∈ Bα
p,θ(γ) and every β ∈

(0, α) the function |f |
∣∣log |f |

∣∣β/2 belongs to Lp(γ). Moreover, there exists a number
C = C(p, θ, α, β) depending only on the parameters p, θ , α, and β such that(∫

X

|f |p
∣∣∣∣log

|f |
∥f∥p

∣∣∣∣pβ/2

dγ

)1/p

6 C
(
∥f∥p + V p,θ,α

γ (f)
)
.

In recent years, there have also been investigations of Gaussian analogues of the
BMO and Hardy classes (see, for example, [135], [139], and [180]).

7. The maximal function

It has already been explained above that the continuity of the Ornstein–Uhlen-
beck semigroup means convergence of Ttf to f with respect to the norm of the
corresponding space as t → 0. However, in the case of integral norms this conver-
gence does not imply convergence almost everywhere. The question of the latter
turns out to be rather delicate. Let f ∈ L1(γ). In the infinite-dimensional case it
remains an open question whether it is true that

lim
t→0

Ttf(x) = f(x) a.e. (7.1)

This problem is connected with the estimates

γ
(
x : sup

t>0
|Ttf(x)| > R

)
6 cR−1 (7.2)

for large R, that is, with the so-called weak (1-1)-estimates for the maximal function

Mf(x) := sup
t>0

|Ttf(x)|.

We recall that an operator T on the space Lp(γ) with values in the space of mea-
surable functions is of weak type (p-p) if the inequality

γ(x : |Tf(x)| > λ) 6 Cλ−1/p∥f∥p, f ∈ Lp(γ), λ > 0,
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holds for some number C.
In the finite-dimensional case (7.1) is true, but is far from obvious. For d = 1

this was proved in [153], and the following general result was obtained in [190] (see
also another proof in [146]).

Theorem 7.1. The relation (7.1) holds for all f ∈ L1(γd). In addition, for every d
there exists a number c = cd such that (7.2) holds.

It is an open question whether the best possible numbers cd are uniformly
bounded.

In the infinite-dimensional case (7.1) holds if f ∈ Lp(γ) with p > 1. This
follows from a more general theorem due to Stein for diffusion semigroups (see [197],
p. 70), where it is shown in addition that if f ∈ Lp(γ), then for every t > 0 there
is a version T̃tf of the function Ttf( · ) such that for every fixed x the function
t 7→ T̃tf(x) is real analytic on (0,∞).

Theorem 7.2. Let p > 1. Then there is a Cp > 0 such that for all f ∈ Lp(γ)

∥Mf∥p 6 Cp∥f∥p.

Moreover,
lim
t→0

T̃tf(x) = f(x) a.e.

If the function f is Borel measurable, then for T̃tf(x) we can take Ttf(x) for
those x where the corresponding integral exists and also the function LTsf(x) of
s is integrable on compact intervals in (0,+∞), and for all other points we set
Ttf(x) = 0. In particular, if f is a bounded Borel function, then the desired version
can be defined pointwise to be the function Ttf(x) for almost all x, simultaneously
for all t (but not always for all x; for example, if B is a Borel set, then TtIB(0) =
γ((1− e−2t)−1/2B) is not always continuous; see [25], Example 2.7.7). This can be
seen from the equality

Ttf(x) = T1/kf(x) +
∫ t

1/k

LTsf(x) ds, (7.3)

which is true for almost every x for all k ∈ N and t > 1/k. Indeed, Theorem 5.8
shows that Tsf ∈W 2,2(γ) and the function LTsf(x) is integrable on X× [1/k, t] for
all k ∈ N and t > 1/k. Hence, the right-hand side of (7.3) is defined and continuous
in t for almost all x. Consequently , every bounded continuous function belongs to
the class F of bounded Borel functions f such that (7.3) is true for almost every x,
for all k ∈ N and all t > 1/k at once. It is clear that F is a linear space. If uni-
formly bounded functions fn ∈ F converge pointwise to a function f , then f ∈ F .
Indeed, then the functions (x, s) 7→ LTsfn(x) on X × [1/k, T ] for all T > 1/k con-
verge to the function (x, s) 7→ LTsf(x) in L2(γ ⊗ ds). Therefore, we can pass to
a subsequence convergent almost everywhere. Then, for every fixed t, the integrals
of LTsfn(x) with respect to s in [1/k, t] converge to the integral of LTsfn(x) for
almost all x, since by convergence in L2(γ⊗ds) there exists a point t1 > t for which
the integrals of |LTsfn(x)|2 over [1/k, t1] converge to the integral of |LTsfn(x)|2 for
almost every x. This gives the uniform integrability of the functions s 7→ LTsfn(x)
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on [1/k, t] and hence convergence of their integrals. By the monotone class theorem
the set F contains all bounded Borel functions if X is a Souslin space. Everything
reduces to this case due to the existence of a Souslin support of a Radon Gaussian
measure. The version given by (7.3) is continuous with respect to t and is analytic
with respect to t by the aforementioned theorem of Stein. By yet another passage
to the limit the established property extends easily to unbounded Borel functions
in Lp(γ), provided that we define Ttf(x) to be zero for points x at which the cor-
responding integral does not exist. For a proof we have to consider a non-negative
function f and the bounded functions fn = min{f, n}.

As was shown in [26], Example 8.4.3,

lim
t→+∞

Ttf(x) =
∫

X

f(x) γ(dx) for γ-almost all x.

A similar problem for another maximal function was negatively solved in [4],
where it was shown that if Cd is the smallest number such that

γ
(
x : Mdf(x) > R

)
6 CdR

−1

for every function f ∈ L1(γd), where γd is the standard Gaussian measure on Rd,
and if we take the maximal function

Mdf(x) := sup
r>0

1
γd(B(x, r))

∫
B(x,r)

|f(y)| γd(dy),

then Cd →∞ as d→∞.
Additional results and references relating to maximal functions for the Ornstein–

Uhlenbeck semigroup can be found in [22], [23], [75], [82], [98], [100], [135], [136],
[142], [144], [146], [192], [193], [199], and [210].

8. Perturbations of Ornstein–Uhlenbeck operators

A considerable number of papers have been devoted to the study of operators
obtained by perturbing linear drifts of Ornstein–Uhlenbeck operators, that is, hav-
ing the form

Lvf = Lf + ⟨v,∇f⟩

for some vector field v. Of course, in the finite-dimensional case every second-order
operator with the Laplacian in the main part can be written in this form, but
specific features of many problems are connected with additional conditions on the
extra field v(x) as compared to −x. For example, interesting problems arise even
for bounded perturbations v for which the drift as a whole remains unbounded.
In the infinite-dimensional case some additional special features are connected
with the requirement that v(x) must be an element of the Cameron–Martin sub-
space H. Since the element −x almost surely does not belong to H in the case of
infinite-dimensional H, the whole drift coefficient b(x) = −x+ v(x) acquires a very
special structure.

For the new operator Lv a whole series of questions arises: in which space should
it be considered, whether it generates a semigroup, the properties of this semigroup,
the properties of its generator, whether the semigroup has invariant measures, the
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properties of such measures, and so on. There are also questions about the corre-
sponding diffusion processes and stochastic equations, but we do not touch upon
them here. We present a number of basic facts known about the operators Lv, and
then mention some open questions of a not too special character. The following
result from [38] gives an answer to a question posed by Shigekawa in [184].

Theorem 8.1. Let v : X → H be a Borel map such that there exists a Borel prob-
ability measure µ for which

|v|H ∈ L2(µ), l(v) ∈ L2(µ) for any l ∈ X∗,

and the equality
L∗vµ = 0

holds in the sense of the identity∫
X

Lvf dµ = 0 ∀ f ∈ FC∞(X). (8.1)

Then the measure µ is absolutely continuous with respect to γ , and there exists
a function ψ ∈W 2,1(γ) such that µ = ψ2 · γ . Moreover,∫

X

|DHψ|2H dγ 6
1
4

∫
X

|v|2H dµ.

The condition l(v) ∈ L2(µ) is not required if equation (8.1) is defined via the
class FC∞

0 (X).
Further results in this direction were obtained in [33] and [109]. So far there are

no analogous results with estimates in Lp (see, however, the remark at the end of
this section).

In the finite-dimensional case the following fact is known (see [34] or [35], § 1.5).

Theorem 8.2. Let b : Rd → Rd be a Borel vector field and let µ be a Borel measure
on Rd with respect to which the function |b| is locally integrable, that is, |b| ∈
L1

loc(|µ|). Suppose that µ satisfies the equation

∆µ− div(bµ) = 0 (8.2)

in the sense of the identity∫
Rd

[∆ϕ(x) + ⟨b(x),∇ϕ(x)⟩]µ(dx) = 0 ∀ϕ ∈ C∞0 (Rd).

Then the measure µ is absolutely continuous with respect to Lebesgue measure. If
b(x) = −x, then µ coincides with γ up to a constant factor.

It follows from this theorem that if b(x) = −x + v(x), where the function |v| is
locally integrable with respect to µ and µ satisfies (8.2), then µ is absolutely contin-
uous with respect to the Gaussian measure γ. Of course, in the infinite-dimensional
case a precise analogue of this assertion even with a globally integrable field v is
impossible, since even for b(x) = −2x we obtain as a solution a Gaussian measure
mutually singular with γ. But if v takes values in H, it was a long-standing open
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question as to whether just the integrability of |v|H with respect to the solution µ
is sufficient to guarantee the absolute continuity of µ with respect to γ. A positive
answer to this question has recently been given in a paper in preparation by the
author with A.V. Shaposhnikov and S.V. Shaposhnikov, where it is shown that for
f = dµ/dγ the function f(log f)α is γ-integrable for all α < 1/4. It is not clear
whether this bound on α is sharp. It was shown in [37] that in the finite-dimensional
case the density of a probability solution can fail to belong to the class W 1,1

loc (Rd);
however, as stated in Theorem 8.2, this density always exists.

Various problems connected with perturbations of drifts of Ornstein–Uhlenbeck
operators are considered in [3], [63], [73], [94], [171], [172], and [195]. There are also
many papers on perturbations of Ornstein–Uhlenbeck operators by scalar potentials
(see, for example, [21]).

9. Mehler-type semigroups

The Ornstein–Uhlenbeck semigroup has the following structure: the function Ttf
is a substitution of a linear operator into the convolution of the function f with
the image of the measure γ under another linear operator. This can be written
in the form

Ttf = (f ∗ γ ◦ S−1
t ) ◦At, where Stx =

√
1− e−2t x, Atx = e−tx,

and can also be rewritten in terms of the action on measures. This leads to the
idea of considering more general convolution semigroups of measures of the form

µt+s = µs ∗ (µt ◦ T−1
s ), t, s > 0, (9.1)

where {µt}t>0 is a family of Borel probability measures on a separable Banach
spaceX (or on a more general locally convex space), {Tt}t>0 is a semigroup of linear
operators on X (in typical examples, a strongly continuous semigroup). In this case
the given family of measures is called a {Tt}-convolution semigroup. For Tt ≡ I we
obtain the usual semigroup of measures with the relation

µt+s = µs ∗ µt.

On bounded Borel functions we obtain a Markov semigroup of operators

Ptf(x) =
∫

X

f(Ttx+ y)µt(dy),

which is called a generalized Mehler semigroup. It is shown in Lemma 2.1 of [39]
that if {Tt}t>0 is a strongly continuous semigroup of operators on a separable
Banach space, and {µt} is a {Tt}-convolution semigroup of measures such that
the map t 7→ µt is continuous in the weak topology on the space of measures,
then the function Ptf(x) is continuous with respect to (t, x) for every bounded
continuous function f .

We mention the following result from [182]. Recall that a probability measure µ
is said to be infinitely divisible if, for every n, it can be represented as the n-fold
convolution of some probability measure.
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Proposition 9.1. Let {Tt}t>0 be a strongly continuous operator semigroup on
a separable Banach space. Then the measures µt in a {Tt}-convolution semigroup
are infinitely divisible.

Even if Tt ≡ I, the measures in a convolution semigroup satisfying the identity
µt+s = µt ∗µs need not be continuous with respect to t in the weak topology. As an
example we can take the Dirac measures µt = δa(t), where a(t) is some discontinuous
solution to the equation a(t + s) = a(t) + a(s) (such a solution is constructed by
means of a Hamel basis in the space R over the field of rational numbers). In [182]
and [61] the question was considered of the continuity and absolute continuity of
the functions t 7→ µ̃t for the Fourier transforms of measures in a {Tt}-convolution
semigroup. We recall that the Fourier transform of a measure µ on a locally convex
space X is the complex function

µ̃(l) =
∫

X

eil dµ, l ∈ X∗,

on the topological dual space. Note that in terms of Fourier transforms the equal-
ity (9.1) is written in the form

µ̃t+s(l) = µ̃s(l)µ̃t(T ∗s l).

As shown in [39], if for every l ∈ X∗ there exists a finite derivative

λ(l) = − d

dt
µ̃t(l)

∣∣∣∣
t=0

,

then

µ̃t(l) = exp
(
−

∫ t

0

λ(T ∗s l) ds
)
.

However, the condition of differentiability at zero is not always fulfilled even in the
absence of Dirac components (see examples in [61]).

According to the well-known Lévy–Khintchine theorem, the Fourier transform
of an infinitely divisible measure µ on a separable Banach space has the form

µ̃ = exp(−ψ(l)), ψ(l) = −l(b) +
1
2
R(l, l)−

∫
K(l, x)M(dx),

where b ∈ X is a constant vector, R(l, l) is the covariance of a centred Gaussian
measure γ,

K(l, x) = eil(x) − 1− il(x)IU (x), U is the unit ball,

and M is the so-called Lévy measure on X \ {0}. Thus, the measure µ is expressed
as the convolution of three components:

µ = δb ∗ γ ∗ Λ, (9.2)

where δb is the Dirac measure at the point b, γ is a centred Gaussian measure,
and the measure Λ can be chosen so that no Gaussian component can be extracted
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from it. Then the indicated decomposition will be uniquely determined. The mea-
sure Λ is called the purely jump component. It is straightforward to verify that for
a {Tt}-convolution semigroup {µt} the Gaussian components γt of the measures µt

also form a {Tt}-convolution semigroup. However, for the shifts bt and the jump
components Λt this can be false. It is shown in [182] that for all l ∈ X∗ the func-
tions t 7→ γ̃t(l) and t 7→ Λ̃t(l) are continuous. Thus, the lack of continuity of µ̃t

can only be caused by the Dirac component δbt
(as noted above, its discontinuity

is possible if there are no additional conditions). In [61] the situation is consid-
ered where the component with the shift bt is absent and the Lévy measures Mt in
the decomposition (9.2) for µt are such that the measures min{∥x∥, ∥x∥2}Mt(dx)
are finite. In this case, according to Theorem 2.3 in [61], the functions t 7→ µ̃t(l)
are absolutely continuous on intervals [0, T ], although the derivative at zero does
not always exist.

In [39] the following fact is proved, which is useful for constructing Mehler-type
semigroups on infinite-dimensional spaces.

Theorem 9.2. Let {Tt}t>0 be a strongly continuous semigroup of operators on
a separable Hilbert space H . Suppose that ∥Tt0∥L (H) < 1 for some t0 > 0. Then
H can be embedded by means of an injective Hilbert–Schmidt operator with a dense
range into a separable Hilbert space E such that {Tt}t>0 extends to a strongly con-
tinuous contraction semigroup {TE

t }t>0 on E .
Moreover, a finite collection of commuting semigroups satisfying the stated con-

dition can be simultaneously extended to such a space.
Finally, if the condition ∥Tt0∥L (H) < 1 is omitted, then the indicated extension

of the semigroup still exists, but it need not be contracting. One can guarantee
that H will be embedded by means of a Hilbert–Schmidt operator not only in E but
also in the domain of the generator of the semigroup {TE

t }t>0 on E .

In [39] extensions of semigroups were used to construct generalized Mehler semi-
groups in the following theorem. We recall that a cylindrical probability measure
on a Hilbert space H is an additive set function ν on the algebra of cylinders in H
(pre-images of Borel sets under continuous linear maps to finite-dimensional spaces)
for which the finite-dimensional projections are countably additive, that is, one has
countably additive functions

B 7→ ν(P−1(B)), B ∈ B(Rn),

where P is a continuous operator from H to Rn. The Fourier transform ν̃ of the
measure ν arises naturally, and the value of it on a vector y is defined as the integral
of exp(i(x, y)) with respect to ν, understood as the integral of exp(it) with respect
to the measure on the real line that is the image of ν under the functional x 7→ (x, y).
Such a measure can fail to be countably additive on the full algebra of cylindrical
sets, as is shown by the example of the ‘standard cylindrical Gaussian measure’
on H, which has the Fourier transform exp(−|y|2/2). Its finite-dimensional pro-
jections under orthogonal projection operators are standard Gaussian measures on
the ranges of the projection operators.
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Theorem 9.3. Let {Tt}t>0 be a strongly continuous semigroup of operators on
a separable Hilbert space H , and let {µt}t>0 be a family of cylindrical probability
measures on H with continuous Fourier transforms satisfying the relation

µt+s = (µt ◦ T−1
s ) ∗ µs,

where µt ◦ T−1
s is the image of the measure µt under the map Ts . Let E be the

Hilbert space in the last assertion of the previous theorem. Then the measures µt

admit countably additive extensions to E , denoted by µE
t , and the family {pt}t>0

defined on bounded Borel functions on E by

ptf(x) :=
∫
f(TE

t x− y)µt(dy) = (µE
t ∗ f)(TE

t x), x ∈ E,

is a generalized Mehler semigroup on E .

The generator of such a semigroup is not always a differential operator, but turns
out to be a pseudodifferential operator (see [36]).

Mehler-type semigroups are considered in many papers (see [8], [9], [39], [60],
[61], [69], [78], [103], [113], [125], [126], [132], [160], [181], [182]).
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V. I. Bogachev, N.V. Krylov, and M. Röckner, “Elliptic and parabolic equations
for measures”, Russian Math. Surveys 64:6 (2009), 973–1078.

[35] V. I. Bogachev, N.V. Krylov, M. Röckner, and S.V. Shaposhnikov,
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[43] M. Bożejko, “Ultracontractivity and strong Sobolev inequality for q-Ornstein–
Uhlenbeck semigroup (−1 < q < 1)”, Infin. Dimens. Anal. Quantum Probab. Relat.
Top. 2:2 (1999), 203–220.

https://doi.org/10.1070/RM9721
https://doi.org/10.1070/RM9721
https://doi.org/10.1070/RM9721
https://doi.org/10.4213/rm9490
https://doi.org/10.4213/rm9490
https://doi.org/10.1070/RM2012v067n05ABEH004808
https://doi.org/10.1070/RM2012v067n05ABEH004808
https://doi.org/10.1070/RM2012v067n05ABEH004808
https://doi.org/10.1070/RM2012v067n05ABEH004808
https://doi.org/10.7868/S0869565217300016
https://doi.org/10.7868/S0869565217300016
https://doi.org/10.1134/S1064562417050295
https://doi.org/10.1134/S1064562417050295
https://doi.org/10.1134/S1064562417050295
https://arxiv.org/abs/1707.06477
https://doi.org/10.1090/tran/7181
https://doi.org/10.1090/tran/7181
https://doi.org/10.1090/tran/7181
https://doi.org/10.1090/tran/7181
https://doi.org/10.1006/jfan.1996.0063
https://doi.org/10.1006/jfan.1996.0063
https://doi.org/10.4213/rm9326
https://doi.org/10.4213/rm9326
https://doi.org/10.1070/RM2009v064n06ABEH004652
https://doi.org/10.1070/RM2009v064n06ABEH004652
https://doi.org/10.1070/RM2009v064n06ABEH004652
https://doi.org/10.1090/surv/207
https://doi.org/10.1090/surv/207
https://doi.org/10.1090/surv/207
https://doi.org/10.1017/S0027763000006917
https://doi.org/10.1017/S0027763000006917
https://doi.org/10.1017/S0027763000006917
https://arxiv.org/abs/1803.04568
https://arxiv.org/abs/1803.04568
https://zbmath.org/?q=an:0849.60004
https://zbmath.org/?q=an:0849.60004
https://zbmath.org/?q=an:0849.60004
https://doi.org/10.1007/BF01203835
https://doi.org/10.1007/BF01203835
https://doi.org/10.7868/S0869565215240044
https://doi.org/10.7868/S0869565215240044
https://doi.org/10.1134/S1064562415040286
https://doi.org/10.1134/S1064562415040286
https://doi.org/10.1134/S1064562415040286
https://doi.org/10.7868/S0869565216140036
https://doi.org/10.7868/S0869565216140036
https://doi.org/10.7868/S0869565216140036
https://doi.org/10.1134/S1064562416030042
https://doi.org/10.1134/S1064562416030042
https://doi.org/10.1134/S1064562416030042
https://doi.org/10.1016/j.matpur.2010.02.004
https://doi.org/10.1016/j.matpur.2010.02.004
https://doi.org/10.1142/S0219025799000114
https://doi.org/10.1142/S0219025799000114
https://doi.org/10.1142/S0219025799000114


252 V. I. Bogachev
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