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Distribution of the zeros of Padé polynomials
and analytic continuation
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Abstract. The problem of analytic continuation of a multivalued analytic
function with finitely many branch points on the Riemann sphere is dis-
cussed. The focus is on Padé approximants: classical (one-point) Padé
approximants, multipoint Padé approximants, and Hermite–Padé approx-
imants. The main result is a theorem on the distribution of zeros and
the convergence of the Hermite–Padé approximants for a system [1, f, f2],
where f is a multivalued function in the so-called Laguerre class L .
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1. Introduction

The problem of analytic continuation is a classical problem in complex analysis.
Various approaches to its solution are known (see first of all [18], and also [15],
[19], [69], [123]). In this paper we will discuss one of the classical methods for
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solving the problem of analytic continuation, the one based on the construction
of Padé approximants. In our treatment of Padé approximants (PA) here we will
follow the terminology of [27]–[30], where Padé approximants are understood to
refer to classical (one-point) PA, multipoint PA, and Hermite–Padé approximants.
We will take a similar approach in our discussion of Padé polynomials, by which
we will mean Padé polynomials proper, and also polynomials corresponding to
multipoint PA and Hermite–Padé approximants.

Let f be a holomorphic function at the point at infinity z = ∞: f ∈ H (∞).
Throughout what follows we assume that f is a multivalued analytic function on
the Riemann sphere C, with a finite set Σ ⊂ C of singular points, Card Σ < ∞,
at least one of which is a branch point of f . Thus, f is a multivalued analytic
function in the domain C \ Σ. For fixed Σ we denote the class of such functions f
by A 0(C \ Σ):

A 0(C \ Σ) := A (C \ Σ) \H (C \ Σ)

(see § 2.1 for details).
Assume that the analytic function f has the explicit representation

f(z) =
p∏
j=1

(z − aj)αj , αj ∈ C \ Z,
p∑
j=1

αj = 0, (1)

where all the points aj ∈ C are distinct: aj ̸= ak for j ̸= k. In what follows
we will impose various additional conditions on the branch points aj and the
parameters αj in (1), depending on the particular problem under consideration
(see, for example, (41)). The function f is a multivalued analytic function in the
extended complex plane C with a finite set Σ = {a1, . . . , ap} of branch points, so
that f ∈ A 0(C\Σ). Since the aj and αj are parameters in (1), here we are actually
considering the whole class L of multivalued analytic functions given by (1). We
call L the Laguerre class.

A function f of the form (1) satisfies the differential equation

Ap(z)w′ +Bp−2(z)w = 0, (2)

where Ap(z) =
∏p
j=1(z− aj) and Bp−2 ∈ Cp−2[z] is the polynomial of degree p− 2

defined by Bp−2(z) = −Ap(z)
∑p
j=1 αj(z − aj)−1 . Therefore, we could initially

define the function f of the form (1) in a neighbourhood of a point z = z1 ∈ C \Σ
as a solution w = f1 of the differential equation (2). Then it is natural to regard any
other function w = f2 satisfying (2) in a neighbourhood of another point z = z2 ̸= z1
as an ‘analytic continuation’ of the original function f1 = f . This approach to the
concept of analytic continuation was essentially proposed in [55] and [27], [28] in
the case of a differential equation of arbitrary order with coefficients in C(z). The
differential equation (2), like the representation (1), defines a multivalued analytic
function f(z) = w(z) using finitely many complex parameters: the coefficients of
the polynomials Ap and Bp−2. The explicit representation (1) does not uniquely
define the multivalued analytic function f : we must fix some branch of this function
at a given point z0 ∈ C. For instance, since

∑p
j=1 αj = 0, we can set f(∞) = 1

at the point z = ∞. The differential equation (2) leaves room for even more
arbitrariness: any function of the form w = const f with const ̸= 0 and f given
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by (1) is a non-trivial solution of it. Nevertheless, we can very well start with
a differential equation of type (2) in defining an analytic function. It is then natural
to pose the problem of studying various properties of the analytic function directly
on the basis of an equation of type (2) or, more generally, of a linear differential
equation with rational coefficients.

This approach to the notion of an analytic function is the basis for the so-called
‘Kolchin theory’. In the process of developing a theory of integrability1 for lin-
ear homogeneous differential equations with rational coefficients in the field C(z)
Kolchin [55] first posed in 1959 the problem of best rational approximation of mul-
tivalued analytic functions which satisfy a differential equation of the form

L[w] ≡ 0, (3)

where
L[w] := w(n) + an−1w

(n−1) + · · ·+ a1w
′ + a0w (4)

is a linear differential operator of order n ∈ N with coefficients ak in the field C(z).
We remark that Kolchin addressed there the more general problem in which the
coefficients ak ∈ k(z) of an equation of the form (3) are rational functions of the for-
mal variable z with coefficients in a field k of characteristic zero. He considered
solutions of (3) in the class k[[z]] of formal power series and posed the problem of
the best rational approximation of such solutions of (3) by rational functions in the
class k(z). The ‘best’ approximation was understood in the local sense: the order
of tangency2 νn(f) := max{ordz=z0(f − r) : r ∈ kn(z)} to the given formal series
f ∈ k[[z]] by a rational function in the class kn(z) := {r(z) = p(z)/q(z), p, q ∈
k[z], deg p, deg q 6 n} of rational functions of fixed order n was to be the maxim-
ium possible. In the present paper k = C, so that we are looking at the problem of
rational approximation (in the class Cn(z)) of analytic solutions (with respect to
the variable z) of a differential equation of the form (3) whose coefficients ak are
rational functions in the field C(z). Kolchin’s paper [55] turned out to be closely
related to so-called functional analogues of the classical Thue–Siegel–Roth theorem
and its subsequent generalizations in number theory. There has been interest in
this range of problems for quite a few decades and it shows no signs of declining
(see first and foremost [28], [55], [64], [83], [85], [86], [100], and also § 2.1 below).

Thus, it is quite natural to assume that an analytic function f is given as a solu-
tion of a linear differential equation with polynomial coefficients in C[z], and to
pose the problem of investigating various properties of the analytic function so
defined in terms of this differential equation, without having the possibility of solv-
ing the equation explicitly (see [54]). This is what was done in [28], [85], [87],
where the approximability of analytic functions given as solutions of differential
equations by rational functions was studied. More precisely, following Kolchin [55],
the authors of [28] and [49] studied the local approximation properties of the locally
best rational approximations of multivalued analytic functions given as solutions of
an equation of the form L[w] ≡ 0, where L is an operator (4) with coefficients in the
field C(z). In [28] the term ‘locally’ was understood in the sense of the maximum

1Or more precisely, a theory of non-integrability of such differential equations (see Khovanskii’s
monograph [54] and its bibliography for details).

2Here and below, ordx=x0 ϕ(x) is the order of the zero of a function ϕ at a point x0.
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possible order of tangency between a rational function of fixed order and the given
function at one or several points.

It is well known that the Padé approximants3 are locally the best rational approx-
imations of a given analytic function f ∈ C[[z]] in the corresponding class of rational
functions.

In this paper we are concerned with just one question related to the study of
properties of an analytic function given as a solution of a differential equation of the
form L[w] ≡ 0: the problem of representing such an analytic function by a continued
J-fraction, or more generally, by a T -fraction. More precisely, we mean the following
problem: where (in what region or union of regions) does such a representation hold,
and in what sense does it hold? Clearly, here we are concerned with the analysis of
various global approximation properties of the locally best rational approximations
of analytic functions, that is, global approximation properties of Padé approximants.
This is where there is a fundamental distinction between results obtained in the
framework of Kolchin’s theory and results that follow from the theorems of Stahl
(for classical one-point PA; see § 2.2) and Buslaev (for multipoint PA; see § 2.3).

To understand how important such a problem is and how strongly it differs
from the problems solved in the framework of Kolchin’s theory it is natural to
consider the class of special functions with representations of the form (1). On
the one hand, such functions are given by an explicit representation, and on the
other hand, they solve a differential equation of the form (2), which is a very
special case of the class of differential equations L[w] ≡ 0 addressed in [28], [49],
and [55] (see also the monograph [54] and [77]). We remark that the approach to an
analytic function as a solution of a differential equation of the form (2) (which is a
very special case of the general homogeneous algebraic equation (4)) is particularly
important in the theory of Hermite–Padé approximants (see our § 2.4), that is, in
the part of the general theory of PA where, regarding the distribution of the zeros
of the Hermite–Padé polynomials for the class of multivalued analytic functions
with a finite set of branch points, there are so far no general results which could be
used as a kind of substitute for Stahl’s and Buslaev’s theorems (see [5], [81], [112]
and also [75] and [76]).

Similarly, we can assume that an analytic function f is an algebraic function,
that is, is given by an algebraic equation with polynomial coefficients in C[z]. And
accordingly, we can pose the problem of studying various properties of such an f
on the basis of this algebraic equation (see [28], [114], and also [54]).

We note that defining an analytic function by means of a differential equation
is not restricted to linear algebraic differential equations of the form L[w] ≡ 0.
For a corresponding example of a non-linear differential equation we can take the
well-known free van der Pol equation

d2U

dt2
+ ε(U2 − 1)

dU

dt
+ U = 0, (5)

where U = U(t; ε) is a quantity connected with the current strength in an electric
circuit, t is the time, and the physical characteristics of the physical device (‘oscilla-
tor’) itself are described by the single ‘small’ parameter ε. In this case the frequency

3Recall that here PA can be classical (one-point) PA, multipoint PA, or Hermite–Padé approx-
imants.
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and the amplitude corresponding to a limit cycle of this equation are analytic
functions of ε (more precisely, of ε2; see details in [2], [31], [118]; see also [3],
[16], [17], [34], [52], [53], [80], [95], [101]–[105] for other possible applications of
Hermite–Padé polynomials).

2. Best rational approximations

Throughout this paper, by best rational approximations we only mean locally
best approximations. Regarding the best rational Chebyshev approximations and
the corresponding use of the general GRS-method, see [92] and the references there.

2.1. Kolchin’s theory and functional analogues of the Thue–Siegel–Roth
theorem. Interest in various functional analogues of the classical Thue–Siegel–
Roth theorem and its subsequent generalizations in number theory has been steady
for quite a few decades and continues today (see first of all [55], [85], and also
[28], [64], [86], [100], [127]). In recent years such results have been associated
with G. and D. Chudnovsky [28], Osgood [83]–[87], Schmidt [97]–[99] and Vojta
[125], [126]. Such analogues of the classical Thue–Siegel–Roth theorem and the
Schmidt theorem have as a rule been connected mainly with Kolchin’s paper [55] and
are regarded as contributions to ‘Kolchin’s theory’, which Kolchin himself developed
for rather general differential fields over an arbitrary field k (see [28], [55], [85]).
Here we look at such a theory from the standpoint of Padé approximants, taking
the field of rational functions C(z) over the complex number field C as the ground
field k(z) and taking multivalued analytic functions with a finite set of singular
points (for instance, algebraic functions or functions satisfying linear homogeneous
algebraic differential equations) as the function space. We remark that the range of
applications of the Gonchar–Rakhmanov–Stahl method (GRS-method; see details
in § 3), which we discuss here, is much broader than the class of multivalued analytic
functions with finitely many singularities. The close relationship between Kolchin’s
theory and the theory of Padé approximants was very well understood by Gonchar:
in both cases one considers the locally best rational approximation of a formal
power series or a finite set of such series. The difference lies with the problems
that are posed and, by implication, with the methods for their solution. Starting
from problems arising in a natural way in the theory of AP, Gonchar stated several
conjectures in 1978 [39] (see also [6], Chap. 1, § 6.3), which he thought could be
regarded as the natural functional analogues of the Thue–Siegel–Roth theorem.
Most of these conjectures have been proved by now (see primarily [28], [110], [111]),
but at least one is still open (see [6], Chap. 1, § 6.3, Conjecture 6.10). It deals with
the strong asymptotics of the best Chebyshev rational approximants for multivalued
algebraic functions (see also [4], [34], [92]).

As Gonchar viewed it (see [39] and also [6], Chap. 1, § 6.3), functional analogues of
the Thue–Siegel–Roth theorem are essentially results on the structure of the possible
pattern of gaps in the sequence of orders of tangency νn(f), n = 1, 2, . . . , νn(f) :=
max{ordz=z0(f − r) : r ∈ Cn(z)}. Equivalently, these are results stating that the
indices in a diagonal sequence of PA are normal (or perhaps unnormal). Thus,
these are all results about some important but nevertheless auxiliary properties of
PA, and the theory of best rational approximations of analytic functions cannot
be reduced to a study of them. The remarkable results [28] of the Chudnovskys



906 S. P. Suetin

state in essence that for solutions of differential equations the size of the gaps (and
therefore the size of blocks in the Padé table) is bounded by an effective constant.

In this paper we will show, in particular, how some functional analogues of
the Thue–Siegel–Roth theorem can be deduced as immediate consequences of deep
results due to Stahl and Buslaev on the limiting distribution of the zeros and poles
of the PA for multivalued analytic functions.

In [55] Kolchin stated the following conjecture (see [28]). Let f be a solution of
an algebraic differential equation (3) which is analytic4 at some point z = z0 ∈ C.
He conjectured that for any ε > 0 there exists a constant C = C(f, z0, ε) > 0 such
that for any polynomials P,Q ∈ C[z]

ord
z=z0

(
f(z)− P (z)

Q(z)

)
< (2 + ε) max{degP,degQ}+ C, (6)

where ordx=x0 ϕ(x) denotes the order of the zero of the function ϕ at x0. Besides (6),
authors subsequently began also looking at the following more general relation
(see [28] and [86]):∑

j∈J
ord
z=zj

(
f(z)− P (z)

Q(z)

)
< (2 + ε) max{degP,degQ}+ C, (7)

where J is a finite index set, card J <∞. Here it is assumed that the function f is
holomorphic at each point zj , j ∈ J , and that L[f ](z) ≡ 0 in some neighbourhood Uj
of each point zj . Kolchin’s conjecture was also understood later in a stronger
sense, with ε possibly vanishing in (6) and (7) with an ‘effective’ constant C. It is
clear that (6) is related to some properties of the classical Padé approximants for
certain classes of analytic functions, while (7) is related to properties of multipoint
Padé approximants (see §§ 2.2 and 2.3). Similar relations were also considered
by the Chudnovskys in [28] for Hermite–Padé approximants. In [28] they proved
that (6) and (7) hold in the class consisting of the solutions of algebraic differential
equations of arbitrary order and of algebraic functions, and moreover they hold in
their strongest version: for ε = 0 and with a certain effective constant C. It is
one of our aims here to deduce (6) and (7) in a quite simple way, with ε > 0 and
an ineffective constant C though, but in a much broader class of functions than
in [28], [55], and [86], namely, in the class of multivalued analytic functions with
finitely many branch points in C (for more details, see §§ 2.2 and 2.3 below). With
our approach, (6) becomes a direct consequence of Stahl’s theorem [110], and (7) is
a direct consequence of Buslaev’s theorem [21], or more specifically, of the fact that,
in the context of these theorems, the corresponding Padé polynomials Pn and Qn
of degree n have a limiting distribution of zeros, and

1
n
χ(Pn),

1
n
χ(Qn)

∗−→ λeq, n→∞,

where λeq is the corresponding equilibrium measure (for the trivial exterior field
ψ(z) ≡ 0 in Stahl’s case and the exterior field ψ(z) = V −ν(z) in Buslaev’s case,

4As usual, we say that a function is analytic at a point if it is analytic in a neighbourhood of
this point.
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with ν the unit positive measure concentrated on the finite set of points z1, . . . , zm
of an m-point interpolation of the original function f). Here χ(Q) is the measure
‘counting’ the zeros of a polynomial Q ∈ C[z] with multiplicities taken into account;
see (25).

In what follows we will only consider the case when degP = degQ in (6) and (7),
that is, we will only discuss diagonal Padé approximants.

Remark 1. We can also consider the more general situation of a given normed dif-
ferential field T in which an operation δ with the properties δ(ab) = δ(a)b+ aδ(b)
and δ(a+ b) = δ(a)+ δ(b) for any a, b ∈ T is defined which is also compatible with
the norm | · | > 0, |ab| = |a| |b|, in the sense that there exist positive numbers c1
and c2 such that c1|a| 6 |δa| 6 c2|a| for all |a| < 1, a ∈ T . In this connection see
[64], [85] and also [46], [47].

Remark 2. Now we briefly discuss the connections between the asymptotic prop-
erties of PA and the so-called Schmidt approximation spectrum (see [64]). Let
z0 = ∞. For the convergents5 Pn/Qn we have∣∣∣∣f − Pn

Qn

∣∣∣∣ =
∣∣∣∣ 1
Qn

∣∣∣∣1+degQn+1/ degQn

. (8)

The Schmidt approximation spectrum ([64], § 4) is defined by6

Spec(f) =
{

1 +
degQn+1

degQn
, n = 1, 2, . . .

}′
.

Let f ∈ A 0(C\Σ). Then it follows immediately from Stahl’s theorem (see § 2.2) that
Spec(f) = {2}. On the other hand, if f = {(f1, z1), . . . , (fm, zm)} is a multigerm
with fj ∈ A 0(C \ Σ) and fj ∈ H (zj), then Buslaev’s theorem (see § 2.3) gives us
that Spec(f) = {2}.

2.2. Padé approximants: Stahl’s theory. Let Σ = {a1, . . . , ap} be a finite
point set in the complex plane C. Then we let A (C \Σ) denote the set of analytic
functions on the domain C\Σ, which means that each f ∈ A (C\Σ) is holomorphic
at each point z /∈ Σ and can be analytically continued from this point along any
path disjoint from Σ. We denote the class of functions which are analytic but not
holomorphic in C \ Σ by A 0(C \ Σ), so that A 0(C \ Σ) := A (C \ Σ) \H (C \ Σ).
Thus, for any function f ∈ A 0(C \ Σ) at least one point aj ∈ Σ is a branch point.

At present, the only known way to prove theorems on representing analytic func-
tions of the form (1) by continued J-fractions or, more generally, T -fractions is to
deduce them as consequences of the general theorems of Stahl (for J-fractions) and
Buslaev (for T -fractions and more general continued fractions) on convergence of
the corresponding diagonal PA in the class of all multivalued analytic functions
with a finite set of branch points. Since functions of the form (1) satisfy a differ-
ential equation of the form (2), the corresponding Padé polynomials also satisfy
a homogeneous algebraic differential equation of the second order (see (14) below).
However, although this equation has polynomial coefficients of fixed degree, they

5Here we mean both J-fractions and also T -fractions and multipoint PA.
6The prime means the set of limit points.
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depend on the index of the corresponding PA. More precisely, these polynomials
contain so-called accessory parameters, which depend on the index n of the corre-
sponding Padé polynomial. Their asymptotic behaviour as n→∞ is not known in
advance. For both classical PA and two-point PA we can only study their behaviour
on the basis of Stahl’s or Buslaev’s theory, respectively. As a result, in some cases we
can also find asymptotic formulae for the corresponding Padé polynomials (see [57],
[74], [82], and cf. also [70] and [71]).

Recall that, since the aj and αj , j = 1, . . . , p, are parameters, in fact we are
dealing here with a whole class L of multivalued analytic functions given by a rep-
resentation of the form (1). All the functions in the Laguerre class L satisfy
a differential equation of the form (2).

The question of Laurent series representing these functions is quite easy. Namely,
if f ∈ L , then f is holomorphic at the point at infinity z = ∞, so we can expand
it in a convergent Laurent series at z = ∞:

f(z) =
∞∑
k=0

ck
zk
, |z| > max

j=1,...,p
|aj |. (9)

We fix a branch of f by setting f(∞) = 1 = c0. Then starting from (1) we can
uniquely recover the coefficients ck of the Laurent series (9) using recurrence for-
mulae which can easily be expressed explicitly.

The problem of expanding an f with f(∞) = 1 in a continued J-fraction has
proved to be much more complicated.

In 1885 Laguerre [62] turned to the problem of expanding a function of the
form (1) in a continued J-fraction and thereby came naturally to the question of
the asymptotic behaviour of the denominators Qn of the nth convergents Jn =
Pn/Qn of the continued J-fraction, which he saw to be non-Hermitian orthogonal
polynomials. In particular, he considered this problem (see also [30], [67], [81]) for
functions of the form

f(z) =
3∏
j=1

(z − aj)αj , (10)

where
∏3
j=1 αj = 0, αj ∈ C \ Z, f(∞) = 1, and the three points a1, a2, and a3

are in general position, so do not lie on a straight line. It turned out that the
denominators Qn of the convergents Jn = Pn/Qn corresponding to the continued
J-fraction defined by the relations

f(z) =
3∏
j=1

(z − aj)αj = 1 +
∞∑
k=1

ck
zk

= 1 +
c1

z − b̂1 + f1(z)

= 1 +
â2
1

z − b̂1 −
â2
2

z − b̂2 + f2(z)

≃ 1 +
â2
1

z − b̂1 −
â2
2

z − b̂2 − · · ·

=: J(z), (11)

are non-Hermitian orthogonal. More precisely,∮
Γ

Qn(ζ)ζkf(ζ) dζ = 0, k = 0, . . . , n− 1, (12)
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where Γ is an arbitrary closed contour separating a1, a2, and a3 from the point at
infinity z = ∞. We note that the monic orthogonal polynomials7 Qn(z) = zn+ · · ·
satisfy the three-term recurrence relations

Qn(z) = (z − b̂n)Qn−1(z)− â2
nQn−2(z), n = 1, 2, . . . , (13)

Q−1(z) ≡ 0, Q0(z) ≡ 1, Q1(z) = z − b̂1. In connection with the problem of rep-
resenting f by a continued J-fraction (11), that is, the problem of the asymptotic
behaviour of the corresponding convergents Jn, there arises the natural question of
whether we can obtain a description of the asymptotic behaviour of the polynomi-
als Qn or, equivalently, of the denominators of the rational functions Jn directly
from the orthogonality relations (12). Were the answer affirmative, Laguerre would
have solved the problem of representing the function (9) by a continued J-fraction,
that is, the problem of the equality f(z) = J(z). More precisely, he would have
answered the question of the region in the complex plane where the function (9) is
represented by a continued J-fraction. We remark that in [62] (see also [76], [82],
[89]) Laguerre also derived the following second-order differential equation which is
satisfied by the polynomials Pn and the functions Qnf and Qnf − Pn (cf. (15)):

A3(z)Πn,1(z)w′′ + Πn,3(z)w′ + Πn,2(z)w = 0, (14)

where A3(z) =
∏3
j=1(z − aj) and the Πn,k ∈ Ck[z] for k = 1, 2, 3 are polynomials

of degree precisely k. More specifically,

Πn,1(z) = z − zn, Πn,2(z) = −n(n+ 1)(z − bn)(z − vn),

Πn,3(z) = (z − zn)B2(z)−A3(z), B2(z) = A′3(z)
f ′(z)
f(z)

.

The differential equation (14) is an algebraic differential equation of the second
order with polynomial coefficients of fixed degree. However, these coefficients
depend on n. More precisely, the coefficients of (14) contain the three acces-
sory parameters zn, bn, and vn, whose asymptotic behaviour as n → ∞ is not
known in advance, and also the large parameter n(n+1) multiplying the free term.
Although he obtained the orthogonality relations (12) and the differential equa-
tion (14), Laguerre could not solve the seemingly simple problem of the asymptotic
behaviour of the polynomials Qn. It was solved by Nuttall [82] in 1986 (see also [74]
and [76]), but only after Stahl [107]–[111] (see also [6] and [122]) had completely
solved the problem of the limiting distribution of the zeros of the Padé polynomials
corresponding to an (arbitrary) multivalued analytic function with finitely many
branch points on the Riemann sphere.

It is well known (see [81], [110], [111]) that orthogonality relations of the form (12)
appear naturally in the theory of Padé approximants. This is quite understand-
able because the convergents Jn of the continued J-fraction corresponding to an
arbitrary (generic) Laurent series f ∈ H (∞) coincide with the nth diagonal Padé
approximant, which can be constructed as follows from the Laurent series. For any
n ∈ N we determine Padé polynomials Pn,0, Pn,1 ∈ Cn[z] with degPn,0,degPn,1 6 n

7For points in general position, deg Qn = n for all n.
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and Pn,1 ̸≡ 0 from the relation

Hn(z) := (Pn,0 + Pn,1f)(z) = O

(
1

zn+1

)
, z →∞. (15)

Such polynomials always exist, but they are not uniquely defined by (15). How-
ever, the rational function Pn,0/Pn,1 of order 6 n is uniquely defined; the func-
tion [n/n]f := −Pn,0/Pn,1 is called the diagonal Padé approximant of order n for
the function f ∈ H (∞) (or the nth diagonal Padé approximant). Furthermore,
Jn = [n/n]f . In particular, for functions of the form (10) the polynomials Pn,1 sat-
isfy the same non-Hermitian orthogonality relations (12). It is well known that gen-
eral orthogonal polynomials were discovered by Chebyshev [26] in 1855 in precisely
the framework of the theory of continued J-fractions. This fact is reflected in Szegő’s
monograph [120] (§ 3.5): “Historically, the orthogonal polynomials. . . originated in
the theory of continued fractions. This relationship is of great importance and is
one of the possible starting points of the treatment of orthogonal polynomials. . . .”

We remark that in this approach the continued fraction expansion of a function
f ∈ L of the form

f(z) =
(
z − 1
z + 1

)α
, f(∞) = 1, α ∈

(
−1

2
,
1
2

)
, α ̸= 0, (16)

leads naturally to consideration of the Jacobi polynomials P (α,β)(z) with parame-
ters α ∈ (−1/2, 1/2) \ {0} and β = −α, which are orthogonal on ∆ := [−1, 1] with
the weight ((1− x)/(1 + x))α (see [120]).

Although the Laguerre class L consists of multivalued analytic functions of
a rather special form, which are in fact given by the explicit formulae (1), the
problem of the asymptotic properties of the corresponding Padé polynomials (or
equivalently, of polynomials satisfying the orthogonality relations (12)) turned out
to be very characteristic from the standpoint of the general theory of PA. Namely,
even for a function f of the form (10) Laguerre could not solve the problem of the
asymptotic behaviour of the corresponding orthogonal polynomials (the denomi-
nators of the diagonal PA). As mentioned above, Nuttall [82] was able to solve
this problem in 1986 (see also [74]), but only after Stahl had completely solved the
problem of the limiting distribution of the zeros of the Padé polynomials corre-
sponding to an arbitrary multivalued analytic function with finitely many branch
points on the Riemann sphere (see [114]). The cornerstone of Stahl’s theory was
his result stating that for each multivalued analytic function f ∈ H (∞) with
finitely many branch points on the Riemann sphere8 there exists a unique (up to
sets with capacity zero) compact set S = S(f) with a certain ‘symmetry’ property
(called the S-property; see (18)) such that S is made up of finitely many analytic
arcs, the set D := C \ S is a domain, and the original function extends holomor-
phically to D, that is, f ∈ H (D). On the basis of this result it is proved in
Stahl’s theory that there is a limiting distribution of the zeros of the Padé poly-
nomials, and it coincides with the Robin equilibrium measure λ = λrob

S for S, so
that −

∫
S

log |z − ζ| dλ(ζ) ≡ const = γS , z ∈ S, where γS is the Robin constant

8Stahl’s results are in fact much more general and hold in the class of multivalued analytic
functions whose singular set has capacity zero.
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of S. Stahl’s compact set S is uniquely characterized9 by the property of minimum
capacity in the class of compact sets Γ such that Γ = ∂G, where G is a domain,
G ∋ ∞, and f ∈ H (G); in other words,

capS = min
Γ=∂G

cap Γ, (17)

and the indicated symmetry property means that for any z ∈ S◦

∂gD(z,∞)
∂n+

=
∂gD(z,∞)

∂n−
, (18)

where S◦ is the union of the open analytic arcs whose closures form S, gD(z,∞)
is the Green’s function of the Stahl domain D ∋ ∞ with pole at infinity, and
∂/∂n± are the normal derivatives to S at z ∈ S◦ from opposite sides of S. Since
gD(z,∞) = γS − V λ(z), (18) is equivalent to the equality

∂V λ

∂n+
(z) =

∂V λ

∂n−
(z), z ∈ S◦. (19)

In the case of the classical Jacobi polynomials, which correspond to the func-
tion (16), the Stahl compact set S coincides with the unit interval: S = ∆ = [−1, 1].
For the generalized Jacobi polynomials, which correspond to the function (10)
(recall that a1, a2, a3 are three points in general position and therefore do not
lie on a straight line), the Stahl compact set S coincides with the Chebotarev con-
tinuum C(a1, a2, a3) (see [61], and also Figures 1 and 2). Here S is formed by the
critical trajectories of the quadratic differential

− z − v

A3(z)
dz2 > 0, A3(z) :=

3∏
j=1

(z − aj), (20)

that join the branch points aj (which are simple poles of the quadratic differ-
ential in (20)) with the so-called Chebotarev point z = v, a simple zero of the
differential in (20). The Chebotarev point v is a transcendental parameter of this
problem and is uniquely determined from the condition that all the periods of the
Abelian integral ∫ z

√
ζ − v

A3(ζ)
dζ (21)

are purely imaginary. Therefore,

Re
∫ z

a1

√
ζ − v

A3(ζ)
dζ (22)

is a single-valued harmonic function on the two-sheeted elliptic Riemann surface
R2 : w2 = (z−v)A3(z), the Chebotarev–Stahl compact set is defined by the relation

S =
{
z ∈ C : Re

∫ z

a1

√
ζ − v

A3(ζ)
dζ = 0

}
, (23)

9Up to compact sets with capacity zero.
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Figure 1. The zeros and poles of the diagonal Padé approximant [130/130]f
of the function f(z) =

[
(z+1.2− i ·0.8)(z−0.9− i ·1.5)(z−0.5+ i ·1.2)

]−1/3.
For n = 130 the distribution of the zeros and poles corresponds to
Rakhmanov’s electrostatic model [91]. One Froissart doublet can be seen
in the figure. Since the corresponding (Stahl) Riemann surface has genus 1,
there can be at most one doublet. The behaviour of this Froissart doublet
as n →∞ is governed by an equation in [82].

and

g(z) := Re
∫ z

a1

√
ζ − v

A3(ζ)
dζ (24)

is the Green’s function gD(z,∞) of the Stahl domain D = C \ S.
Therefore, we can solve the problem of the distribution of the zeros of the Padé

polynomials for functions having the very special form (10) only in the framework of
the general Stahl theorem, which he proved for an (arbitrary) multivalued analytic
function with finitely many branch points on the Riemann sphere.

In view of the foregoing, it is natural to regard the Padé polynomials for func-
tions of the form (1) as a generalization of the classical Jacobi polynomials (see [74]
and [82]). Another possible class of generalized Jacobi polynomials is connected
with the so-called two-point Padé polynomials (see [56], [57], and also Figure 3).
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Figure 2. The zeros and poles of the diagonal Padé approximant [266/266]f
of the function f(z) =

[
(z + 4.3 + i)(z − 2 − i · 0.5)(z + 2 + i · 2)(z + 1 −

i ·3)(z−4−i ·2)(z−3−i ·5)
]−1/6. In the limit as n →∞ the zeros and poles

of the diagonal Padé approximants [n/n]f must be distributed according to
Stahl’s theorem [114]. For the given n = 266 these zeros and poles are
distributed according to Rakhmanov’s electrostatic model [91]. Since for
this function f the corresponding (Stahl) hyperelliptic surface has genus 4,
there can be at most 4 Froissart doublets for each n. For n = 266 three
Froissart doublets can be seen in the picture.

The analysis of the corresponding asymptotic properties of such polynomials is
based on Buslaev’s theorem, which is the two-point analogue of Stahl’s theorem
(see [21], [22], and also § 2.3). We note that Buslaev’s result in [21] is more general:
it holds form-point PA in the class of all multivalued analytic functions with finitely
many singular points on the Riemann sphere (see § 2.3). Finally, yet another pos-
sible generalization of the Jacobi polynomials is connected with the Hermite–Padé
polynomials of the first kind for a system [1, f, f2] of three functions, where f has
a representation (16) with α ∈ (−1/2, 1/2), α ̸= 0 (see [75] and [76] for more
details).

For an arbitrary measure µ with suppµ b C let V µ(z) denote the logarithmic
potential of µ:

V µ(z) := −
∫

log |z − t| dµ(t),
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Figure 3. The numerical picture of the distribution of the zeros and poles
of the two-point Padé approximant [199/199]f of the multivalued function

f(z) =

(
z − a1

z − a2

)1/4

with a1 = 0.9 − i · 1.1 and a2 = 0.1 + i · 0.2 in the

case when the two ‘significantly different’ branches f0 =

(
z − a1

z − a2

)1/4

and

f∞ = −
(

z − a1

z − a2

)1/4

of f are taken. In aggregate, almost all the zeros (blue

points) and poles (red points) simulate numerically the Buslaev compact
set. In addition, there is a Froissart doublet, whose behaviour as n →∞ is
governed by an equation in [57].

and let V µ∗ (z) denote the corresponding spherically normalized potential

V µ∗ (z) :=
∫
|ζ|61

log
1

|z − ζ|
dµ(ζ) +

∫
|ζ|>1

log
1

|1− z/ζ|
dµ(ζ).

For an arbitrary polynomial Q ∈ C[z] with Q ̸≡ 0 we let

χ(Q) =
∑

ζ : Q(ζ)=0

δζ (25)

denote the associated measure which ‘counts’ the zeros of the polynomial Q with
multiplicities, and we let Q∗ denote the corresponding spherically normalized
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potential

Q∗(z) =
∏

ζ : |ζ|61
Q(ζ)=0

(z − ζ) ·
∏

ζ : |ζ|>1
Q(ζ)=0

(
1− z

ζ

)
.

Stahl’s Theorem (see [110]). Suppose that f ∈ H (∞) and f ∈ A 0(C\Σ), where
Card Σ < ∞. Let D = D(f) be the Stahl domain for f , S = S(f) = ∂D the
corresponding Stahl compact set, and [n/n]f = −Pn,0/Pn,1 the nth diagonal Padé
approximant of f (at infinity). Then the following statements hold:

1) the Padé polynomials Pn,j , j = 0, 1, have a limiting distribution of zeros, and

1
n
χ(Pn,j)

∗−→ λrob
S , n→∞, j = 0, 1, (26)

where λrob
S is the Robin equilibrium measure on the Stahl compact set S , that is,

V λ
rob
S (z) ≡ const = γS for z ∈ S , where γS is the Robin constant of S ;
2) the diagonal PA converge to f in capacity10 on compact subsets of D , that is,

[n/n]f (z)
cap−−→ f(z), n→∞, z ∈ D, (27)

and the rate of convergence in (27) is characterized by

|(f − [n/n]f )(z)|1/n
cap−−→ e−2gD(z,∞), n→∞, z ∈ D, (28)

where gD(z,∞) is the Green’s function for the domain D .

It follows immediately from Stahl’s theorem that

degPn,j
n

→ 1, n→∞, j = 0, 1. (29)

The relations (29) and (28) imply Kolchin’s conjecture (6) for an arbitrary function
f ∈ A 0(C \ Σ).

2.3. Multipoint Padé approximants: Buslaev’s theory. Let fj ∈ A 0(C\Σ),
where Card Σ <∞, j = 1, . . . ,m. Let z1, . . . , zm ∈ C\Σ be pairwise distinct points
and fj ∈ H (zj), j = 1, . . . ,m. Let Pn, Qn ∈ Cn[z], Pn, Qn ̸≡ 0, be polynomials of
degree 6 n such that

(Qnfj − Pn)(zj) = O
(
(z − zj)nj

)
, z → zj , j = 1, . . . ,m, (30)

where
∑m
j=1 nj = 2n + 1, nj ∈ Z+, j = 1, . . . ,m. The relation (30) does not

uniquely define Pn and Qn, but it does uniquely define the rational function Bn =
Pn/Qn, which is called a multipoint (or m-point) Padé approximant of the set f =
{f1, . . . , fm} of analytic functions fj ∈ A 0(C \ Σ), at the corresponding points zj ,
or briefly, of the m-germ11 {(f1, z1), . . . , (fm, zm)}, of m analytic functions fj holo-
morphic at the points zj , j = 1, . . . ,m. If zj = ∞ for some j ∈ {1, . . . ,m}, then
the corresponding relations (30) and (32) must be modified (see [21] and [22]). For

10See the definition of convergence in capacity in [44], [110], or [114].
11As usual, we use the same letter f for the germ of a multivalued analytic function f as for

the function itself.
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fixed m we will occasionally call an m-germ f = {(f1, z1), . . . , (fm, zm)} a multigerm
for short.

The functions f1, . . . , fm in (30) are, generally speaking, distinct analytic func-
tions, where no fj can be obtained by continuing another function fk ∈ f with k ̸= j
analytically along a path γ ⊂ C\Σ. However, if there exists an algebraic differential
operator of finite order L[w] of the form (4) such that L[fj ](z) ≡ 0 for z ∈ Uj(zj)
for each j = 1, . . . ,m, then according to the approach in [27]–[30], [49], [55], it is
natural to view all the functions fj ∈ f as branches of the same multivalued analytic
function f such that L[f ](z) ≡ 0, z ̸∈ Σ. We remark that this interpretation of an
analytic function as a solution of a differential equation of the form (2) (which is
a very special case of the general homogeneous algebraic equation of the form (4))
is particularly important in the theory of Hermite–Padé approximants (see § 2.4
below), which is a part of the theory of PA where there is not yet known any kind
of general result on the distribution of the zeros of Hermite–Padé polynomials in
the class of multivalued analytic functions with finitely many branch points that is
to any extent comparable to the theorems of Stahl and Buslaev (see [5], [81], [112],
and also [75] and [76]).

In the case of general position the relations (30) are equivalent to the relations

(fj −Bn)(z) = O
(
(z − zj)nj

)
, z → zj , j = 1, . . . ,m. (31)

Assume that in (30) we have
nj
n
→ 2pj as n → ∞ and

∑m
j=1 pj = 1, pj > 0,

j = 1, . . . ,m. Buslaev’s theory asserts (see [21]–[23], and also [20]) that (in the
non-degenerate case) there exists a unique12 compact set F = FBus which is an
S-curve13 weighted in the external field generated by a unit negative measure −ν
with ν =

∑m
j=1 pjδzj concentrated at the points z1, . . . , zm. This compact set F

has the following properties: F consists of finitely many analytic arcs; the comple-
ment C \ F is a union

⋃m
j=1Dj of finitely many domains Dj ∋ zj ; each function

fj ∈ H (zj) is holomorphic (that is, single-valued analytic) in the corresponding
domain Dj , fj ∈ H (Dj); if Dj = Dk for some k ̸= j, then also fk = fj ; F has the
property of ‘symmetry’ in the external field V −ν∗ , namely,

∂(V βF − V ν∗ )
∂n+

(z) =
∂(V βF − V ν∗ )

∂n−
(z), z ∈ F ◦, (32)

where βF ∈ M1(F ) is the unique unit equilibrium measure on the compact set F
in the external field V −ν∗ (that is, the identity V βF (z)−V ν∗ (z) ≡ const = wF holds
for z ∈ F ), F ◦ is the union of the open arcs whose closures form F , and ∂/∂n±

are the normal derivatives to F at a point z ∈ F ◦ from opposite sides of F . We
note that for a fixed multigerm f = {(f1, z1), . . . , (fm, zm)} the set F depends to an
essential degree on the choice of the numbers (‘weights’) pj > 0 with

∑m
j=1 pj = 1.

Thus, the ‘optimal’ partition of the Riemann sphere into the domains Dj also
depends on the choice of the numbers pj .

We underscore that, just as in Stahl’s theory, the existence of an S-curve F
weighted in the external field is a cornerstone of Buslaev’s theory. Once we have

12Up to arbitrary sets with capacity zero.
13See [44], [60], [91], [114] regarding this notion.
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established its existence, the question of the corresponding equilibrium measure βF
is easy to resolve: βF = ν̃ = bF (ν) is the balayage of the measure ν from the open
set D =

⋃m
j=1Dj to its boundary ∂D = F . The boundary ∂Dj of each domain Dj

contains an open arc γ◦j ⊂ ∂Dj such that γ◦j ∩∂Dk = ∅ for k ̸= j. As in the case of
Stahl’s theory, the S-property (32) of the weighted S-curve F can be equivalently
written as

∂
( ∑m

j=1 pjgDj (z, zj)
)

∂n+
=
∂
( ∑m

j=1 pjgDj (z, zj)
)

∂n−
, z ∈ F ◦ (33)

(cf. (18) and (19)), where gDj
(z, zj) is the Green’s function of the domain Dj (as

usual, for z ∈ Dk ̸= Dj we set gDj
(z, zj) ≡ 0).

Buslaev’s Theorem (see [21], [22]). Let f = {(f1, z1), . . . , (fm, zm)} be a multi-
germ of m analytic functions fj such that fj ∈ H (zj) and fj ∈ A 0(C \ Σ) for
j = 1, . . . ,m, where Card Σ < ∞ and the points z1, . . . , zm ∈ C are pairwise
distinct. Let pj > 0 with

∑m
j=1 pj = 1, let F = F (f; p1, . . . , pm) be the corre-

sponding Buslaev compact set with the S-property in the external field V −ν∗ (z),
where ν =

∑m
j=1 δzj

, and let
⋃m
j=1Dj = C \ F be a corresponding optimal parti-

tion of the Riemann sphere with Dj ∋ zj and fj ∈ H (Dj). Let Bn = Pn/Qn ,
Bn(z) = Bn(z; f; p1, . . . , pm), be the corresponding diagonal m-point Padé approxi-
mant of the multigerm f. Then the following assertions hold:

1) the zeros and poles of the m-point PA Bn = Pn/Qn have a limiting distribu-
tion, namely,

1
n
χ(Pn),

1
n
χ(Qn)

∗−→ βF , n→∞; (34)

2) the m-point PA converge to fj in capacity on compact subsets of Dj , j =
1, . . . ,m,

Bn(z)
cap−−→ fj(z), n→∞, z ∈ Dj , j = 1, . . . ,m, (35)

and for j = 1, . . . ,m the rate of convergence in (35) is characterized by

|fj(z)−Bn(z)|1/n
cap−−→ exp

{
−2

m∑
k=1

pkgDk
(z, zk)

}
, n→∞, z ∈ Dj . (36)

An immediate consequence of Buslaev’s theorem is Kolchin’s conjecture (7) for
an arbitrary m-germ f = {f1, . . . , fm}, where fj ∈ A 0(C \ Σ) and Card Σ <∞.

2.4. Hermite–Padé approximants. Suppose that f1, f2 ∈ A 0(C \ Σ) with
Card Σ <∞, and f1, f2 ∈ H (∞). Throughout what follows, the functions f1, f2,
and f0 ≡ 1 are rationally independent. Let Pn := Cn[z].

For any n ∈ N the Hermite–Padé polynomials of the first kind Qn,0, Qn,1, Qn,2 ∈
Pn with degQn,j 6 n and Qn,j ̸≡ 0 are defined by the relation

Rn(z) := (Qn,0 · 1 +Qn,1f1 +Qn,2f2)(z) = O

(
1

z2n+2

)
, z →∞, (37)

where Rn is called the remainder function. The relation (37) does not uniquely
define the polynomials Qn,j , but their ratios, for example, Qn,1/Qn,2 are uniquely
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defined. Since 1, f1, and f2 are rationally independent, the remainder function does
not vanish identically: Rn ̸≡ 0. The reader can find a more extended account of
the properties of Hermite–Padé polynomials and the corresponding Hermite–Padé
approximants principally in [17], [68], [79], [81], [112], and also in [5], [7], [10],
[41], [121]. We note that here we are only dealing with Hermite–Padé polyno-
mials of the first kind, as defined by (37). The so-called Hermite–Padé polyno-
mials of the second kind, that is, multiple orthogonal polynomials, are connected
with Hermite–Padé polynomials of the first kind by means of some formal relations
(see [81], (2.1.3) in § 2, [37], and [122]). However, in this paper we will neither
discuss this connection nor consider Hermite–Padé polynomials of the second kind.

The question of the asymptotic properties of the Hermite–Padé polynomials of
the first kind,14 even for a system [1, f1, f2] of three multivalued analytic functions,
has been much less studied than for classical and multipoint PA. Here we encounter
fundamental difficulties already for the simplest analytic functions (from the point
of view of the theory of classical or two-point PA). This can be seen in the example of
three functions [1, f, f2], where f has the form

f(z) =
3∏
j=1

(z − aj)αj , 2αj ∈ C \ Z,
3∑
j=1

αj = 0, (38)

with the points a1, a2, and a3 in general position and, in particular, not on a straight
line. Apart from the symmetric case where a1, a2, and a3 are the vertices of an
equilateral triangle (see [81]), it has not yet been proved that the zeros of the
corresponding Hermite–Padé polynomials have a limiting distribution; see [11], [12],
[119] for details. Under these conditions the pair of functions f , f2 forms a Nikishin
system (for the corresponding definition, the convergence in the real case, and the
main properties of such systems, see Nikishin’s original paper [78] first of all, and
also [9], [36], [45], [65]).

Our next example is no less characteristic in that it displays the difficulties
encountered in the general theory of the distribution of the zeros of the Hermite–
Padé polynomials for multivalued analytic functions with a finite set of branch
points. We consider the system of three functions [1, f1, f2], where f1 and f2 are
given by the representations

f1(z) =
(
z − a

z + 1

)1/2

=
1
π

∫ a

−1

√
a− x

x+ 1
dx

x− z
+ 1, z /∈ ∆1 := [−1, a], (39)

f2(z) =
(
z − 1
z + a

)1/2

=
1
π

∫ 1

−a

√
1− x

x+ a

dx

x− z
+ 1, z /∈ ∆2 := [−a, 1], (40)

and a ∈ (0, 1) is a parameter. In (39) and (40) we have taken the branch of the
square root ( · )1/2 such that f1(z), f2(z) → 1 as z →∞; here and in what follows,√
· always denotes the arithmetical value of the root function, that is,

√
x2 = x

for x ∈ R+. Clearly, f1 and f2 are Markov functions with supports the respective
intervals ∆1 = [−1, a] and ∆2 = [−a, 1]. Each of f1 and f2 has a pair of singular
points, −1, a and −a, 1, respectively, which are second-order branch points, that is,

14As well as of the Hermite–Padé polynomials of the second kind.
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their singular sets {−1, a} and {−a, 1} are disjoint, in contrast to the previous case
of [1, f, f2]. Since a ∈ (0, 1), it follows that ∆1∩∆2 = [−a, a] ̸= ∅, but ∆1 ̸⊂ ∆2 and
∆2 ̸⊂ ∆1. Thus, the pair of functions f1, f2 is neither an Angelesco nor a Nikishin
system. Numerical experiments in [51] (see also [50]) showed that in this seemingly
quite simple case, with all initial data purely real, the description of the limiting
distribution of the corresponding Hermite–Padé polynomials necessarily involves
S-curves which now lie in the complex plane (but of course, are mirror-symmetric
with respect to the real axis; see the details in [51]). So far the theory of the
distribution of the zeros of Hermite–Padé polynomials does not have any general
results which could be used to explain the numerical results obtained experimentally
in [51] on the distribution of the zeros of the Hermite–Padé polynomials. We
mention the recent paper [13], where a similar problem has been considered for
Hermite–Padé polynomials of the second kind.

Thus, even for the simplest (from the point of view of the general theory of clas-
sical or multipoint PA) systems [1, f, f2] and [1, f1, f2] of three multivalued ana-
lytic functions the problem of characterizing the corresponding S-curves in terms
of an associated (but not yet known, not even regarding its formal statement)
potential-theoretic equilibrium problem is still open.

Now assume that the points aj and parameters αj in the representation (1)
satisfy the following additional conditions:

p = 2q, aj = ej ∈ R, e1 < · · · < e2q, αj = (−1)jα,

where 2α ∈ R \ Z. That is, the analytic function f has a representation

f(z) =
q∏
j=1

(
z − e2j−1

z − e2j

)α
, (41)

where the points ej and the parameter α satisfy the above conditions. Obviously, f
continues to satisfy a differential equation of the form (2).

In this paper we investigate the problem of the limiting distribution of the zeros
of the Hermite–Padé polynomials of the first kind for a system of three functions
[1, f, f2], where f is given by a representation (41) with the points ej and the
parameter α satisfying the above conditions. Throughout, we denote the class of
such functions by LE , E :=

⊔q
j=1[e2j−1, e2j ]. It is explained below (see Remark 3)

why we choose such an ostensibly very special set of branch points ej and the same
values of the parameter α. The case q = 1 was considered in [75] and [76]. Then f
has the form f(z) = ((z+1)/(z−1))α, and it is natural to regard the corresponding
Hermite–Padé polynomials Qn,j as analogues of the classical Jacobi polynomials.
For any q > 1 the corresponding Hermite–Padé polynomials Qn,j can be treated
in a natural way as a generalization of the Akhiezer polynomials [1], which are
orthogonal on several intervals (see (69), and also [81]).

In view of the above, the problem in this paper of the limiting distribution of the
zeros of the Hermite–Padé polynomials of the first kind for a system of three func-
tions [1, f, f2], where f has the representation (41), is a quite topical problem. In
his original paper [78] (see also [45], [101]–[105]) Nikishin mainly considered a more
general statement of the problem. Namely, he investigated a system of m > 3
Markov functions [1, f1, . . . , fm−1] such that f1, . . . , fm−1 form a Nikishin system.
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We recall that this means, in particular, that all the Markov functions fj = µ̂j have
the same support, which is a union of finitely many segments of the real line. The
limiting distribution of the zeros of the corresponding Hermite–Padé polynomials
of the first kind was characterized in [78] in terms of a certain potential-theoretic
equilibrium problem very similar to the problem considered first by Gonchar and
Rakhmanov [41] in 1981 in the case of functions f1, . . . , fm−1 forming an Angele-
sco system (see also [40], [43]). The potential-theoretic equilibrium problem that
Nikishin introduced in [78] can be fully characterized by the so-called Nikishin inter-
action matrix. For m = 3 and for the system [1, f, f2] this matrix has the form(

2 −1
−1 2

)
. By contrast, the potential-theoretic equilibrium problem under con-

sideration here, in terms of which we characterize the limiting distribution of the
zeros of the Hermite–Padé polynomials Qn,j for the system of functions [1, f, f2],
is scalar (see (49) below, and also Remark 3).

We remark that the transition to complex branch points ej and distinct complex
parameters αj in place of the single α in (41) presented a fundamental difficulty
even for classical and two-point PA and had resisted analysis until Stahl’s and
Buslaev’s general theorems.

Now we fix the germ of a function f ∈ LE by setting f(∞) = 1. We note
that, instead of the explicit representation (41), we could start directly from the
differential equation (2). Since f(∞) = 1, we get from (41) that

f(z) =
∞∑
k=0

ck
zk
, where ck ∈ R.

Hence, we can refine the standard definition (37) of the Hermite–Padé polyno-
mials of the first kind for the system [1, f, f2] of three functions as follows. Let
Qn,0, Qn,1Qn,2 ∈ Rn[z] with Qn,2 ̸≡ 0 be polynomials of degree 6 n such that

Rn(z) := (Qn,0 · 1 +Qn,1f +Qn,2f
2)(z) = O

(
1

z2n+2

)
, z →∞. (42)

As before, such polynomials always exist and are not uniquely defined, but their
ratios, for example, Qn,1/Qn,2, are uniquely defined rational functions of order 6 n.
The function Rn is the remainder function. It follows from the conditions e1 < · · · <
e2q and 2α ∈ R \ Z that f and f2 are Markov functions which form a generalized
Nikishin system (see [33], [78]). Therefore, [1, f, f2] is a non-degenerate system
(see [33] and [65]), and therefore Rn(z) ̸≡ 0. Moreover, on the right-hand side
of (42) the order of a zero can exceed 2n + 2 only by a fixed quantity depending
on q, ej , and α, and the degrees of the polynomials Qn,j can differ from n only by
a certain quantity independent of n, that is, degQn,j > n − m, where m ∈ N is
independent of n.

Since f , f2 is a Nikishin system, it follows from [65] that ‘almost all’ zeros of
the polynomials Qn,j , apart from o(n) zeros, lie in the set F := R \ E, where
E =

⊔q
j=1[e2j−1, e2j ]. Moreover, the rational functions Qn,j/Qn,2, j = 0, 1, have

certain interpolation properties and converge in the Hausdorff σ1-measure on com-
pact subsets of the domain G := C \ F . However, [65] says nothing about the rate
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of this convergence. It is one of our aims in this paper to characterize the rate of
such convergence.

The germ f ∈ H (∞) of the function f given by (41) and fixed by setting
f(∞) = 1 defines f as a holomorphic (that is, single-valued analytic) function
on the Stahl domain D := C \ E (defined with respect to the point at infinity:
D = D∞(f)). Furthermore, on the set

⊔q
j=1(e2j−1, e2j) this germ generates in

the natural way a family of germs f̃j(x), x ∈ (e2j−1, e2j) =: E◦j , j = 1, . . . , q, of
multivalued analytic functions by the formulae

f̃j(x) := f+(x) + f−(x), x ∈ (e2j−1, e2j), (43)

where f+(x) for x ∈ (e2j−1, e2j) denotes the limit value of f(z), f ∈ H (D), as
z → x in the upper half-plane, f+(x) := f(x + i · 0), and f−(x) has a similar
meaning, f−(x) := f(x − i · 0). Obviously, each function f̃j , j = 1, . . . , q, satisfies
the differential equation (2). Thus, all the functions f̃j are branches of the same
multivalued analytic function f defined by (2) using a finite number of complex
parameters, the polynomial coefficients of the equation (2). We note that, up to
a non-trivial multiplicative constant, all the functions f̃j are branches of the mul-
tivalued analytic function f given by the representation (41). Therefore, each of
these branches can be obtained from the germ fixed at z = ∞ by means of analytic
continuation of it along some paths avoiding the points e1, . . . , e2q and by subse-
quent multiplication by a non-trivial constant. It is easy to see that, by (41), for
2α ∈ R \ Z each function f̃j makes a non-trivial jump on the gaps (e2j−2, e2j−1)
and (e2j , e2j+1) adjoining the starting interval (e2j−1, e2j). In addition, any two
‘adjacent’ functions, say f̃j and f̃j+1, are immediate analytic continuations of each
other across both the upper and the lower half-plane. Thus, a function f̃ holomor-
phic in G := C \ F ̸∋ ∞ and such that f̃ |E◦j = f̃j , j = 1, . . . ,m, arises naturally in
this situation.

This function also satisfies (2) and so is an analytic continuation of the original
function f , f ∈ H (D), f(∞) = 1, in the sense specified in § 1.

The construction (42), which in fact defines the Hermite–Padé polynomials, is
a natural generalization of the construction (15) defining Padé polynomials. There-
fore, Padé polynomials Pn,0 and Pn,1 for f are Hermite–Padé polynomials for the
system [1, f ]. The rational function [n/n]f := −Pn,0/Pn,1 has the maximum pos-
sible order of tangency to the given function f at z = ∞. It follows from Stahl’s
general theorem that if f has the form (1), then the Padé polynomials Pn,j have
a limiting distribution of zeros equal to the (Robin) equilibrium measure of the
compact set E :=

⊔q
j=1[e2j−1, e2j ]:

1
n
χ(Pn,j) → λrob

E , V λ
rob

E (x) ≡ const, x ∈ E. (44)

We recall that for E = [−1, 1]

dλrob
E = dλcheb =

1
π

dx√
1− x2

.
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By Stahl’s theorem (see § 2.2) the diagonal PA [n/n]f converge to the function
f ∈ H (D) in capacity on compact subsets of the Stahl domain D:

[n/n]f (z)
cap−−→ f(z), z ∈ D, n→∞. (45)

The fact that, in principle, the diagonal PA do not converge uniformly in the Stahl
domain D follows already from Dumas’ classical result [35] of 1908. Such conver-
gence fails even in the case of a single gap. This is due to the presence of the so-called
Froissart doublets [38] (see Figures 1, 2, and 3), or in other words, pairs of so-called
‘spurious’ zeros and ‘spurious’ poles of the diagonal PA, which are not associated
with a zero, a pole, or any other singularity of the original function f . The number
of them is primarily related to the genus of the corresponding two-sheeted Stahl
Riemann surface (see [59], [113]), and they do not have a limit as n → ∞, but
in each such pair the zero and pole are infinitesimally close in the limit. When
passing from n to n + 1 such a pair shifts by an ‘almost’ fixed distance (in the
corresponding metric), and typically they are dense on the Riemann sphere. For
example, for the elliptic function considered by Dumas (which is a function of genus
1) the asymptotic behaviour of the pair ‘spurious zero–spurious pole’ corresponds
generically to a dense winding on the torus. By Stahl’s theorem, as n→∞ ‘almost
all’ the zeros and poles of the diagonal PA, with the possible exception of o(n) of
them, are attracted to the Stahl compact set, hence the question of the so-called
strong asymptotics of the Padé polynomials is directly connected with the prob-
lem of a complete description of all the zeros and poles of such PA. In fact, this
problem splits into two parts (see [81] and [113]). First, we must show that for
a given multivalued function f there are only a finite number (depending on f)
of such Froissart doublets. Next, once we know their number, must describe the
asymptotic behaviour of the duplets in suitable terms. The second problem is in
fact equivalent to the Jacobi inversion problem [106], [128], posed on the canonical
Stahl hyperelliptic surface associated with f (see [14], [57], [74], [81], [82], [116],
[117]).

The transition to complex branch points ej in (41) and to distinct complex
parameters αj in place of a single α, even for classical PA required the development
of essentially new methods of investigation for solving the problem of the limiting
distribution of the zeros of the Padé polynomials (see § 2.2).

Let f1(z) := f(z) for z ∈ D1, where D1 := D = C \ E, E :=
⊔q
j=1[e2j−1, e2j ].

Then f1 ∈ H (D1) and f1(∞) = 1. Let e1 = −1 and e2q = 1. Thus, Ê = convE =
[−1, 1].

We also set D2 = G := C\F , F := R\E. Let f2 be a function defined on E◦ by

f2(x) := −2 cos(απ)
k−1∏
j=1

(
x− e2j−1

x− e2j

)α
·
(
x− e2k−1

e2k − x

)α
·

q∏
j=k+1

(
e2j−1 − x

e2j − x

)α
, (46)

x ∈ (e2k−1, e2k), k = 1, . . . , q. Then f2 extends from E◦ to C \ {e1, . . . , e2q} as
a multivalued analytic function. The relation (46) fixes a holomorphic branch of
f2 on D2, f2 ∈ H (D2). Obviously, f2 also satisfies the differential equation (2).
Thus, according to the approach of § 1, f2 is another branch of f1, which is holo-
morphic in another domain D2 ̸= D1.
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Let gE(ζ, z), z, ζ ∈ D1, be the Green’s function of D1 with pole at ζ = z, and
let gF (ζ, z), z, ζ ∈ D2, be the Green’s function of D2 with pole at ζ = z. Then we
define

GµF (z) :=
∫
E

gF (x, z) dµ(x), z ∈ D2, (47)

to be the Green potential (with respect to D2) of the unit (positive Borel) measure
µ with support on E, µ ∈M1(E).

The following theorem is the main result of this paper.

Theorem 1. Let α ∈ (−1/2, 1/2), α ̸= 0, let e1 < · · · < e2q , let f1 = f be
a function given by (41), f1 ∈ H (D1), and let f2 be a function given by (46),
f2 ∈ H (D2). Let Qn,j = Qn,j(z; f) be the Hermite–Padé polynomials for the
system [1, f, f2]. Then the following assertions hold.

1) All the zeros of the polynomials Qn,0 , Qn,1 and Qn,2 , with the possible excep-
tion of a fixed number of zeros which is independent of n, lie in the set F ; the zeros of
the polynomials Qn,j have a limiting distribution which coincides with the (unique)
unit measure ηF ∈ M1(F ) supported on F that is the equilibrium measure for the
mixed potential 3V µ∗ (z) +GµE(z) in the external field ψ(z) := 3gE(z,∞),

1
n
χ(Qn,j)

∗−→ ηF , n→∞, (48)

where
3V ηF
∗ (y) +GηF

E (y) + 3gE(y,∞) ≡ const, y ∈ F. (49)

2) The rational function rn := Qn,1/Qn,2 interpolates the function f2(z) at (no
fewer than) 2n − m distinct points xn,j in the open set E◦ :=

⊔q
j=1(e2j−1, e2j),

where m ∈ N is fixed and is independent of n; the free interpolation points xn,j
have a limiting distribution which coincides with the (unique) unit measure ηE ∈
M1(E) supported on E that is an equilibrium measure with respect to the mixed
Green-logarithmic potential 3V ν∗ (z) +GνF (z),

1
2n

2n−m∑
j=1

δxn,j

∗−→ ηE , n→∞, (50)

where
3V ηE
∗ (x) +GηE

F (x) ≡ const, x ∈ E. (51)

3) The following relation holds in D2 (cf. [93], Theorem 1, and [76], Theorem 1.6):

Qn,1
Qn,2

cap−−→ f2(z), z ∈ D2, n→∞, (52)

and the rate of convergence in (52) is characterized by the relations (cf. (28)
and (32))∣∣∣∣f2(z)− Qn,1

Qn,2
(z)

∣∣∣∣1/n cap−−→ e−2G
ηE
F (z) < 1, z ∈ D2 \ E, n→∞, (53)

lim
n→∞

∣∣∣∣f2(x)− Qn,1
Qn,2

(x)
∣∣∣∣1/n 6 e−2G

ηE
F (x) < 1, x ∈ E◦, (54)
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where ηE is the measure solving the problem (51), and moreover, the upper regular-
ization of the function on the left-hand side of the inequalities (54) is equal to the
right-hand side for all x ∈ E◦ .

Thus, it is shown in Theorem 1 that the rational function rn := Qn,1/Qn,2 con-
structed from the 3n+ 1 Laurent coefficients (at the point at infinity) of the orig-
inal function f1 = f satisfying (2) provides a multipoint rational interpolation (at
2n−m points) of the function f2 (see (46)), which also satisfies the differential equa-
tion (2). We underscore that the rational function rn of order n just constructed
has a priori not just free zeros and poles, but also free points of interpolation (their
number is asymptotically equal to 2n). Furthermore, both the points of inter-
polation and the zeros and poles of rn behave ‘optimally’. Namely, their limiting
distribution corresponds to solutions of the extremal problems (97) and (121). Such
rational functions are quite similar in their properties to the best Chebyshev ratio-
nal approximants (see [40] and [92]), but in contrast to the latter are constructed
from finitely many Laurent coefficients. The rational function rn constructed from
a function f ∈ H (D) given by the differential equation (2) approximates, in some
domain G ̸= D, another branch f̃ ∈ H (G) of this multivalued analytic function.
Actually, rn approximates the given multivalued analytic function f on another
sheet of the corresponding Riemann surface.

Remark 3. The case when q = 1, f(z) = ((z − 1)/(z + 1))α, and f(∞) = 1, where
2α ∈ C \ Z, was investigated in [76] (see also [75]), and for 2α ∈ R \ Z an analogue
of Theorem 1 was established. The problem of the distribution of the zeros of
the polynomials Qn,j for such f was solved in [76] for 2α ∈ C \ Z, and explicit
representations for the equilibrium measures ηE and ηF were given:

dηF
dx

(x) =
√

3
2π

1
3
√
x2 − 1

(
1

3
√
|x| − 1

− 1
3
√
|x|+ 1

)
, x ∈ R \ [−1, 1],

dηE
dx

(x) =
√

3
4π

1
3
√

1− x2

(
1

3
√

1− x
+

1√
1 + x

)
, x ∈ (−1, 1).

For q = 1 and α = 1/3, that is, for f(z) = ((z−1)/(z+1))1/3, the relation (54) in
Theorem 1 can be improved significantly. Namely, the rational function Qn,1/Qn,2
has the property of an ‘almost Chebyshev alternance’ on (−1, 1) in the following
sense. For each positive θ, which can be arbitrarily close to zero, there exist at least
Nn = [2n(1−θ)] consecutive points xj on the interval (−1, 1), −1 < x1 < · · · < xNn

,
at which the difference under the absolute value sign on the let-hand side of (54)
takes extremal values with alternating signs:

f2(xj)−
Qn,1
Qn,2

(xj) = (−1)j
2
3

3

√
1 + xj
1− xj

e−2nG
ηE
F (xj)(1 + εn(xj)), (55)

where εn(x) → 0 as n → ∞ with the rate of a geometric progression locally uni-
formly on (−1, 1) (in (55) we mean by 3

√
· the arithmetical cube root: 3

√
a3 = a for

a > 0).

Remark 4. Theorem 1 solves the problem of the distribution of the zeros of the
Hermite–Padé polynomials Qn,j in terms of the scalar equilibrium problem (49).
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The fact that this equilibrium problem can be used to characterized the limiting
distribution of the zeros is based on the orthogonality relations (63) (see also (113)).
All our further arguments will rely on (63). The same orthogonality relations can
also very well be used in the framework of the classical scheme first proposed by
Gonchar and Rakhmanov [41] and based on the observation that, in the real case,
the relations (63) yield (cf. [76]) interpolation conditions which hold for the function
Qn,1/Qn,2. The corresponding vector equilibrium problem is defined by the 2 × 2

matrix
(

4 −1
−1 1

)
and is easily seen to be equivalent to the pair of problems

(49), (51). However, here we prefer to demonstrate a new approach to the problem
of the limiting distribution of the zeros, first proposed by Rakhmanov and Suetin
in [94] (see also [115]). In the final analysis this approach is also based on the general
GRS-method. However, in its framework we do not need an interpolation property
to solve the problem of the limiting distribution of the zeros. Thus, this approach
extends the applicability range of the GRS-method by allowing one to use it also
in the complex case, that is, when such an interpolation property does not hold
a priori (see [94], [119], and also Remark 7). It could be a rather difficult task to
establish such a property even, for instance, when just one branch point ej is moved
away from the real line into the complex plane. We remark that in his original
paper [78] Nikishin solved the problem of the asymptotic behaviour as n → ∞ of
the function |Rn(z)|1/n for the system [1, f1, . . . , fm−1], where m ∈ N is arbitrary
and the functions f1, . . . , fm−1 form a Nikishin system. He did not consider there
the problem of the limiting distribution of the zeros of the polynomials Qn,j (see
also [101]–[105]).

Remark 5. As before, assume that all the branch points ej are real, ej ∈ R, and
pairwise distinct, but in (41) allow distinct parameters αj with 2αj ∈ R \Z instead
of just a single α. We are therefore looking at a broader function class than (41),
in which functions have representations of the form

f(z) =
q∏
j=1

(
z − e2j−1

z − e2j

)αj

(56)

with the ej and αj satisfying the conditions above. In addition, we fix the branch
of f by the same condition f(∞) = 1 as before. For each f with f(∞) = 1
in this broader class we define the family of functions f̃j(x) := f+(x) + f−(x),
x ∈ (e2j−1, e2j), in a similar way as above, each of which is an ‘analytic continua-
tion’ of the original function f (in the sense of it being a solution of the differential
equation (2)). However, if αj ̸= αj+1 for some j ∈ {1, . . . , q−1}, then two ‘adjacent’
functions f̃j and f̃j+1 can no longer be analytically continued one to the other, nei-
ther across the upper nor across the lower half-plane. Correspondingly, the domains
of holomorphy of the two analytic elements (f̃j , E◦j ) and (f̃j+1, E

◦
j+1) are distinct

and must be separated by a ‘membrane’ (cf. [11], [12], [119]). General theoretical
observations (see [81], [112]), supported by numerical experiments (see [51] and also
Figure 4), imply that then the limiting distribution of the zeros of the Hermite–Padé
polynomials is characterized in terms of an equilibrium measure concentrated on
the union of all the gaps (e2j , e2j+1) and all such membranes, that is, its support no
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Figure 4. The zeros of the Hermite–Padé polynomials Q200,0 (blue points),
Q200,1 (red points), and Q200,2 (black points) for the system of functions

[1, f, f2], where f(z) =

(
z + 2.5

z + 1.3

)1/3(
z + 0.8

z − 0.8

)−1/3(
z − 1.3

z − 2.5

)1/3

. The

zeros of the polynomials Q200,j form a membrane connecting the segments
[−1.3,−0.8] and [0.8, 1.3]. The two points where it intersects the real line
segments correspond to the two Chebotarev points. Two Froissart triplets
can be seen in the picture (cf. [13], [50], [51]).

longer lies on the real line but rather in the complex plane (mirror-symmetric with
respect to the real line of course, as follows directly from the condition f(∞) = 1
and the fact that all the branch points ej and the parameters αk are real).

The complexity of the general problem of the distribution of the zeros of the
Hermite–Padé polynomials can already be seen in this simple case of a system of
three functions [1, f, f2]. Even here, when f is given by an explicit representation
(56) with e1 < · · · < e2q but with αj ̸= αk in general for j ̸= k, we have not been
able to characterize the limiting behaviour of the zeros of the Padé polynomials
of the first kind Qn,j in terms of a corresponding potential-theoretic equilibrium
problem. In particular, we have not been able to describe the structure and geo-
metric properties of the membranes appearing. In other words, so far there is no
sufficiently general result in the theory of Hermite–Padé polynomials which would
give us a framework for solving the problem under consideration for a function of
the form (56).

In contrast to the general case of arbitrary αj with 2αj ∈ R \ Z, in the special
case when all the αj are equal to some α with 2α ∈ R \ Z, as we have already
mentioned, all the germs (f̃j , E◦j ) are the ‘traces’ (on the distinct intervals E◦j ) of the
same branch of the multivalued analytic function f̃ (the solution of the differential
equation (2)), which is holomorphic in G = C\F , that is, in the complex plane cut
along finitely many segments of the real line.
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We see that already in the case of distinct real parameters αj with 2αj ∈ R \ Z,
even if we keep the same assumption e1 < · · · < e2q about the branch points in the
representation (41), the potential-theoretic problem of an equilibrium measure ηE
supported on E, which corresponds to the problem of the distribution of the zeros
of the Hermite–Padé polynomials, is complex in the following sense. It keeps the
form (49), but the corresponding compact set F does not in general coincide with
the set C \ E. In this more general setting F is not known in advance: it is
itself an unknown parameter of the problem. It follows from general results on
the asymptotic behaviour of non-Hermitian orthogonal polynomials (see first of
all [44], [110], [111], and also [8]) that this a priori unknown compact set F must
have a certain characteristic ‘symmetry’ property connected in a natural way with
the class of potentials under consideration and the family of admissible compact
sets. In other words, F is an S-curve (see [60] and [91] for this notion) associated
with a given class of potentials. Proving that such an S-curve exists and describing
its characteristic properties is usually a very difficult problem, which up to now has
been solved in only a few cases, namely:

1) for the logarithmic potential V µ(z) and an arbitrary multivalued analytic
function with a finite set of branch points (classical PA, Stahl [107]–[109]; see § 2.2);

2) for the logarithmic potential V µ(z) with an external field V −ν∗ (z) equal to
the potential of a unit negative measure concentrated at a finite set of points
{z1, . . . , zm} in the complex plane, and for an arbitrary multigerm with a finite
set of branch points (m-point PA; Buslaev [21]–[23]; see § 2.3);

3) for the mixed Green-logarithmic potential 3V µ(z)+GµE(z) with external field
ψ(z) = 3gE(z,∞), where E is a union of finitely many segments of the real line
and µ ∈ M1(K) with K in the corresponding family K

(3)
f of admissible compact

sets (Rakhmanov and Suetin [93] and [94]; see also [23] and [72]).

All three problems were solved using the variational method proposed in [88]
and based on varying the energy functional corresponding to the problem of the
limiting distribution of the zeros of the Padé polynomials. (Below, K

(1)
f , K

(2)
f , and

K
(3)
f are different classes of admissible compact sets for the multivalued function f).
In the classical case we have

inf
K∈K

(1)
f

capK = exp
{
− sup
K∈K

(1)
f

J(K;λK)
}
, (57)

where λK is the equilibrium measure for K ∈ K
(1)
f , and for µ ∈M1(K)

J(K;µ) =
∫∫

log
1

|z − ζ|
dµ(ζ) dµ(z)

is the corresponding energy functional.
In the case corresponding to multipoint PA, for the energy functional with an

external field we have

Iψ(K;µ) =
∫∫ (

log
1

|z − ζ|
+ ψ(z) + ψ(ζ)

)
dµ(z) dµ(ζ)

=
∫
K

(
V µ(z) + 2ψ(z)

)
dµ(z), (58)
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where ψ(z) = V −ν∗ (z) is the external field generated by the unit negative mea-
sure −ν with ν =

∑m
j=1 pjδzj

concentrated on the points z1, . . . , zm of interpolation

and K ∈ K
(2)
f .

Finally, in the case of Hermite–Padé approximants for a system [1, f1, f2] with
the pair f1, f2 forming a generalized Nikishin system, the corresponding energy
functional has the form

J3(K;µ) =
∫∫ (

3 log
1

|x− y|
+ gK(x, y)

)
dµ(x) dµ(y)

=
∫
E

(
3V µ(x) +GµK(x)

)
dµ(x) (59)

and is considered in the class of measures µ ∈ M1(E), where E is a union of
finitely many segments of the real line and gK(x, y) is the Green’s function for the
admissible compact set K ∈ K

(3)
f .

Correspondingly, in each of the three cases an admissible S-compact set F ∈ K
(j)
f ,

j ∈ {1, 2, 3}, exists (and is unique) and is completely characterized by the following
S-property (symmetry property):

1) in the first case F = S ∈ K
(1)
f is the Stahl compact set, that is,

∂gD(ζ,∞)
∂n+

=
∂gD(ζ,∞)

∂n−
, ζ ∈ S◦, (60)

where S◦ is the union of the open analytic arcs in S and ∂/∂n± are the normal
derivatives to the opposite sides of S◦ (this result is due to Stahl, but it can also
be proved following the scheme proposed in [88]);

2) in the second case F ∈ K
(2)
f has the S-property if

∂(V β + ψ)
∂n+

(ζ) =
∂(V β + ψ)

∂n−
(ζ), ζ ∈ F ◦, (61)

where β ∈M1(F ) is the corresponding equilibrium measure, ψ(z) = V −ν∗ (z) is the
external field, F ◦ is the union of all the open arcs in F , and ∂/∂n± are the normal
derivatives to the opposite sides of F ◦ (Buslaev [21]);

3) finally, in the third case F = F (3) ∈ K
(3)
f has the S-property (or is an S-curve)

if
∂GηE

F

∂n+
(ζ) =

∂GηE

F

∂n−
(ζ), ζ ∈ F ◦, (62)

where ηE ∈M1(E) is the corresponding equilibrium measure, F ◦ is the union of all
the open arcs in F , ∂/∂n± are the normal derivatives to the opposite sides of F ◦,
and GµF is the Green potential (this result was proved in [73]).

The relations (60)–(62) may be different in appearance, but all the three define
the S-curves corresponding to quite concrete problems.

3. Proof of Theorem 1

Theorem 1 is proved using the GRS-method. For brevity, in this paper we just
give the scheme of the proof and only in the case when (101) holds. The general
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case is reduced to this case by means of an analogue of Lemma 5 in [94] (cf. [44],
Lemma 9). The basics of the GRS-method were developed in 1981–1984 by Gon-
char and Rakhmanov [41], [42], who first investigated the problem of the limiting
distribution of the zeros of polynomials orthogonal with respect to a varying (that
is, depending on the index of the polynomial) weight on the real line. This prob-
lem was solved in terms of logarithmic potentials with external fields (see also the
1997 monograph [96]). In 1985–1986 Stahl [107]–[111] investigated the problem of
the limiting distribution of the zeros of polynomials orthogonal on an S-curve in
connection with the problem of the convergence of the PA for multivalued ana-
lytic functions, although he did not consider varying weights. In 1987 Gonchar
and Rakhmanov [44], in connection with the solution of the ‘one-ninth conjecture’
(see [124], and also Wolfram MathWorld: “One-ninth constant”15) first formu-
lated and investigated the problem of the distribution of the zeros of polynomials
orthogonal on weighted S-curves.

In full accordance with the GRS-method, the proof of Theorem 1 is based on
the orthogonality relations for the Hermite–Padé polynomials Qn,2, that is, on the
relations (94) (see also [94], cf. [66]). These are typical orthogonality relations with
varying weight (see [41], [40], [42], [58], [94]). However, since the varying weight Ψn

itself depends on an (arbitrary) polynomial ωn (see (93)), the results of Theorem 1
cannot be deduced directly from the general results in [42]. Furthermore, in [42] the
limiting distribution of the zeros of orthogonal polynomials is characterized in terms
of equilibrium measures for logarithmic potentials with external fields. In this paper
we show that the limiting distribution of the zeros of the Hermite–Padé polynomials
coincides with the equilibrium measure for a mixed (Green-logarithmic) potential
with an external field.

3.1. Proof of assertion 1) of Theorem 1. Let f be a function given by (41)
with α ∈ (−1/2, 1/2), α ̸= 0, and assume that the condition f(∞) = 1 fixes a branch
of this function at z = ∞. Let Qn,j ∈ Rn[z], Qn,j ̸≡ 0, be the corresponding
Hermite–Padé polynomials for the multi-index (n, n, n), so that (42) holds. It
follows immediately from this relation that for an arbitrary polynomial q ∈ P2n we
have ∫

Γ

(Qn,1f +Qn,2f
2)(z)q(z) dz = 0 (63)

(cf. (12)), where Γ is an arbitrary closed contour separating E from the point z = ∞.
Let Pn,0 and Pn,1 be the Padé polynomials for f at the point at infinity, so that
Pn,0, Pn,1 ∈ Rn[z], Pn,j ̸≡ 0, and

Hn(z) := (Pn,0 + Pn,1f)(z) = O

(
1

zn+1

)
, z →∞, (64)

where Hn is the remainder function. It follows from (64) that for any polynomial
p ∈ Pn−1 ∫

Γ

Pn,1(ζ)f(ζ)p(ζ) dζ = 0. (65)

15The corresponding constant is known as the Halphen constant [44], [48] and also as the Varga
constant; see Wolfram MathWorld: “Varga’s constant”.

http://mathworld.wolfram.com/One-NinthConstant.html
http://mathworld.wolfram.com/VargasConstant.html
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Now in (63) we set
q = Pn+k,1, k = 1, . . . , n. (66)

Then by (65) we obtain from (63) the relation∫
Γ

(Qn,2f2)(ζ)Pn+k(ζ) dζ = 0, k = 1, . . . , n, (67)

where we have denoted Pn+k,1 by Pn+k; we will use this notation throughout. Let

f̃(x) = (f+ + f−)(x), x ∈ E◦. (68)

Since |α| ∈ (0, 1/2), the function ∆(f2)(x) = f̃(x)∆f(x) is integrable on E. Hence,
we can rewrite (67) equivalently as∫

E

Qn,2(x)f̃(x)Pn+k(x)∆f(x) dx = 0, k = 1, . . . , n. (69)

Since α ∈ R, it follows from (41) that const f̃(x)∆f(x) > 0 for x ∈ E◦, where
const ̸= 0. Below we will derive from the orthogonality relations (69) that all but
perhaps finitely many of the zeros of the polynomials Qn,2 lie in F ◦.

Now let γ =
⊔q
j=1 γj be the union of q pairwise disjoint closed analytic con-

tours γj , γj ∩ γk = ∅ for j ̸= k, where each γj is symmetric with respect to the
real line, passes through the points e2j−1 and e2j , and encloses the open interval
(e2j−1, e2j). We assume that all the contours γj are clockwise oriented. Since by the
representation (41) all the functions f̃j(x) := (f+ + f−)(x), x ∈ E◦j , j = 1, . . . , q,
are traces of one and the same function f̃ which is holomorphic (single-valued ana-
lytic) in the domain G = C\F , it follows that each f̃j is holomorphic in the domain
Gj := int γj ⊃ E◦j and integrable on γj , f̃j = f̃

∣∣
Gj

. By (64) the jump ∆Hn of the
remainder function Hn on E◦ is equal to ∆Hn(x) = Pn(x)∆f(x), x ∈ E◦. Thus,
∆Hn is an integrable function on E. Since |α| ∈ (0, 1/2), it also follows that Hn

is integrable on γ =
⊔q
j=1 γj . In the theory of orthogonal polynomials Hn is called

a function of the second kind corresponding to the orthogonal polynomials Pn,
and this is the term we use in what follows to avoid confusion with the remainder
functions Rn (see (42)). It follows immediately from (64) that the function of the
second kind Hn has the representation

Hn(z) =
1
p(z)

1
2πi

∫
Γ

Pn(ζ)p(ζ)
ζ − z

f(ζ) dζ, (70)

where z ∈ ext Γ (that is, z lies in the connected component of the complement of Γ
containing the point at infinity), the contour Γ is clockwise oriented and encloses γ,
and p ∈ Pn is an arbitrary polynomial of degree 6 n. The following properties
of functions of the second kind are direct consequences of (64): a function of the
second kind Hn has a zero of order n + 1 at infinity; it is holomorphic outside E
and makes an integrable jump ∆Hn on E; ∆Hn(x) = Pn(x)∆f(x) for x ∈ E◦; each
of the q functions ∆Hn(x) with x ∈ (e2j−1, e2j) can be holomorphically extended
from the interval E◦j to the domain Gj and is the trace in Gj of one and the same



Distribution of the zeros of Padé polynomials and analytic continuation 931

function Pnf̂ which is holomorphic in a domain G ⊃ Gj , j = 1, . . . , q, G = C \ F ;
f̂

∣∣
E◦j

= ∆f(x) = f+(x)− f−(x) for x ∈ E◦j .

By the hypotheses of Theorem 1 the function Hnf̃j is integrable on γj . Hence,
the integrals∫

γj

Qn,2(ζ)Hn+k(ζ)f̃j(ζ) dζ, f̃j ∈ H (Gj), γj = ∂Gj , j = 1, . . . , q, (71)

are defined, and therefore so is the corresponding integral over γ =
⊔q
j=1 γj ,∫

γ

Qn,2(ζ)Hn+k(ζ)f̃(ζ) dζ, k = 1, 2, . . . .

It is now easy to see that∫
γ

Qn,2(ζ)Hn+k(ζ)f̃(ζ) dζ =
∫
E

Qn,2(x)Pn+k(x)f̃(x)∆f(x) dx.

By (69) the last integral vanishes for k = 1, . . . , n. Hence,∫
γ

Qn,2(ζ)Hn+k(ζ)f̃(ζ) dζ = 0, k = 1, . . . , n, (72)

where f̃
∣∣
Gj

= f̃j . Since Hn+k has a zero of order n + k + 1 > n + 2 at infinity,

Qn,2 ∈ Pn, and the function f̃ is bounded in a neighbourhood of infinity, it follows
from (72) that ∫

F

Qn,2(y)Hn+k(y)∆f̃(y) dy = 0, k = 1, . . . , n (73)

(by the above conditions all the integrals in (73) exist). The collection of equali-
ties (73) can be rewritten equivalently as∫

F

Qn,2(y)
( n∑
k=1

ckHn+k(y)
)

∆f̃(y) dy = 0, (74)

where the ck, k = 1, . . . , n, are arbitrary complex numbers. We now use the
well-known fact [120] that the functions of the second kind Hn, like the monic
orthogonal polynomials Pn(z) = zn + · · · , satisfy the following three-term recur-
rence relations (cf. (13)):

Hn(z) = (z − b̂n)Hn−1(z)− â2
nHn−2(z), n = 1, 2, . . . , (75)

where H−1(z) ≡ 1 and H0(z) ≡ f(z); furthermore, the conditions on f ensure that
all the â2

n are positive. Let n = 2m be an even integer (the case of odd n is treated
similarly). Then using (75), we get for arbitrary complex constants c1, . . . , cn that

n∑
k=1

ckHn+k(z) = qn,1(z)Hn+m(z) + qn,2(z)Hn+m+1(z), (76)
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where the polynomials qn,1, qn,2 ∈ Pm−1 are arbitrary, since the constants c1, . . . , cn
are arbitrary. Thus, we can rewrite (74) equivalently as∫

F

Qn,2(y){qn,1(y)Hn+m(y) + qn,2(y)Hn+m+1(y)}∆f̃(y) dy = 0. (77)

We underscore that, since the coefficients c1, . . . , cn in (74) can be arbitrary, the
polynomials qn,1, qn,2 ∈ Pm−1 in (77) can also be chosen arbitrarily. We now
rewrite (77) as∫

F

Qn,2(y)
{
qn,2(y)

Hn+m+1(y)
Hn+m(y)

− qn,1(y)
}
Hn+m(y)∆f̃(y) dy = 0 (78)

(in passing from (77) to (78) we have changed the sign of the arbitrary polynomial
qn,1 ∈ Pm−1).

Now we will use the fact that a function f given by (41) has a representation
of the form f(z) = 1 + const σ̂(z), where const ̸= 0 and σ̂ is the Markov function
corresponding to a positive measure σ with support in E. Hence, the ratio of the
two remainder functions Hn+1 and Hn for n > 1 has the representation

Hn+1

Hn
(z) =

â2
n+2

z − b̂n+2 −
â2
n+3

z − b̂n+3 − · · ·

(79)

(see [120], Ya. L. Geronimus’s supplement to the Russian edition, Chap. IV, formula
(IV.5)), where all the âk and b̂k are real, âk ̸= 0, and {b̂n+2, b̂n+3, . . . } b R. Then
Favard’s theorem [120] implies that

Hn+1

Hn
(z) = σ̂n(z),

where σn is a positive measure with suppσn b R. Let Ĥn(z) be the functions of
the second kind corresponding to the orthogonal polynomials P̂n(z) = P̂n,1(z). The
following auxiliary result refines the properties of the measure σn.

Lemma 1. Under the conditions of Theorem 1 the ratio Hn+1/Hn has the repre-
sentation

Hn+1

Hn
(z) = ρ̂n(z) +

q−1∑
j=1

cn,j
z − xn,j

=
∫
E

ρn(x) dx
z − x

+
q−1∑
j=1

cn,j
z − xn,j

, z /∈ E, (80)

where all the cn,j are non-negative, the points xn,j lie on the segment [e2j , e2j+1],
and

ρn(x) = − 1
2πi

∆f(x)

Ĥ+
n (x)Ĥ−

n (x)
, x ∈ E◦. (81)

Proof. Writing the recurrence relations (75) at distinct points z and ζ as

Hn+1(z) = (z − b̂n+1)Hn(z)− â2
n+1Hn−1(z),

Hn+1(ζ) = (ζ − b̂n+1)Hn(ζ)− â2
n+1Hn−1(ζ),
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we find that

Hn+1(z)Hn(ζ)−Hn+1(ζ)Hn(z) = (z − ζ)Hn(z)Hn(ζ)

− â2
n+1{Hn(ζ)Hn−1(z)−Hn(z)Hn−1(ζ)}. (82)

It follows directly from (82) that for x ∈ E◦ the corresponding limit values of the
functions of the second kind are related by

H+
n+1(x)H

−
n (x)−H−

n+1(x)H
+
n (x) =

n+1∏
k=1

â2
k ·∆H0(x)

=
n+1∏
k=1

â2
k ·∆f(x) =

∆f(x)
k2
n

, x ∈ E◦; (83)

here kn > 0 is the leading coefficient of the corresponding polynomial P̂n(x) =
knx

n + · · · = knPn(x) which is orthonormal with respect to a positive measure
dσ(x) = const∆f(x) dx, x ∈ E. We get immediately from (83) that

H+
n+1

H+
n

(x)−
H−
n+1

H−
n

(x) =
∆f(x)

Ĥ+
n (x)Ĥ−

n (x)
σ′n(x), x ∈ E◦, (84)

where Ĥn is the function of the second kind corresponding to the orthonormal
polynomial P̂n. The polynomials Pn are orthogonal on E with respect to the
positive measure σ(x) = const∆f(x) dx. Hence, all the zeros of Pn lie in the convex
hull Ê of E. Furthermore, each gap (e2j , e2j+1), j = 1, . . . , q − 1, contains at most
one zero of Pn. It now follows directly from (70) that the corresponding function
of the second kind Hn, apart from the zero of order n + 1 at infinity, can have
at most q − 1 additional zeros (which are additional points of interpolation of the
function f by the Padé approximant [n/n]f ), which lie in the q − 1 gaps between
the segments Ej , at most one in each gap. It follows from the above and (84) that

Hn+1

Hn
(z) = ρ̂n(z) +

q−1∑
j=1

cn,j
z − xn,j

, (85)

where all the cn,j are non-negative (because σn is a positive measure), the points
xn,j lie in [e2j , e2j+1], and

ρn(x) = σ′n(x) = − 1
2πi

∆f(x)

Ĥ+
n (x)Ĥ−

n (x)
, x ∈ E◦. (86)

The proof is complete. �

It follows from [74] that if f ∈ LE , then

Ĥ+
n (x)Ĥ−

n (x)∏q−1
j=1(x− xn,j)

⇒ 1, n→∞, x ∈ K b E◦. (87)
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Therefore, dσn(x) = ρn(x) dx+
∑q−1
j=1 δxn,j

by Lemma 1, and by (78)∫
F

Qn,2(y)
{
qn,2(y)ρ̂n(y)− qn,1(y)

}
Hn+m(y)τn(y)∆f̃(y) dy = 0, (88)

where

τn(z) :=
q−1∏
j=1

(z − xn,j)

and qn,1, qn,2 ∈ Pm−q are arbitrary polynomials of degree 6 m− q. Although we
lost something with regard to the degrees of the arbitrary polynomials qn,1 and qn,2
in going over from (78) to (88), we did get rid of the rational term in (80).

Now let ωn ∈ P2m−2q+1 be a monic polynomial of degree 6 2m− 2q + 1 with
only simple zeros which lie in F ◦, and let ω∗n be the corresponding spherically nor-
malized polynomial. We select polynomials qn,1, qn,2 ∈ Pm−q so that the following
function is holomorphic on F ◦:

qn,2(z)ρ̂n(z)− qn,1(z)
ω∗n(z)

; (89)

obviously, this condition is equivalent to certain interpolation relations, and in
view of the number of free parameters we can always satisfy these relations by our
choice of the polynomials qn,1, qn,2 ∈ Pm−q. It follows from (89) that the polyno-
mials qn,2 are orthogonal on E with respect to the varying measure dρn(x)/ω∗n(x).
Namely, ∫

E

qn,2(x)xs
dρn(x)
ω∗n(x)

= 0, s = 0, 1, . . . ,m− q − 1. (90)

It follows from (90) that all the zeros of qn,2 lie in convE; more precisely, all but
possibly at most q − 1 of the zeros of this polynomial lie in E, and we have the
representation

qn,2(z)ρ̂n(z)− qn,1(z)
ω∗n(z)

=
1
p(z)

∫
E

qn,2(x)p(x) dρn(x)
ω∗n(x)(z − x)

, z /∈ E, (91)

where p(z) ∈ Pm−q is an arbitrary polynomial of degree 6 m− q. In view of (91),
we can rewrite (88) as

0 =
∫
F

Q∗n,2(y)
ω∗n(y)
qn,2(y)

{∫
E

q2n,2(x) dρn(x)
ω∗n(x)(y − x)

}
Hn+m+1(y)τn(y)∆f̃(y) dy. (92)

We stress that ω∗n in (92) is an arbitrary polynomial of degree 6 2m− 2q + 1. Let

Ψn(z) :=
1

qn,2(z)

{∫
E

q2n,2(x) dρn(x)
ω∗n(x)(z − x)

}
Hn+m+1(z)τn(z)∆f̃(z)

=
1

q̃n,2(z)

{∫
E

qn,2(x)q̃n,2(x) dρn(x)
ω∗n(x)(z − x)

}
Hn+m+1(z)τn(z)∆f̃(z), z /∈ E,

(93)
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where q̃n,2 ∈ Pm−q. Then the relations (92) take the form∫
F

Q∗n,2(y)ω
∗
n(y)Ψn(y) dy = 0 (94)

for an arbitrary ω∗n ∈ P2m−2q+1, where the function Ψn takes the part of a varying
weight (depending on n). In view of the definition (93), the function Ψn in (94)
depends itself on ω∗n. It is easy to see that if the polynomials ω∗n and qn,2 in (93)
are real, then Ψn is also a real function, and it can change sign on F only finitely
many times, with number independent of n. From this it now follows easily that all
the zeros of Qn,2, apart from some number of zeros which does not depend on n,
lie in F , and the degree of Qn,2 can be less than n only by some number that is
bounded for n→∞.

Remark 6. The problem treated in this paper possesses a certain symmetry from
the outset, namely, a real symmetry. Therefore, the relations (94) can be viewed as
quasi-orthogonality relations with varying weight Ψn which depends on the index
of the polynomial Qn,2. These relations can well be taken as the starting point in
the use of the general method developed by Gonchar and Rakhmanov in [41]–[44]
in connection with their solution of the ‘one-ninth conjecture’, and intended for an
investigation of the limiting distribution of the zeros of (non-Hermitian) orthogonal
polynomials with varying weight. It is well known (see, first of all, the original
paper [44], and also [32] and [40]) that this method is based on the existence of
a compact set which has a certain symmetry in the context of the problem under
consideration, that is, the existence of a so-called S-curve associated with this
problem. We are looking at a problem in which the existence of an S-curve (or
more accurately, a pair E, F of S-curves) follows from the very formulation of
the problem, namely, from its real symmetry. Specifically, since the problem to be
solved possesses a real symmetry, there exists a pair of S-curves E and F which
form a so-called Nuttall condenser (E,F ) with mirror-symmetric plates E and F
(regarding this concept, see first of all [93], where it was first introduced, and
also [57] and [94]). The fact that in (94) the varying weight Ψn itself depends on
the polynomial ω∗n, does not in general restrict the applicability of the GRS-method
(in this connection see [94], and also [92], Conjecture 2).

We now consider the following equilibrium problem (see [24], [93], [94]).

Equilibrium problem 1. Let µ ∈ M1(F ) be an arbitrary unit (positive Borel)
measure µ with support on F . Let V µ∗ (z), z /∈ F , denote the spherically normalized
logarithmic potential and let

GµE(z) :=
∫
F

gE(x, z) dµ(x), z /∈ F,

be the Green potential of the measure µ (with respect to D), where gE(x, z) is the
Green’s function of D . Here and in what follows we assume that all these functions
exist, and without loss of generality we assume that convE = [−1, 1].

We consider the following extremal problem for the mixed (Green-logarithmic)
potential 3V µ∗ (z) + GµE(z) of the measure µ ∈ M1(F ) with external field ψ(z) =
3gE(z,∞):

inf
µ∈M1(F )

Jψ(µ), (95)
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where
Jψ(µ) =

∫
F

(
3V µ∗ (y) +GµE(y)

)
dµ(y) + 6

∫
F

gE(y,∞) dµ(y) (96)

is (double) the energy of the measure µ with potential 3V µ∗ (z)+GµE(z) in the external
field ψ(z) = 3gE(z,∞). Using standard methods in potential theory (see [42], [44],
[63], [96]) we can prove that in the problem (95) there exists a unique extremal
measure ηF ∈M1(F ) with support on F , that is, a measure such that

Jψ(ηF ) = inf
µ∈M1(F )

Jψ(µ). (97)

This extremal measure ηF is also the unique equilibrium measure for the above
potential with external field ψ (see [42]), that is, the following equilibrium relations
hold:

3V ηF
∗ (y) +GηF

E (y) + 3gE(y,∞) ≡ const = wF , y ∈ F, (98)

where wF is an equilibrium constant.

We assert that
1
n
χ(Qn,2)

∗−→ ηF , n→∞. (99)

According to the GRS-method, assume that this fails. Since all but finitely many
of the zeros of the polynomials Qn,2 lie in F and degQn,2 > n − const with const
independent of n, for some infinite subsequence Λ ⊂ N we have

1
n
χ(Qn,2)

∗−→ µQ = µ ̸= ηF , n→∞, n ∈ Λ, (100)

where |µQ| = 1 and suppµQ ⊂ F . And since µ ̸= ηF , µ ∈ M1(F ), and the equi-
librium measure ηF is unique (in the class M1(F )), it follows from (100) that the
equilibrium relations (98) cannot hold for µ, so that 3V µ∗ (y)+GµE(y)+3gE(y,∞) ̸≡
const for y ∈ F . The function u(z) := 3V µ∗ (z) + GµE(z) + 3gE(z,∞) is lower
semicontinuous on F , hence it attains its minimum on F at some point y0 ∈ F :
u(y0) = miny∈F u(y) = m. By the foregoing, u(y) ̸≡ m = u(y0), y ∈ F . We assume
that y0 lies in the interior of F , y0 ∈ F ◦, and is the unique minimum point of u(y)
on F , that is,

m = min
t∈F

u(t) = u(y0) < u(y), y ∈ F \ {y0}. (101)

We underscore that this assumption involves no loss of generality in our further
arguments, because in the framework of the GRS-method the general case whenu(y)
attains its minimum on F at several points or when the unique minimum point is
an endpoint ej of F can be reduced to this case in a standard way, with the help of
analogues of Lemma 9 in [44] (see [94], Lemma 5). Now we take a polynomial ω∗n
in (89) such that

1
n
χ(ω∗n)

∗−→ µQ = µ, n→∞. (102)

Then using the GRS-method in the standard fashion, we get from the orthogonality
relations (90) for the polynomial qn,2 that (recall that n = 2m)

2
n
χ(qn,2) → ν, n→∞, (103)
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where ν ∈M1(E) and ν = µ̃ = bE(µ) is the balayage of µ ∈M1(F ) from D to the
boundary ∂D = E. Thus, we have V ν∗ (z) ≡ V µ∗ (z)−GµE(z) + const, z ∈ C. Due to
the GRS-method∣∣∣∣∫

E

q2n,2(x) dρn(x)
ω∗n(x)(y − x)

∣∣∣∣1/n cap−−→ econst ̸= 0,∞, y ∈ F 0, (104)

and therefore application of the GRS-method to the expression (93) defining the
varying weight Ψn gives us that

|Ψn(y)|2/n
cap−−→ eV

ν
∗ (y)−3gE(z,∞) = eV

µ
∗ (z)−Gµ

E(z)−3gE(z,∞)+const. (105)

Consequently, in view of (102), (103), and the identity V ν∗ (z) ≡ V µ∗ (z) −GµE(z) +
const we deduce from (92) the limit relation∣∣Q∗n,2(y)ω∗n(y)Ψn(y)

∣∣2/n cap−−→ e−4V µ
∗ (y)+V ν

∗ (y)−3gE(y,∞)

= e−4V µ
∗ (y)+V µ

∗ (y)−Gµ
E(y)−3gE(y,∞)+const

= e−3V µ
∗ (y)−Gµ

E(y)−3gE(y,∞)+const

= e−u(y)+const. (106)

Hence, since u(y0) < u(y) for y ∈ F \ {y0}, in the limit as n → ∞ the absolute
value of the integrand in (92), raised to the power 2/n, has a unique strict maximum
on F at the point y0 ∈ F ◦. Using standard methods of potential theory (see [44],
Lemma 7, and [63]), we find that(∫

F

∣∣Q∗n,2(y)ω∗n(y)Ψn(y)
∣∣ |dy|)2/n

→ e−3V µ
∗ (y0)−Gµ

E(y0)−3gE(y0,∞)+const

= e−u(y0)+const ̸= 0. (107)

Let us now return to (94). It is our next goal to show that there exists a sequence
of polynomials ω∗n which still has the properties (102) and (107), but is such that the
absolute value of the integral on the left-hand side of (94), raised to the power 2/n,
behaves asymptotically like the left-hand side of (107), that is,

lim
n→∞
n∈Λ

∣∣∣∣∫
F

Q∗n,2(y)ω
∗
n(y)Ψn(y) dy

∣∣∣∣2/n = lim
n→∞
n∈Λ

(∫
F

∣∣Q∗n,2(y)ω∗n(y)Ψn(y)
∣∣ |dy|)2/n

= e−u(y0)+const ̸= 0. (108)

Obviously, once we have deduced (108), we will have arrived at a contradiction
to (94).

The limiting distribution of the zeros of the polynomials ω∗n ∈ Pn−const, where the
constant const depends on q but not on n, is the same as that of the polynomials ω̃n,
which differ from the polynomials ω∗n by the absence of some kn ∈ N factors, where
kn = o(n) as n → ∞. Since the function u has a strict minimum at y0, we
obviously have µ({y0}) = 0. Thus, there exists a sufficiently small positive ε such
that the number of zeros of Qn,2 outside the ε-neighbourhood Uε(y0) of y0 grows
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unboundedly with n. We fix this ε > 0. Then for each n ∈ Λ there exists a monic
polynomial gn of fixed degree independent of n which has the following properties:
gn divides Q∗n,2, ω∗n = Q∗n,2/gn ∈ Rn−l[z], and gn has constant sign in Uε(y0). The
function Ψn(z) is independent of the choice of q̃n,2 ∈ Pm−q in (93). Now that we
have found the limiting distribution of the zeros of the polynomials qn,2 as n→∞
and have shown that, with the possible exception of o(n) zeros, all of them lie
in E, we can remove the corresponding factors from q̃n,2, thus transforming it into
a polynomial with constant sign on F . Then (94) takes the form∫

F

Q∗2n,2(y)
Ψn(y)
gn(y)

dy = 0, (109)

where the integrand has constant sign in Uε(y0). Without loss of generality we
assume below that it is positive in Uε(y0). We rewrite (109) as∫

Uε(y0)

Q∗2n,2(y)
Ψn(y)
gn(y)

dy = −
∫
F\Uε(y0)

Q∗2n,2(y)
Ψn(y)
gn(y)

dy. (110)

Denote the integral on the left-hand side of (110) by I1 and the one on the
right-hand side by I2. Since u(y0) < u(y) for y ∈ F \ {y0},

lim
n→∞
n∈Λ

|I1|2/n = lim
n→∞
n∈Λ

(∫
Uε(y0)

∣∣∣∣Q∗2n,2(y)Ψn(y)
gn(y)

∣∣∣∣ |dy|)2/n

= e−u(y0) = e−m. (111)

And since u has a unique minimum at y0, we get for I2 that

lim
n→∞
n∈Λ

|I2|2/n < e−m. (112)

In combination, the relations (111) and (112) contradict (110). Therefore, our
assumption that

1
n
χ(Qn,2)

∗−→ µ ̸= ηF , n→∞, n ∈ Λ,

has brought us to a contradiction and thus is false. That is, we have proved that

lim
n→∞

1
n
χ(Qn,2) = ηF .

The solution of the problem of the limiting distribution of the zeros of the polyno-
mials Qn,2 is complete.

Since the polynomials Qn,0 correspond to the polynomials Qn,2 but for the func-
tion 1/f , that is, Qn,0(z; f) = Qn,2(z; 1/f), we have also solved the problem of the
distribution of the zeros of the former.

3.2. Proof of assertions 2) and 3) of Theorem 1. Next we look at the prob-
lem of the limiting distribution of the zeros of the polynomials Qn,1. We solve it
in tandem with the problem of the interpolation of f2 = −f̃ by the rational func-
tion Qn,1/Qn,2 and of the convergence of the corresponding sequence of rational
functions.
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We now investigate the limiting distribution of the points of interpolation. Recall
that f̃j = f̃ |E◦j = f+ + f−, j = 1, . . . , q, f̃ ∈ H (G). Let us return to (63) and
rewrite it as ∫

E

(Qn,1 +Qn,2f̃)(x)q(x)∆f(x) dx = 0, (113)

where q ∈ P2n is an arbitrary polynomial. It follows from the representation (56) for
f and the condition f(∞) = 1 that f̃ is a real-valued function on E, and for some
non-trivial constant const ̸= 0 we have const ∆f(x) > 0 for x ∈ E. Since Qn,j ∈
R[x], it follows directly from the orthogonality relations (113) that Qn,1 + Qn,2f̃

has at least 2n + 1 simple zeros on Ê = convE, with at most one zero in each
gap. Therefore, this function has at least 2n + 2 − q simple zeros on E. Let
Ωn(z) = zdeg Ωn + · · · be the corresponding monic polynomial with simple zeros
at these points; then 2n+ 2− q 6 deg Ωn 6 2n+ 1. By the definition of Ωn the
function (Qn,1 +Qn,2f̃)/Ωn is holomorphic in E◦ and therefore also in G := C \F .
Hence, for any polynomial q ∈ Pn−q we have

0 =
∫
γ

(Qn,1 +Qn,2f̃)(t)q(t) dt
Ωn(t)

=
∫
γ

Qn,2(t)q(t)f̃(t) dt
Ωn(t)

, (114)

and the following representation holds:

(Qn,1 +Qn,2f̃)(z)
Ωn(z)

=
1

2πiQ̃n,2(z)

∫
γ

Qn,2(t)Q̃n,2(t)f̃(t) dt
Ωn(t)(t− z)

, z ∈ int γ, (115)

where the monic polynomial Q̃n,2 differs from Qn,2 only by the removal of finitely
many simple factors, namely, of those with zeros outside F . The integrals in (114)
and (115) are taken over a curve γ consisting of a finite number q of curves γj
separating the zeros of Ωn and the point z from the point at infinity. In view
of the properties of f̃ , the relations (114) and (115) can be rewritten equivalently
in the respective forms (cf. [90], (15) and (16))∫

F

Q∗n,2(y)q(y)∆f̃(y) dy
Ωn(y)

= 0 ∀ q ∈ Pn−q, (116)

(Qn,1 +Qn,2f̃)(z)
Ωn(z)

=
1

2πiQ̃∗n,2(z)

∫
F

Qn,2(y)Q̃∗n,2(y)∆f̃(y) dy
Ωn(y)(y − z)

, (117)

Q̃n,2 ∈ Pn−q, z /∈ F

(we note that ∆f̃(z) = const f(z), z ∈ D, where const ̸= 0). Assume that as
n→∞, n ∈ Λ,

1
2n
χ(Ωn) → ν, supp ν ⊂ E, |ν| = 1.

Then according to the GRS-method the orthogonality relations (113) and (116) (see
also (118) below) imply that n−1χ(Qn,2) → ν̃ ∈ M1(F ), where ν̃ = bF (ν) is the
balayage of ν from the domainG to F . But we know already that n−1χ(Qn,2) → ηF ,
so ν̃ = ηF . Using (117), we can rewrite the orthogonality relations (113) as∫

E

Ωn(x)q(x)Ψn(x)∆f(x) dx = 0 ∀ q ∈ P2n−q, (118)



940 S. P. Suetin

where

Ψn(z) :=
1

Q̃∗n,2(z)

∫
F

Q∗n,2(y)Q̃
∗
n,2(y)∆f̃(y) dy

Ωn(y)(y − z)
, z /∈ F, (119)

is a varying weight which depends on the polynomial Ωn itself. However, this does
not hinder our use of the GRS-method, since we know that all the zeros of Ωn lie
in E and 2n+ 2− q 6 deg Ωn 6 2n+ 1, and if (2n)−1χ(Ωn) → ν as n → ∞ for
n ∈ Λ, then supp ν ⊂ E and ν̃ = ηF . Hence, the GRS-method shows that

|Ψn(z)|1/n
cap−−→ eV

ηF
∗ (z)+const, z /∈ F. (120)

We now prove that if (2n)−1χ(Ωn) → ν, then ν = ηE , where ηE ∈M1(E) is the
unique extremal measure for the following potential-theoretic problem.

Equilibrium problem 2. Let 3V ν(z)+GνF (z) be a mixed Green-logarithmic poten-
tial of an arbitrary (positive Borel) unit measure ν with support on E , ν ∈M1(E),
where GνF (z) :=

∫
E
gF (x, z) dν(x) is the Green potential (with respect to F ) of ν

and gF (x, z) is the Green’s function of the domain G = C \ F . Let

J(ν) :=
∫
E×E

(
3 log

1
|x− u|

+ gF (x, u)
)
dν(x) dν(u)

=
∫
E

(3V ν(x) +GνF (x)) dν(x)

be the corresponding energy functional. Consider the following extremal problem:

m = inf
ν∈M1(E)

J(ν). (121)

Using standard methods of potential theory, one can prove as in [42] (see also
[63], [96]) that there exists a unique (in M1(E)) extremal measure ηE ∈ M1(E)
which delivers the minimum in (121):

J(ηE) = min
ν∈M1(E)

J(ν).

The measure ηE is also the unique equilibrium measure for the above potential, that
is, the following equilibrium conditions hold for this measure:

3V ηE (x) +GηE

F (x) ≡ const = wE , x ∈ E, (122)

where wE is an equilibrium constant. It was shown in [25] (see also [23], [72])
that η̃E = bF (ηE) = ηF (from which it follows, in particular, that supp ηF = F ).
Consequently, V ηF (z) ≡ V ηE

∗ (z)−GηE

F (z) + const, z ∈ C.

Since the problem under consideration in this paper has real symmetry,
supp ηE ⊂ E, and supp ηF ⊂ F , it follows that

∂(V ηE − V ηF
∗ )

∂n+
(x) =

∂(V ηE − V ηF
∗ )

∂n−
(x), x ∈ E◦,

that is, the compact set E is an S-curve in the external field generated by the poten-
tial of the signed measure −ηF . The polynomials Ωn are quasi-orthogonal on E
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(see (118)) with respect to the varying weight Ψn, which satisfies the asymptotic
relation (120). Since deg Ωn/n → 2 as n → ∞, we immediately get from the
Gonchar–Rakhmanov theorem ([44], Theorem 3), which is a particular case of
the general GRS-method, that there is a limiting distribution of the zeros of the
polynomials Ωn, and it coincides with the equilibrium measure µeq ∈M1(E) on E
in the external field ψ(z) = −(1/4)V ηF

∗ (z), that is,

1
2n
χ(Ωn) → µeq ∈M1(E), n→∞,

where µeq ∈M1(E) is the unique measure such that

V µ
eq

∗ (x)− 1
4
V ηF
∗ (x) ≡ const, x ∈ E. (123)

In view of the equality ηF = η̃E , which means that V ηF (z) = V ηE
∗ (z) − GηE

F (z) +
const, (123) is clearly equivalent to the following equilibrium relation:

4V µ
eq

∗ (x)− V ηE (x) +GηE

F (x) ≡ const, x ∈ E. (124)

Since the solution of the equilibrium problem (123) is unique, (124) is also uniquely
solvable. It follows immediately from (122) and (123) that µeq = ηE . Thus, we
have proved that

1
2n
χ(Ωn)

∗−→ ηE , n→∞.

We see that there is a limiting distribution of the points of interpolation of f̃ by the
rational function Qn,1/Qn,2 on E, and it coincides with the equilibrium measure ηE
for the problem (122).

We now use the GRS-method to get directly from (117) that∣∣∣∣f̃(z) +
Qn,1
Qn,2

(z)
∣∣∣∣1/n cap−−→ e2(V

ηF (z)−V ηE
∗ (z)−const) = e−2G

ηE
F (z) < 1, z /∈ R

(125)
(it is easy to see that the const in (125) is the same as in the identity V ηF

∗ (z) =
V ηE (z)−GηE

F (z)+const). The inequality (54) follows from (117) and the principle
of descent for the logarithmic potential (see [63]). Theorem 1 is proved.

Remark 7. If α ∈ C, |α| ∈ (0, 1/2), then all the above results on the asymptotic
behaviour of the expression |Q∗n,2(y)ω∗n(y)Ψn(y)|1/n still hold. Our flexibility in
choosing the second factor ωn,2 of small degree kn = o(n) in ω∗n turns out to be quite
sufficient to ensure that, while remaining in the framework of the GRS-method, we
can correct the argument of the product Q∗n,2(y)ω∗n(y)Ψn(y) in an arbitrarily small
(but fixed) neighbourhood of the point of asymptotic maximum y0 ∈ F ◦ in such
a way that as n→∞ the integrals(∫

F

∣∣Q∗n,2(y)ω∗n(y)Ψn(y)
∣∣ |dy|)2/n

and
∣∣∣∣∫
F

Q∗n,2(y)ω
∗
n(y)Ψn(y) dy

∣∣∣∣2/n (126)

have the same asymptotic behaviour (see details in [21], [44], Lemma 9, and [94],
Lemma 5). Once we have established this equality, we will have proved the existence
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of the following limit:

lim
n→∞
n∈Λ

∣∣∣∣∫
F

Q∗n,2(y)ω
∗
n(y)Ψn(y) dy

∣∣∣∣2/n= e−3V µ
∗ (y0)−Gµ

E(y0)−3gE(y0,∞)+const ̸= 0. (127)

As before, (127) will contradict the orthogonality relations (94). Thus, the assump-
tion that µQ = µ ̸= ηF turns out to lead to a contradiction. Hence,

1
n
χ(Q∗n,2) → ηF , n→∞.
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functions with branch points”, Dokl. Math. 78:2 (2008), 717–719.

[6] А.И. Аптекарев, В. И. Буслаев, А. Мартинес-Финкельштейн, С. П. Суетин,
“Аппроксимации Паде, непрерывные дроби и ортогональные многочлены”,
УМН 66:6(402) (2011), 37–122; English transl., A. I. Aptekarev, V. I. Buslaev,
A. Mart́ınez-Finkelshtein, and S. P. Suetin, “Padé approximants, continued
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1979), NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., vol. 54, Reidel,
Dordrecht–Boston, MA 1980, pp. 449–510.

[31] M.B. Dadfar, J. Geer, and C. M. Andersen, “Perturbation analysis of the limit
cycle of the free van der Pol equation”, SIAM J. Appl. Math. 44:5 (1984),
881–895.

[32] A. Deaño, D. Huybrechs, and A.B. J. Kuijlaars, “Asymptotic zero distribution of
complex orthogonal polynomials associated with Gaussian quadrature”, J. Approx.
Theory 162:12 (2010), 2202–2224; 2010, 33 pp., arXiv: 1001.2219.

[33] С. Дельво, А. Лопес, Г. Лопес Лагомасино, “Об одном семействе систем
Никишина с периодическими рекуррентными коэффициентами”, Матем.
сб. 204:1 (2013), 47–78; English transl., S. Delvaux, A. López, and G. López
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Markov-type functions”, Sb. Math. 202:1 (2011), 127–134.

http://dx.doi.org/10.4213/rm9508
http://dx.doi.org/10.4213/rm9508
http://dx.doi.org/10.4213/rm9508
http://dx.doi.org/10.1070/RM2013v068n01ABEH004825
http://dx.doi.org/10.1070/RM2013v068n01ABEH004825
http://dx.doi.org/10.1070/RM2013v068n01ABEH004825
http://dx.doi.org/10.1016/j.geomphys.2014.07.006
http://dx.doi.org/10.1016/j.geomphys.2014.07.006
https://zbmath.org/?q=an:0631.30036
https://zbmath.org/?q=an:0631.30036
https://zbmath.org/?q=an:0631.30036
https://zbmath.org/?q=an:0631.30036
https://zbmath.org/?q=an:0631.30036
https://zbmath.org/?q=an:00041159
https://zbmath.org/?q=an:00041159
https://zbmath.org/?q=an:00051140
https://zbmath.org/?q=an:00051140
https://zbmath.org/?q=an:00051140
https://zbmath.org/?q=an:03675550
https://zbmath.org/?q=an:03675550
https://zbmath.org/?q=an:03675550
https://zbmath.org/?q=an:03675550
https://zbmath.org/?q=an:03675550
http://dx.doi.org/10.1016/0021-9045(84)90036-4
http://dx.doi.org/10.1016/0021-9045(84)90036-4
http://dx.doi.org/10.1007/BF01893417
http://dx.doi.org/10.1007/BF01893417
https://zbmath.org/?q=an:03489223
https://zbmath.org/?q=an:03489223
https://zbmath.org/?q=an:03489223
https://zbmath.org/?q=an:03489223
http://dx.doi.org/10.1007/BF01303263
http://dx.doi.org/10.1007/BF01303263
http://dx.doi.org/10.1016/0022-314X(85)90061-7
http://dx.doi.org/10.1016/0022-314X(85)90061-7
https://zbmath.org/?q=an:1036.34103
https://zbmath.org/?q=an:1036.34103
http://dx.doi.org/10.1007/BF02511816
http://dx.doi.org/10.1007/BF02511816
https://zbmath.org/?q=an:0077.06602
https://zbmath.org/?q=an:0077.06602
https://zbmath.org/?q=an:0077.06602
http://dx.doi.org/10.4213/sm7619
http://dx.doi.org/10.4213/sm7619
http://dx.doi.org/10.1070/SM2011v202n01ABEH004140
http://dx.doi.org/10.1070/SM2011v202n01ABEH004140
http://dx.doi.org/10.1070/SM2011v202n01ABEH004140
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