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Virtual polytopes
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Abstract. Originating in diverse branches of mathematics, from polytope
algebra and toric varieties to the theory of stressed graphs, virtual polytopes
represent a natural algebraic generalization of convex polytopes. Intro-
duced as elements of the Grothendieck group associated to the semigroup
of convex polytopes, they admit a variety of geometrizations. The present
survey connects the theory of virtual polytopes with other geometrical sub-
jects, describes a series of geometrizations together with relations between
them, and gives a selection of applications.
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1. Introduction

Convex polytopes in a Euclidean space form a semigroup with respect to Minkow-
ski addition. This semigroup is not a group, since in most cases the Minkowski
inverse of a polytope does not exist. But the cancellation law holds, and this allows
for the unique extension of the semigroup to the Grothendieck group: this is, by
definition, the group of virtual polytopes. From a purely algebraic point of view,
virtual polytopes are a most natural generalization of convex polytopes: in short,
a virtual polytope is defined as a formal Minkowski difference of convex polytopes.

The first goal of this survey is to bridge the gap between this formal, algebraic
definition and various interesting geometric interpretations (geometrizations). The
second goal is to present different applications of the geometrization machinery,
insights into the diverse questions that motivated the study of virtual polytopes,
and to set up an appropriate framework for problems lying beyond this theory.

The main message that will emerge is that virtual polytopes retain many prop-
erties of convex polytopes, except convexity: a virtual polytope has a well-defined
face lattice, support function, outer normal fan, volume, concept of enumeration of
lattice points, and so on. However, the support function is no longer convex, the
volume can be negative, the outer normal fan can contain non-convex cones, and
so on.

It is not unusual in mathematics that different formalisms lead to essentially
equivalent concepts: homology theories, (oriented) matroids, combinatorially rigid
structures, abstract polytopes, and others have a multitude of crypto-morphic def-
initions, each with its own abstract structure and a set of axioms or consistency
rules to be satisfied. Each is motivated by concepts arising in perhaps other areas
of mathematics, and each time there are rules for converting from one formalism
to another.

Virtual polytopes also fit this pattern. As generalizations of convex polytopes,
they will be described as piecewise linear functions, collections of translated cones,
invertible sheaves on a toric variety, and (in dimension three) stressed graphs on the
unit sphere or (in dimension two) special types of two-dimensional polygonal chains.
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However, in each setting we have one and the same group of virtual polytopes,1 up
to a canonical isomorphism.

Specifically, for each of the representations we describe a group of geometric
objects which turns out to be canonically isomorphic to the group of virtual poly-
topes. Canonical isomorphisms between the various representations appear auto-
matically: we go from one representation to the group of virtual polytopes, and from
there to the other representation. However, in many situations direct isomorphisms
appear naturally between some of these representations.

Historical perspective. The first systematic study of virtual polytopes, under this
very name, appears in Khovanskii and Puklikhov’s paper [1]. Their work was moti-
vated by the algebraic geometry of toric varieties.2 It was known that invertible
sheaves on a projective toric variety form a group (the Picard group); it was also
known that very ample sheaves correspond to convex polytopes (and form a semi-
group), so the natural question arose: what corresponds geometrically to the other
elements of the Picard group? Some technical details aside, the answer is: The
Picard group is isomorphic to the group of virtual polytopes.

The idea of Minkowski subtraction of polytopes and convex sets can be traced
back even further. In an early paper from 1939, A. D. Alexandrov [2] considered
pointwise differences of support functions. Although not explicitly stated in his
paper, this point of view leads to another way of defining virtual polytopes, which
we describe in § 4.3.

Another important observation comes from the work of Groemer [3], who wrote
the following in 1977: It appears that an addition of non-convex sets. . . must nec-
essarily take into account multiplicities of points, and this leads immediately to
functions instead of ordinary sets. And also: It turns out that Minkowski addition
is actually more akin to multiplication in a certain algebra than to addition. We
discuss this in § 4.1.

More recently and in a different context, Rodriguez and Rosenberg [4] introduced
a class of polyhedral surfaces, called polyhedral hedgehogs,3 which turn out to be
a subclass of virtual polytopes. Subsequently, V. A. Alexandrov studied polyhedral
hedgehogs in [5]. We present in § 5 a similar (but not identical) construction which
covers the entire set of virtual polytopes. Martinez-Maure studied various aspects
of hedgehogs and gave a sketch of an inductive definition (by dimension) of virtual
polytopes in [6]. In § 5 we present an approach inspired, partially, by his ideas.

Virtual polytopes also appeared, implicitly, in McMullen’s polytope algebra [7];
we expound on this subject in § 4.2.

An important warning. The theory of virtual polytopes is built upon an appropri-
ate notion of Minkowski subtraction, but care must be exercised even with this most
primitive ingredient. Indeed, various other definitions have appeared in the litera-
ture. For instance, the concept of Minkowski difference, as described in Schneider’s
book [8], is not the same as what we present in § 2. The problem is that Schneider’s

1The precise definitions and further details appear in § 2.
2We present this as an application in § 6.5.
3In the original French, hérissons.
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straightforward definition of Minkowski subtraction does not turn the semigroup of
convex polytopes into a group: in his theory, P − P ̸= 0.

Overview of the survey. We start in § 2 with the basic definitions, and treat virtual
polytopes as formal Minkowski differences. Important properties can already be
defined in this setting.

The first non-trivial geometrization is described in § 3 for two-dimensional virtual
polytopes: we represent them as coloured polygons. This kind of ‘toy’ representation
is very intuitive and gives a number of various examples but is possible only in
dimension two.

Section 4 presents four types of geometrizations that work in all dimensions:
1) piecewise constant functions, which are elements of Khovanskii and Pukhlikov’s
algebra; 2) elements of the first weight space of McMullen’s polytope algebra; 3) sup-
port functions; 4) systems of translated cones.

We return to dimension three in § 5, where we present an approach based on
rigidity theory. Here a virtual polytope appears as a system of springs in equi-
librium on the sphere. A more intuitive representation is then given via what
we call Maxwell polytopes, which are geometrizations of closed polyhedral surfaces
whose faces are flat polygons; these faces, as well as the whole ‘surface’, may have
self-intersections and exhibit other types of unusual features.

We conclude in § 6 with several applications of virtual polytopes. We discuss
here: 1) generalizations of A. D. Alexandrov-type problems for smooth convex bod-
ies and convex polytopes; 2) volumes and mixed volumes of virtual polytopes;
3) Minkowski decompositions of polytopes; 4) the relationship to algebraic toric
geometry.

2. Main definition

In this section we define virtual polytopes as formal Minkowski differences of
convex polytopes and state some important properties that follow directly from the
definition.

2.1. Convex polytopes and Minkowski addition. Throughout the paper, we
assume that the ambient space for all our constructions is the Euclidean space Rd

with a fixed Cartesian coordinate system and the standard scalar product denoted
by ⟨x, y⟩.

We identify the points of the space Rd with their radius vectors, which enables
us to speak of a sum of points.

Moreover, we often do not distinguish between affine subspaces and vector sub-
spaces of Rd. The point is that all our constructions are translation invariant, that
is, do not depend on the choice of the origin.

Convex polytopes. A convex polytope is the convex hull of a non-empty finite point
set in some space Rd. When there is no risk of confusion, we may drop ‘convex’
and just write ‘polytope’. The set of all convex polytopes in Rd is denoted by Pd.
To keep the notation simple, we omit the d and use P := Pd.

The dimension of a convex polytope K is the dimension of its affine hull, which
is the minimal (with respect to inclusion) affine plane containing K. Thus, the
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dimension of a convex polytope in Rd is not necessarily d; in particular, the polytope
can be the degenerate zero-dimensional single-point polytope.

Minkowski addition of convex polytopes. From two convex polytopes K and L, the
operation of Minkowski addition generates a new convex polytope K ⊗ L defined
by

K ⊗ L = {x + y | x ∈ K, y ∈ L}

(an example in the plane is shown in Fig. 1).

Figure 1. Minkowski sum of a pentagon and a triangle.

A remark on notation. Most of the literature on Minkowski addition uses the
additive notation + or⊕. However, it was recognized that in the context of the poly-
tope algebra this operation behaves more like multiplication than addition. For this
reason, various multiplicative symbols have come to be employed: × in [3], ∗ in [1],
and · in [7]. Here we adopt the multiplicative notation ⊗, in order to be consistent
with its multiplicative role in the polytope algebra defined in § 4.1, and to emphasize
its relationship with the tensor product of invertible sheaves described in § 6.5.

Properties of the Minkowski sum. The following basic properties lay the foundation
for the theory surveyed in this paper.

1. The sum of a polytope K and a point p is the translation of the polytope K
by the vector p, which we write as K + p.

2. The operation of Minkowski addition allows us to factor out translations.
That is, for p1 and p2, we have:

(K1 + p1)⊗ (K2 + p2) = (K1 ⊗K2) + (p1 + p2).

3. Cancellation law : if K ⊗ L = K ′ ⊗ L then K = K ′.
With a few (explicitly stated) exceptions, we will factor out translations, that

is, we will identify a polytope K and its translate K + p.
The operation of Minkowski addition turns the set P of convex polytopes, fac-

tored by translations, into a commutative semigroup in which the above cancella-
tion law holds. The unit element E is the convex polytope containing exactly one
point. Since all such polytopes differ by a translation, we may assume that the unit
element is represented by the origin: E = {O}.
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2.2. Virtual polytopes as the Grothendieck group.

Grothendieck group: general construction. Whenever we have a commutative semi-
group S (whose operation we denote multiplicatively) with a unit element e, it can
be extended to a group if and only if it satisfies the cancellation law:

kl = ml =⇒ k = m.

The unique (up to isomorphism) minimal Abelian group containing S as a sub-
semigroup is called the Grothendieck group of S.4 Its elements are equivalence
classes of formal expressions (or formal fractions) kl−1 with k, l ∈ S, where k1l

−1
1

and k2l
−1
2 are identified whenever k1l2 = k2l1.

The embedding identifies each element k of the semigroup with the fraction ke−1.
An elementary example of this construction is the group of non-zero ratio-

nal numbers under multiplication, which extends the multiplicative semigroup of
non-zero integers. Using this analogy, the convex polytopes will be our ‘integers’,
while the virtual polytopes will correspond to the ‘rational numbers’.

Definition 1. The group P∗ of virtual polytopes is the Grothendieck group asso-
ciated to the semigroup P of convex polytopes under Minkowski addition.

The inverse in this group of a convex polytope K is denoted by K⊗−1. We can
rephrase the definition as a combination of a few simple and useful properties:

1) a virtual polytope is a formal fraction K ⊗ L⊗−1;
2) two virtual polytopes represented by expressions K1⊗L⊗−1

1 and K2⊗L⊗−1
2

are identified whenever K1 ⊗ L2 = K2 ⊗ L1;
3) the group operation literally repeats the rules of multiplication of two frac-

tions, that is,

(K1 ⊗ L⊗−1
1 )⊗ (K2 ⊗ L⊗−1

2 ) := (K1 ⊗K2)⊗ (L1 ⊗ L2)⊗−1;

4) the unit element is represented by E ⊗ E⊗−1, where E is the unit element
in P, that is, the one-point polytope (the unit element may also be repre-
sented by any fraction of the form K ⊗K⊗−1).

The natural inclusion
P ↪→ P∗

of the group of convex polytopes in the group of virtual polytopes takes a convex
polytope K ∈ P to the formal fraction K1 ⊗ E⊗−1.

Dimension of a virtual polytope. Since a virtual polytope is not a set of points,
the concept of dimension requires some care. We define the dimension of a virtual
polytope P to be the smallest number k such that P can be expressed as P =
K⊗L⊗−1, with K and L convex polytopes lying in the same k-dimensional subspace
of Rd.

A remark is needed here: on the one hand, when speaking of convex (and virtual)
polytopes we usually have in mind some fixed ambient space. On the other hand,
each inclusion Rd ⊂ Rd′

yields an inclusion Pd ⊂ Pd′ which extends to all other
4The Grothendieck group is defined for any commutative semigroup. However, if the cancela-

tion law does not hold, then the semigroup does not embed in its Grothendieck group.
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constructions in this survey. In other words, if one is thinking not of the group as
a whole but of a geometrization of a single virtual polytope or the sum (difference)
of two polytopes, then one may not care about the ambient space.

Various geometric representations (geometrizations) of virtual polytopes are pre-
sented in subsequent sections. As a warm-up, we now discuss briefly the simplest
cases, in dimensions zero and one.

Virtual polytopes in dimension zero. This is the trivial group with only one
element (the unit element E), which corresponds geometrically to the unique zero-
dimensional polytope.

Virtual polytopes in dimension one. A convex polytope in R1 is a segment. After
factoring out the translations, we can identify a segment with a positive real number:
its length. In this setting, the Minkowski addition of segments amounts to addition
of positive real numbers. Thus, the semigroup P of convex polytopes in R1 is
isomorphic to the semigroup R>0 of non-negative real numbers with the group
operation +. The semigroup isomorphism maps a segment to its length. This
implies that the group P∗ of virtual segments is isomorphic to R.

For further reference, we state explicitly the three types of virtual segments:
• the segment of zero length, that is, a one-point polytope, representing the

unit element E;
• segments of positive length, that is, the usual convex segments;
• inverses (in the sense of Minkowski addition) of convex segments.

The inverses of convex segments may be thought of as having an associated
negative sign, but a more intuitive convention makes use of colours instead of signs.

Virtual polytopes in dimension one as coloured segments. A simple visual repre-
sentation of virtual segments is obtained by colouring regular segments: the convex
segments (which correspond to positive numbers) are coloured in red. Their inverses
(corresponding to negative numbers) are represented by convex segments coloured
in blue. This way of visualizing virtual segments will be used in the next section for
coloured stars and polygons, and it forms the basis for an inductive construction
leading to virtual polytopes in higher dimensions.

We now formulate the Minkowski addition ⊗ of virtual segments in terms of
coloured segments:

• the sum of two segments of the same colour has length equal to the sum of
the lengths of the summands, and it inherits the colour;

• two segments of different colours and equal length add up to the (uncoloured)
one-point segment;

• two segments of different colours and unequal length add up to a segment
whose colour is inherited from the longer of the two segments, and whose
length is the difference of the two lengths (in particular, the inverse of
a coloured segment is a segment of the same length but different colour).

2.3. Facial structure of virtual polytopes. Virtual polytopes, like the convex
ones, have a well-defined facial structure. We start by reviewing a few important
properties of faces of convex polytopes. Many of them carry over to virtual poly-
topes, except topology and convexity.
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Faces of convex polytopes. Let K be a convex polytope in dimension d. For a given
direction vector v ∈ Rd, the face Kv of K in the direction v is the set of points p
where the scalar product ⟨v, · ⟩ attains its maximum value over all points p ∈ K.
When v = 0, we get Kv = K. Otherwise, Kv is the intersection of K with the
support hyperplane to K whose outward normal vector is v.

Theorem 1. Faces of convex polytopes have the following properties [9].
• Convexity of faces: a face of a convex polytope is a convex polytope.
• Being a face is a hereditary property: a face of a face of a convex polytope K

is itself a face of K .
• Faces behave additively: a face in the direction v of a Minkowski sum K⊗L

is the Minkowski sum of the faces in direction v of the summands:

(K ⊗ L)v = Kv ⊗ Lv.

The faces of a convex polytope, ordered by inclusion, form a partially ordered set
called the face lattice. The face lattice captures the connectivities between faces of
all dimensions, and contains information about the combinatorics and topology
of the polytope.

We turn now to facial structure for virtual polytopes. Concrete examples and
geometric interpretations are interspersed throughout the rest of the paper.

Faces of virtual polytopes. For a given direction vector v, we have a semigroup
homomorphism K → Kv taking convex polytopes in Rn to convex polytopes lying
in the corresponding hyperplane Hv with v as normal vector. In [10] it was shown
that this map has a unique extension to a Grothendieck group homomorphism.

This enables us to define the face of a virtual polytope P in the direction v as the
image P v of K by this unique group homomorphism. As an immediate consequence,
we have the following explicit formulation.

Definition 2. Let P = K⊗L⊗−1 be a virtual polytope, where K and L are convex
polytopes, and let v be a direction vector. The face P v is defined as

P v = Kv ⊗ (Lv)⊗−1.

This definition makes possible the following analogue of Theorem 1.

Theorem 2. Faces of virtual polytopes have the following properties [10].
• Faces are ‘virtual’: a face of a virtual polytope is a virtual polytope.
• Being a face is a hereditary property: a face of a face of a virtual polytope P

is itself a face of P .
• Faces behave additively: a face in the direction v of a Minkowski sum of

two virtual polytopes is the Minkowski sum of the faces in direction v of the
summands: (K ⊗ L)v = Kv ⊗ Lv .

The theorem lets us introduce in a natural way a partial order on the set of faces,
where a face F of a virtual polytope P is smaller than a face F ′ of the same virtual
polytope P if F is a face of F ′.

The faces can be ranked by dimension. As usual, a k-dimensional face is referred
to shortly as a k-face, 0-faces are called vertices, 1-faces are edges, and the (d− 1)-
faces of a d-dimensional polytope are facets.
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3. Virtual polytopes in dimension two

This section is devoted to the first non-trivial geometrization of virtual polytopes.
This is not just a useful exercise to build up the intuition about what a virtual
polytope might be, but it also covers the basic cases of an inductive construction
that will be presented later in § 5.

Coloured stars. A coloured star is a finite set of oriented segments in the plane
such that:

(a) one of the ends of each segment is the origin O;
(b) the segments are coloured in two colours (partitioned into two classes), red

and blue;
(c) each red segment is oriented in the direction away from the origin, whereas

each blue segment is oriented towards the origin, thus giving us a collection
of vectors;

(d) the sum of these vectors equals zero;
(e) no two segments intersect (except for the point O).
A coloured star comes with a natural counterclockwise ordering on its segments.

Star-to-polygon. Taking the vectors of the star one by one according to the counter-
clockwise ordering and putting the tail of the next vector at the end of the previous
one, we get an oriented polygon (oriented closed broken line) with coloured edges
(see Fig. 3, for example).

By convention, the empty star yields a one-point polygon. (Nothing is coloured
in this case because we only colour edges.)

Coloured polygons. A polygon is a cyclically ordered set P = {p1, . . . , pn} of points
in the plane so that either n = 1 or consecutive points pi and pi+1 are distinct.5 The
cyclical ordering of the points means that we consider two polygons to be identical
if one is obtained from the other by a renumbering corresponding to some power
(2, 3, . . . , n, 1)k of the cyclic permutation.

In other words, our polygons have an induced orientation, and the reverse ori-
entation yields (in most cases considered in this paper) a different polygon. The
consecutive points determine the edges of the polygon with non-zero length. We
emphasize from the outset that we work here with arbitrary polygons, which may
not be simple: they may self-intersect or have overlapping edges.

A coloured polygon is a polygon P = {p1, . . . , pn} with edges coloured red and
blue which is obtained from some coloured star via the above ‘star-to-polygon’
procedure.

Polygon-to-star. Obviously, any coloured polygon uniquely restores a coloured star.

Convex polytopes in dimension two, coloured polygons, and coloured stars. The
boundary of a convex polytope in dimension two is the polygon formed by its
vertices and oriented counterclockwise. We colour the boundary polygon red, which
gives us a coloured polygon. For convenience we sometimes refer to both the convex
polytope in dimension two and its boundary as a convex polygon.

5Index arithmetic is done modulo n in the set {1, 2, . . . , n}.
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We also consider limiting cases such as the one-vertex polygon {p1} with no
boundary edges, and the segment-polygon {p1, p2} with boundary consisting of two
parallel (red) edges −−→p1p2 and −−→p2p1 with opposite orientations.

Using the star representation of a convex polygon, we compute a Minkowski sum
by the following simple linear-time algorithm (illustrated in Fig. 2).

Figure 2. (a) The Minkowski sum of two convex polygons. (b) The sum of
the corresponding stars.

Algorithm (computing the Minkowski sum of two convex polygons).
1. Polygon-to-star: convert the convex polygons into their convex stars.
2. Geometric merge: merge the two stars and then add the vectors with the

same defining angle.
3. Star-to-polygon: reconstruct a new convex polygon from the resulting star.

With these concepts in place, we are now ready to introduce virtual polygons,
that is, virtual polytopes in dimension two.

3.1. The group of virtual polygons: geometric representations. In this
subsection we present a few concrete, geometric representations of virtual polygons:
coloured stars and coloured polygons (see Fig. 3). In each case we also geometrize
the operation of Minkowski addition (and subtraction).

Convention about figures. The colours of the edges are important in what fol-
lows. In order to distinguish them in black-and-white print, we mark blue edges by
lines − · − · −.

We have defined two sets (coloured stars and coloured polygons) together with
the conversion rules. Our next step is to introduce group operations such that the
conversion rules become group isomorphisms.

Minkowski sum of coloured stars. Given two coloured stars, their Minkowski sum
(illustrated in Fig. 4) is a coloured star computed as follows.

1. Merge the stars.
2. If there are pairs of segments with the same defining angle (that is, two

overlapping segments), then add them according to the one-dimensional rules
and add the sum (an oriented segment with the same defining angle) to the
list.

3. If the sum equals zero, eliminate the corresponding segments from the list.
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Figure 3. A virtual polygon represented as (a) a coloured polygon and
(b) a coloured star.

Figure 4. Minkowski sum of two virtual polygons, in the coloured star
representation.

Minkowski sum of coloured polygons. Given two coloured polygons, their sum (see
Fig. 5) is given by the following algorithm.

1. Take the coloured stars of the summands.
2. Add the coloured stars.
3. Retrieve a coloured polygon from the sum.

Figure 5. Minkowski sum of two virtual polygons, in the coloured polygon
representation.

Minkowski inverses. The above operations turn the three sets of objects into
groups, since all the elements are invertible (see Fig. 6):

• in the star representation, the inverse is obtained by reversing the colour
and orientation of all star segments;
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Figure 6. Minkowski inverse of the virtual polygon in Fig. 3 as (a) coloured
polygon and (b) coloured star.

• the inverse of a virtual polygon is a rotation by π of the original polygon
with reversed edge colours.

We summarize the previously described constructions as follows.

Theorem 3. The groups of coloured polygons and coloured stars are isomorphic,
and the isomorphism arises from the direct conversions described above (polygon-to-
star and star-to-polygon). The two groups are canonically isomorphic to the group
of virtual polytopes in dimension two.

Proof. The semigroup of convex polytopes in dimension two embeds in each of the
two groups, and each group is generated by the image of this inclusion. �

Faces of a virtual polytope in dimension two represented by a coloured polygon.
A virtual polytope K in dimension two represented by a coloured polygonal chain
(p1, . . . , pk) has three types of faces. The 0-faces are the points p1, . . . , pk and the
(unique) 2-face is the polytope K itself. The 1-faces are coloured segments of two
types, red and blue, as discussed in this section. Red edges represent 1-dimensional
(convex) segments, whereas blue ones represent inverses to convex segments, as
discussed in § 2.

3.2. Examples of virtual polygons. To help develop intuition, we now present
a collection of illustrative examples.

Example 1 (Minkowski inverse of a convex polygon). The inverse of a convex
polygon is a rotation by π of the original polygon with all edges coloured blue.

Example 2 (colourings of convex polygons). All of the 8 colourings of a triangle
(of which 4 representatives are shown in Fig. 7) are virtual polygons. Only 4 of the
colourings of a quadrilateral (see Fig. 8) are virtual polygons.

Example 3 (six-gon and double-covered triangle). The double-covered triangle in
Fig. 9 (on the right) is the degenerate case of the six-edge polygon on the left. Both
arise by applying the star-to-polygon procedure to the coloured star shown. This
illustrates the fact that virtual polygons, as opposed to convex polygons, may not
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Figure 7. All 8 possible colourings of a triangle are virtual polygons (only
4 are shown).

Figure 8. The 4 colourings of a quadrilateral which yield virtual polygons.

be simple. They may also have pairs of edges with parallel directions, but in the
star these have to go in opposite directions.

Figure 9. Left, a virtual 6-gon with parallel pairs of edges and its star.
Right, an extreme situation where the 6-gon becomes a double-covered tri-
angle.

Example 4 (aligned edges). The two examples in Fig. 10 are virtual polygons with
aligned edges. In Fig. 10 (left), the aligned edges have the same colour, and they
must overlap in the polygon. In Fig. 10 (right), they have different colours, and are
aligned but do not overlap in the polygon.

Example 5 (multiple self-intersections). Virtual polygons can have multiple self-
intersections, as illustrated in Fig. 11.

3.3. Uncoloured virtual polygons. We have so far described representations
of virtual polytopes in dimension two as coloured polygons with some special prop-
erties. It is natural to ask whether one can forget the colours. In other words, is
being ‘virtual’ just a property of the polygon (and not of the polygon with the extra
colours on edges)? However, we show in this section that the colour-forgetting map
from virtual polygons to uncoloured polygons is neither surjective nor injective.
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Figure 10. Left, alignment of two oppositely oriented edges with the same
colour (shown slightly apart for clarity). Right, alignment of two similarly
oriented edges with opposite colours.

Figure 11. Minkowski difference of two regular hexagons.

Definition 3. A polygon with the property that it admits a colouring as a coloured
polygon (that is, representing some virtual polytope) is called a v-polygon.

Example 6 (not all polygons are v-polygons). The two examples in Fig. 12 are
not v-polygons. In the first example the existence of groups of more than two
parallel edges is an immediate indicator that this is not a virtual polygon, since
no matter how we orient them, there will always be more than one edge vector
with the same defining angle. For the second example, attempts to find a good
colouring are unsuccessful: no colouring results in a star with segments arranged
counterclockwise.

These examples raise the natural problem of how to recognize polygons that have
virtual polygon colourings. An inefficient solution is to list all the 2n possible colour-
ings on the edges and to keep only those that yield properly ordered coloured stars.
However, we can show that there exists a simple linear-time algorithmic solution
to this problem.

We have already seen in the examples in Fig. 7 and Fig. 8 that some poly-
gons may have no good colouring that would make them virtual polygons, while
others may have several.

Remark. The colourings of a v-polygon always come in pairs: if a colouring yields
a virtual polytope K, then the inverse colouring yields the virtual polytope which
is inverse to the centrally symmetric image of K.

Definition 4 (ambiguous v-polygon). A v-polygon that admits more than three
virtual polygon colourings will be called ambiguous.
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Figure 12. Two polygons which do not admit colourings as virtual polygons.
(a) This polygon has more than two parallel edges. (b1) A polygon on which
any attempt at producing a colouring would fail. (b2) For instance, a partial
colouring of the first 8 edges inducing a counterclockwise ordering cannot
be extended to a complete virtual polygon colouring.

Example 7 (there exist ambiguous v-polygons). The triangle in Fig. 7 and the
quadrilateral in Fig. 8 are ambiguous.

We conclude the section by stressing once again that the above geometrizations
exist only in dimension two and do not generalize to higher dimensions.

4. Virtual polytopes in arbitrary dimension

We turn now to four representations for virtual polytopes which are possible in all
dimensions. For each one we describe a group of geometric objects which is shown
to be canonically isomorphic to the group of virtual polytopes. Each section follows
this pattern: (a) we first describe a set of geometrical objects together with a group
operation; (b) we then show that the semigroup of convex polytopes embeds in this
group; (c) finally, we show that the group is generated by the convex polytopes.
Direct isomorphisms between pairs of these representations are also illustrated in
some cases.

4.1. The algebra of polytopal functions. Virtual polytopes appear in the
algebra of polytopal functions defined by Khovanskii and Pukhlikov [1], with moti-
vations coming from the algebraic geometry of toric varieties. This last aspect will
be discussed in § 6.5. To gain intuition, we compare virtual polytopes in dimension
two represented by coloured polygons with the polytopal functions introduced in
this subsection. We also note that this representation has a natural isomorphism
with the combinatorial Picard group representation described later in § 4.4.

Characteristic functions of convex polytopes. We construct the algebra starting
from the characteristic function IK : Rn → R of a convex polytope K, which is
defined by

IK(x) =

{
1 if x ∈ K,

0 otherwise.
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Polytopal functions. A polytopal function is a function f : Rn → R which is rep-
resentable as a finite linear combination f =

∑
αiIKi of characteristic functions

of convex polytopes Ki. The coefficients αi (called weights) are arbitrary integers,
possibly negative. The summands IKi

may come from convex ‘pieces’ of different
dimensions, including points.

We emphasize that in the construction of the algebra of polytopal functions
translations are not factored out, that is, two polytopes that differ by a translation
are considered to be different.

Such a representation of a polytopal function is never unique, as illustrated
in Fig. 13. Here, the characteristic function of the larger rectangle is expressed as
‘rectangle plus rectangle minus segment’, or as ‘triangle plus triangle minus diagonal
segment ’.

Figure 13. A polytopal function always has infinitely many decompositions.

Ring structure. The set of polytopal functions has a ring structure induced by
the operation of addition, defined pointwise, and the operation of multiplication ⊗,
which extends the Minkowski addition ⊗ as follows.

Multiplication of polytopal functions. The product f⊗g of two polytopal functions
f =

∑
i αiIKi

and g =
∑

j βjILj
is defined as:

f ⊗ g =
(∑

i

αiIKi

)
⊗

(∑
j

βjILj

)
:=

∑
i,j

αiβjIKi⊗Lj . (1)

The proof of correctness of this definition [1] (that is, that the definition does not
depend on the particular representations of the summands) is based on an equivalent
definition of the product of two polytopal functions f and g as the convolution with
respect to the Euler characteristic χ:

(f ⊗ g)(x) =
∫

Rn

f(x− y)g(y) dχ(y).

Integration with respect to (and convolution against) the Euler characteristic
is an elegant technique, first defined by Viro [11]. The idea of this notion is that
the Euler characteristic χ, being an additive function, in some sense resembles
a measure. Therefore, in some particular cases one can integrate piecewise constant
functions with respect to χ. Since this technique will not be referred to again in
our paper, we do not go into further details, which can be found in [11].

The two operations of addition and multiplication turn the set of polytopal
functions into a commutative ring, with the identically-zero function as its zero
element, and the characteristic function IE as the unit element, where E = {0} is
the one-point polytope containing the origin.
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We focus in this paper on the ring structure, although the polytopal functions
constitute an algebra over the rational numbers.

Convex polytopes are invertible. A remarkable property of the convex polytopes is
that their characteristic functions are invertible in this ring.

We start with an auxiliary construction. Let K be a convex polytope. The
interior of K taken in its affine hull is called its relative interior and is denoted
by Rint(K). The central symmetry with respect to the origin O is denoted by Symm.

It is not hard to show that the characteristic function of the relative interior of
a convex polytope K, that is,

IRint(K)(x) =

{
1 if x ∈ Rint(K),
0 otherwise,

is a polytopal function.

Theorem 4 ([1]). For any convex polytope K its characteristic function IK is
invertible in the ring of polytopal functions. The inverse is expressed as

(IK)⊗−1(x) = (−1)dim KIRint(Symm K) =

{
(−1)dim K if x ∈ Rint(Symm K),
0 otherwise.

Corollary 5 ([1]). The algebra of polytopal functions contains a multiplicative sub-
group which, after factorization by translations, is isomorphic to the group of virtual
polytopes. The canonical isomorphism maps each convex polytope K to its charac-
teristic function IK . In particular, the Minkowski inverse K⊗−1 is mapped to the
polytopal function described above in Theorem 4.

This allows us to speak of virtual polytopes represented by polytopal functions. In
the paper of Khovanskii and Pukhlikov [1] it is shown that virtual polytopes almost
exhaust the class of all invertible polytopal functions.

Theorem 6 ([1]). Every invertible element of the ring of polytopal functions is, up
to a sign, a virtual polytope. More precisely, for any invertible polytopal function f ,
either f or −f is a virtual polytope.

A necessary and sufficient condition for a polytopal function to be invertible
appeared in the same paper [1].

Examples. To build intuition, we give examples of virtual polytopes represented by
polytopal functions in dimension two. Since such functions are piecewise constant,
in the figures we mark the domains of constancy by the values of the function.
Figure 14 depicts a function which is identically 1 strictly inside the triangle and
identically zero outside the triangle and on its boundary. Figure 15 depicts a func-
tion which equals −2 inside the triangle and −1 on the boundary, and is zero
outside.

Figure 16 illustrates multiplication of polytopal functions. The goal is to compute
the Minkowski sum of the convex triangle and the open segment, with weight −1.

First we express the negatively weighted open segment as ‘endpoint plus end-
point minus the (closed convex) segment ’. Next, we open the brackets and perform
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Figure 14. Left: polytopal function representing a convex triangle. Right:
its inverse.

Figure 15. The double-covered virtual triangle (see Fig. 9), represented as
a polytopal function.

classical Minkowski addition. This gives us two triangles and one trapezoid with
weight −1. We depict them separately, but actually they overlap. Finally, one has
to sum up the weights. This gives us the last figure.

As previously stated, the negatively weighted open segment is the Minkowski
inverse of the convex segment. So the result of this computation is a virtual poly-
tope, namely, the Minkowski difference of the triangle and the (convex) segment.

To compare the two representations for virtual polygons, Fig. 17 represents the
virtual polygon in Fig. 3 by a polytopal function.

Historical note. The polytopal algebra was defined by Khovanskii and Pukhlikov
in [1], although the basic ideas can be traced back to Groemer [3]. However,
they used a different terminology (convex chain), which we have not adopted here
because of possible confusion with other terminology we use. The alternative name
of polytopal functions was used by Panina in [10] and [12].

We have confined ourselves to a description of the ring structure, and left the
Q-algebra structure beyond the scope of this article, referring the reader to [1].

4.2. McMullen’s polytope algebra. We turn now to a second representation
for virtual polytopes, Peter McMullen’s polytope algebra Π [7]. It is closely related
but not identical to the Khovanskii–Pukhlikov algebra of polytopal functions defined
in the previous section. A crucial difference is that now the translations are factored
out, and this has important algebraic consequences. In particular, it implies the
existence of a lot of nilpotent elements, which in turn lead to a lot of invertible
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Figure 16. An example illustrating multiplication in the algebra of poly-
topal functions.

Figure 17. Virtual polygon in Fig. 3 represented as a polytopal function.
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elements. By contrast, there are no nilpotent elements in the algebra of polytopal
functions.

The group P∗ of virtual polytopes appears here in a completely different way,
and now it is not isomorphic to the (multiplicative) group of invertible elements. As
shown below, P∗ is isomorphic to an additive subgroup of the polytope algebra Π
called the first weight space.

Figure 18. In McMullen’s algebra the polytopes are taken up to translation.
Thus, these two objects are identified.

Definition 5 (McMullen’s polytope algebra [7]). The polytope algebra (Π, +,⊗)
is defined over the set of symbols [K], where K ranges over the set P of all convex
polytopes in Rd. Additive expressions are subject to the equivalence relations

[K] + [L] = [K ∩ L] + [K ∪ L] if K, L,K ∪ L ∈ P, (2)
[K] = [K + t] if K ∈ P and t is a translation vector. (3)

Multiplication is first defined for convex polytopes K and L via Minkowski addition
[K]⊗ [L] := [K ⊗ L], and then extended by linearity to all elements of Π.

Thus, elements of the polytope algebra are linear combinations with integer
coefficients of the form

∑
αi[Ki], subject to the equivalence relations (2) and (3).

Figures 18 and 19 provide illustrations. The unit element E is the one-point poly-
tope, and this is very similar to the algebra of polytopal functions.

Figure 19. This illustrates the generating relations in McMullen’s algebra.

Multiplication by rational numbers in the polytope algebra is not always possible.
But in the case when it is possible, it can be defined in a unique way. Here is the
necessary and sufficient condition.

Proposition 7 ([7]). For any element
∑

αi[Ki] of the polytope algebra and any
non-zero integer a such that

∑
αi is divisible by a, there exists a unique element f

such that af =
∑

αi[Ki]
(
so one can write f = 1

a

∑
αi[Ki]

)
.

If
∑

αi is not divisible by a, then such an f does not exist.
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There exists a canonical surjective ring homomorphism from the algebra of poly-
topal functions to McMullen’s polytope algebra Π which makes the two algebras
very similar. However, the group of units (invertible elements under multiplica-
tion) of the polytope algebra is much bigger than the group of virtual polytopes.
The reason for this is that if

∑
ai = 0, then f =

∑
ai[Ki] is a nilpotent element,

and therefore 1 − f is invertible. The inverse (1 − f)−1 = 1 + f + f2 + · · · is
well defined, since the sum is finite in this case. Thus, an element

∑
ai[Ki] in

McMullen’s polytope algebra is invertible if and only if
∑

ai = ±1.

Weight spaces. McMullen’s algebra Π has the structure of an (almost) graded
algebra, that is, it is decomposable into a direct sum of graded components, called
weight spaces. This decomposition has a deep interpretation in terms of the Chow
rings associated to toric varieties, and will be briefly discussed in § 6.5. Other
details, although very interesting, are not relevant for our discussion and can be
found in [7].

The decomposition of f into a sum of graded components is similar to the stan-
dard graded decomposition of the algebra of polynomials. The kth graded compo-
nent of the algebra of polynomials consists of homogeneous polynomials of degree k.
The latter can be recognized using dilation, since they are exactly those polyno-
mials that satisfy p(λx) ≡ λkp(x) for every real λ. Analogously, an element f
in the polytope algebra is homogeneous of degree one if for every positive integer λ
the dilation by λ, denoted by (λ)f , coincides with the sum of λ copies of f :

(λ)f = f + · · ·+ f︸ ︷︷ ︸
λ

.

It should be noted that a convex polytope is not homogeneous in this respect.

Definition 6. The first weight space of Π is defined as the set of homogeneous
elements of degree one.

The first weight space is clearly an additive group.

Example 8 (homogeneous element in dimension one). If K is a segment and P is
a point, then [K]− [P ] is homogeneous of degree one, and therefore belongs to the
first weight space.

Theorem 8 ([13], Lemma 2.2). The group of virtual polytopes is isomorphic to the
first weight space of McMullen’s polytope algebra.

The isomorphism sends a convex polytope K to

log K =
∞∑

i=0

(−1)i+1 ([K]− E)i

i
,

where E is the one-point polytope, that is, the unit element in Π.

Since [K]− E is a nilpotent element, the above sum is finite.
It will be seen in § 6.5 that this theorem relates the Picard group of a toric variety

to the group of virtual polytopes.
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Historical note. The definition of the polytope algebra was motivated by the scis-
sors congruence problem, which in turn originated from Hilbert’s Third Problem.
The group of all (isometric) motions of the space used in the classical setting is
replaced here by translations. The algebra can be viewed as the universal group for
translation-invariant finitely additive measures on convex polytopes (such measures
are called translation-invariant valuations).

The polytope algebra has several remarkable isomorphic interpretations. One is
the direct limit of Chow rings of toric varieties [14], and another is via piecewise
polynomial functions with respect to some fan [15].

The most remarkable thing about McMullen’s algebra is its relationship to the
g-theorem that characterizes the numbers of faces of simple polytopes. Necessary
and sufficient conditions were conjectured in 1970 by McMullen. The first proof
of the necessity part by Stanley [16] used an approach from algebraic geometry.
Later on, other necessity proofs were given: a purely combinatorial one was due
to Stanley, while McMullen [17] proved the necessity part using the weight space
decomposition in the polytope algebra. We also mention here the proof by Timorin
(see [18]).

Convex polytopes yield another interesting algebraic structure, the ring of simple
polytopes (see [19] and [20]). However, that does not contain the group of virtual
polytopes.

4.3. Support functions. The support function of a convex body represents
a well-established concept in convex geometry. Since it behaves additively with
respect to Minkowski addition, the subtraction of support functions is expected to
correspond to Minkowski difference.

We show that just like convex polytopes, virtual polytopes have well-defined
piecewise linear support functions, and therefore outer normal fans. Although the
convexity property of the support function and of the fan is relaxed, all the other
properties are maintained.

Cones, fans, and spherical fans. A cone σ ⊂ Rn is a closed set of points preserved
by homotheties with centre at the origin: for any x ∈ σ and any non-negative λ,
the point λx lies in σ. Most publications on convex polytopes (for instance, [9])
assume that a cone is convex, since this is the case in the context of convex polytope
theory. For our purposes, we will have to drop this assumption, hence our cones
may not be convex.

We work with polyhedral cones, that is, those having a piecewise linear boundary.
The ambient space Rn and the set containing just the origin {O} are special cases
of cones. A fan Σ is a finite collection of polyhedral cones in Rn such that: (a) any
face of a cone σ ∈ Σ belongs to Σ; (b) for any two cones σ1, σ2 ∈ Σ, the intersection
σ1∩σ2 is a union of faces of both σ1 and σ2; (c) the union of all the cones equals Rn.
A convex fan consists only of convex cones.

For a more intuitive visualization, we also introduce a spherical fan, which is the
intersection of the (standard unit) sphere with a fan. This yields a tiling of the
sphere into spherical polytopes (which may be non-convex). Each spherical fan
extends to a fan, so we have an easy direct correspondence between these concepts.
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A fan Σ is said to be coarser than a fan Σ′, or equivalently, Σ′ is called a refine-
ment of Σ, if σ ∈ Σ′ implies that there exists a cone τ ∈ Σ such that σ ⊆ τ . An
example is given in Fig. 20.

Figure 20. Two convex polygons together with their outer normal fans.

The support function of a convex polytope K is the function

hK : Rn → R,

defined by
hK(x) = max

y∈K
⟨x, y⟩,

where ⟨x, y⟩ is the standard scalar product.
For a generic x the maximum of the scalar product ⟨x, · ⟩ is always achieved at

one of the vertices of the polytope. For the example in Fig. 20, if x lies in the
shadowed cone, then the maximum is attained at the vertex p. Consequently, on
the shadowed cone the support function of the polygon coincides with the support
function of the point p, which is the linear function ⟨p, x⟩. Figure 21 gives an
example.

A few well-known properties of the support functions of convex polytopes are
summarized in the following lemma.

Lemma 9. Let K and L be convex polytopes. Let K + t be the translation of K by
a vector t. Then:

1) hK is a convex piecewise linear function;
2) the support functions hK and hK+t differ by a linear summand;
3) hK is positively homogeneous, that is, hK(λx) = λhK(x) for λ > 0, and in

particular, hK equals zero at the origin O ;
4) the support function of a Minkowski sum equals the sum of the support func-

tions, that is,
hK⊗L = hK + hL.
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Outer normal fan of a convex polytope. There are two equivalent ways to define
the fan of a convex polytope. We shall use the second definition below of the fan
of a virtual polytope.

• For a convex polytope K, the linearity domains of its support function hK

yield a fan ΣK called the outer normal fan of the polytope K, or simply the
fan of the polytope K for short.

• Alternatively, the fan of a convex polytope can be defined as follows. For
each face F of K, define a cone

σF := {v ∈ Rn : Kv = F}

consisting of those vectors v such that the face Kv equals F . The fan of K is
the set of all the closures of all such cones when F ranges over all the proper
faces of K.

An example is illustrated in Fig. 20.
The definition immediately implies the following duality property.

Lemma 10. The faces of a convex polytope K are in a bijective correspondence
with the cones of the fan ΣK . Furthermore:

1) a k-dimensional face of K corresponds to an (n−k)-dimensional cone of ΣK ;
2) the affine hull of a face and the affine hull of the corresponding cone are

orthogonal;
3) this correspondence reverses inclusion.

Example 9. Figure 21 depicts a pentagon, its fan, and the graph of the support
function.

Figure 21. A convex pentagon, its outer normal fan, its spherical fan, and
the graph of its support function.

The group of support functions. We consider now the set of all convex continuous
positively homogeneous piecewise linear functions defined on Rn. Each of them is
the support function of some uniquely defined convex polytope. With pointwise
addition, this set forms a semigroup. We denote by S this semigroup factored by
globally linear functions. The map taking each polytope K to its support func-
tion hK establishes an isomorphism between the semigroup P of convex polytopes
modulo translations and the semigroup S .

We extend the semigroup S to the group of support functions, that is, the
Grothendieck group associated to it. It consists of all continuous positively homo-
geneous piecewise linear functions h defined on Rn, modulo globally linear functions.
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Passing to the Grothendieck group means that we allow subtraction of functions.
Consequently, we lose convexity, but all the other properties in Lemma 9 are pre-
served.

The following definition describes the canonical isomorphism between the group
of virtual polytopes and the group of support functions.

Definition 7. Let K = L ⊕M⊗−1 be a virtual polytope. Let hL and hM be the
support functions of L and M , respectively. The support function of K is defined
as hK := hL − hM .

Since the group of support functions is generated by convex functions, we have
the following theorem.

Theorem 11. The group of virtual polytopes and the group of support functions
are canonically isomorphic. The isomorphism sends a virtual polytope to its support
function.

Definition 8. Given a virtual polytope K, each face F of K yields a cone

σF := {v ∈ Rn : Kv = F}

consisting of those vectors v such that the face Kv equals F . The collection of
closures of all such cones when F ranges over all proper faces of K is called the fan
of the virtual polytope K.

In contrast to the convex case, the cones of the fan are not necessarily convex
(see Figs. 22 and 23).

Figure 22. Left: a virtual polytope represented by a coloured polygon.
Middle: its fan. Right: the graph of its support function. In this particular
case the fan is convex, but the support function is not convex.

Given a virtual polytope K, the cones of maximal dimension of the fan corre-
spond to vertices of K. This yields a simple, yet important lemma.

Lemma 12. A virtual polytope K is uniquely determined by its fan, vertex set,
and the (duality) map between the vertices of K and the cones of ΣK of maximal
dimension.

Proof. Indeed, we retrieve the support function hK(x) as the piecewise linear func-
tion whose restriction to each of the maximal cones σi equals the scalar prod-
uct (pi, x), where pi is the vertex corresponding to the cone σi. �
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Figure 23. Left: a virtual polytope represented by a coloured polygon.
Middle: its fan. Right: the graph of its support function. In this particular
case, both the fan and its support function are not convex.

Example 10. In dimension two the fan is obtained from the coloured star repre-
sentation by rotating clockwise through the angle π/2 and by forgetting the colours.
After the rotation, each (coloured) segment gives a ray (its colour does not matter).

We conclude with a list of virtual triangles, shown in Fig. 24 simultaneously as
polytopal functions and as coloured chains, together with their fans.

Figure 24. Virtual triangles represented as polytopal functions and as
coloured polygons, together with their fans.

Historical notes. The idea of subtracting support functions of convex bodies point-
wise can be traced back to several sources in the mathematical literature, and hence
this representation of virtual polytopes may not be a completely new concept. We
mention in particular an early paper [2] from 1939 by A. D. Alexandrov, who con-
sidered pointwise differences of support functions when proving a theorem giving
a characterization of the sphere. This theorem is the starting point for Alexan-
drov’s problem discussed in § 6.1. However, this terminology (the support function
of a virtual polytope) has appeared only recently: the first systematic and explicit
study of virtual polytopes defined via their support functions was carried out in [1]
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(see also [21]). Fans of virtual polytopes appeared (only for 3D) in [4] by Rodriguez
and Rosenberg and in [5] by V. Alexandrov, but these authors considered only
a restricted class of virtual polytopes called polyhedral hedgehogs, which are virtual
polytopes with convex fans. As we have seen, these do not cover the entire group of
virtual polytopes. Support functions and fans of virtual polytopes were also used
by Panina in [10], [22]–[24].

4.4. The combinatorial Picard group: systems of translated cones. In
this section we describe a representation for general virtual polytopes by systems
of translated cones, a term due to Ewald [9]. There exists a direct correspondence
between this representation and the representation in § 4.1 by polytopal functions.

Dual cone. In this section all cones are convex. This condition is necessary for the
correct definition of a dual cone. Given a convex cone σ, its dual cone σ̌ is defined
by

σ̌ = {x ∈ Rn : ⟨x, y⟩ 6 0 for all y ∈ σ}.

Translated cones for a convex polytope. Let K be a convex polytope and Σ its
fan. Let a cone σ ∈ Σ correspond by duality to a vertex pσ of K. Then the cone
spanned by K at the vertex pσ is the translate by pσ of the dual cone σ̌. In other
words, it equals the Minkowski sum pσ ⊗ σ̌.

Analogously, if a cone σ ∈ Σ corresponds by duality to a face F of K, then the
cone spanned by K at the face F is a translate of the cone σ̌ by some vector pσ,
where pσ can be chosen to be any point in the affine hull of F .

A convex polytope thus naturally yields a system of translated cones. This is
illustrated in Fig. 25 and Fig. 27.

Figure 25. Left: a cone σ of the fan corresponding to the vertex pσ of the
polygon K. Right: the translated cone pσ ⊗ σ̌.

The following Brianchon–Gram decomposition [25] (also known as the Gram–
Sommerville formula, or Gram’s equation) is classical (see Fig. 26).

Theorem 13 ([25]). For a convex polytope K and the associated system

{pσ ⊗ σ̌}σ∈Σ
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Figure 26. Brianchon–Gram decomposition of a convex triangle.

of translated cones, the characteristic function of K decomposes into the alternating
sum of the characteristic functions of the cones:

IK =
∑
σ∈Σ

(−1)codim σIpσ⊗σ̌.

The following orthogonality property follows directly from Lemma 10.

Lemma 14. For every cone σ ∈ Σ and every one of its faces τ , the vector pσ − pτ

is orthogonal to the affine span aff(τ).

Systems of translated cones. The above discussion suggests the following definition.

Definition 9. Let Σ be a convex fan in Rn and let {pσ ∈ Rn : σ ∈ Σ} be the col-
lection of translation vectors associated to its cones. The collection

{pσ ⊗ σ̌}σ∈Σ

of translated dual cones is called a system of translated cones with respect to the fan
Σ if the following (consistency) condition holds: for every cone σ ∈ Σ and every
one of its faces τ , the vector pσ − pτ is orthogonal to the affine span aff(τ).

Remark. This definition differs somewhat from Ewald’s in [9] in that we do not
assume that the fan involved is rational, and we do not require that the polytopes
involved are lattice polytopes (that is, have integer coordinates of the vertices).
These conditions necessarily appear later, when we pass to toric varieties. But we
stress that it is necessary for the fan to be convex, since otherwise duality is not
well defined.
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Figure 27. (a) A triangle. (b) Its fan. (c) Cones dual to the cones of the
fan. (d) Translated dual cones.

Group structure on systems of translated cones. Assuming that a fan Σ is fixed,
we now endow the system of translated cones with a group structure. The group
operation is defined by

{pσ ⊗ σ̌}σ∈Σ + {p′σ ⊗ σ̌}σ∈Σ = {(pσ + p′σ)⊗ σ̌}σ∈Σ.

We get a commutative group with zero element {O ⊗ σ̌}σ∈Σ.
To factor out (global) translations, we factorize in the above group by elements

of the form {p⊗ σ̌}σ∈Σ. After the factorization we get a group C PΣ which is called
(in Ewald’s book [9]) the combinatorial Picard group related to the fan Σ.

The group of virtual polytopes related to a fan. We are now ready to relate systems
of translated cones to virtual polytopes. The group P∗

Σ of virtual polytopes related
to a fan Σ is the subgroup of P∗ consisting of those elements whose support
function is linear on each of the cones in Σ. Equivalently, a virtual polytope K is
related to the fan Σ if its fan ΣK is coarser than Σ.

The following theorem establishes the canonical isomorphism between the com-
binatorial Picard group C PΣ and the subgroup of virtual polytopes defined above.

Theorem 15. The combinatorial Picard group C PΣ is isomorphic to the subgroup
of virtual polytopes related to the fan Σ. The isomorphism sends a convex polytope
to the associated system of translated cones. Once defined for convex polytopes, the
isomorphism extends to all virtual polytopes.

Example 11. Figure 28 illustrates two systems of translated cones for a convex
triangle and its inverse. The fan of a convex triangle contains 7 cones: three
two-dimensional cones, three one-dimensional cones (rays), and the one-point
cone {O}. Consequently, the dual cones are three pointed cones, three half-planes,
and the entire plane (which is dual to {O}). Figure 27 shows all of them, whereas
Fig. 28 shows only the pointed dual cones.
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Figure 28. Systems of translated cones for a triangle and its inverse.

From subgroups of virtual polytopes related to a particular fan, we now extend
the definition to the entire group of virtual polytopes. Given a fan Σ and a refine-
ment Σ′ of it, we have a natural inclusion P∗

Σ → P∗
Σ′ . This allows us to speak of

the inductive limit of the groups P∗
Σ, which means that we take the union of all

such groups and identify elements by using the indicated inclusions. We arrive at
the following theorem.

Theorem 16. The group P∗ of virtual polytopes is isomorphic to the inductive
limit of the groups C PΣ .

For a virtual polytope given by a system of translated cones there is an elegant
way to represent it as a polytopal function by using a direct generalization of the
aforementioned Brianchon–Gram decomposition for convex polytopes.

Theorem 17 ([1]). For a virtual polytope given by a system of translated cones,
that is,

K = {pσ ⊗ σ̌}σ∈Σ,

its canonical image in the algebra of polytopal functions is the function∑
σ∈Σ

(−1)codim σIpσ⊗σ̌.

As an example, this formula can be checked for a triangle using Fig. 27.

Remark. Analogous constructions are valid if we restrict ourselves to lattice poly-
topes, that is, polytopes whose vertices lie in the standard lattice Zn ⊂ Rn. In this
case we obtain the group P∗

Z of lattice virtual polytopes, the group P∗
Z,Σ of lattice

virtual polytopes related to a fan, the combinatorial lattice Picard group C PZ
Σ, and

also the group C PΣ. In this framework it makes sense to consider only rational
fans.

To summarize, we have described another equivalent representation of virtual
polytopes. This turns out to be the most suitable representation for working with
toric varieties (see § 6.5), since a system of translated cones immediately yields an
invertible sheaf on a toric variety.
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Historical note. The name ‘Picard group’ clearly indicates the original motivation
of Pukhlikov and Khovanskii in connection with the Picard group of a toric variety.
It should be mentioned that the Picard group of a projective toric variety has
several equivalent representations: as the group of invertible sheaves, as the group
of divisors, and as the group of line bundles. For a toric variety the translated cones
give yet another representation originating in convex geometry.

5. Virtual polytopes in dimension three

In this section we give two representations of virtual polytopes which are specific
to dimension three. In a sense they generalize the case of dimension two, where
virtual polytopes appeared as coloured polygons. Therefore, one would expect
some kind of polyhedral surface. The first approach represents virtual polytopes as
stressed non-crossing graphs on the sphere. Simple rules turn the set of spherical
stressed graphs into a group, which is shown to be isomorphic to the group of virtual
polytopes. The second representation is as a subfamily of Maxwell polytopes, so
called because these types of polyhedral surfaces appeared for the first time in the
work of James C. Maxwell. Both geometrizations of 3D virtual polytopes in this
section are inspired by, and intimately related to, Maxwell’s theory [26] of planar
stressed non-crossing graphs and polyhedral liftings.

Diverse concepts of polytopes appear in the literature: some are non-convex,
some have non-convex faces, some may have a non-spherical topology, and so on.
But the polytopes that we introduce here diverge even further from these famil-
iar examples. In our setting, Maxwell polytopes still have vertices, edges, and
faces. The faces are flat polygons, but they need not be simple, that is, they may
self-intersect.

5.1. Virtual polytopes as spherical stressed graphs.

Non-crossing spherical graphs. A graph is a pair G = (V,E), with a finite set V =
{1, 2, . . . , n} of vertices and a finite set E of edges. We allow loops and parallel
edges. We also include the single-loop graph, which is one closed edge with no
vertices on it. A graph may contain the single-loop graph as a connected component.
For technical reasons that will become clear later, we also assume that there are no
isolated vertices and no vertices of degree 2.

A spherical realization (or placement) of the graph is an injective map

p : V → S2

of its vertices to the unit sphere S2, together with a function that maps edges to
geodesic segments (great-circle arcs) on the sphere. An edge with endpoints i and j
is mapped to a geodesic segment with endpoints at pi and pj . The placement is
said to be non-crossing or an embedding if the edge segments do not cross and
do not overlap. The edges are not necessarily mapped to shortest geodesics, so if
the vertices of an edge are fixed, then there are (at least) two ways to place the
connecting edge. We also assume that the single-loop graph embeds as a great
circle (with no vertices).

Such a spherical realization induces a facial structure on the graph. The faces are
the connected components of the sphere (tiles or spherical polygons) that remain
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after removing the points and arcs corresponding to the embedding. Faces are
not necessarily topological disks (there can be holes). For example, a disconnected
graph has at least one non-disk face.

Stress. Let N(i) denote the set of edges incident to a vertex i ∈ V . Let ui,e be
the unit vector tangent to the geodesic arc corresponding to the edge e ∈ E at the
point pi, oriented towards the edge, as illustrated in Fig. 29. An equilibrium stress
on a spherical embedded graph is a map

s : E → R

from the edges to the reals which satisfies the equilibrium condition at every ver-
tex i ∈ V : ∑

e∈N(i)

seui,e = 0. (4)

Figure 29. Vectors ui,e used in defining spherical stress.

By definition, we also assign a stress, which can be any number, to the edge of
the single-loop graph.

A stress is non-trivial if it is not identically zero. A stress is non-zero if it is
non-zero on every edge.

Remark. This definition is a slight modification of the similar concept used by
Maxwell [26] for planar graphs and adjusted here for the sphere. The intuition
behind it comes from imagining the edges as springs lying on the sphere (or, as
in Maxwell’s paper, in the plane). Depending on whether they are stretched or
compressed compared to their natural state, the system of springs associated to
a graph is in equilibrium exactly when condition (4) holds. The vector seui,e equals
the force applied at the point pi by the spring along the edge e.

In drawing such graphs, we colour in red the positively stressed edges, that is,
those with s(e) > 0. Negatively stressed edges are coloured in blue.

The following proposition gives the important correspondence between convex
polytopes and spherical (positively) stressed graphs (see Fig. 30).
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Figure 30. A convex polytope yields a graph with positive equilibrium stress.

Proposition 18. Let K ⊂ R3 be a convex polytope. Its spherical fan yields a spher-
ical embedded graph GK whose edges correspond (by duality) to edges of the poly-
tope K . Let the function sK send each edge of GK to the length of the corresponding
edge of K . Then sK is a positive equilibrium stress of GK . Conversely, each spher-
ical positively stressed graph uniquely defines a convex polytope K ⊂ R3 .

This representation includes a single-vertex polytope (represented by the empty
graph), the two-vertex polytope (the line segment) represented by a single-loop
graph, and all ‘flat’ polytopes (that is, convex polygons) represented by graphs
with two antipodal vertices and at least three edges.

Now we turn the set of non-zero stressed graphs into a group.

Sum of stressed graphs. The sum (G, s) = (G1, s1) + (G2, s2) of two spherical
equilibrium stressed graphs is defined via the following algorithm.

Algorithm (sum of two spherical stressed graphs; see Figs. 31 and 32).
1. Each of the graphs yields a tiling of the sphere S2. We take a graph G yielding

their common refinement: it may have new vertices, and some of the original edges
may get split.

2. G has a natural stress defined as the sum of s1 and s2, as follows. Let e ∈ E
be an edge of G. If it lies on some edge of G1 but on no edge of G2, then we assign
to e the stress s1 (similarly, an edge lying on some edge of G2 but on no edge of G1

inherits the stress s2). If e ∈ E lies on an edge of G1 and on an edge of G2, then
we take the sum of the inherited stresses. The stress obtained is not necessarily
non-zero, so we need some further reductions.

3. Remove all zero-stressed edges of G. Remove isolated vertices.
4. If vertices of degree two exist, then the two adjacent edges must form an angle

of π and be equally stressed. In this case, we remove the vertex and collapse its
two incident edges into one.

Properties of addition of stressed graphs. The following properties are immediate
consequences of the above algorithm: (a) the zero element with respect to addition
is the empty graph; (b) the addition of positively stressed graphs corresponds to
Minkowski addition of the associated convex polytopes; (c) each stressed graph
has an inverse, obtained by simultaneously negating the signs of all its edges;
(d) the group of non-zero stressed graphs is generated by the positively stressed
graphs.
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Figure 31. The sum of two positively stressed graphs.

Figure 32. The sum of two stressed graphs with one positively stressed and
the other negatively stressed.

From this, we immediately obtain the following.

Theorem 19 ([23]). The group of non-zero stressed graphs is canonically isomor-
phic to the group of virtual polytopes. The canonical isomorphism sends a formal
difference K1 ⊗K⊗−1

2 of convex polytopes to the difference

(G1, s1)− (G2, s2)

of the associated (positively) stressed graphs.

This allows us to speak of virtual polytopes represented by stressed graphs.

Historical notes. The material in this section comes from Panina [23]. An advan-
tage of the representation is that it helps to construct virtual polytopes in dimension
three by just drawing pictures on the sphere.

5.2. Virtual polytopes represented by Maxwell polytopes. In this subsec-
tion we turn to a new representation of 3D virtual polytopes as Maxwell polytopes.
This is the closest in spirit to the theory of polytopes. We already have some intu-
ition concerning non-convexity and self-intersections coming from coloured polygons
in dimension two.
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We show how a virtual polytope can be represented as a Maxwell polytope
together with an associated fan, and we discuss properties of this representation.
Finally, in particular, we discuss the problem of detecting which Maxwell polytopes
represent virtual polytopes and which do not, a problem that extends to dimension
three the similar discussion in § 3.3 (which polygons represent virtual polytopes and
which do not).

Face graphs and their duals. By a graph G = (V,E) we mean the same object
as in the previous section. Recall that we allow loops and multiple edges, also
a single-loop graph, that is, one loop edge with no vertices on it.

A cycle (v1, e1, v2, e2, . . . , en, vn+1) of length n > 2 in a graph is a circular
sequence6 of vertices and edges, with v1 = vn+1 and ei = {vi−1vi}. Loops with
a single vertex or without vertices are also cycles, of length one and zero, respec-
tively. A cycle is edge simple if there are no edge repetitions.

A face is a non-empty set of edge-simple cycles in G without common edges.

Definition 10. A face graph is a graph G together with a (finite) collection of
faces C1, . . . , Cm, where we assume that no edge appears in the cycles of Ci more
than twice.

We visualize a face graph as a (combinatorial) surface (possibly with holes).
Indeed, we can patch up each of the sets Ci of cycles. If a set Ci consists of a unique
cycle, we imagine a disk patching up the cycle. If the face consists of k > 2 cycles,
then we imagine a (topological) sphere with k holes patched to them (each cycle
bounding a hole). A spherical face graph is a face graph whose associated surface
is the sphere.

Definition 11. The dual G∗ = (V ∗, E∗, F ∗) of a non-crossing spherical face graph
G = (V,E, F ) has V ∗ = F , F ∗ = V , and E∗ = E. Two dual vertices (corresponding
to two primal faces) are connected by a dual edge whenever the primal faces share
an edge.

The dual of a spherical face graph is not necessarily a spherical graph, but it is
always a cactus of spheres, defined below.

A cactus of spheres. This surface (with singularities) is defined inductively. The
base case is a combinatorial sphere. At each inductive step, we attach a new sphere
at an existing vertex. Underlying the cactus is a tree-like structure, as illustrated
in Fig. 33. The tree has a node for each sphere, and a tree edge joins two nodes
whose corresponding spheres share a point.

We will only be interested in face graphs dual to spherical stressed graphs.

Embedded graph and its faces. For an embedded spherical graph G, the embedding
defines the faces as the connected components of the complement of the edges and
vertices. The boundary of a face is a collection of cycles in the graph G. If G is
a connected graph, then all the faces are disks. Otherwise there may be faces that
are topologically spheres with holes. We assume that the cycles are consistently

6A finite ordered list of elements considered up to a power (2, 3, . . . , n, 1)k of the cyclic per-
mutation.
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Figure 33. A cactus graph and its underlying tree.

oriented, for example, so that a disk-like face lies ‘on the left-hand side’ of its
boundary cycle.

The faces of a stressed graph are the connected components of elements of the
spherical fan (see Definition 8) of the corresponding virtual polytope.

Definition 12. Given a virtual polytope K represented by a stressed graph (G, s),
its reduced spherical fan is the face graph generated by GK (see Fig. 34).

Figure 34. (a) Faces of the fan are not necessarily disks. (b) A self-touching
face.

Dual of a spherical face graph. The following properties result from direct applica-
tion of the above definition to the kind of spherical graphs that support a non-zero
stress.

1) All the faces of the dual face graph are topological disks.
2) If the graph is connected, then its dual is a topological sphere.
3) If the graph has k connected components, then the dual graph has the topol-

ogy of a cactus of k spheres.

Maxwell polytopes. With these concepts in place, we turn to one of the main
definitions of this subsection.
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Definition 13. A Maxwell polytope is a face graph together with a (not necessarily
injective) map of the vertices to R3 such that the following hold.

1) Non-degeneracy of edges: the endpoints of each edge are mapped to distinct
points.

2) Face planarity : the vertices of each face are mapped to coplanar points.
Thus, each face is mapped to a planar (possibly self-intersecting) polygon.

3) Non-degeneracy of faces: the vertices of each face are not mapped to collinear
points. In other words, the image of a face defines a unique plane.

The images of the vertices, edges, and faces of the face graph are called vertices,
edges, and faces of the Maxwell polytope.

By the combinatorics of a Maxwell polytope we mean the underlying face graph.

Virtual polytopes as Maxwell polytopes. Let us consider a virtual polytope K
which is neither a segment nor a point. We have seen in § 2.3 that a virtual poly-
tope has faces which are themselves virtual polytopes of a lower dimension. Thus,
a three-dimensional virtual polytope K has vertices, edges, and (two-dimensional)
facets.

We make use of the representation of K as the support function h, which comes
together with the reduced spherical fan Σ. We also use the representation of K as
a spherical stressed graph (G, s).

Definition 14. The Maxwell polytope M associated to the virtual polytope K is
defined as follows.

1) The underlying face graph is dual to the reduced spherical fan Σ, or, equiv-
alently, dual to the face graph induced by the stressed graph G.

2) The vertices of M are vertices of K: each vertex of the dual face graph Σ∗

corresponds to a face of Σ, which is a linearity domain of the support function
and therefore corresponds to a vertex of K.

We now analyze in detail the vertices, edges, and faces of the Maxwell polytope
associated to a virtual polytope.

Vertices. By definition, the vertices of M are the vertices of K.

Edges. By Theorem 1, a vertex of an edge of K is a vertex of K. Therefore, edges
of K connect vertices. Since they are one-dimensional virtual polytopes, that is,
virtual segments, we represent them by blue and red segments, as discussed in § 2.
An edge of K corresponding to an edge e of the graph G is a segment which is
orthogonal to the affine hull of e and has length equal to the absolute value of the
stress. The colour of the edge is determined by the sign of the stress.

Facets. Some of the edges form closed planar coloured polygons that represent
facets of K. These are also faces of M .

Remark. A virtual polytope K and the centrally symmetric image Symm(K⊗−1) of
its inverse yield one and the same Maxwell polytope, but with reversed colourings.

Algorithm 20 (stressed graph to Maxwell polytope (for connected graphs)). Let
K be a virtual polytope represented by a stressed connected graph (G, s). The
associated Maxwell polytope is retrieved as follows.
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1. Let pi be a vertex of G, viewed as a unit vector emanating from the center
of the sphere, and take the plane π orthogonal to pi. Since it is oriented by the
direction of pi, we can speak of clockwise and counterclockwise rotations in this
plane.

2. The star (in G) of the vertex pi induces a coloured star in π.
3. In turn, this coloured star defines a coloured polygon P in π (as in § 3.1).
4. After a clockwise rotation of P through an angle π/2, we obtain the face Kpi

represented by a coloured polygon.
5. The above steps retrieve all the faces up to a translation. The combinatorics

of the graph (G, s) indicates which faces should share an edge. We shift the faces
by parallel translations so as to have the required incidence relations as follows:
start with one face and fix its position. The positions of the adjoining faces are
uniquely determined. Since the graph G is connected, the positions of all the facets
are determined.

Before considering arbitrary stressed graphs (with several connected compo-
nents), we look at one particular example.

Example 12. A stressed graph with two connected components and its corre-
sponding Maxwell polytope are illustrated in Fig. 35. The Maxwell polytope is
represented as a gluing together vertex-to-vertex of the two Maxwell polytopes
corresponding to the connected components.

Figure 35. The Maxwell polytope on the left is associated to the discon-
nected spherical stressed graph on the right.

A disconnected stressed graph (G, s) splits into the disjoint union of its connected
components Gi. Each component can be treated as a separate virtual polytope
represented by a stressed graph, and therefore gives a Maxwell polytope Mi which
is a topological sphere. These polytopes are then glued together vertex-to-vertex
to form a Maxwell polytope of the graph (G, s).

In more detail, we have the following algorithm.

Algorithm 21 (stressed graph to Maxwell polytope (for disconnected graphs)).
Let K be a virtual polytope represented by a stressed graph (G, s).

1. Decompose G into the union of its connected components Gi. Each con-
nected component comes together with a spherical embedding inherited from G
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and with the stress inherited from (G, s). For each of the connected components,
apply Algorithm 20 and construct the corresponding Maxwell polytope Mi (up to
a translation).

2. Whenever Gi and Gj have edges incident to the same face F , the correspond-
ing Maxwell polytopes Mi and Mj should share the vertex that corresponds by
duality to F . This determines the relative position of Mi and Mj and, eventually,
recovers the cactus structure for M .

5.3. Detecting virtual polytopes. In this section we consider the problem of
detecting which Maxwell polytopes correspond to virtual polytopes. We restrict
the discussion to connected face graphs, whose duals are topological spheres (rather
than cactuses). The general case of disconnected graphs follows immediately. We
start by analyzing the case of trivalent stressed graphs.

Simplicial virtual polytopes in 3D. Let us consider a 3D virtual polytope K repre-
sented by a stressed connected trivalent graph (G, s): each vertex of G is incident to
exactly three edges. Then each face of the associated Maxwell polytope is a virtual
triangle, that is, a triangle with some colouring on the edges. Two triangles are
patched together edge to edge whenever the corresponding vertices of the graph are
connected by an edge. In other words, the Maxwell polytope M that represents K
is a simplicial surface in R3. Hence, we refer to this kind of virtual polytope K as
a simplicial virtual polytope. A number of simplicial virtual polytopes with particu-
lar geometrical and combinatorial properties are illustrated in Example 16, Fig. 37,
and Fig. 43.

Detecting simplicial virtual polytopes. Let M be any sphere-homeomorphic sim-
plicial surface in R3. We do not require M to be embedded or even immersed, and
thus the surface may have both global and local self-intersections, but we do require
that no two adjacent triangles lie in the same plane.

As a counterpart of Definition 3 we define the following concept.

Definition 15. A Maxwell polytope is a v-polytope if it is associated to some
virtual polytope.

Most simplicial surfaces are not v-polytopes. The answer to the natural question
of when a given simplicial surface M is a v-polytope is given algorithmically.

Algorithm 22 ([24] Is a simplicial surface a v-polytope?).
Let M be a simplicial surface.
1. Choose a normal vector to each of the (triangular) facets. This can be done

independently, that is, we do not require that the collection of all normal vectors
yields a global orientation of M . The normal vectors for different facets should be
different. If this is not possible, then there is no virtual polytope associated to the
surface.

2. Mark the endpoints of all the normal vectors on the unit sphere S2.
3. Whenever two marked points correspond to two adjacent facets of M , connect

them by a geodesic arc (an edge). We may choose either the short or the long arc.
The result should be an embedded graph, that is, these edges must not intersect.
If we succeed, then we have obtained a spherical fan Σ.
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4. If no such assignment of normal vectors or no embedded graph can be found,
then we conclude that there is no virtual polytope associated to the surface.

5. Otherwise, each such fan Σ together with the surface M gives a virtual
polytope K represented by the pair (M, Σ).

We emphasize that different fans on the same surface induce different virtual
polytopes. The spherical fan Σ is the reduced spherical fan of the virtual polytope K
found to be compatible with the given surface M . For a vertex p of M and a face A
of Σ related to p by duality, the restriction of the support function hK to the cone A
is the (globally) linear function represented by the scalar product ⟨p, x⟩.

The colouring of the edges of M is superfluous in (M, Σ): it is uniquely recovered
from the pair (M,Σ).

Ambiguous v-polytopes. A Maxwell polytope is called an ambiguous v-polytope if it
supports at least two non-complementary virtual polytope colourings. An example
is provided by the surface of a tetrahedron, which is very ambiguous: there exist
52 virtual polytopes associated to it (see Example 13 in § 5.4).

The general case: non-trivalent stressed graphs. We turn now to the general case.
If a virtual polytope P is represented by a non-trivalent stressed graph, then its
Maxwell polytope is not a simplicial surface. In fact, it may not be a piecewise linear
surface at all, since the polygons representing the faces may have self-intersections.

An extension of the previous algorithm can determine when a Maxwell polytope
is a v-polytope. The algorithm is almost the same, except for an additional case
needed to treat antipodal points that should be connected by an edge.

Algorithm 23 (is a Maxwell polytope a v-polytope?). Let M be an uncoloured
Maxwell polytope.

1. Choose a normal vector to the affine hull of each of the facets of M . (We
do not require the set of normal vectors to define a global orientation of M .) The
normal vectors for different facets should be different. If this is not possible, then
there is no associated virtual polytope.

2. Proceed as in Algorithm 22. A necessary addendum is the following: assume
that two antipodal points correspond to two adjacent faces sharing an edge e.
These two points also should be connected by an edge, but this time with the extra
condition that the connecting arc on the sphere should be orthogonal to the affine
hull of e. Again, we can choose between two options: we can take either one or the
other semicircle.

3. If we end up with a fan Σ, then Σ and the surface M together give a virtual
polytope K represented by (M,Σ).

The orthogonality condition here is necessary. It has been discussed in § 5.2.
Thus, we can speak of virtual polytopes represented by a Maxwell polytope M ,

together with an associated reduced fan Σ.

5.4. Examples of virtual polytopes in dimension three. We now present
a collection of virtual polytopes in dimension three. According to Algorithm 23
each of the examples presents a virtual polytope as a Maxwell polytope together
with an associated fan.
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Example 13 (the tetrahedron is v-ambiguous). There exist 52 different virtual
polytopes associated to the surface of a convex tetrahedron. We depict three of
them separately in Fig. 36, and give the complete list in Fig. 37. The second
tetrahedron in Fig. 36 represents the family of hyperbolic virtual polytopes, to be
defined and discussed in § 6.1.

Figure 36. (a) Convex tetrahedron. (b) Hyperbolic tetrahedron. (c) Yet
another virtual tetrahedron.

Example 14 (a v-polytope with self-intersecting faces). Figure 38 shows a virtual
polytope with self-intersecting faces.

Example 15 (a v-polytope with a two-connected vertex-edge graph). The vertex-
edge graph of a virtual polytope is always connected. Balinski’s theorem [27]
states that the vertex-edge graph of a convex three-dimensional polytope is three-
connected, that is, the removal of any 2 vertices together with the edges adja-
cent to them leaves the graph connected. We have already seen in Fig. 35 that
the vertex-edge graph of a virtual polytope can fail to be two-connected. Fig-
ure 39 presents a virtual polytope whose vertex-edge graph is two-connected but
not three-connected.

Example 16 (a flexible v-polytope). Cauchy’s theorem states that three-dimen-
sional convex polytopes are never flexible. However, if the convexity condition
is omitted, then there exist flexible simplicial surfaces. We need here Bricard’s
flexible octahedron of the second type, which is a self-intersecting polygon, a com-
binatorial octahedron. It can be constructed as follows: inscribe in a circle a self-
intersecting closed polygon with edge lengths a, b, a, b. The vertices of the polygon
will serve as four vertices of Bricard’s octahedron, and the edges of the polygon
will be edges of the octahedron. As the remaining two vertices we take two points
equidistant from the plane of the circle and lying on opposite sides of the plane
and such that their projections on the plane coincide with the center of the cir-
cle. Joining the six vertices by edges according to octahedral combinatorics, we get
Bricard’s flexible octahedron of the second type. The Bricard octahedron in Fig. 40
has an associated fan constructed according to Algorithm 22.

More sophisticated examples of virtual polytopes will be given in § 6.1.

5.5. Support functions and liftings of stressed graphs. The support func-
tion representation of a virtual polytope is very closely related to the stressed
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Figure 37. All 52 virtual tetrahedra. We depict here only their fans.
(Picture by Vlad Sherbina.)

Figure 38. Self-intersecting virtual polytope.

graph representation. For completeness, we give two algorithms converting one to
the other and following from Lemma 12.
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Figure 39. Virtual polytope whose vertex-edge graph is not 3-connected.

Figure 40. Bricard’s octahedron is a flexible virtual polytope. The octa-
hedron is shown together with the normal vectors of the faces (left) and its
fan (right).

Algorithm 24 (support function to stressed graph). Let the virtual polytope K be
represented by its support function h. Then the corresponding stressed graph (G, s)
is retrieved as follows:

1. The linearity domains of h form the fan associated to K. Intersecting the fan
with the unit sphere, we get an embedded graph G. It remains to recover the stress.

2. Take an edge e of the graph G. It is adjacent to two faces that correspond
to two cones σ1 and σ2 in the fan. The two cones share a face F = σ1 ∩ σ2. By
construction, the function h is linear on each of the cones. Let h = ⟨p1, · ⟩ on σ1

and h = ⟨p2, · ⟩ on σ2.
3. Let the stress on the edge e equal the scalar product ⟨p1 − p2, v⟩, where v is

the unit outward normal vector to the face F of the cone σ1 (see Fig. 41).
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Figure 41. The normal vector to the common face of two adjacent cones in
a fan.

Algorithm 25 (stressed graph to support function). Conversely, given a stressed
graph (G, s), the corresponding support function of a virtual polytope is retrieved
as follows.

1. The embedded graph G yields a fan Σ.
2. We construct a function h which is piecewise linear with respect to Σ: choose

one of the three-dimensional cones of the fan, say σ1, and set h equal to zero on σ1.
3. Take a cone σ2 which shares a face F with σ1. The face corresponds to an

edge e of the graph G. Define the restriction of h to the cone σ2 as

h
∣∣
σ2

= h
∣∣
σ1

+ s(e)⟨v, · ⟩.

Here again v is the unit outward normal vector to the face σ1 ∩ σ2 of the cone σ1

(see Fig. 41), and s(e) is the value of the stress on the edge e.
4. Continue taking adjacent cones one by one, in an arbitrary order.

Maxwell’s correspondence. We now relate the previous discussion about support
functions versus stressed graphs to the (old and classical) construction in rigidity
theory about lifting versus stress, as introduced by Maxwell in [26].

Assume that we have a graph G embedded in the plane R2 so that the edges
are realized by line segments. This gives a tiling of the plane into regions (some of
them are bounded, one is not). A lifting of the embedded graph is a continuous
function h : R2 → R which is piecewise linear with respect to the tiling. The graph
(in other terminology, the terrain) of h is a piecewise linear surface.

Each embedded graph has a trivial lifting which is a (globally) linear function.
However, not all graphs have non-trivial liftings. It was James Clerk Maxwell who
observed in [26] that liftability is directly related to the existence of an equilibrium
stress on the embedded graph. He presented a way of reconstructing a lifting
from a stress and vice versa. This is referred to as Maxwell’s correspondence. More
precisely, Maxwell established an isomorphism between the linear space of all liftings
factorized by globally linear functions and the space of equilibrium stresses of the
same graph.
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In the above algorithms we adopted the approach used by Maxwell.
There exists yet another relationship between support functions and liftings of

planar graphs. Assume that we have a virtual polytope, which, as we know, comes
with its support function h, also represented by a spherical stressed graph (G, s).
Take a plane e ⊂ R3 and intersect it with the fan. The intersection G equals the
central projection on e of a hemispherical part of G. It resembles an embedded
graph except with the difference that some edges may go to infinity. We can extend
Maxwell’s lifting to this kind of object by literally repeating the definition. Then
the restriction of the support function hK to the plane e is a lifting of G.

6. Applications

In this section we demonstrate the usefulness of the theory of virtual polytopes
with a selection of problems and applications originating in various areas of math-
ematics.

6.1. A.D. Alexandrov’s problem and hyperbolic virtual polytopes. A
necessary warning: hyperbolic polytopes are not polytopes lying in some hyperbolic
space, but rather a special subclass of 3D virtual polytopes.

We introduce hyperbolic virtual polytopes, or, shortly, hyperbolic polytopes. This
class of virtual polytopes emerged naturally from a number of geometry problems
in the style of Alexandrov, and it has been used to provide new insights into one
of his theorems concerning 3D polytopes, and to resolve one of his longstanding
conjectures.

The underlying idea for the results presented in this section is that hyperbolic
polytopes, while retaining many of the properties of convex ones, lie almost at
the opposite pole in terms of convexity properties. A generic virtual polytope is
somewhere convex, somewhere concave, and somewhere saddle-like: hyperbolic ones
are totally saddle-like.

To make this precise, we rely on the following definition (illustrated in Fig. 42)
of saddle surfaces, which makes sense in both the smooth and the piecewise linear
case.

Figure 42. Saddle points on surfaces.

Definition 16. Let F be a surface in R3. A point x ∈ F is called a saddle point
if no plane passing through x intersects F locally at just one point. The surface is
a saddle surface if all its points are saddle points.
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To define hyperbolic virtual polytopes, we need the following preliminary con-
struction. Let K be a virtual polytope in R3, and let h be its support function.
For a vector v ∈ S2, the equation

⟨x, v⟩ = 1

defines a plane e(v). We consider the restriction of h to e(v) and denote by Fv the
graph of this restriction. The surface Fv is piecewise linear. Its vertices and edges
correspond to those of the fan ΣK that lie in the open hemisphere with pole at v.

Since convex polytopes are those virtual polytopes that have convex support
function, we conclude that a virtual polytope is convex (that is, K ∈ P) if and
only if the surface Fv is convex for any v. In analogy to this property, we give the
following definition.

Definition 17. A virtual polytope K is said to be hyperbolic if Fv is a saddle
surface for any v ∈ S2.

The theory of hyperbolic polytopes emerged originally as a tool for constructing
counterexamples to the following uniqueness conjecture, proved by Alexandrov [2]
in the case of analytic surfaces.

A. D. Alexandrov’s problem (uniqueness of smooth convex surfaces). Let K ⊂
R3 be a smooth convex body, and let R1(x) and R2(x) be the principal curvature
radii of its boundary ∂K at the point x. If there is a constant C such that

R1(x) 6 C 6 R2(x)

at every point of ∂K , then K is a ball.

For general (not necessarily analytic) smooth surfaces, the problem remained
open for a long time, until Martinez-Maure gave a first C2-counterexample
in 2001 [28].

Subsequently, Panina presented a series of C∞-counterexamples and developed
a systematic theory, based on hyperbolic virtual polytopes, for constructing an
infinite class of such counterexamples. Details can be found in [24], [29], and further
illustrations and three-dimensional electronic models in [30].

Panina’s construction. To produce counterexamples to Alexandrov’s problem, we
need a simplicial hyperbolic virtual polytope with the additional property that the
edges of its spherical fan are all shorter than π. Since hyperbolic polytopes are rare
phenomena among virtual polytopes, the construction of such an object is a chal-
lenging step. Next, we show that the support function h of the constructed hyper-
bolic virtual polytope can be smoothed. More precisely, there exists a C∞-smooth
saddle function h′ which approximates h. The smoothing technique works only for
virtual polytopes with the above additional property.

Now let hR be the support function of the ball of radius R. If the sum h′+hR is
a convex function (for this purpose R should be sufficiently large), then h′ + hR

is the support function of some smooth convex body K ′ which is a counterexample.
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Figure 43. Two hyperbolic virtual polytopes represented by Maxwell poly-
topes: (left) with six horns and (right) with eight horns.

Constructing hyperbolic polytopes. We first describe a convenient criterion for
hyperbolicity of virtual polytopes.

Definition 18. A vertex p of a spherical fan Σ is pointed if there exists an angle
larger than π incident to p. A fan is pointed if all of its vertices are pointed.

Lemma 26. If K is a virtual polytope with a pointed spherical fan ΣK , then K is
hyperbolic.

Example 17. The hyperbolic tetrahedron in Fig. 36 (b) is a hyperbolic virtual poly-
tope.

Advanced examples of hyperbolic virtual polytopes appeared in [24] and [29].
They are represented by explicitly described Maxwell polytopes and are hyperbolic
by Lemma 26 because their fans are pointed by construction. This is illustrated in
Figs. 43 and 44.

A. D. Alexandrov’s uniqueness theorem for convex polytopes and its refinements.
Here is one more application of hyperbolic virtual polytopes (see [31]). It is related

Figure 44. Fan of the hyperbolic polytope with eight horns.
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to the following theorem regarded by Alexandrov as a discrete counterpart of the
aforementioned theorem on the uniqueness of smooth convex surfaces [2].

Theorem 27 (uniqueness theorem for convex polytopes [2]). Let K and M be
three-dimensional convex polytopes. If for any pair of their parallel facets, neither
can be moved strictly inside the other via a translation, then the polytopes coincide
up to a translation.

Since this theorem is related to Alexandrov’s problem, it is not surprising that
it has a natural interpretation in terms of hyperbolic polytopes. Moreover, a little
deeper understanding of hyperbolic polytopes leads to the following two refinements
of the theorem.

Theorem 28 ([31]). There exist two different three-dimensional convex polytopes
K and L such that for any pair of their parallel facets, there is at most one
translation which moves one of them strictly inside the other.

The example is far from trivial. For its construction, we need a hyperbolic
polytope with the additional property that its fan admits a regular triangulation
without adding extra vertices (Steiner points).

Theorem 29 ([31]). Let K and L be three-dimensional convex polytopes. Suppose
that for each pair of parallel facets:

1) there exists at most one translation t moving the facet of K into the facet
of L;

2) there exists no translation t moving the facet of L into the facet of K .
Then the polytopes coincide up to a translation.

There is one more recent result in this direction (see [32]). It describes two
convex polytopes in R3 such that for each pair of their parallel facets, the facets
are different, and there exists exactly one translation moving one of them into the
other.

Hyperbolic virtual polytopes and pointed tilings. Between the theory of hyper-
bolic virtual polytopes and the theory of pointed tilings [33] there is a relationship
which highlights the above constructions. In a sense, planar pointed tilings (defined
below) are opposite to the more traditional convex graph embeddings: they are as
non-convex as possible. As a parallel phenomenon, hyperbolic virtual polytopes
also are as non-convex as possible. The two theories have an overlap to be sketched
now. For details, we refer the reader to [23].

A pseudotriangle is a closed polygon without self-intersections with exactly three
angles smaller than π. All other angles are reversed. Originally, a pseudotriangle
is defined to be a planar polygon, but the definition extends to spherical polygons
as well. A pseudotriangulation is a partition of a region of the plane (or of the
sphere) into pseudotriangles. A pointed tiling is a tiling such that each vertex has
an adjacent angle greater than π. Alternatively, a pointed pseudotriangulation on
the plane can be defined as a finite non-crossing collection of line segments such
that at each vertex there is an adjacent angle greater than π, and such that no
line segments can be added between any two existing vertices while preserving this
property.
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Pointed pseudotriangulations on the plane were first considered by Streinu [34],
[35] as part of her solution to the carpenter’s ruler problem, a proof that any simple
polygonal path in the plane can be straightened out by a sequence of continuous
motions. A crucial property used by Streinu in the proof is that a pointed tiling
has only the trivial stress.

Pointed pseudotriangulations satisfy the conditions defining a Laman graph: such
a graph has exactly 2v − 3 edges, (where 2v is the number of vertices) and every
k-vertex subgraph has at most 2k − 3 edges. This follows directly from the Euler
formula. Simple dimension counts show that for a generically embedded graph,
a necessary and sufficient condition for there to exist a non-trivial stress is that the
number of edges is greater than 2v − 3.

The crucial difference between spherical embedded graphs and planar tilings
is that on the sphere there exist pseudodigons, that is, spherical polygons with
exactly two convex angles. Therefore, a pointed tiling of the sphere may contain
pseudodigons, which changes the counts from the Euler formula, and as a conse-
quence there are pointed graphs on the sphere that have non-zero stress. Such
a graph should have at least four pseudodigons, and the other tiles must be pseu-
dotriangles. Then we know from Lemma 26 that the graph gives a hyperbolic
virtual polytope. This enables us to construct hyperbolic virtual polytopes by just
drawing pointed graphs on the sphere.

6.2. Valuations of virtual polytopes. Volume and count of integer points.
A valuation is a real-valued function ϕ : P → R defined on convex polytopes which
is additive: whenever K1, K2 and K1 ∪K2 are convex polytopes, we have

ϕ(K1 ∪K2) = ϕ(K1) + ϕ(K2)− ϕ(K1 ∩K2).

A lattice valuation is defined only for lattice polytopes, that is, for polytopes whose
vertices lie in the standard lattice Zn ⊂ Rn. In this survey we consider only
translation-invariant valuations, that is, valuations which coincide on a polytope
and a translate of it.

A valuation ϕ extends uniquely by linearity to the elements of the algebra of
polytopal functions (introduced in § 4.1). Namely, for a function

f =
∑

αiIKi

we set
ϕ(f) =

∑
αiϕ(Ki).

Thus, it make sense to speak of the valuation ϕ of a virtual polytope, since
a virtual polytope has a representation as a polytopal function.

We first discuss the most common example of a valuation, namely, the volume.

Volume of a virtual polytope. The volume of a virtual polytope represented by
a polytopal function f obviously equals∫

Rn

f(x) dx,

where the integration is with respect to Lebesgue measure.
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From Fig. 16 one concludes that the volume of a virtual polytope may be nega-
tive, and that the volume of a virtual polytope may be zero even if the polytope is
not degenerate.

Count of lattice points for virtual polytopes. Another important example of a
translation-invariant valuation is the number of integer points in the polytope. The
lattice points in convex polytopes are a classical object of study: starting from
the (old and classical) Pick theorem (see, for instance, [9] and [37]), up to such
contemporary applications as calculating the Kontsevich volume (see [38]), lattice
points appear systematically in many mathematical and computational problems.

From this valuation on lattice polytopes we proceed to the notion of the number
of (weighted) lattice points in a virtual polytope: for a virtual polytope represented
by a polytopal function f , we define

Q(f) =
∑

x∈Zn

f(x).

For a convex polytope K, all the weights equal 1 for all the points in K. For a virtual
polytope, the values of the weights are the values of the polytopal function f (see
Fig. 45 for an example).

Figure 45. Integer points in a convex polytope and in a virtual polytope.

Valuations: general case. Now we go back to all possible valuations, keeping in
mind the above two particular examples. McMullen observed in [39] that each
valuation behaves polynomially with respect to Minkowski addition.

Theorem 30. Let K1, . . . ,Kn ⊂ Rn be convex polytopes. For a valuation ϕ and
non-negative numbers λ1, . . . , λn , the function

Pϕ(λ1, . . . , λn) = ϕ((λ1)K1 ⊗ · · · ⊗ (λn)Kn)

is a polynomial in the variables λ1, . . . , λn .
In the case of lattice polytopes a similar statement is true for non-negative inte-

gers λ1, . . . , λn and for convex lattice polytopes.

If we apply the theorem for the volume valuation V , we arrive at the classical
notion of mixed volumes.
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Definition 19. In the notation of Theorem 30 with ϕ = V , the coefficient of the
polynomial Pϕ = PV at the monomial λ1 · · ·λn is called the mixed volume of the
polytopes K1, . . . ,Kn and is denoted by V (K1, . . . ,Kn).

We emphasize that initially Theorem 30 is only applicable to convex polytopes
and positive dilations. Virtual polytope theory gives an elegant answer to the
intriguing question of what Pϕ(λ1, . . . , λn) means for arbitrary (not all positive)
λ1, . . . , λn. The first observation in this direction is due to McMullen.

Theorem 31 ([39]). Let K1 = K2 = · · · = Kn = K be a convex polytope, and
let Pϕ be the polynomial in Theorem 30. Then

Pϕ(−1) =
∑
F

(−1)dim F ϕ(F ),

where the sum extends over all faces of K including K itself.

This theorem can be reformulated in terms of virtual polytopes.

Theorem 32. In the notation of Theorem 31,

Pϕ(−1) = ϕ(K⊗−1),

where K⊗−1 is the Minkowski inverse of the polytope K .

For ϕ = Q this formula becomes

PQ(−1) = (−1)dim K · (the number of lattice points strictly inside K),

which is Ehrhart’s reciprocity law (see [40]).
Pukhlikov and Khovanskii proved a more general fact which covers both

McMullen’s theorem and Ehrhart’s reciprocity law. Namely, they proved that
Theorem 30 is valid for arbitrary virtual polytopes and arbitrary real coefficients.
To formulate this theorem, we first define the Minkowski power of a virtual
polytope.

Observe that for a virtual polytope K and a positive integer λ, the Minkowski
power

K⊗λ = K ⊗ · · · ⊗K︸ ︷︷ ︸
λ

equals the dilation of the polytope K by λ. This motivates the following.

Definition 20 (Minkowski power of a virtual polytope). For a positive (not nec-
essarily integer) λ and a virtual polytope K, we define K⊗λ to be the dilation of K
by λ:

K⊗λ = (λ)K.

For a negative λ and for a virtual polytope K, we define

K⊗λ = (−λ)K⊗−1.

This definition lets us formulate the next theorem.
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Theorem 33 ([1]). Let K1, . . . ,Kn ⊂ Rn be virtual polytopes. For a valuation ϕ
that is translation invariant and for any real numbers λ1, . . . , λn , the function

Pϕ(λ1, . . . , λn) = ϕ(K⊗λ1
1 ⊗ · · · ⊗K⊗λn

n )

is a polynomial in the variables λ1, . . . , λn .
The same is true for a lattice valuation, for lattice virtual polytopes, and for

integers λ1, . . . , λn .

This theorem allows us to define mixed volumes for virtual polytopes by literally
repeating Definition 19.

Definition 21. In the notation of the above theorem applied for the volume valu-
ation V , the coefficient of the polynomial PV at the monomial λ1 · · ·λn is called the
mixed volume of the virtual polytopes K1, . . . ,Kn and is denoted by V (K1, . . . ,Kn).

The above construction fits nicely the paradigm that virtual polytopes retain all
the properties and structures of convex polytopes except for convexity.

Historical remarks. The special case of Theorem 30 with the volume taken as
a valuation was known long before McMullen’s work: Minkowski used the cor-
responding fact when defining mixed volumes. This concept became the central
part of the Brunn–Minkowski theory (details can be found in many textbooks,
for instance, [8]). Algorithmic aspects of an efficient enumeration of lattice points
in polytopes are treated in [41], which also explains the connection between the
number of integer points and the Todd class of the toric variety, a topic beyond
the scope of the present survey. However, we mention very briefly that the classi-
cal Euler–Maclaurin formula (which involves lattice points on a segment) extends
to lattice points and convex polytopes and then to virtual polytopes. This was
developed in [42] and further generalized in [43].

6.3. Mixed volumes of virtual polytopes. We have defined mixed volumes
for virtual polytopes in Definition 21. However, mixed volumes can be extended by
linearity even further, namely, to the set of all polytopal functions (see [3] and [44]).

Definition 22. For a polytopal function f =
∑

αiIKi we define the mixed volume
by setting

V (f, ∗, . . . , ∗) :=
∑

αiV (Ki, ∗, ∗, . . . , ∗),

where ∗ stands for arbitrary polytopal functions.

We say that two polytopal functions f and f ′ have the same behaviour with
respect to mixed volume if for any polytopal functions g1, . . . , gn−1

V (f, g1, . . . , gn−1) = V (f ′, g1, . . . , gn−1).

It is known that a convex polytope can be uniquely reconstructed by its behav-
ior with respect to mixed volume calculation. The same holds true for virtual
polytopes.

Theorem 34 ([10]). Two virtual polytopes have the same behaviour with respect to
mixed volume if and only if they coincide.
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In both convex and virtual settings, the proof is based on the fact that mixed
volume calculation reduces to a formula for V (f, g1, . . . , gn−1) involving the support
function of the (virtual) polytope f .

However, the theorem holds just for virtual polytopes, and not for arbitrary poly-
topal functions. A natural question arises: To what extent is a polytopal function
determined by its behaviour with respect to mixed volume?

To answer the question, we need some preliminary constructions. Define a map Ξ
from the polytopal functions to virtual polytopes by setting

Ξ
(∑

αiIKi

)
=

⊗
i

K⊗αi
i .

Here K⊗αi
i is the Minkowski power (see Definition 20). The definition of the map

Ξ is correct, that is, the right-hand side does not depend on the representation
of f as a linear combination. Here is one simple but important consequence of the
correctness of the definition.

Proposition 35. Assume that the characteristic function of some convex poly-
tope K is decomposed as IK =

∑
i αiIKi

, where the Ki are some convex polytopes.
Then

K =
⊗

i

K⊗αi
i .

With the above definition, we can now formulate the following proposition.

Proposition 36 ([10]). A polytopal function f and the virtual polytope Ξ(f) have
the same behaviour with respect to mixed volume.

Combined with Theorem 34, this immediately gives the following theorem.

Theorem 37 ([10]). Two polytopal functions f and g have the same behaviour with
respect to mixed volume if and only if the associated virtual polytopes Ξ(f) and Ξ(g)
coincide.

6.4. Minkowski decomposition of polytopes. The question raised below is
motivated by the theory of zonotopes. A zonotope is a convex polytope decompos-
able into a Minkowski sum of line segments [45]. Zonotopes appear in surprisingly
diverse areas of mathematics ranging from classical convexity to universality theo-
rems [46], (oriented) matroids [47], and many others. A nice property of zonotopes
is that they can be easily characterized: a polytope is a zonotope if and only if all
its two-dimensional faces are centrally symmetric. The summands of a zonotope are
also easily recovered: they are the edges of the zonotope. The faces of a zonotope
are also zonotopes.

The question of characterizing the polytopes which can be decomposed into
a Minkowski sum of polytopes of a certain fixed lower dimension arises in a natural
way. In this subsection we discuss the following question: Given a d-dimensional
convex polytope, can it be represented as a Minkowski sum of (d − 1)-dimensional
virtual polytopes? And if yes, then find such a representation.
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The answer is as follows: an n-dimensional convex polytope is representable as
a sum of (n− 1)-dimensional virtual polytopes (or equivalently, as a weighted sum
of (n − 1)-dimensional convex polytopes) if and only if it equals the Minkowski
sum of its faces F taken with certain prescribed weights wF .

Now we make this precise. Let a convex polytope K in Rn be represented by its
characteristic function IK (see § 4.1), and let

JK(x) = lim
ε→0

1
Vε

∫
Bε(x)

IK(t) dt,

where Bε(x) is the ball of radius ε about the point x, Vε is its volume, and the
integration is with respect to Lebesgue measure.

The function JK(x) is clearly a polytopal function. Indeed, it is constant on the
relative interiors of the faces of K, and therefore it decomposes as a weighted sum
of characteristic functions of the faces:

JK(x) =
∑
F

wF IF (x),

where the sum is over all the faces of K, including K itself.
For instance, we always have wK = 1, and wF = −1/2 for a facet F . The

other weights depend on the angular measures of the polytope K (see, for example,
Fig. 46).

Figure 46. A prism decomposes into the sum of its faces.



Virtual polytopes 1159

Theorem 38 ([12]). Let K be a convex polytope. In the notation introduced above
and that in Definition 20, K is representable as a sum of (d−1)-dimensional virtual
polytopes if and only if ⊗

F

F⊗wF = E, (5)

where the sum is over all faces of K , including K itself, and E is the one-point
polytope, that is, the unit element of the group of virtual polytopes.

If the equality (5) holds, then

K =
⊗
F

F⊗−wF ,

where the sum is over all proper faces of K , that is, all faces excluding K . (This
is the required representation of K by a Minkowski sum of lower-dimensional poly-
topes.)

Example 18. A convex tetrahedron in R3 is not representable as a sum of planar
virtual polytopes.

Example 19. Let us see how the theorem works for a prism K = T ⊗ s, which
is the Minkowski sum of a triangle T and a segment s. Figure 46 lists all the faces
of the prism K together with their weights. After reduction, we have⊗

F

F⊗wF = K ⊗ s⊗−1 ⊗ T⊗−1 = E.

Therefore, K = T ⊗ s.

Theorem 38 implies by induction similar results for decomposing a d-polytope
into a Minkowski sum of virtual k-polytopes for all k < d.

6.5. Projective toric varieties, Picard group, and Riemann–Roch The-
orem. We conclude our survey by expounding briefly on the relation between
projective toric varieties and virtual polytopes. This was the starting point which
motivated Khovanskii and Pukhlikov [1].

Projective toric varieties form an important class of examples in algebraic geom-
etry. The name ‘toric’ is used because a toric variety contains an algebraic torus
as an open dense subset, and the natural action of the torus on itself extends to
the entire variety. A projective toric variety is determined by the underlying fan,
which is the outer normal fan of some lattice convex polytope. For example, the
complex projective space CPn (which is a toric variety) is associated in this sense
to the n-dimensional simplex.

There exists a kind of ‘dictionary’ which translates many algebraic geometry
notions and theorems into notions and theorems in the geometry of convex poly-
topes. Among others, these are: singularities, morphisms, intersection theory,
Hodge inequality, the Riemann–Roch theorem. As a consequence, general facts
from algebraic geometry have implications to polytopes, and vice versa. Virtual
polytopes fit this framework nicely: the dictionary translates them as elements of
the Picard group, that is, invertible sheaves, whereas convex polytopes are trans-
lated as very ample sheaves.
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Projective toric varieties. A brief overview. For a detailed presentation, see [48],
[9], and [21].

For a convex rational simple polytope let Σ be an outer normal fan whose cones
are regular (regularity is some additional property) in Rn. Let σ ∈ Σ be these
cones and let σ̌ be their dual cones. We associate to it a projective toric variety XΣ

obtained from Σ by the following construction.
• Laurent polynomials. Take the algebra of Laurent polynomials over C in

n variables:

C[z, z−1] =
{∑

a

λaza =
∑

(a1,...,an)

λ(a1,...,an)z
a1
1 za2

2 · · · zan
n

}
,

where a = (a1, . . . , an) ∈ Zn, and the coefficients λa are complex numbers.
The support of a Laurent polynomial is defined as

supp
(∑

λaza
)

= {a : λa ̸= 0}.

• Defining charts. Each cone σ in the fan Σ yields the algebra Rσ̌ of Laurent
polynomials with support in the dual cone:

Rσ̌ := {f ∈ C[z, z−1] : supp(f) ⊂ σ̌}.

Next, we define the affine algebraic variety (chart) Xσ̌ as the maximal spec-
trum of Rσ̌.

• Gluing charts together. The following observation lets us define gluing maps
between the charts Xσ̌. Suppose that τ is a face of σ, where τ, σ ∈ Σ. Then
we have τ̌ ⊃ σ̌, which implies a natural inclusion of algebras Rσ̌ → Rτ̌ , and
consequently an inclusion of affine algebraic varieties Xτ̌ → Xσ̌. In other
words, we have an identification of Xτ̌ as a subset of Xσ̌.
The collection of all charts Xσ̌, together with gluing maps, yields a smooth
projective algebraic variety XΣ. Because of some extra structure (it contains
a dense embedded torus which acts on XΣ), it is called a toric variety.

• Structure sheaf. The collection of algebras {Rσ̌} yields a sheaf of algebras
on XΣ called the structure sheaf OXΣ .

Picard group of XΣ and the lattice combinatorial Picard group. The variety XΣ

comes with its Picard group, which is the set of isomorphic classes of invertible
sheaves of OXΣ -modules. The group operation for invertible sheaves is the tensor
product ⊗, and the unit element in the Picard group is OXΣ .

Let K be a lattice virtual polytope, that is, a virtual polytope whose vertices
lie on the standard lattice Zn. We assume in addition that the fan ΣK is coarser
than Σ. We represent K as an element of the combinatorial Picard group, that
is, as a system of translated cones pσ ⊗ σ̌ (see § 4.4), and we define an invertible
sheaf FK of OXΣ -modules on XΣ by setting

FK(Xσ̌) = zpσOXΣ(Xσ̌).
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Theorem 39 ([9]). The map K → FK establishes an isomorphism between the
lattice combinatorial Picard group C P Z

Σ and the Picard group of the projective toric
variety XΣ .

Let us now pass from the group of virtual polytopes related to one particular
fan to the whole group of lattice virtual polytopes.

We have already noted in § 4.4 that for a given fan Σ and a refinement Σ′ of
it there is a natural inclusion for the groups of lattice virtual polytopes related to
these fans: P∗

Z,Σ ⊆ P∗
Z,Σ′ .

Furthermore, there is a natural toric epimorphism XΣ′ → XΣ which in turn
induces an inclusion of the Picard groups: Pic(XΣ) ⊆ Pic(XΣ′).

This enables us to speak of the inductive limits of the groups P∗
Z,Σ and Pic(XΣ).

Thus, the inductive limit in Theorem 39 yields the following theorem.

Theorem 40. The group P∗
Z,Σ of lattice virtual polytopes is isomorphic to the

inductive limit of the Picard groups Pic(XΣ).

Riemann–Roch theorem and enumeration of integer points. Here is one more nice
observation from [49]: Theorem 30 for the valuation Q (which counts integer points)
follows from the Riemann–Roch theorem for toric varieties (see [50]).

The argument proceeds by translating Theorem 30 into the language of toric
varieties: a polytope K is translated as an invertible sheaf, and the number of lattice
points in K is translated as the value of the Euler characteristic with coefficients
in the invertible sheaf corresponding to K. It remains to apply the Riemann–Roch
theorem, which says that the Euler characteristic behaves polynomially with respect
to the tensor product: the function n → ξ(XΣ, F⊗n

K ) is a polynomial in n. It can be
checked that for convex polytopes the value of this polynomial equals the number
of lattice points.

7. Concluding remarks

The theory of virtual polytopes presented in this survey started with the very
simple algebraic passage from the semigroup of convex polytopes with Minkowski
addition to its associated Grothendieck group. However, the core of the theory
lies in the many geometric representations of virtual polytopes, together with the
canonical isomorphisms between different representations, and also in their appli-
cations.

Different problems make use of one or another of these representations, as appro-
priate for the particular problem. For example, the Minkowski decomposition prob-
lem in § 6.4 relied on the polytopal function representation in § 4.1. And for solving
Alexandrov’s problem discussed in § 6.1, the techniques in § 5.1 involving spherical
stressed graphs were used in combination with ideas in § 5.5 concerning support
functions.

An important conclusion to be extracted from this survey is that virtual poly-
topes possess all the properties and structures of convex polytopes, except of course
convexity. But the partially ordered set of faces, the mixed volumes, the theory
of enumeration of lattice points, and other notions have natural generalizations to
this extended class of polytopes.
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Geometrically, virtual polytopes may sometimes appear to be counterintuitive:
we have seen examples of hyperbolic polytopes with an everywhere saddle support
function in § 6.1, examples of a 3D virtual polytope whose vertex-edge graph is
not 3-connected in Example 15 and Figure 39, a flexible virtual polytope in Exam-
ple 16 and Figure 40, and other examples not encountered in the world of convex
polytopes.

We hope that by the end of this survey the reader will have found, as we did,
that virtual polytopes are interesting objects of study in their own right, and we
anticipate that further applications will emerge in the future (including some of
a computational nature).

Bibliography

[1] А.В. Пухликов, А. Г. Хованский, “Конечно-аддитивные меры виртуальных
многогранников”, Алгебра и анализ 4:2 (1992), 161–185; english transl.,
A.V. Pukhlikov and A.G. Khovanskii, “Finitely additive measures of virtual
polytopes”, St. Petersburg Math. J. 4:2 (1993), 337–356.

[2] A.D. Alexandroff (Alexandrov), “Sur les théorèmes d’unicité pour les surfaces
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[6] Y. Martinez-Maure, “Théorie des hérissons et polytopes”, C. R. Math. Acad. Sci.
Paris 336:3 (2003), 241–244.

[7] P. McMullen, “The polytope algebra”, Adv. Math. 78:1 (1989), 76–130.
[8] R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math.

Appl., vol. 44, Cambridge Univ. Press, Cambridge 1993, xiv+490 pp.
[9] G. Ewald, Combinatorial convexity and algebraic geometry, Grad. Texts in Math.,

vol. 168, Springer-Verlag, New York 1996, xiv+372 pp.
[10] Г.Ю. Панина, “Виртуальные многогранники и классические вопросы

геометрии”, Алгебра и анализ 14:5 (2002), 152–170; English transl.,
G.Yu. Panina, “Virtual polytopes and classical questions in geometry”, St.
Petersburg Math. J. 14:5 (2003), 823–834.

[11] O. Ya. Viro, “Some integral calculus based on Euler characteristic”, Topology and
geometry – Rohlin seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin
1988, pp. 127–138.

[12] Г.Ю. Панина, “Структура группы виртуальных многогранников относительно
подгрупп цилиндров”, Алгебра и анализ 13:3 (2001), 179–197; English transl.,
G.Yu. Panina, “The structure of the virtual polytope group relative to cylinder
subgroups”, St. Petersburg Math. J. 13:3 (2002), 471–484.

[13] P. McMullen, “Separation in the polytope algebra”, Beiträge Algebra Geom. 34:1
(1993), 15–30.

[14] W. Fulton and B. Sturmfels, “Intersection theory on toric varieties”, Topology 36:2
(1997), 335–353.

[15] M. Brion, “The structure of the polytope algebra”, Tohoku Math. J. (2) 49:1
(1997), 1–32.

http://mi.mathnet.ru/eng/aa315
http://mi.mathnet.ru/eng/aa315
https://zbmath.org/?q=an:0791.52010|0778.52006
https://zbmath.org/?q=an:0791.52010|0778.52006
https://zbmath.org/?q=an:0791.52010|0778.52006
https://zbmath.org/?q=an:0020.40202|65.0828.03
https://zbmath.org/?q=an:0020.40202|65.0828.03
http://dx.doi.org/10.1007/BF00181456
http://dx.doi.org/10.1007/BF00181456
http://dx.doi.org/10.1007/s000140050137
http://dx.doi.org/10.1007/s000140050137
http://dx.doi.org/10.1007/s10711-004-4090-3
http://dx.doi.org/10.1007/s10711-004-4090-3
http://dx.doi.org/10.1016/S1631-073X(03)00020-7
http://dx.doi.org/10.1016/S1631-073X(03)00020-7
http://dx.doi.org/10.1016/0001-8708(89)90029-7
http://dx.doi.org/10.1017/CBO9780511526282
http://dx.doi.org/10.1017/CBO9780511526282
http://dx.doi.org/10.1007/978-1-4612-4044-0
http://dx.doi.org/10.1007/978-1-4612-4044-0
http://mi.mathnet.ru/eng/aa903
http://mi.mathnet.ru/eng/aa903
https://zbmath.org/?q=an:1039.52012
https://zbmath.org/?q=an:1039.52012
https://zbmath.org/?q=an:1039.52012
http://dx.doi.org/10.1007/BFb0082775
http://dx.doi.org/10.1007/BFb0082775
http://dx.doi.org/10.1007/BFb0082775
http://mi.mathnet.ru/eng/aa943
http://mi.mathnet.ru/eng/aa943
https://zbmath.org/?q=an:1009.52026
https://zbmath.org/?q=an:1009.52026
https://zbmath.org/?q=an:1009.52026
https://zbmath.org/?q=an:0780.52015
https://zbmath.org/?q=an:0780.52015
http://dx.doi.org/10.1016/0040-9383(96)00016-X
http://dx.doi.org/10.1016/0040-9383(96)00016-X
https://zbmath.org/?q=an:0881.52008
https://zbmath.org/?q=an:0881.52008


Virtual polytopes 1163

[16] R. P. Stanley, “The number of faces of a simplicial convex polytope”, Adv. in Math.
35:3 (1980), 236–238.

[17] P. McMullen, “On simple polytopes”, Invent. Math. 113 (1993), 419–444.
[18] В. А. Тиморин, “Аналог соотношений Ходжа–Римана для простых

выпуклых многогранников”, УМН 54:2(326) (1999), 113–162; English transl.,
V.A. Timorin, “An analogue of the Hodge–Riemann relations for simple convex
polytopes”, Russian Math. Surveys 54:2 (1999), 381–426.

[19] В. М. Бухштабер, “Кольцо простых многогранников и дифференциальные
уравнения”, Геометрия, топология и математическая физика. I, Сборник
статей. К 70-летию со дня рождения академика Сергея Петровича Новикова,
Тр. МИАН, 263, МАИК, М. 2008, с. 18–43; English transl., V. M. Buchstaber,
“Ring of simple polytopes and differential equations”, Proc. Steklov Inst. Math. 263
(2008), 13–37.

[20] В.М. Бухштабер, Н. Ю. Ероховец, “Многогранники, числа Фибоначчи,
алгебры Хопфа и квазисимметрические функции”, УМН 66:2(398) (2011),
67–162; English transl., V.M. Buchstaber and N.Yu. Erokhovets, “Polytopes,
Fibonacci numbers, Hopf algebras, and quasi-symmetric functions”, Russian Math.
Surveys 66:2 (2011), 271–367.

[21] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of
toric varieties, Ergeb. Math. Grenzgeb. (3), vol. 15, Springer-Verlag, Berlin 1988,
viii+212 pp.

[22] G. Panina, “On hyperbolic virtual polytopes and hyperbolic fans”, Cent. Eur.
J. Math. 4:2 (2006), 270–293.

[23] G.Yu. Panina, “Pointed spherical tilings and hyperbolic virtual polytopes”,
Геометрия и топология. 11, Зап. науч. сем. ПОМИ, 372, ПОМИ, СПб. 2009,
с. 157–171; J. Math. Sci. (N.Y.) 175:5 (2011), 591–599.

[24] G. Panina, “New counterexamples to A. D. Alexandrov’s hypothesis”, Adv. Geom.
5:2 (2005), 301–317.
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