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Vlasov–Poisson equations for a two-component
plasma in a homogeneous magnetic field

A. L. Skubachevskii

Abstract. This paper is concerned with the first mixed problem for the
Vlasov–Poisson equations in an infinite cylinder, a problem describing
the evolution of the density distribution of ions and electrons in a high
temperature plasma under an external magnetic field. A stationary solu-
tion is constructed for which the charged-particle density distributions are
supported in a strictly interior cylinder. A classical solution for which
the supports of the charged-particle density distributions are at a distance
from the cylindrical boundary is shown to exist and to be unique in some
neighbourhood of the stationary solution.
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Introduction

The Vlasov equations (or the kinetic equations with a self-consistent field) were
first obtained in [117] and are now regarded as one of the best-known mathematical
models in the kinetic theory of gases. The study of these equations has made it
possible to theoretically predict a number of new and unexpected physical phe-
nomena such as the Landau damping effect describing a collisionless damping of
waves in a plasma [70]. There is an extensive literature on the Vlasov equations
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in physics (see [72], [73], [85], [118]–[120] and the references given there). In math-
ematics the interest in these equations developed later, but in recent years the
Vlasov equations have received much attention (see [1]–[18], [20]–[36], [38]–[64],
[66]–[69], [71], [74]–[84], [86], [88]–[108], [110], [111], [113]–[116], [121]–[127]). These
equations are popular most of all because of their numerous applications, includ-
ing the kinetic theory of particles in electric, magnetic, and gravitational fields,
waves in a collisionless plasma, and so on. Depending on the initial physical mod-
els, one distinguishes the Vlasov–Poisson equations, the Vlasov–Maxwell equations,
the Vlasov–Einstein equations, the generalized Vlasov equations, and so on. A key
reason for the increasing interest in the Vlasov equations is probably their applica-
tions in the study of high-temperature rarefied plasmas and, most of all, in control
processes of thermonuclear fusion.

The Vlasov–Poisson equations, which describe a high-temperature rarefied plas-
ma in the coordinate space R3 and the velocity space R3, are as follows:

−∆ϕ(x, t) = 4πe
∫

R3

∑
β=±1

βfβ(x, v, t) dv (x ∈ R3, 0 < t < T ), (1)

∂fβ

∂t
+ (v,∇xf

β) +
βe

mβ

(
−∇xϕ+

1
c
[v,B],∇vf

β

)
= 0 (2)

(x ∈ R3, v ∈ R3, 0 < t < T, β = ±1).

These equations are augmented with the initial conditions

fβ(x, v, t)
∣∣
t=0

= fβ
0 (x, v) (x ∈ R3, v ∈ R3, β = ±1). (3)

Here fβ = fβ(x, v, t) is the density distribution function of positively charged ions
(for β = +1) or of electrons (for β = −1) at a point x with velocity v at a time t;
ϕ = ϕ(x, t) is the potential of the self-consistent electric field; ∇x and ∇v are,
respectively, the gradients with respect to x and v; m+1 and m−1 are the ion and
electron masses; e is the electron charge; c is the velocity of light; B is the external
magnetic field induction; ( · , · ) is the inner product in R3; [ · , · ] is the vector product
in R3.

Equation (1), in which the right-hand side is the density of the total electric
charge at a time t at a point x, is an equivalent statement of the Coulomb law.
The Vlasov equations (2) are obtained from the Boltzmann equations in which the
collision integral is neglected. For a rarefied plasma, this assumption is justified in
[117], [73]. Despite the absence of the collision integral, the interaction of charged
particles is taken into account by the self-consistent electric field, which is cal-
culated from the charged-particle density distributions according to equation (1).
If we include the self-consistent magnetic field generated by the motion of the
charged particles, then, in addition to equation (1), equations (2) will need to be
augmented with three more Maxwell equations. The resulting system is known as
the Vlasov–Maxwell system.

In the present paper we shall be concerned with the solvability of the Vlasov–
Poisson system. To give a brief survey in this topic, we formally reduce the system
of three equations (1), (2) to two integro-differential equations. With the use of the
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Newtonian potential the solution of (1) can be written as follows:

ϕ(x, t) = e

∫
R3

dy

|x− y|

∫
R3

∑
β=±1

βfβ(y, v, t) dv. (4)

Substituting (4) into (2), this gives

∂fβ

∂t
+ (v,∇xf

β)

+
βe

mβ

( ∫
R3
K(x, y) dy

∫
R3

∑
β=±1

βfβ(y, v, t) dv +
1
c
[v,B],∇vf

β

)
= 0 (5)

(x ∈ R3, v ∈ R3, 0 < t < T, β = ±1).

Here the kernel
K(x, y) = e

x− y

|x− y|3
(6)

has a weak singularity. Note that equations (5) are non-linear and non-local.
In the multidimensional case the global solvability of equations of the form (5)

with ‘smoothed’ kernel in the absence of a magnetic field B was examined by Braun
and Hepp [23], Maslov [82], and Dobrushin [35]. In [35] a global generalized solution
of the Cauchy problem for equations of the form (5) was shown to exist and to be
unique if K(x, y) is a continuously differentiable function of x and y. If, moreover,
K(x, y) is twice continuously differentiable, then a global classical solution exists
and is unique. By using the method of characteristics and taking into account
the smoothness of the kernel K(x, y) it proved possible to reduce this problem to
a system of ordinary differential equations with an integral term and apply the
machinery of dynamical systems to prove solvability.

However, proof of the solvability of equations (5) with kernel K(x, y) of the
form (6) and with initial conditions (3) is a more involved problem. This is so
because, first of all, the original system (1), (2) involves equations of various types.
The Poisson equation (1) is an elliptic second-order equation, while the Vlasov
equations (2) are first-order partial differential equations. As is known, the method
of characteristics enables us to reduce first-order partial differential equations to
a system of ordinary differential equations. Hence, a classical solution of these
equations should be sought in spaces of continuously differentiable functions. On
the other hand, the Poisson equation is investigated by methods of potential theory,
and hence it is more natural to search for its classical solution in the corresponding
Hölder space.

The existence of a global generalized solution of the Cauchy problem for the
Vlasov–Poisson equations (1), (2) was proved by Arsen’ev [2]. His proof depended
on regularization of the Laplacian, solvability of the corresponding regularized prob-
lem, and taking the weak limit in the integral relation for the generalized solution.
There is a certain analogy between the study of this regularized problem and the
investigation of the problem (5), (3) with a smoothed kernel. The existence of
a global generalized solution and its weak stability in the case of the Cauchy prob-
lem for the Vlasov–Poisson and the Vlasov–Maxwell equations were studied by
DiPerna and Lions [33], [34], Horst and Hunze [58], and others.
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In the one-dimensional case the existence of a global classical solution of the
Cauchy problem for the Vlasov equations was proved by Iordanskii [63]. The cor-
responding result in the two-dimensional setting is due to Ukai and Okabe [113].
In the three-dimensional setting, which is most important in physical applications,
the problem is considerably more involved. Batt [9] has shown the existence and
uniqueness of a global classical solution for spherically symmetric initial distribu-
tion functions with compact supports with respect to v. In addition, Batt [9] and
Horst [55] have shown that in the three-dimensional case a sufficient condition for
a global classical solution of the Cauchy problem for the Vlasov–Poisson system to
exist for any sufficiently smooth initial distribution functions with compact supports
with respect to v is that the supports of the distribution functions with respect
to the velocities v remain compact for all t ∈ [0,∞). In other words, to prove
the existence of a global classical solution it sufficed to show that the diameters
of the supports of the distribution functions with respect to v can grow only with
finite velocity as t → ∞. This result is now known as the velocity lemma, and its
various interpretations have been useful in many studies. Bardos and Degond [7]
proved the existence and uniqueness of a classical solution of the Cauchy problem
for the Vlasov–Poisson system with small initial data. The existence of a global
classical solution of the Cauchy problem for the Vlasov–Poisson equations with
arbitrary initial distribution functions is due to Pfaffelmoser [90]. Later, a simpler
proof of this result was presented by Schäffer [104]. In the four-dimensional case,
Horst [56] has shown that the Cauchy problem for this system may fail to have
a global classical solution. Classical solutions of the initial-value problem for the
Vlasov–Poisson equations were also studied in [3], [18], [44], [45], [57], [74], [75],
[97], [98], and elsewhere.

Stationary solutions of the Vlasov–Poisson equations have been the subject of
papers by Vedenyapin [114], [115], Batt and Fabian [12], Batt, Faltenbacher, and
Horst [13], Pokhozhaev [91], Greengard and Raviart [48], and Rein [95]. The papers
[79], [80], [100], [101], [105]–[108] were concerned with stationary solutions of the
Vlasov–Maxwell equations and their bifurcation.

A considerable number of interesting studies have been devoted to the investiga-
tion of both the linearized model [28], [83] and the non-linear model of the Landau
damping effect (see, for example, [42], [60], [64]). An extensive survey of the cor-
responding literature is given by Mouhot and Villani in the paper [86] devoted to
the general case of non-linear Landau damping.

However, much less attention has been paid to the existence of solutions of
the Vlasov equations in domains with boundary. The studies here have been
mostly focused on generalized solutions of mixed problems for the Vlasov–Poisson
equations and the Vlasov–Maxwell equations (see Arsen’ev [5], Alexandre [1], Ben
Abdallah [16], Guo [49], and Weckler [122]). The stability of generalized solutions
of initial-value and mixed problems for the Vlasov equations has been studied by
Kozlov [66], [67], DiPerna and Lions, [33], [34], Rein [96], Wan [121], and Weckler
[122]. It is worth noting that for the Vlasov equations there are no exhaustive
results on an increase in smoothness of the generalized solutions of mixed prob-
lems (as in the case of classical second-order partial differential equations). Con-
sequently, the study of the existence of classical and strong solutions of mixed
problems for the Vlasov equations has great value. The existence of classical and
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strong solutions of mixed problems in the general setting is still an open problem
(see Kozlov [66], Samarskii [102], and Weckler [122]). This problem is relevant to the
design of a controlled thermonuclear fusion reactor, a mathematical model of which
is described by mixed problems for the Vlasov system with respect to the density
distributions of charged particles of opposite signs in a bounded domain. Tokamaks
are now the best-known devices for the production of thermonuclear fusion. The
word ‘tokamak’, which is an acronym developed from the Russian words ‘TOroidal-
naya KAmera i ee MAgnitaya Katushka’ meaning a ‘toroidal chamber with mag-
netic coils’, was introduced by I. N. Golovin (see [85], the editor’s comments on
the Russian translation on p. 277). The vacuum chamber of a tokamak reactor is
a torus whose cross-section looks like the roman capital letter ‘D’ (see Fig. 1).

Figure 1

One of the alternative devices for thermonuclear fusion is the mirror trap, which
can be visualized as a long cylinder tapered at the ends (see Fig. 2).

Figure 2

Note that Figs. 1, 2 provide only a very coarse picture of these devices. More
detailed schematics of mirror traps for the confinement of high-temperature plasmas
and a description of their operating principles can be found in [109].

The production of a stable high-temperature plasma in a reactor requires that
the so-called plasma column be strictly inside the domain during some time interval
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in order to keep it away from the vacuum container wall ([85], the introduction to
Chap. 6). In most models of thermonuclear fusion reactors an external magnetic
field [72], [85] is used as a control ensuring the existence of a plasma in the reactor.
From the point of view of differential equations this means that one has to ensure
the existence of solutions of the Vlasov–Poisson equations for which the supports
of the charged-particle density distributions do not intersect the boundary, which
can be achieved by the influence of the external magnetic field.

We now give a brief survey of some of the most important papers on the exis-
tence of classical solutions of mixed problems for the Vlasov–Poisson equations
in domains with boundary. The global existence of classical solutions of mixed
problems for these equations in a half-space with Neumann or Dirichlet boundary
conditions for the electric-field potential and the conditions of elastic reflection for
charged-particle density distributions on the boundary was proved by Guo [50] and
Hwang and Velázquez [61]. Hwang [59] proved that the classical solutions of the
Vlasov–Poisson equations in a ball with spherically symmetric initial data and con-
ditions of elastic reflection for the density distributions can have singularities only
at the centre of the ball. The main difficulties in the study of classical solutions of
mixed problems for these equations have to do with the behaviour of the charac-
teristics near the boundary. We note that the effect of the magnetic field on the
trajectories of the particles was not taken into account.

In the present paper we shall be concerned with classical solutions of the mixed
problem for the Vlasov–Poisson system in Q×R3× (0, T ) with Dirichlet boundary
condition for the electric-field potential on ∂Q × (0, T ), where Q = G × R is an
infinite cylinder and G ⊂ R2 is a bounded domain with boundary ∂G ∈ C∞.
A distinctive feature of this paper is that, for the solution obtained, the supports of
the charged-particle density distributions lie at some distance from the cylindrical
surface ∂Q with respect to the spatial variable x and are compact with respect
to v. To produce such a solution we assume first that the external magnetic field B
is directed along the axis of the cylinder and is sufficiently strong, and second
that the initial density distributions fβ

0 (x, v) have supports lying at some distance
from the boundary ∂Q with respect to x and are compact with respect to v. These
assumptions imply that the characteristics do not intersect ∂Q. This phenomenon
can be interpreted physically as follows: the charged particles do not reach the
walls of the vacuum chamber of the thermonuclear fusion reactor because they move
along trajectories close to the Larmor trajectories. Consequently, this problem can
be used in a certain sense as a mathematical model of the cylindrical part of the
mirror trap. According to [85], the presence of a considerable number of particles
on the boundary can result in either destruction of the reactor walls or in cooling of
the high-temperature plasma due to its contact with the reactor walls. As distinct
from other papers (see, for example, [61]) which have dealt with the Vlasov–Poisson
equations for particles of the same sign, we are concerned here with those equations
for a two-component plasma, since the word ‘plasma’ is used in physics to designate
this high-temperature state of an ionized gas with charge neutrality [85]. This
creates additional difficulties in the (physical and mathematical) analysis.

The paper is organized as follows. In § 1 we introduce the notation, pose the
problem, and formulate the main result (Theorem 1.1). This result guarantees the
existence of a stationary solution of the Vlasov–Poisson equations in Q×R3×(0, T )
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when the charged-particle density distributions are supported with respect to x in
a strictly interior cylinder. Moreover, in some neighbourhood of this stationary
solution there is a unique classical solution for which the supports of the density
distributions with respect to x are disjoint from the boundary ∂Q. In § 2 we study
the characteristics of the system (2) in Q×R3×(0, T ) for a fixed potential ϕ. In the
absence of an electric field (ϕ = 0), the strong magnetic field B along the cylinder
axis makes the particles move along circular or helical paths with Larmor frequency
e|B|/(mβc) in the cylinder Q without reaching ∂Q. This phenomenon is very well
known in plasma physics. For sufficiently small potentials ϕ, the characteristics
emerging from some strictly interior cylinder in Q also fail to reach ∂Q. In § 3
the characteristics examined above are employed for constructing a solution of the
initial-value problem (2), (3) in Q × R3 × (0, T ) for a fixed potential ϕ. Since
the characteristics do not reach ∂Q, it follows that for initial densities fβ

0 (x, v)
supported in the domain Q × R3 the supports of the solutions fβ

ϕ (x, v, t) of the
problem (2), (3) remain in Q × R3 for all 0 < t < T . Substituting the solutions
fβ

ϕ (x, v, t) in equation (1), we obtain Hölder estimates for the right-hand side of (1)
with fβ(x, v, t) = fβ

ϕ (x, v, t). In § 4 we build a stationary solution of the problem
(1), (2) with the above properties. Further, using the Hölder estimates in § 3,
taking into account the unique solvability of the Dirichlet problem for the Poisson
equation in Hölder spaces, and employing the Banach contraction principle, we
prove the existence and uniqueness of a classical solution in some neighbourhood of
the stationary solution thus constructed. In § 5 we extend Theorem 1.1 to abstract
Vlasov equations and mention some unsolved problems.

It should be noted that the classical solutions of mixed problems for the Vlasov–
Poisson equations in a half-space for sufficiently small compactly supported initial
densities and an external magnetic field of high intensity were examined in [110]
and [111]. The presence of an external magnetic field was also assumed in a number
of other papers on the Vlasov–Poisson equations in domains with boundary (see,
for example, [5], [50]). However, the effect of this field on the nucleation of Larmor
trajectories and problems of plasma confinement at some distance from the bound-
ary was not considered.

1. Statement of the problem. The main result

1.1. We consider the Vlasov–Poisson system in an infinite cylinder:

−∆ϕ(x, t) = 4πe
∫

R3

∑
β

βfβ(x, v, t) dv (x ∈ Q, 0 < t < T ), (1.1)

∂fβ

∂t
+ (v,∇xf

β) +
βe

mβ

(
−∇xϕ+

1
c
[v,B],∇vf

β

)
= 0 (1.2)

(x ∈ Q, v ∈ R3, 0 < t < T, β = ±1)

with the initial conditions

fβ(x, v, t)
∣∣
t=0

= fβ
0 (x, v) (x ∈ Q, v ∈ R3, β = ±1) (1.3)

and the Dirichlet boundary condition

ϕ(x, t) = 0 (x ∈ ∂Q, 0 6 t < T ). (1.4)
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Here Q = G × R, G ⊂ R2 is a bounded domain with boundary ∂G ∈ C∞, ∂Q =
∂G × R, the functions ϕ(x, t) and fβ(x, v, t) are unknowns, the vector B is given,
and the constants m±1, e, and c have the same meaning as in the Introduction.

1.2. To find the classical solution of the problem (1.1)–(1.4) we introduce some
function spaces.

We let Cs(Rn) (respectively, Cs(Ω)) with s > 0 and n ∈ N denote the Hölder
space of continuous functions on Rn (on Ω) that have continuous derivatives in Rn

(in Ω) up to and including total order k = [s], equipped with the finite norm

∥u∥s = max
|α|6k

sup
x
|Dαu(x)| for s = k ∈ Z, 0 6 k,

∥u∥s = ∥u∥k + |u|σ for s = k + σ, 0 6 k ∈ Z, 0 < σ < 1,
(1.5)

where Ω ⊂ Rn is a domain with C∞-boundary ∂Ω or the cylinder Q = G×R ⊂ R3,

|u|σ = max
|α|=k

sup
x ̸=y

|x− y|−σ|Dαu(x)−Dαu(y)|, (1.6)

Dα =
(

∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

, α = (α1, . . . , αn), |α| = α1 + · · ·+ αn.

Let C(Rn) = C0(Rn) and C(Ω) = C0(Ω).
Similarly, we introduce the space C1(Q × R3 × [0, T ]) of bounded continuous

functions with bounded continuous first-order derivatives in Q× R3 × [0, T ].

Remark 1.1. If s = k + σ, 0 6 k ∈ Z, and 0 < σ < 1, then in view of Theorem 2
in § 4.5.2 of [112], we can endow Cs(Rn) (respectively, Cs(Ω)) with the equivalent
norm

∥u∥′s = ∥u∥k + |u|σ,b, (1.7)

where

|u|σ,b = max
|α|=k

sup
x̸=y,

0<|x−y|<b

|x− y|−σ|Dαu(x)−Dαu(y)|, 0 < b 6 1. (1.8)

Remark 1.2. For any s > 0 the spaces Cs(Rn) and Cs(Ω) are Banach spaces. If
s = k + σ, 0 6 k ∈ Z, and 0 < σ < 1, then the space Cs(Rn) (Cs(Ω)) is not
separable, and the set of functions infinitely differentiable in Rn (Ω) with finite
norm ∥ · ∥s is not dense in Cs(Rn) (Cs(Ω)) (see [19]).

Let Ċk(Rn) with k, n ∈ N denote the space of k-times continuously differentiable
functions on Rn having compact support.

Also, let Cs
0(Q) with s > 0 denote the closure of the set of functions in Cs(Q)

with compact support in Q.
We consider the Banach space C([0, T ], Cs(Ω)), s > 0, of continuous functions

[0, T ] ∋ t 7→ ϕ( · , t) ∈ Cs(Ω) with norm

∥ϕ∥s,T = sup
06t6T

∥ϕ( · , t)∥s . (1.9)

The space C([0, T ], Cs
0(Q)) is defined similarly.
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Let Bρ(x0) = {x ∈ R3 : |x− x0| < ρ}, Bρ = Bρ(0), and |Bρ| = 4πρ3/3.
In what follows, ki, cj , k̂i, ĉj are positive constants.
1.3. To state the theorem on the unique solvability of the problem (1.1)–(1.4)

near a stationary solution, we first give the definition of a classical solution of this
problem and the definition of a stationary solution of the problem (1.1), (1.2), (1.4).

Definition 1.1. A vector function {ϕ, fβ} with ϕ ∈ C([0, T ], C2+σ
0 (Q)) and fβ ∈

C1(Q×R3× [0, T ]) is called a classical solution of the problem (1.1)–(1.4) if {ϕ, fβ}
satisfies equations (1.1), (1.2), the initial conditions (1.3), and the boundary con-
dition (1.4).

In the study of the Vlasov equations an important role is played by stationary
solutions.

Definition 1.2. A vector function {ϕ̊, f̊β} with ϕ̊ ∈ C2+σ
0 (Q) and f̊β∈ C1(Q×R3)

is called a stationary solution of equations (1.1), (1.2) with the boundary condition
(1.4) if {ϕ̊, f̊β} satisfies the equations

−∆ϕ̊(x) = 4πe
∫

R3

∑
β

βf̊β(x, v) dv (x ∈ Q), (1.10)

(v,∇xf̊
β) +

βe

mβ

(
−∇xϕ̊+

1
c
[v,B],∇v f̊

β

)
= 0 (x ∈ Q, v ∈ R3, β = ±1)

(1.11)

and the boundary condition (1.4).

We now formulate the conditions which the magnetic field B and the initial
charged-particle density distributions fβ

0 (x, v) must satisfy.
Let Gδ = {x′ ∈ G : dist(x′, ∂G) > δ} and Qδ = {x ∈ Q : dist (x, ∂Q) > δ},

where δ > 0. Assuming that G2δ ̸= ∅, we let δ0 = δ0(δ) > 0 denote the radius of
a largest circle inscribed in G2δ.

Condition 1.1. Let B = (0, 0, h) for x ∈ Q, where h > 0 is independent of x and

32
cρm+1

eδ
< h. (1.12)

Condition 1.2. Let fβ
0 ∈ C∞(Q×R3) be non-negative functions and let supp fβ

0 ⊂
Q2δ ×Bρ/4, where ρ > 0, δ0 > δ.

Theorem 1.1. Let δ > 0 be such that G2δ ̸= ∅ and let δ0 > δ . Assume that
Condition 1.1 is satisfied for this δ and some h, ρ > 0. Then for any α > 0 there is
a stationary solution {0, f̊β} of equations (1.1), (1.2) with the boundary condition
(1.4) such that f̊β ∈ C∞(Q× R3), supp f̊β ⊂ Q2δ ×Bρ/4 , and supx,v f̊

β(x, v) > α.
If, moreover, Condition 1.2 holds, then for any T > 0 there exists an ε =

ε(T, δ, ρ, h, σ) > 0 such that, for all stationary solutions {0, f̊β} with the indicated
properties and for all initial functions fβ

0 such that

supp(fβ
0 − f̊β) ⊂ (Q2δ ∩Q′N )×Bρ/4,

∥f̊β
vi
∥2 < ε (i = 1, 2, 3), ∥fβ

0 − f̊β∥2 < ε
(β = ±1), (1.13)
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where Q′N = {x ∈ Q : |x3| < N} for a number N > 0, there is a unique classical
solution of (1.1)–(1.4). Furthermore,

supp fβ( · , · , t) ⊂ Q5δ/4 ×Bρ for all t ∈ [0, T ].

The proof of Theorem 1.1 will be given in § 4.

2. Trajectories of charged particles in an infinite cylinder

2.1. Assume that Conditions 1.1 and 1.2 are satisfied and that there is a sta-
tionary solution {0, f̊β} of the problem (1.1), (1.2), (1.4) with the properties in the
first assertion of Theorem 1.1. We shall regard a solution {ϕ, fβ} of (1.1)–(1.4)
as a perturbed stationary solution {0, f̊β} of the problem (1.1), (1.2), (1.4). Also,
let gβ(x, v, t) = fβ(x, v, t) − f̊β(x, v) and gβ

0 (x, v) = fβ
0 (x, v) − f̊β(x, v). Then by

(1.1)–(1.4) and (1.10), (1.11),

−∆ϕ(x, t) = 4πe
∫

R3

∑
β=±1

βgβ(x, v, t) dv (x ∈ Q, 0 < t < T ), (2.1)

∂gβ

∂t
+ (v,∇xg

β) +
βe

mβ

(
−∇xϕ+

1
c
[v,B],∇vg

β
)

=
βe

mβ
(∇xϕ,∇v f̊

β) (x ∈ Q, v ∈ R3, β = ±1), (2.2)

gβ(x, v, t)
∣∣
t=0

= gβ
0 (x, v) (x ∈ Q, v ∈ R3), (2.3)

ϕ(x, t)
∣∣
t=0

= 0 (x ∈ ∂Q, 0 6 t < T ). (2.4)

We shall assume that supp gβ
0 ⊂ (Q2δ ∩Q′N )×Bρ/4, where N > 0 is some number.

A classical solution of (2.1)–(2.4) is defined like that of the problem (1.1)–(1.4).
However, unlike equations (1.2), equations (2.2) are inhomogeneous with respect
to gβ .

Given a fixed function ϕ ∈ C([0, T ], C2+σ
0 (Q)), equation (2.2) with the initial

condition (2.3) can be solved using the method of characteristics. To this end, we
consider the following system of ordinary differential equations:

dXβ
ϕ

dτ
= V β

ϕ (0 < τ < T, β = ±1), (2.5)

dV β
ϕ

dτ
= − βe

mβ
∇xϕ(Xβ

ϕ , τ) +
βe

mβc
[V β

ϕ , B] (0 < τ < T, β = ±1) (2.6)

with the initial conditions

Xβ
ϕ

∣∣
τ=0

= x (β = ±1), (2.7)

V β
ϕ

∣∣
τ=0

= v (β = ±1), (2.8)

where x ∈ Q and v ∈ R3.
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We have ϕ∈C
(
[0, T ], C2+σ

0 (Q)
)
, and hence from the theorem on non-continuable

solutions it follows that for any x ∈ Q and v ∈ R3 there is a unique non-continuable
solution of (2.5)–(2.8) on some half-open interval [0, T β

ϕ (x, v)) with T β
ϕ (x, v) 6 T .

We denote this solution by {Xβ
ϕ(x, v, τ), V β

ϕ (x, v, τ)}.

Lemma 2.1. Let ϕ ∈ C([0, T ], C2+σ
0 (Q)) and let ∥ϕ∥1,T 6 R0 . Then for any

x ∈ Q, |v| < ρ, and 0 < t < T β
ϕ (x, v),∣∣V β

ϕ (x, v, t)
∣∣ < ρt (β = ±1), (2.9)

where ρt =
√

2(ρ2 + 6t2e2R2
0/m

2
−1) with ρ > 0.

Proof. Multiplying both sides of (2.6) by V β
ϕ , integrating with respect to τ from 0

to t, and employing the identity (V β
ϕ , [V

β
ϕ , B]) = 0, we get that

1
2
|V β

ϕ (x, v, t)|2 − 1
2
|v|2 = − βe

mβ

∫ t

0

(
∇xϕ(Xβ

ϕ , τ), V
β
ϕ (x, v, τ)

)
dτ. (2.10)

Clearly,

ab 6
ε−1a2

2
+
εb2

2
(a, b ∈ R, ε > 0).

Hence,

|V β
ϕ (x, v, t)|2 6 |v|2 + 3ε−1eR2

0tm
−1
β + εe max

τ∈[0,t]
|V β

ϕ (x, v, τ)|2tm−1
β .

We choose τ0 ∈ [0, t] so that |V β
ϕ (x, v, τ0)| = maxτ∈[0,t] |V β

ϕ (x, v, τ)|. Letting
t = τ0 in the last inequality, we obtain

|V β
ϕ (x, v, τ0)|2 6 |v|2 + 3ε−1eR2

0τ0m
−1
β + εeτ0|V β

ϕ (x, v, τ0)|2m−1
β .

Next, putting ε = mβ(2τ0e)−1, we have the estimate

|V β
ϕ (x, v, t)|2 6 |V β

ϕ (x, v, τ0)|2 6 ρ2
τ0

6 ρ2
t . �

2.2. We consider the trajectories of the system (2.5), (2.6) with ϕ = 0. Then
the system of equations (2.5), (2.6) assumes the form

dXβ
0

dτ
= V β

0 (0 < τ), (2.11)

dV β
0

dτ
=

βe

mβc
[V β

0 , B] (0 < τ). (2.12)

Let x′ = (x1, x2) and Xβ′

ϕ (x, v, τ) =
{
Xβ

ϕ1(x, v, τ), X
β
ϕ2(x, v, τ)

}
.

Lemma 2.2. Assume that Condition 1.1 is satisfied for some δ, ρ > 0. Let δ′ , ρ′ be
such that G2δ′ ̸= ∅, δ′ > δ/2, and 0 < ρ′ 6 2ρ. Also, let {Xβ

0 (x, v, τ), V β
0 (x, v, τ)}

be a non-continuable solution of the problem (2.11), (2.12), (2.7), (2.8) on the
half-open interval [0, T β

0 (x, v)). Then the following assertions hold.
(a) |V β

0 (x, v, τ)| = |v| for all τ ∈ [0, T β
0 (x, v)).

(b) If x ∈ ∂Qδ′ and |v| = ρ′ , then T β
0 (x, v) = ∞ and |x′ − Xβ′

0 (x, v, τ)| < δ/8
for all τ ∈ [0,∞).
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Proof. The first assertion follows from (2.10) for ϕ = 0.
To prove the second assertion we note that, in view of Condition 1.1, the system

(2.12) can be written as

dV β
01

dτ
=
βeh

mβc
V β

02,

dV β
02

dτ
= − βeh

mβc
V β

01,

dV β
03

dτ
= 0.

(2.13)

The spatial coordinates of the solution of the problem (2.11), (2.13), (2.7), (2.8)
are

Xβ
01(τ) = −βcrmβ

eh
cos

(
βeh

mβc
τ + k0

)
+ k1,

Xβ
02(τ) =

βcrmβ

eh
sin

(
βeh

mβc
τ + k0

)
+ k2,

Xβ
03(τ) = v3τ + k3,

(2.14)

where (V β
01)

2 + (V β
02)

2 = v2
1 + v2

2 = r2 = const, V β
03 = v3 = const,

k1 = x1 +
βcrmβ

eh
cos k0,

k2 = x2 −
βcrmβ

eh
sin k0,

k3 = x3,

sin k0 = v1r
−1, cos k0 = v2r

−1.

(2.15)

For v3 = 0 the trajectories are circles, and for v3 ̸= 0 they take the form of
helical curves. The number ωβ = eh/(mβc) is called the Larmor frequency, and
rβ = crmβ/(eh) is called the Larmor radius.

If x ∈ ∂Qδ′ and |v| = ρ′, then (1.12) and the inequality r 6 ρ′ 6 2ρ imply that
rβ = crmβ/(eh) < δ/16. Consequently, |x′ − Xβ′

0 (x, v, τ)| < δ/8 for any τ > 0;
that is, the non-continuable solution of the problem (2.11), (2.13), (2.7), (2.8) exists
for all τ ∈ [0,∞). �

2.3. We now consider the trajectories of the system (2.5), (2.6) with a sufficiently
small electric-field potential ϕ.

Let R1 > 0 be such that

2eTR1

m−1
exp(a0T ) < min

{
δ

8
,
ρ

4

}
, (2.16)

where a0 = 1 + eh/(cm−1).
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Lemma 2.3. Assume that Condition 1.1 is satisfied for some δ, ρ > 0 and
let δ′ , ρ′ be such that G2δ′ ̸= ∅, δ′ > δ/2, and 0 < ρ′ 6 2ρ. Then for all
ϕ ∈ C

(
[0, T ], C2+σ

0 (Q)
)
with ∥ϕ∥1,T 6 R1 the non-continuable solution

{
Xβ

ϕ(x, v, τ),
V β

ϕ (x, v, τ)
}

of (2.5)–(2.8) has the following property: if x ∈ ∂Qδ′ and |v| = ρ′ ,
then

T β
ϕ (x, v) = T, |x′ −Xβ′

ϕ (x, v, τ)| < δ

4
, ρ′ − ρ

4
< |V β

ϕ (x, v, τ)| < ρ′ +
ρ

4

for all τ ∈ [0, T ].

Proof. Let x ∈ ∂Qδ′ and |v| = ρ′. Consider the system of equations (2.5), (2.6).
We now subtract (2.11) from (2.5) and (2.12) from (2.6) and integrate the resulting
equalities with respect to τ from 0 to q, taking into account the initial conditions
(2.7) and (2.8). Introducing the new variables τ = q and s = τ , we obtain

Xβ
ϕ(τ)−Xβ

0 (τ) =
∫ τ

0

(
V β

ϕ (s)− V β
0 (s)

)
ds (0 < τ < T β

ϕ (x, v)), (2.17)

V β
ϕ (τ)− V β

0 (τ) =
βe

mβc

∫ τ

0

[V β
ϕ (s)− V β

0 (s), B] ds

− βe

mβ

∫ τ

0

∇xϕ
(
Xβ

ϕ(s), s
)
ds (0 < τ < T β

ϕ (x, v)). (2.18)

By (2.17) and (2.18),

|Xβ
ϕ(τ)−Xβ

0 (τ)| 6
∫ τ

0

|V β
ϕ (s)− V β

0 (s)| ds (0 < τ < T β
ϕ (x, v)),

(2.19)

|V β
ϕ (τ)− V β

0 (τ)| 6 2eτ
mβ

∥ϕ∥1,T +
eh

mβc

∫ τ

0

|V β
ϕ (s)− V β

0 (s)| ds (0 < τ < T β
ϕ (x, v)).

(2.20)

Next, by (2.19), (2.20), and Gronwall’s lemma,

|Xβ
ϕ(τ)−Xβ

0 (τ)|+ |V β
ϕ (τ)− V β

0 (τ)| 6 2eτ
m−1

R1e
a0τ (0 < τ < T β

ϕ (x, v)). (2.21)

As a result, by the second assertion of Lemma 2.2, the properties of non-contin-
uable solutions, and the inequality (2.16), we see that

T β
ϕ (x, v) = T, |x′ −Xβ′

ϕ (x, v, τ)| < δ

4
, ρ′ − ρ

4
< |V β

ϕ (x, v, τ)| < ρ′ +
ρ

4

for all τ ∈ [0, T ). �

2.4. Let us consider the system of equations (2.5), (2.6) on the interval (0, t),
0 < t 6 T , with the initial conditions

Xβ
ϕ

∣∣
τ=t

= y, (2.22)

V β
ϕ

∣∣
τ=t

= w. (2.23)
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By the theorem on non-continuable solutions, the problem (2.22), (2.23), (2.5),
(2.6) has a unique non-continuable solution {Xβ

ϕ(y, w, t, τ), V β
ϕ (y, w, t, τ)} (τ ∈

(T β
ϕ (y, w, t), t], 0 6 T β

ϕ (y, w, t) < t) for all y ∈ Q and w ∈ R3. For ϕ = 0 the
system (2.5), (2.6) takes the form (2.11), (2.12). Let {Xβ

0 (y, w, t, τ), V β
0 (y, w, t, τ)}

(τ ∈ (T β
0 (y, w, t), t]) be the solution of the problem (2.11), (2.12), (2.22), (2.23).

Lemma 2.4. Assume that Condition 1.1 is satisfied for some δ, ρ > 0 and let δ′ , ρ′
be such that G2δ′ ̸= ∅, δ′ > δ/2, and 0 < ρ′ 6 2ρ. Next, let {Xβ

0 (y, w, t, τ),
V β

0 (y, w, t, τ)} be a non-continuable solution of the problem (2.11), (2.12), (2.22),
(2.23) on the half-open interval (T β

0 (y, w, t), t]. Then the following assertions hold.
(a) |V β

0 (y, w, t, τ)| = |w| for all τ ∈ (T β
0 (y, w, t), t].

(b) If y ∈ ∂Qδ′ and |w| = ρ′ , then T β
0 (y, w, t) = 0 and |x′−Xβ′

0 (y, w, t, τ)| < δ/8
for all τ ∈ (0, t].

The proof is similar to that of Lemma 2.2.

Lemma 2.5. Assume that Condition 1.1 holds for some δ, ρ > 0 and let δ′, ρ′ be
such that G2δ′ ̸= ∅, δ′ > δ/2, and 0 < ρ′ 6 2ρ. Then for any function ϕ ∈
C([0, T ], C2+σ

0 (Q)) with ∥ϕ∥1,T 6 R1 the non-continuable solution {Xβ
ϕ(y, w, t, τ),

V β
ϕ (y, w, t, τ)} (τ ∈ (T β

ϕ (y, w, t), t]) of the problem (2.5), (2.6), (2.22), (2.23) has
the following property:

if y ∈ ∂Qδ′ , |w| = ρ′ , and 0 < t 6 T , then T β
ϕ (y, w, t) = 0, |y′−Xβ′

ϕ (y, w, t, τ)| <
δ/4, and ρ′ − ρ/4 < |V β

ϕ (y, w, t, τ)| < ρ′ + ρ/4 for τ ∈ (0, T ].

The proof depends on Lemma 2.4 and is similar to that of Lemma 2.3.

3. Hölder estimates for the electric-charge density

3.1. We set Ω0 = Qδ ×Bρ and

Ωβ
ϕ,t = {(y, w) ∈ R6 : y = Xβ

ϕ(x, v, t), w = V β
ϕ (x, v, t), (x, v) ∈ Ω0},

where 0 6 t < T , ϕ ∈ C([0, T ], C2+σ
0 (Q)), and ∥ϕ∥2,T 6 R1. Clearly, Ωβ

ϕ,0 = Ω0.
Given 0 6 t < T , consider the map Sβ

ϕ,t : Ω0 → Ωβ
ϕ,t defined by Sβ

ϕ,t(x, v) =(
Xβ

ϕ(x, v, t), V β
ϕ (x, v, t)

)
.

Since ϕ ∈ C([0, T ], C2+σ
0 (Q)), if we use Condition 1.1, Lemma 2.3 with δ′ = δ and

ρ′ = ρ, and the fact that the solutions of the differential equations are continuously
differentiable with respect to the initial data for any 0 6 t < T , we see that the
map Sβ

ϕ,t : Ω0 → Ωβ
ϕ,t is continuously differentiable with respect to x and v on Ω0.

Moreover,
Ωβ

ϕ,t ⊂ Q3δ/4 ×B5ρ/4. (3.1)

It is obvious that Sβ
ϕ,0(x, v) = (x, v). We extend the map Sβ

ϕ,t by continuity at
t = T .

Consider the system (2.5), (2.6) on the interval (0, t), 0 < t 6 T , with the ini-
tial conditions (2.22), (2.23). By (3.1) and Lemma 2.5, the problem (2.5), (2.6),
(2.22), (2.23) has a unique non-continuable solution {Xβ

ϕ(y, w, t, τ), V β
ϕ (y, w, t, τ)}

on the half-open interval (0, t] for any (y, w) ∈ Q3δ/4 × B5ρ/4 and 0 < t 6 T .
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In addition, Xβ
ϕ(y, w, t, τ) ∈ Qδ/2 and V β

ϕ (y, w, t, τ) ∈ B3ρ/2 for τ ∈ (0, t]. Extend-
ing the functions Xβ

ϕ(y, w, t, τ) and V β
ϕ (y, w, t, τ) by continuity at τ = 0, we set

X̂β
ϕ(y, w, t) = Xβ

ϕ(y, w, t, 0) and V̂ β
ϕ (y, w, t) = V β

ϕ (y, w, t, 0).
Clearly, for any t with 0 < t 6 T the map Ŝβ

ϕ,t : Ωβ
ϕ,t → Ω0 defined by

Ŝβ
ϕ,t(y, w) =

(
X̂β

ϕ(y, w, t), V̂ β
ϕ (y, w, t)

)
is the inverse of the map Sβ

ϕ,t; that is,

Ŝβ
ϕ,t

(
Sβ

ϕ,t(x, v)
)

= (x, v) ((x, v) ∈ Ω0). (3.2)

Let Ŝβ
ϕ,0(x, v) = (x, v).

We have ϕ ∈ C([0, T ], C2+σ
0 (Q)), and hence, by the theorem on differentiability

of the solutions with respect to the initial data, the function Ŝβ
ϕ,t(y, w) is continu-

ously differentiable with respect to y and w on the set Ωβ
ϕ,t. The function Ŝβ

ϕ,t(y, w)
((y, w) ∈ Ωβ

ϕ,t) is continuously differentiable with respect to y and w, and Sβ
ϕ,t(x, v)

((x, v) ∈ Ω0) is continuously differentiable with respect to t, therefore it follows
from (3.2) that the function Ŝβ

ϕ,t(y, w) ((y, w) ∈ Ωβ
ϕ,t) is continuously differentiable

with respect to t.

Lemma 3.1. Assume that Condition 1.1 is satisfied for some δ, ρ > 0 such that
G2δ ̸= ∅, and let ϕ ∈ C([0, T ], C2+σ

0 (Q)) and ∥ϕ∥2,T 6 R1 . Then there is a constant
ĉ0 = ĉ0(T, δ, ρ, h) > 0 such that

3∑
i=1

(
|DX̂β

ϕi(x, v, t)|+ |D V̂ β
ϕi(x, v, t)|

)
6 ĉ0 ((x, v) ∈ Ωβ

ϕ,t, 0 < t < T ), (3.3)

where D =
∂

∂xj
or

∂

∂vj
(j = 1, 2, 3).

Proof. Let (x, v) ∈ Ωβ
ϕ,t. The variational equations for the system (2.5), (2.6) are

d

dτ

(
∂Xβ

ϕi

∂xj

)
=
∂V β

ϕi

∂xj
(0 < τ < t, 1 6 i 6 3), (3.4)

d

dτ

(
∂V β

ϕi

∂xj

)
= − βe

mβ

3∑
k=1

∂2ϕ(Xβ
ϕ , τ)

∂Xβ
ϕi ∂X

β
ϕk

∂Xβ
ϕk

∂xj

+
βe

mβc

[
∂V β

ϕ

∂xj
, B

]
i

(0 < τ < t, 1 6 i 6 3). (3.5)

In view of (2.22) and (2.23) the initial conditions for the system (3.4), (3.5) are

∂Xβ
ϕi

∂xj

∣∣
τ=t

= δij (1 6 i 6 3), (3.6)

∂V β
ϕi

∂xj

∣∣
τ=t

= 0 (1 6 i 6 3). (3.7)
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We change the variable to ξ = τ in (3.4), (3.5) and integrate the resulting
equations with respect to ξ from τ to t, taking into account the initial conditions
(3.6), (3.7). Then we change to the new variable s = t− ξ. Let X̃β

ϕ(s) = Xβ
ϕ(t− s)

and Ṽ β
ϕ (s) = V β

ϕ (t− s), and define τ1 = t− τ . Then∣∣∣∣∂X̃β
ϕi(τ1)
∂xj

∣∣∣∣ 6 δij +
∫ τ1

0

∣∣∣∣∂Ṽ β
ϕi(s)
∂xj

∣∣∣∣ ds (0 < τ1 < t, 1 6 i 6 3),∣∣∣∣∂Ṽ β
βi(τ1)
∂xj

∣∣∣∣ 6
e∥ϕ∥2,T

mβ

3∑
k=1

∫ τ1

0

∣∣∣∣∂X̃β
ϕk(s)
∂xj

∣∣∣∣ ds
+

eh

mβc

3∑
k=1

∫ τ1

0

∣∣∣∣∂Ṽ β
ϕk

∂xj

∣∣∣∣ ds (0 < τ1 < t, 1 6 i 6 3).

From these inequalities and Gronwall’s lemma,

3∑
i=1

(∣∣∣∣∂Xβ
ϕi(τ)
∂xj

∣∣∣∣ +
∣∣∣∣∂Vϕi(τ)

∂xj

∣∣∣∣)

=
3∑

i=1

(∣∣∣∣∂X̃β
ϕi(τ1)
∂xj

∣∣∣∣ +
∣∣∣∣∂Ṽ β

ϕi(τ1)
∂xj

∣∣∣∣) 6 ĉ0 (0 < τ < T ). (3.8)

Letting τ = 0 in the functions

∂Xβ
ϕ(τ)
∂xj

=
∂Xβ

ϕ(x, v, t, τ)
∂xj

and
∂V β

ϕ (τ)
∂xj

=
∂V β

ϕ (x, v, t, τ)
∂xj

,

we obtain (3.3) from (3.8). The case D = ∂/∂vj is dealt with similarly. �

Lemma 3.2. Assume that Condition 1.1 is satisfied for some δ, ρ > 0, G2δ ̸=
∅, ϕ ∈ C([0, T ], C2+σ

0 (Q)), and ∥ϕ∥2,T 6 R1 . Then there is a constant c0 =
c0(T, δ, ρ, h) > 0 such that

3∑
i=1

(
|DXβ

ϕi(x, v, τ)|+ |DV β
ϕi(x, v, τ)|

)
6 c0 ((x, v) ∈ Ω0, 0 < t < T ). (3.9)

The proof is similar to that of Lemma 3.1.
Given a fixed function ϕ ∈ C

(
[0, T ], C2+σ

0 (Q)
)

with ∥ϕ∥2,T 6 R1, let {gβ
ϕ}β=±1

denote the solution of the problem (2.2), (2.3). Also, let

pβ
ϕ(y, w, τ) = gβ

ϕ

(
Sβ

ϕ,τ (y, w), τ
)

((y, w) ∈ Ω0, 0 6 τ 6 T ).

Clearly, the function pβ
ϕ(y, w, τ) satisfies the differential equation

∂pβ
ϕ(y, w, τ)
∂τ

= Ψβ
ϕ

(
Sβ

ϕ,τ (y, w), τ
)

((y, w) ∈ Ω0, 0 < τ < T ),

where

Ψβ
ϕ(z, t) =

βe

mβ

(
∇z′ϕ(z′, t),∇z′′ f̊

β(z′, z′′)
)
, z = (z′, z′′), z′, z′′ ∈ R3.



Vlasov–Poisson equations for two-component plasma 307

Integrating this equation with respect to τ from 0 to t, we get that

pβ
ϕ(y, w, t) = pβ

ϕ(y, w, 0) +
∫ t

0

Ψβ
ϕ

(
Sβ

ϕ,τ (y, w), τ
)
dτ ((y, w) ∈ Ω0, 0 < t < T ).

(3.10)
Let D0 = Q3δ/2 × Bρ/2, Dβ

ϕ,t =
{
η ∈ R6 : η = Sβ

ϕ,t(y, w), (y, w) ∈ D0

}
, and

(x, v) = Sβ
ϕ,t(y, w).

From (3.10) we get that

gβ
ϕ(x, v, t) = gβ

0

(
Ŝβ

ϕ,t(x, v)
)

+
∫ t

0

Ψβ
ϕ

(
Sβ

ϕ,τ

(
Ŝβ

ϕ,t(x, v)
)
, τ

)
dτ (3.11)

((x, v) ∈ Dβ
ϕ,t, 0 6 t 6 T ).

We set the function gβ
ϕ(x, v, t) equal to zero outside Dβ

ϕ,t:

gβ
ϕ(x, v, t) = 0 ((x, v) ∈ (Q× R3) \Dβ

ϕ,t, 0 6 t 6 T ). (3.12)

To show that gβ
ϕ ∈ C1(Q× R3 × [0, T ]) we recall that

supp gβ
0 ⊂ D0 = Q2δ ×Bρ/4

by the hypotheses of Theorem 1.1. Next, Ŝβ
ϕ,t(D

β
ϕ,t) = D0 by the definition of the

map Ŝβ
ϕ,t. Hence, since Ŝβ

ϕ,t is continuously differentiable with respect to x, v, t, the
function gβ

0 (Ŝβ
ϕ,t(x, v)), extended by zero outside Dβ

ϕ,t, belongs to C1(Q×R3×[0, T ]).
By the definition of the function Ψβ

ϕ and since Sβ
ϕ,τ and Ŝβ

ϕ,t are continuously
differentiable with respect to x, v, τ , and t, it remains to verify that supp f̊β ⊂ Dβ

ϕ,τ

(0 6 τ 6 T ). Applying Lemma 2.3 with δ′ = 3δ/2 and ρ′ = ρ/2, we have

∂Dβ
ϕ,τ ⊂ (Q5δ/4 \Q7δ/4)× (B3ρ/4 \Bρ/4). (3.13)

Therefore, supp f̊β ⊂ Dβ
ϕ,τ (0 6 τ 6 T ), because supp f̊β ⊂ Q2δ ×Bρ/4.

Since the function gβ
ϕ defined by (3.11) and (3.12) belongs to C1(Q×R3× [0, T ]),

we see by the method of characteristics that it is a classical solution of the problem
(2.2), (2.3), and it is unique.

Let
Fϕ(x, t) =

∫
R3

∑
β

βgβ
ϕ(x, v, t) dv (x ∈ Q, 0 6 t 6 T ). (3.14)

Remark 3.1. Assume that Condition 1.1 is satisfied. Then by (3.13) and (3.1) we
have |v| < ρ (|v| < 5ρ/4) if (x, v) ∈ Dβ

ϕ,t (respectively, (x, v) ∈ Ωβ
ϕ,t). Thus,

in (3.14) we integrate over Bρ (B5ρ/4); that is, the integral in (3.14) exists.

Let
mk = max

β
∥gβ

0 ∥k = max
β

max
|α|6k

sup
η∈Q×R3

|Dαgβ
0 (η)|

and define
δ1 = min

β
inf

t∈[0,T ]
dist(Dβ

0,t, ∂Ωβ
0,t). (3.15)
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Since D0 = Q3δ/2 ×Bρ/2 and Ω0 = Qδ ×Bρ, it follows from Lemma 2.2 that

δ1 > min
{
δ

4
,
ρ

2

}
. (3.16)

Also, let
R = min{R1, R2}, (3.17)

where R1 satisfies the inequality (2.16) and R2 > 0 satisfies the condition

2eTR2

m−1
exp(a0T ) <

δ1
8
. (3.18)

Next we define Ms = {ϕ ∈ C([0, T ], Cs
0(Q)) : ∥ϕ∥s,T 6 R}, where s > 0.

From (3.15), the inequality (2.21) with R instead of R1, and the inequality (3.16)
it follows that

δ2 = min
β

inf
ϕ∈M2+σ

inf
t∈[0,T ]

dist(Dβ
ϕ,t, ∂Ωβ

ϕ,t) >
3δ1
4
. (3.19)

Lemma 3.3. Let δ > 0 be such that G2δ ̸= ∅. Assume that Conditions 1.1 and 1.2
hold and there is a stationary solution {0, f̊β} of the problem (1.1), (1.2), (1.4) as
in the first assertion of Theorem 1.1. Assume also that supp(fβ

0 − f̊β) ⊂ (Q2δ ∩
Q′N )×Bρ/4 for some N > 0. Then Fϕ ∈ C([0, T ], Cσ

0 (Q)) for any ϕ ∈M2+σ .

Proof. In the first two steps of the proof it will be assumed that ϕ ∈ M2+δ and
that for each t ∈ [0, T ] the function ϕ(x, t) has compact support with respect to x.

I. Let

F1ϕ(x, t) =
∫

R3

∑
β

βgβ
1ϕ(x, v, t) dv,

F2ϕ(x, t) = Fϕ(x, t)− F1ϕ(x, t) (x ∈ Q, 0 6 t 6 T ),

(3.20)

where

gβ
1ϕ(x, v, t) =

{
gβ
0

(
Ŝβ

ϕ,t(x, v)
)
, (x, v) ∈ Dβ

ϕ,t, 0 6 t 6 T,

0, (x, v) ∈ (Q× R3) \Dβ
ϕ,t, 0 6 t 6 T.

We first show that F1ϕ ∈ C([0, T ], C(Q)). Using (3.20), Remark 3.1, and Taylor’s
formula, we get that

|F1ϕ(x, t+ ∆t)− F1ϕ(x, t)| 6 2|Bρ|m1

∑
β

{
sup
x,v

|X̂ϕ(x, v, t+ ∆t)− X̂β
ϕ(x, v, t)|

+ sup
x,v

|V̂ β
ϕ (x, v, t+ ∆t)− V̂ β

ϕ (x, v, t)|
}

for all x ∈ Q such that {v : (x, v) ∈ Dβ
ϕ,t ∪ Dβ

ϕ,t+∆t} ≠ ∅ and t, t + ∆t ∈ [0, T ].
Here the suprema are taken over the set Dβ

ϕ,t ∪Dβ
ϕ,t+∆t.
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The functions X̂β
ϕ(x, v, t) and V̂ β

ϕ (x, v, t) are continuous on the compact set
{(x, v, t) : (x, v) ∈ Sβ

ϕ,t(D0N ), t ∈ [0, T ]}, and hence for any ε > 0 there exists
a b0 > 0 such that

sup
x∈Q

|F1ϕ(x, t+ ∆t)− F1ϕ(x, t)| 6 ε

5
(3.21)

for t, t+ ∆t ∈ [0, T ], |∆t| < b0, where D0N = {(y, w) ∈ D0 : |y3| < N}.
II. We now show that Fϕ ∈ C([0, T ], Cσ(Q)). Let

(δ∆xf)(x) = f(x+ ∆x)− f(x), δ3 = min{δ2, 1},

where δ2 > 0 is given by (3.19).
From (3.20) it follows that (δ∆xF1ϕ)(x, t) = 0 for all x ∈ Q such that {v : (x, v) ∈

(Dβ
ϕ,t)δ3} = ∅, where 0 6 t 6 T , |∆x| 6 δ3, and (Dβ

ϕ,t)δ3 = {(x, v) : dist((x, v),
Dβ

ϕ,t) < δ3}. Therefore by Remark 3.1 and Taylor’s formula,

|δ∆xF1ϕ(x, t+ ∆t)− δ∆xF1ϕ(x, t)|

6 |B2ρ|
∑

β

sup
x,∆x,v

∣∣δ∆xg
β
0 (Ŝβ

ϕ,t+∆t(x, v))− δ∆xg
β
0 (Ŝβ

ϕ,t(x, v))
∣∣

6
∑

β

∑
l=1,2

sup
x,∆x,v

Φβ
l , (3.22)

where

Φβ
1 = |B2ρ|

∫ 1

0

∑
j

{∣∣δ∆xg
β
0Xj

(
Ŝβ

ϕ,t + θ(Ŝβ
ϕ,t+∆t − Ŝβ

ϕ,t)
)(
X̂β

ϕj(x+ ∆x, v, t+ ∆t)

− X̂β
ϕj(x+ ∆x, v, t)

)∣∣ +
∣∣δ∆xg

β
0Vj

(Ŝβ
ϕ,t + θ(Ŝβ

ϕ,t+∆t − Ŝβ
ϕ,t)

)
×

(
V̂ β

ϕj(x+ ∆x, v, t+ ∆t)− V̂ β
ϕj(x+ ∆x, v, t)

)∣∣} dθ,
Φβ

2 = |B2ρ|
∫ 1

0

∑
j

{∣∣gβ
0Xj

(
Ŝβ

ϕ,t + θ(Ŝβ
ϕ,t+∆t − Ŝβ

ϕ,t)
)
δ∆x

(
X̂β

ϕj(x, v, t+ ∆t)

− X̂β
ϕj(x, v, t)

)∣∣ +
∣∣gβ

0Vj

(
Ŝβ

ϕ,t + θ(Ŝβ
ϕ,t+∆t − Ŝβ

ϕ,t)
)

× δ∆x

(
V̂ β

ϕj(x, v, t+ ∆t)− V̂ β
ϕj(x, v, t)

)∣∣} dθ;
in (3.22) and below, the suprema are taken over (x, v)∈ (Dβ

ϕ,t)δ3 ∪ (Dβ
ϕ,t+∆t)

δ3 ,
0 < |∆x| < δ3, assuming that t, t+ ∆t ∈ [0, T ].

Again by Taylor’s formula, Lemma 3.1, and the continuity of the functions
X̂β

ϕ(x, v, t) and V̂ β
ϕ (x, v, t) on the compact set {(x, v, t) : (x, v) ∈ (Sβ

ϕ,t(D0N ))δ3 , t ∈
[0, T ]}, it follows that for any ε > 0 there exists a b1 > 0 such that

ϕβ
1 6 k1(ρ)m2ĉ0

(
|X̂β

ϕ(x+ ∆x, v, t+ ∆t)− X̂β
ϕ(x+ ∆x, v, t)|

+ |V̂ β
ϕ (x+ ∆x, v, t+ ∆t)− V̂ β

ϕ (x+ ∆x, v, t)|
)
|∆x| < |∆x|ε

5
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for all (x, v) ∈ (Dβ
ϕ,t)δ3 ∪ (Dβ

ϕ,t+∆t)
δ3 , 0 < |∆x| < δ3, and t, t + ∆t ∈ [0, T ] such

that |∆t| < b1.
Consequently,

sup
x,x+∆x,v

Φβ
1

|∆x|σ
6
ε

5
for t, t+ ∆t ∈ [0, T ], |∆t| < b1. (3.23)

By Taylor’s formula and the continuity of the functions X̂β
ϕxj

(x, v, t) and V̂ β
ϕxj

(x, v, t)

on the compact set {(x, v, t) : (x, v) ∈ (Sβ
ϕ,t(D0N ))δ3 , t ∈ [0, T ]}, we get that for any

ε > 0 there exists a b2 > 0 such that

Φβ
2 6 k2(ρ)m1

∑
j

∫ 1

0

{
|X̂β

ϕxj
(x+ s∆x, v, t+ ∆t)− X̂β

ϕxj
(x+ s∆x, v, t)|

+ |V̂ β
ϕxj

(x+ s∆x, v, t+ ∆t)− V̂ β
ϕxj

(x+ s∆x, v, t)|
}
ds |∆x| < |∆x|ε

5

for all (x, v) ∈ (Dβ
ϕ,t)δ3 ∪ (Dβ

ϕ,t+∆t)
δ3 , 0 < |∆x| < δ3, and t, t + ∆t ∈ [0, T ] such

that |∆t| < b2.
Hence,

sup
x,x+∆x,v

Φβ
2

|∆x|σ
6
ε

5
for t, t+ ∆t ∈ [0, T ], |∆t| < b2. (3.24)

Let b3 = min{b1, b2, b0}. Then by (3.21)–(3.24) and Remark 1.1 with b = δ3 we
have for any ε > 0

∥F1ϕ( · , t+ ∆t)− F1ϕ( · , t)∥σ 6 ε for t, t+ ∆t ∈ [0, T ], |∆t| < b.

Thus, the map [0, T ] ∋ t 7→ F1ϕ( · , t) ∈ Cσ(Q) is continuous on [0, T ].
Similarly, using Remark 3.1, Lemmas 3.1 and 3.2, and Taylor’s formula, we prove

that the map [0, T ] ∋ t 7→ F2ϕ( · , t) ∈ Cσ(Q) is continuous on the interval [0, T ].
III. It remains to show that for ϕ ∈ C([0, T ], C2+σ

0 (Q)) the map

[0, T ] ∋ t 7→ Fϕ( · , t) ∈ Cσ(Q)

is continuous on [0, T ], and Fϕ( · , t) ∈ Cσ
0 (Q). Indeed, there is a sequence of

functions ϕp ∈ C([0, T ], C2+σ(Q)) with compact supports in Q for each t ∈ [0, T ]
and such that ϕp → ϕ in C([0, T ], C2+σ(Q)). From the estimate (3.28), which will
be proved later, it follows that Fϕp → Fϕ in the norm of the space C([0, T ], Cσ(Q)).
By the above, Fϕp

∈ C([0, T ], Cσ(Q)). Hence Fϕ ∈ C([0, T ], Cσ(Q)). Moreover,
since gβ

0 ⊂ Q′N and ϕp( · , t) have compact supports for t ∈ [0, T ], the functions
Fϕp( · , t) are also compactly supported for t ∈ [0, T ]. Consequently, Fϕ( · , t) ∈
Cσ

0 (Q) for all t ∈ [0, T ] by definition. �

We set nk+1 = maxβ,i ∥f̊vi∥k.

Lemma 3.4. Let the hypotheses of Lemma 3.3 hold. Then for any ϕ ∈M2+σ

∥Fϕ∥σ,T 6 c1(m1 + n2), (3.25)

where c1 = c1(T, δ, ρ, h, σ) > 0 is independent of ϕ.



Vlasov–Poisson equations for two-component plasma 311

Proof. I. From (3.20) and Remark 3.1 it follows that

|F1ϕ(x, t)| 6
∑

β

∫
|v|<ρ

∣∣gβ
0

(
Ŝϕ,t(x, v)

)∣∣ dv 6 2|Bρ|m0 (x ∈ Q, 0 6 t 6 T ). (3.26)

II. In view of (3.19) we have δ3 > 0. Clearly, (δ∆xFϕ)(x, t) = 0 for x ∈ Q

such that {v : (x, v) ∈ (Dβ
ϕ,t)δ3} = ∅, where 0 6 t 6 T and |∆x| 6 δ3. Hence by

Remark 3.1, Taylor’s formula, and Lemma 3.1,

|δ∆xF1ϕ(x, t)| 6
∑

β

∫
|v|<2ρ

∣∣δ∆xg
β
0

(
Ŝϕ,t(x, v)

)∣∣ dv
6 m1

∑
β

∫
|v|<2ρ

∑
i

{
|δ∆xX̂

β
ϕi(x, v, t)|+ |δ∆xV̂

β
ϕi(x, v, t)|

}
dv

6 2m1ĉ0|B2ρ| |∆x| (3.27)

for all x ∈ Q such that {v : (x, v) ∈ (Dβ
ϕ,t)δ3} ≠ ∅, and for |∆x| 6 δ3 and 0 6 t 6 T .

Note that δ3 = δ3(T, δ, ρ, h). Therefore, ∥F1ϕ∥σ,T 6 k1m1 by (3.26), (3.27), the
condition |∆x| 6 δ3 6 1, and Remark 1.1 with b = δ3. Similarly, ∥F2ϕ∥σ,T 6 k2n2.
Here ki = ki(T, δ, ρ, h, σ) > 0. This gives us the inequality (3.25). �

Lemma 3.5. Let the hypotheses of Lemma 3.3 hold. Then for any ϕ1, ϕ2 ∈M2+σ

∥Fϕ1 − Fϕ2∥σ,T 6 c2(m2 + n3)∥ϕ1 − ϕ2∥2,T , (3.28)

where c2 = c2(T, δ, ρ, h, σ) > 0 is independent of ϕ1 and ϕ2 .

Proof. I. By definition, suppF β
1ϕj

(x, v, t)⊂Dβ
ϕj ,t (j = 1, 2, 0 6 t6T ). Using (3.15),

(3.18), and the inequality (2.21) with R instead of R1, we get that

min
β

inf
ϕ1,ϕ2∈M2+σ

inf
t∈[0,T ]

dist(Dβ
ϕk,t, ∂Ωϕj ,t) >

3δ1
4

;

that is, Dβ
ϕ1,t ∪Dβ

ϕ2,t ⊂ Ωϕj ,t (j = 1, 2). Hence, the maps Ŝβ
ϕj ,t(x, v) are defined for

all (x, v) ∈ Dβ
ϕ1,t ∪Dβ

ϕ2,t and 0 6 t 6 T .
On the other hand, by (3.20) we have F1ϕ1(x, t) = F1ϕ2(x, t) = 0 for all x ∈ Q

such that {v : (x, v) ∈
⋃
β

(Dβ
ϕ1,t ∪ Dβ

ϕ2,t)} = ∅, where 0 6 t 6 T . Therefore by

Remark 3.1 and Taylor’s formula,

|F1ϕ1(x, t)− F1ϕ2(x, t)| 6
∑

β

∫
|v|<ρ

∣∣gβ
0

(
Ŝβ

ϕ1,t(x, v)
)
− gβ

0

(
Ŝβ

ϕ2,t(x, v)
)∣∣ dv

6 2m1

∑
β

∫
|v|<ρ

{|X̂β
ϕ1

(x, v, t)− X̂β
ϕ2

(x, v, t)|+ |V̂ β
ϕ1

(x, v, t)− V̂ β
ϕ2

(x, v, t)|} dv

(3.29)

for all x ∈ Q such that
{
v : (x, v) ∈

⋃
β

(Dβ
ϕ1,t ∪Dβ

ϕ2,t)
}
̸= ∅, where 0 6 t 6 T .
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We now estimate the right-hand side of (3.29).
Let {Xβ

ϕl
(τ), V β

ϕl
(τ)} = {Xβ

ϕl
(x, v, t, τ), V β

ϕl
(x, v, t, τ)}, τ ∈ (0, t], be the solution

of the system (2.5), (2.6) for ϕ = ϕl (l = 1, 2) with the initial conditions

Xϕl
(x, v, t, τ)

∣∣
τ=t

= x, Vϕl
(x, v, t, τ)

∣∣
τ=t

= v, (3.30)

where (x, v) ∈ Dβ
ϕ1,t ∪Dβ

ϕ2,t.
By Taylor’s formula,

d

dτ
(Xβ

ϕ1
−Xβ

ϕ2
) = (V β

ϕ1
− V β

ϕ2
) (0 < τ < t),

d

dτ
(V β

ϕ1
− V β

ϕ2
) = − βe

mβ

3∑
j=1

∫ 1

0

(
∂

∂Xj
∇Xϕ1

)(
Xβ

ϕ2
+ θ(Xβ

ϕ1
−Xβ

ϕ2
), τ

)
dθ

(3.31)

× (Xβ
ϕ1,j −Xβ

ϕ2,j)−
βe

mβ

(
∇Xϕ1(Xβ

ϕ2
, τ)−∇Xϕ2(Xβ

ϕ2
, τ)

)
+

βe

mβc
[V β

ϕ1
− V β

ϕ2
, B] (0 < τ < t).

Changing the variable to s = τ , integrating the system (3.31) with respect to s
from τ to t, 0 < τ < t, and taking into account the initial conditions (3.30), we find
that

|Xβ
ϕ1

(τ)−Xβ
ϕ2

(τ)| 6
∫ t

τ

|V β
ϕ1

(s)− V β
ϕ2

(s)| ds,

|V β
ϕ1

(τ)− V β
ϕ2

(τ)| 6 2e
mβ

∥ϕ1∥2,T

∫ t

τ

|Xβ
ϕ1

(s)−Xβ
ϕ2

(s)| ds (3.32)

+
2Te
mβ

∥ϕ1 − ϕ2∥1,T +
e

mβc
h

∫ t

τ

|V β
ϕ1

(s)− V β
ϕ2

(s)| ds.

We introduce the new variables s1 = t−s, τ1 = t−τ and define X̃β
ϕj

(τ1) = Xβ
ϕj

(τ)
and Ṽ β

ϕj
(τ1) = V β

ϕj
(τ) (j = 1, 2). An appeal to the inequalities (3.32) and Gronwall’s

lemma shows that

|Xβ
ϕ1

(τ)−Xβ
ϕ2

(τ)|+ |V β
ϕ1

(τ)− V β
ϕ2

(τ)|

= |X̃β
ϕ1

(τ1)− X̃β
ϕ2

(τ1)|+ |Ṽ β
ϕ1

(τ1)− Ṽ β
ϕ2

(τ1)| 6 k0∥ϕ1 − ϕ2∥1,T , (3.33)

where k0 = k0(T, δ, ρ, h) > 0 is independent of ϕ1 and ϕ2.
Putting τ = 0 in (3.33), we have

|Xβ
ϕ1

(0)−Xβ
ϕ2

(0)|+ |V β
ϕ1

(0)− V β
ϕ2

(0)|

= |X̂β
ϕ1

(x, v, t)− X̂β
ϕ2

(x, v, t)|+ |V̂ β
ϕ1

(x, v, t)− V̂ β
ϕ2

(x, v, t)|
6 k0∥ϕ1 − ϕ2∥1,T . (3.34)

It now follows from (3.29) and (3.34) that

sup
x∈Q

|F1ϕ1(x, t)− F1ϕ2(x, t)| 6 4m1k0|Bρ| ∥ϕ1 − ϕ2∥1,T . (3.35)



Vlasov–Poisson equations for two-component plasma 313

II. By (3.20) we have δ∆xF1ϕj (x, t) = 0, j = 1, 2, for x ∈ Q such that {v : (x, v) ∈
(Dβ

ϕ1,t)δ3 ∪ (Dβ
ϕ2,t)δ3} ≠ ∅, where 0 6 t 6 T and |∆x| 6 δ3.

Hence, by Remark 3.1 and Taylor’s formula,∣∣δ∆x

(
F1ϕ1(x, t)− F1ϕ2(x, t)

)∣∣
6

∑
β

∫
|v|<2ρ

∣∣δ∆x

(
gβ
0 (Ŝβ

ϕ1,t(x, v))− gβ
0 (Ŝβ

ϕ2,t(x, v))
)∣∣ dv

6
∑

β

∑
j=1,2

Iβ
j , (3.36)

where

Iβ
1 =

∫
|v|<2ρ

dv

∫ 1

0

3∑
j=1

{∣∣δ∆xg
β
0Xj

(
Ŝβ

ϕ2,t + θ
(
Ŝβ

ϕ1,t − Ŝβ
ϕ2,t

))
×

(
X̂β

ϕ1,j(x+ ∆x, v, t)− X̂β
ϕ2,j(x+ ∆x, v, t)

)∣∣
+

∣∣δ∆xg
β
0Vj

(
Ŝβ

ϕ2,t + θ
(
Ŝβ

ϕ1,t − Ŝβ
ϕ2,t

))(
V̂ β

ϕ1,j(x+ ∆x, v, t)

− V̂ β
ϕ2,j(x+ ∆x, v, t)

)∣∣} dθ,
Iβ
2 =

∫
|v|<2ρ

dv

∫ 1

0

3∑
j=1

{∣∣gβ
0Xj

(
Ŝβ

ϕ2,t + θ
(
Ŝβ

ϕ1,t − Ŝβ
ϕ2,t

))
δ∆x

(
X̂β

ϕ1,j − X̂β
ϕ2,j

)∣∣
+

∣∣gβ
0Vj

(
Ŝβ

ϕ2,t + θ
(
Ŝβ

ϕ1,t − Ŝβ
ϕ2,t

))
δ∆x

(
V̂ β

ϕ1,j − V̂ β
ϕ2,j

)∣∣} dθ.
Let us estimate Iβ

1 . Clearly, the inequality (3.34), which was obtained for (x, v) ∈⋃
β(Dβ

ϕ1,t ∪Dβ
ϕ2,t) and 0 6 t 6 T , is also true for (x, v) ∈

⋃
β((Dβ

ϕ1,t)δ3 ∪ (Dβ
ϕ2,t)δ3)

and 0 6 t 6 T . Therefore by Lemma 3.1,

Iβ
1 6 k̂0ĉ0m2|B2ρ| ∥ϕ1 − ϕ2∥1,T |∆x|. (3.37)

It is readily checked that

Iβ
2 6 2m1|B2ρ|{|δ∆x(X̂β

ϕ1
− X̂β

ϕ2
)|+ |δ∆x(V̂ β

ϕ1
− V̂ β

ϕ2
)|}. (3.38)

To estimate the right-hand side of (3.38), we apply the operator δ∆x to both
parts of the system (3.31). As a result,

d

dτ
δ∆x(Xβ

ϕ1
−Xβ

ϕ2
) = δ∆x(V β

ϕ1
− V β

ϕ2
) (0 < τ < t), (3.39)

d

dτ
δ∆x(V β

ϕ1
− V β

ϕ2
) = − βe

mβ

4∑
µ=1

Jβ
µ (0 < τ < t), (3.40)
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where

Jβ
1 =

3∑
j=1

∫ 1

0

(
δ∆x

∂

∂Xj
∇Xϕ1

)(
Xβ

ϕ2
+ θ(Xβ

ϕ1
−Xβ

ϕ2
), τ

)
dθ

×
(
Xβ

ϕ1,j(x+ ∆x, v, t, τ)−Xβ
ϕ2,j(x+ ∆x, v, t, τ)

)
,

Jβ
2 =

3∑
j=1

∫ 1

0

(
∂

∂Xj
∇Xϕ1

)(
Xβ

ϕ2
+ θ(Xβ

ϕ1
−Xβ

ϕ2
), τ

)
dθ δ∆x(Xβ

ϕ1,j −Xβ
ϕ2,j),

Jβ
3 = δ∆x

(
∇Xϕ1(Xβ

ϕ2
, τ)−∇Xϕ2(Xβ

ϕ2
, τ)

)
,

Jβ
4 = −1

c
[δ∆x(V β

ϕ1
− V β

ϕ2
), B].

Using Taylor’s formula, Lemma 2.5, and the inequalities (3.8) and (3.33), we see
that

|Jβ
1 | 6 k1∥ϕ1 − ϕ2∥1,T |∆x|σ, |Jβ

2 | 6 k2|δ∆x(Xβ
ϕ1
−Xβ

ϕ2
)|,

|Jβ
3 | 6 k3∥ϕ1 − ϕ2∥2,T |∆x|, |Jβ

4 | 6 k4|δ∆x(Vϕ1 − Vϕ2)|,
(3.41)

where the kj = kj(T, δ, ρ, h) > 0 with j = 1, . . . , 4 are independent of ϕ1 and ϕ2.
By (3.30) the initial conditions for the system of differential equations (3.39),

(3.40) are

δ∆x(Xβ
ϕ1
−Xβ

ϕ2
)
∣∣
τ=t

= 0, (3.42)

δ∆x(V β
ϕ1
− V β

ϕ2
)
∣∣
τ=t

= 0. (3.43)

Integrating the system (3.39), (3.40) from τ to t, 0 < τ < t, with the initial
conditions (3.42) and (3.43), we get by (3.41) that∣∣δ∆x

(
Xβ

ϕ1
(τ)−Xβ

ϕ2
(τ)

)∣∣ 6
∫ t

τ

∣∣δ∆x

(
V β

ϕ1
(s)− V β

ϕ2
(s)

)∣∣ ds, (3.44)∣∣δ∆x

(
V β

ϕ1
(τ)− V β

ϕ2
(τ)

)∣∣ 6
Te

mβ
(k1 + k3)∥ϕ1 − ϕ2∥2,T |∆x|σ

+
e

mβ

∫ t

τ

{
k2

∣∣δ∆x

(
Xβ

ϕ1
(s)−Xβ

ϕ2
(s)

)∣∣
+ k4

∣∣δ∆x

(
V β

ϕ1
(s)− V β

ϕ2
(s)

)∣∣} ds. (3.45)

Making a change of variables in (3.44), (3.45) and using Gronwall’s lemma, we
have, as in the case of (3.34),∣∣δ∆x

(
Xβ

ϕ1
(0)−Xβ

ϕ2
(0)

)∣∣ +
∣∣δ∆x

(
V β

ϕ1
(0)− V β

ϕ2
(0)

)∣∣
=

∣∣δ∆x

(
X̂ϕ1(x, v, t)− X̂ϕ2(x, v, t)

)∣∣
+

∣∣δ∆x

(
V̂ϕ1(x, v, t)− V̂ϕ2(x, v, t)

)∣∣ 6 k5∥ϕ1 − ϕ2∥2,T |∆x|σ,

where k5 = k5(T, δ, ρ, h) > 0 is independent of ϕ1 and ϕ2.
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Thus, from (3.36)–(3.38) we deduce the estimate

sup
x,x+∆x∈Q,
0<|∆x|<δ3

|δ∆x(F1ϕ1(x, t)− F1ϕ2(x, t))|
|∆x|σ

6 k6m2∥ϕ1 − ϕ2∥2,T , (3.46)

where k6 = k6(T, δ, ρ, h) > 0 is independent of ϕ1 and ϕ2.
Next, by (3.35), (3.46), and Remark 1.1,

∥F1ϕ1 − F1ϕ2∥σ,T 6 k7m2∥ϕ1 − ϕ2∥2,T .

Similarly,
∥F2ϕ1 − F2ϕ2∥σ,T 6 k8n3∥ϕ1 − ϕ2∥2,T .

Here ki = ki(T, δ, ρ, h, σ) > 0 for i = 7, 8. This proves the inequality (3.28). �

4. Proof of Theorem 1.1

4.1. To prove Theorem 1.1 we shall need an auxiliary result on the unique
solvability of the Poisson equation with Dirichlet condition in an infinite cylinder.
A closely related result can be found in [87], but for the reader’s convenience we
present here a fairly simple independent proof of this fact.

Consider the Poisson equation

−∆u(x) = f(x) (x ∈ Q) (4.1)

with the Dirichlet boundary condition

u(x) = 0 (x ∈ ∂Q). (4.2)

We define C0(Q) = {w ∈ C(Q) : w(x) → 0 as |x3| → ∞ uniformly with respect
to x′ ∈ G}. Obviously, Cs

0(Q) ⊂ C0(Q).
In what follows, the norm in the Hölder space Cs(D) will be denoted by ∥ · ∥Cs(D)

to emphasize the domain D in question.

Lemma 4.1. For any function f ∈ Cσ
0 (Q) there is a unique solution u ∈ C2+σ

0 (Q)
of the problem (4.1), (4.2). Moreover,

∥u∥C2+σ(Q) 6 c3∥f∥Cσ(Q), (4.3)

where c3 > 0 is independent of f .

Proof. Let us first assume that f ∈ Cσ(Q) has compact support.
I. We claim that

∥u∥C(Q) 6 k1∥f∥C(Q) (4.4)

for any solution u ∈ C2(Q) ∩ C0(Q) of the problem (4.1), (4.2), where k1 > 0 is
independent of f .

By the maximum principle, for f(x) ≡ 0 (x ∈ Q) there is a unique trivial solution
of (4.1), (4.2) in C2(Q)∩C0(Q), which clearly satisfies the inequality (4.4). So below
we assume that f(x) ̸≡ 0 (x ∈ Q).



316 A. L. Skubachevskii

Consider the auxiliary problem

∆x′ψ(x′) = −1 (x′ ∈ G), (4.5)
ψ(x′) = 0 (x′ ∈ ∂G). (4.6)

This problem has a unique solution ψ ∈ C∞(G), and ψ(x′) > 0 (x′ ∈ G). Obviously,
the function v(x) = Aψ(x′) is a solution of the problem

∆v(x) = −A (x ∈ Q), (4.7)
v(x) = 0 (x ∈ ∂Q), (4.8)

where A ∈ R.
Let A = 2∥f∥C(Q). We claim that u(x) 6 Aψ(x′) for all x ∈ Q. Assume on the

contrary that there exists an x0 ∈ Q such that u(x0) > v(x0). Since u ∈ C0(Q),
there is a number N > 0 such that u(x) < u(x0)− v(x0) for |x3| > N , x′ ∈ G, and
x0 ∈ G × (−N,N). Then u(x) − v(x) < u(x0) − v(x0) for |x3| > N and x′ ∈ G,
because v(x) > 0. Let QN,f = {x ∈ Q : |x3| < N , u(x) > v(x)} and w(x) =
v(x)− u(x). By construction, x0 ∈ QN,f . Hence QN,f ̸= ∅. Clearly, w(x) = 0 for
x ∈ ∂G × [−N,N ], and w(x) > w(x0) for x ∈ (G × {−N}) ∪ (G × {N}). Since
w(x0) < 0, the function w(x) takes its minimum negative value on the set QN,f

at a point x1 ∈ QN,f . Therefore, ∆w(x1) > 0. On the other hand, ∆w(x1) < 0
since A > ∥f∥C(Q). This contradiction shows that u(x) 6 Aψ(x′). A similar
argument gives us that u(x) > −Aψ(x′). Consequently, |u(x)| 6 Aψ(x′), and the
inequality (4.4) now follows.

II. We claim that if u ∈ C2(Q) ∩C0(Q) is a solution of the problem (4.1), (4.2),
then u ∈ C2+σ(Q) and (4.3) holds.

Let Q′N = {x ∈ Q : |x3| < N}. By Lemma 6.18 in Chap. 6 of [37], u ∈ C2+σ(Q′N )
for any N > 0. This together with Lemma 6.5 in the same chapter gives us that for
any N > 0

∥u∥C2+σ(Q′N ) 6 k2

(
∥u∥C(Q′N+1)

+ ∥f∥Cσ(Q′N+1)

)
, (4.9)

where k2 > 0 is independent of N and f .
Using (4.9) and (4.4), we get that

∥u∥C2+σ(Q′N ) 6 k2

(
∥u∥C(Q) + ∥f∥Cσ(Q)

)
6 k3∥f∥Cσ(Q). (4.10)

This gives us the estimate (4.3).
III. We now assert that the problem (4.1), (4.2) has a solution u ∈ C2(Q)∩C0(Q)

for any compactly supported function f ∈ Cσ(Q).
We define the weight space W k

2,β(Q) as the completion of the space C∞0 (Q) with
respect to the norm

∥u∥W k
2,β(Q) =

( ∑
|α|6k

∫
Q

e2βx3 |Dαu(x)|2 dx
)1/2

,

where C∞0 (Q) is the space of compactly supported infinitely differentiable functions
on Q, k > 0 is an integer, and β ∈ R. For β = 0 the space W k

2,β(Q) coincides with
the Sobolev space W k

2 (Q).
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Together with problem (4.1), (4.2), we consider the auxiliary eigenvalue/eigen-
function problem

−∆x′e(x′) + λ2e(x′) = 0 (x′ ∈ G), (4.11)
e(x′) = 0 (x′ ∈ ∂G). (4.12)

It is known that all the eigenvalues of this problem are purely imaginary and iso-
lated, and have finite multiplicity. Also, zero is not an eigenvalue of the problem.
From Theorem 1.1 in [65] it follows that if the line Imλ = β does not contain eigen-
values of the problem (4.11), (4.12), then the boundary-value problem (4.1), (4.2)
has a unique solution u ∈W 2

2,β(Q) for any right-hand side f ∈W 0
2,β(Q).

Therefore, (4.1), (4.2) has a unique solution u ∈ W 2
2,0(Q) = W 2

2 (Q) for any
compactly supported function f ∈ Cσ(Q). Since f ∈ Cσ(Q), it follows from The-
orem 9.19 in Chap. 9 of [37] that u ∈ C2+σ(Q′N ) for any N > 0. Moreover, the
relation u ∈ W 2

2 (Q) implies that ∥u∥W 2
2 (Q\Q′N ) → 0 as N → ∞. By the Sobolev

embedding theorem, u ∈ C(Q) and

∥u∥
C(Q\Q′N )

→ 0 as N →∞; (4.13)

that is, u ∈ C0(Q). Consequently, for any compactly supported function f ∈ Cσ(Q)
there is a solution u ∈ C2(Q)∩C0(Q) of the problem (4.1), (4.2). Hence, from parts
I and II of the proof it follows that for any compactly supported function f ∈ Cσ(Q)
there is a unique solution u ∈ C2+σ(Q) ∩ C0(Q) of the problem (4.1), (4.2), and
moreover, the estimate (4.3) holds.

IV. We now prove that u ∈ C2+σ
0 (Q). It suffices to check that ξNu → u in

C2+σ(Q) as N → ∞, where ξN = ξN (x3) ∈ Ċ∞(R) is an even function, 0 6
ξN (x3) 6 1 for x3 ∈ R, ξN (x3) = 1 for |x3| 6 N , ξN (x3) = 0 for |x3| > N + 1, and
|ξ(i)N (x3)| 6 k′3 for x3 ∈ R (i = 1, 2, 3), with k′3 > 0 independent of x3 and N .

Using the estimate for the norm of the product of two functions in the Hölder
space together with an inequality similar to (4.9), we obtain

∥(1− ξN )u∥C2+σ(Q) = ∥(1− ξN )u∥
C2+σ(Q\Q′N )

6 k4∥1− ξN∥C2+σ(Q\Q′N )
∥u∥

C2+σ(Q\Q′N )

6 k5∥u∥C2+σ(Q\Q′N )

6 k6

(
∥u∥

C(Q\Q′N−1)
+ ∥f∥

Cσ(Q\Q′N−1)

)
= k6∥u∥C(Q\Q′N−1)

. (4.14)

Here N is such that f(x) ≡ 0 for x ∈ Q \Q′N−1, and k4, k5, k6 > 0 are independent
of N and f .

From (4.13) and (4.14) it follows that

∥u− ξNu∥C2+σ(Q) → 0 as N →∞.

To conclude the proof it remains to note that by definition the space of compactly
supported functions in Cσ(Q) is dense in Cσ

0 (Q). �
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4.2. We prove the first assertion of Theorem 1.1. Let δ > 0 be such that G2δ ̸= ∅
and δ < δ0. Assume that Condition 1.1 is satisfied for this δ and some h, ρ > 0.
We now build a stationary solution {0, f̊β} of equations (1.1), (1.2) such that

f̊β ∈ C∞(Q× R3), supp f̊β ⊂ Q2δ ×Bρ/4, sup
x,v

f̊β(x, v) > α.

4.2a. Let ϕ̊(x) ≡ 0 (x ∈ Q). Then the system (1.11) assumes the form

(v,∇xf̊
β) +

βe

cmβ

(
[v,B],∇v f̊

β
)

= 0 (x ∈ Q, v ∈ R3, β = ±1). (4.15)

We shall find a solution of equation (4.15) as a product of two cut-off functions
whose arguments are first integrals of the system (2.5), (2.6). Different particular
solutions of equation (4.15) will be denoted by f̊β

i (i = 1, . . . , 4).
Clearly, the function f̊β

1 (x, v) = |v|2 is a solution of (4.15) for any x ∈ Q, v ∈ R3,
and β = ±1. We consider even functions ψβ

1 ∈ Ċ∞(R) such that ψβ
1 (0) = 2α > 0,

ψβ
1 (τ) > 0,

1

m
3/2
+1

ψ+1
1

(
τ

m2
+1

)
=

1

m
3/2
−1

ψ−1
1

(
τ

m2
−1

)
(τ ∈ R),

and suppψ−1
1 ⊂ (−ρ2

1/16, ρ2
1/16), where 0 < ρ1 < ρ.

Since m+1>m−1, suppψ+1
1 ⊂ (−ρ2

1/16, ρ2
1/16). The function f̊β

2 (x, v) =ψβ
1 (|v|2)

is a solution of (4.15).
We now look for a solution of (4.15) as a quadratic form with undetermined

coefficients:

f̊β
3 (x, v) =

3∑
i,j=1

(αijxixj + βijxivj + γijvivj). (4.16)

Substituting (4.16) in (4.15) and equating the coefficients of like terms, we get that

f̊β
3 (x, v) =

(
eh

mβc
x1 + βv2

)2

+
(
eh

mβc
x2 − βv1

)2

.

We consider even functions ψβ
2 ∈ Ċ∞(R) such that ψβ

2 (0) = 1, ψβ
2 (τ) > 0,

1

m
3/2
+1

ψ+1
2

(
τ

m2
+1

)
=

1

m
3/2
−1

ψ−1
2

(
τ

m2
−1

)
(τ ∈ R),

and suppψ−1
2 ⊂ (−ρ2

0, ρ
2
0), where ρ0 = 15ρδ0/δ. Since m+1 > m−1, suppψ+1

2 ⊂
(−ρ2

0, ρ
2
0). The function

f̊β
4 (x, v) = ψβ

2

((
eh

mβc
x1 + βv2

)2

+
(
eh

mβc
x2 − βv1

)2)
is a solution of (4.15).
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4.2b. We prove that the vector function {0, f̊β
2 f̊

β
4 } is a stationary solution of

the problem (1.1), (1.2), (1.4) satisfying the hypotheses of Theorem 1.1.
By construction, the function f̊β(x, v) = f̊β

2 (x, v)f̊β
4 (x, v) satisfies equation (4.15)

and supx,v f̊
β(x, v) > f̊β(0, 0) = 2α > 0. By Lemma 4.1 it suffices to show that the

right-hand side of (1.10) is identically zero and supp f̊β ⊂ Q2δ ×Bρ/4.
Let us show that ∫

R3
f̊+1(x, v) dv =

∫
R3
f̊−1(x, v) dv.

We make the change of variables y = (eh/c)x, w = m+1(v2,−v1, v3), and define
y′ = (y1, y2) and w′ = (w1, w2). Then using the equalities

1

m
3/2
+1

ψ+1
j

(
τ

m2
+1

)
=

1

m
3/2
−1

ψ−1
j

(
τ

m2
−1

)
(j = 1, 2; τ ∈ R)

and introducing the variables x = (c/(eh))y and v = (1/m−1)(w2,−w1, w3), we
find that∫

R3
f̊+1(x, v) dv =

∫
R3
ψ+1

1 (|v|2)ψ+1
2

((
eh

m+1c
x1 + v2

)2

+
(

eh

m+1c
x2 − v1

)2)
dv

=
∫

R3

1
m3

+1

ψ+1
1

(
|w|2

m2
+1

)
ψ+1

2

(
|y′ + w′|2

m2
+1

)
dw

=
∫

R3

1
m3
−1

ψ−1
1

(
|w|2

m2
−1

)
ψ−1

2

(
|y′ + w′|2

m2
−1

)
dw

=
∫

R3
ψ−1

1 (|v|2)ψ−1
2

((
eh

m−1c
x1 − v2

)2

+
(

eh

m−1c
x2 + v1

)2)
dv

=
∫

R3
f̊−1(x, v) dv.

Consequently, the right-hand side of (1.10) is identically zero.
We now assert that supp f̊β ⊂ Q2δ×Bρ/4. Indeed, if |v| > ρ1/4, then fβ

2 (x, v) =
ψβ

1 (|v|2) = 0 by construction. Hence, f̊β(x, v) = 0 for |v| > ρ1/4. Let Bδ0(g) be
the circle of greatest radius inscribed in G2δ. Without loss of generality we assume
that g = 0. If |x′| > δ0/2 and |v| 6 ρ1/4, then Condition 1.1 and the inequality
δ0/δ > 1 imply that∣∣∣∣ ehmβc

x′ + βz′
∣∣∣∣ >

eh

mβc
|x′| − |z′| > 16cρ

eδ

mβeδ0
mβc

− ρ >
15ρδ0
δ

,

where z′ = (v2,−v1).
Therefore,

fβ
4 (x, v) = ψβ

2

(∣∣∣∣ ehmβc
x′ + βz′

∣∣∣∣2) = 0.

Consequently, f̊β(x, v) = 0 for |x′| > δ0/2 and |v| 6 ρ/4.
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4.3. To prove Theorem 1.1 it suffices to show that under Conditions 1.1 and
1.2, for any T > 0 and all f̊β and gβ

0 such that

supp gβ
0 ⊂ (Q2δ ∩Q′N )×Bρ/4, (4.17)

∥gβ
0 ∥1 + max

i
∥f̊β

vi
∥1 < R(4πec1c3)−1, (4.18)

∥gβ
0 ∥2 + max

i
∥f̊β

vi
∥2 < (4πec2c3)−1, (4.19)

there is a unique classical solution of (2.1)–(2.4), and moreover,

supp gβ( · , · , t) ⊂ Q5δ/4 ×Bρ for all t ∈ [0, T ].

Here c1, c2, c3 > 0 are the constants from Lemmas 3.4, 3.5, and 4.1.
Let ϕ ∈M2+σ be an arbitrary function. Then by Lemma 3.3

Fϕ ∈ C([0, T ], Cσ
0 (Q)).

Next, according to Lemma 4.1 there is a unique classical solution uϕ(x, t) of the
problem (4.1), (4.2) with f(x) = 4πeFϕ(x, t) for each t ∈ [0, T ], and

uϕ ∈ C
(
[0, T ], C2+σ

0 (Q)
)

and uϕ

∣∣
∂Q×(0,T )

= 0.

Let Aϕ = uϕ.
It follows from (3.25), (4.3), and (4.18) that

∥Aϕ∥2+σ,T 6 R (ϕ ∈M2+σ). (4.20)

By virtue of (4.19), (3.28), and (4.3),

∥Aϕ1 −Aϕ2∥2+σ,T 6 θ∥ϕ1 − ϕ2∥2+σ,T (ϕ1, ϕ2 ∈M2+σ), (4.21)

where θ = 4πe(m2 + n3)c2c3 < 1.
Thus, the operator A maps the complete metric space M2+σ into itself and is

a contraction operator. By the Banach contraction principle A has a unique fixed
point in M2+σ. Hence, the problem (2.1)–(2.4) has a unique classical solution
{ϕ, gβ

ϕ}, where ϕ is the fixed point of the operator A and the functions gβ
ϕ are

defined by (3.11) and (3.12). The proof of Theorem 1.1 is complete.

5. Some generalizations

In the proof of Theorem 1.1 we have only used the boundedness of the inverse of
the Laplacian operator with homogeneous Dirichlet condition, acting from Cσ

0 (Q)
to C2+σ

0 (Q), while the explicit form of the operator and the boundary conditions
did not play a role. This suggests considering the following generalization of the
problem (1.1)–(1.4):

∂fβ

∂t
+ (v,∇xf

β) +
βe

mβ

(
−∇xP

(∫
R3

∑
β

βfβ(x, v, t) dv
)

+
1
c
[v,B],∇vf

β

)
= 0

(5.1)

(x ∈ Q, v ∈ R3, 0 < t < T, β = ±1),

fβ(x, v, t)
∣∣
t=0

= fβ
0 (x, v) (x ∈ Q, v ∈ R3, β = ±1). (5.2)

Here P is a bounded linear operator mapping Cσ
0 (Q) to C2+σ

0 (Q).
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Remark 5.1. Since the operator P : Cσ
0 (Q) → C2+σ

0 (Q) is bounded, we have
(PF )(x, t) ∈ C([0, T ], C2+σ

0 (Q)) and

∥PF∥2+σ,T 6 c4∥F∥σ,T (5.3)

for any function F (x, t) ∈ C([0, T ], Cσ
0 (Q)).

Definition 5.1. A vector function {fβ} with fβ ∈ C1(Q×R3× [0, T ]) for β = ±1
is called a classical solution of the problem (5.1), (5.2) if∫

R3

∑
β

βfβ( · , v, t) dv ∈ C([0, T ], Cσ
0 (Q))

and {fβ} satisfies equation (5.1) and the initial condition (5.2).

Definition 5.2. A vector function {f̊β} with f̊β ∈ C1(Q×R3) is called a stationary
solution of equation (5.1) if∫

R3

∑
β

fβ( · , v) dv ∈ Cσ
0 (Q)

and {f̊β} satisfies the equation

(v,∇xf̊
β) +

βe

mβ

(
−∇xP

(∫
R3

∑
β

βf̊β(x, v) dv
)

+
1
c
[v,B], ∇vf

β

)
= 0

(x ∈ Q, v ∈ R3, β ± 1).

(5.4)

Repeating the proof of Theorem 1.1 and taking into account Remark 5.1, we
arrive at the following result.

Theorem 5.1. Let δ > 0 be such that G2δ ̸= ∅ and δ0 > δ . Let Condition 1.1 be
satisfied for this δ and some h, ρ > 0. Then for any α > 0 there is a stationary
solution {f̊β} of (5.1) with the following properties:

f̊β ∈ C∞(Q× R3), supp f̊β ⊂ Q2δ ×Bρ/4,∫
R3

∑
β

βf̊β(x, v) dv = 0 (x ∈ Q), sup
x,v

f̊β(x, v) > α.

If, in addition, Condition 1.2 is satisfied, then for any T > 0 and all stationary
solutions f̊β with the above properties and initial functions fβ

0 satisfying

supp(fβ
0 − f̊β) ⊂ (Q2δ ∩Q′N )×Bρ/4, (5.5)

∥fβ
0 − f̊β∥1 + max

i=1,2,3
∥f̊β

vi
∥1 < R(4πec1c4)−1, (5.6)

∥fβ
0 − f̊β∥2 + max

i=1,2,3
∥f̊β

vi
∥2 < (4πec2c4)−1 (5.7)

(β = ±1)

for some N > 0, there is a unique classical solution of the problem (5.1), (5.2), and

supp fβ(·, ·, t) ⊂ Q5δ/4 ×Bρ for all t ∈ [0, T ].
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From the results of § 4 it follows that the problem (1.1)–(1.4) can be written in
the form (5.1), (5.2).

Remark 5.2. Theorems 1.1 and 5.1 can be extended to the case when the magnetic
field B = B(x) is a sufficiently smooth vector function of the form B = (0, 0, h) on
the set Q \Q2δ. The solvability of the Vlasov–Poisson equations in the half-space
R3

+ = {x ∈ R3 : x1 > 0} with external magnetic field of this form on the set
{x ∈ R3 : 0 6 x1 6 2δ} was studied in [110] and [111].

In conclusion we mention some unsolved problems.
1. Construction of stationary solutions with compactly supported charged-part-

icle density distributions fβ and non-zero potential ϕ in a half-space and in an
infinite cylinder. Such a solution would be more natural from the viewpoint of
plasma physics, because if the charged-particle density distributions in the infinite
cylinder are independent of x3, then the total charge is infinite.

2. Study of the existence and stability of global classical solutions of mixed
problems for the Vlasov–Poisson equations with density distributions supported
strictly interior to a domain in the cases of a half-space and an infinite cylinder for
arbitrary initial data.

3. Construction of stationary solutions of the Vlasov–Poisson equations in arbi-
trary bounded domains, study of global classical solutions with compact supports in
a domain, and investigation of their stability. Here the torus is of special importance
from a practical point of view (see Fig. 1). Since plasma control in a thermonu-
clear fusion reactor depends on the external magnetic field, some domains — for
example, a ball— are not used in modeling reactor chambers. This is so because,
first of all, there is no non-trivial vector field on a sphere. On the other hand,
the ‘drift’ of charged particles in the case when the magnetic field on the torus is
circumferentially directed is very well known in plasma physics. Therefore, in the
study of classical solutions of the Vlasov–Poisson equations in bounded domains
one must at the same time investigate the form of the external magnetic field. In
general, the external magnetic field must depend on the electric-field potential ϕ
and the charged-particle density distributions fβ . We thus arrive at the question of
investigating the system of equations describing controlled thermonuclear fusion.

4. In a more refined mathematical model of thermonuclear fusion one needs to
take into account the magnetic field produced by the moving particles. This brings
us to the Vlasov–Maxwell equations. There also arises the question of the existence
of global classical solutions (with compact supports in a domain) of mixed problems
for these equations and of their stability in a half-space, an infinite cylinder, and
a bounded domain.

5. The study of conditions ensuring that a generalized solution is classical has
great value in the theory of boundary-value problems for equations of mathematical
physics. This question for mixed problems for the Vlasov equations is virtually
unexplored.

6. There is also a certain interest in the study of the solvability, the asymptotic
behaviour of solutions, and the form of supports of solutions of the Vlasov equations
in domains with singularities. Such singularities are exhibited by the vacuum cham-
bers of the tokamak and mirror-trap types of reactors (correspondingly, edge and
zero-angle types) (see Figs. 1 and 2).
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Scuola Norm. Sup. Pisa Cl. Sci. (4) 16:1 (1989), 83–104.

[19] О.В. Бесов, “О некоторых свойствах пространства H
(r1,...,rm)
p ”, Изв.

вузов. Матем., 1960, № 1, 16–23. [O.V. Besov, “Some properties of the space
H

(r1,...,rm)
p ”, Izv. Vyssh. Uchebn. Zaved. Mat., 1960, no. 1, 16–23.]

[20] M. Bostan, “Boundary value problem for the N -dimensional time periodic Vlasov–
Poisson system”, Math. Methods Appl. Sci. 29:15 (2006), 1801–1848.

[21] F. Bouchut, “Global weak solutions of Vlasov–Poisson system for small electrons
mass”, Comm. Partial Differential Equations 16:8-9 (1991), 1337–1365.

[22] F. Bouchut, “Renormalized solutions to the Vlasov equation with coefficients of
bounded variation”, Arch. Ration. Mech. Anal. 157:1 (2001), 75–90.

[23] W. Braun and K. Hepp, “The Vlasov dynamics and its fluctuations in the 1/N
limit of interacting classical particles”, Comm. Math. Phys. 56:2 (1977), 101–113.

[24] E. Caglioti and C. Maffei, “Time asymptotics for solutions of Vlasov–Poisson
equation in a circle”, J. Statist. Phys. 92:1-2 (1998), 301–323.

[25] D. Gogny and P. L. Lions, “Sur les états d’équilibre pour les densités électroniques
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