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Vlasov—Poisson equations for a two-component
plasma in a homogeneous magnetic field

A.L. Skubachevskii

Abstract. This paper is concerned with the first mixed problem for the
Vlasov—Poisson equations in an infinite cylinder, a problem describing
the evolution of the density distribution of ions and electrons in a high
temperature plasma under an external magnetic field. A stationary solu-
tion is constructed for which the charged-particle density distributions are
supported in a strictly interior cylinder. A classical solution for which
the supports of the charged-particle density distributions are at a distance
from the cylindrical boundary is shown to exist and to be unique in some
neighbourhood of the stationary solution.
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The Vlasov equations (or the kinetic equations with a self-consistent field) were
first obtained in [117] and are now regarded as one of the best-known mathematical
models in the kinetic theory of gases. The study of these equations has made it
possible to theoretically predict a number of new and unexpected physical phe-
nomena such as the Landau damping effect describing a collisionless damping of
waves in a plasma [70]. There is an extensive literature on the Vlasov equations
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in physics (see [72], [73], [85], [118]-[120] and the references given there). In math-
ematics the interest in these equations developed later, but in recent years the
Vlasov equations have received much attention (see [1]-[18], [20]-[36], [38]-[64],
[66]-(69], [71], [74]-[84], [86], [88]-[108], [110], [111], [113]-[116], [121]-[127]). These
equations are popular most of all because of their numerous applications, includ-
ing the kinetic theory of particles in electric, magnetic, and gravitational fields,
waves in a collisionless plasma, and so on. Depending on the initial physical mod-
els, one distinguishes the Vlasov—Poisson equations, the Vlasov-Maxwell equations,
the Vlasov—Einstein equations, the generalized Vlasov equations, and so on. A key
reason for the increasing interest in the Vlasov equations is probably their applica-
tions in the study of high-temperature rarefied plasmas and, most of all, in control
processes of thermonuclear fusion.

The Vlasov—Poisson equations, which describe a high-temperature rarefied plas-
ma in the coordinate space R? and the velocity space R3, are as follows:

—Ap(x,t) = 4me Z BfP(z,v,t)dv (reR3 0<t<T), (1)
RS 541
Oe

af’ 5 1 A
m+(v,v$f)+m<cherc[v,B],va>() (2)

(zeR3 veR} 0<t<T, B==1).
These equations are augmented with the initial conditions
P, t)|,_g=f@v)  (@eR veR?, g=x+1) (3)

Here f% = fP(x,v,t) is the density distribution function of positively charged ions
(for B8 = +1) or of electrons (for 8 = —1) at a point & with velocity v at a time ¢;
© = p(z,t) is the potential of the self-consistent electric field; V, and V, are,
respectively, the gradients with respect to « and v; m4; and m_; are the ion and
electron masses; e is the electron charge; c is the velocity of light; B is the external
magnetic field induction; (-, -) is the inner product in R3; [ -, -] is the vector product
in R3.

Equation (1), in which the right-hand side is the density of the total electric
charge at a time ¢ at a point z, is an equivalent statement of the Coulomb law.
The Vlasov equations (2) are obtained from the Boltzmann equations in which the
collision integral is neglected. For a rarefied plasma, this assumption is justified in
[117], [73]. Despite the absence of the collision integral, the interaction of charged
particles is taken into account by the self-consistent electric field, which is cal-
culated from the charged-particle density distributions according to equation (1).
If we include the self-consistent magnetic field generated by the motion of the
charged particles, then, in addition to equation (1), equations (2) will need to be
augmented with three more Maxwell equations. The resulting system is known as
the Vlasov—Maxwell system.

In the present paper we shall be concerned with the solvability of the Vlasov—
Poisson system. To give a brief survey in this topic, we formally reduce the system
of three equations (1), (2) to two integro-differential equations. With the use of the
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Newtonian potential the solution of (1) can be written as follows:

ooty =e [ 2 [ S 8t @

sl =yl Jes J =7

Substituting (4) into (2), this gives

of° ,
Wﬂ-(v,vxf)
& K(x B v v E’U 5)
+mﬂ(/R3 ( ’y)dy/]R3 Z Bf7(y,v,t)d +c[ ,B], V., f 0 (5

f=%1
(reR3 veR? 0<t<T, B==l1).

Here the kernel
r—Yy
K(z,y) =e—— (6)

has a weak singularity. Note that equations (5) are non-linear and non-local.

In the multidimensional case the global solvability of equations of the form (5)
with ‘smoothed’ kernel in the absence of a magnetic field B was examined by Braun
and Hepp [23], Maslov [82], and Dobrushin [35]. In [35] a global generalized solution
of the Cauchy problem for equations of the form (5) was shown to exist and to be
unique if K(z,y) is a continuously differentiable function of z and y. If, moreover,
K (z,y) is twice continuously differentiable, then a global classical solution exists
and is unique. By using the method of characteristics and taking into account
the smoothness of the kernel K (z,y) it proved possible to reduce this problem to
a system of ordinary differential equations with an integral term and apply the
machinery of dynamical systems to prove solvability.

However, proof of the solvability of equations (5) with kernel K(x,y) of the
form (6) and with initial conditions (3) is a more involved problem. This is so
because, first of all, the original system (1), (2) involves equations of various types.
The Poisson equation (1) is an elliptic second-order equation, while the Vlasov
equations (2) are first-order partial differential equations. As is known, the method
of characteristics enables us to reduce first-order partial differential equations to
a system of ordinary differential equations. Hence, a classical solution of these
equations should be sought in spaces of continuously differentiable functions. On
the other hand, the Poisson equation is investigated by methods of potential theory,
and hence it is more natural to search for its classical solution in the corresponding
Hoélder space.

The existence of a global generalized solution of the Cauchy problem for the
Vlasov—Poisson equations (1), (2) was proved by Arsen’ev [2]. His proof depended
on regularization of the Laplacian, solvability of the corresponding regularized prob-
lem, and taking the weak limit in the integral relation for the generalized solution.
There is a certain analogy between the study of this regularized problem and the
investigation of the problem (5), (3) with a smoothed kernel. The existence of
a global generalized solution and its weak stability in the case of the Cauchy prob-
lem for the Vlasov—Poisson and the Vlasov—-Maxwell equations were studied by
DiPerna and Lions [33], [34], Horst and Hunze [58], and others.
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In the one-dimensional case the existence of a global classical solution of the
Cauchy problem for the Vlasov equations was proved by Iordanskii [63]. The cor-
responding result in the two-dimensional setting is due to Ukai and Okabe [113].
In the three-dimensional setting, which is most important in physical applications,
the problem is considerably more involved. Batt [9] has shown the existence and
uniqueness of a global classical solution for spherically symmetric initial distribu-
tion functions with compact supports with respect to v. In addition, Batt [9] and
Horst [55] have shown that in the three-dimensional case a sufficient condition for
a global classical solution of the Cauchy problem for the Vlasov—Poisson system to
exist for any sufficiently smooth initial distribution functions with compact supports
with respect to v is that the supports of the distribution functions with respect
to the velocities v remain compact for all ¢ € [0,00). In other words, to prove
the existence of a global classical solution it sufficed to show that the diameters
of the supports of the distribution functions with respect to v can grow only with
finite velocity as t — oo. This result is now known as the velocity lemma, and its
various interpretations have been useful in many studies. Bardos and Degond [7]
proved the existence and uniqueness of a classical solution of the Cauchy problem
for the Vlasov—Poisson system with small initial data. The existence of a global
classical solution of the Cauchy problem for the Vlasov—Poisson equations with
arbitrary initial distribution functions is due to Pfaffelmoser [90]. Later, a simpler
proof of this result was presented by Schéffer [104]. In the four-dimensional case,
Horst [56] has shown that the Cauchy problem for this system may fail to have
a global classical solution. Classical solutions of the initial-value problem for the
Vlasov—Poisson equations were also studied in [3], [18], [44], [45], [57], [74], [75],
[97], [98], and elsewhere.

Stationary solutions of the Vlasov—Poisson equations have been the subject of
papers by Vedenyapin [114], [115], Batt and Fabian [12], Batt, Faltenbacher, and
Horst [13], Pokhozhaev [91], Greengard and Raviart [48], and Rein [95]. The papers
[79], [80], [100], [101], [105]-[108] were concerned with stationary solutions of the
Vlasov—Maxwell equations and their bifurcation.

A considerable number of interesting studies have been devoted to the investiga-
tion of both the linearized model [28], [83] and the non-linear model of the Landau
damping effect (see, for example, [42], [60], [64]). An extensive survey of the cor-
responding literature is given by Mouhot and Villani in the paper [86] devoted to
the general case of non-linear Landau damping.

However, much less attention has been paid to the existence of solutions of
the Vlasov equations in domains with boundary. The studies here have been
mostly focused on generalized solutions of mixed problems for the Vlasov—Poisson
equations and the Vlasov—Maxwell equations (see Arsen’ev [5], Alexandre [1], Ben
Abdallah [16], Guo [49], and Weckler [122]). The stability of generalized solutions
of initial-value and mixed problems for the Vlasov equations has been studied by
Kozlov [66], [67], DiPerna and Lions, [33], [34], Rein [96], Wan [121], and Weckler
[122]. It is worth noting that for the Vlasov equations there are no exhaustive
results on an increase in smoothness of the generalized solutions of mixed prob-
lems (as in the case of classical second-order partial differential equations). Con-
sequently, the study of the existence of classical and strong solutions of mixed
problems for the Vlasov equations has great value. The existence of classical and
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strong solutions of mixed problems in the general setting is still an open problem
(see Kozlov [66], Samarskii [102], and Weckler [122]). This problem is relevant to the
design of a controlled thermonuclear fusion reactor, a mathematical model of which
is described by mixed problems for the Vlasov system with respect to the density
distributions of charged particles of opposite signs in a bounded domain. Tokamaks
are now the best-known devices for the production of thermonuclear fusion. The
word ‘tokamak’, which is an acronym developed from the Russian words ‘T'Oroidal-
naya KAmera i ee MAgnitaya Katushka’ meaning a ‘toroidal chamber with mag-
netic coils’, was introduced by I.N. Golovin (see [85], the editor’s comments on
the Russian translation on p. 277). The vacuum chamber of a tokamak reactor is
a torus whose cross-section looks like the roman capital letter ‘D’ (see Fig. 1).

Tokamak

plasma magnetic field

Figure 1

One of the alternative devices for thermonuclear fusion is the mirror trap, which
can be visualized as a long cylinder tapered at the ends (see Fig. 2).

Mirror trap

DD

Note that Figs. 1, 2 provide only a very coarse picture of these devices. More
detailed schematics of mirror traps for the confinement of high-temperature plasmas
and a description of their operating principles can be found in [109].

The production of a stable high-temperature plasma in a reactor requires that
the so-called plasma column be strictly inside the domain during some time interval
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in order to keep it away from the vacuum container wall ([85], the introduction to
Chap. 6). In most models of thermonuclear fusion reactors an external magnetic
field [72], [85] is used as a control ensuring the existence of a plasma in the reactor.
From the point of view of differential equations this means that one has to ensure
the existence of solutions of the Vlasov—Poisson equations for which the supports
of the charged-particle density distributions do not intersect the boundary, which
can be achieved by the influence of the external magnetic field.

We now give a brief survey of some of the most important papers on the exis-
tence of classical solutions of mixed problems for the Vlasov—Poisson equations
in domains with boundary. The global existence of classical solutions of mixed
problems for these equations in a half-space with Neumann or Dirichlet boundary
conditions for the electric-field potential and the conditions of elastic reflection for
charged-particle density distributions on the boundary was proved by Guo [50] and
Hwang and Veldzquez [61]. Hwang [59] proved that the classical solutions of the
Vlasov—Poisson equations in a ball with spherically symmetric initial data and con-
ditions of elastic reflection for the density distributions can have singularities only
at the centre of the ball. The main difficulties in the study of classical solutions of
mixed problems for these equations have to do with the behaviour of the charac-
teristics near the boundary. We note that the effect of the magnetic field on the
trajectories of the particles was not taken into account.

In the present paper we shall be concerned with classical solutions of the mixed
problem for the Vlasov—Poisson system in @ x R? x (0, 7)) with Dirichlet boundary
condition for the electric-field potential on 9Q x (0,T), where Q@ = G X R is an
infinite cylinder and G C R? is a bounded domain with boundary G € C*°.
A distinctive feature of this paper is that, for the solution obtained, the supports of
the charged-particle density distributions lie at some distance from the cylindrical
surface 0Q) with respect to the spatial variable x and are compact with respect
to v. To produce such a solution we assume first that the external magnetic field B
is directed along the axis of the cylinder and is sufficiently strong, and second
that the initial density distributions fg (z,v) have supports lying at some distance
from the boundary 0@ with respect to x and are compact with respect to v. These
assumptions imply that the characteristics do not intersect dQ. This phenomenon
can be interpreted physically as follows: the charged particles do not reach the
walls of the vacuum chamber of the thermonuclear fusion reactor because they move
along trajectories close to the Larmor trajectories. Consequently, this problem can
be used in a certain sense as a mathematical model of the cylindrical part of the
mirror trap. According to [85], the presence of a considerable number of particles
on the boundary can result in either destruction of the reactor walls or in cooling of
the high-temperature plasma due to its contact with the reactor walls. As distinct
from other papers (see, for example, [61]) which have dealt with the Vlasov—Poisson
equations for particles of the same sign, we are concerned here with those equations
for a two-component plasma, since the word ‘plasma’ is used in physics to designate
this high-temperature state of an ionized gas with charge neutrality [85]. This
creates additional difficulties in the (physical and mathematical) analysis.

The paper is organized as follows. In §1 we introduce the notation, pose the
problem, and formulate the main result (Theorem 1.1). This result guarantees the
existence of a stationary solution of the Vlasov—Poisson equations in @ x R3 x (0, T')
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when the charged-particle density distributions are supported with respect to = in
a strictly interior cylinder. Moreover, in some neighbourhood of this stationary
solution there is a unique classical solution for which the supports of the density
distributions with respect to x are disjoint from the boundary 9Q. In §2 we study
the characteristics of the system (2) in @ x R3 x (0, T) for a fixed potential . In the
absence of an electric field (¢ = 0), the strong magnetic field B along the cylinder
axis makes the particles move along circular or helical paths with Larmor frequency
e|B|/(mgpc) in the cylinder @) without reaching 9Q). This phenomenon is very well
known in plasma physics. For sufficiently small potentials ¢, the characteristics
emerging from some strictly interior cylinder in @ also fail to reach Q. In §3
the characteristics examined above are employed for constructing a solution of the
initial-value problem (2), (3) in @ x R? x (0,7 for a fixed potential . Since
the characteristics do not reach 0Q), it follows that for initial densities foﬁ (z,v)
supported in the domain @ x R3 the supports of the solutions fg(x,v,t) of the
problem (2), (3) remain in @ x R? for all 0 < ¢+ < T. Substituting the solutions
fg (z,v,t) in equation (1), we obtain Holder estimates for the right-hand side of (1)
with f#(z,v,t) = fg(x,v,t). In §4 we build a stationary solution of the problem
(1), (2) with the above properties. Further, using the Holder estimates in §3,
taking into account the unique solvability of the Dirichlet problem for the Poisson
equation in Holder spaces, and employing the Banach contraction principle, we
prove the existence and uniqueness of a classical solution in some neighbourhood of
the stationary solution thus constructed. In § 5 we extend Theorem 1.1 to abstract
Vlasov equations and mention some unsolved problems.

It should be noted that the classical solutions of mixed problems for the Vlasov—
Poisson equations in a half-space for sufficiently small compactly supported initial
densities and an external magnetic field of high intensity were examined in [110]
and [111]. The presence of an external magnetic field was also assumed in a number
of other papers on the Vlasov—Poisson equations in domains with boundary (see,
for example, [5], [50]). However, the effect of this field on the nucleation of Larmor
trajectories and problems of plasma confinement at some distance from the bound-
ary was not considered.

1. Statement of the problem. The main result

1.1. We consider the Vlasov—Poisson system in an infinite cylinder:
—Ap(z,t) = 471'6/ Zﬁfﬁ(x,v,t) dv (e, 0<t<T), (1.1)
R3
B

or°
ot

Pe (w LB, wﬁ) —0 (1.2)
mg C

(xe@Q, veR? 0<t<T, f==I1)

+ (0, Vo f2) +

with the initial conditions
fﬂ(m,v,t)’tzo = foﬁ(x,v) (xeQ, veR? 3==+1) (1.3)
and the Dirichlet boundary condition
p(z,t) =0 (x€edQ, 0<t<T). (1.4)
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Here Q = G x R, G C R? is a bounded domain with boundary 9G € C*, 9Q =
0G x R, the functions ¢(x,t) and f%(x,v,t) are unknowns, the vector B is given,
and the constants mi1, e, and ¢ have the same meaning as in the Introduction.

1.2. To find the classical solution of the problem (1.1)—(1.4) we introduce some
function spaces.

We let C*(R™) (respectively, C*(2)) with s > 0 and n € N denote the Holder
space of continuous functions on R™ (on ) that have continuous derivatives in R™
(in ) up to and including total order k = [s], equipped with the finite norm

|lul|s = max sup |2%u(z)| for s=keZ, 0<k,
la|<k = (1.5)
lulls = JJulle + |ulo fors=k+o0, 0<keZ, 0<o<l,

where Q C R” is a domain with C*°-boundary 9 or the cylinder Q = G xR C R3,

lulo = max sup [z —y|~7[Z%u(z) — 2*u(y)|, (1.6)
|a|=k z#y
N a [e3) a (e7%%
9 _<6I1> <8$n> ’ Oé—(Oél,...,Oén), |Ol|—0£1—|—-~-—|—an,

Let C(R") = C°(R") and C(Q) = C°(Q).
Similarly, we introduce the space C'(Q x R* x [0,T]) of bounded continuous
functions with bounded continuous first-order derivatives in @ x R3 x [0, 7T].

Remark 1.1. If s=k+4+0,0< k € Z, and 0 < 0 < 1, then in view of Theorem 2

in §4.5.2 of [112], we can endow C*(R™) (respectively, C*(€2)) with the equivalent
norm

lulls = llullk + |ulob, (1.7)
where
[ulop = max  sup |z —y| 7| 2%(z) — 2%u(y)|, 0<b<l. (1.8)
la|=k  zFy,
0<|z—y|<b

Remark 1.2. For any s > 0 the spaces C*(R™) and C*(f2) are Banach spaces. If
s=k+o0,0<ke€Z and 0 <o <1, then the space C*(R") (C*(12)) is not

separable, and the set of functions infinitely differentiable in R™ (£2) with finite
norm || - ||s is not dense in C*(R™) (C*(2)) (see [19]).

Let C*(R™) with k, n € N denote the space of k-times continuously differentiable
functions on R™ having compact support.

Also, let C§(Q) with s > 0 denote the closure of the set of functions in C*(Q)
with compact support in Q.

We consider the Banach space C([0,7],C%(Q)), s > 0, of continuous functions

[0,T] >t ¢(-,t) € C*() with norm

lelle = sup_llo(-t)lls- (1.9)

tx

The space C([0,7],C5(Q)) is defined similarly.
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Let B,(zo) = {x € R3: |z — 29| < p}, B, = B,(0), and |B,| = 4mp?/3.

In what follows, k;, c;, ki, ¢; are positive constants.

1.3. To state the theorem on the unique solvability of the problem (1.1)—(1.4)
near a stationary solution, we first give the definition of a classical solution of this
problem and the definition of a stationary solution of the problem (1.1), (1.2), (1.4).

Definition 1.1. A vector function {¢p, %} with » € C([0,T],C2%°(Q)) and f7 €
CHQ xR3x[0,T)) is called a classical solution of the problem (1.1)—(1.4) if {¢, f°}
satisfies equations (1.1), (1.2), the initial conditions (1.3), and the boundary con-
dition (1.4).

In the study of the Vlasov equations an important role is played by stationary
solutions.

Definition 1.2. A vector function {¢, f#} with ¢ € C277(Q) and f# € C'(QxR?)
is called a stationary solution of equations (1.1), (1.2) with the boundary condition
(1.4) if {¢, f?} satisfies the equations

— Ap(z) = 4me /]R > BfP(w,v)dv (z€qQ), (1.10)
B

(’U,wa?ﬁ) + :é;(—vwgﬁ—k i[v,B],VUJm) =0 (reQ, velR? g==+1)
(1.11)

and the boundary condition (1.4).

We now formulate the conditions which the magnetic field B and the initial
charged-particle density distributions foﬂ (z,v) must satisfy.

Let Gs = {2/ € G: dist(2/,0G) > 6} and Qs = {z € Q: dist (z,0Q) > ¢},
where § > 0. Assuming that Gos # &, we let dp = 0p(0) > 0 denote the radius of
a largest circle inscribed in Gos.

Condition 1.1. Let B = (0,0, h) for z € Q, where h > 0 is independent of x and

cpm1

32
ed

<h (1.12)
Condition 1.2. Let f € C>(QxR?) be non-negative functions and let supp f C
Q25 x B, /4, where p > 0, 69 > 6.

Theorem 1.1. Let § > 0 be such that Gos # @ and let 6o > 0. Assume that
Condition 1.1 is satisfied for this 6 and some h, p > 0. Then for any a > 0 there is
a stationary solution {0, f?} of equations (1.1), (1.2) with the boundary condition
(1.4) such that fﬁ € C>®(Q x R3), supp fﬁ C Qa5 X By)4, and sup, ,, fﬁ(x,v) > a.

If, moreover, Condition 1.2 holds, then for any T > 0_there erists an & =
e(T,d,p,h,a) > 0 such that, for all stationary solutions {0, f°} with the indicated
properties and for all initial functions f()g such that

supp(f) — f%) € (Q2s N Q) x B4,

; ] (8 = +1), (1.13)
1f20e<e (=1,23), [Iff - fPla<e
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where Q) = {x € Q: |z3| < N} for a number N > 0, there is a unique classical
solution of (1.1)—(1.4). Furthermore,

supp f2(+,+,t) C Qss/a X B, for all't € [0, T].

The proof of Theorem 1.1 will be given in §4.

2. Trajectories of charged particles in an infinite cylinder

2.1. Assume that Conditions 1.1 and 1.2 are satisfied and that there is a sta-
tionary solution {0, f?} of the problem (1.1), (1.2), (1.4) with the properties in the
first assertion of Theorem 1.1. We shall regard a solution {¢p, f?} of (1.1)-(1.4)
as a perturbed stationary solution {0, f#} of the problem (1.1), (1.2), (1.4). Also,
let g% (z,v,t) = fP(z,v,t) — fP(x,v) and gg(x,v) = foﬁ(xm) — fB(x,v). Then by
(1.1)~(1.4) and (1.10), (1.11),

— Ap(z,t) =4me Zﬁg (z,v,t)d (e, 0<t<T), (2.1)
R? 5—11
HaP
agt + (v, Vw)-#ﬁ;( Vg + = [U B, V.g°)
_ Pe —(Vz, V, f° ) (xeQ, veR? B==1), (2.2
mﬂ
gﬁ(amv t) ’f 0 gg( v) (r € Q, UER3), (2.3)
p(x,t)],_, =0 (x€dQ, 0<t<T). (2.4)

We shall assume that supp gg C (Q25 N Q') x B,4, where N > 0 is some number.
A classical solution of (2.1)—(2.4) is defined like that of the problem (1.1)—(1.4).
However, unlike equations (1.2), equations (2.2) are inhomogeneous with respect
to gﬁ .
Given a fixed function ¢ € C([0,T],C3T7(Q)), equation (2.2) with the initial
condition (2.3) can be solved using the method of characteristics. To this end, we
consider the following system of ordinary differential equations:

axg _ 1% 0 T B=+1 2.5
L=V (0<7<T, B==£1), (2.5)
avy Be Be

__re e 8 _
— - Vaop(X5,7)+ mﬁc[v@ , B 0<7<T, f==1) (2.6)

with the initial conditions
XJ. _g==  (B=+1), (2.7)
Vi _,=v  (B=%1), (2.8)

where z € Q and v € R3.
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We have p € C([0,T],C57(Q)), and hence from the theorem on non-continuable
solutions it follows that for any = € @ and v € R3 there is a unique non-continuable
solution of (2.5)-(2.8) on some half-open interval [0, T2 (z,v)) with T (z,v) < T.
We denote this solution by {Xﬁ(x v, T), Vﬁ(x, v,7)}.

Lemma 2.1. Let ¢ € C([0,T],Ca7°(Q)) and let ||¢|l1. 7 < Ro. Then for any
zeQ, v <p,and 0 <t <TE(z,v),

Vi(vt)| <pr  (B==%1), (2.9)

where p; = + 6t“e m* ) wit > 0.
here p 2(p? + 6t2e2R% /m? | hp>0

Proof. Multiplying both sides of (2.6) by Vf , integrating with respect to 7 from 0
to t, and employing the identity (Vf, [Vf, B]) =0, we get that

%|Vf(m,v,t)|2 - %|v|2 - —:i; /Ot(vzw(Xg,mvf(x,v,T)) i, (2.10)
Clearly,
abgg_;azﬁ-% (a,b €R, € >0).
Hence,

|Vf(:c,v,t)| |v|? +35*16R2tm5 +ce Iél[é(l),x] |V (x,v T)|2tm5 .

We choose 79 € [0,t] so that |V£(x,v,7'0)| = max,¢[o,y |Vf(:c,v77')\. Letting
t = 79 in the last inequality, we obtain

|Vf(x7v,70)\2 < Jl? + 36716R(2)T0m§1 + €eTO\V£(x, 'U,To)|2m§1.

Next, putting € = mg(279e) ™!, we have the estimate
\Vf(x,v,tﬂz < |Vf(ac,v,7‘0)\2 < P2 < Pl O

T0 X

2.2. We consider the trajectories of the system (2.5), (2.6) with ¢ = 0. Then
the system of equations (2.5), (2.6) assumes the form

axy 3
=V 2.11
= 0 (0<7), (2.11)
avy P
=0 = v ) 2.12
d’r 50[ 0> ] (O < T) ( )

Let 2’ = (z1,22) and Xg/(x,v,r) = {Xgl(x,U,T),X£2($7’U,T)}.
Lemma 2.2. Assume that Condition 1.1 is satisfied for some d,p > 0. Let &', p’ be
such that Gay # &, 8 2 6/2, and 0 < p’ < 2p. Also, let {XOB(JT,’U,T), VOﬁ(x,v,T)}
be a non-continuable solution of the problem (2.11), (2.12), (2.7), (2.8) on the
half-open interval [O,Tég(x,v)). Then the following assertions hold.

(a) |V (z,v,7)| = |v| for all T € [0, TY (x,v)).

(b) If z € OQs and |v| = p', then T} (z,v) = oo and |2’ — Xg/(m,v,7)| < /8
for all 7 € ]0,00).
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Proof. The first assertion follows from (2.10) for ¢ = 0.

To prove the second assertion we note that, in view of Condition 1.1, the system
(2.12) can be written as

Vg _ feh

dr mgc 02

avh Beh

dTo2 _ _mgc%ﬁl, (2.13)
Vg _

dr

The spatial coordinates of the solution of the problem (2.11), (2.13), (2.7), (2.8)
are

ﬁcrmg Beh
XP(r) = -
01(7) oh mge T+ ko | + k1,
h
X§2(7') = chznﬁ Sin(rﬁneﬁcT + k?o) + ko, (214)

ng(T) = v3T + k3,

where (V)2 + (V)2 = v2 + v3 = r2 = const, V3 = vs = const,

ki =z + ﬁcr;nﬁ cos kg,
m
ko =z — per o % sin ko, (2.15)
k3 = z3,
sinkg = vlr_l, cos ko = vor L.

For v3 = 0 the trajectories are circles, and for vg # 0 they take the form of
helical curves. The number wg = eh/(mgc) is called the Larmor frequency, and
rg = crmg/(eh) is called the Larmor radius.

If 2 € Qs and |v| = p’, then (1.12) and the inequality r < p’ < 2p imply that
rg = crmg/(eh) < 6/16. Consequently, |z — Xgl(x,v,7)| < §/8 for any T > 0;
that is, the non-continuable solution of the problem (2.11), (2.13), (2.7), (2.8) exists
for all 7 € [0,00). O

2.3. We now consider the trajectories of the system (2.5), (2.6) with a sufficiently
small electric-field potential .

Let Ry > 0 be such that

26TR1

m_y

5
exp(aoT) < min{ < Z}, (2.16)

where ag =1+ eh/(cm_1).
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Lemma 2.3. Assume that Condition 1.1 is satisfied for some d,p > 0 and
let &', p' be such that Gas # @, &' > 6/2, and 0 < p' < 2p.  Then for all
¢ € C(0,T],C57°(Q)) with ||¢|1,7 < Ry the non-continuable solution {X8(z,v,7),

Vf(l’,v,T)} of (2.5)—(2.8) has the following property: if x € 0Qs and |v| = p/,

then
T5(x,v) =T \x'—X/( T <§ p'—7< Bz, v, T <p' -
Bz, v ) B, x,v,7)| 1 1 VD (x,v,7T)] +4

for all 7 € 10,T7.

Proof. Let x € 0Qs and |v| = p’. Consider the system of equations (2.5), (2.6).
We now subtract (2.11) from (2.5) and (2.12) from (2.6) and integrate the resulting
equalities with respect to 7 from 0 to ¢, taking into account the initial conditions
(2.7) and (2.8). Introducing the new variables 7 = ¢ and s = 7, we obtain

X8(r) = X} (1) = /OT(Vf(s) —V(s)) ds 0<7<Tl(z,v)), (2.17)

Kﬂﬂ—wawfﬂe/WV<> V{(s), B) ds

mgc

/ Vop(X5(s),s)ds  (0<7<TS(x,v). (2.18)
y (2.17) and (2.18),

1XB(r) / V2(s) — VE(s)| ds (0 <7< T3, v),
(2.19)

VE(r) - VP (r)| < 22

— Voﬂ(s)| ds (0<T7< Tg(a:,v)).
(2.20)

Next, by (2.19), (2.20), and Gronwall’s lemma,

2er

(XE(r) = X () + [VE(r) = V§(r) < Rie™™ (0 <7 <T(z,v). (221)

m-1

As a result, by the second assertion of Lemma 2.2, the properties of non-contin-
uable solutions, and the inequality (2.16), we see that

/ )
T8(x,v) =T, 2" — X0 (z,0,7)] <

P P
; T A L<wunl<o+ 8

4
for all 7 € [0,7). O

2.4. Let us consider the system of equations (2.5), (2.6) on the interval (0,t),
0 <t < T, with the initial conditions

X3 _, =y, (2.22)

V| =w. (2.23)
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By the theorem on non-continuable solutions, the problem (2.22), (2.23), (2.5),
(2.6) has a unique non-continuable solution {X%(y,w,t,7), Vf(y,w,t,T)} (r €
(Tg(y,w,t),t}, 0 < Tg(y,w,t) <t)foraly e and w € R For ¢ = 0 the
system (2.5), (2.6) takes the form (2.11), (2.12). Let {X7(y,w,t,7),V{ (y, w,t,7)}
(re (Toﬁ(y,w,t),t]) be the solution of the problem (2.11), (2.12), (2.22), (2.23).

Lemma 2.4. Assume that Condition 1.1 is satisfied for some 6,p > 0 and let &', p’
be such that Goy # @, & > 8/2, and 0 < p' < 2p. Neat, let {XJ(y,w,t,7),
Voﬁ(y,w,t,T)} be a non-continuable solution of the problem (2.11), (2.12), (2.22),
(2.23) on the half-open interval (T} (y,w, t),t]. Then the following assertions hold.
() IV (9,10, 7)| = | for all 7 € (T{ (y,w,1),1].
(b) Ify € Qs and |w| =/, then T (y,w,t) = 0 and |2’ — X (y,w,t,7)| < 5/8
for all T € (0,1].

The proof is similar to that of Lemma 2.2.

Lemma 2.5. Assume that Condition 1.1 holds for some §,p > 0 and let &', p' be
such that Gogr # &, 8" > 6/2, and 0 < p' < 2p. Then for any function ¢ €
C([0,T],C3(Q)) with ||¢|lir < Ry the non-continuable solution {XE(y,w,t,7),
Vf(y,w,t,T)} (r € (Tf(y,w,t),t]) of the problem (2.5), (2.6), (2.22), (2.23) has
the following property:

ify € 0Qs, |w|=p', and 0 <t < T, then Tg(y,w,t) =0, |y’fXg/(y,w,t,T)| <
/4, and p' — p/4 < |V (y,w,t,7)| < p’ + p/4 for T € (0,T].

The proof depends on Lemma 2.4 and is similar to that of Lemma 2.3.

3. Holder estimates for the electric-charge density
3.1. We set Qg = Q5 x B, and

Qi,t = {(y,w) ERC: y = Xg(x,v,t), w= Vf(m,v,t), (z,v) € Qo},

where 0 <t < T, ¢ € C([0,T],C77(Q)), and [[¢|l2,r < Ri. Clearly, Q) = Qq.

Given 0 < t < T, consider the map Sg,# Qy — Qg)t defined by Sg)t(x,v) =
(Xg(x,v,t), Vf(x,v,t)).

Since ¢ € C([0,T],C3T7(Q)), if we use Condition 1.1, Lemma 2.3 with § = § and
P’ = p, and the fact that the solutions of the differential equations are continuously
differentiable with respect to the initial data for any 0 < ¢t < T, we see that the
map Sgt: Qo — ngt is continuously differentiable with respect to z and v on .
Moreover,

Qﬁ,t C Q3574 X Bspa- (3.1)

It is obvious that Sg,o(x,v) = (z,v). We extend the map Sg’t by continuity at
t="T.

Consider the system (2.5), (2.6) on the interval (0,%), 0 < ¢t < T, with the ini-
tial conditions (2.22), (2.23). By (3.1) and Lemma 2.5, the problem (2.5), (2.6),
(2.22), (2.23) has a unique non-continuable solution {X?(y,w,t,7), V/(y,w,t,7)}
on the half-open interval (0,t] for any (y,w) € Qs5/4 X Bs,/4 and 0 < t < T.
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In addition, Xg(y,w,t,T) € Qs/2 and Vf(y,w,t,r) € Bs, o for 7 € (0,1]. Extend-
ing the functions Xg(y,w,t,T) and Vf(ym},t,T) by continuity at 7 = 0, we set
e — 1 — VB8
Xg(y7 w, t) - Xg(y7 w, t’ 0) a’nd Vgg(y’ w, t) - sz (y’ w, tv O)

Clearly, for any ¢ with 0 < ¢ < T the map Sg_’t: ngt — Qg defined by

§g,t(va) = (‘?g(vavt% af(yawat))

is the inverse of the map Sg,ﬁ that is,

S0(S2 (z,v) = (z,0)  ((z,0) € Q). (3.2)

Let ggyo(x,v) = (z,v).

We have ¢ € C([0,T],C577(Q)), and hence, by the theorem on differentiability
of the solutions with respect to the initial data, the function §£,t(y, w) is continu-
ously differentiable with respect to y and w on the set ngt. The function §£7t(y, w)
((y,w) € Qit) is continuously differentiable with respect to y and w, and Sgyt(z, v)
((x,v) € o) is continuously differentiable with respect to ¢, therefore it follows

from (3.2) that the function §£7t(y, w) ((y,w) € Qit) is continuously differentiable
with respect to t.

Lemma 3.1. Assume that Condition 1.1 is satisfied for some 6,p > 0 such that
Gas # @, and let € C([0,T],C27°(Q)) and ||¢||2,+ < Ry1. Then there is a constant
co =co(T,0,p,h) >0 such that

3
ST(12X5 (v, 0)] + 2V v t)]) <@ (@) €Ql, 0<t<T), (3.3)

Pt
i=1

where 9 = 9 or 9 (j=1,2,3).

&rj 81)]-

Proof. Let (z,v) € Qﬁ,t- The variational equations for the system (2.5), (2.6) are
d (0X0\ oVl

£ - 0 £ 1<i<3), (34

d<av§> _ Be = Pe(XE7) 0X5,
dr \ Ox; mg ani ank o
Ge {avf B}

mge | Oz’

0<7T<t 1<i<3). (3.5)

In view of (2.22) and (2.23) the initial conditions for the system (3.4), (3.5) are
B
0X,; -
8:10]- T=t
B
oV

8$J |7'=t =0

by (1<i<d), (3.6)

(1<i<3). (3.7)
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We change the variable to £ = 7 in (3.4), (3.5) and integrate the resulting
equations with respect to § from 7 to ¢, taking into account the initial conditions
(3.6), (3.7). Then we change to the new variable s =t —¢. Let Xg(s) = Xg(t —9)

and IN/f(s) =V (t —s), and define 7y = ¢ — 7. Then

X5 (1) T OVE (s)
— 221 <0y 2 d 0 t, 1<i<3),
‘ 8$j j +A al‘j S ( <7< 1 3)
6‘7[5(7'1 1 an
Oz S Z/ 8% ds

3

eh L
+_z/
mac £ Jo

From these inequalities and Gronwall’s lemma,

vy,
895 j

ds 0<m <t, 1<i<3).

23: 0XJi(7) n Vi (T)
im1 8$j 8xj
(9Xﬂ Tl) 8‘75(7'1)
- < ¢ T). .
Z(‘ 83:] ‘ o > & (<7<T) (3.8)
Letting 7 = 0 in the functions

(9X£(T) _ 8X£(:E,v,t,7) o 8Vf(7) _ 8Vf(x,v,t,7)

6333‘ 8wj aSCj &vj ’

we obtain (3.3) from (3.8). The case 2 = 0/0v; is dealt with similarly. O

Lemma 3.2. Assume that Condition 1.1 is satisfied for some 6,p > 0, Gas #
g, ¢ € C([0,T],C57(Q)), and ||¢|l2x < Ri. Then there is a constant cy =
co(T,0,p,h) >0 such that

3
Z(|@X T,0,T |+|9 (z,v,7)]) < co ((z,0) €Qo, 0<t<T). (3.9)
i=1
The proof is similar to that of Lemma 3.1.
Given a fixed function ¢ € C([0,T],C57(Q)) with |¢|l2,r < Ry, let {90} p=1
denote the solution of the problem (2.2), (2.3). Also, let

pg(y?va) :gg(sg,r(y7w)77—) ((y,UJ) EQO7 0<T<T)
Clearly, the function pg(y, w, 7) satisfies the differential equation

Opl (y, w,7)

5y = \I/g(Sg’T(y,w),T) ((y,w) € Qg, 0<7<T),

where

\Iffi(z,t) = %(Vzwp(z’,t),Vzufﬁ(z’,z")), z=(2,2"), 2,2 €R3.
B
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Integrating this equation with respect to 7 from 0 to ¢, we get that

t
pg(y,w,t) = pg(y,w,O) +/ \I/g(SgyT(y,w),T) dr ((y,w) € Qg, 0 <t <T).
’ (3.10)
Let Zo = Q3572 % B2, .@57t = {77 €ERS:pp = Sg,t(y,w), (y,w) € @0}, and
(,v) = S, (y, w).
From (3.10) we get that

t
gi(m,v,t) = gg(Sg)t(x,v)) —|—/O \Ilf, (S’g’T (Sgﬁt(x,v)),r) dr (3.11)
((z,0) € 25, 0 <t < T).
We set the function gfg(x, v,t) equal to zero outside Qgt:

gz, v.t) =0  ((z,0) € @R\ 2], 0<t<T). (3.12)

o,

To show that g7 € C*(Q x R?® x [0,T]) we recall that

supp gy C o = Qa5 X Byya

by the hypotheses of Theorem 1.1. Next, §g’t(@£’t) = 9y by the definition of the
map §£,t. Hence, since :S’\gt is continuously differentiable with respect to x, v, t, the
function goﬂ(ggt(x, v)), extended by zero outside @gﬁt, belongs to C1(QxR3x [0, T)).
By the definition of the function \I/E7 and since 55,7 and §£7t are continuously

differentiable with respect to x, v, 7, and ¢, it remains to verify that supp f’B - @gﬁ
(0 <7 <T). Applying Lemma 2.3 with ¢’ = 3§/2 and p’ = p/2, we have

075 . C (Qs5/a\ Qrsa) X (Bspja \ Byya)- (3.13)

Therefore, supp fﬂ C _@g,T (0 < 7 <T), because supp fﬂ C Qa5 X B,y

Since the function g7 defined by (3.11) and (3.12) belongs to C*(Q x R?® x [0,T7),
we see by the method of characteristics that it is a classical solution of the problem
(2.2), (2.3), and it is unique.

Let

F,(z,t) = /RS Zﬂgg(z,v,t) dv (reQ, 0<t<T). (3.14)
B

Remark 3.1. Assume that Condition 1.1 is satisfied. Then by (3.13) and (3.1) we
have |v] < p (|Jv| < 5p/4) if (z,v) € Qg,t (respectively, (z,v) € Qg’t). Thus,
in (3.14) we integrate over B, (Bs,/4); that is, the integral in (3.14) exists.

Let
my, = max ||gg\|k = max max sup |@O‘gg(77)|
Ié] B la|<k n€@QxR3
and define

5y =min inf dist(Z7,,095,). 1
o gy 5006 Y
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Since Py = Q3572 X B2 and Qo = Qs x By, it follows from Lemma 2.2 that

o p
5 > 1
1 mm{ 1 2} (3.16)
Also, let
R = Hlil’l{]%l7 RQ}, (317)
where R satisfies the inequality (2.16) and Ry > 0 satisfies the condition

26TR2

m_y

5
exp(apT) < gl (3.18)

Next we define M = {¢ € C([0,T],C5(Q)): ||l¢lls T < R}, where s > 0.
From (3.15), the inequality (2.21) with R instead of Ry, and the inequality (3.16)
it follows that

36
= i 6 5 > 71
02 min <p€m£+0 tel[%fT] dist(Z,, 4, 0, ) > 1 (3.19)

Lemma 3.3. Let § > 0 be such that Gag #Og. Assume that Conditions 1.1 and 1.2
hold and there is a stationary solution {0, f°} of the problem (1.1), (1.2), (1.4) as

in the first assertion of Theorem 1.1. Assume also that supp(f(’)g — fﬁ) C (Qa5 N
Q') X B,y for some N > 0. Then F, € C([0,T],C§(Q)) for any v € Mo, .

Proof. In the first two steps of the proof it will be assumed that ¢ € Msys and
that for each ¢ € [0, T] the function p(z,t) has compact support with respect to .
I. Let

_ 8
Fip(,t) = /Rs %:5%(%@,75) v (3.20)

Fou(z,t) = Fo(x,t) — Fiy(z, t) (xeQ, 0<t<T),
where

B (B B
go (S ,(x,v)), € Dpp 0Kt T,
gﬁo(x,v,t) = {00( W( )) ()

(z,v) € (QxR3)\ 0 0<t< T

We first show that Fy, € C([0,T],C(Q)). Using (3.20), Remark 3.1, and Taylor’s
formula, we get that

|Fig(@,t+ At) — Fiy(z,t)] < 2|Bylmy Y {sup [Xy (@, 0, + At) — X5 (2, 0,1)]
3 x,v
+sup|V (x,v,t+ At) — (mvt\}

for all z € @ such that {v: (z,v) € @ﬁ U.@’BH_N} # @ and t, t + At € [0,T].
Here the suprema are taken over the set 9 U ‘@w LA
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The functions )A(gg (z,v,t) and ‘7@5 (z,v,t) are continuous on the compact set

{(z,v,1): (z,v) € Sg,t(QON), t € [0,7]}, and hence for any ¢ > 0 there exists
a by > 0 such that

sup |Fip(z,t + At) — Fipo(z,t)] <
z€Q

for t, t + At € [0,T], |At| < by, where Yo =
I1. We now show that F,, € C([0,7T],C7(Q)

Oacf)(@) = f(z+Az) — f(z), 03 = min{dy, 1},

(3.21)

ot ™

{(y,w) € Do |ys| < N}.
). Let

where 5 > 0 is given by (3.19).

From (3.20) it follows that (6A$FM)($ t) =0 for all € @ such that {v: (z,v) €
(@gyt)‘;"’} = &, where 0 < t < T, |Az| < 3, and (@5053 = {(z,v): dist((z,v),
@gt) < 03}. Therefore by Remark 3.1 and Taylor’s formula,

|6AIF1@((E, t —+ At) — 5AIF1¢($7 t)l

<|Baopl D sup |0a0g6 (S o ne(@.0)) = 6a0g0 (S, (2,0))]

) z,Az,v

Z Z sup <I> (3.22)

= 12msz

where
B _|BQP|/ Z 105090, (50, + 0082 4 as — S2.)) (RE, (@ + Ay, t + Al)

- ng(ac + Az, v,t) )| + |5Axggv (Sﬁ + G(Sw LA §£t))
X (IA/ﬁ»(x+Az vt + At) —17@(:10+Ax,v,t))|}d0,

;5 —|B2p|/ Z ‘gox (SgtMt Sg,t))(sAm(ng(xaU’t‘i‘At)

_Xﬁ,(x v, )]+ |goy, (S0 + 05, ar— S5.1))
XJA;E( ﬂ(x v, t+ At) — ij(x,v,t))’}dﬁ;

n (3.22) and below, the suprema are taken over (z,v)€ (@57,5)53 U (.@g,ﬂ_m)‘%,
0 < |Az| < 03, assuming that ¢, t + At € [0,T].

Again by Taylor’s formula, Lemma 3.1, and the continuity of the functions
Xg(a:,v,t) and Vf(x,v,t) on the compact set {(z,v,t): (x,v) € (Sfit(.@(u\;))&f7 te
[0,T7}, it follows that for any € > 0 there exists a by > 0 such that

o} < ka(p)mato (|XE(x + Az, v, t + At) — X8(z + Az,v,1)]
|Ax|e
5

+ VP (x + Az, vt + At) — VE(z + Az, v, 1)]) |Az] <
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for all (z,v) € (.@57,5)63 U (957t+At)637 0 < |Az| < 43, and t,t + At € [0,T] such
Consequently,

| ™

P}
sup

z,x+Ax,v |A1}|U 5 or + [ ] | | 1 ( )

By Taylor’s formula and the continuity of the functions X, D, (€, 0,t) and ‘A/&j (z,v,t)
on the compact set {(z,v,t): (z,v) € (Sgt(@ON))‘sff, t €10, 7]}, we get that for any
€ > 0 there exists a by > 0 such that

1
7 < ka(p)my Z /0 {|X£mj (x4 sAx,v,t + At) — ngj (x 4 sAx,v,t)]
J

~ ~ A
+ |szj (z + sAx,v,t + At) — mej (z + sAwz,v,t)|} ds |Az| < %

for all (z,v) € (.@5”53 u (Qgﬂ_m)%, 0 < |Az| < b3, and ¢, t + At € [0,T] such
that |At| < by.
Hence,

| ™

o

—= K f t,t+ At € [0,T], |At| < bs. 3.24
a;,;ﬁil-lgz,v |A.T|U 5 or + [ ] | | 2 ( )
Let bs = min{by, b, bo}. Then by (3.21)—(3.24) and Remark 1.1 with b = d3 we

have for any € > 0

|Fip(-,t+ At) — Fi,(-,t)]|s <e for t,t+Atel0,T], |At| <b.

Thus, the map [0,T] 3t — Fi,(-,t) € C7(Q) is continuous on [0, T].
Similarly, using Remark 3.1, Lemmas 3.1 and 3.2, and Taylor’s formula, we prove

that the map [0,7] > t = Fy,(-,t) € C?(Q) is continuous on the interval [0, T7].
IT1. Tt remains to show that for ¢ € C([0,T],Ca(Q)) the map

0,73t~ F,(-,t) € C°(Q)

is continuous on [0,7], and F,(-,t) € C§(Q). Indeed, there is a sequence of
functions ¢, € C([0,T],C*T7(Q)) with compact supports in @ for each t € [0, 7]
and such that ¢, — ¢ in C([0,T],C?*"7(Q)). From the estimate (3.28), which will

be proved later, it follows that F, — F, in the norm of the space C([0,T],C?(Q)).

By the above, F, € C([0,T],C?(Q)). Hence F, € C([0,T],C?(Q)). Moreover,

since g[’? C Q) and ¢,(-,t) have compact supports for ¢t € [0,7], the functions
F,,(-,t) are also compactly supported for ¢t € [0,T]. Consequently, F,(-,t) €

Cg(Q) for all t € [0, T] by definition. O
We set 11 = maxg.; | fo, |-

Lemma 3.4. Let the hypotheses of Lemma 3.3 hold. Then for any ¢ € Msy,
[ Fpllo,r < c1(ma +n2), (3.25)

where ¢; = ¢1(T,0,p,h,c) > 0 is independent of ¢.
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Proof. 1. From (3.20) and Remark 3.1 it follows that
| F1p(z,t)] < Z/H 198 (Spu(2,0)) | dv < 2|B,lmo  (x€Q, 0<t<T). (3.26)
v|<p

II. In view of (3.19) we have d3 > 0. Clearly, (dazF,)(x,t) = 0 for z € Q
such that {v: (z,v) € (Qgﬁt)ﬁ?’} = o, where 0 < ¢t < T and |Az| < d3. Hence by
Remark 3.1, Taylor’s formula, and Lemma 3.1,

oanFro(a ) <3 /| | 160008 (84 (ar,0)) | do
v|<2p

B
mlz/ Z{MA"L A,O’L(x v t)| + |6A.L wi 33 v, t \}dv
[v|<2p
X 2m100|B2p| |A$‘ (327)
for all z € @ such that {v: (z,v) € (@ﬁ )51 % @, and for |Az| < 55 and 0 < ¢ < T.

Note that 03 = d3(7, 9, p, h). Therefore | Figl|lo,r < kimy by (3.26), (3.27), the
condition |[Az| < d3 < 1, and Remark 1.1 with b = d3. Similarly, ||Fby||sr < konoe.
Here k; = k;(T, 6, p, h,o) > 0. This gives us the inequality (3.25). O

Lemma 3.5. Let the hypotheses of Lemma 3.3 hold. Then for any p1,p2 € Moy,

|Foy — F (3.28)

< ca(ma +n3)lle1 — @2

where co = (T, 6, p, h,a) > 0 is independent of 1 and ps.
Proof. 1. By definition, supp Flﬁ% (z,v,t) C .@5” (j =1,2,0<t<T). Using(3.15),
(3.18), and the inequality (2.21) with R instead of Ry, we get that

301

min inf inf dist(2° 0y, 1) 2 ik

B w1,02€ M2y, t€[0,T) Pt
that is, .@gl’t U.@fw C Q¢ (j =1,2). Hence, the maps Sﬁ +(z,v) are defined for

all (z,v) € le,t U _@fZM and 0 <t < T.
On the other hand, by (3.20) we have Fi,, (z,t) = Fiy,(x,t) =0 for all z € Q
such that {v: (z,v) € U(@gl’t U @gﬂ)} = o, where 0 < ¢t < T. Therefore by
B

Remark 3.1 and Taylor’s formula,
Fuos @) = Fioae.01 <3 [ 168 (87, o,00) = 68 (8t 0) e
8 v|<p

<om Y /|U<p{|X£1(:v,v,t) ~ R (w0, t)| + V2 (0, 8) — V2 (2,0, )]} do
B
(3.29)

for all € Q such that {v: (z,v) € U(@gl’t U2, @2 )} # @, where 0 <t < T,
B
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We now estimate the right-hand side of (3.29).

Let {ng( ), soz( )} = {X (x,v,t,T),Vfl (z,v,t,7)}, T € (0,t], be the solution

of the system (2.5), (2.6) for ¢ = ¢; (I =1,2) with the initial conditions

X, (m,v,t,7)|T:t =z, Vo, (x,v7t,7')|T:t =, (3.30)
where (z,v) € ng U @52,
By Taylor’s formula,
d
d—(Xﬂ -X0)=(VE-VE) (0<T<t),
-
d
E(Vfl ~VE) = Z / < VX<,01> (X2, +0(x5 —X2),7)do
(3.31)
8 8 Pe
(XSDMJ _tizd)_ 7(VX901( P2 T) - VXSOQ( P2 ))
mg
pe 8y

Changing the variable to s = 7, integrating the system (3.31) with respect to s
from 7 to t, 0 < 7 < t, and taking into account the initial conditions (3.30), we find
that

t
B B B B
X2,(7) = X < [ VA - VA ds
VA - VAOI < Zlenla [ X2 () - X (0] ds (332
2Te k
2 o1 = palr+ mﬁh/ V2 ) = VA (@)l ds

We introduce the new variables s; = t—s, 71 = t—7 and define ng (1) = ng (1)

and f/fj () = ij (1) (j = 1,2). An appeal to the inequalities (3.32) and Gronwall’s
lemma shows that

X2, (1) = X2, ()| + [V (1) = VE, (7))

= X8 (1) = XE,(r)| + [V (11) = V& (1)| < kollor — 2

g (3.33)

where kg = ko(T, 0, p, h) > 0 is independent of ;1 and @s.
Putting 7 = 0 in (3.33), we have

X2,(0)~XZ,0)] + V£, (0) ~ VE,(0)]
= |XZ (z,0,t) = X5 (z,0,t)] + [VE (z,0,t) = VE (2, v,1)|
< koller — a1 (3.34)
It now follows from (3.29) and (3.34) that

sup [Fig, (2,1) — Fig, (2, 1) < 4mako| B,| le1 — 2|17 (3.35)
zEQ
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I1. By (3.20) we have 0a, Fiy, (2,t) =0, j = 1,2, for x € @ such that {v: (z,v) €

(25, )% U(20, )%} # @, where 0 < t < T and |Az| < 8.

Hence, by Remark 3.1 and Taylor’s formula,

‘§Aw (thl(a?, t) — Fig, (m,t))|
<y / e 0852, 0, 0) = 8 8,00
8 v|<2p

<> > (3.36)

B J=12

1 3
B[ v [ S {lonasl, (L + 030~ 5L0))
[v]<2p 0 51

x (X (¢ + Az,v,t) — XP (z+ Az, 0,1))|

©1,] 2,7
+ 082ty (S2,+ +0(S0, . — 52,)) (VD j(z + Az, v, )

p2,t

_ V£7j(x+Agc,v,t))‘}d9,

1 3
= [ [ 3l (5 + 0050 $0)0se (R0, - X2,)]
v 14 j=1

+ |ggVJ (S\gmt + 0(3\5171‘/ - §£2¢))6A$ (‘7#?1,]‘ - ‘Zfzd) | } do.

Let us estimate 1. Clearly, the inequality (3.34), which was obtained for (z,v) €

Uﬂ(ggl,t U @gQ’t) and 0 < ¢ < T, is also true for (z,v) € Uﬂ((@&,t)‘s?’ U (@gz’t)53)

and 0 <t < T. Therefore by Lemma 3.1,
17 < hoComa| Bap| |91 = @alls vl Acl. (3.37)
It is readily checked that
13 < 2 Bop [{I60(X[, = X)) + a2 (V, = VE)I}- (3.38)

To estimate the right-hand side of (3.38), we apply the operator da, to both
parts of the system (3.31). As a result,

d

- Saa(X0 = X0) =0a.(VE —VE)  (0<T <), (3.39)
d e -
B B8y — B
I one(VS, = V5, = T 2—1 J) 0<7<t), (3.40)



314 A. L. Skubachevskii

where

3 1
0
JP = Z/O <5M8vax<p1) (XZ, +0(x5 —X2),7)do
j=1

X(Xﬁ (x4 Az,v,t,7) — XP (z+ Az,v,t,7)),

1,7 ¥$2,7

3 1
Z 0
8 B B
Jy = /0 <8XjVX<P1> (ng +9()(:;6’1 7X£2)77—) dgaAf(X‘Phj 7Xt/727j)’
Jj=1 ’

Jy = 0ns(Vxp1(XE,,7) — Vxpa(XE,, 7)),

1
JP=—-
4 C

[0as(VE —VE), Bl
Using Taylor’s formula, Lemma 2.5, and the inequalities (3.8) and (3.33), we see
that

T < kallor — pallirlAzl?,  |J5] < kal0as (X5, — X5), s.41)
3.41
|T5| < ksllor — pall2,r|Azl, TY ] < kaldae(Viy, — Vi),

where the k; = k;(T,0,p,h) > 0 with j = 1,...,4 are independent of ;1 and 5.
By (3.30) the initial conditions for the system of differential equations (3.39),
(3.40) are
Saa(XE —X0)| _, =0, (3.42)

T=t

= 0. (3.43)

T=t

5A””(Vfl - V<Pﬁ2 ) |

Integrating the system (3.39), (3.40) from 7 to ¢, 0 < 7 < t, with the initial
conditions (3.42) and (3.43), we get by (3.41) that

022 (X2, (1) = XE5,(7)| < [ |622(VE (s) = VE,(s))] ds, (3.44)
1080 (V2 (7) = VE ()| < Z;;Ucl T ks)ller — pallarlAcl”

+ o | Rlan (X2 ) - XE,)]
+ kaldaa (VP (s) = VE (5)) |} ds. (3.45)

Making a change of variables in (3.44), (3.45) and using Gronwall’s lemma, we
have, as in the case of (3.34),

1082 (X5, (0) = XZ,(0)| + |64z (VE, (0) = V£, (0)) |
= [0as ()A(%(x, v, t) — )A(W (z,v,1))|
+ 080 (Vo (2,0, 1) = Vi, (2,0, 6))| < ksllor — @llo,r| Az,

where k5 = k5(T, 0, p, h) > 0 is independent of ;1 and @s.
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Thus, from (3.36)—(3.38) we deduce the estimate

sup  282(Fipy (2,1) = Figy (2, 1))]

z,x+AzEQ, |Ax|g
0<|Az|<ds

< kemaller — @2ll2,7, (3.46)

where kg = kg(T', 0, p, h) > 0 is independent of ;1 and @s.
Next, by (3.35), (3.46), and Remark 1.1,

[ F1py = Fig,llor < krmalor — @all2. 7.

Similarly,
[ Fap, — Fog, llor < ksnsllpr — p2ll2.7-

Here k; = k;(T, 9, p,h,0) > 0 for i = 7,8. This proves the inequality (3.28). O

4. Proof of Theorem 1.1

4.1. To prove Theorem 1.1 we shall need an auxiliary result on the unique
solvability of the Poisson equation with Dirichlet condition in an infinite cylinder.
A closely related result can be found in [87], but for the reader’s convenience we
present here a fairly simple independent proof of this fact.

Consider the Poisson equation

—Au@) = fl2)  (2eQ) (4.1)
with the Dirichlet boundary condition

u(z) =0 (x € 0Q). (4.2)

We define Cp(Q) = {w € C(Q): w(z) — 0 as |z3] — oo uniformly with respect
to 2’ € G}. Obviously, C§(Q) C Co(Q). B
In what follows, the norm in the Hélder space C*(2) will be denoted by || - |

to emphasize the domain & in question.

C:(2)

Lemma 4.1. For any function f € C§(Q) there is a unique solution u € C3+7(Q)
of the problem (4.1), (4.2). Moreover,

Hu||c2+a@) < C3||f”ca@)v (4.3)
where c3 > 0 is independent of f.

Proof. Let us first assume that f € C?(Q) has compact support.
I. We claim that

lullc@) < kllflc@) (4.4)

for any solution u € C%(Q) N Cy(Q) of the problem (4.1), (4.2), where k; > 0 is
independent of f.

By the maximum principle, for f(x) = 0 (z € Q) there is a unique trivial solution
of (4.1), (4.2) in C%(Q)NCy(Q), which clearly satisfies the inequality (4.4). So below
we assume that f(z) Z 0 (z € Q).
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Consider the auxiliary problem

Ap(a) = -1 (2 €Q), (4.5)
W) =0 («/ € 8G). (4.6)

This problem has a unique solution ¢ € C°°(G), and ¢/(z’) > 0 (2’ € G). Obviously,
the function v(z) = Ay (z’) is a solution of the problem

Av(z) =—-A (x € Q), (4.7
v(z) =0 (z € 0Q)), (4.8)

where A € R. -
Let A =2|fllc). We claim that u(z) < Ay(a’) for all € Q. Assume on the

contrary that there exists an 2° € @ such that u(2?) > v(z°). Since u € Co(Q),
there is a number N > 0 such that u(z) < u(z°) — v(2?) for |z3| > N, 2’ € G, and
2% € G x (=N, N). Then u(z) —v(z) < u(z®) — v(2®) for |z3] > N and 2’ € G,
because v(z) > 0. Let Qns = {z € Q: |z3| < N, u(x) > v(z)} and w(zx) =
v(z) — u(x). By construction, 20 € QNM:. Hence Qn,5 # @. Clearly, w(z) = 0 for
r € G x [-N,N], and w(z) > w(z?) for z € (G x {~N}) U (G x {N}). Since
w(z®) < 0, the function w(x) takes its minimum negative value on the set Qy ;
at a point z' € Qu ¢. Therefore, Aw(z') > 0. On the other hand, Aw(z') < 0
since A > ||f[|¢@)- This contradiction shows that u(z) < Ay¢(z’). A similar
argument gives us that u(z) > —Ay(z’). Consequently, |u(z)| < Ay(z'), and the
inequality (4.4) now follows.

II. We claim that if u € C%(Q) N Cy(Q) is a solution of the problem (4.1), (4.2),
then u € C?*7(Q) and (4.3) holds.

Let Qy = {z € Q: |z3] < N}. By Lemma 6.18 in Chap. 6 of [37], u € C**7(Q’y)
for any N > 0. This together with Lemma 6.5 in the same chapter gives us that for
any N >0

||U||cz+a(Q/ kQ(”uHC(Q’ D) + ||fHCU(Q’ )) (4.9)

where ko > 0 is independent of N and f.
Using (4.9) and (4.4), we get that

lullgzsa @y < B2(llulle) + 1 fllcr @) < ksl fllcr@)- (4.10)

This gives us the estimate (4.3).

II1. We now assert that the problem (4.1), (4.2) has a solution u € C?(Q)NCy(Q)
for any compactly supported function f € C7(Q).

We define the weight space WQk 5(Q) as the completion of the space C§° (Q) with
respect to the norm

1/2
g o= (32 [ elomutap ar)
la|<k

where Cg° (Q) is the space of compactly supported infinitely differentiable functions
on @, k > 0 is an integer, and 3 € R. For 8 = 0 the space W;B(Q) coincides with
the Sobolev space W¥(Q).
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Together with problem (4.1), (4.2), we consider the auxiliary eigenvalue/eigen-
function problem

—Age(@’) + Ne(a') =0 (' € G), (4.11)
) =0 (2 €dQ). (4.12)

It is known that all the eigenvalues of this problem are purely imaginary and iso-
lated, and have finite multiplicity. Also, zero is not an eigenvalue of the problem.
From Theorem 1.1 in [65] it follows that if the line Im A = 5 does not contain eigen-
values of the problem (4.11), (4.12), then the boundary-value problem (4.1), (4.2)
has a unique solution u € W22,/3 (Q) for any right-hand side f € WQOﬁ(Q).
Therefore, (4.1), (4.2) has a unique solution u € W§,(Q) = W3(Q) for any

compactly supported function f € C9(Q). Since f € C?(Q), it follows from The-
orem 9.19 in Chap. 9 of [37] that u € C**7(Q’y) for any N > 0. Moreover, the
relation u € W$(Q) implies that Hu||W22(Q\m) — 0 as N — oo. By the Sobolev

embedding theorem, u € C(Q) and

lello@rag) =0 as N = oo (4.13)

that is, u € Cp(Q). Consequently, for any compactly supported function f € C?(Q)
there is a solution u € C%(Q)NCy(Q) of the problem (4.1), (4.2). Hence, from parts
I and II of the proof it follows that for any compactly supported function f € C7(Q)
there is a unique solution u € C?*7(Q) N Cy(Q) of the problem (4.1), (4.2), and
moreover, the estimate (4.3) holds.

IV. We now prove that u € C377(Q). It suffices to check that éyu — u in
C?t7(Q) as N — oo, where &y = &En(x3) € C®(R) is an even function, 0 <
Env(zg) < 1for xz € R, En(z3) =1 for |zs| < N, En(x3) =0 for |z3| > N + 1, and
|§§\l,)(x3)| < Kk for 3 € R (i = 1,2,3), with k4 > 0 independent of x3 and N.

Using the estimate for the norm of the product of two functions in the Holder
space together with an inequality similar to (4.9), we obtain

I = EnJullgarn gy = I = En)ull ez grag)

< k4||1 - §N”CQ+“(M) ”uHcﬂo(M)

< ksllull gzvo grar)
< kol earag ) + Mlle- @var )

= ksllullc@var - (4.14)
Here N is such that f(z) =0 for x € @\ Qy_,, and k4, k5, k¢ > 0 are independent
of N and f.

From (4.13) and (4.14) it follows that

lu = Enullcerog) — 0 as N — oo.

To conclude the proof it remains to note that by definition the space of compactly

supported functions in C?(Q) is dense in CJ(Q). O
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4.2. We prove the first assertion of Theorem 1.1. Let § > 0 be such that Gos # @
and 0 < dp. Assume that Condition 1.1 is satisfied for this § and some h, p > 0.
We now build a stationary solution {0, f#} of equations (1.1), (1.2) such that

fPeCc>®(@xR?, suppf’ C Qas x B, 4, supj?ﬁ(x,v) > a.
x,v

4.2a. Let ¢(x) =0 (x € Q). Then the system (1.11) assumes the form

(v, Vo f?) + %([MB],VJ‘?) =0 (z€Q,veR3 g=+1). (4.15)
s

We shall find a solution of equation (4.15) as a product of two cut-off functions
whose arguments are first integrals of the system (2.5), (2.6). Different particular
solutions of equation (4.15) will be denoted by ff (i=1,...,4).

Clearly, the function ff(x, v) = |v|? is a solution of (4.15) for any z € Q, v € R?,
and 8 = £1. We consider even functions 7 € C°(R) such that 17 (0) = 2a > 0,
Wi(r) >0,

o = Pt (1 €R),
mi_/lz ' mi mi/lz bAm2,

and supp ;! C (—p? /16, p3/16), where 0 < p; < p.
Since m1 >m_q, supp it C (—p2/16, p2/16). The function f2(x,v) =17 (|v]?)
is a solution of (4.15).

We now look for a solution of (4.15) as a quadratic form with undetermined

coefficients:
3

f?(fEfU) = Z (aijxia:j + ﬁijxivj + ’%‘j’l){l)j). (416)
=1

Substituting (4.16) in (4.15) and equating the coeflicients of like terms, we get that
2 2
o eh eh
fg(-f,'l]) = < 1+ ﬁv2> + (132 - ﬂ'lﬁ) .
mgc mgc
We consider even functions ¢5 € C°°(R) such that ¥4 (0) = 1, ¢4 (1) > 0,

;! = IZ) ! (T € R)v
m2 " mi, m?i/f 2 \m?,

+1

and supp v, * C (—p3, p2), where po = 15p89/5. Since myy > m_1, suppy = C
(—p3, p3). The function

] Jé; eh 2 eh 2
f4 (xvv) = 1/)2 (< —x1 + 5U2> + <172 - ﬂ”l) >
mgc mgc

is a solution of (4.15).
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4.2b. We prove that the vector function {0, fg ff } is a stationary solution of
the problem (1.1), (1.2), (1.4) satisfying the hypotheses of Theorem 1.1.

By construction, the function f7(z,v) = f2(z,v)f? (x,v) satisfies equation (4.15)
and sup,. , f?(z,v) = f7(0,0) = 2« > 0. By Lemma 4.1 it suffices to show that the

right-hand side of (1.10) is identically zero and supp fﬁ C Q25 X By
Let us show that

/ Fiz,v)dv = f (@, v) dv
R3 R3

We make the change of variables y = (eh/c)z, w = my1(ve, —v1,v3), and define
Yy = (y1,y2) and w’ = (w1, wz). Then using the equalities

T 1 T
w“( )= w-l( ) (j=1,2 T€R)
3/2 m?i/f J mgl

m+1

and introducing the variables © = (¢/(eh))y and v = (1/m_1)(we, —w1,ws3), wWe

find that
wl + vy | + To — U dv
mi1cC

f+1(a: v dv—/ ot ((
:/RS m+1 <T|:LUL> (|y o )
:/Rm3 T (IWI2>¢ 1<|y +w >

Ho?)yy (<m 1c$1—02> +(m6hlc:c2+v1>2> dv

= f N, v) dv.
R3
Consequently, the right-hand side of (1.10) is identically zero.

We now assert that supp foﬁ C Q25 X B,,/4. Indeed, if [v| > p1 /4, then fzﬁ(z,v) =
¥2([v]?) = 0 by construction. Hence, f2(z,v) = 0 for |v] > p1/4. Let Bs,(g) be
the circle of greatest radius inscribed in Ga5. Without loss of generality we assume
that g = 0. If |2’| > d0/2 and |v| < p1/4, then Condition 1.1 and the inequality
8p/6 > 1 imply that

eh
mgc

eh 1 1 1506
BRI bcp mpedg - 5pdg

+ 37

)

/ /
mgc| = ed mgc p o

Yo

Consequently, f2(z,v) =0 for |2/| > 60/2 and |v]| < p/4.

where 2z’ = (vg, —v1).
Therefore,

eh
ff(z,v) ¢2<‘ e '+ B2
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4.3. To prove Theorem 1.1 it suffices to show that under Conditions 1.1 and
1.2, for any 7' > 0 and all f# and gg such that

suppgg C (Q2s N Q) X Bya, (4.17)
Il +max | £2 1 < Rid4meerca) ™, (418
2 + max | £2 12 < (4mecaca) ", (419)

there is a unique classical solution of (2.1)—(2.4), and moreover,
suppg’(-,-,t) C Q5574 x B, forall t € [0,T].

Here c1, c2, c3 > 0 are the constants from Lemmas 3.4, 3.5, and 4.1.
Let ¢ € My, be an arbitrary function. Then by Lemma 3.3

F‘P € C([OvT}v Og(@))
Next, according to Lemma 4.1 there is a unique classical solution u,(x,t) of the
problem (4.1), (4.2) with f(z) = 4weF,(z,t) for each t € [0,T], and

Uy € C([O,T],Cg+”(@)) and “<P|6Qx(0,T) =0.

Let Ap = uy,.
It follows from (3.25), (4.3), and (4.18) that

[A¢llztor < B (p € Mayiy). (4.20)
By virtue of (4.19), (3.28), and (4.3),

|Apr — Apallotor < Olle1 — 22401 (p1,02 € Mays), (4.21)

where 0 = 4dmwe(msg + n3)cacy < 1.

Thus, the operator A maps the complete metric space May, into itself and is
a contraction operator. By the Banach contraction principle A has a unique fixed
point in Msy,. Hence, the problem (2.1)-(2.4) has a unique classical solution
{o, gg}, where ¢ is the fixed point of the operator A and the functions gg are
defined by (3.11) and (3.12). The proof of Theorem 1.1 is complete.

5. Some generalizations

In the proof of Theorem 1.1 we have only used the boundedness of the inverse of
the Laplacian operator with homogeneous Dirichlet condition, acting from Cg(Q)
to Cg+"(@), while the explicit form of the operator and the boundary conditions
did not play a role. This suggests considering the following generalization of the

problem (1.1)—(1.4):

%—&-(U,foﬁ)—i- be (—Vmp</ Zﬁfﬂ%u,t)dv) +i[U7B],vaﬁ> =0
R G

mg

ot
(5.1)
(zeQ, veER? 0<t<T, f==1),
fﬁ(m,v,t)|t:0 = 2, v) (reQ, veR? 3==+1). (5.2)

Here P is a bounded linear operator mapping Cg(Q) to C217(Q).
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Remark 5.1. Since the operator P: CJ(Q) — C37°(Q) is bounded, we have
(PF)(z,t) € C([0,T], C7*7(Q)) and

[PFl240,1 < cal Fllor (5.3)
for any function F(x,t) € C([0,T], C(Q)).

Definition 5.1. A vector function {f#} with % € C*(Q x R3 x [0,T7) for 8 = +1
is called a classical solution of the problem (5.1), (5.2) if

/ Zﬁfﬂ f)dv € C(0,7),C5 (@)

and {fP} satisfies equation (5.1) and the initial condition (5.2).

Definition 5.2. A vector function {2} with f# € C*(QxR3) is called a stationary
solution of equation (5.1) if

/ Zfﬁ v)dv € C§(Q)
R3
and {f?} satisfies the equation

o 8 56(_ ( B0 o U> 1. ﬁ)_
O G /ngﬁjﬂﬂmd + [0 B, Vof

(re@, veR? g+1).

(5.4)

Repeating the proof of Theorem 1.1 and taking into account Remark 5.1, we
arrive at the following result.

Theorem 5.1. Let § > 0 be such that Gos # @ and §g > 0. Let Condition 1.1 be
satisfied for this 6 and some h, p > 0. Then for any o > 0 there is a stationary
solution {f%} of (5.1) with the following properties:

fPec=@ xR, supp f C Qa5 % B4,

/Zﬁfﬂ(m,v)dvzo (x € Q), supfoﬁ(x,v)>a.
R3S 5

z,v

If, in addition, Condition 1.2 is satisfied, then for any T' > 0 and all stationary
solutions P with the above properties and initial functions f(’)B satisfying

supp(fy — f7) € (Qas N Qly) X B, ya, (5.5)

1o — oI i (dmecies) ™, (5.6)

1£5 = F2l2 + max, 172112 < (4mecaes)™? (5.7)
(8 = +1)

for some N > 0, there is a unique classical solution of the problem (5.1), (5.2), and

supp f7(-,+,t) C Q574 x B, for all't € [0, T].
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From the results of §4 it follows that the problem (1.1)—(1.4) can be written in
the form (5.1), (5.2).

Remark 5.2. Theorems 1.1 and 5.1 can be extended to the case when the magnetic
field B = B(z) is a sufficiently smooth vector function of the form B = (0,0, k) on
the set @ \ Q25. The solvability of the Vlasov—Poisson equations in the half-space
R3 = {z € R®: z; > 0} with external magnetic field of this form on the set
{zx € R3: 0 < 21 < 2} was studied in [110] and [111].

In conclusion we mention some unsolved problems.

1. Construction of stationary solutions with compactly supported charged-part-
icle density distributions £ and non-zero potential ¢ in a half-space and in an
infinite cylinder. Such a solution would be more natural from the viewpoint of
plasma physics, because if the charged-particle density distributions in the infinite
cylinder are independent of x3, then the total charge is infinite.

2. Study of the existence and stability of global classical solutions of mixed
problems for the Vlasov—Poisson equations with density distributions supported
strictly interior to a domain in the cases of a half-space and an infinite cylinder for
arbitrary initial data.

3. Construction of stationary solutions of the Vlasov—Poisson equations in arbi-
trary bounded domains, study of global classical solutions with compact supports in
a domain, and investigation of their stability. Here the torus is of special importance
from a practical point of view (see Fig. 1). Since plasma control in a thermonu-
clear fusion reactor depends on the external magnetic field, some domains— for
example, a ball —are not used in modeling reactor chambers. This is so because,
first of all, there is no non-trivial vector field on a sphere. On the other hand,
the ‘drift’ of charged particles in the case when the magnetic field on the torus is
circumferentially directed is very well known in plasma physics. Therefore, in the
study of classical solutions of the Vlasov—Poisson equations in bounded domains
one must at the same time investigate the form of the external magnetic field. In
general, the external magnetic field must depend on the electric-field potential ¢
and the charged-particle density distributions f2. We thus arrive at the question of
investigating the system of equations describing controlled thermonuclear fusion.

4. In a more refined mathematical model of thermonuclear fusion one needs to
take into account the magnetic field produced by the moving particles. This brings
us to the Vlasov—Maxwell equations. There also arises the question of the existence
of global classical solutions (with compact supports in a domain) of mixed problems
for these equations and of their stability in a half-space, an infinite cylinder, and
a bounded domain.

5. The study of conditions ensuring that a generalized solution is classical has
great value in the theory of boundary-value problems for equations of mathematical
physics. This question for mixed problems for the Vlasov equations is virtually
unexplored.

6. There is also a certain interest in the study of the solvability, the asymptotic
behaviour of solutions, and the form of supports of solutions of the Vlasov equations
in domains with singularities. Such singularities are exhibited by the vacuum cham-
bers of the tokamak and mirror-trap types of reactors (correspondingly, edge and
zero-angle types) (see Figs. 1 and 2).
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