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Introduction

In this year of the centenary of the birth of Leonid Vital’evich Kantorovich, it is
70 years since the publication of one of his shortest but undoubtedly outstanding
papers [1] (with an even shorter continuation [2]), the ideas of which were fated
to a long life; some of them were developed in the two joint papers [3] and [4]
by Kantorovich and Rubinshtein. As noted by Vershik in [5], “the beauty and
naturalness of the formulation of the problem, the fundamental character of the
main theorem (a criterion for optimality), and finally, the wealth of applications
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(only partly realized, but new ones are being discovered in areas coming to light
only now), all this lets us to rank these papers among the classics of 20th-century
mathematics”.

The aim of our survey is to give an account of the state of the art of research
connected conceptually with the paper [1] as well as with the considerably older
problem of Monge [6], about which Kantorovich learned after the appearance of [1]
(see [2]); interesting materials of a biographical nature are collected in [7] and [8],
and one can expect new publications in this centenary year.

Although there are a number of thorough surveys and monographs devoted to
this subject (see [9]–[17]), it seems reasonable to briefly retell the known history of
its origin and development. In modern terms the Monge problem can be described
as follows (in general form this formulation of the problem is due to Vershik [18]).
We are given two probability spaces (X,A , µ) and (Y,B, ν) and a non-negative
measurable function h on X × Y , called a cost function (often denoted by c). It
is required to find a map T : X → Y that is measurable with respect to the pair
(A ,B) (that is, T−1(B) ∈ A for all B ∈ B), takes the measure µ into ν, and
minimizes the expression

M(µ, ν, T ) = Mh(µ, ν, T ) :=
∫
X

h(x, T (x))µ(dx)

among all such maps. The condition that µ is taken to ν means that ν coincides with
the image of µ under the map T , as given by the formula µ◦T−1(B) := µ(T−1(B)),
B ∈ B. If some T ∈ T (µ, ν) gives a minimum, then this T is called an optimal map
of the measure µ to the measure ν, or an optimal transportation.

In the interpretation of Monge the problem was concerned with the most eco-
nomical transportation of soil for construction works, that is, both measures were
the standard volumes, the cost function was the usual distance, and the work per-
formed had to be minimized (under the condition that the work of transporting
a mass element ∆V over a distance ∆r is ∆V∆r). By appearance the problem
looks applied, but it is fairly clear that it need not be such, although at the time
the French academicians were often called on to solve genuinely applied problems
of absolutely concrete practical nature (see [19]). Of course, this is not the only
possible ‘economic’ formulation of the transportation problem. One can speak, for
instance, of transporting goods from stores to delivery addresses or in general of
distributing certain resources (a model example in some papers was the delivery of
breads and croissants from bakeries to Parisian cafés), and discrete variants of the
Monge and Kantorovich problems arise in so many modern areas that we do not even
need to invent artificial applications. Gaspard Monge was a very universal scholar
who made significant contributions to descriptive geometry, differential geometry,
engineering, organization of science, and higher education. He was an active par-
ticipant in the French Revolution (as the Naval Minister he signed the decision of
the Court to execute Louis XVI), a comrade-in-arms of Napoleon, a participant in
his Egyptian expedition, and the person who ensured Napoleon’s election to the
Academy of Sciences (in those years, as now, membership in the Academy did not
necessarily require scientific achievements). Among Monge’s students there were
such renowned scientists as Cauchy, Poisson, Meusnier, Carnot (the Carnot cycle
was an invention of his son S. Carnot), Poncelet, and Coriolis. Later, after the fall
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of Napoleon and the French ‘perestroika’, he was expelled from the Academy (by
adroit colleagues who were quick in changing course), but much later the Academy
of Sciences announced prizes for a solution of the optimal mass transfer problem
posed by him for the concrete function h(x, y) = |x− y| (though the very existence
of a solution was tacitly assumed, and the problem was concerned with the study
of some of its geometric properties). The problem was solved by Appel [20], who
received such a prize. However, also his solution did not give a proof of the existence
of an optimal map, but only established certain properties of such a map. Not only
was the existence problem itself not solved, but it was not even precisely formulated
until the 1970s, when it was posed explicitly in modern terms by Vershik in the
paper [18] cited above and when the very important (and now classical in measure
theory) paper [21] of Sudakov appeared and was believed to settle the matter. How-
ever, 20 years later a gap was found in it, which fortunately was eventually filled
(see [9], [22]–[24], and more precise comments below). One can say that it was only
by the beginning of this millennium that the special Monge problem was solved
and also that many related subtleties previously invisible came to be recognized.
Over the last decade research in this area has notably intensified. This increased
activity has been connected both with the consideration of diverse problems arising
with one or another choice of the cost function h and of the class of measures µ
and ν being transformed, and with the determination of relations between these
kinds of problems and the most diverse directions in non-linear analysis, geometry,
partial differential equations, and stochastic analysis. It is these newly discovered
relations that have attracted so many specialists from so many different areas to
the questions considered here.

However, all this could hardly have been envisaged when in the severe wartime
autumn of 1942 Major L. V. Kantorovich, then head of the department of mathe-
matics at the Higher Technical Engineering College of the Soviet Navy and involved
in applied military projects, submitted his note [1]. By that time he was already
a fairly well-known mathematician who had published several papers in the theory
of functions of real and complex variables, serious investigations in descriptive set
theory, partially ordered vector spaces, and linear problems of functional analysis
closely related to measure theory and integral representations of linear functionals.
The creative work of Kantorovich, especially in the indicated areas, was certainly
influenced by the fact that he was a student of G. M. Fichtenholz, a remarkable
mathematician and teacher, and an eminent expert in the theory of the integral
(see [25] on his works). Another teacher of Kantorovich was V. I. Smirnov. In
[1] Kantorovich formulated a problem very close to Monge’s problem (even with
similar examples of an ‘applied’ nature about the transfer of soil), but with a fun-
damentally important nuance: in the Kantorovich problem instead of searching for
a map T (an ‘optimal transportation’) it is proposed to find just an ‘optimal plan
of transportation’, that is, a probability measure σ̂ on (X×Y,A ⊗B) such that its
projections on X and Y are µ and ν, respectively, and it minimizes the expression

K(µ, ν, σ) = Kh(µ, ν, σ) :=
∫
X×Y

h(x, y)σ(dx dy)

over all probability measures σ in the class Π(µ, ν) of probability measures on the
product (X × Y,A ⊗B) that give µ and ν when projected on X and Y . It should
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be said that the paper [1] was part of a project that Kantorovich began in 1938 and
presented in the booklet [26], which actually became the starting point of modern
linear programming. The transport problem was one of the themes mentioned
there.

Unlike the complicated non-linear Monge problem, the Kantorovich problem is
linear: one is looking for the minimum of a linear functional on a convex set, and
Kantorovich himself considered the case where X and Y are compact metric spaces,
which makes Π(µ, ν) compact in the weak topology, in which the convergence of
measures να to a measure ν means convergence of the integrals with respect to them
of every bounded continuous function. Of course, the functional σ 7→ K(µ, ν, σ)
turns out to be continuous in this topology if the function h is continuous. Thus,
here there are solutions for every continuous function h, and all of them are extreme
points of the compact set Π(µ, ν) (that is, points that are not interior points of
closed intervals with endpoints in Π(µ, ν)). In the general case a solution is a mea-
sure in Π(µ, ν) at which the minimum is attained, and it is called optimal or an
optimal plan. For non-compact spaces the situation is more complicated, but also
here there are many sufficient conditions for the existence of solutions, while the
Monge problem can be unsolvable even for rather simple functions and measures
on compact sets in Rn. It should be noted that in [2] Kantorovich called the Monge
problem a special case of his problem and wrote that from a solution of the lat-
ter one can easily get a solution of the former. In the general case this is false,
but if the Monge problem for a continuous cost function has a solution T , then
the measure σ on the graph of T equal to the image of the measure µ under the
map x 7→ (x, T (x)) will be a solution to the Kantorovich problem. We note that
the Kantorovich problem can be viewed as a ‘Monge problem with a multivalued
map’ by representing a plan σ in the form σ(dx dy) = σx(dy)µ(dx) by means of
conditional measures σx on Y (see below), which leads to the search for an opti-
mal map x 7→ σx with values in the space of probability measures on Y . In this
picture the existence of a pointwise optimal transportation means the possibility of
choosing Dirac conditional measures σx. Here problems involving polymorphisms
arise (see [27]). In some important special cases it is indeed possible to use a solu-
tion to the Kantorovich problem for constructing a solution to the Monge problem,
but in general this is rather rare. Nevertheless, the connection between the prob-
lems of Monge and Kantorovich turns out to be surprisingly close, so the term
‘Monge–Kantorovich problem’ has become generally accepted (we saw the first use
of these words in the title of Levin’s paper [28]). For both problems it is useful to
introduce the quantities

M(µ, ν) = Mh(µ, ν) := inf{Mh(µ, ν, T ) : T ∈ T (µ, ν)},

where T (µ, ν) is the class of all measurable maps taking µ to ν, and

K(µ, ν) = Kh(µ, ν) := inf{Kh(µ, ν, σ) : σ ∈ Π(µ, ν)}.

In dealing with a single cost function h we will omit it in the notation, but it will
be important to use the index h when comparing cost functions. In the general
case these infima are not minima, and one has the estimate

K(µ, ν) 6 M(µ, ν).
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Finally, we denote by Φh the set of pairs of functions (ϕ,ψ), ϕ : X → R1 and
ψ : Y → R1, that are measurable with respect to A and B, respectively, and satisfy
the inequality

ϕ(x) + ψ(y) 6 h(x, y), x ∈ X, y ∈ Y.

For this set Kantorovich considered the so-called dual problem of finding the quan-
tity (with values in [0,+∞])

J(µ, ν) = Jh(µ, ν) := sup
{∫

X

ϕdµ+
∫
Y

ψ dν, (ϕ,ψ) ∈ Φh

}
.

This problem, inspired by his investigations in linear programming involving dual
problems, plays an important role in our circle of questions. We should say some-
thing about the case when all the quantities involved in some infimum are infinite:
then the infimum is also infinite, of course. Thus, in the Kantorovich problem, the
dual problem, and the Monge problem infinite values are allowed. For example, if
the integral of h is infinite for all σ ∈ Π(µ, ν), then we set K(µ, ν) = +∞, and
every measure in Π(µ, ν) is optimal. Since obviously∫

X

ϕdµ+
∫
Y

ψ dν 6
∫
X×Y

h dσ

for all (ϕ,ψ) ∈ Φh and σ ∈ Π(µ, ν), one has the estimate

J(µ, ν) 6 K(µ, ν) 6 M(µ, ν).

It turns out that under very broad assumptions these inequalities are actually
equalities, and this will be the main topic of discussion in the first chapter. In
the second chapter we turn to the Monge problem proper, presenting the prin-
cipal results on the existence of its solutions and the properties (in particular,
differential) of these solutions. An essential distinction of the Monge problem is
that the requirements on the function h are considerably stronger here than in
the Kantorovich problem, and these requirements are very restrictive even for nice
measures on the space Rd. So far one can state that only the case of the function
h(x, y) = |x−y|2 and some sufficiently regular functions with conditions of convex-
ity/concavity type have been thoroughly studied. The last chapter is devoted to
diverse applications and connections of the Monge–Kantorovich problem. There we
discuss various non-linear inequalities and variational problems (isoperimetry, the
logarithmic Sobolev inequality, and so on), geometric flows on finite-dimensional
Riemannian manifolds and gradient flows on infinite-dimensional manifolds of prob-
ability measures, transport equations, infinite-dimensional variants of the Monge
problem, and many other things; finally, we briefly mention some other interest-
ing transformations of measures (certain competitors of optimal maps). Of course,
the length of our survey does not allow us to go into details, so many directions
in contemporary research are merely mentioned, with references (even in the very
thorough monograph [17] by Villani, which is ten times longer than this paper, only
certain selected problems are discussed in detail). But such a sketch of the general
panorama is a goal of our survey, which is closely connected with another important
goal: to attract the attention of our beginning mathematicians to this interesting
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and promising area created 50–70 years ago in the works of Kantorovich and also
in closely related works of others of our outstanding researchers such as A. N. Kol-
mogorov, A. D. Aleksandrov, V. A. Rohlin, A. V. Pogorelov, R. L. Dobrushin, and
Yu.V. Prokhorov.

Notation and terminology. Throughout, B(X) denotes the σ-algebra of Borel
sets in a topological space X, that is, the smallest σ-algebra containing all open
sets, and Cb(X) denotes the set of all bounded continuous functions on X. We
consider only Hausdorff (separated) spaces. Recall that a Borel measure is a real
countably additive function µ on B(X). Such a function can be uniquely written in
the form µ = µ+ − µ−, where µ+ and µ− are non-negative Borel measures (called
the positive and negative parts of µ) concentrated on disjoint sets; the measure
|µ| = µ+ + µ− is called the total variation of the measure µ, and the quantity
∥µ∥ = |µ|(X) is called the variation or the variation norm of µ. A Borel measure
µ is called a Radon measure if, for every B ∈ B(X) and every ε > 0, there exists
a compact set K ⊂ B such that |µ|(B \K) < ε. A set B ∈ B(X) is called an atom
of µ if µ(B) > 0 and every set A ∈ B(X) contained in B has measure either 0 or
µ(B). The smallest closed set of full measure is called the topological support of
the measure µ and is denoted by supp(µ). Such a support exists for every Radon
measure on a topological space and also for every Borel measure on a separable
metric space.

Let a ∧ b = min(a, b), and let δx be the Dirac measure at x.
In our discussion of certain questions it will be very useful to employ the notion of

a Souslin space, which is a Hausdorff space that is a continuous image of a complete
separable metric space (see [29], Chaps. 6 and 7). On such spaces all Borel measures
are Radon measures. In a complete separable metric space all Borel sets are Souslin
sets, but in uncountable spaces there always exist non-Borel Souslin sets. For the
questions to be discussed an important advantage of Souslin sets compared to Borel
sets is that a continuous and even a Borel image of a Souslin set is a Souslin set (the
image of a Borel set need not be Borel even for an infinitely differentiable function
on the real line).

Many aspects of the Monge–Kantorovich problem are connected with conditional
measures, the construction and effective use of which goes back to the works of
Kolmogorov, Rohlin, and other classics (see Chap. 10 in [29]). Here we only point
out that for Souslin spaces X and Y every Radon probability measure µ on X × Y
admits conditional measures µx, x ∈ X, on Y , that is, Radon probability measures
such that for every Borel set B ∈ X × Y the function x 7→ µx(Bx), where Bx =
{y ∈ Y : (x, y) ∈ B}, is Borel measurable on X and

µ(B) =
∫
X

µx(Bx)µX(dx),

where µX is the image of µ under projection on X. The measure µx(dy) is also
denoted by µ(dy|x). In particular, letting B = X ×C with C ∈ B(Y ), we get that
the function x 7→ µx(C) is Borel measurable. For more general spaces the concept
of conditional measures makes sense, but they do not always exist.

Let Mr(X) denote the space of all (including signed) Radon measures on X, let
M +

r (X) be the set of non-negative Radon measures, and let Pr(X) be its subset
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consisting of the probability measures. For most of the questions discussed below
one can assume that our discussion concerns complete separable metric spaces, and
on such spaces all Borel measures are Radon, so the notation M (X) and P(X)
without the index r will be used. In the general case it is useful to consider also
the Baire σ-algebra Ba(X), which is generated by all the sets of the form {f > 0},
where f ∈ Cb(X); measures defined on it are called Baire measures. It is clear
that Ba(X) ⊂ B(X). For all metric spaces this inclusion is an equality, but in the
general case it is strict even for compact spaces. The space of all Baire measures is
denoted by Mσ(X), and its subset of probability measures is denoted by Pσ(X).
This space (hence also Mr(X)) is equipped with the weak topology generated by
the seminorms

pf (µ) =
∣∣∣∣∫
X

f dµ

∣∣∣∣, f ∈ Cb(X).

Convergence of a sequence (or a net) of measures in the weak topology is conver-
gence of the integrals of every fixed function in Cb(X).

According to the classical Prokhorov theorem, if X is a complete separable met-
ric space, then the following conditions are equivalent for a sequence of probability
measures {µn} on X: 1) each subsequence of it contains a weakly convergent sub-
sequence; 2) it is uniformly tight, that is, for every ε > 0 there is a compact set Kε

such that µn(X \Kε) < ε for all n.
The problems touched upon in this survey have been discussed with many

colleagues. We are particularly indebted to L. Ambrosio, F. Barthe, S. G. Bobkov,
F.-Yu. Wang, A. M. Vershik, A. V. Gasnikov, F. Götze, P. Catiaux, B. Klartag,
Ph. Clement, A. Colesanti, M. Ledoux, V. L. Levin, R. MacCann, E. Milman,
F. Morgan, M. K. von Renesse, M. Röckner, A.N. Sobolevskii, E. O. Stepanov, and
V. N. Sudakov.

Chapter 1

The Kantorovich problem

1.1. Kantorovich metrics and Kantorovich–Rubinshtein norms

In this section X is a metric space with a metric ϱ. Thus, the classes of Borel and
Baire measures coincide. For part of the results completeness and separability of
the space will be important. It is known (see [29], Chap. 8) that, except for the case
of finite X, the weak topology on the whole space Mσ(X) is not metrizable, hence
it is not given by a norm. However, one can define a norm on Mσ(X) such that
the generated topology coincides with the weak topology on the set of non-negative
Radon measures (hence also on the set of probability measures). Let us consider
the following Kantorovich–Rubinshtein norm on the space Mσ(X):

∥µ∥0 = sup
{ ∫

X

f dµ : f ∈ Lip1(X), sup
x∈X

|f(x)| 6 1
}
,

Lip1(X) := {f : X → R1, |f(x)− f(y)| 6 ϱ(x, y) ∀x, y ∈ X}.

This norm generates the Kantorovich–Rubinshtein metric

d0(µ, ν) := ∥µ− ν∥0.
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Clearly, ∥µ∥0 6 ∥µ∥. If the space X contains an infinite convergent sequence, then
the norm ∥ · ∥0 is strictly weaker than the norm ∥ · ∥ (the variation norm). Indeed,
if xn → x, then the measures δxn

converge in the norm ∥ · ∥0 to the measure δx,
since |f(xn) − f(x)| 6 ϱ(xn, x) for f ∈ Lip1(X), but ∥δx − δxn

∥ = 2 for xn ̸= x.
In particular, under the indicated condition the space Mσ(X) cannot be complete
in the norm ∥ · ∥0, since it is complete in variation, and then by a theorem of
Banach the two norms would be equivalent. If ϱ(x, y) > δ > 0 whenever x ̸= y,
then the norms ∥ · ∥0 and ∥ · ∥ are equivalent, since in this case f ∈ Lip1(X) if
|f | 6 δ/2. According to Theorem 1.1.2 stated below, the topology generated by the
norm ∥ · ∥0 coincides with the weak topology on the set of non-negative τ -additive
measures. Below we introduce a modified Kantorovich–Rubinshtein metric. The
following equivalent norm is also frequently used:

∥µ∥∗BL := sup
{∫

X

f dµ : f ∈ BL(X), ∥f∥BL 6 1
}
,

where BL(X) is the space of bounded Lipschitz functions on X with the norm

∥f∥BL := sup
x∈X

|f(x)|+ sup
x ̸=y

|f(x)− f(y)|
ϱ(x, y)

.

It is readily seen that BL(X) with this norm is complete. Clearly,

∥µ∥∗BL 6 ∥µ∥0 6 2∥µ∥∗BL,

since ∥f∥BL 6 2 if f ∈ Lip1(X) and supX |f(x)| 6 1.

Remark 1.1.1. The weak convergence of a net {µα} of non-negative measures to
a measure µ is equivalent (see [29], Remark 8.3.1) to the equality

lim
α

∫
X

f(x)µα(dx) =
∫
X

f(x)µ(dx)

for all bounded Lipschitz functions f on X. In particular, convergence of a net of
non-negative measures in the Kantorovich–Rubinshtein metric implies weak con-
vergence. However, if X is non-compact, then for some choice of a metric on X
defining the original topology there necessarily exists a sequence of signed measures
µn and a measure µ such that the integrals with respect to µn of every bounded
uniformly continuous function f converge to the integral of f with respect to µ, but
the measures µn do not converge weakly to µ (see Exercise 8.10.89 in [29]). The
original metric does not always possess such a property (for example, in the case
of X = N with the usual metric), but for X = R1 the standard metric is suitable:
it suffices to have sequences {xn} and {yn} with xn ̸= yn and without limit points
such that the distance between xn and yn tends to zero.

For any set B ⊂ X let Bε = {x : dist(x,B) < ε}.
The following theorem employs yet another technical concept: a Borel measure

µ is said to be τ -additive if µ(Zα) → 0 for every net of closed sets decreasing to
the empty set. This property is shared by all Radon measures and also by all Borel
measures on separable metric spaces.
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Theorem 1.1.2. The topology generated by the norm ∥ · ∥0 coincides with the weak
topology on the set M +

τ (X) of non-negative τ -additive measures. In addition, on
the set Pτ (X) of τ -additive probability measures the weak topology is given by the
following Lévy–Prokhorov metric:

dP (µ, ν) = inf{ε > 0: ν(B) 6 µ(Bε) + ε, µ(B) 6 ν(Bε) + ε ∀B ∈ B(X)}.

In particular, if the space X is separable, then the weak topology on the set M +
σ (X)

is generated by the metric d0(µ, ν) = ∥µ− ν∥0 .
If Pσ(X) ̸= Pτ (X), then the weak topology on Pσ(X) is not metrizable.

One should bear in mind that the non-coincidence of Pσ(X) and Pτ (X) is
rather exotic in applications. It is possible only for non-separable X, and in the
case of a complete X it requires some additional set-theoretic assumptions (such as
the existence of measurable cardinals; see, for example, [29], Proposition 7.2.10).
Nevertheless, it is worthwhile to clarify the reason for non-metrizability of the weak
topology on Pσ(X), since all the metrics considered are defined in any case. The
point is that the set of measures with finite support is dense in Pσ(X) in the weak
topology (this is true for all spaces). Hence the existence of a metric determining the
weak topology on Pσ(X) gives countable weakly convergent sequences of discrete
measures for every measure in Pσ(X), which thereby turns out to be a measure
with separable support (the closure of the union of the atoms of this countable
sequence), and this means τ -additivity (but not always the Radon property if the
space is not complete).

Theorem 1.1.3. For any two Borel probability measures µ and ν on a metric
space X the following relations hold between the Lévy–Prokhorov metric and the
Kantorovich–Rubinshtein metric:

2dP (µ, ν)2

2 + dP (µ, ν)
6 ∥µ− ν∥∗BL 6 ∥µ− ν∥0 6 3dP (µ, ν).

In addition, ∥µ − ν∥∗BL 6 2dP (µ, ν). If X is complete, then the space Pr(X) =
Pτ (X) is also complete with either of these metrics.

Therefore, for a complete separable metric space X the space of Borel probability
measures on X is complete with respect to these metrics and they determine the
weak topology on it.

It follows from the Prokhorov theorem that any weakly convergent sequence of
signed Borel measures on a complete separable metric space converges in the norm
∥ · ∥0, but the converse is not true: ∥

√
n(δ1/n − δ0)∥0 → 0, although the measures√

n(δ1/n − δ0) do not converge weakly.
Let P1(X) be the set of all Borel probability measures on X for which the

function x 7→ ϱ(x, x0) is integrable for some x0 ∈ X (and then for all x0 by the tri-
angle inequality). Let us equip P1(X) with the following modified Kantorovich–
Rubinshtein metric (introduced also by Fortet and Mourier [30] for a general sepa-
rable metric space):

∥µ− ν∥∗0 := sup
{∫

X

f d(µ− ν) : f ∈ Lip1(X)
}
.
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We remark also that in [31] this norm was introduced on the linear span of Dirac
measures for the study of isometric embeddings of X. Clearly,

∥µ− ν∥0 6 ∥µ− ν∥∗0,

since the restriction supx |f(x)| 6 1 is omitted when taking the supremum. In
addition,

∥µ− ν∥∗0 6
∫
ϱ(x, a) (µ+ ν)(dx) ∀ a ∈ X,

since f(x) can be replaced by f(x)− f(a) in view of the equality µ(X) = ν(X) and
the inequality |f(x)− f(a)| 6 ϱ(x, a). If the diameter of X does not exceed 1, then
∥µ− ν∥0 = ∥µ− ν∥∗0, because |f(x)− f(a)| 6 1 for f ∈ Lip1(X).

The quantity ∥µ− ν∥∗0 is indeed a norm of the measure µ− ν if we introduce the
linear space M0(X) of all signed Borel measures σ on X such that σ(X) = 0 and
the function x 7→ ϱ(x, x0) is integrable with respect to |σ| (an equivalent condition:
Lip1(X) ∈ L1(|σ|)). On the space M0(X) the indicated formula defines a norm
σ 7→ ∥σ∥∗0. We note that every measure σ ∈ M0(X) has the form ∥σ+∥µ− ∥σ−∥ν,
where µ, ν ∈ P1(X), µ = σ+/∥σ+∥, and ν = σ−/∥σ−∥. The norm ∥ · ∥∗0 can be
extended to the linear space of all bounded Borel measures on X with respect to
which all Lipschitz functions are integrable. To this end we set

∥σ∥∗0 = |σ(X)|+ sup
{∫

X

f dσ : f ∈ Lip1(X), f(x0) = 0
}

for fixed x0 ∈ X. If X is separable, then the dual of the space of measures with the
norm ∥ · ∥∗0 is the space Lip(X) of Lipschitz functions.

Proposition 1.1.4. For all µ, ν ∈ P1(X)

∥µ− ν∥∗0 = sup
{∫

X

f dµ+
∫
X

g dν :

f ∈ C(X) ∩ L1(µ), g ∈ C(X) ∩ L1(ν), f(x) + g(y) 6 ϱ(x, y)
}
.

Kantorovich himself introduced the following quantity W (µ, ν), which is now
called the Kantorovich metric (see [29], vol. 2 and [32] for a proof).

Theorem 1.1.5. Let µ and ν be Radon measures in P1(X). Then

∥µ− ν∥∗0 = W (µ, ν) := inf
λ∈Π(µ,ν)

∫
X×X

ϱ(x, y)λ(dx, dy), (1.1.1)

and there is a measure λ0 ∈ Π(µ, ν) at which the value W (µ, ν) is attained.

If X is bounded, then P1(X) = Pσ(X). Note that for every metric space (X, ϱ)
the metric ϱ0 := ϱ/(ϱ+ 1) (or ϱ1 := min(ϱ, 1)) defines the original topology but is
bounded, and hence the function W in (1.1.1) constructed from ϱ0 is a metric for
the weak topology on Pr(X). If the diameter of X does not exceed 1, then the
embeddingX → Pr(X), x 7→ δx, preserves distances if Pr(X) is equipped with the
metric d0, since d0(δa, δb) = ϱ(a, b) (which is easy to get by taking f(x) = ϱ(x, a)).
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A technical advantage of the modified Kantorovich–Rubinshtein metric ∥µ− ν∥∗0 is
that the embedding X → P1(X) always preserves distances whatever the diameter
of X: the equality

∥δa − δb∥∗0 = ϱ(a, b)

holds due to the estimate |f(a) − f(b)| 6 ϱ(a, b) for all f ∈ Lip1(X), and the
supremum is attained at the function f(x) = ϱ(x, a). Therefore, for any complete
separable metric space X we obtain an increasing sequence of complete separable
metric spaces

X → P1(X) → P1(P1(X)) → · · · ,

where the element Vn+1 with index n+ 1 has the form P1(Vn), the spaces of mea-
sures are equipped with the modified Kantorovich–Rubinshtein metric generated
by the norm ∥ · ∥∗0, and all the embeddings preserve distances. It is appropriate
to call this chain Vershik’s tower, in honour of Vershik, who introduced it more
than 40 years ago (see [5] and [33], where there are additional references and dis-
cussions). If X is compact, then all levels of Vershik’s tower are compact. In
connection with the isometry of the embedding X → P1(X) we remark that the
Kantorovich–Rubinshtein norm is maximal on the space V0 of finite linear com-
binations σ of Dirac measures with σ(X) = 0 among those norms q for which
q(δx − δy) = ϱ(x, y) (on related interesting problems and results, see [34]).

It is known that a general completely regular Hausdorff spaceX is homeomorphic
to the subset of Dirac measures in the space Pr(X) of Radon probability measures
on X with the weak topology (see [29], § 8.9). Compactness of X is equivalent to
compactness of Pr(X).

Furthermore, metrizability of X is equivalent to metrizability of Pr(X), and
metrizability of X by a complete metric is equivalent to metrizability of Pr(X) by
a complete metric. Of course, on a metrizable space an incomplete metric can define
the same topology as some complete metric (as in the case of the interval (0, 1)).
Unlike the weak topology, which is not connected with metrics, all the metrics
considered by us on Pr(X) depend essentially on the original metric on X.

Similarly, one introduces the Lp-metric of Kantorovich (this was done explicitly
in [35]; see also [36], [37], [15], and the references there). The quantity

Wp(µ, ν) = inf
σ∈Π(µ,ν)

(∫
X×X

ϱ(x, y)p σ(dx dy)
)1/p

is a metric (for p > 1) on the space Pp
r (X) of Radon probability measures µ such

that the function x 7→ ϱ(x, x0) belongs to Lp(µ) for some (and then for all) x0 ∈ X
(if 0 < p < 1, then W p

p is a metric). The integrability of ϱ(x, y)p with respect to
σ ∈ Π(µ, ν) follows from the inequality ϱ(x, y)p 6 2pϱ(x, x0)p + 2pϱ(y, x0)p and the
assumed integrability of the terms on the right-hand side with respect to µ and ν,
respectively. The metric Wp is called the Kantorovich distance (or the p-distance).
In foreign papers it is often called the Wasserstein distance under the influence of
the celebrated paper [38] of Dobrushin, who efficiently used this metric and believed
that it had been first introduced in the paper [39] of L. N. Vasershtein, who had
indeed used it for p = 1 (see p. 68 of the paper cited). Nevertheless, the historically
wrong name has become firmly established in the foreign literature along with the
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distorted transliteration of the name of the author of [39] (by the way, translated
in time into English with the spelling ‘Vasershtein’ for the author’s name).

It is clear that Wp(µ, ν) = Wp(ν, µ), and it is easily verified that Wp(µ, ν) = 0
only when µ = ν (the equality Wp(µ, µ) = 0 is seen from the fact that one can take
σ as the image of µ on the diagonal under the map x 7→ (x, x)). Unlike for most
metrics used, verification of the triangle inequality forWp is not completely obvious.
Given three measures µ1, µ2, µ3 ∈ Pp

r (X), how can we estimateWp(µ1, µ3) in terms
of Wp(µ1, µ2) +Wp(µ2, µ3)? If σ1,2 and σ2,3 are optimal plans for the pairs (µ1, µ2)
and (µ2, µ3), then it suffices to have a probability measure η on X ×X ×X whose
projection on the product of the first two factors is σ1,2 and whose projection on
the product of the last two factors is the measure σ2,3. Then the projections of η
on the first and third factors are µ1 and µ3, whence we get that

Wp(µ1, µ3) 6

(∫
ϱ(x1, x3)pη(dx1 dx2 dx3)

)1/p

6

(∫
[ϱ(x1, x2) + ϱ(x2, x3)]pη(dx1 dx2 dx3)

)1/p

6

(∫
ϱ(x1, x2)pη(dx1 dx2 dx3)

)1/p

+
(∫

ϱ(x2, x3)pη(dx1 dx2 dx3)
)1/p

,

which coincides with ∥ϱ∥Lp(σ1,2) +∥ϱ∥Lp(σ2,3) = Wp(µ1, µ2) +Wp(µ2, µ3). However,
the existence of such a measure η requires justification. This is done in the next
lemma.

Lemma 1.1.6. Let X1 , X2 , X3 be completely regular spaces, and let X1 × X2

and X2 ×X3 be equipped with Radon probability measures σ1,2 and σ2,3 with equal
projections on X2 . Then on X1 ×X2 ×X3 there is a Radon probability measure η
with the projections σ1,2 and σ2,3 on X1 ×X2 and X2 ×X3 , respectively.

Proof. Let the given spaces be compact. Then on the linear subspace of C(X1 ×
X2 ×X3) consisting of the functions of the form

ϕ(x1, x2, x3) = f(x1, x2) + g(x2, x3),
where f ∈ C(X1 ×X2), g ∈ C(X2 ×X3),

we can define the linear functional

l(ϕ) =
∫
f dσ1,2 +

∫
g dσ1,3.

The condition of equality of the projections on X2 guarantees that it is well-defined:
if f(x1, x2) + g(x2, x3) = f0(x1, x2) + g(x2, x3), then f(x1, x2)− f0(x1, x2) does not
depend on x1 so has the form ψ(x2), and the measures σ1,2 and σ2,3 assign the
same integral to ψ(x2). The norm of l equals 1, since l(1) = 1 and l(f + g) 6 1 if
f + g 6 1. The latter is seen from the representation

f(x1, x2) + g(x2, x3) = f(x1, x2) + max
x3

g(x2, x3) + g(x2, x3)−max
x3

g(x2, x3),

where f(x1, x2) + maxx3 g(x2, x3) 6 1 and g(x2, x3)−maxx3 g(x2, x3) 6 0. By the
Hahn–Banach theorem l extends to a functional on C(X1 × X2 × X3) with unit
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norm, which by the Riesz theorem can be represented as the integral with respect
to some Radon measure ν with ∥ν∥ = 1. Since l(1) = 1, ν is a probability measure,
and it has the required projections (it suffices to take g = 0, and then f = 0).

In the general case we may assume by the Radon property of the measures that
all three spaces are countable unions of compact sets. Hence, they turn out to
be Borel sets in the Stone-Čech compactifications X1, X2, and X3. Applying the
fact proved above to the extensions of the measures σ1,2 and σ2,3 to X1 × X2

and X2 × X3, we obtain a Radon probability measure η on X1 × X2 × X3 with
the required projections. This measure is concentrated on X1 × X2 × X3, since
η(X1 ×X3 ×X3) = η(X1 ×X2 ×X3) = 1 by our condition on the projections.

We remark that for many spaces (say, Souslin spaces) the required measure can
easily be expressed explicitly via conditional measures:

η(dx1 dx2 dx3) = σ1,2(dx1|x2)σ2,3(dx3|x2)π(dx2),

where π is the common projection of σ1,2 and σ2,3 on X2, and σ1,2( · |x2) and
σ2,3( · |x2) are the corresponding conditional measures, that is, σ1,2(dx1 dx2) =
σ1,2(dx1|x2)π(dx2) and σ2,3(dx2 dx3) = σ2,3(dx3|x2)π(dx2). In other words,∫

f dη =
∫
X2

∫
X3

∫
X1

f(x1, x2, x3)σ1,2(dx1|x2)σ2,3(dx3|x2)π(dx2).

For example, if f depends only on x2 and x3, then the first integral gives f(x2, x3),
which gives the integral of f with respect to the measure σ2,3. If f does not depend
on x3, then similarly we obtain the integral of f with respect to the measure σ1,2,
which means that the required conditions on the projections hold (on connections
with multiplication of polymorphisms, see [27]). �

The metric Wp is bounded by the variation as follows (see [16], Proposition 7.10):

Wp(µ, ν)p 6 2p−1∥ϱ( · , x0)(µ− ν)∥, µ, ν ∈ Pp
r (X), p > 1, x0 ∈ X. (1.1.2)

We note the following simple fact. Let a sequence of functions θj ∈ Lip1(X),
0 6 θj 6 1, be given such that θj(x) = 1 for all x in the ball B(x0, j) of radius j
with some common centre x0 and θj(x) = 0 if x /∈ B(x0, j + 1). It is clear that
for every measure µ the measures θj · µ converge weakly to µ. An analogous fact
is true for the metric Wp. Let ξj(µ) denote the probability measure Cn,jθj · µ with
Cn,j = (θj · µ(X))−1 if θj · µ(X) > 0, and let ξj(µ) = µ if θj · µ(X) = 0.

Lemma 1.1.7. Wp(ξj(µ), µ) → 0 as j →∞ for every measure µ ∈ Pp
r (X). More-

over, limj→∞ supnWp(ξj(µn), µn) = 0 if µn, µ ∈ Pp
r (X) are such that the measures

(1 + ϱ( · , x0)p)µn converge weakly to the measure (1 + ϱ( · , x0)p)µ.

Proof. The first assertion follows at once from (1.1.2). To prove the second one we
have to verify that ∥ϱ( · , x0)(ξj(µn) − µn)∥ → 0 as j → ∞ uniformly with respect
to n. The weak convergence of the indicated measures implies that for any given
δ ∈ (0, 1/2) there exists an R > 0 such that the integrals of 1 + ϱ(x, x0)p over the
exterior of the ball B(R, x0) with respect to all the measures µn and µ are smaller
than δ. The integrals over the whole space are bounded by some number C. We
can consider further only those n for which µn(B(R, x0)) > 1 − δ. If j > R, then
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we have θj(x) = 1 for all x ∈ B(R, x0), so the restriction of the measure ξj(µn) to
B(R, x0) equals the restriction of the measure Cn,jµn, where 1 6 Cn,j 6 1 + δ. In
addition, ξj(µn) 6 2µn. Hence ∥ϱ( · , x0)(ξj(µn)− µn)∥ is bounded by Cδ + 3δ. �

Corollary 1.1.8. The set of measures with bounded support, hence also the set of
measures with finite support, is dense in (Pp

r (X),Wp).

For p > 1 the metric Wp is connected with the weak topology in the following
way.

Theorem 1.1.9. A sequence of measures µn ∈ Pp
r (X) converges to a measure

µ ∈ Pp
r (X) in the metric Wp precisely when {µn} converges to µ weakly and the

equality

lim
n→∞

∫
X

ϱ(x, x0)p µn(dx) =
∫
X

ϱ(x, x0)p µ(dx) (1.1.3)

is satisfied for some (and then for all) x0 ∈ X . This is also equivalent to the
property that the measures (1 + ϱ(x, x0)p)µn converge weakly to (1 + ϱ(x, x0)p)µ.

Proof. The weak convergence of the sequence {µn} to µ along with (1.1.3) follows
from the weak convergence of the measures νn = (1 + ϱ(x, x0)p)µn to the measure
ν = (1 + ϱ(x, x0)p)µ. It also implies the latter, since under the condition νn(X) →
ν(X) weak convergence follows from convergence of the integrals of all the functions
f ∈ Cb(X) with bounded support. Let Wp(µn, µ) → 0. Then W (µn, µ) → 0, and
hence we have weak convergence. Let us verify (1.1.3). The weak convergence
implies, by use of the cut-off functions min(ϱ(x, x0)p, N), that the right-hand side
does not exceed the lim inf of the integrals of ϱ(x, x0)p with respect to µn. On the
other hand, the inequality ϱ(x0, x) 6 ϱ(x, y) + ϱ(x0, y) implies that for every q > 1
there is a C > 0 such that ϱ(x, x0)p 6 Cϱ(x, y)p + qϱ(x0, y). Taking a measure
σn ∈ Π(µn, µ) with respect to which the integral of ϱ(x, y)p equals Wp(µn, µ)p, and
integrating the previous inequality with respect to it, we obtain the estimate∫

X

ϱ(x, x0)p µn(dx) 6 CWp(µn, µ)p + q

∫
X

ϱ(x, x0)p µ(dx).

Since Wp(µn, µ) → 0, we see that the lim sup of the left-hand side of this estimate is
no greater than the product of q and the right-hand side of (1.1.3). Letting q → 1,
we obtain an estimate completing the proof of (1.1.3). Finally, we show that the
weak convergence of the measures νn to ν implies the convergence Wp(µ, µn) → 0.
Lemma 1.1.7 reduces everything to the case of measures vanishing outside some
ball, and hence to the case of a bounded metric. In the latter case our assertion is
true by Theorems 1.1.2 and 1.1.5. �

For p > 1 the metric Wp on the simplex of probability measures cannot be the
restriction of a norm on the space of measures due to the lack of convexity on
intervals: already for X = {0, 1} we have Wp(δ0, (1 − t)δ0 + tδ1) = t1/p. However,
the following is true.

Corollary 1.1.10. The topology generated by the metric Wp on Pp
r (X) is also

given by the norm

Kp(µ) := ∥(1 + ϱ( · , x0)p)µ∥0, µ ∈ M p
r (X),
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where the linear space M p
r (X) consists of all Radon measures µ such that the

function ϱ( · , x0)p is integrable with respect to |µ|.

Proof. We know that convergence of sequences in the space Pp
r (X) with the indi-

cated norm is equivalent to weak convergence after multiplication by 1 + ϱ( · , x0)p,
which by the previous theorem is equivalent to convergence in the metric Wp. It
should be noted that the norm introduced does not necessarily generate the met-
ric Wp on Pp

r (X), it just generates the same topology. �

Already in the works of Dobrushin the metricW1 was used for estimating the rate
of convergence to an invariant distribution. An interesting geometric interpretation
is given in [40]. We shall say that a discrete Markov chain M with transition
probabilities P and metric d has Ricci curvature at least k > 0 if W1(Px, Py) 6
(1 − k)d(x, y), x, y ∈ M , Px = Pδx, Py = Pδy. Many interesting properties can
be derived from this. For example, for any probability measure µ on M one has
W1(µPN , π) 6 (1−k)NW1(µ, π), where π is the invariant distribution, that is, there
is an exponential rate of convergence to the invariant distribution. An analogy with
the Ricci curvature for manifolds is confirmed by many examples (discrete versions
of comparison theorems, Sobolev-type inequalities, and so on).

1.2. Existence of optimal plans

A number of very broad sufficient conditions are known for the existence of solu-
tions of the Kantorovich problem, that is, the existence of measures minimizing the
functional σ 7→ K(µ, ν, σ). We present the principal facts. Let us first observe that
in the case of Radon measures µ and ν on completely regular spaces X and Y the
set Π(µ, ν) turns out to be uniformly tight: for every ε > 0 there exists a compact
set K ⊂ X × Y such that σ((X × Y )\K) < ε; for K one can take K1 ×K2, where
the compact sets K1 and K2 are such that µ(X \K1) + ν(Y \K2) < ε. In addi-
tion, Π(µ, ν) is closed in the weak topology. Hence, Π(µ, ν) turns out to be weakly
compact (see [29], Theorem 8.6.7). By the linearity of the functional K(µ, ν, · ),
for proving the existence of its minimum on Π(µ, ν) it suffices to have its conti-
nuity on Π(µ, ν) in the weak topology or at least the weak closedness of the sets
{σ ∈ Π(µ, ν) : K(µ, ν, σ) 6 c}, that is, its lower semicontinuity. We draw the
reader’s attention to the fact that these conditions are weaker than the correspond-
ing requirements for the whole space of measures. For example, if the function
h is bounded and lower semicontinuous, then we obtain lower semicontinuity for
K(µ, ν, · ). Indeed, it is known (see [29], Corollary 8.2.5) that for every weakly
convergent net of measures σα → σ in Π(µ, ν)

lim inf
α

∫
h dσα >

∫
h dσ.

If the function h > 0 is unbounded but lower semicontinuous, then we obtain the
functional K(µ, ν, σ) on Π(µ, ν) in the form of an increasing sequence of functionals
given by bounded lower semicontinuous functions hn = min(h, n), whence the lower
semicontinuity of the limit functional follows at once. This gives the next theorem
(we recall that the existence of a solution does not mean that K(µ, ν) <∞).
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Theorem 1.2.1. For any Radon measures µ and ν on completely regular spaces
and any lower semicontinuous function h > 0 the Kantorovich problem has solu-
tions.

It is clear that the condition on h can be somewhat weakened. We actually
need only the lower semicontinuity of the functionals given by the bounded func-
tions min(h, n), and for this, as one can easily verify, it suffices to have the lower
semicontinuity of the function h not on all of X × Y , but on some sequence of
compact sets of the form Aj × Bj , where µ(Aj) → 1 and ν(Bj) → 1. The scope
of applicability of this theorem is thereby considerably broadened.

It is well known and easily verified that a function h on a completely regular
space is lower semicontinuous (that is, the sets {h 6 c} are closed) precisely when
h = supα∈A hα, where hα > 0 are continuous functions and A is an index set, and
if h > 0, then one can find functions with hα > 0; if the space is metrizable, then
one can take A = N. These considerations along with weak compactness reduce
finding Kh(µ, ν) to the case of a bounded continuous cost function.

Proposition 1.2.2. For any Radon measures µ and ν on completely regular spaces
and any lower semicontinuous function h > 0

Kh(µ, ν) = sup
α
Khα(µ, ν),

where hα > 0 are continuous functions such that h = supα∈A hα . In addition,

Kh(µ, ν) = sup
N
Kh∧N (µ, ν) = sup

N,α
Khα∧N (µ, ν).

Proof. Suppose that supαKhα
(µ, ν) < Kh(µ, ν) − 2δ, where δ > 0. Let us pass to

a new collection of continuous functions hα, indexed by finite subsets α ⊂ A par-
tially ordered by inclusion, by setting hα = max(hβ1 , . . . , hβk

) for α = {β1, . . . , βk}.
Then h is the limit of the increasing net {hα} (where hα > hβ if α > β). For every
Radon measure σ > 0 on X ×Y with respect to which the function h is integrable,
the equality ∫

X×Y
h dσ = lim

α

∫
X×Y

hα dσ

is satisfied. It is first verified for h ∧N (see [29], Lemma 7.2.6). As shown above,
there is an optimal plan σ̂ for the lower semicontinuous function h, and for every
function hα there is an optimal plan σ̂α. Using the weak compactness of Π(µ, ν), we
pass to a subnet of {σ̂α} that is weakly convergent to some measure σ0 ∈ Π(µ, ν);
we can assume that this is the whole original net. We observe that Kh(µ, ν, σ0) =
Kh(µ, ν). Indeed, if Kh(µ, ν, σ0) > Kh(µ, ν) + C, where C > 0, then according to
the foregoing there exists a β for which Khβ

(µ, ν, σ0) > Kh(µ, ν) +C. Then by the
weak convergence of σ̂α to σ0 and the continuity of hβ we obtain the existence
of an α > 0 such that Khα(µ, ν, σ̂α) > Khβ

(µ, ν, σ̂α) > Kh(µ, ν) + C, which is
impossible. Therefore, Kh(µ, ν, σ0) = Kh(µ, ν), so we may assume that σ̂ = σ0.
Now take γ such that Khγ

(µ, ν, σ0) > Kh(µ, ν, σ0)− δ. Using the weak convergence
once again, we find a β > γ such that Khγ

(µ, ν, σ̂β) > Kh(µ, ν, σ0) − δ. Since
Khβ

(µ, ν, σ̂β) > Khγ
(µ, ν, σ̂β), we arrive at a contradiction, which completes the

proof of the first assertion. The remaining equalities are corollaries of it. �
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Remark 1.2.3. For any bounded continuous cost function h a completely analogous
argument enables us to obtain Kh(µ, ν) as the limit of quantities Kh(µα, να), where
the measures µα and να have finite support. To this end we find a net of such
measures σα on X × Y that are weakly convergent to an optimal plan σ̂. Their
projections µα and να on X and Y converge weakly to µ and ν, respectively. For
them we take optimal plans σ̂α and pass to a weakly convergent subnet {σ̂α} whose
weak limit σ0 satisfies the estimate Kh(µ, ν, σ0) 6 K(µ, ν), since Kh(µ, ν, σ0) =
limαKh(µ, ν, σ̂α) 6 limαKh(µ, ν, σα) = K(µ, ν). Clearly, σ0 ∈ Π(µ, ν), and hence
Kh(µ, ν, σ0) = K(µ, ν). In the case of metrizable spaces (or spaces with metrizable
compact sets) one can take countable sequences instead of nets.

Optimal plans are described by an interesting property of their supports. Let X
and Y be sets and let c be a function on X × Y .

Definition 1.2.4. A set S ⊂ X × Y with
∑n
i=1 c(xi, yi) 6

∑n
i=1 c(xi, yi+1) for all

(x1, y1), . . . , (xn, yn) ∈ S, where yn+1 := y1, is said to be c-cyclically monotone. If∑n
i=1 c(xi, yi) 6

∑n
i=1 c(xi, yσ(i)) for every permutation σ of the indices {1, . . . , n},

then S is said to be c-monotone.

As one can easily verify, these two notions are equivalent.
For functions ψ on Y and ϕ on X with values in [−∞,+∞] we set

ψc+(x) = inf
y∈Y

[c(x, y)− ψ(y)], ψc−(x) = sup
y∈Y

[−c(x, y)− ψ(y)], x ∈ X,

ϕc+(y) = inf
x∈X

[c(x, y)− ϕ(x)], ϕc−(y) = sup
x∈X

[−c(x, y)− ϕ(x)], y ∈ Y.

A function ϕ : X → [−∞,+∞) is said to be c-concave if there is a function ψ : Y →
[−∞,+∞) such that ϕ = ψc+ . This is equivalent to the property that ϕ = ϕc+c+ .
A function ϕ is said to be c-convex if −ϕ is c-concave. One defines c-concavity and
c-convexity of functions on Y similarly.

For a c-concave function ϕ onX its c-superdifferential ∂c+ϕ ⊂ X×Y is defined as
the set ∂c+ϕ = {(x, y) : ϕ(x) + ϕc+(y) = c(x, y)}. Let ∂c+ϕ(x) := {y ∈ Y : (x, y) ∈
∂c+ϕ}. Similarly, the c-subdifferential of a convex function ϕ on X is the set
∂c−ϕ = {(x, y) : ϕ(x) + ϕc−(y) = −c(x, y)}.

The inclusion y ∈ ∂c+ϕ(x) is equivalent to the estimate ϕ(x)− c(x, y) > ϕ(z)−
c(z, y) for all z ∈ X. It is verified directly that the c-superdifferential of any
c-concave function is c-monotone. In [41] an important converse result was obtained.

Theorem 1.2.5. Every c-cyclically monotone set S is contained in the c-superdif-
ferential of some c-concave function.

In the case of the function c(x, y) = ⟨x, y⟩ on Rd a set C ⊂ Rd × Rd is
said to be cyclically monotone (without indication of a function) if the inequal-
ity

∑n
i=1⟨xi, yi+1 − yi⟩ 6 0 holds for every collection (x1, y1), . . . , (xn, yn) ∈ C,

where yn+1 = y1.
The subdifferential of a convex function ϕ on Rd at the point x is defined to be the

set ∂ϕ(x) = {y : ∀ z ∈ Rd, ϕ(z) > ϕ(x) + ⟨y, z − x⟩}. The general definition above
comes from this case (but the c-subdifferential is a set in X×Y ). A convex function
ϕ is differentiable at x precisely when its subdifferential ∂ϕ(x) consists of a single
element. In this case ∂ϕ(x) = {∇ϕ(x)}. The following theorem of Rockafellar is
a classical result in convex analysis, and is generalized by the previous theorem.
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Theorem 1.2.6. Every cyclically monotone set C in Rd × Rd is contained in the
graph of the subdifferential of some convex function ϕ.

The function ϕ can be explicitly defined as follows. Fix (x0, y0) ∈ C and let
ϕ(x) = sup{⟨ym, x− xm⟩+ · · ·+ ⟨y0, x1 − x0⟩; (x0, y0), . . . , (xm, ym) ∈ C}.

The following result goes back to [42], and its proof can be found in [10] and [17]
(for Polish spaces, but the general case is similar).

Theorem 1.2.7. Let X and Y be completely regular, let µ ∈ Pr(X) and ν ∈
Pr(Y ), let the function c > 0 be continuous on X × Y , and suppose that there are
finite functions a ∈ L1(µ) and b ∈ L1(ν) such that c(x, y) 6 a(x) + b(y). Then for
any π ∈ Π(µ, ν) the following conditions are equivalent: (i) the plan π is optimal,
(ii) the topological support of π is c-cyclically monotone, (iii) there is a c-concave
function ϕ on X such that ϕ+ ∈ L1(µ) and the topological support of π is contained
in ∂c+ϕ.

Corollary 1.2.8. Suppose that in the situation of the previous theorem σ̂ is an
optimal plan for µ and ν , and the support of a measure σ0 ∈ Pr(X×Y ) is contained
in the support of σ̂ . Then the measure σ0 is an optimal plan for its projections.

We also mention a result from [43], where the conditions on c were weakened.

Theorem 1.2.9. Let X and Y be complete separable metric spaces and let a func-
tion c : X × Y → [0,+∞] be Borel measurable. Then each finite optimal plan
is concentrated on a c-monotone set. Every plan with finite cost concentrated on
a c-cyclically monotone set is optimal if there exist a closed set F and a µ⊗ ν-zero
set N such that c−1(+∞) = F ∪N .

The condition in Theorem 1.2.9 embraces functions c that are either finite or
lower semicontinuous, but one cannot do without some kind of conditions on c (see
[43]).

Remark 1.2.10. If X and Y are complete separable metric spaces, the finite func-
tion c > 0 is lower semicontinuous, and Kc(µ, ν) < ∞, then there exists a Borel
c-cyclically monotone set Γ ⊂ X×Y with the following property: for every measure
π ∈ Π(µ, ν), optimality of π is equivalent to the equality π(Γ) = 1.

We mention a convexity property of K(µ, ν) (see [17], Theorem 4.8). Let X and
Y be complete separable metric spaces, let (T,B,P) be a probability space, and let
t 7→ µt and t 7→ νt be measurable maps to the spaces P(X) and P(Y ). We define
µ =

∫
T
µt P(dt) and ν =

∫
T
νt P(dt).

Theorem 1.2.11. Let the function c be lower semicontinuous and let c(x, y) 6
a(x) + b(y), where a ∈ L1(µ) and b ∈ L1(ν). Then Kc(µ, ν) 6

∫
T
Kc(µt, νt) P(dt).

It is worth noting that already Kantorovich himself showed in the case of a com-
pact space and cost function equal to the metric ϱ that an optimal plan π is charac-
terized by the existence of a Lipschitz function U for which U(x)− U(y) = ϱ(x, y)
a.e. with respect to π.

Usually there are no explicit solutions to the Monge and Kantorovich problems
(see [44] on the one-dimensional case, and also [45] on some examples on the plane).
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1.3. The Kantorovich duality

For an arbitrary cost function h and the Kantorovich problem associated with
it the following relationship, called the Kantorovich duality, holds under broad
assumptions. For given probability measures µ and ν on the spaces (X,A ) and
(Y,B), respectively, consider the so-called dual functional and dual problem

J(µ, ν, ϕ, ψ) =
∫
X

ϕdµ+
∫
Y

ψ dν, J(µ, ν) = sup{J(µ, ν, ϕ, ψ) : (ϕ,ψ) ∈ Φh}.

The duality theorem asserts that under certain conditions

J(µ, ν) = K(µ, ν).

The first case of such an equality goes back to Kantorovich’s paper [1] and the joint
papers [3] and [4] of Kantorovich and Rubinshtein for compact metric spaces. Later
the class of spaces for which this is true was considerably enlarged. Before turning
to precise formulations, we note that already contained in [3] and [4] is the close
(but not equivalent) problem of finding the infimum (or minimum) K0(ϱ0) of the
functional

K0(ϱ0, η) =
∫
X×X

h(x, y) η(dx dy)

over all non-negative measures η on the square (X2,A ⊗A ) of a measurable space
(X,A ) such that the projections η1 and η2 on the first and second factors satisfy
the equality η1 − η2 = ϱ0 for a given (signed) measure ϱ0 on X with ϱ0(X) = 0.
For example, if ϱ0 = 0, then the zero measure gives the zero solution, but if we are
given two different probability measures µ and ν and ϱ0 = µ− ν, then the problem
becomes non-trivial. It is known [46] that if h satisfies the triangle inequality (and
only in this case), then K0(µ− ν) = K(µ, ν) under rather broad conditions, but in
the general case there is no such connection. In some aspects this problem is more
complicated, though the methods of investigation of the two problems have much
in common. Let us confine ourselves to the technically simpler problem for K(µ, ν).

We present the main results involving the equality J(µ, ν) = K(µ, ν). In [47] the
following theorem of a very general nature is proved, in which the notion of a perfect
probability measure P on a measurable space (Ω,F ) is used, that is, a measure
such that for every F -measurable function f the set f(Ω) contains a Borel set B
for which P (f−1(B)) = 1. In other words, the set f(Ω) is measurable with respect
to P ◦f−1 (on perfect measures see [29], § 7.5). Although there exist measures that
are not perfect, all Radon measures are perfect.

Theorem 1.3.1. If at least one of the measures µ and ν is perfect, then the equal-
ity K(µ, ν) = J(µ, ν) holds for all bounded A ⊗ B-measurable functions h, or
more generally, for all A ⊗ B-measurable functions that admit a pointwise esti-
mate h(x, y) 6 a(x) + b(y) with some functions a ∈ L1(µ) and b ∈ L1(ν). Hence,
this equality holds if at least one of the two measures is Radon, and the latter is
satisfied if one of the measures is Borel on a complete separable metric space.

In [48] and [49] a probability space (X,A , µ) is called a space with the dual-
ity property if K(µ, ν) = J(µ, ν) for every probability space (Y,B, ν) and every
bounded measurable function h on X×Y . It seems not to be known whether there
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are probability spaces without this property; as indicated by the authors of the
paper [49], their counterexamples described in [47] and [48] are wrong. Hence, it
follows from the facts proved in these papers that the perfectness of µ is necessary
for the stronger property of strong duality, which in addition to the duality property
requires that, for every probability space (Y,B, ν), every sub-σ-algebra B0 ⊂ B,
and every bounded A ⊗ B0-measurable function h the quantity J(µ, ν, h) is the
same whether considering h on A ⊗B or on A ⊗B0. It is unclear whether this
technical property is actually stronger.

In some important special cases a proof can be obtained from general results
of convex analysis (the Fenchel–Rockafellar duality). It can be found in [16] along
with a very interesting heuristic derivation of this relationship based on the mini-
max principle (see also [12] on connections between Kantorovich duality and linear
programming). However, even for simple spaces with more complicated cost func-
tions more special considerations are required. Among results of this sort we should
mention the following recent achievement from [50].

Theorem 1.3.2. Let X and Y be complete separable metric spaces with Borel prob-
ability measures µ and ν , respectively, and let h : X × Y → [0,+∞] be Borel mea-
surable and finite µ⊗ν-almost everywhere. Suppose also that there exists a measure
in Π(µ, ν) with respect to which h is integrable. Then J(µ, ν) = K(µ, ν).

It is clear from the formulation that instead of Borel measures on complete sepa-
rable metric spaces one can take measures on abstract measurable spaces isomorphic
(in the sense of the existence of bimeasurable and measure-preserving one-to-one
maps defined almost everywhere) to such measurable spaces.

Of course, some restrictions on h are needed. For example, in Example 4.1 of
[50] the following situation is considered: X = Y = [0, 1], µ = ν is Lebesgue
measure, h(x, y) = +∞ if x < y, h(x, x) = 1, and h(x, y) = 0 if x > y. Then
K(µ, ν) = 1 (the transport plan is the normalized Lebesgue measure on the diago-
nal), but J(µ, ν) = 0. In [51] the following result is proved.

Theorem 1.3.3. Let µ and ν be Radon measures. The equality J(µ, ν) = K(µ, ν)
holds if either the function h is lower semicontinuous or if h is Borel measurable
and h(x, y) 6 h1(x) + h2(y) for some h1 ∈ L1(µ) and h2 ∈ L1(ν). In the latter
case the quantity J(µ, ν) is attained on some pair (ĥ1, ĥ2) with ĥ1 ∈ L1(µ) and
ĥ2 ∈ L1(ν).

In [52] (where in our terminology the function −h is considered) a shorter proof of
the equality J(µ, ν) = K(µ, ν) is given in the case of Radon measures on completely
regular spaces and non-negative lower semicontinuous functions h (since −h is being
considered, the paper deals with upper semicontinuity, which is not sufficient in our
case, as Example 2.5 in [51] shows).

Remark 1.3.4. Even in the presence of the equality J(µ, ν) = K(µ, ν) the infimum
J(µ, ν) need not be attained (need not be the minimum), and this does happen
both in the case of a lower semicontinuous h on [0, 1] and µ = ν equal to Lebesgue
measure, and in the case of absolutely continuous measures µ and ν on R and
h(x, y) = (x − y)2 (see [50], where J(µ, ν) even equals the integral of ϕ(x) + ψ(y)
with respect to an optimal plan for some pair (ϕ,ψ), but these functions do not
belong to L1(µ) and L1(ν), respectively).
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Remark 1.3.5. Let X and Y be separable metric spaces, let the function h > 0 be
lower semicontinuous, and let Kh(µ, ν) < ∞. For the existence of solutions to the
direct and dual Kantorovich problems and for the equality of their values it suffices
([53], Theorem 3.2) that the integral of h(x, y) with respect to µ not be infinite for
ν-a.e. y and that the integral of h(x, y) with respect to ν not be infinite for µ-a.e. x.

It is clear from the duality formula that for functions h of general form any solu-
tion σ̂ of the Kantorovich problem is concentrated on a small part of X × Y . For
example, if (ϕ,ψ) is a solution of the dual problem, then the integral of ϕ(x)−ψ(y)
with respect to the measure σ̂ coincides with the integral of h(x, y), which implies
that ϕ(x) − ψ(y) = h(x, y) almost everywhere with respect to σ̂. This gives
another explanation of the fact indicated above that any optimal plan is concen-
trated on a cyclically monotone set (see the previous section). In the situation of
Remark 1.2.10 the set Γ ⊂ X × Y indicated there can be chosen so that the opti-
mality of π ∈ Π(µ, ν) is equivalent to the existence of an h-convex function ψ such
that h(x, y) = ψh(y)−ψ(x) π-a.e., and also equivalent to the existence of functions
ϕ : X → [−∞,+∞) and ψ : Y → [−∞,+∞) such that ϕ(x) + ψ(y) 6 h(x, y) and
ϕ(x) + ψ(y) = h(x, y) π-a.e.

Remark 1.3.6. There is another formulation of the dual Kantorovich problem in the
case of completely regular topological spaces X and Y . Namely, instead of the class
Φh of pairs of measurable functions ϕ and ψ one can consider a more narrow
class ΦCh of pairs of bounded continuous functions ϕ and ψ for which ϕ(x)−ψ(y) 6
h(x, y) for all x ∈ X and y ∈ Y . Then instead of J(µ, ν) one can consider the
quantity JC(µ, ν), taking the supremum of J(µ, ν, ϕ, ψ) over all pairs in ΦCh . It is
clear that ΦCh 6 Φh. In the general case the inequality is strict, and it is shown
in [46] that the equality ΦCh = Φh is equivalent to the lower semicontinuity of the
function h (see also [15], Theorem 4.6.8).

The total number of papers on the general Kantorovich problem in the topologi-
cal setting and in the setting of general measure theory is too large to be adequately
represented in the bibliography, but we particularly note a series of papers pub-
lished over many years by Levin [28], [46], [54]–[58], where there are additional
references to his works.

Let us turn to the case when X = Y = Rn and h(x, y) = |x − y|2/2. We pass
to the functions ϕ(x) = |x|2/2− u(x) and ψ(y) = |y|2/2− v(y). Then the problem
dual to the Kantorovich problem takes the form of minimization of the functional

J̃(µ, ν, ϕ, ψ) =
∫
X

ϕdµ+
∫
Y

ψ dν, ϕ(x) + ψ(y) > ⟨x, y⟩.

The Kantorovich problem itself can be reformulated as a search for a measure m
with given projections at which the maximum is attained for the functional

K̃(m) 7→
∫
X×Y

⟨x, y⟩m(dx dy).

Here the connection is seen between the Kantorovich problem and the Legendre
transform, since it is clear from the formulation of the problem that from the very
beginning we can confine ourselves to functions satisfying the equality ψ = ϕ∗,
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where ϕ∗(y) = supx(⟨x, y⟩ − ϕ(x)). Similarly, ϕ = ψ∗ = ϕ∗∗. Therefore, the
functional J̃ can be restricted to the set of pairs (ϕ,ϕ∗) with a convex function ϕ.
In this case the following theorem holds.

Theorem 1.3.7. There is a solution to the dual problem (ϕ,ψ), where ϕ is convex,
ψ = ϕ∗ , and ϕ(x)+ϕ∗(y) > ⟨x, y⟩, and equality is attained on the topological support
of any measure m giving a solution to the Kantorovich problem.

In Theorem 2.1.3 below we present the principal facts about the dual problem in
this case under the additional assumption that the measure µ vanishes on all sets
of Hausdorff dimension at most d− 1 (say, is absolutely continuous). Then it turns
out that the map T = ∇ϕ is an optimal transportation of µ to ν, that is, a solution
to the Kantorovich problem also gives a solution to the Monge problem. We see
that here the two problems come together.

Chapter 2

The Monge problem

2.1. Existence and uniqueness of optimal maps

Let us turn to the Monge problem. Suppose that we are given a pair of prob-
ability measures µ and ν on measurable spaces (X,A ) and (Y,B), respectively.
A solution to the Monge problem is a map T ∈ T (µ, ν) at which the minimum
M(µ, ν, T ) is attained. Unlike the Kantorovich problem, a solution to the Monge
problem need not exist even in the simplest cases.

Example 2.1.1. (i) Let X = Y = [−1, 1], µ = δ0, ν = 2−1(δ−1+δ1), and h(x, y) =
|x − y|2. Then µ cannot be transformed into ν at all, but the half-sum of the
Dirac measures at the points (0,−1) and (0, 1) serves as the unique solution to
the Kantorovich problem.

(ii) Let X = Y = [−1, 1]2, µ = λ ⊗ δ0, and ν = 2−1(λ ⊗ δ−1 + λ ⊗ δ1), let λ
be the normalized Lebesgue measure on [−1, 1], and let h(x, y) = |x − y|2, where
| · | is the usual norm in R2. Then both measures have no atoms, the Kantorovich
problem has a solution and K(µ, ν) = 1, but the Monge problem has no solutions
(although it has approximate solutions; see Theorem 2.3.1).

Proof. (i) If a measure σ on [−1, 1]2 has projections µ and ν, then it is concentrated
on the intersection of the interval {0} × [−1, 1] with the union of the intervals
[−1, 1]×{−1} and [−1, 1]×{1}, that is, is a combination of the Dirac measures at
(0,−1) and (0, 1), whence it is seen that it must be their half-sum. Therefore, here
Π(µ, ν) consists of a single element.

(ii) Here Π(µ, ν) contains many measures, but the quantity K(µ, ν) is easily
found, since by minimizing the integral of the function |x − y|2 = (x1 − y1)2 +
(x2 − y2)2 with respect to measures σ ∈ Π(µ, ν) we get that the integral of the
first term is 1 due to the fact that x1 = 0 σ-a.e. and y2

1 = 1 σ-a.e., so that
the minimum equal to 1 is attained precisely when x2 = y2 σ-a.e. An optimal plan
is the distribution of the random vector (0, η, ξ, η), where ξ and η are independent
random variables such that ξ assumes the values −1 and 1 with probabilities 1/2
and η has the uniform distribution in [−1, 1]. If we suppose that the Monge problem
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has a solution T = (T1, T2), then we get that |T1(x)| = 1 µ-a.e., so that the integral
of |x − T (x)|2 = (x1 − T1(x))2 + (x2 − T2(x))2 with respect to the measure µ
is equal to the integral of 1 + (x2 − T2(x))2 with respect to µ. In view of the
equality K(µ, ν) = 1 and Theorem 2.3.1 this means that T2(x) = x2 µ-a.e., so that
T1(x) = ξ(x2) is either 1 or −1 for a.e. x2. Then the measure µ◦T−1 is concentrated
on the union of sets A×{−1} and B×{1}, where A and B are disjoint measurable
sets with A ∪B = [−1, 1], and therefore it cannot coincide with the measure ν. �

We mention a general result on the unique solvability of the Monge problem
(see [17], Theorem 5.28).

Theorem 2.1.2. Let X and Y be complete separable metric spaces, let the function
h > 0 be lower semicontinuous, and let Kh(µ, ν) <∞. If for µ-a.e. x and for every
h-convex function ϕ on X the set ∂hϕ(x) contains at most one element, then the
Monge problem has a unique solution T , T (x) = ∂hψ(x) µ-a.e. for some h-convex
function ψ , and the image of µ under the map x 7→ (x, T (x)) gives a solution to the
Kantorovich problem.

In the rest of this subsection we shall discuss the important particular case when
X = Y = Rd and h has the special form h = |x− y|p, p > 1, where |x| is the usual
Euclidean norm. We shall assume that µ, ν ∈ Pp(Rd). It follows that there exists
a solution mp of the corresponding Kantorovich problem. We recall that a solution
to the Kantorovich problem gives a weaker result than a solution to the original
Monge problem. Nevertheless, it turns out that under rather general conditions
these problems are equivalent. In the case p = 1 the first existence result appeared
in the paper [21] of Sudakov, according to which for any norm ∥ · ∥ on Rd (not
necessarily generated by an inner product) and any pair of probability measures of
the form µ = ϱµ dx, ν = ϱν dx on Rd there exists a map T : Rd → Rd such that
ν = µ◦T−1 and the image of the measure µ under the map x 7→ (x, T (x)) ∈ Rd×Rd
gives a solution to the corresponding Kantorovich problem for h(x, y) = ∥x − y∥.
In other words, the measure m1 on Rd × Rd is concentrated on the graph of the
map T : m1 = µ◦ (x, T (x))−1. We shall call T an optimal map for the cost function
h(x, y) = ∥x − y∥, or an L1-optimal map. Later a gap in Sudakov’s proof was
found which involved very subtle questions in the theory of conditional measures
and non-linear versions of Fubini’s theorem, and which by now has been completely
filled (although a counterexample to one of the intermediate technical assertions has
been constructed). However, it is impressive that this has taken 30 years, including
a rather long period after detection of the gap. There is a whole series of papers
in which different methods are employed to prove the existence of an L1-optimal
map for norms of different types (see [53], [59], [23], [60]–[62], and, finally, a very
recent paper by Champion and De Pascale [24] in which there are no restrictions
on the norm ∥ · ∥). All of these applications use very complicated constructions.
The solution T itself has a non-trivial description.

It is simpler to prove the existence of a solution in the case of a so-called quadratic
optimal map, or L2-optimal map, that is, a map T : Rd → Rd transforming µ into
ν for the cost function |x− y|2. For such a T we have the equality

W2(µ, ν) =
(∫

Rd

|T (x)− x|2 µ(dx)
)1/2

.
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It turns out that such a T exists and has the form T (x) = ∇ϕ(x), where ϕ is some
convex function.

It is surprising that the first general result on the existence of quadratic opti-
mal maps appeared much later than Sudakov’s work about L1-optimal maps, even
though quadratic optimal maps are considerably simpler and have wide applica-
tions in different areas of mathematics. Moreover, quadratic optimal maps actually
arose long ago and were an object of study in geometry as solutions of a certain
non-linear partial differential equation, the so-called Monge–Ampère equation (see
[63], [64]). That equation and related geometric problems were considered in works
of A. D. Aleksandrov, I. Ya. Bakel’man, Pogorelov, E. Calabi, Sh.-T. Yau, Niren-
berg, and others. It arises, for example, in the classical Minkowski problem. The
reason for the indicated delay is possibly that the quadratic Monge–Kantorovich
problem had no clear physical meaning, while the Kantorovich functional with the
cost function equal to the norm (and not the square of the norm) admitted a phys-
ical interpretation of ‘work’. In any case, the existence of optimal maps under
sufficiently general assumptions was first proved in Brenier’s paper [65], which was
motivated by an analysis of the equations of continuum mechanics. The main
results of this paper are: 1) the existence and uniqueness of optimal maps for
a broad class of measures, 2) a connection between the Monge–Kantorovich trans-
port problem and the Monge–Ampère equation, 3) the polar factorization theorem,
according to which a map h : Ω → Rd of class L2 on a domain Ω ⊂ Rd taking
Lebesgue measure into an absolutely continuous measure has the form h = ∇ψ ◦U ,
where U : Ω → Ω preserves Lebesgue measure and ψ is a convex function. We
present a more general version of Brenier’s result proved by McCann [66].

Theorem 2.1.3. Let µ and ν be probability measures on Rd and let µ(A) = 0 for
every set A of Hausdorff dimension at most d − 1. Then there exists a Borel map
T : Rd → Rd such that ν = µ ◦ T−1 and T = ∇ϕ for some convex function ϕ. This
map is unique up to its definition on a set of µ-measure zero, that is, T1 = T2 holds
µ-a.e. for any two such maps T1 and T2 .

If also ν(A) = 0 for every set A of Hausdorff dimension at most d−1, then there
exists an analogous map S for which µ = ν ◦ S−1 and S = ∇ϕ∗ , where ϕ∗(y) =
supx∈Rd{⟨x, y⟩ −ϕ(x)}. The equalities ∇ϕ∗ ◦∇ϕ(x) = x and ∇ϕ ◦∇ϕ∗(y) = y are
satisfied for µ-a.e. x and ν-a.e. y .

The proof of this theorem is based on the Kantorovich duality theory and tech-
niques of convex analysis. We indicate the main steps of a simplified proof from [66].
The problem of finding the minimum of the functional

m 7→
∫
|x− y|2m(dx dy)

is equivalent to the problem of finding the maximum of the functional m 7→∫
⟨x, y⟩m(dx dy), since∫

|x− y|2m(dx dy) =
∫
|x|2 µ(dx) +

∫
|y|2 ν(dy)− 2

∫
⟨x, y⟩m(dx dy).
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Example 2.1.4. Let measures µ = N−1
∑N
i=1 δxi

and ν = N−1
∑N
i=1 δyi

be con-
centrated at N different points x1, . . . , xN and y1, . . . , yN in Rd. Any transporta-
tion of the measure µ to ν is given by a permutation σ ∈ SN :

(
N−1

∑N
i=1 δxi

)
◦

T−1
σ = N−1

∑N
i=1 δyσ(i) . It is not difficult to show that Tσ is optimal (minimizes∑N

i=1 |xi − yσ(i)|2) precisely when
∑m
k=1⟨yσ(ik), xik+1 − xik⟩ 6 0, where im+1 = i1,

for all {i1, . . . , im} ⊂ {1, . . . , N}, that is, the graph of Tσ is cyclically monotone.

Corollary 2.1.5. There exists a solution πn of the Kantorovich problem for the
pair of discrete measures µ = N−1

∑N
i=1 δxi

, ν = N−1
∑N
i=1 δyi

, and it is concen-
trated on a cyclically monotone discrete set of the form {(xi, yσ(i))}.

Let µ and ν be probability measures on Rd. Obviously, there exist weakly con-
vergent sequences of discrete measures such that µn → µ and νn → ν. Moreover,
without loss of generality we may assume that each of the measures µn and νn is
uniformly distributed at N(n) atoms. It follows from the above that for every n
there exists a measure πn with corresponding projections µn and νn and concen-
trated on a discrete cyclically monotone set. We note that the family {πn} is weakly
compact by the Prokhorov theorem. It is not difficult to deduce from the properties
of the weak convergence that there is a measure π with projections µ and ν and
having a cyclically monotone set as its topological support. By Theorem 1.2.6 it is
contained in the graph of the subdifferential of some convex function ϕ. It is well
known that any convex function is differentiable almost everywhere with respect to
Lebesgue measure. It is less known that the set of points of non-differentiability of
a convex function has Hausdorff dimension at most d−1. Suppose that µ(A) = 0 if
the Hausdorff dimension of A is at most d−1. Then it follows that for µ-almost all
x the intersection supp(π)∩{(x, y) : y ∈ Rd} ⊂ Rd×Rd consists of the unique point
∇ϕ(x). It is not difficult to see that ∇ϕ is the required map. Thus, the existence
of an optimal map follows from Theorem 1.2.6 and Example 2.1.4.

Remark 2.1.6. The uniqueness of the map ∇ϕ is a consequence of the following
observation due to Aleksandrov: let ϕ1 and ϕ2 be two convex functions such that
ϕ1(x0) = ϕ2(x0) but ∇ϕ1(x0) ̸= ∇ϕ2(x0). Then ∇ϕ1(D) is strictly contained in
∇ϕ2(D), where D = {ϕ1 > ϕ2} and ∇ϕi(D) =

⋃
x∈D ∂ϕi(x). The existence of two

optimal maps ∇ϕ1 and ∇ϕ2 contradicts Aleksandrov’s observation, since ∇ϕ1(D)
and ∇ϕ2(D) have equal ν-measure.

Finally, we note that if the map ∇ϕ is smooth and µ = ϱµ dx and ν = ϱν dx,
then the following change of variables formula must hold:

ϱν(∇ϕ) detD2ϕ = ϱµ.

This equality can be regarded as an equation in ϕ. Equations of this form are called
Monge–Ampère equations. It turns out surprisingly that the change of variables
formula for measures with densities is always true, in a sense. As we have already
noted, the first-order derivatives of a convex function exist almost everywhere. The
second-order derivatives of a convex function can be understood in the generalized
sense, that is, by definition ∂ei∂ejϕ is a generalized function satisfying the equality

⟨∂ei
∂ej

ϕ,ψ⟩ = −
∫

Rd

∂ei
ψ ∂ej

ϕdx
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for all smooth compactly supported functions ψ. The convexity of ϕ implies that
the functional ∂ei

∂ej
ϕ is non-negative, that is, is represented by a measure. By

using convexity it is not difficult to show also that the generalized partial derivative
∂ei∂ejϕ is also a measure (possibly signed). As is known, there exists a decompo-
sition of the measure ∂ei

∂ej
ϕ = (∂ei

∂ej
ϕ)a dx + (∂ei

∂ej
ϕ)sing into an absolutely

continuous part and a singular part. According to the Aleksandrov theorem (see
[67], Theorem 2.3.2) the function (∂ei

∂ej
ϕ)a is the limit of the partial difference

1
2t2

[ϕ(x+ tei + tej) + ϕ(x− tei − tej)− ϕ(x+ tei)− ϕ(x− tei)

− ϕ(x+ tej)− ϕ(x− tej) + 2ϕ(x)]

for almost all x with respect to Lebesgue measure. This theorem has the following
simplified formulation: every convex function is twice differentiable almost every-
where. Below, the symbol D2

aϕ will denote the matrix made up of the functions
(∂ei∂ejϕ)a. It turns out that only D2

aϕ affects the change of variables formula. The
next theorem was proved in [68].

Theorem 2.1.7. The equality ϱν(∇ϕ) detD2
aϕ = ϱµ holds µ-almost everywhere.

The Lagrange multiplier method. A non-rigorous but instructive proof of the
fact that T is a gradient can be obtained by deriving the Euler–Lagrange equation
(see [12]). Let T be an arbitrary map taking µ to ν. A solution of the Monge prob-
lem can be sought as a conditional extremum of the functional

∫
Rd⟨T (x), x⟩µ(dx)

under the condition that ϱν(T ) detDT = ϱµ. Let us consider the Lagrange function∫
Rd

(
⟨T (x), x⟩ϱµ(x) + λ(x)

(
ϱν(T (x)) detDT (x)− ϱµ(x)

))
dx.

The function λ plays the role of the Lagrange multiplier (note that ϱν(T ) detDT =
ϱµ by the change of variables formula). Since

det(A+ εB) = detAdet(I + εA−1B) ∼ detA · (1 + εTr(A−1B)),

the first variation of the Lagrange function equals∫
Rd

(
⟨ω(x), x⟩ϱµ + λ · ϱµ Tr[DT−1Dω] + λ⟨∇ϱν(T ), ω⟩ ϱµ

ϱν(T )

)
dx,

where ω is a smooth vector field with compact support. Integrating by parts and
using the change of variables formula, we readily see that∫

Rd

λ · Tr[DT−1Dω]ϱµ dx =
∫

Rd

λ(T−1) div(ω(T−1))ϱν dx

= −
∫

Rd

⟨∇[λ(T−1)], ω(T−1)⟩ϱν dx−
∫

Rd

λ(T−1)
〈
ω(T−1),

∇ϱν
ϱν

〉
ϱν dx.

Let λ = u(T ), where u is some function. Again using the change of variables
formula, we get that for any smooth vector field ω∫

Rd

(
⟨ω(x), x⟩ − ⟨∇u(T (x)), ω(x)⟩

)
ϱµ(x) dx = 0.

Therefore, ∇u(T (x)) = x, and thus T−1 = ∇u. Due to the symmetry of the
problem with respect to µ and ν the analogous assertion is true for the map T .
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Non-quadratic cost functions. An interesting class of transformations of
measures consists of optimal maps for non-quadratic cost functions. For a cost
function h(x, y) = h(x − y) with h strictly convex, they have the form T (x) =
x − ∇h∗(∇ϕ(x)), where ϕ is an h-convex function. The latter means that ϕ has
the form ϕ(x) = infy∈Rd

(
h(x, y)− ψ(y)

)
for some function ψ. For more details see

[16] and [15]. About uniqueness without convexity conditions, see [69].

2.2. Regularity of solutions and a priori estimates

We discuss here the regularity properties of optimal transportations. This means
properties like continuity, Hölder continuity, differentiability (ordinary and Sobo-
lev), and growth estimates. The most complete picture exists so far for the quadra-
tic cost function |x − y|2 on Rd, to which all the results presented in this section
refer. Only at the end do we make a few remarks about other cost functions and
about manifolds.

2.2.1. The maximum principle. We first discuss the non-linear maximum prin-
ciple which was first obtained in the works of Aleksandrov on the geometry of convex
surfaces. It generalizes the classical maximum principle and is an important tool
in the theory of regularity of linear elliptic equations (in non-divergence form), and
also of a broad class of non-linear elliptic equations. Below we give a classical proof,
which, as one can easily see, is based on the idea of transportations of measures.

Definition 2.2.1. The convex envelope of a continuous function f is the function
f∗ = sup{u 6 f, u is convex}. The set C∗(f) = {x : f(x) = f∗(x)} is called the set
of contact points.

The concave envelope is defined similarly.

Definition 2.2.2. The Monge–Ampère measure associated with a convex function
ϕ on a convex subset of Rd is the measure

µϕ(A) = λd

( ⋃
x∈A

∂ϕ(x)
)
.

If the function ϕ is twice continuously differentiable, then

µϕ(A) =
∫
A

detD2ϕ(x) dx.

If detD2ϕ > 0, then µϕ is the pre-image of Lebesgue measure under the map ∇ϕ.

Theorem 2.2.3 (the maximum principle). Let f be a continuous function on a
convex set A. Then for some constant C(d) depending only on the dimension,

sup
x∈A

f(x) 6 sup
x∈∂A

f(x) + C(d) diam(A)[µ(−f)∗(C∗(−f))]1/d.

In particular, if f is twice continuously differentiable, then

sup
A
f 6 sup

∂A
f + C(d) diam(A)

[∫
{x : D2f(x)60}

|detD2f | dx
]1/d

.
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Proof. Passing to the function g(x) = supy∈∂A f(y)−f(x), we obtain an equivalent
inequality infx∈A g(x) > −C(d) diam(A)[µg∗(C∗(g))]1/d for g with the condition
infx∈∂A g(x) > 0. If m = infx∈A g(x) > 0, then the inequality is trivial. Otherwise
we fix a minimum point x0 for the function g. Let us consider the cone in Rd+1 with
vertex at the point (x0,m) and base ∂A ⊂ {x : xd+1 = 0} given by the equation
xd+1 = K(x). Let v ∈ ∂K(x′) for some point x′ ∈ A. Consider the hyperplane L
given by the equation xd+1 = K(x′) + ⟨v, x− x′⟩ and tangent to K at the point x′.
Since the graph of g lies above L on ∂A and coincides with L at x′, by moving the
graph of L continuously downwards along the xd+1-axis we find a point xv in the set
C∗(g) of contact points such that v ∈ ∂g∗(xv). Therefore, ∂K(A) ⊂ ∂g∗(C∗(g)) and
µ∂K(A) 6 µg∗(C∗(g)). Since the function K is homogeneous, we have ∂K(A) =
∂K(x0). The measure of ∂K(x0) is easily estimated from below by the volume of the
d-dimensional ball of radius −m/diam(A). Hence µg∗(A) > C(d)

(
−m/diam(A)

)d,
which yields the desired assertion. �

Using the parabolic transportation of measures on Rd+1 of the form (t, x) 7→
(⟨x,∇xu⟩ − u,∇xu), where u( · , · ) : Ω = [0, T ]×Q → R and Q ⊂ Rd is a compact
convex set, one can prove the parabolic maximum principle:

sup
Ω
u 6 C(d,diam(Q))

(∫
Γu

|∂tu · detD2
xu| dt dx

)1/d

,

where Γu = {∂tu 6 0, D2u 6 0} ⊂ Ω and u = 0 on ([0, T ]× ∂Q) ∪ (T ×Q).

2.2.2. Regularity of solutions of the Monge–Ampère equation. The
Monge–Ampère equation arising in the measure transportation problem is a par-
ticular case of equations of the form

detD2ϕ(x) = f(x,∇ϕ(x)) (2.2.1)

in the class of so-called fully non-linear elliptic equations (see the surveys [70]
and [71]). In [64] there is a description of the special case we are interested in
(the Monge–Ampère equation for the transport problem). The regularity problem
for the Monge–Ampère equation is highly non-trivial. A relatively complete pic-
ture has taken shape over more than 60 years in the works of Aleksandrov, Calabi,
Pogorelov, N.V. Krylov, J. Spruck, L. Caffarelli, Nirenberg, and many others. In
geometry there has been a parallel development in a closely related direction: the
complex Monge–Ampère equation, where Yau, Calabi, and T. Aubin have been
involved. The classical approach to the regularity theory of non-linear equations is
based on differentiation of them and application of the linear theory to the resulting
equations, which are linear with respect to the higher derivatives. An example of
such techniques can be found in § 2.2.3, where we obtain some uniform estimates for
the second derivatives of the potential in the transport problem. We quote Krylov
from [70]: “To prove the existence of solutions of equations like (2.2.1) by the meth-
ods known before 1981 was no easy task. It involved finding a priori estimates
for the solutions and their derivatives up to the third order. A large part of the
work was based on differentiation of (2.2.1) three times and certain extremely clev-
erly organized manipulations invented by Calabi. After 1981 the approach to fully
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non-linear equations changed dramatically.” In the 1980s, in the works of Krylov
and Safonov and also (independently) of L. Evans, general regularity theorems were
proved for elliptic equations defined by non-linear operators of the form F (D2ϕ),
where F is a uniformly elliptic operator. Unfortunately, the Monge–Ampère oper-
ator ϕ 7→ detD2ϕ is not uniformly elliptic even on the space of convex functions,
and the Krylov–Safonov–Evans theory is not directly applicable.

Below we use the concept of a solution of the Monge–Ampère equation in the
sense of Aleksandrov. A solution of the equation

detD2ϕ = w

in the sense of Aleksandrov is a function ϕ for which the Monge–Ampère measure
satisfies the equality µϕ = w dx. We observe that a solution in the sense of Alek-
sandrov with an absolutely continuous right-hand side automatically means the
absence of a singular component of µϕ, which, generally speaking, may not hold if
we are concerned with an optimal transportation of w dx to Lebesgue measure. In
the case when ϕ is smooth the two concepts of a solution coincide.

2.2.3. The classical approach. Let ∇Φ be an optimal transportation of a mea-
sure e−V dx to a measure e−W dx. By the change of variables formula,

V = W (∇Φ)− log detD2Φ.

Let us fix a unit vector e and differentiate this equality along e. To this end we use
the relation

∂e log detD2Φ =
∂e detD2Φ

detD2Φ
= Tr[(D2Φ)−1∂eD

2Φ].

Differentiating this along a vector v and using the fact that ∂v(D2Φ)(D2Φ)−1 +
D2Φ∂v[(D2Φ)−1] = 0, we get that

∂v∂e log detD2Φ = Tr[(D2Φ)−1∂v∂eD
2Φ]− Tr[(D2Φ)−1∂e(D2Φ)(D2Φ)−1∂vD

2Φ].

Using the change of variables formula again, we find that

∂eV = ⟨∇W (∇Φ), D2Φ · e⟩ − Tr[(D2Φ)−1∂eD
2Φ],

∂2
eV = ⟨D2W (∇Φ)D2Φ · e,D2Φ · e⟩+ ⟨∇W (∇Φ),∇∂2

eΦ⟩

− Tr[(D2Φ)−1∂2
eD

2Φ] + Tr
[
(D2Φ)−1∂eD

2Φ
]2
. (2.2.2)

Let us represent these relations in a more convenient form. We define a diffusion
operator LΦ by the formula LΦf = Tr[D2f · (D2Φ)−1]− ⟨∇f,∇W (∇Φ)⟩.
Remark 2.2.4. If the measures µ and ν have locally Sobolev densities, then it is
easily verified that

−
∫
⟨(D2Φ)−1∇f,∇η⟩ dµ =

∫
f · LΦη dµ =

∫
η · LΦf dµ, η ∈ C∞0 (Rd).

Thus, ∂eV = −LΦ∂eΦ, where LΦ is the generator of the Dirichlet form

EΦ(f, η) =
∫
⟨(D2Φ)−1∇f,∇η⟩ dµ.
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From (2.2.2),

∂2
eV = ⟨D2W (∇Φ)D2Φ · e,D2Φ · e⟩ − LΦ∂

2
eΦ + Tr

[
(D2Φ)−1∂eD

2Φ
]2
. (2.2.3)

Using (2.2.3) and the maximum principle, one can obtain a priori estimates for
the supremum of ∂2

eΦ.

Example 2.2.5. Let the function Φ ∈ C4 be convex, let ∇Φ be an optimal trans-
portation of the measure e−V dx with support in a convex set A to Lebesgue measure
on the set B, and let e be a unit vector. Then

sup
x∈A

∂2
eΦ(x) 6 sup

x∈∂A
∂2
eΦ(x) + C(d) diam(A)

(∫
A

(∂2
eV )d+e−V dx

)1/d

.

Proof. By the change of variables formula, detD2Φ = 1/λ(B), and (2.2.3) implies
that ∂2

eV = −Tr[(D2Φ)−1∂2
eD

2Φ] + Tr
[
(D2Φ)−1∂eD

2Φ
]2. If ∂2

eD
2Φ(x) 6 0, then

∂2
eV > Tr[(D2Φ)−1(−∂2

eD
2Φ)] > d ·

(
det((D2Φ)−1(−∂2

eD
2Φ))

)1/d
.

By the non-linear maximum principle,

sup
x∈A

∂2
eΦ(x)− sup

x∈∂A
∂2
eΦ(x) 6 C(d) diam(A)

(∫
{∂2

eD
2Φ60}

det(−∂2
eD

2Φ) dx
)1/d

6 C(d) diam(A)
(∫

{∂2
eD

2Φ60}
detD2Φ · det

[
(−∂2

eD
2Φ) ◦ (D2Φ)−1

]
dx

)1/d

6 C(d) diam(A)
(∫

A

(∂2
eV )d+e−V dx

)1/d

,

which completes the proof. �

With the aid of the classical maximum principle for elliptic equations one can
prove the well-known Pogorelov lemma in which the maximum principle is applied
to the function (x, e) → (C − Φ)∂2

eΦ(x) on the set S1 × {Φ 6 C}. As a result
we obtain an estimate of supx ∥D2Φ(x)∥ on the sublevel set Ω = {Φ 6 C} by
a quantity depending on V and its derivatives up to the second order. The following
formulation of Pogorelov’s lemma is borrowed from [72].

Lemma 2.2.6. Let Φ ∈ C4(Ω), where Ω is a bounded domain, Φ = 0 on ∂Ω,
and detD2Φ = e−V . Then −Φ(x)∥D2Φ(x)∥ 6 C(1 + supy∈Ω |∇Φ(y)|2), where C
depends on d, sup Φ, and ∥V ∥C2(Ω) .

Thus, by controlling the L∞-norm of ∥D2Φ∥ one can apply the classical tech-
niques of regularity theory to the differential operator LΦ, which will be (locally)
uniformly elliptic. We briefly discuss Calabi’s idea, which made it possible to obtain
deep results about smoothness of solutions of the Monge–Ampère equation. For an
arbitrary smooth convex function Φ we introduce a Riemannian metric on Rd by
gij = Φij , where Φij = ∂xi

∂xj
Φ (below, Φijk is understood similarly). LetM denote

the manifold obtained. It belongs to the class of the so-called Hessian manifolds,



816 V. I. Bogachev and A.V. Kolesnikov

which are real analogues of Kähler manifolds, very popular in differential geometry
and mathematical physics. In obtaining a priori estimates for the Monge–Ampère
equation detD2Φ = 1 it is useful to consider the Ricci tensor of this manifold.
Direct calculations give the following result: 4 Ricik = gjlgms(ΦmilΦsjk−ΦmikΦsjl),
where (gij) is the inverse matrix for (gij). Taking into account the Monge–Ampère
equation, we get that 4 Ricik = gjlgmsΦmilΦsjk, whence it follows that the Ricci
tensor of the manifold M is non-negative. Let R denote the scalar curvature (the
contraction of the Ricci tensor) and let ∆M denote the Laplace–Beltrami operator.
The basic estimate obtained by Calabi is as follows.

Theorem 2.2.7. ∆MR > C(d)R2 .

Using this inequality together with comparison theorems on a Riemannian man-
ifold, one can obtain bounds on the growth of R (that is, on third-order deriva-
tives of Φ). Some generalizations of these results to equations of the form e−V =
e−W (∇Φ) detD2Φ are obtained in a paper of the second author in preparation, where
it is shown that the Dirichlet form EΦ considered above possesses a non-negative
‘carré du champ’ operator if V and W are convex.

2.2.4. Regularity in Hölder and Sobolev spaces. As already noted, the
regularity theory for the Monge–Ampère equation has a long history and a very
impressive list of publications. The first results in this direction were obtained
by Aleksandrov, who introduced the concept of a solution generalized in the sense
of Aleksandrov, and by Pogorelov, who gave a now well-known example (see [16])
of a non-smooth solution of the Monge–Ampère equation with an infinitely differ-
entiable right-hand side. The reason for this phenomenon is the lack of uniform
convexity of the solution. However, in the presence of uniform convexity it is possi-
ble to prove the regularity of the solution. Further development is connected with
the works of Krylov, Nirenberg, Spruck, N.M. Ivochkina, J. Urbas, N. Trudinger,
Yau, and others. The relative completeness of this theory was achieved in the 1990s
in papers of Caffarelli. The survey [72] gives a concise exposition of many results
that previously had long and cumbersome proofs. We mention two important reg-
ularity results of Caffarelli (see [72], [16], [64]).

Theorem 2.2.8. Let f dx and g dy be probability measures on bounded connected
open sets X and Y in Rd and let ∇ϕ be the corresponding optimal transportation.
If Y is convex and if f and g are bounded and bounded away from zero, then ∇ϕ
is Hölder of some order. If f and g are Hölder of some order, then the derivative
of ∇ϕ is Hölder of some order.

Constructive estimates of Hölder norms are obtained in [73]. It was recently
shown in [74] that ∇ϕ ∈ W 1,1(X) in the first case in this theorem. The convexity
of Y is important: examples are known of discontinuous optimal transportations of
Lebesgue measure on a ball to Lebesgue measure on a non-convex connected set
with discontinuous ∇ϕ (see Pogorelov’s example in [16]). If Y is not connected,
then ∇ϕ must be discontinuous. In [75] the continuity of optimal maps is proved for
the cost function |x− y| under the assumption that the measures µ and ν are given
by strictly positive continuous densities on disjoint convex compact sets in R2.
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Theorem 2.2.9. Let Ω be a convex set and let ϕ be a solution of the equation
detD2ϕ = f , ϕ|∂Ω = 0, in the sense of Aleksandrov, where the function f is
bounded and bounded away from zero. Then for every p > 1 there exists a number
ε > 0 such that if |f − 1| < ε, then ϕ ∈W 2,p

loc (Ω).

It is shown in [79] that under a general estimate λ 6 f 6 Λ the exponent p
cannot be taken arbitrarily large.

2.2.5. Global estimates and applications. Finite-dimensional techniques of
regularity theory seldom yield a priori estimates independent of dimension or global
estimates. It turns out that for these purposes the classical approach based on dif-
ferentiating the equations is efficient. We present Caffarelli’s contraction theorem.

Theorem 2.2.10. Let T = ∇Φ be an optimal transportation of a probability mea-
sure µ = e−V dx on Rd to a probability measure ν = e−W dx, where V and W are
twice continuously differentiable and D2W > K . Then for every unit vector e

sup
x∈Rd

Φ2
ee(x) 6

1
K

sup
x∈Rd

Vee(x).

In particular, if µ is the standard Gaussian measure and K > 1, then T is a
1-Lipschitz map.

The idea of the proof is that LΦΦee(x0) 6 0 for a maximum point x0 of Φee (LΦ is
an elliptic operator), and then from (2.2.3) we get that KΦ2

ee(x0) 6 supx∈Rd Vee(x).
We remark that the original theorem in [77] is somewhat different from this formu-
lation. Caffarelli’s original result is stated below.

Theorem 2.2.11. Let µ = e−Qdx be an arbitrary Gaussian measure. Then for
every measure ν = e−Q−P dx, where P is a convex function, the corresponding
optimal transportation T is 1-Lipschitz.

This theorem together with the Gaussian isoperimetric inequality (see Chap. 3)
implies the following fact.

Corollary 2.2.12 (Bakry–Ledoux comparison theorem [78]). Any probability mea-
sure µ = e−W dx with D2W > K satisfies the Gaussian-type isoperimetric inequality
µ(Ah) > Φ(Φ−1(µ(A)) +Kh).

The Bakry–Ledoux comparison theorem asserts that isoperimetric properties of
measures of the form µ = e−W dx with D2W > K are no worse than the isoperi-
metric properties of the Gaussian measure Cd,Ke−K|x|

2/2. The proof follows imme-
diately from the existence of a 1-Lipschitz transportation of the measure µ to the
measure Cd,Ke−K|x|

2/2 and the Gaussian isoperimetric inequality.

Example 2.2.13. It is explained in [79] how the contraction result can imply
the well-known particular case of the so-called correlation inequality γ(A ∩ B) >
γ(A)γ(B), where γ is the standard Gaussian measure, if A is an absolutely con-
vex set and B is an ellipsoid centred at the origin. It is not known whether this
inequality is true for general absolutely convex sets B.
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A proof of Caffarelli’s theorem can also be obtained by applying the maximum
principle to the difference

Φ(x+ te) + Φ(x− te)− 2Φ(x)

rather than to second-order derivatives. This enables one to deal with non-smooth
potentials. The next result is proved in [80].

Theorem 2.2.14. Let µ = γ = (2π)−d/2e−|x|
2/2 dx and ν = e−W dx, where

W (x+ y) +W (x− y)−W (x) > δ(|y|) for some increasing non-negative function δ .
Then |∇Φ(x)−∇Φ(y)| 6 8δ−1(4|x− y|2).

From these estimates it is easy to get a proof of the concentration inequality
for measures with uniformly convex potentials for the standard norm (see § 3.4).
A question of obvious interest is whether it is possible to generalize Caffarelli’s
theorem to manifolds.

In connection with this problem we note that the Bakry–Ledoux comparison the-
orem is a ‘flat’ analogue of the Lévy–Gromov comparison theorem in Riemannian
geometry. Moreover, both theorems are particular cases of comparison theorems
for manifolds with measures. However, unlike in the ‘flat’ case, no transport proof
is presently known for the Lévy–Gromov theorem. Another open problem is this:
how can one estimate the contraction constant if the image-measure is not uni-
formly convex? In particular, let ∇Φ be the optimal transportation of the standard
Gaussian measure γ to the normalized Lebesgue measure on a convex set K. Is
there an estimate ∫

∥D2Φ(x)∥ dγ 6 C,

where C is a constant that does not depend on the dimension (for example, C =
c · diam(K) or C is a universal constant for isotropic convex sets)?

This problem is motivated by the well-known Kannan–Lovasz–Simonovits con-
jecture (KLS-conjecture). We recall that Cheeger’s constant CChig(K) for a convex
body K is defined to be the smallest constant C for which∫

K

∣∣∣∣f(x)− 1
λ(K)

∫
K

f(y) dy
∣∣∣∣ dx 6 C

∫
K

|∇f(x)| dx ∀ f ∈ C∞0 (Rd).

KLS-Conjecture. There is a universal constant c such that CChig(K) 6 c for every
convex set K ⊂ Rd satisfying the equalities∫

K

xi dx = 0,
1

λ(K)

∫
K

xixj dx = δji ;

such bodies are said to be isotropic.

It is proved in [80] that supx ∥D2Φ(x)∥ 6 c
√
ddiam(K), but this does not give

even an estimate CChig 6 c ·diam(K). On the other hand, it is known that for esti-
mating Cheeger’s constant it suffices to estimate the L1-norm of Λ(x) = ∥D2Φ(x)∥.
In a paper in preparation by the second author, Calabi’s techniques is employed to
prove that ∫

Λ dγ −
(∫ √

Λ dγ
)2

6 c · diam(A).
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Some applications of Calabi’s metric and techniques of Kähler manifolds to so-called
thin-shell estimates for convex sets were obtained in [81].

Let us proceed to global Sobolev estimates. Integrating (2.2.3), one can obtain
global estimates on the second and third derivatives of Φ. Indeed, since∫

Vee dµ =
∫
V 2
e dµ,

∫
LΦΦee dµ = 0,

we get that∫
V 2
e dµ =

∫ 〈
D2W (∇Φ)D2Φ · e,D2Φ · e

〉
dµ+

∫
Tr[(D2Φ)−1D2Φe]2 dµ.

The second term on the right-hand side is non-negative, and hence if D2W > K ·Id,
then ∫

|∂eV |2 dµ > K

∫
|∇∂eΦ|2 dµ.

A more general result is obtained in [82].

Theorem 2.2.15. Suppose that D2W > K · Id with K > 0. Then for every unit
vector e and for p > 1 the estimates

K∥Φ2
ee∥Lp(µ) 6 ∥(Vee)+∥Lp(µ), K∥Φ2

ee∥Lp(µ) 6
p+ 1

2
∥V 2

e ∥Lp(µ)

are satisfied. Moreover, for any r > 1 the following inequality holds for the operator
norm ∥D2Φ∥:

Kr

∫
∥D2Φ∥2r dµ 6

∫
∥(D2V )+∥r dµ,

where (D2V )+ is the positive part of the operator D2V .

As p → ∞ we again obtain the estimate K∥Φee∥2L∞(µ) 6 ∥(Vee)+∥L∞(µ) from
Caffarelli’s theorem. The estimates in this theorem can be generalized to the Wiener
space (see § 3.8 and [83], [84], [82]).

About integral estimates, see [85]. Less is known about general cost functions
(even smooth). In [86] there is an example of a smooth connected compact manifold
in R3 and probability measures with smooth positive densities for which the optimal
map (for the usual quadratic cost function on R3) is discontinuous (see also [10],
Example 1.3.7). The situation is not saved even by the non-negative sectional
curvature of the manifold; it turns out that here the major role is played by the
so-called Ma–Trudinger–Wang tensor. About this see [87], [88], [72]. In [89]–[91]
the problem of transportation of part of the mass is studied and an extensive
bibliography is given.

2.3. Connections with the Kantorovich
problem and approximate solutions

As already noted, the Monge problem does not always have a solution even for
very simple spaces, measures, and functions. All the more surprising is the fact that
under rather broad assumptions this problem has approximate solutions, that is,
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transformations T ∈ T (µ, ν) for which M(µ, ν, T ) is as close to K(µ, ν) as we wish.
In other words, the Monge infimum coincides with the Kantorovich minimum. We
give a precise formulation. Lipchius [92] strengthened a result of Pratelli [93] (who
in turn strengthened results of W. Gangbo and L. Ambrosio) and established the
following fact.

Theorem 2.3.1. Let X and Y be completely regular topological spaces in which
all compact sets are metrizable, let h be a continuous function on X × Y , and
let µ and ν be Radon probability measures on X and Y , respectively. Let µ have
no atoms. Then there exists a Borel map T : X → Y taking µ to ν for which
M(µ, ν, T ) 6 K(µ, ν, µ⊗ ν). Moreover,

min
σ∈Π(µ,ν)

K(µ, ν, σ) = inf
T∈T (µ,ν)

M(µ, ν, T ).

It is not known whether the metrizability of compact sets in this theorem can be
omitted if we consider pairs of measures µ and ν such that µ can be transformed
into ν. Of course, for general spaces the absence of atoms for the measure µ does
not guarantee this. Since some details of the proof were skipped in [92], we give
a detailed justification (borrowed from the Ph.D. dissertation of Lipchius). Let us
introduce some auxiliary notation. If µ and ν are non-negative Radon measures on
topological spaces X and Y and µ(X) = ν(Y ), then we set

µ� ν :=
µ⊗ ν

µ(X)
.

Let πXγ and πY γ denote the projections of a measure γ on X ×Y onto the factors
X and Y , respectively. The closure of a set A in a topological space will be denoted
by A. Let I be a finite or infinite binary (consisting of 0s and 1s) sequence. Then
Ik denotes the first k symbols in I if I has at least k symbols, and l(I) denotes the
total number of symbols in a finite sequence of numbers.

The following lemma extends the result proved in [93] in the case of Polish spaces,
to completely regular spaces with metrizable compact sets.

Lemma 2.3.2. Let µ be a Radon probability measure on a completely regular space
X in which all compact sets are metrizable. Then for every binary sequence I
there exist a Borel set XI in X and a Radon measure µI on X with the following
properties:

1) ∥µI∥ = 2−k for every sequence I of length k ;
2) µI = µ(I,0) + µ(I,1) and µ =

∑
l(I)=k µI ;

3) XI has full µI-measure;
4) if I 6 J , then XJ ⊆ XI ;
5) the set of countable binary sequences for which the intersection

⋂
k∈N XIk

contains more than one point is at most countable;
6) 6) if µ has no atoms, then for every natural number k the sets XI with

l(I) = k are open and disjoint, and µI = µ|XI
.

Proof. Any Radon probability measure µ on a completely regular spaceX with met-
rizable compact sets is concentrated on a Souslin set (a countable union of metriz-
able compact sets). Hence we can assume without loss of generality that X is
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a completely regular Souslin space. We use the fact that on any completely regular
Souslin space there exists a countable family of continuous functions separating the
points. This means that any completely regular Souslin space can be regarded as
a subset of R∞ with a stronger topology, that is, we can assume that X is equipped
with a metric ϱ such that ϱ-open sets are open in X. The boundary of any set in
the X-topology belongs to its boundary with respect to the ϱ-topology. Since R∞
is separable, X has a countable family of points xn such that it can be covered by
balls about these points of arbitrarily small radius with respect to the metric ϱ. By
induction we construct open sets BI , where I is a finite binary sequence. At the
first step we construct sets Bn, n ∈ N. For every xn we choose rn ∈ [1/2, 1] such
that the ball about xn of radius rn has ϱ- (hence also X-) boundary of µ-measure
zero. Let

B1 = B(z1, r1), Bn = B(zn, rn) \ (B1 ∪ · · · ∪Bn−1), n > 2.

Then µ(Bn\Bn) = 0 and µ
(⋃

Bn
)

= 1. Next we argue by induction: if the BI with
l(I) 6 n − 1 are already defined, then we continue our construction by replacing
X by BI , µ by µ|BI

, {xn} by an analogous sequence in BI , and 1/2 and 1 by 2−n

and 21−n, respectively, in the first step. Now we construct XI and µI inductively.
We use induction on the length of the binary sequence J . Let BJI := BI ∩XJ . We
assume that X∅ = X and µ∅ = µ. Suppose that all the sets XJ and all the
measures µJ with l(J) < n have been constructed. Let l(J) = n. We find a j1 such
that

µJ(BJ1 ∪ · · · ∪BJj1−1) 6 2−n−1 < µJ(BJ1 ∪ · · · ∪BJj1).

Let X1
0 := BJ1 ∪ · · · ∪BJj1−1 and X1

1 := BJj1+1 ∪BJj1+2 ∪ · · · . Here we assume that
BJ1 ∪ · · · ∪ BJ0 = ∅. Then X1

0 and X1
1 are open disjoint sets of measure at most

2−n−1. We find a j2 such that

µJ(X1
0 ∪BJj1,1 ∪ · · · ∪B

J
j1,j2−1) 6 2−n−1 < µJ(X1

0 ∪BJj1,1 ∪ · · · ∪B
J
j1,j2).

Define

X2
0 := X1

0 ∪BJj1,1 ∪ · · · ∪B
J
j1,j2−1, X2

1 := X1
1 ∪B

j
j1,j2+1 ∪B

j
j1,j2+2 ∪ · · · .

Then X2
0 and X2

1 are open disjoint sets of measure at most 2−n−1. Continuing this
construction, we obtain sets Xi

0 and Xi
1 with the same properties. Let X̂0 =

⋃
iX

i
0

and X̂1 =
⋃
iX

i
1. We note that the set XJ \ (X̂0 ∪ X̂1) =

⋂
k B

J
j1,...,jk

contains
at most one point. In addition, µ(X̂0) = 2−n−1 and µ(X̂1) = 2−n−1. If µ has no
atoms or if the intersection is empty, then we let X(J,0) := X̂0 and X(J,1) := X̂1 and
obtain open disjoint sets of measure 2−n−1. In this case we let µ(J,0) := µJ |X(J,0)

and µ(J,1) := µJ |X(J,1) . Otherwise we let

X(J,i) := X̂i ∪ {z}, µ(J,i) := µJ |X̂i
+ (2−n−1 − µJ(X̂i))δz, i = 0, 1.

In both cases µJ = µ(J,0)+µ(J,1). Since the new measures are obtained by restricting
the previously constructed measures to measurable sets, and possibly by splitting
up atoms of the old measures, the sets BI preserve their properties also for the con-
structed measures. The inductive step is complete. It is seen from the construction
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that the constructed sets and measures possess the desired properties. Only the
property 5) requires justification.

By construction, for any two finite binary sequences J and L of equal length there
exists at most one countable binary sequence I with the property that XIk

∩BJ ̸= ∅
and XIk

∩ BL ̸= ∅ for all positive integers k. We denote this sequence by I(J, L).
Let A = {I(J, L)}, where J and L are finite sequences of equal length. Then A is at
most countable. We show that for all other I ∈ {0, 1}N the set

⋂
k∈N XIk

contains
at most one point. To this end it suffices to show that

⋂
k∈N XIk

contains at most
one point, since XIk

⊂ XIk−1 . For this, in turn, it suffices to show that
⋂
k∈N XIk

⊂
BJn , where Jn is a sequence of length n ∈ N. Let us prove this by induction. The
sequence of sets Tk := {m ∈ N : XIk

∩Bm ̸= ∅} is decreasing. Its intersection cannot
contain more than one point, because otherwise I = I(j, l) ∈ A, where j and l are
elements in the intersection. Since

⋂
k Tk =

{
m ∈ N :

(⋂
kXIk

)
∩Bm ̸= ∅

}
= j, we

have obtained our assertion for n = 1. Passing to Bj and replacing the sets Bm in
the definition of Tk by Bj,m, we complete the inductive step. �

Lemma 2.3.3. Let X and Y be completely regular topological spaces with metriz-
able compact sets, let h be a continuous function on X × Y , and let µ and ν be
Radon probability measures on X and Y , respectively. Let γ be a Radon probability
measure on X × Y with πXγ = µ and πY γ = ν . If µ has no atoms, then for every
ε > 0 there exist sequences of measurable sets An ⊂ X , Bn ⊂ Y , and Xn ⊂ An
such that

1) sup(x1,y1),(x2,y2)∈An×Bn
|h(x1, y1)− h(x2, y2)| < ε,

2) (An ×Bn) ∩ (Ak ×Bk) = ∅ for n ̸= k ,
3) γ

(⋃
(An ×Bn)

)
= 1,

4) µ(Xn ∩Xk) = 0 for n ̸= k ,
5) µ(Xn) = γ(An ×Bn).

Proof. Since µ and ν are Radon measures, there exist compact sets K1
n ⊂ X and

K2
n ⊂ Y such that µ(X\K1

n) < n−1 and ν(Y \K2
n) < n−1. We may assume that

K1
n ⊂ K1

n+1 and K2
n ⊂ K2

n+1. The compact sets K1
n and K2

n are metrizable. We
denote their metrics by ϱ1

n and ϱ2
n. The compact set K1

n ×K2
n is metrizable by the

metric
ϱn(x1 × y1, x2 × y2) := max(ϱ1

n(x1, x2), ϱ2
n(y1, y2)).

The continuous function h is uniformly continuous on the compact set K1
n ×K2

n.
Let δn > 0 be such that |h(x1, y1)− h(x2, y2)| < ε if ϱn(x1 × y1, x2 × y2) < δn and
x1, x2 ∈ K1

n, y1, y2 ∈ K2
n. Let us cover K1

n by finitely many disjoint measurable sets
Ank ⊂ K1

n of diameter less than δn. Passing to the intersection, we may assume that
if Ank ∩A

n−1
l ̸= ∅, then Ank ⊂ An−1

l . Now let us cover K2
n by finitely many disjoint

measurable sets Bnk ⊂ K2
n of diameter less than δn. Then Ank × Bnl are disjoint

rectangles (for fixed n) covering K1
n ×K2

n, and the dispersion of the values of h on
each of them is less than ε. Let

Ãnk := (Ank ∩K1
n) \K1

n−1, B̃nk := (Bnk ∩K2
n) \K2

n−1,

Ânk := Ank ∩K1
n−1, B̂nk := Bnk ∩K2

n−1.
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Then the disjoint rectangles Ãnk ×Bnl and Ânk × B̃nl cover the union
⋃

(K1
n ×K2

n),
and the dispersion of the values of h on each of them is less than ε. We number the
countable collection of rectangles obtained in a consecutive order and denote them
by An × Bn. These rectangles possess the properties 1), 2), 3). By construction
either An ∩Ak = ∅ or An ⊂ Ak and k 6 n.

The Souslin set S :=
⋃
nK

1
n has full µ-measure. Since µ has no atoms, by the

isomorphism theorem the measure space (S, µ) is isomorphic to the unit interval
with Lebesgue measure (see [29], Chap. 9). Hence, in every measurable set A ⊂ S
for every t 6 µ(A) one can find a measurable subset B with µ(B) = t.

We construct an Xn ⊂ An with the properties 4) and 5). Let X1
1 be a set

in A1 such that µ(X1
1 ) = γ(A1 × B1). We find the smallest k1 such that µ(Ak1 ∩

A1) > 0. Let X1
2 , . . . , X

1
k1−1 be any sets in A2, . . . , Ak1−1, respectively, for which

µ(X1
2 ) = γ(A2 ×B2), . . . , µ(X1

k1−1) = γ(Ak1−1 ×Bk1−1). We find a set X1
k1

in Ak1
with µ(X1

k1
) = γ(Ak1 ×Bk1). Let R1

1 = A1 \ (X1
1 ∪X1

k1
), and let X2

1 = (X1
1 \X1

k1
)∪

D1
1, where D1

1 ⊂ R1
1 and µ(D1

1) = µ(X1
1 ∩X1

k1
). Further, let

X2
i = X1

i , i = 2, . . . , k1.

We find the smallest k2 > k1 such that µ(Ak2 ∩ Ai) > 0 for some i. Let
X2
k1+1, . . . , X

2
k2−1 be any sets in Ak1+1, . . . , Ak2−1, respectively, for which

µ(X2
k1+1) = γ(Ak1+1 × Bk1+1), . . . , µ(X2

k2−1) = γ(Ak2−1 × Bk2−1). There is a set
X2
k2

in Ak2 with µ(X2
k2

) = γ(Ak2 ×Bk2). For j = k1, k1 − 1, . . . , 1 we let

R2
j = Aj \

( ⋃
l : Al⊂Aj

X2
l ∪

⋃
l>j

X3
l ∪X2

k2

)
,

D2
j ⊂ R2

j , µ(D2
j ) = µ(X2

j ∩X2
k2), X3

j = (X2
j \X2

k2) ∪D2
j .

Define C2
j = X2

j ∩ X2
k2

, and let X3
i = X2

i for i = k1 + 1, . . . , k2. Continuing this
construction, we obtain sets Xi

j , Rij , Di
j , Cij . We have Rkj ⊂ Rlj if k > l, and the

sets Di
j are pairwise disjoint. The sets Cij are pairwise disjoint for any fixed j.

By construction
∑
i µ(Di

j) =
∑
i µ(Cij) for every j. For every n we can find the

smallest m such that n 6 km. Let

Xn =
(
Xm
n ∪

⋃
l>m

Dl
n

)
\

( ⋃
l>m

Cln

)
.

Then

µ(Xn) = µ(Xm
n ) +

∑
i

µ(Di
n)−

∑
i

µ(Cin) = µ(Xm
n ) = γ(An ×Bn)

since
⋃
l>m C

l
n ⊂ Xm

n ∪
⋃
l>mD

l
n. We now have µ(Xn ∩Xk) = 0 for n ̸= k. �

Proof of Theorem 2.3.1. As observed in the proof of Lemma 2.3.2, we may assume
without loss of generality that X and Y are completely regular Souslin spaces. For
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the proof of the first assertion, (as in [93]) we use the indicated lemma to find the
corresponding XI , YI , µI , and νI . We construct a sequence

γk =
∑

I∈{0,1}k

µI � νϕk(I),

where ϕk : {0, 1}k → {0, 1}k is a bijection with the following properties:
1) the sequence K(γk) is non-increasing;
2) ϕk+1 extends ϕk, or more precisely, ϕr(Ir) = (ϕs(Is))r for 0 6 r 6 s and

I ∈ {0, 1}s.
The sequence ϕk will be constructed by induction. At the first step we define

ϕ1 such that K(γ1) 6 K(µ⊗ ν). This can be done since

2µ� ν = (µ0 � ν0 + µ1 � ν1) + (µ0 � ν1 + µ1 � ν0).

Therefore, K(µ�ν) = 2−1(K(µ0 �ν0 +µ1 �ν1)+K(µ0 �ν1 +µ1 �ν0)). In the last
formula either the first or the second term does not exceed K(µ� ν). If this is the
first term, then we let ϕ1(0) = 0 and ϕ1(1) = 1. If it is the second term, then we
let ϕ1(0) = 1 and ϕ1(1) = 0. Suppose that ϕ1, . . . , ϕk−1 are already defined. Let
l(I) = k. Then ϕk(I) = (ϕk−1(Ik−1), x), where x is chosen so that the property 1)
holds. This can always be done. For the proof it suffices to replace µ and ν in the
first step by µIk−1 and νϕk−1(Ik−1) and then to use the decompositions

µIk−1 = µ(Ik−1,0) + µ(Ik−1,1), νϕk−1(Ik−1) = ν(ϕk−1(Ik−1),0) + ν(ϕk−1(Ik−1),1).

Thus, having defined ϕk, we obtain a sequence of Radon measures γk whose pro-
jections on X and Y are µ and ν. Therefore, these measures are uniformly tight.
By the strengthened Prokhorov theorem the family {γk} is sequentially weakly
compact (see Theorem 8.6.7 in [29]). Hence we can pick a weakly convergent sub-
sequence. Its limit will be denoted by γ. The projections of γ on X and Y are µ
and ν, and K(γ) 6 K(µ⊗ ν). We now prove that the support of γ is the graph of
some map. Let us consider the set

Z :=
⋂
k∈N

⋃
l(I)=k

XI

and the function ψ : Z → {0, 1}N which maps each x in Z into the unique countable
binary sequence I such that x =

⋂
k∈N XIk

. We note that Z has full µ-measure.
Denote by A the set of countable sequences I such that

⋂
k∈N Y Ik

contains more
than one point. Then by the property 5) in Lemma 2.3.3 we get that A is at most
countable. Let ϕ : {0, 1}N → {0, 1}N be the extension of all the functions ϕk. By
the definition of ϕk, ϕ is a bijection. Since µ has no atoms, the set X̃ = {x ∈
Z : ϕ(ψ(x)) /∈ A} has full µ-measure. The set Sk =

⋃
{XI × Y ϕk(I) : I ∈ {0, 1}k}

has full γk-measure due to the fact that µ(XI) = µ(XI). This set Sk has full
γn-measure for all n > k. We show that Sk has full γ-measure. Indeed,

γ(XI × Y ϕk(I)) = γ(XI × Y ϕk(I)) > lim sup
n→∞

γn(XI × Y ϕk(I))

= lim sup
n→∞

γn(XI × Y ) = µ(XI) = µ(XI)

= γ(XI × Y ) > γ(XI × Y ϕk(I)).
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Let S =
⋂
k Sk. Then S is a Borel set in X̃ × Y and γ(S) = 1. For every element

x ∈ X̃ the set {y : (x, y) ∈ S} = Y ϕ(ψ(x)) contains at most one point. The set
(X̃ × Y ) ∩ S is Borel measurable. Its projection Π on X̃ is a Souslin set and

µ(X \Π) = γ((X \Π)× Y ) = 0,

because γ(S) = 1. For every x ∈ Π there exists a unique element y ∈ Y with
(x, y) ∈ S, that is, the Souslin set S∩ (Π×Y ) is the graph of some map T : Π → Y .
It is known (see Lemma 6.7.1 in [29]) that T is a Borel map from Π to Y . Extending
it to have a constant value on the complement of Π, we obtain a Borel map from
X to Y with the required properties. The first assertion of the theorem is proved.

Let us proceed to the second assertion. Let γ be a measure on X × Y on which
the minimum is attained. Fix an ε > 0. We use Lemma 2.3.3 and take the sets
An, Bn, and Xn indicated there. By the property 3) the rectangles An ×Bn cover
γ-almost all of X × Y . On each of them the dispersion of the values of h is less
than ε by the property 1). By the property 4), µ(Xn) = γ(An × Bn) =: mn. We
introduce the measures γn := γ|An×Bn and γ̃n := µ|Xn � πY γn. The projections of
the measure γ̃n are µ|Xn and πY γn. Let us apply the first assertion of the theorem
to them. We obtain a map tn : Xn → Bn with the property that M(tn) 6 K(γ̃n).
Let T (x) = tn(x) for x ∈ Xn. Since

⋃
nXn has full µ-measure (this follows from the

properties 3) and 5)), the map T takes µ to the measure
∑
n πY γn = πY

∑
n γn =

πY γ = ν. Since |K(γ̃n)−K(γn)| 6 mnε, we finally get that

M(T ) 6
∑
n

M(tn) 6
∑
n

K(γ̃n) 6
∑
n

(K(γn) +mnε) 6 K(γ) + ε∥γ∥.

The proof of the theorem is complete.

The continuity of the cost function is essential in the theorem proved and cannot
even be replaced by lower semicontinuity. We give an example borrowed from [93].

Proposition 2.3.4. (i) Let X = Y = [0, 1] × [−1, 1], let µ be the linear Lebesgue
measure on the interval I0 = [0, 1]×{0}, let ν be half of the linear Lebesgue measure
on the union of the intervals I1 = [0, 1] × {1} and I2 = [0, 1] × {−1}, and let
h(x, y) = 0 if ∥x − y∥ = 1 and h(x, y) = 1 otherwise, that is, h is the indicator
function of the open set U = {(x, y) ∈ [0, 1]4 : ∥x−y∥ ≠ 1}, which is the complement
of the closed set Z = {(x, y) ∈ X × Y : ∥x − y∥ = 1}. Then the Kantorovich
problem and the Monge problem have solutions, but these solutions are different
and K(µ, ν) = 0, M(µ, ν) = 1. In addition, the Kantorovich problem has a unique
solution.

(ii) Let T (x1, x2) = (2x1, 1) for 0 6 x1 6 1/2 and T (x1, x2) = (2x1 − 1,−1)
for 1/2 < x1 6 1. Let h be redefined on the graph of T by setting h = 1/2 there.
Then the assertion in (i) remains valid, but in addition also the Monge problem has
a unique solution.

Proof. (i) A solution to the Kantorovich problem is the measure σ̂ equal to half of
the linear Lebesgue measure on the union of the diagonal intervals

D1 = {(x1, 0, x1, 1) : 0 6 x1 6 1}, D2 = {(x1, 0, x1,−1) : 0 6 x1 6 1}.



826 V. I. Bogachev and A.V. Kolesnikov

Its projections are µ and ν, and K(µ, ν, σ) = 0, since D1 and D2 belong to Z. There
are no other measures σ in Π(µ, ν) with the same value, since we must have the
equality σ(Z) = 1 and also the equalities σ(X × (I1 ∪ I2)) = 1 and σ(I0 × Y ) = 1.
In other words, the measure σ must be concentrated on the set of points of the
form (x1, 0, y1, y2), where |y2| = 1 and (x1 − y1)2 + y2

2 = 1, that is, x1 = y1. Thus,
σ is concentrated on D1 ∪D2, which, along with the fact that the projection of σ
on the first factor coincides with µ, implies that σ = σ̂.

Let us turn to the Monge problem. One of its solutions (but not the only
one) is the map T indicated in (ii), for which M(µ, ν, T ) = 1, since there is no
transportation S of µ to ν yielding a smaller value. To see this, we observe that if
µ ◦ S−1 = ν, then ∥x − S(x)∥ ̸= 1 for µ-almost all x. Indeed, if x = (x1, 0) ∈ I0
is such that S(x) ∈ I1 ∪ I2 (µ-almost each x is such a point), then the equality
∥x − S(x)∥ = 1 is possible only if S(x) = (x1, y2), where |y2| = 1. Thus, if the
set E = {x : ∥x − S(x)∥ = 1} has positive measure, then µ-almost every point of
it has the form (x1, 0) and is moved either by 1 up or by 1 down. Hence, we may
assume that E ⊂ I0 and that every point of E is moved under S by 1 up or down.
This contradicts the fact that ν is the image of µ: for example, if the set E1 of
points in E moved up has positive measure, then ν(E1×{1}) = µ(E1)/2, although
ν(E1) = µ(S−1(E1 × {1})) > µ(E1).

(ii) The previous reasoning applies also to the new function h, but now the
Monge problem also has a unique solution. Indeed, it is seen from these arguments
that if M(µ, ν, S) 6 M(µ, ν, T ), then S(x) = T (x) for µ-almost all x. �

Using the isomorphism of spaces with atomless Borel measures, one can easily
obtain from this example a case of a cost function h that is the indicator function
of a Borel set in [0, 1] × [0, 1] such that the Kantorovich and Monge problems on
[0, 1] with µ and ν equal to Lebesgue measure have different unique solutions.

We also give an example illustrating the difference between the cost functions
|x− y| and |x− y|2 in the question of uniqueness.

Example 2.3.5. Let X = Y = R, let h(x, y) = |x− y|, let µ be a probability mea-
sure on (0,+∞) with first moment, and let ν be the measure on (−∞, 0) symmetric
to it. Then every measure σ ∈ Π(µ, ν) gives a solution to the Kantorovich problem,
since ∫

|x− y|σ(dx) =
∫

(x− y)σ(dx) = 2
∫

[0,+∞)

xµ(dx),

because σ is concentrated on the lower right-hand quadrant. The same value is
given by any map from µ to ν, and there are many such maps in the general case
(one of them is the reflection).

On the connections between the Monge and Kantorovich problems see also [5],
where there is a remark about reducing the Monge problem to the case of measure-
preserving maps (which makes it a variational problem on the group of automor-
phisms). We remark that already in [18] Vershik posed the problem of minimizing
the integral with respect to µ of the length of the curve {Tt(x)}06t61 in a suitable
class of maps Tt for which T0(x) = x and T1 takes µ to ν.
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Chapter 3

Applications

We now briefly discuss applications of the transport problem to classical inequal-
ities in analysis, probability theory and differential geometry, and also one of
the most important ideas on which many applications are based: the connection
between geodesics in spaces of measures and the Monge–Kantorovich problem. The
following notation will be used below. If µ and ν are probability measures on (X,A )
and ν has a density ϱ with respect to µ, that is, ν = ϱ · µ, then the entropy of ν
(or ϱ) with respect to µ is defined by the formula

Entµ ν = Entµ ϱ =
∫
X

ϱ log ϱ dµ

if ϱ log ϱ ∈ L1(µ); otherwise we set Entµ ν := +∞. By Jensen’s inequality the
entropy is non-negative.

3.1. Isoperimetric inequalities and the Brunn–Minkowski inequality

Here we give a proof proposed by Gromov for the classical isoperimetric inequal-
ity (see [94], Appendix). He found this proof by using triangular maps briefly dis-
cussed in § 3.9. The same reasoning remains valid in the case of optimal maps. It is
known, though, that the isoperimetric inequality follows from the Brunn–Minkowski
inequality, which is discussed below.

Theorem 3.1.1. Let A ⊂ Rd be a Borel set. Then the following isoperimetric
inequality holds:

λ1−1/d(A) 6 κdH
d−1(∂A), κd =

Γ(1 + d/2)1/d

d
√
π

.

Proof. Consider a ball Br = {x : |x| 6 r} satisfying the condition λ(A) = λ(Br).
Let T = ∇W be the optimal transportation taking λ|A to λ|Br

. We apply the
change of variables formula detD2

aW = 1 on A. By the convexity of W we have
∆aWdx 6 ∆W , where ∆W is the Laplacian in the sense of distributions, that is,
a measure. Let λi be the eigenvalues of D2

aW . By the inequality between the arith-
metic mean and the geometric mean we have ∆aW =

∑d
i=1 λi 6 d(λ1 · · ·λd)1/d = d.

Thus,

dλ(A) 6
∫
A

∆aW dx 6 ∆W (A).

Assuming that A has a sufficiently regular boundary and integrating by parts, we
get that the latter quantity equals∫

∂A

⟨∇W,nA⟩ dH d−1 6 rH d−1(∂A).

Here nA is the unit normal to ∂A. The desired inequality follows from the equality
λ(A) = λ(Br) = πd/2rd/Γ(1 + d/2). �



828 V. I. Bogachev and A.V. Kolesnikov

It is seen from the proof that the inequality becomes an equality when A is
a shift of the ball Br. Thus, the ball has the smallest surface area among sets of
fixed Lebesgue measure.

Remark 3.1.2. Let Hd be the d-dimensional Lobachevskii space. We consider the
Poincaré model Hd = Rd−1×R+ with metric g = y−2

d dy2
1 · · · dy2

d. Using the optimal
transportation (in the standard ‘Euclidean’ sense), one can prove the isoperimetric
inequality

ν+(∂A) > max
[
ν1−1/d(A)

κd
, (d− 1)ν(A)

]
,

where ν = y−dd I{yd>0} dy1 · · · dyd is the Riemannian volume and ν+ = y−d+1
d ·H d−1

is the corresponding surface measure.

We turn to the Brunn–Minkowski inequality. Relatively recently the following
elegant form of this classical inequality was discovered.

Theorem 3.1.3. Let f , g , and h be non-negative functions in L1(Rd) such that
h(λx+ (1− λ)y) > fλ(x)g1−λ(y) for all x, y ∈ Rd and some λ ∈ [0, 1]. Then∫

Rd

h dx >

(∫
Rd

f dx

)λ(∫
Rd

g dx

)1−λ

.

Proof. We may assume that ∥f∥L1(Rd) = ∥g∥L1(Rd) = 1. Let ∇ϕf and ∇ϕg be the
optimal transportations of Lebesgue measure on [0, 1]d to the measures f dx and
g dx, respectively. The change of variables formula takes the forms

f(∇ϕf ) detD2
aϕf = 1, g(∇ϕg) detD2

aϕg = 1,

Let ϕ = (1−λ)ϕf+λϕg. By the change of variables formula and the known estimate
for the determinant det((1− λ)M1 + λM2) > (detM1)1−λ(detM2)λ, which is true
for any non-negative symmetric matrices M1 and M2, we have∫

Rd

h dx =
∫

[0,1]d
h(∇ϕ) detD2

aϕdx

>
∫

[0,1]d
h((1− λ)ϕf + λϕg)(detD2

aϕf )1−λ(detD2
aϕg)

λ dx

>
∫

[0,1]d
f (1−λ)(∇ϕf )gλ(∇ϕg)(detD2

aϕf )1−λ(detD2
aϕg)

λ dx = 1. �

Applying this inequality to the indicator functions of sets A and B, we obtain
the following form of the Brunn–Minkowski inequality:

H d((1− λ)A+ λB) >
[
H d(A)

]λ[H d(B)]1−λ.

For an appropriate choice of λ this implies the classical Brunn–Minkowski inequality

[H d(A+B)]1/d > [H d(A)]1/d + [H d(B)]1/d.
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3.2. Sobolev inequalities and their generalizations

3.2.1. The classical Sobolev inequalities. It is well known that the isoperi-
metric inequality implies the Sobolev inequality. This was observed long ago inde-
pendently in papers of V. G. Maz’ya and also of H. Federer and W. Flemming.
For a linear combination f =

∑n
i=1 λiIAi of indicator functions of Borel sets of

bounded perimeter with disjoint boundaries the isoperimetric inequality implies
that ∥f∥Ld/(d−1) 6

∑n
i=1 λi∥IAi

∥Ld/(d−1) 6 κd
∑n
i=1 λiH

d−1(∂Ai) = κd∥∇f∥L1 .
This inequality can be extended to an arbitrary function f ∈ W 1,1(Rd) using
approximation by simple functions in the norm of the space BV of functions of
bounded variation. It implies the Sobolev embeddings W p,1 ⊂ Ldp/(d−p). In [95]
a direct transport proof was found for the classical Sobolev inequalities. The proof
automatically yields formulae for the minimizing functions (the functions for which
these inequalities become exact equalities). In addition, interesting duality relations
have been obtained.

Theorem 3.2.1. Let f ∈W p,1(Rd) and let p∗ = dp/(d− p). Then

∥∇f∥Lp > ∥f∥Lp∗∥∇hp∥Lp , where hp(x) = (σp + |x|p/(p−1))1−d/p,

and σp satisfies the normalization condition ∥hp∥Lp∗ = 1. Equality holds only for
functions of the form f(x) = Chp(x− x0).

The proof can be found in [95] and [16]. In [96] the transport method was used
to prove the following inequality for traces on half-spaces:

∥f∥Lp+ (∂H) 6 Tp(d)∥∇f∥Lp(H).

In [97] optimal inequalities were obtained for traces of Sobolev functions, in partic-
ular, inequalities of the form

∥f∥Lp∗ (Ω) 6 Sp(d)∥∇f∥Lp(Ω) + C(p,Ω)∥f∥Lp+ (∂Ω),

where f is a Sobolev function on a domain Ω ⊂ Rd with Lipschitz boundary, and
p+ = (d − 1)p/(d − p). The maximal value of the constant C(p,Ω) is attained for
balls. Generalizations of a number of classical inequalities (Gagliardo–Nirenberg,
Faber–Krahn, Moser–Trudinger, the Euclidean logarithmic Sobolev inequality) to
the case of traces were obtained in [97]. In [98] Gromov’s method was used to find
some strengthenings of the classical versions of the isoperimetric inequality and
the Brunn–Minkowski inequality. It should be noted that transport considerations
do not always work well in the manifold case. Nevertheless, in [99]–[101] there are
interesting generalizations of the Brunn–Minkowski inequality as well as the isoperi-
metric and Sobolev inequalities for manifolds, obtained with the aid of the transport
method.

There is an interesting connection between the Kantorovich distance and the
dual Sobolev norm H−1(µ) with respect to a measure µ, defined by

∥u∥H−1(µ) = sup
{∫

uϕdµ; ϕ ∈ C∞0 (Rn);
∫

Rn

|∇ϕ|2 dµ 6 1
}
.
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Let u be a bounded Borel function with zero integral with respect to µ, and let
µε = µ+ εu dx. Then

∥u∥H−1(µ) = lim inf
ε→0

ε−1W2(µ, µε).

For interesting applications of this fact to convex geometry, see [81].

3.2.2. Logarithmic Sobolev inequalities. There are analogues of Sobolev in-
equalities for probability measures. The best known of them is the logarithmic
Sobolev inequality proved by Gross in [102] for the standard Gaussian measure on
Rd with density (2π)−d/2e−|x|

2/2. Namely, for any smooth function f the following
inequality is satisfied:

Entγ f2 :=
∫

Rd

f2 log f2 dγ −
∫

Rd

f2 dγ log
∫

Rd

f2 dγ 6 2
∫

Rd

|∇f |2 dγ. (3.2.1)

The logarithmic Sobolev inequality is a natural analogue of the classical Sobolev
inequalities. Along with the closely related hypercontractivity property of diffusion
semigroups, it has many applications in mathematical physics, geometry, and prob-
ability theory. There is an extensive literature on this subject (see [103], [16], [17],
[104]). A complete characterization of measures satisfying the logarithmic Sobolev
inequality on the real line is given in [105]. In Perelman’s paper [106] one of the key
steps in the paper was proved with the aid of the logarithmic Sobolev inequality:
monotonicity of the so-called W -functional. At first sight the inequality (3.2.1)
seems to be considerably weaker than the classical Sobolev inequalities, since the
left-hand side contains a much more slowly growing function than in the analo-
gous Sobolev inequality. However, its important advantage is that (3.2.1) does not
depend on the dimension, and this enables one to apply it in the infinite-dimensional
case.

A transport proof of (3.2.1) was first obtained in [79]. Before turning to it we
note that this inequality does not change upon multiplication of f by a constant.
Hence, it suffices to prove (3.2.1) for a function f with unit norm in L2(γ). Let us
consider the optimal transportation T = ∇ϕ of the measure f2 ·γ to the measure γ.
We shall assume that the function f is sufficiently smooth, bounded, and bounded
away from zero, which implies that T is smooth. By the change of variables formula,
f2(x)e−|x|

2/2 = e−|∇ϕ(x)|2/2 detD2ϕ(x), that is, log f2(x)−|x|2/2 = −|∇ϕ(x)|2/2+
log detD2ϕ(x). We rewrite the equality obtained in the form

log f2(x) = −|x−∇ϕ(x)|2

2
− ⟨x,∇ϕ(x)− x⟩+ log detD2ϕ(x)

and integrate it with respect to the measure f2 · γ, obtaining∫
Rd

f2 log f2 dγ = −
∫

Rd

|x−∇ϕ(x)|2

2
f2(x) γ(dx)

−
∫

Rd

⟨x,∇ϕ(x)− x⟩f2(x) γ(dx) +
∫

Rd

log detD2ϕf2 dγ.



The Monge–Kantorovich problem 831

Here we integrate by parts:

−
∫

Rd

⟨x,∇ϕ(x)− x⟩f2(x) γ(dx)

= 2
∫

Rd

⟨∇f(x),∇ϕ(x)− x⟩f(x) γ(dx)−
∫

Rd

(∆ϕ− d)f2 dγ.

For any symmetric d × d matrix A > 0 we have TrA − d − log detA > 0 (this
inequality is proved by reducing the matrix to diagonal form and using the inequal-
ity x log x > x− 1). Thus,∫

Rd

f2 log f2 dγ 6
∫

Rd

[
−|x−∇ϕ(x)|2

2
f2(x) + 2⟨∇f(x),∇ϕ(x)− x⟩f(x)

]
γ(dx).

The inequality (3.2.1) now follows from the obvious estimate

−|x−∇ϕ(x)|2

2
f2(x) + 2⟨∇f(x),∇ϕ(x)− x⟩f(x) 6 2|∇f(x)|2.

As in the case of the Sobolev inequality, there is a stronger isoperimetric inequality
for Gaussian measures:

γ(Ah) > Φ(Φ−1(γ(A)) + h), Ah = {x ∈ Rd | ∃ a ∈ A : |a− x| < h},

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt.

In differential form it is

γ+(∂A) := lim
h→0

γ(Ah)− γ(A)
h

>
1

[Φ−1]′(γ(A))
,

where γ+(∂A) is the surface measure of A for γ. It is readily seen that this inequality
is qualitatively equivalent to the inequality

γ+(∂A) > Cγ̃(A)
√
− log γ̃(A), γ̃(A) = min(γ(A), 1− γ(A)),

where C is a universal constant. The isoperimetric inequality was obtained by
Sudakov and Tsirelson [107] and later by Borell [108]. There are several proofs of
this inequality. The proof in [107] was obtained as a corollary of the Lévy–Gromov
isoperimetric inequality on the sphere. Moreover, the Gaussian measure is one
of the rare examples in which the exact solution of the isoperimetric problem is
known. The sets of minimal surface measure are the half-spaces {x : ⟨h, x⟩ 6 a}.
No transport proof of the Gaussian isoperimetric inequality is known.

Gaussian measures belong to the important class of probability measures with
interesting analytic and geometric properties that consists of convex (also called
logarithmically concave) measures. Their role in analysis is analogous to the role
played in geometry by manifolds with positive Ricci curvature. For more details on
convex measures, see the book [67]; here we only briefly describe the basic properties
that are important for what follows. A convex (or logarithmically concave) measure
on Rd is a probability measure µ such that

µ(λA+ (1− λ)B) > µλ(A)µ(B)1−λ
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for all non-empty Borel sets A and B and numbers λ ∈ [0, 1]. According to the
well-known result of Borell, any convex measure is concentrated on some affine
subspace, on which it possesses a density ϱ (with respect to the corresponding
Lebesgue measure) of the form ϱ = e−V , where V is a convex function (and any
such measure is convex). The class of convex measures is invariant with respect to
affine maps. As we shall see below, a substantial number of known results connected
with optimal maps and functional inequalities involve convex measures.

There are diverse conditions sufficient for a probability measure µ to satisfy the
logarithmic Sobolev inequality. A necessary condition is the Poincaré inequality.

Definition 3.2.2. A probability measure µ is said to satisfy the Poincaré inequal-
ity if there exists a Cp > 0 such that for all smooth functions f

Varµ f :=
∫

Rd

(
f −

∫
Rd

f dµ

)2

dµ 6
1
Cp

∫
Rd

|∇f |2 dµ.

One can verify that the logarithmic Sobolev inequality implies the Poincaré
inequality by applying (3.2.1) to 1 + εf and passing to the limit as ε→ 0.

Another (much less obvious) necessary condition is the existence of a number
ε > 0 such that ∫

Rd

exp(εx2)µ(dx) < +∞. (3.2.2)

The following generalization of the Gaussian Sobolev inequality was obtained in
[109], and a transport proof was proposed in [110].

Theorem 3.2.3. Let µ = e−V dx be a probability measure on Rd with a twice
continuously differentiable function V . Suppose that there is a λ > 0 such that
D2V > −λ Id, the inequality∫

R2d

exp
(
λ+ ε

2
|y − x|2

)
µ(dx)µ(dy) <∞

holds for some ε > 0, and µ satisfies the Poincaré inequality. Then there exists a
C > 0 such that

Entµ f2 6 C

∫
Rd

|∇f |2 dµ.

Proof. We first prove that there are C1, C2 > 0 such that

Entµ f2 6 C1

∫
Rd

|∇f |2 dµ+ C2

∫
Rd

f2 dµ. (3.2.3)

Without loss of generality we may assume that f has unit norm in L2(µ). Let ∇ϕ
be the optimal transportation of the measure f2 · µ to the measure µ. As in the
case of Gaussian measures, we get that log f2 = V − V (∇ϕ) + log detD2

aϕ. The
inequality V (x)− V (y)− ⟨∇V (x), x− y⟩ 6 λ|x− y|2/2 implies the estimate

log |f(x)2| 6 ⟨∇V (x), x−∇ϕ(x)⟩+ log detD2
aϕ(x) +

λ|x−∇ϕ(x)|2

2
.
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Let us integrate the estimate obtained with respect to the measure f2·µ = f2·e−V dx
and perform integration by parts. This gives∫

Rd

f2 log f2 dµ 6
∫

Rd

(d− TrD2
aϕ+ log detD2

aϕ)f2 dµ

+
λ

2

∫
Rd

|x−∇ϕ(x)|2f(x)2 µ(dx) + 2
∫

Rd

⟨∇f(x), x−∇ϕ(x)⟩f(x) γ(dx).

Employing the inequality for determinants and traces used above along with the
Cauchy inequality, we find that∫

Rd

f2 log f2 dµ 6
λ+ ε/2

2

∫
Rd

|x−∇ϕ(x)|2f(x)2 µ(dx)+2Cε
∫

Rd

|∇f |2 dγ. (3.2.4)

Further, the definition of optimal maps implies the inequality

λ+ ε/2
2

∫
Rd

|x−∇ϕ(x)|2 f(x)2 µ(dx) 6
λ+ ε/2

2

∫
Rd×Rd

|x− y|2f(x)2 π(dx, dy),

where π is any probability measure on Rd × Rd with projections on both factors
equal to µ (so that the projection of f2 · π on the first factor is f2 · µ). Let us take
the measure π = µ⊗ µ. The elementary inequality ab 6 ea − b+ b log b for a, b > 0
implies that

λ+ ε/2
2

|x− y|2f(x)2 6 exp
(
λ+ ε

2
|x− y|2

)
+ δf(x)2 log |f(x)2|+ C ′f(x)2,

where δ = δ(λ, ε) < 1. The hypotheses of the theorem give the estimate

λ+ ε/2
2

∫
Rd

|x−∇ϕ(x)|2f(x)2 µ(dx) 6 δ Entµ f2 + C0

for some C0 = C0(ε, λ). Then (3.2.4) gives us (3.2.3). According to the well-known
inequality of Rothaus [111],

Entµ f2 6 Entµ

(
f −

∫
Rd

f dµ

)2

+ 2
∫

Rd

(
f −

∫
Rd

f dµ

)2

dµ.

Applying (3.2.3) to f −
∫

Rd f dµ and using the Rothaus inequality and the Poincaré
inequality, we obtain the assertion of the theorem. �

Remark 3.2.4. (i) The condition that µ satisfies the Poincaré inequality can be
omitted in the formulation of the theorem, since it follows from the remaining con-
ditions. The proof of this fact is not very difficult but is rather lengthy (see [110]).

(ii) If D2V > λ > 0, then the logarithmic Sobolev inequality is automatically
satisfied with the constant λ.

Corollary 3.2.5. If the measure µ is convex, then a necessary and sufficient con-
dition for (3.2.1) to hold is the existence of an ε > 0 such that (3.2.2) holds.

Below we consider some other examples in which analogues of the logarithmic
Sobolev inequality are valid (see also [112]).
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3.2.3. Uniformly convex potentials. Suppose that the potential V of the
measure µ = e−V is uniformly convex in the sense that

V (x+ y) + V (x)− ⟨∇V (x), y⟩ > c(∥y∥), (3.2.5)

where ∥ · ∥ is some norm (not necessarily Euclidean) and c is some increasing
function. We remark that this condition holds, for example, for functions of the
form V (x) = |x|α with α > 2. Using the reasoning from the proof of the logarith-
mic Sobolev inequality and Young’s inequality, one can prove that the measure µ
satisfies the inequality

Entµ f2 6
∫

Rd

c∗
(∥∥∥∥2

∇f
f

∥∥∥∥
∗

)
f2 dµ, (3.2.6)

where ∥ · ∥∗ is the dual norm and c∗ is the corresponding convex conjugate function:

c∗(t) = sup
s>0

{ts− c(s)}.

Inequalities of the form (3.2.6) are called modified Sobolev logarithmic inequalities.
They are generalizations of the classical logarithmic Sobolev inequality to the case
of non-quadratic norms. It is important to single out the following features of
this result: the inequality does not depend on the dimension, and it is preserved
for product measures (tensorization). The latter means the following. Let µi be
a collection of probability measures on Rd such that

Entµi
g 6

∫
c∗i

(∥∥∥∥∇gg
∥∥∥∥
∗

)
g dµi.

Let µ =
⊗n

i=1 µi. It is known (see, for example, [103], Proposition 5.6) that the
entropy has the following remarkable property:

Entµ g =
n∑
i=1

∫
Entµi

gi(x1, . . . , xi−1, · , xi+1, . . . )µ(dx),

where gi is the function obtained from g by fixing all coordinates except xi. There-
fore,

Entµ g 6
∫ n∑

i=1

c∗i

(∥∥∥∥∇xigi
gi

∥∥∥∥
∗

)
g dµ.

Properties of this kind are important in infinite-dimensional analysis.
In [113] the modified logarithmic Sobolev inequality is extended to general cost

functions by means of transport methods. In [114] the corresponding isoperimetric
inequalities are proved for probability measures and convex bodies with uniform
moduli of convexity.

Some properties of optimal transportations of measures satisfying (3.2.1) were
described in § 2.2.5.



The Monge–Kantorovich problem 835

3.2.4. Boundedness from below for the second derivative and integra-
bility. The condition of uniform convexity of the potential is rather restrictive
and can be weakened at the expense of making the constant dependent on the
dimension.

Definition 3.2.6. Let µ be a probability measure on a metric space (X, ϱ). The
isoperimetric function of the measure µ is defined by

Iµ(t) = inf{µ+(∂A); µ(A) = t},

where µ+(∂A) = lim infh→0+ µ({x ∈ X \A; ϱ(x,A) 6 h})/h.

Remark 3.2.7. With the help of transportation of measures it is proved in [110] that
the Bobkov isoperimetric inequality [115] holds for convex measures µ:

µ(A) log
1

µ(A)
+ µ(Ac) log

1
µ(Ac)

+ logµ(Br) 6 2rµ+(∂A),

where A ⊂ Rd, Br = {x : |x| 6 r}, Ac is the complement of A, and µ(A) = µ(Br).
We can deduce from this that if the measure satisfies the condition∫

Rd

exp
(
ε|x|α

)
µ(dx) < +∞, where α > 1, (3.2.7)

then for sets of small measure we have the isoperimetric inequality

Cµ(A)| logµ(A)|1−1/α 6 µ+(∂A).

To this end one has to consider transportations of the measures µ|A/µ(A) and
µ|Ac/µ(Ac) to the measure µ|Br

/µ(Br).

By the Gaussian isoperimetric inequality, the standard Gaussian measure γ and
the standard norm satisfy the estimate

Iγ(t) > Ct| log t|1/2, t ∈
(

0,
1
2

]
,

where C does not depend on the dimension.
It follows from Remark 3.2.7 that the isoperimetric function of a convex measure

µ with the condition (3.2.7) satisfies the inequality

Iµ(t) > Ct| log t|1−1/α for t 6
1
2
.

More precisely, Iµ(t) > C min(t, 1 − t)| log min(t, 1 − t)|1−1/α for t ∈ (0, 1), where
the constant C generally depends on the dimension.

A rather general form of relation between the isoperimetric function and Sobolev-
type inequalities was obtained in [116] and [110], where the authors consider inequal-
ities of the form ∫

Rd

f2F

(
f2

∥f∥2L2(µ)

)
dµ 6 C

∫
Rd

|∇f |2 dµ,
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which are called F -inequalities and which, along with the modified logarithmic
Sobolev inequalities, generalize the classical logarithmic Sobolev inequality. They
imply properties like hypercontractivity. There are also other functional inequal-
ities naturally generalizing the logarithmic Sobolev inequality, for example, the
Beckner–Lata la–Oleszkiewicz inequality and the super-Poincaré inequality, both
introduced by F.-Y. Wang. The abundance of inequalities is explained by the fact
that the different kinds of them are differently adapted to various desired properties
fully possessed by the logarithmic Sobolev inequality.

3.3. Transport inequalities

The transport inequality for the standard Gaussian measure γ was proved by
Talagrand [117]. It is as follows:

1
2
W 2

2 (γ, g · γ) 6 Entγ g, (3.3.1)

where g · γ is an arbitrary probability measure absolutely continuous with respect
to γ for which the right-hand side is finite. This inequality is equivalent to the
estimate

1
2

∫
Rd

|x−∇ϕ(x)|2 γ(dx) 6
∫

Rd

g log g dγ,

where ∇ϕ is the optimal transportation of the measure γ to g · γ. A corollary of
(3.3.1) and the triangle inequality for W2 is the symmetric inequality

W2(f · γ, g · γ) 6
√

2 Entγ f +
√

2 Entγ g , (3.3.2)

where f and g are probability densities with respect to γ.
For the proof of (3.3.1) we consider the change of variables formula

−x
2

2
= log g(∇ϕ(x))− |∇ϕ(x)|2

2
+ log detD2

aϕ(x).

Writing it as |x − ∇ϕ(x)|2/2 = ⟨x, x − ∇ϕ(x)⟩ + log g(∇ϕ(x)) + log detD2
aϕ(x),

integrating with respect to the measure γ, and using the now familiar reasoning,
we get that

1
2

∫
Rd

|x−∇ϕ(x)|2 γ(dx) 6
∫

Rd

log g(∇ϕ) dγ =
∫

Rd

g log g dγ.

The inequality (3.3.1) is proved.
One can prove (see [118]) that if g ∈ Lp(γ) with p > 1, then there exists a number

ε = ε(p) > 0 such that∫
Rd

exp
(
ε|x−∇ϕ(x)|2

)
γ(dx) 6 C(p)

∫
Rd

gp dγ.

Below we need a more general version of the Talagrand inequality.
The Fredholm–Carleman determinant of an operator A on Rn is defined by the

formula det2A := etrace(I−A) detA.
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Theorem 3.3.1. For any two probability measures of the form µ = e−V dx and
ν = e−W dx on Rd and for the corresponding optimal maps ∇Φµ and ∇Φν taking
µ and ν to a measure m = e−P dx satisfying the condition D2P > K · Id with some
number K > 0, the inequality

Entν

(
µ

ν

)
>
K

2

∫
|∇Φµ −∇Φν |2 dµ−

∫
log det2[D2Φν · (D2Φµ)−1] dµ

holds if the integrals exist.

The last term on the right-hand side is non-negative. This follows from the
equality

− log det2[D2Φν · (D2Φµ)−1] = − log det2[(D2Φµ)−1/2 ·D2Φν · (D2Φµ)−1/2]

and the fact that the matrix (D2Φµ)−1/2 ·D2Φν · (D2Φµ)−1/2 is non-negative.
We give an idea of the proof. By the change of variables formula,

e−V = detD2Φµ · e−P (∇Φµ) µ-a.e.

Therefore, −V ((∇Φµ)−1) = −P + log detD2Φµ ◦ ((∇Φµ)−1). Similarly, using the
change of variables formula for ν, we get that

−W ((∇Φµ)−1) = −P (∇Φν ◦ (∇Φµ)−1) + log detD2Φν ◦ ((∇Φν)−1).

Letting S = (∇Φµ)−1 and subtracting this equality from the previous one, we find
that

(−V +W ) ◦ S = P (∇Φν ◦ S)− P − log det[D2Φν · (D2Φµ)−1] ◦ S.

Note that

P
(
∇Φν ◦ S(x)

)
− P (x) >

K

2
|∇Φν(S(x))− x|2 + ⟨∇P,∇Φν(S(x))− x⟩.

Therefore,

(−V +W ) ◦ S(x) > K|∇Φν(S(x))− x|2

+ ⟨∇P,∇Φν(S(x))− x⟩ − log det[D2Φν · (D2Φµ)−1] ◦ S(x).

Let us integrate the relation obtained with respect to the measure m. By the
integration by parts formula and the equality m = µ ◦ (∇Φµ)−1 we get that∫

⟨∇P (x),∇Φν(S(x))− x⟩m(dx)

>
∫

Tr[D2Φν ◦ S · (D2Φµ)−1 ◦ S] dm− d =
∫

Tr[D2Φν · (D2Φµ)−1] dµ− d.

It is easily seen that the proof of the transport inequality for Gaussian measures
is similar to the proof of the logarithmic Sobolev inequality. In a sense the trans-
port inequality is ‘dual’ to the logarithmic Sobolev inequality. We shall say that
a probability measure µ satisfies the transport inequality if

1
2
W 2

2 (µ, g · µ) 6 C Entµ g. (3.3.3)
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The logarithmic Sobolev inequality (LSI) and the transport inequality (TI) are
connected in a non-trivial way. According to [119], the LSI implies the TI. We give
a short proof from [120].

Theorem 3.3.2. If a probability measure µ satisfies the LSI, that is,

Entµ f2 6 2C
∫

Rd

|∇f |2 dµ, f ∈ C∞0 (Rd),

then W 2
2 (µ, g · µ) 6 2C Entµ g for any probability measure g · µ.

Proof. For simplicity we suppose that C = 1. The proof is based on the properties
of the Hopf–Lax semigroup

v(t, x) = Qtf(x) = inf
y∈Rd

[
f(y) +

1
2t
|x− y|2

]
.

It is known that v satisfies the Hamilton–Jacobi equation

∂v

∂t
+

1
2
|∇v|2 = 0.

In addition, v(0, x) = f(x). Let g(x, λ) = Q1(λf)(x). The Hamilton–Jacobi equa-

tion implies that g = λ
∂g

∂λ
+
|∇xg|2

2
. Let

M(λ) =
∫

Rd

eλg dµ.

Using the LSI, we get that λM ′(λ) 6 M(λ) logM(λ). This implies that M(1) 6
eM

′(0). We note that M ′(0) =
∫

Rd f dµ. Thus,∫
Rd

exp(Q1f) dµ 6 exp
(∫

Rd

f dµ

)
. (3.3.4)

Now let T = ∇ϕ be the optimal transportation of the measure µ to the measure
g · µ. Then

W 2
2 (µ, g · µ) =

∫
Rd

|x−∇ϕ(x)|2 µ(dx).

As we have noted above, ϕ(x) + ϕ∗(∇ϕ(x)) = ⟨x,∇ϕ(x)⟩ for µ-almost all x. From
this we have |x − ∇ϕ(x)|2/2 = |x|2/2 − ϕ(x) +

(
|x|2/2 − ϕ∗(x)

)
◦ ∇ϕ(x). By the

change of variables formula,

1
2
W 2

2 (µ, g · µ) =
∫

Rd

(
1
2
|x|2 − ϕ(x)

)
µ(dx) +

∫
Rd

(
1
2
|x|2 − ϕ∗(x)

)
g(x)µ(dx).

Without loss of generality ϕ can be chosen in such a way that∫
Rd

ϕdµ =
1
2

∫
Rd

|x|2 µ(dx).



The Monge–Kantorovich problem 839

We observe that Q1(|x|2/2 − ϕ∗)(x) = ϕ(x) − |x|2/2. Using the known inequality
ab 6 ea − b+ b log b and (3.3.4), we find that

1
2
W 2

2 (µ, g · µ) 6 exp
(∫

Rd

(
ϕ(x)− |x|2

2

)
µ(dx)

)
+

∫
Rd

g log g dµ−
∫

Rd

g dµ

=
∫

Rd

g log g dµ.

The theorem is proved.

The converse assertion (the transport inequality implies the Sobolev inequality)
is false in general; this was an open problem for some time. For some classes of
measures (for example, convex) these inequalities are equivalent. The first coun-
terexample was constructed in [121]. An example of a measure e−V dx on the real
line satisfying the transport inequality but not the logarithmic Sobolev inequal-
ity is given by the potential V (x) = |x|3 + 3x2 sin2 x + |x|β , 2 < β < 5/2. The
proof is based on certain criteria for both inequalities for measures on the real line.
Gozlan [122], [123] gave a nice description of a broad class of measures satisfying
the TI. Necessary and sufficient conditions for the logarithmic Sobolev inequality
are known only in the one-dimensional case (see [105]).

An important property of the Gaussian transport inequality (3.3.1) (and also of
the Gaussian logarithmic Sobolev inequality) is that it is independent of the dimen-
sion. A natural generalization to general convex cost functions c is the inequality

Kc(µ, f · µ) 6 C Entµ f. (3.3.5)

Inequalities of this type follow, for example, from the modified Sobolev inequalities
(see [103], [120], [124]).

One can show that for any uniformly convex potential V , that is, for

V (x+ y) + V (x)− ⟨∇V (x), y⟩ > c(∥y∥),

the measure µ = e−V dx and the function c(x, y) = c(∥x− y∥) satisfy (3.3.5).
In [125] a necessary and sufficient condition is found for the following analogue

of the Talagrand inequality for the cost function |x− y|:

W1(µ, g · µ) 6
√
C Entµ g .

It turns out that here it suffices to have an ε > 0 such that∫
Rd

∫
Rd

eε|x−y|
2
µ(dx)µ(dy) <∞.

The transport inequality is close in form to another classical inequality called the
Pinsker–Kullbach–Csiszar inequality. Let µ and ν = f · µ be probability measures
with f > 0. Then

1
2
∥µ− ν∥2 :=

1
2

(∫
|f − 1| dµ

)2

6 Entµ f,
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where ∥µ − ν∥ is the variation distance between µ and ν. It turns out that this
inequality can be regarded as the transport inequality for a suitable cost function
(discrete). For more details, see [126].

Below we discuss the result of Gozlan on the equivalence of the transport inequal-
ity and the dimension-free concentration inequality together with connections with
the theory of large deviations. A Sobolev-type inequality equivalent to the con-
centration inequality was recently obtained in [127]. With the aid of this result it
was proved that, like the logarithmic Sobolev inequality, the transport inequality is
preserved by bounded perturbations of the potential. It was also shown there that
for a broad class of cost functions c the inequality

Kc(µ, ν) 6 C Entµ ν = C

∫
log

µ

ν
dµ

is equivalent to the inequality

Entµ(ef ) 6
f −Qλf

1− λC
ef dµ, λ ∈

(
0,

1
C

)
,

where Qλf = infy(f(y) + λc(x− y)).
On connections between transport inequalities and other functional inequalities,

the theory of large deviations, information inequalities, and Lyapunov functions,
see [128]–[130] and the survey [131]. Dynamical transport inequalities are consid-
ered in [132].

3.4. Concentration inequalities and large deviations

The following important observation was made by K. Marton. Let the measure
µ satisfy (3.3.3), let A ⊂ Rd, and let µ(A) > 1/2. Consider the optimal map

∇ϕ of the measure µ1 =
1

µ(A)
IA to µ2 =

1
µ((Ah)c)

I(Ah)c . Then W2(µ1, µ2) > h.

Moreover,

W2(µ1, µ2) 6 W2(µ1, µ) +W2(µ2, µ) 6
√

2C Entµ µ1 +
√

2C Entµ µ2 .

Since Entµ µ1 = log
1

µ(A)
and Entµ µ2 = log

1
µ((Ah)c)

, the inequality obtained

implies that there exist a, b > 0 such that

µ(Ah) > 1− ae−bh
2
. (3.4.1)

This reasoning extends to more general cost functions. One can verify that (3.4.1)
is equivalent to the following inequality for 1-Lipschitz functions: µ(x : f(x)−mf >
h) 6 ae−bh

2
for h > 0, where mf is the median of f .

The inequality (3.4.1) is called the concentration inequality. Concentration
inequalities arose in the asymptotic theory of convex bodies as a tool for inves-
tigating properties of convex bodies that are independent of the dimension. This
direction has been especially actively developing in the works of V. Milman and his
school (for interesting applications in probability theory, see [103]).
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The following fact follows easily from the Chebyshev inequality: if a measure µ
satisfies (3.4.1), then for some ε > 0 we have∫

Rd

eε|x|
2
µ(dx) < +∞.

In particular, we obtain a necessary condition for the LSI and the TI.
In [133], [129], and [123] connections were investigated between optimal maps

and the theory of large deviations. We explain this by the example of a nice result
from [123].

Theorem 3.4.1. A probability measure µ on Rd satisfies the transport inequality
if and only if it has the dimension-free Gaussian concentration property, that is,
there exist constants a, b, and r0 such that for every power µn of µ one has the
inequality

µn(Ar) > 1− be−a(r−r0)
2
, where r > r0, A ⊂ (Rd)n, µn(A) >

1
2
.

In one direction the proof is trivial and follows from the property that the trans-
port inequality is preserved under products (tensorization) and the fact that the
transport inequality implies concentration. Suppose now that the concentration
property is satisfied. For every n consider the empirical average Ln = n−1

∑n
i=1 δxi

,
where {xi} are independent random variables with distribution µ. It is known
(Varadarajan’s theorem) that the measures Ln converge weakly to µ. In addi-
tion, it is known (see § 1.1) that convergence in the Kantorovich metric Wp is
equivalent to the weak convergence of measures with finite moments of order p
and convergence of these moments. By Sanov’s theorem, the quantity P(Ln ∈ Ã)
for a set Ã in the space of measures behaves like e−nH(Ã|µ) as n grows, where
H(Ã|µ) = inf{Entµ(dν/dµ), ν ∈ Ã}. More precisely, using the techniques of the
theory of large deviations, one can show that

lim inf
n→∞

1
n

log P(Wp(Ln, µ) > t) > − inf
{

Entµ

(
dν

dµ

)
: Wp(ν, µ) > t

}
(see details in [123]). For any fixed x ∈ (Rd)n let Lxn = n−1

∑n
i=1 δxi

. By Theo-
rem 1.2.11 we have

|W2(Lxn, µ)−W2(Lyn, µ)| 6 W2(Lxn, L
y
n) 6

(
1
n

n∑
i=1

|xi − yi|2
)1/2

=
1√
n
|x− y|.

LetA = {x : W2(Lxn, µ) 6 mn}, wheremn is the median ofW2(Ln, µ). The estimate
proved implies that Ar ⊂ {x : W2(Lxn, µ) 6 mn + r/

√
n }. For a random vector

x ∈ (Rd)n with independent components with distribution µ the concentration
property (which we assume) implies that

P

(
W2(Lxn, µ) > mn +

r√
n

)
6 be−a(r−r0)

2
, r > r0.
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This is equivalent to the estimate P(W2(Lxn, µ) > u) 6 b exp
(
−a(

√
n(u−mn)−r0)2

)
for

√
n(u−mn) > r0. The convergence of W2(Ln, µ) to zero in probability implies

the convergence of mn to zero. Therefore if u > 0, then

lim sup
n→∞

1
n

log P(W2(Lxn, µ) > u) 6 −au2.

Then by the estimate obtained above we have inf{Entµ(dν/dµ) : W2(ν, µ) > u} >
au2. Thus, aW 2

2 (µ, ν) 6 Entµ(dν/dµ), and the theorem is proved.

3.5. The hierarchy of inequalities

The examples considered above reveal a certain regularity. In the class of prob-
ability measures there is the following hierarchy of functional inequalities:

1) isoperimetric inequalities Iµ(t) > tϕ(t), t 6
1
2

⇓
2) Sobolev-type inequalities Entµ f2 6 λS

∫
c∗

(∥∥∥∥∇ff
∥∥∥∥)
f2 dµ

⇓
3) transport inequalities Wc(µ, f · µ) 6 λT Entµ f

⇓
4) concentration inequalities µ(Ar) > 1− e−λCc(r)

⇓
5) exponential integrability ∃ε > 0:

∫
eεc(|x|) µ(dx) <∞.

In some situations the converse implications are also valid. For example, we
have already seen that for convex measures the logarithmic Sobolev inequality and
the corresponding isoperimetric inequality follow from the condition of exponential
integrability 5) for c(x) = |x|2. It turns out that in the convex case all these
inequalities are equivalent. The most general result of this type was obtained in
[134] (see also [135]). Moreover, the constants in these inequalities do not depend
on the dimension.

Theorem 3.5.1. Assume the following conditions for the convex measure µ =
e−V dx:

(i) µ satisfies the concentration inequality

1− µ(Ar) 6 e−K (r), where µ(A) >
1
2
, K is some function;

(ii) the estimate K (r) > α(r) holds for some increasing function α(r) : R+ → R+

with limt→∞ α(t) = ∞.
Let Ĩµ(t) = min

(
Iµ(t),Iµ(1 − t)

)
. Then the isoperimetric inequality Ĩµ(t) >

min
(
ctγ(log(1/t)), cα

)
holds with γ(t) = t/α−1(t), where c is a universal constant

and cα depends only on α.

This theorem is valid also for a manifold with a measure whose Bakry–Emery
tensor is non-negative (§ 3.7.4).
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3.6. Geodesics in the space of measures and gradient flows

3.6.1. Geodesics in the Kantorovich metric. Let us consider an optimal
transportation T of a probability measure µ0 to µ1 on a metric space (X, ϱ) with
the cost function h = ϱp(x, y), p > 1 (for brevity we call such maps p-optimal
maps). The space of Radon probability measures with a finite p-moment, equipped
with the metric Wp, will be denoted by Pp

r (X).
As we shall see, in physical terms one can imagine a mass transportation in Rd

as a movement of particles with a constant speed T (x)− x along straight lines:

Tt : x 7→ (1− t)x+ tT (x), x ∈ Rd.

Thus, T0(x) = x and T1 = T . It should be said that already Monge himself
regarded his transportations as processes in time and space, in particular, he con-
sidered the trajectories of mass transportations. So far this aspect has not been
present in our discussions at all, since all transformations of measures are associated
with an instantaneous action without any ‘trajectories of displacement’; however,
it is an aspect that can also be important. In spite of its simplicity, the family
of interpolating maps {Tt}t∈[0,1] possesses very deep properties. We introduce an
interpolating family of measures µt = µ0◦T−1

t . It is fruitful and important for appli-
cations (first and foremost, to partial differential equations) to regard the family
{µt} as a geodesic in the space of measures equipped with the Kantorovich metric.
A closely related idea was advanced by V. I. Arnold in his papers on hydrome-
chanics, where the Euler equations were represented as geodesic equations on the
(infinite-dimensional) group of diffeomorphisms equipped with a certain Rieman-
nian metric.

We have defined an interpolating family of measures using the notion of an
optimal map (which may fail to exist). In the general case an interpolating family
can be defined by means of a linear interpolation of an optimal plan and also by
µt = Π ◦ e−1

t , where Π is a dynamical optimal plan (see Definition 3.6.6). An
interpolating curve is generally not unique. In an arbitrary metric space the length
of a parametric curve γ(t), t ∈ [0, 1], is defined as

L(γ) =
∫ 1

0

|γ̇(t)| dt, γ̇(t) = lim sup
ε→0

ϱ(γ(t+ ε), γ(t))
ε

.

Another (equivalent for absolutely continuous curves) definition is

L(γ) = sup
n

sup
0=t0<t1<···<tn=1

n−1∑
i=0

ϱ(γ(ti), γ(ti+1)).

In §§ 3.6.1–3.6.3 we shall be concerned with the special class (LS) of metric spaces
(called Aleksandrov–Busemann spaces or length spaces) in which the following con-
dition is assumed: ϱ(x, y) = infΓx,y L(γ), where Γx,y is the space of continuous
curves with γ(0) = x and γ(1) = y. The class of (LS)-spaces contains all smooth
Riemannian manifolds and normed spaces. This class of spaces has proved to be
very natural in problems where geodesics appear. In (LS)-spaces interpolation of
optimal maps can be defined via shifts along geodesics.
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Definition 3.6.1. A curve γ : [0, 1] → X in an (LS)-space is called a geodesic of
constant speed if

ϱ(γ(t), γ(s)) = |t− s|ϱ(γ(0), γ(1)).

It is easy to see that any geodesic of constant speed satisfies the equality L(γ) =
ϱ(γ(0), γ(1)) and is the shortest curve joining γ0 and γ1. It turns out that the
interpolating family {µt} is a geodesic of constant speed in the space (Pp

r (X),W p).

Theorem 3.6.2. Let µ0 and µ1 be probability measures on X = Rd , let T be
a p-optimal map of µ0 to µ1 , and let µt = µ0 ◦ T−1

t , with Tt(x) = (1− t)x+ tT (x).
Then the family of measures {µt} satisfies the equality

Wp(µt, µs) = (t− s)Wp(µ0, µ1).

Proof. The estimate Wp(µt, µs) 6 (t− s)Wp(µ0, µ1) follows from the optimality of
T and the inequality (valid for any measure µ and any maps r1 and r2)

W p
p (µ ◦ r1, µ ◦ r2) 6

∫
|r1 − r2|p dµ.

For the proof of the latter we note that µ ◦ (r1, r2)−1 is a measure on X ×X with
marginals µ ◦ r−1

1 and µ ◦ r−1
2 . Therefore,

W p
p (µ ◦ r1, µ ◦ r2) 6

∫
X2
|x1 − x2|p d

(
µ ◦ (r1, r2)−1

)
=

∫
X

|r1 − r2|p dµ.

Now let Wp(µt, µs) < (t − s)Wp(µ0, µ1) for some pair of points s and t. Since
Wp(µ0, µs) 6 sWp(µ0, µ1) and Wp(µt, µ1) 6 (1−t)Wp(µ0, µ1), the triangle inequal-
ity leads to a contradiction. �

Remark 3.6.3. If X is an (LS)-space, then the space Pp
r (X) of probability measures

is also an (LS)-space (see [136] and [11]).

Remark 3.6.4. The converse is also true: any geodesic of constant speed corresponds
to some optimal plan π for the pair of measures (see Theorem 7.22 in [11] and
Theorem 3.6.7 below).

On this subject see also [137], [138], and [139]. A new class of distances is
considered in [140].

3.6.2. The Benamou–Brenier formula. The Benamou–Brenier formula inter-
prets the metric Wp(Rd) as the Riemannian length on the (infinite-dimensional)
manifold of probability measures Pp(Rd). Let vt : Rd → Rd, t ∈ [0, 1], be a family
of smooth vector fields (a velocity field) and let Tt : Rd → Rd be the family of trans-
formations generated by it according to the equation dTt/dt = vt(Tt), T0(x) = x.
Let us consider the family of measures given by

µt = µ0 ◦ T−1
t = ϱt dx, µ0 = ϱ0 dx.

It is readily verified that µt satisfies the classical continuity equation (the transport
equation)

∂ϱt
∂t

+ div(ϱt · vt) = 0. (3.6.1)
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The following formula was obtained in papers of Benamou and Brenier (see [141])
for p = 2:

W p
p (µ0, µ1) = inf

v

∫ 1

0

∫
|vt|p dµt dt,

where µt = ϱt dx satisfies (3.6.1) and the infimum is taken over the vector fields in
some suitable class. The expression obtained resembles the formula for the length
of a geodesic in a Riemannian manifold. We note that the inequality

W p
p (µ0, µ1) 6

∫ 1

0

∫
|vt|p dµt dt

follows from the relations

W p
p (µ0, µ1) 6

∫
|Tt(x)− x|pϱ0 dx 6

∫ ∫ 1

0

∣∣∣∣ ddtTt(x)
∣∣∣∣p dt ϱ0 dx

=
∫ ∫ 1

0

vpt (Tt) dt dµ0 =
∫ 1

0

∫
vpt dµt dt.

Equality is formally attained for Tt(x) = (1 − t)x + tT0 (the case of geodesics of
constant speed), vt = (T0−x)◦T−1

t . A rigorous justification (and formulation) can
be found in [16] (Theorem 8.1) and in [11] (§ 8.3).

3.6.3. A dynamical mass transport plan. The theorem on geodesics has
a broad generalization to the case of abstract ‘Lagrangian actions’. This is explained
in more detail in [17] (Chap. 7), but below we give a short formulation. A Lagrangian
action is a family of lower semicontinuous functionals A s,t : C → R on some class C
of continuous curves γ : [0, 1] → X and a family of cost functions cs,t : X ×X → R
satisfying the conditions

1) A t1,t2 + A t2,t3 = A t1,t3 , 0 6 t1 < t2 < t3 6 1;
2) cs,t(x, y) = inf

{
A s,t(γ), γ ∈ C, γ(s) = x, γ(t) = y

}
for all x, y ∈ X;

3) for all γ ∈ C

A s,t(γ) = sup
N∈N

sup
0=t06t16tN=1

N−1∑
i=0

cti,ti+1(γti , γti+1).

The class C of curves and the topology on it depend on the concrete problem.
A typical example is the functional

A s,t(γ) =
∫ t

s

L(γτ , γ̇τ , τ) dτ, where L(x, v, t) is some Lagrange function.

Example 3.6.5. Let X be an (LS)-space and let c be a strictly convex function.
We set

A (γ) =
∫ 1

0

c(|γ̇t|) dt.

Jensen’s inequality implies the estimate

c(d(γ0, γ1)) 6
∫ 1

0

c(|γ̇t|) dt.
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Therefore, the minimum of A is attained on a geodesic of constant speed and equals
c(d(x, y)).

It turns out that the theorem on geodesics has a broad generalization to the case
of coercive actions. A Lagrangian action is said to be coercive if

1) infs<t infγ A s,t > −∞,
2) for all t < s and any two compact sets Ks and Kt the set of their minimizing

curves Γs,tKs→Kt
starting in Ks at the moment s and ending in Kt at the

moment t is compact and non-empty.

Definition 3.6.6. Let Γ be the set of all curves minimizing the action A . A dyna-
mical optimal plan is a probability measure Π on Γ such that the measure Π ◦
(e0, e1)−1, where et : Γ → X is given by et(γ) = γ(t), is an optimal plan for the
pair µ0, µ1.

The following result ([17], Theorem 7.19) is a broad generalization of Theo-
rem 3.6.2. As shown in [17], Theorem 3.6.2 follows from this result in the case of
a Polish locally compact (LS)-space.

Theorem 3.6.7. Let X be a Polish space and let A 0,1 be a coercive Lagrangian
action. Suppose that the cost functions cs,t are continuous. Denote by Cs,t(µ, ν) the
cost of the optimal transportation for the pair µ, ν . Then the following properties
are equivalent for the curve {µt}06t61 :

(i) for 0 6 t 6 1 the measure µt equals the distribution of γ(t), where t 7→ γ(t)
is a random curve minimizing the action A and (γ0, γ1) is an optimal plan for the
pair µ0 , µ1 ;

(ii) for t1 < t2 < t3 ,

Ct1,t2(µt1 , µt2) + Ct2,t3(µt2 , µt3) = Ct1,t3(µt1 , µt3);

(iii) the curve {µt} in the space of measures minimizes the action of the coercive
functional

A s,t(γ) = sup
N∈N

sup
0=t06t16tN=1

N−1∑
i=0

Cti,ti+1(µti , µti+1) = inf
γ

EA s,t(γ)

on the space P(X) of measures. The last infimum is taken in the space of random
curves γ : [s, t] → X for which the distribution of γτ coincides with µτ , s 6 τ 6 t.

Corollary 3.6.8. Let X be a Polish (LS)-space and let Π be a dynamical optimal
mass transportation plan for the cost function dp(x, y), p > 1. Then the curve of
measures µt = Π◦e−1

t is a geodesic of constant speed between µ0 and µ1 . Moreover,
each geodesic of constant speed {µt} has the form µt = Π ◦ e−1

t for some dynamical
optimal mass transportation plan.

3.6.4. Convex functionals. Functionals convex along geodesics on the space
of measures were considered by McCann [68] in connection with the problems of
uniqueness of solutions to certain variational problems. Convexity of this kind is
called ‘displacement convexity’. These techniques have found broad applications in
both variational problems and probability problems (see Example 3.7.14). A func-
tion f on Rn is said to be λ-convex if the function f(x)− λ|x|2/2 is convex.
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Definition 3.6.9. A functional F : Pp
r (X) → (−∞,∞] is said to be λ-convex if

for any pair of measures µ0, µ1 ∈Wp(X) the function t 7→ F (µt) is λ-convex, where
{µt} is an arbitrary interpolating family of measures in Pp

r (X).

We give examples of convex functionals on the space Pp
r (X).

Example 3.6.10. A generalized entropy functional: for a given function F let

F (µ) =
∫
F (ϱ) dx

if µ = ϱ dx and F (µ) = ∞ otherwise. If the function t 7→ tdF (t−d) is convex and
decreasing, then F is a convex functional on Pp

r (Rd).

The idea of the proof is to use the change of variables formula. Omitting regu-
larity issues, we assume that the change of variables formula ϱt(Tt) = ϱ0/ detDTt
holds for the interpolating map Tt. Then

F (µt) =
∫
F (ϱt) d =

∫
F (ϱt(Tt)) detDTt dx

=
∫
F

(
ϱ0

detDTt

)
detDTt dx. (3.6.2)

We now observe that the matrix (1−t)I+tDTt is diagonalized and has non-negative
values on the diagonal. It is not difficult to obtain from this that the function

t 7→ det1/d
(
(1− t)I + tDTt

)
is concave on [0, 1]. Then by the conditions imposed on F the function t 7→
F (ϱ0/ detDTt) detDTt turns out to be convex. Therefore,

F

(
ϱ0

detDTt

)
detDTt 6 (1− t)F (ϱ0) + tF (ϱ1).

Integrating the inequality obtained, we arrive at the required result.
The following functions satisfy the hypotheses in Example 3.6.10:

F (t) = t log t, F (t) =
1

m− 1
sm, m > 1− 1

d
.

Example 3.6.11 (potential energy). For a function V satisfying the condition
V (x) > −a− b|x|p, take the functional

V (µ) =
∫
V dµ.
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If V is a λ-convex function, then V is a λ-convex functional on P2(Rd). This
follows from the relations

V (µt) =
∫
V ((1− t)x+ tTt(x))µ0(dx)

6
∫ (

(1− t)V (x) + tV (Tt(x))− λ

2
t(1− t)|x− Tt(x)|2

)
µ0(dx)

6 (1− t)
∫
V dµ0 + t

∫
V dµ1 −

λ

2
t(1− t)W 2

2 (µ0, µ1)

= (1− t)V (µ0) + tV (µ1)− λ

2
t(1− t)W 2

2 (µ0, µ1).

This result is valid for p 6 2, λ > 0 and for p > 2, λ 6 0 (see [11], § 9.3).

Corollary 3.6.12. Let ν = e−V dx be a convex measure. Then the relative entropy
Entν(µ) is a convex functional on Pp

r (Rd).

Proof. This follows from the representation of the relative entropy Entν(ϱ dx) as
the sum of two convex functionals: the integral of ϱ log ϱ with respect to Lebesgue
measure and the integral of V with respect to the measure µ. �

Example 3.6.13 (interaction energy). Any lower semicontinuous function W (x1,
. . . , xk) : (Rd)k → R defines the following functional on Pp

r (Rd):

W (µ) =
∫

(Rd)k

W dµk.

If the function W is convex, then W is a convex functional on Pp
r (Rd). This is

seen from the fact that W is the restriction of the potential interaction functional

µ̃ 7→
∫
W dµ̃, µ̃ ∈ Pp

r ((Rd)k),

to the subset of product measures.

The following result is proved in [68].

Theorem 3.6.14. For any strictly convex functions V and W the functional

F (µ) =
∫
U(ϱ) dx+

∫
V dµ+

1
2

∫
(Rd)2

W (x− y)µ(dx)µ(dy)

possesses a unique minimum point.

The ‘displacement convexity’ of sets is defined naturally. It was recently shown
in [142] that this property does not hold for the set of measures in P2(Rd) vanishing
on all sets of non-differentiability of convex functions on Rd.

3.6.5. Additional properties of the space Pp. We mention some properties
of the space Pp

r (X) important for what follows, with references to some papers
where they are discussed.
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1) A formula for differentiating W2 (see [11], Theorem 8.4.7):

1
2
d

dt
W 2

2 (µt, σ) =
∫
X2
⟨vt(x2), x1 − x2⟩ γt(dx1 dx2),

where σ is a fixed measure, µt is an absolutely continuous curve in P2(X),

∂

∂t
µt + div(v · µt) = 0,

and γt is an optimal transport plan between µt and σ. The functional W 2
2 is not

convex on P2(Rd).
2) Pp

r (X) is an (LS)-space if X is (Theorem 3.6.7).
3) ‘The parallelogram inequality’ (see [11]) for P2(Rn):

W2(µ1→2
t , µ3) > (1− t)W 2

2 (µ1, µ3) + tW 2
2 (µ2, µ3)− t(1− t)W 2

2 (µ1, µ2),

where µ1→2
t is the interpolation of the measures µ1 and µ2. This inequality implies

that P2(Rd) is a space of non-negative curvature. More generally, the space
Pp
r (M), where M is a smooth manifold, has non-negative Aleksandrov curvature

if (and only if) M has non-negative sectional curvature (see [143], [136]).
4) In [144] some geometric quantities (the connection, the Riemannian tensor)

were calculated on the space Pp
r .

3.6.6. Subdifferentials. Subdifferentials for convex functions Φ: P2(X) → R
are studied in the book [11]. Below we present the basic concepts and results. Let
D(Φ) denote the set of points x where Φ(x) <∞. For v ∈ D(Φ) the absolute value
of the metric gradient is defined by

|∂Φ|(v) = lim sup
ω→v

(Φ(ω)− Φ(v))+
W2(ω, v)

.

If a measure µ is regular (for example, has a density), then for every measure
ν there exists an optimal transportation T of µ to ν. The following definition
of a subdifferential for a regular measure agrees well with the classical notion of
a subdifferential for functions on a Hilbert space.

Definition 3.6.15. Let µ ∈ D(|∂Φ|). A vector field ξ ∈ L2(µ; Rd) belongs to the
subdifferential ∂Φ if

Φ(ν)− Φ(µ) >
∫

Rd

⟨ξ(x), T (x)− x⟩µ(dx) + o(W2(µ, ν))

for the optimal transportation T of µ to ν.

A minimal selection of the subdifferential ∂Φ is a vector ξ ∈ ∂Φ with minimal
norm ∥ · ∥L2(µ;Rd). The concept of a subdifferential can be extended to the case
of a non-regular measure if in place of optimal transportations we use optimal
transport plans (see [11], § 10.3).
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Example 3.6.16. For the formal calculation of subdifferentials we employ (3.6.2),
assuming that all the calculated objects are smooth:

F (µt) =
∫
F

(
ϱ0

det((1− t)I + tD2ϕ)

)
det((1− t)I + tD2ϕ) dx.

Taking into account that
d

dt
det

(
(1− t)I + tD2ϕ

)∣∣
t=0

= ∆ϕ− d, we easily get that

d

dt
F (µt)

∣∣∣∣
t=0

=
∫ (

F (ϱ0)− ϱ0F
′(ϱ0)

)
(∆ϕ− d) dx.

Let LF (ϱ0) = ϱ0F
′(ϱ0)− F (ϱ0). Integrating by parts, we find that

d

dt
F (µt)

∣∣∣∣
t=0

=
∫ 〈

∇LF (ϱ(x))
ϱ(x)

,∇ϕ(x)− x

〉
ϱ(x) dx.

In the same way one also obtains a formula for subdifferentials of the potential
energy and interaction energy functionals:

d

dt
V (µ)

∣∣∣∣
t=0

=
∫
⟨∇V (x),∇ϕ(x)− x⟩ϱ0(x) dx,

d

dt
W (µ)

∣∣∣∣
t=0

=
∫
⟨(∇W ∗ µ(x)),∇ϕ(x)− x⟩ϱ0(x) dx.

A rigorous justification of these formulae is rather involved technically. The
following result is proved in [11], Theorem 10.4.13.

Theorem 3.6.17. Consider the functional

Φ(µ) =
∫
F (ϱ) dx+

∫
V dµ+

1
2

∫
W dµ× dµ, µ = ϱ dx,

on Pp
r (Rd), where Φ(µ) = ∞ if µ has no density. Suppose that the function

F : [0,∞) → R is convex, differentiable, and superlinear, the function t 7→ tdF (t−d)
is convex and decreasing, there is an α > d/(d+ p) such that

F (0) = 0, lim inf
s→0

F (s)s−α > −∞,

and also the doubling condition is satisfied: there exists a number C > 0 such that

F (a+ b) 6 C(1 + F (a) + F (b)).

In addition, let V : Rd → (−∞,+∞) be a lower semicontinuous λ-convex function,
let D(V ) have a non-empty interior Ω, and let W : Rd → [0,+∞) be a convex
differentiable even function satisfying the doubling condition. Under these condi-
tions the measure µ = ϱ dx belongs to D(|∂ϕ|) precisely when LF (ϱ) ∈ W 1,1

loc (Ω),
LF = sF ′(s)− F (s), and

ϱω = ∇LF (ϱ) + ϱ∇V + ϱ(∇W ) ∗ ϱ

for some ω ∈ Lq(µ; Rd). In this case the vector ω is the minimal selection in ∂Φ(µ).
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3.6.7. Gradient flows. Otto’s calculus. A gradient flow in Rd is a solution
X(t) of the equation dX(t)/dt = −∇E(X(t)), where E is some potential. We note
that dE(X(t))/dt = −|∇E(X(t))|2. The first part of the book [11] is devoted to
the concept of a gradient flow on a metric space. A gradient flow can be defined in
some sense as a ‘curve of minimal descent’. A gradient flow on a metric space X
satisfies the equation

− d

dt
E(X(t)) =

1
2
|X ′(t)|2 +

1
2
|∂E(X(t))|2,

where |X ′(t)| is the metric derivative of the curve X(t). It turns out that many
equations of mathematical physics admit descriptions in the form of gradient flows
of some functionals on the space P2(X).

Example 3.6.18. Consider the equation ∂ϱ/∂t − div
(
∇LF (ϱ)

)
= 0 with respect

to the function ϱ : (t, x) 7→ ϱt(x). For F (s) = s log s we obtain the heat equation
∂ϱ/∂t = ∆ϱ. If v = −∇LF (ϱ)/ϱ, then we obtain the transport equation ∂ϱ/∂t +
div(ϱ · v) = 0. It is natural to interpret v as the velocity of the curve t 7→ ϱt(·).
By Theorem 3.6.17 the function ∇LF (ϱ)/ϱ serves as the (sub)differential of the
functional F . Therefore, the original equation is a gradient flow and (formally)
v = −∇F or v ∈ −∂F .

Gradient flows connected with functionals on the space P2(X) have an interest-
ing geometric interpretation proposed by Otto [145] (see also [146]). He introduced
a formal Riemannian structure on P2(X) such that W2 becomes a Riemannian
metric on the ‘manifold’ of measures. We remark, however, that in many cases the
Otto calculus so far remains a heuristic approach requiring a rigorous justification.

We recall that by the Benamou–Brenier formula,

W2(µ0, µ1) = inf
∫ 1

0

∫
Rd

|vt(x)|2ϱt(x) dx dt,

where the infimum is taken over all ϱt and vt with ϱt
∣∣
t=0

= ϱ0 and ϱt
∣∣
t=1

= ϱ1

satisfying the transport equation ∂ϱt/∂t+ div(ϱtvt) = 0. The minimum is attained
on the curve {ϱt} satisfying the equations

ϱt(x) = ϱt
(
(1− t)x+ t∇ϕ(x)

)
det

(
(1− t)I + tD2ϕ(x)

)
,

∂ϱt
∂t

+ div(ϱtvt) = 0,

where vt(x) = ∇ϕ(St(x)) − St(x), St(x) = ((1 − t)I + t∇ϕ)−1(x), and ∇ϕ is
the optimal transportation of µ0 to µ1. Otto introduced the following differential
structure on P2(X), which we consider for X = Rd. The tangent space TP2(Rd)
at the point ϱ dx consists of all measures with densities of the form −div(ϱv), where
v is a vector field. We define the inner product (a Riemannian metric) on TP2(Rd)
as follows: ∫

X

⟨v1, v2⟩ϱ dx.

Let us consider the entropy functional Ent: ϱ dx 7→
∫

Rdϱ log ϱ dx from this point of
view. Differentiating it along a geodesic t 7→ µ0 ◦ T−1

t , we get that

∂ Ent ϱt
∂t

∣∣∣∣
t=0

= −
∫
X

ϱ(∆ϕ− d) dx =
∫
X

⟨∇ϱ,∇ψ⟩ dx,
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where ψ(x) = ϕ(x)−|x|2/2. We note that ∂ϱt/∂t
∣∣
t=0

+div(∇ψ ·ϱ0) = 0. Therefore,
the ‘gradient’ of the functional Ent satisfies the equalities〈

∇Ent(ϱ),
∂ϱt
∂t

〉∣∣∣∣
t=0

:=
∂ Ent ϱt
∂t

∣∣∣∣
t=0

=
∫
X

⟨∇ϱ,∇ψ⟩ dx =
∫
X

〈
∇ϱ
ϱ
,∇ψ

〉
ϱ dx,

and ∇Ent(ϱ) is identified with the function −div
(
ϱ
∇ϱ
ϱ

)
= −∆ϱ. The correspond-

ing gradient flow is given by the heat equation
∂ϱ

∂t
= ∆ϱ. Let us fix a probability

measure ν = e−V dx. We set µ = f · ν = ϱ dx. Considering in the same manner the
relative entropy

Entν µ =
∫
X

f log f dν =
∫
X

ϱ log ϱ dx+
∫
X

V ϱ dx,

we get that the corresponding gradient flow satisfies the equation

∂ϱ

∂t
= ∆ϱ+ div(ϱ · ∇V ).

Below we give some other examples of gradient flows.

Example 3.6.19. The porous media equation:

E(µ) =
1

m− 1

∫
ϱm dx,

∂ϱ

∂t
= ∆ϱm.

The non-linear diffusion equation:
∂ϱ

∂t
−∆LF (ϱ) = 0.

The McKean–Vlasov equation:

E(µ) =
1
2

∫
W (x− y)ϱ(x)ϱ(y) dx dy,

∂ϱ

∂t
= div(ϱ∇(ϱ ∗ ∇W )).

The quantum drift-diffusion equation (see [147]):

E(µ) =
∫
|∇ϱ|2

ϱ
dx,

∂ϱ

∂t
+ 4 div

(
ϱ∇

∆
√
ϱ

√
ϱ

)
= 0.

The Kantorovich metric (under the name ‘the Vasershtein metric’) was applied
to such equations already by Dobrushin [148], and among more recent papers we
mention [149], [132], [150]. Estimates of solutions of the heat equation connected
with the metric Wp can be found in [151].

3.6.8. Applications to equations of mathematical physics. A rigorous jus-
tification of the heuristic manipulations above can be given in different ways.
One possible way is a formalization of the notion of a Riemannian structure and
the Otto differential calculus. The situation is greatly complicated by the fact that
the objects considered are not smooth. Below we present some results from the
book [11], where the main emphasis is on work with curves in the space of measures
and a formalization of the notion of a subdifferential. It turns out that in many
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cases (including the λ-convex case) to show the existence/uniqueness/regularity
of the gradient flow it suffices to consider the inclusion v ∈ −∂F instead of the
equality v = −∇F .

Let X be a Hilbert space.

Theorem 3.6.20 ([11], Theorem 8.3.1). Any absolutely continuous curve {µt} has
a tangent vector vt : ∂µt/∂t + div(vt · µt) = 0, where the equality is understood in
the weak sense.

Definition 3.6.21. A curve {µt} ∈ ACploc(R+; Pp
r (X)) is called a gradient flow

for the functional Φ if jp(vt) ∈ −∂Φ(µt) for t > 0, where jp(v) = |v|p−2v is the dual
map.

The next theorem is of considerable importance since it enables one to apply the
‘metric’ theory of gradient flows to gradient flows in Pp

r (X).

Theorem 3.6.22 [11]. For λ-convex functionals the notion of a gradient flow in
Pp
r (X) coincides with the notion of a gradient flow in the metric space Pp

r (X).

Approximations by minimizing motions are used to prove the existence of a gra-
dient flow. This is based on the following simple observation. Suppose for simplicity
that ψ is a lower semicontinuous functional on a Hilbert space and v minimizes the
functional

ω 7→ ψ(ω) +
1
2t
|ω − a|2.

Then −(v − a)/t ∈ ∂ψ(v). An analogue of this for P2 is the following fact.

Lemma 3.6.23. Let ν minimize the functional ν 7→ Φ(ν) +W 2
2 (ν, µ)/(2t) and let

T be the optimal transportation of ν to µ. Then (T − x)/τ ∈ ∂Φ(ν).

Let us now split the real line into intervals of length τ > 0. Let M0
τ = µ0 and

let Mn+1
τ be the minimum point of the functional

µ 7→ Φ(µ) +
1
2τ
W 2

2 (µ,Mn−1
τ ).

If Mn+1
τ is a sufficiently nice measure, then for the optimal map Tnτ of Mn+1

τ

to Mn
τ the field −(x − Tnτ (x))/τ belongs to ∂Φ(Mn+1

τ ). Intuitively this means
that (x − Tnτ (x))/τ gives an approximation of the velocity v of the limiting (as
τ → 0) curve {µt} to which the discrete broken lines µτt : t 7→ Mτ

n must converge,
where nτ 6 t < (n + 1)τ . The velocity vector v must satisfy the inclusion v ∈
−∂Φ. The scheme described does work in the case of λ-convex functionals. The
following theorem is a corollary of Theorem 11.2.1 in [11], where among other things
important estimates are proved for the approximations themselves, and diverse
variational formulations of the problem are given.

Theorem 3.6.24. If X is a Hilbert space and Φ is a λ-convex functional, then as
τ → 0 the discrete broken lines {µτt } converge locally uniformly in the metric W2

to the unique gradient flow {µt} of the functional Φ.
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Uniqueness of the gradient flow {µt} is proved in the following way. Since −vt ∈
∂Φ(µt), by the definition of a differential

Φ(σ) > Φ(µt) +
∫
X2
⟨vt(x2), x1 − x2⟩ γt(dx1 dx2) +

λ

2
W 2

2 (µt, σ),

where γt is an optimal plan for the pair µt, σ. Using the equality

1
2
d

dt
W 2

2 (µt, σ) =
∫
X2
⟨vt(x2), x1 − x2⟩ γt(dx1 dx2),

we get that
1
2
d

dt
W 2

2 (µt, σ) +
λ

2
W 2

2 (µt, σ) 6 Φ(σ)− Φ(µt).

In particular, for two different gradient flows µ1
t and µ2

t ,

d

dt
W 2

2 (µ1
t , µ

2
t ) 6 −λW 2

2 (µ1
t , µ

2
t ).

Therefore, W 2
2 (µ1

t , µ
2
t ) 6 e−λtW 2

2 (µ1
0, µ

2
0), whence uniqueness follows.

3.6.9. The Riemannian volume on P2. In the paper [152] of von Renesse and
Sturm the concept of the Riemannian volume on P2(X) was introduced, where
X = [0, 1]. Heuristically, the measure

Pβ = e−β Entν µ · P0

was defined, where ν is some fixed measure and P0 is the ‘uniform distribution’
on P2(X). We employ the natural isomorphism between measures and monotone
functions on [0, 1]. For every probability measure µ on [0, 1] we find a non-decreasing
function ξµ mapping Lebesgue measure on [0, 1] to µ. Then

Entλ µ =
∫ 1

0

ϱ log ϱ dx =
∫ 1

0

log ϱ(ξµ(t)) dt = −
∫ 1

0

log ξ′µ(t) dt.

By using this, one can construct a measure Qβ on the space of monotone functions.
This measure Qβ is determined by its finite-dimensional projections

Qβ(ξ1 ∈ dx1, . . . , ξN ∈ dxN )

=
1

Zβ,N
exp

(
β

N+1∑
i=1

log
xi − xi−1

ti − ti−1
· (ti − ti−1)

)
qN (x1, . . . , xN ). (3.6.3)

Here x0 = 0,xN+1 = 1, and qN (x1, . . . , xN ) is a distribution on ΣN = {(x1, . . . , xN ) ∈
[0, 1]N : 0 < x1 < · · · < xN < 1}. Under the requirement of certain invariance
properties and the consistency of the conditional distributions, the measure qN is
uniquely determined by the formula

qN (x1, . . . , xN ) = CN
dx1 · · · dxN

x1(x2 − x1) · · · (xN − xN−1)(1− xN )
.
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We note that qN defines a σ-finite measure. Nevertheless, for a suitably chosen
constant the equality (3.6.3) defines a probability measure. The existence of Qβ fol-
lows from Kolmogorov’s theorem. Taking into account the correspondence between
measures and functions, we obtain a measure Pβ on P2(X). This measure has the
following two properties.

1) Its support consists of purely singular measures.
2) It is quasi-invariant with respect to transformations of the following form: let

h be a C2-diffeomorphism of [0, 1] with h(0) = 0, and define an action of it on
measures by µ 7→ µ ◦ h−1; then the Radon–Nikodym density is

dPβ(µ ◦ h−1)
dPβ(µ)

= exp
(
β

∫ 1

0

log h′(s) dµ
)

1√
h′(0) · h′(1)

∏
I∈gaps(µ)

√
h′(I−)h′(I+)
|h(I)|/|I|

,

where gaps(µ) denotes the set of closed intervals of maximal length I = [I−, I+]
with µ(I) = 0.

3.7. Geometric applications

3.7.1. Classical problems of differential geometry. The Monge–Ampère
equation has been actively studied in connection with a number of problems in
differential geometry. This includes the problem of the existence of a surface of
given Gaussian curvature. A function ϕ(x) is to be found such that the Gaussian
curvature of its graph at the point x coincides with a given function K(x). The
problem reduces to solving the Monge–Ampère equation

detD2ϕ(x) = K(x)(1 + |∇ϕ(x)|2)(d+2)/2.

The classical Minkowski problem consists in constructing a convex polyhedron hav-
ing given normals n1, . . . ,nk, and given areas of the corresponding faces S1, . . . , Sk.
In the continuous case we have to find a convex surface whose curvature at a point
with normal n equals a given function K(n). It turns out that a solution exists
under the condition ∫

Sd−1

n
K(n)

dH d−1 = 0.

Substantial contributions to the solution of the Minkowski problem are due to
Minkowski, Aleksandrov, Lewy, Calabi, Nirenberg, Pogorelov, Sh.-Yu. Cheng, and
Yau (see [72]). As an example of applications of transport techniques we briefly
discuss the problem of Aleksandrov and its transport solution. For an arbitrary
convex surface F ⊂ Rd we consider its generalized normal map to the sphere Sd−1:
F ∋ x 7→ N(x), where N(x) is the set of all normals to support planes of F at the
point x. Suppose that the origin of coordinates is interior to F . Then F can be
parameterized by means of a radial function: F ∋ r(x) = ϱ(x)x, x ∈ Sd−1. We
define a multivalued map αF : Sd−1 → Sd−1 by αF (x) = N(r(x)). The measure
µF is defined by

µF (A) = H d−1

( ⋃
x∈A

αF (x)
)
,

and is called the integral Gaussian curvature of F . Aleksandrov’s problem (posed
and solved by him [153]) is this: for a given measure µ find a convex surface F such
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that µ = µF . The following conditions are necessary and sufficient for the existence
of a solution to Aleksandrov’s problem (necessity is easily verified):

1) µ(Sd−1) = H d−1(Sd−1),
2) µ(Sd−1 \A) > H d−1(A∗) for every spherically convex set A ⊂ Sd−1, where

A∗ = {y ∈ Sd−1 : ⟨x, y⟩ 6 0, x ∈ A}.
An interesting transport solution of this problem was found in [154]. We define

the support function h by the formula

h(y) = sup
x∈Sd−1

ϱ(x)⟨x, y⟩, y ∈ Sd−1.

The radial function and the support function are connected by duality relations in
terms of the Legendre transform (in this form also called the Young transform):
1/ϱ(x) = sup{⟨x, y⟩/h(y) | y ∈ Sd−1}. Thus, h(y)/ϱ(x) > ⟨x, y⟩, or

log h(y)− log ϱ(x) > log⟨x, y⟩. (3.7.1)

Exact equality is attained for y ∈ N(r(x)). The duality theorem suggests that
the pair (log h,− log ϱ) is a solution to the following optimal problem (dual to the
Monge–Kantorovich problem): find the minimum of the functional∫

Sd−1
log h dH d−1 −

∫
Sd−1

log ϱ dµ

among functions (log h,− log ϱ) satisfying (3.7.1), Indeed, it is proved in [154] that
a solution to this problem gives a solution to Aleksandrov’s problem (the required
surface can be uniquely reconstructed from either of the given functions h, ϱ). The
corresponding Monge–Kantorovich problem has the following form: for c(x, y) =
log⟨x, y⟩ find the maximum of the functional∫

Sd−1×Sd−1
c(x, y) dm(x, y) with mx = H d−1, my = µ,

where c(x, y) = −∞ if ⟨x, y⟩ < 0. Analytically the problem reduces to a Monge–
Ampère type equation on the sphere.

3.7.2. The Monge–Kantorovich problem on a Riemannian manifold.
Existence and uniqueness. The Monge–Kantorovich problem generalizes
naturally to Riemannian manifolds. A solution to this problem was obtained by
McCann in [155]. Below we present the basic elements of his construction. On this
subject, see [10], [156]–[158], [86], [88], and [72]. Let (M, g) be a smooth (of class
C3) compact connected Riemannian manifold. Let TxM denote the tangent space
at the point x ∈M . The distance d(x, y) between points x, y ∈M is defined as

d(x, y) = inf
γx,y

∫ √
gij(γ)γ̇iγ̇j dt,

where the infimum is taken over all possible curves γx,y joining x and y. A geodesic
is a curve t 7→ γ(t) satisfying the condition ∇γ̇ γ̇ = 0, where γ̇ ∈ TMγ(t) is the
velocity vector of the curve and ∇ is the covariant derivative. The exponential
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map expx : TMx → M is defined as the map TMx ∋ v 7→ y, where y is the
endpoint of the geodesic with starting point at x and initial tangent vector v. The
Monge problem for a quadratic functional has the following natural setting. Given
two probability measures µ and ν having densities ϱµ and ϱν with respect to the
Riemannian volume dx, one has to find the minimum of the functional

M(µ, ν, T ) =
∫
M

d2(x, T (x))µ(dx), T ∈ T (µ, ν).

In the rest of this subsection c(x, y) = d2(x, y). As in the flat case, let us consider
the operation of convex conjugation ϕc+(y) = infx∈M

(
c(x, y)−ϕ(x)

)
. It is natural

to expect that the optimal transportation will take the form T (x) = expx(−∇ϕ(x)),
where expx(v) is the exponential map at a point x and the potential ϕ satisfies the
condition ϕcc = ϕ. We note that for Rd this would give T (x) = x−∇ϕ(x), and not
T (x) = x +∇ϕ(x) as we had above. As in the Euclidean case, the corresponding
Kantorovich problem on the space of measures has the dual formulation J(ϕ,ψ) →
sup, where the functional J is considered on pairs of continuous functions ϕ,ψ
satisfying the condition ϕ(x) + ψ(y) 6 d2(x, y). The results of the duality theory
fully extend to the case of a Riemannian manifold. In particular, we obtain the
existence of the potential ϕ. Then it is proved that ϕcc = ϕ and ψ = ϕc. The
main problem now is to prove that the corresponding map gives the desired mass
transport. The following lemma (Rademacher’s theorem on manifolds) is proved in
[155].

Lemma 3.7.1. Any Lipschitz function ϕ on a manifold M is differentiable at all
points in M except for a set of measure zero (with respect to the Riemannian vol-
ume).

Remark 3.7.2. By representing the potential ϕ as the result of the operation of
conjugation one can prove that ϕ is a Lipschitz function.

The principal complication is the non-differentiability of the Riemannian metric
d(x, y) (for example, at conjugate points where uniqueness of a connecting geodesic
is lost). It is intuitively clear (although it requires a non-trivial justification) that
d(x, y) is a smooth function for y in a small neighbourhood of x. In the general
case (see details in [155]) the squared distance f(y) = d2(x, y) is superdifferentiable,
that is, there exists a vector p ∈ TMx such that for all v ∈ TMx

f(expx(v)) 6 f(x) + gij(x)pivj + o(|v|).

Subdifferentiability is defined similarly. Using the local differentiability of d(x, y)
and the triangle inequality, one can show the superdifferentiability of the function
y 7→ d(x, y) and the superdifferentiability of d2(x, y). It follows from Remark 3.7.2
and a version of Rademacher’s theorem that ∇ϕ exists µ-almost everywhere. More-
over, the following important fact follows from the definitions of the operation
of conjugation and the superdifferentiability of the function c(x, y) (see details in
[155]).

Lemma 3.7.3. The inequality ϕ(x) + ϕc(y) 6 c(x, y) holds for all x, y ∈ M . If x
is a point of differentiability of the function ϕ, then the equality

ϕ(x) + ϕc(y) = c(x, y)
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holds precisely when y = expx(−∇ϕ). In this case |∇ϕ(x)| = d(x, y).

Proof. The inequality follows directly from the definition. Let x be a point of
differentiability of ϕ. If ϕ(x) + ϕc(y) = c(x, y) for some point y ∈ M , then for all
z ∈M

c(z, y)− ϕ(z)− ϕc(y) > c(x, y)− ϕ(x)− ϕc(y).

Let z = expx(v), v ∈ TMx, and f(z) = c(z, y). Then

f(z) > f(x)− ϕ(x) + ϕ(z) = f(x)− ϕ(x) + ϕ(x) + g(∇ϕ(x), v) + o(|v|).

Therefore, ∇ϕ(x) belongs to the subgradient of f at the point x. On the other
hand, by classical results in differential geometry (the Hopf–Rinow theorem) there
is a minimal geodesic joining y and x and having initial tangent vector v. One can
deduce from this that f is superdifferentiable at x and v belongs to its superdifferen-
tial at x. It follows that f is differentiable at x and y = expx(−∇ϕ(x)), v = ∇ϕ(x).
The first part of the assertion is proved.

Now for the proof of the second part it suffices to show that the equality ϕ(x) +
ϕc(y) = c(x, y) is attained at least at one point. Since ϕ = ϕcc, Remark 3.7.2 implies
that the function ϕc is Lipschitz. Hence in the equality ϕcc(x) = infy∈M

(
c(x, y)−

ϕc(y)
)

the infimum is attained at some point (since M is compact and f is contin-
uous). �

Theorem 3.7.4. The image of µ with respect to T (x) = expx(−∇ϕ(x)) is ν .

Proof. Let f ∈ Cb(M). We prove that the integral of f with respect to ν equals the
integral of f ◦ T with respect to µ. For ε ∈ (−1, 1) we consider the perturbations
ψε(y) := ψ(y) + εh(y) and ϕε(x) = (ψε)c(x) = infy∈M

(
c(x, y)−ψ(y)− εh(y)

)
. Let

the function ϕ be differentiable at the point x. Then the minimum of c(x, y)−ψ(y)
is attained at a unique point t(x) by Lemma 3.7.3. For small ε the minimum of
c(x, y)− ψ(y)− εh(y) is attained at a nearby point yε = t(x) + o(1). Thus, for all
y ∈M

c(x, t(x))− ϕ(t(x))− εf(tε(x)) 6 ϕε(x) 6 c(x, y)− ϕ(y)− εf(y).

Take y = t(x). Then ϕε(x) = ϕ(x) − εf(t(x)) + o(ε), and the estimate o(ε) 6
ε supx∈M |f(x)| holds. Since ε 7→ J(ϕε, ψε) has a maximum at ε = 0, we have

lim
ε→0

J(ϕε, ψε)− J(ϕ,ψ)
ε

=
∫
f dν+ lim

ε→0

∫
ϕε − ϕ

ε
dµ =

∫
f dν+

∫
f(t(x)) dµ = 0

by the dominated convergence theorem. �

The following uniqueness theorem holds [155].

Theorem 3.7.5. The map T = expx(∇ϕ) minimizes the functional M(µ, ν, S)
among all maps S ∈ T (µ, ν), and up to equivalence it is the unique minimizing
map.
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3.7.3. The Monge–Kantorovich problem on a Riemannian manifold.
Change of variables, the Ricci tensor, and geometric inequalities. As in
the flat case, any optimal map T on a Riemannian manifold is almost everywhere
differentiable. Here the situation is more complicated due to the fact that T is the
composition of two maps, namely, the gradient of a function and the exponential
map TMx ∋ v 7→ expx(v), and the latter map may not be differentiable for
all v ∈ TMx in general. For any x ∈ M we define the set cut(x) ⊂ M (the
cut locus) as the set of points y for which there exists the shortest geodesic
t 7→ exp(tv) for t ∈ [0, 1] joining x and y, but any such geodesic is not the
shortest path for t ∈ [0, 1 + ε). It is well known that the exponential map
v 7→ expx(v) is differentiable for all v satisfying the condition exp(v) /∈ cut(x).
Obviously, |v| = d(x, expx(v)) for all v such that exp(tv) does not intersect cut(x)
for 0 6 t 6 1. If x /∈ cut(x), then y = expx(−∇x[d2(y, x)]/2). The following
change of variables formula was obtained in [99]. As in the flat case, a Hessian
means a Hessian in the sense of Aleksandrov (more precisely, its generalization to
manifolds).

Theorem 3.7.6. Let µ = f dx and ν = g dx be probability measures with compact
support, where dx is the Riemannian volume. Let T (x) = expx(−∇ϕ(x)) be the
optimal map of µ to ν for the ‘quadratic’ cost function d2(x, y). Then there exists
a Borel set K of full measure µ such that (i) the function ϕ has a Hessian Hessx ϕ
at every point x ∈ K and T (x) /∈ cut(x), (ii) f(x) = g(T (x)) det[Y (H − Hessx ϕ)]
for x ∈ K , where Y = d(expx)−∇ϕ(x) and H = (1/2) Hess d2(x, y)

∣∣
y=T (x)

.

In applications of optimal transportation, an important role is played by the
interpolating family of maps Tt which in the flat case is defined by Tt(x) = (1−t)x+
tT (x). By analogy, for manifolds we set

Tt(x) = expx(−t∇ϕ(x)).

This family of maps is closely connected with the important concept of Jacobi
fields. We recall that a Jacobi field J(t) is a vector field obtained by variation of

a family of geodesics: J(t) :=
d

ds
γs(t)

∣∣∣∣
s=0

, where [0, 1] ∋ t 7→ γs(t) is a geodesic for

each s. As is known from Riemannian geometry, an arbitrary Jacobi field satisfies
the equation

∇2
γ̇(t)J(t) +Rγ(t)(γ̇(t), J(t))γ̇(t) = 0, (3.7.2)

where Rx : TMx × TMx × TMx 7→ TMx is the Riemann tensor at the point x,

γ̇(t) =
dγ

dt
(t), and ∇2

γ̇(t) is the second covariant derivative along γ.
It is convenient to write differential equations along geodesics in a moving ortho-

normal basis. Let us fix an orthonormal basis {e1(0), . . . , en(0)} in Tγ(0)M and
consider its parallel displacement along γ. Let Y (t) be the coordinates of J(t) in
the basis {e1(t), . . . , en(t)}. The equation (3.7.2) will be written as Y ′′ + RY = 0,
where R = R(t) is some symmetric matrix whose trace gives the value of the
Ricci tensor on the vector γ̇. We observe that for any vector v0 ∈ TMx0 the field
t 7→ A(t)(x0)v0 := dx(Tt)

∣∣
x=x0

v0 = dx(expx(−tϕ(x)))|x=x0v0, where dx(Tt)
∣∣
x=x0

is the differential of the map x 7→ Tt(x) at x0, is a Jacobi field. The change of
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variables formula for the family of interpolating measures takes the form ϱ0(x) =
ϱt(Ttx) detA(t), where ϱ0 = f , ϱ1 = g, and At is the unique Jacobi tensor field
determined by A(0) = I, A′(0) = −Hessϕ along the geodesic exp(−t∇ϕ).

Let us see how one can employ this technique to obtain a generalization of the
Brunn–Minkowski inequality to manifolds. For two points x and y we set

Zt(x, y) = {z ∈M ; d(x, z) = td(x, y), d(z, y) = (1− t)d(x, y)}.

If these two points are joined by a unique geodesic, then Zt(x, y) is a single point.
The Ricci curvature tensor will be denoted by Ric.

Theorem 3.7.7. Let µ = e−V dx be a probability measure on M . Suppose that
for some λ ∈ R the Bakry–Emery tensor of the manifold M satisfies the inequality
Ric + HessV > λ. Let f , g , and h be non-negative functions such that

h(z) > e−λs(1−s)d
2(x,y)/2f1−s(x)gs(y)

for all x, y ∈M , s ∈ [0, 1], and z ∈ Zs(x, y). Then

∫
M

h dµ >

(∫
M

f dµ

)1−s(∫
M

g dµ

)s
.

We explain the idea of the proof. Let ϱs be the density of the measure µ ◦ T−1
s ,

where Tt was defined before (3.7.2). Let γ(s) be the geodesic starting at the point x
(which is omitted in the notation) with the velocity −∇ϕ(x). As in Theorem 3.1.3,
it suffices to prove the inequality h(γ(s)) exp

(
−V (γ(s))

)
> ϱs(γ(s)) (because the

integral of the right-hand side equals 1 by the change of variables formula). Let
ψ(t) = − log det d(Tt)). By the change of variables formula,

f(γ(0))e−V (γ(0)) = ϱs(γ(s))e−ψ(s) = g(γ(1))e−V (γ(1))−ψ(1).

Our assumption about the function h implies that

h(γ(s))e−V (γ(s)) > f1−s(γ(0))gs(γ(1)) exp
(
−V (γ(s))− 1

2
λs(1− s)d2(γ(0), γ(1))

)
.

By the above equations the logarithm of the right-hand side divided by ϱs(γ(s))
equals

(1− s)V (γ(0)) + sV (γ(1))− V (γ(s)) + sψ(1)− ψ(s)− 1
2
λs(1− s)d2(γ(0), γ(1)).

Let α(t) := V (γ(t))+ψ(t). Taking into account that ψ(0) = 0, we get that it suffices
to prove the estimate (1− s)α(0) + sα(1)−α(s) > λs(1− s)d2(γ(0), γ(1))/2. Note
that α′′(t) = HessV (γ(t))(γ̇(t), γ̇(t)) + ψ′′(t). If we prove the estimate ψ′′(t) >
Ricγ(t)(γ̇(t), γ̇(t)), then by the condition on the Bakry–Emery tensor we obtain
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the inequality α′′(t) > λ|γ̇(t)|2, which implies the desired relation. The required
estimate is indeed true. Its proof is based on methods developed in Riemannian
geometry for proving comparison theorems. Let us pass to a moving orthogonal
basis and use the fact that A(t) = dx(Tt) is a solution to the equation A′′(t) +
R(t)A(t) = 0. By the symmetry of the initial conditions the symmetry of A is
preserved. Let B = A′A−1. Differentiating the determinant, we find that ψ′ =
−TrB and ψ′′ = −TrB′. By differentiating B∗ −B and using the symmetry of R
it is not difficult to show that (B∗ −B)′ = 0, and therefore B is symmetric. Hence

ψ′′ = −TrB′ = TrB2 + TrR >
(TrB)2

d
+ TrR >

(TrB)2

d
+ TrR

=
(ψ)2

d
+ Ric(γ(t))(γ̇(t), γ̇(t)),

as required.
We also mention some results from [99]. The volume distortion coefficient is

defined as follows: vt(x, y) = limr→0 Zt(x,Br(y))/ vol(Btr(y)). The volume distor-
tion coefficient has to do with how ‘curved’ the manifold is. For a Euclidean space,
vt = 0. Now let

Sk(t) =
sin(

√
k t)√
k t

if k > 0, Sk(t) =
sinh(

√
−k t)√

−k t
if k < 0.

Theorem 3.7.8. If Ric > (d− 1)k on a d-dimensional manifold M , then

vt(x, y) >

(
Sk(td(x, y)
Sk(d(x, y))

)d−1

.

Equality is attained for the model spaces of constant sectional curvature (the sphere
Sd , Rd , and the Lobachevskii space Hd).

On this subject, see also [159].

3.7.4. Spaces of non-negative curvature. Many analytic and geometric prop-
erties of manifolds can be expressed in terms of the Ricci tensor. Particularly
many interesting results are known about manifolds for which the Ricci tensor is
bounded from below by a constant tensor: Ric > K (another form of this estimate
is Ric > K · g, where g is the metric tensor on M). We mention the best known
results.

1. The Bishop–Gromov comparison theorem. If x ∈ M , then the volume of
the ball about x with radius r is growing no faster than the volume of the ball
in the model space of constant sectional curvature K. The model spaces are the
sphere of curvature K if K > 0, Rd if K = 0, and the Lobachevskii space of
curvature K if K < 0.

2. The Bonnet–Myers compactness theorem. If K > 0, then the diameter of M
does not exceed π

√
(d− 1)/K .
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3. The Lévy–Gromov isoperimetric inequality. If K > 0, then

ν+(∂A)
ν(A)(d−1)/d

>
µ+(∂B)

µ(B)(d−1)/d
,

where A ⊂M , ν is the Riemannian volume on M , ν+ is the surface measure on M ,
B ⊂ S is a ball in the Riemannian metric on the model sphere S, and µ and
µ+ are analogous measures on S. It is assumed that ν(A)/ν(M) = µ(B)/µ(S).
The Lévy–Gromov inequality is closely connected with the Gaussian isoperimetric
inequality, which can be regarded as an ‘infinite-dimensional version’ of the latter.

This list of interesting results in this area is far from being complete. One
could also mention sharp Sobolev inequalities, Lee–Yau type inequalities, Harnack
inequalities, gradient estimates and estimates of heat kernels, and various topo-
logical results for spaces of non-negative curvature. Also closely related is the
Bakry–Emery theorem, which implies the logarithmic Sobolev inequality. The key
analytic object in this result is the Bakry–Emery tensor HessV + Ric. It turns out
that this tensor is responsible for many analytic properties of manifolds. The idea
of studying the geometry of manifolds by equipping them with probability measures
and considering measure-preserving isometries was proposed by Gromov [160], who
called this object a ‘metric measure space’. A collection consisting of a space,
a metric and a measure on it was called ‘a metric triple’ by Vershik [161], [162].
This topic is presented in detail in the book [17] (see also [163]–[165], [40]), so we
confine ourselves to a brief exposition of the principle concepts and formulations of
the main results. These results are based on the concept of convexity of suitable
energy functionals on the space of measures with the Kantorovich metric. The term
‘displacement convexity’ is common in the literature. Remembering that the inter-
polation of measures by means of optimal transportations defines geodesics in the
space of measures, one can also speak of the geodesic convexity. The Otto calculus
is used as a formal technique for working with convex functionals. We have already
discussed calculating gradients of such functionals. The next formula (see [17]) is
understood heuristically (in the framework of the same Otto calculus). Let dx be
the Riemannian volume, let the functional F be given by the formula

F (µ) =
∫
M

F (ϱ) dν, µ = ϱ dν, ν = e−V dx,

and let v = ∇f be the vector field defining the curve ϱ̇+ div(∇f · ϱ) = 0. Then by
direct calculations one verifies the following formula.

Theorem 3.7.9. The Hessian on the space P2(Rd) has the form

Hessµ F (∇f,∇f) =
∫ [

∥D2f∥2H S + (HessV + Ric)(∇f,∇f)
]
p(ϱ) dν

+
∫

(Lf)2p2(ϱ) dν =
∫

Γ2(f)p(ϱ) dν +
∫

(Lf)2p2(ϱ) dν,

Lf = ∆f − ⟨∇V,∇f⟩, p(ϱ) = ϱF ′(ϱ)− F (ϱ), p2(ϱ) = ϱp′(ϱ)− p(ϱ).

The expression (the iteration of the diffusion operator L)

Γ2(f) = L

(
|∇f |2

2

)
− ⟨∇f,∇Lf⟩
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is called the ‘carré du champ itéré’ operator. The non-trivial and very useful equal-
ity

Γ2(f) = ∥D2f∥2H S + (HessV + Ric)(∇f,∇f)

is called the (generalized) Bochner formula. For V = 0 it takes the form

1
2

∆|∇f |2 = ⟨∇f,∇∆f⟩+ ∥D2f∥2H S + Ric(∇f,∇f). (3.7.3)

The Bakry–Emery tensor is defined by R∞,µ = Ric + HessV . Let us now con-
sider the modified (depending on the dimension) Bakry–Emery tensor

RN,µ = Ric + HessV − ∇V ⊕∇V
N − d

, N > d.

It is straightforward to verify the inequality

Γ2(f) >
(Lf)2

N
+RN,µ(∇f,∇f).

Finally, together with the formula for a Hessian it implies the important estimate

Hessµ F >
∫
RN,µ(∇f,∇f)p(ϱ) dν +

∫
(Lf)2

[
p2(ϱ) +

p(ϱ)
N

]
dν.

In particular, the convexity property of the corresponding functionals can be for-
mally deduced from this inequality.

Example 3.7.10. If R∞,µ > 0, then Hessµ F (∇f,∇f) > 0 for F (ϱ) = ϱ log ϱ. If
RN,µ > 0, then Hessµ F (∇f,∇f) > 0 for F (ϱ) = −N(ϱ1−1/N − ϱ).

Definition 3.7.11. Let V be a twice continuously differentiable function on a
smooth Riemannian manifold M with metric ϱ, and let ν = e−V dx. We shall
say that the space (M,ϱ, ν) belongs to the class CD(K,N), where K ∈ R and
N ∈ [n,∞], if RN,ν > K.

The case N = n makes sense for a constant V . In this case we set RN,µ = Ric
by definition.

Example 3.7.12. The following examples of measures on R with the standard
metric give model examples of spaces in CD(K,N):

1) M = (−π
√
N − 1/(2K), π

√
N − 1/(2K)), K > 0, 1 < N < ∞, ν =

cosN−1
(√

K/(N − 1)x
)
dx,

2) M = R, K < 0, 1 < N <∞, ν = coshN−1
(√

−K/(N − 1)x
)
dx,

3) M = (0,+∞), K = 0, 1 < N <∞, ν = xN−1 dx,
4) K > 0, N = ∞, ν = e−Kx

2/2 dx.

The principle lying at the basis of analytic theorems for metric measure spaces
and comparison theorems in Riemannian geometry says: the analytic properties of
the spaces in CD(K,N) are no worse than those of the corresponding model spaces.
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Remark 3.7.13 (the tangent formalism). The techniques for proving analytic rela-
tions based on the concept of geodesic convexity of functionals give far-reaching
generalizations of many of the above results for Rd to the case of Riemannian man-
ifolds. The following elementary relation is used here: if D2F > K, then

F (tx+ (1− t)y) 6 tF (x) + (1− t)F (y)− Kt(1− t)
2

|x− y|2, 0 6 t 6 1,

F (y) > F (x) + ⟨F (x), y − x⟩ − K

2
|y − x|2,

(3.7.4)
generalized to functionals on P2 in the proper way.

Example 3.7.14 (The Sobolev inequality and the tangent formalism). Let K > 0,
N = ∞, and let T = I+∇ϕ be the optimal transportation of µ to ν on Rd. Consider
the standard interpolation by means of a geodesic between ν and µ = ϱ dν in the
space of measures. We make use of the convexity of the entropy functional, where
F (ϱ) = ϱ log ϱ and p(ϱ) = ϱ (see Theorem 3.7.9). Using (3.7.4) and the formula

∇F (∇ϕ) =
∫ 〈

∇p(ϱ(x))
ϱ(x)

,∇ϕ(x)
〉
ϱ(x) dx,

we have ∫
ϱ log ϱ dν 6 −

∫
⟨∇ϱ,∇ϕ⟩ dν − K

2
W 2

2 (µ, ν),

which we know in the flat case, and which has the logarithmic Sobolev inequality
as a corollary. In the same manner the standard Sobolev inequalities on Rd follow
from the convexity of the functional given by the integral of −ϱ1−1/d.

In particular, in this way we obtain the Bakry–Emery theorem [166].

Theorem 3.7.15. Let M be a Riemannian manifold with a probability measure
µ = e−V dx, where dx is the Riemannian volume. If R∞,µ > K with K > 0, then

the logarithmic Sobolev inequality Entµ f2 6
2
K

∫
M

|∇f |2 dµ holds.

There are different characterizations of (CD(K,N)-spaces (see [143], [136]). We
give the principal results, following [17].

Theorem 3.7.16. A smooth manifold M with a measure ν = e−V dx, where V ∈
C2(M), belongs to the class CD(K,N) precisely when the functional

F (µ) =
∫
M

F (ϱ) dν

is convex for F (ϱ) = −N(ϱ1−1/N − ϱ), or for F (ϱ) = ϱ log ϱ if N = +∞.

This theorem lets us define the class of CD(K,N)-spaces in the weak sense as
the limits of CD(K,N)-spaces in the topology of Gromov–Hausdorff convergence.
Such a limit is a metric measure space, but may fail to be a smooth manifold.
In particular, one can define spaces with Ricci curvature bounded from below as
the (LS)-spaces for which the corresponding functional is convex on the space of
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measures with the Kantorovich metric. There are also various ‘local’ characteristics
of CD(K,N)-spaces. We have already seen in Theorems 3.7.7 and 3.7.8 that in
work with volumes, geometric inequalities, and the change of variables formula
the distortion coefficients for shifts along geodesics arise in a natural way. Due to
their variational nature these coefficients are solutions to the Jacobi equation. Its
solutions can be estimated by standard methods. For the proof of the following
fact, see [17].

Theorem 3.7.17. Let K > 0 and N < ∞. Any weak CD(K,N)-space satisfies
the inequality diam(supp ν) 6 π

√
(N − 1)/K .

3.7.5. Geometric flows: flows of Gaussian curvature and parabolic equa-
tions. In this subsection we consider the so-called Gauss transportations of mea-
sures, which is a class of close-to-optimal maps of measures. The general form of
a Gauss transportation is T = ϕ∇ϕ/|∇ϕ|, where ϕ is a function (a potential) with
convex sets At = {ϕ 6 t}. For a broad class of measures the existence of such
maps is established in [167]. The name ‘Gauss’ is due to the fact that this object
is closely connected with Gauss (spherical or normal) maps of surfaces, and also
with Gaussian curvature flows. Let us consider a simple example. Let γ : S1 → R2

be a diffeomorphic embedding of the circle in the plane, that is, γ(S1) is a smooth
closed contour without self-intersections bounding a simply connected area. Let
γt : S1 → R2 be the family of curves given by the equations

γ0 = γ,
d

dt
γt(s) = −K(γt(s)) · n(γt(s)),

where K(γt(s)) and n(γt(s)) are the curvature and the outer normal of the curve γt
at the corresponding point. In other words, γt is a flow of curves starting at γ and
moving with velocity K in the direction of the normal (that is, inwards if K > 0
and outwards if K < 0). In the literature this object is called a ‘curve shortening
flow’ and is the simplest example of geometric flows, which include mean curvature
flows and Gaussian curvature flows and also Ricci flows. It is readily seen that the
area of the domain At enclosed by γt is changing at the constant rate

d

dt
H 2(At) = −

∫
γt

K dH 1 = −2π.

The latter equality holds by the Gauss–Bonnet theorem. It is not difficult to prove
that the length of the contour ∂At is changing according to the formula

d

dt
H 1(∂At) = −

∫
γt

K2 dH 1.

The formula for the variation of the area shows that as time goes on, the curves
must shrink to some set of measure zero. This is indeed so. Moreover, it is known
that even if the initial curve γ is non-convex (that is, the set A0 is not convex),
the curves become convex in finite time. Convexity is then further preserved, and
the sets At are embedded one in another: At2 ⊂ At1 if t2 > t1. In the course of
time the set At becomes more and more ‘round’, which means that the curvature
of γt is distributed more and more uniformly on the curve. Finally, the curves are
shrinking to a point. Flows of manifolds constitute a natural generalization of this
construction. Let M ⊂ Rd be a d−1-dimensional surface in Rd. A geometric flow is
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a family of embeddings Mt ⊂ Rd with M0 = M that are moving in the direction of
the normal n with some velocity F : ẋ(s) = −F (x)·n(x). If F is the mean curvature
H, then one speaks of a mean curvature flow. If F is the Gaussian curvature K,
then one speaks of a Gaussian curvature flow. Unlike in the one-dimensional case,
both these and other flows can be much less regular. In the multidimensional case
a discontinuity may appear in finite time and a connected manifold may split into
parts. However, if the initial surface is convex, then both types of flows preserve
convexity, and the surface will shrink to a point in finite time. In the case of mean
curvature flows this was proved in [168] and in the case of Gaussian curvature flows
it was proved in [169].

We explain a connection between curvature flows and transportations of mea-
sures. Let {γt} be a flow of one-dimensional curves in the plane and let γ = γ0

be a smooth convex curve. As we know, all other curves γt remain convex and
the flow exists for some finite time T0. Let ϕ be the function equal to T0 − t on
γt. What is the image of Lebesgue measure under the map T = ϕ∇ϕ/|∇ϕ|? We
observe that T = ϕ · n, where n is the normal to γt. Let v be a tangent vector
to γt, so that (n, v) is an orthonormal basis. We differentiate T in this basis. Since
ϕ is constant on γt, we find that ∂nT = ∂nϕ · n + ϕ · ∂nn and ∂vT = ϕ · ∂vn.
We note that ∂vn = Kv (the Frenet formula) and ∂nϕ = |∇ϕ|. Therefore, we get
that detDT = Kϕ|∇ϕ|. By the change of variables formula, Lebesgue measure is
taken to the measure ϱ dx under the action of T , where ϱ(ϕ∇ϕ/|∇ϕ|)Kϕ|∇ϕ| = 1.
The level sets {x : ϕ(x) = T0 − t} of the function ϕ change with the velocity
1/|∇ϕ|. Since we are dealing with the curvature flow, K|∇ϕ| = 1. Therefore,
ϱ(ϕ∇ϕ/|∇ϕ|) = 1/ϕ, that is, the image of Lebesgue measure with respect to the
map T is the measure ν = dx/|x|. In the general case the following theorem is true.

Theorem 3.7.18. Let A ⊂ Rd be a compact convex set and let µ = ϱ0 dx be
a probability measure on A equivalent to the restriction of Lebesgue measure. Let
ν = ϱ1 dx be a probability measure on Br = {x : |x| 6 r} equivalent to the restriction
of Lebesgue measure. Then there exist a Borel map T : A → Br and a continuous
function ϕ : A → [0, r] with convex sets As = {ϕ 6 s} such that ν = µ ◦ T−1 and
T = ϕ · n almost everywhere with respect to H d , where n = n(x) is the unit outer
normal vector to the boundary of the sublevel set {y : ϕ(y) 6 ϕ(x)}.

If the function ϕ is smooth, then the level sets of ϕ move according to the fol-
lowing equation of the Gaussian curvature flow:

ẋ(s) = −sd−1 ϱ1(sn)
ϱ0(x)

K(x) · n(x),

where x(0) ∈ ∂A is an arbitrary initial point. If the set A is strictly convex, then
ϕ
∣∣
∂A

= r .

The proof is based on optimal transportation techniques. As a corollary we
obtain a transport proof of the existence of the Gauss flow for strictly convex
surfaces (see details in [167]). We note that by a change of coordinates the equation
of the Gaussian curvature flow reduces (at least locally) to the Monge–Ampère
parabolic equation

∂tu(t, x) detD2
xu(t, x) = f(t, x), u(0, x) = u0, (t, x) ∈ R+ × Rd−1.



The Monge–Kantorovich problem 867

The function u is assumed to be convex in x and increasing in t. This equation
can be rewritten in a ‘transport’ form. The map T : (t, x) 7→ (⟨x,∇xu⟩ − u,∇xu)
serves as a ‘parabolic’ transportation. In addition, detDT = ∂tudetD2

xu. For
a development of this theme (the change of variables formula, connections with
the parabolic Monge–Ampère equation, and the parabolic maximum principle), see
[170]. On parabolic optimal equations, see also [171].

3.7.6. Geometric flows: Ricci flows. Let M be a smooth n-dimensional Rie-
mannian manifold with metric g. The evolution of g defined by the equation
∂g/∂t = −2 Ric(g) is called the Ricci flow. Ricci flows became a main tool in
the proof by G. Ya. Perelman of the Poincaré conjecture. In the first approxima-
tion the Ricci flow is a non-linear analogue of the heat semigroup and acts on the
manifold as an ‘averaging’. Nevertheless, the hope that under the action of the Ricci
flow the manifold will shrink to a space of constant curvature is not realized. It
turns out that singularities of the manifold may arise. In order to prevent this,
one has to complicate the procedure and control various analytic characteristics,
for example, constants in Sobolev-type inequalities on the manifold. Among other
things this is done by the method of introducing various functionals such as the
entropy or energy functionals, which turn out to be monotone under the action
of the Ricci flow. As we have seen, for two gradient flows µ1

t and µ2
t of a convex

functional the Kantorovich distance t 7→ W2(µ1
t , µ

2
t ) is a non-increasing function.

In particular, monotonicity holds for the diffusion with generator ∆ − ∇V · ∇ for
a convex function V . It turns out that a suitable generalization of this property to
Ricci flows implies the monotonicity of certain functionals as proved by Perelman.
Let us consider an example from [172]. We introduce the ‘reverse’ time τ = b − t
and consider the non-linear ‘adjoint’ heat equation

∂u

∂τ
= ∆g(τ)u−

1
2

Ru,

where R = Tr(Ric) is the scalar curvature, ∆g(τ) is the Laplace–Beltrami operator
in the metric g(τ), and u(x, 0) us a non-negative function with

∫
M
u(x, 0) d vol0 = 1,

where volt is the Riemannian volume corresponding to the metric g(t). Differenti-
ating the corresponding quantities with respect to t and using the above equations,
one can see that νt = u(τ, x) volτ is a probability measure for all τ . Here the for-
mula d volτ /dτ = 2−1 Tr(dg(τ)/dτ) volg(τ) for the volume evolution is used. The
flow of measures constructed in this way will be called a ‘diffusion’. Moreover, the
integral ∫

f(x, t) νt(dx)

is constant if f is a solution of the heat equation ∂tf(x, t) = ∆g(t)f(x, t).
Let us now consider two diffusions ν1

τ and ν2
τ . It is proved in [172] (see also [173])

that the functions τ 7→ W
g(τ)
1 (ν1

τ , ν
2
τ ) and τ 7→ W

g(τ)
2 (ν1

τ , ν
2
τ ) are decreasing (this

generalizes the monotonicity property of the standard Kantorovich distance with
respect to the Brownian diffusion in the flat case). The proof for W1 is based on
the following observations.

1) The Lipschitz constant of a function f satisfying the heat equation ∂tf =
∆g(t)f is non-increasing along t. This can be seen by applying the Bochner for-
mula (3.7.3) to g(t) and f and computing ∂|∇f |2g(t)/∂t. Taking into account that
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d

dt
A(t)−1 = −A(t)−1 d

dt
A(t)A(t)−1 for any differentiable matrix function, we get

that

∂

∂t
|∇f |2g =

∂

∂t
(gijfxifxj ) = −|∇f |2∂tg + 2⟨∇f,∇∆f⟩

= |∇f |2∂τg + ∆|∇f |2 − 2|Hess(f)|2 − 2 Ric(∇f,∇f).

Therefore (in the metric g(t)), ∂|∇f |2/∂t = ∆|∇f |2 − 2|Hess(f)|2 6 ∆|∇f |2. The
desired property follows by the maximum principle.

2) We have the duality relation

W
g(τ)
1 (ν1

τ , ν
2
τ ) = max

{∫
ϕdν1

τ −
∫
ϕdν2

τ : ϕ is a 1-Lipschitz function
}
.

If now ϕ is a solution of the dual Monge–Kantorovich problem for the metric gτ0 ,
then, letting ϕτ = −∆g(τ)ϕ, we obtain a family of 1-Lipschitz functions for which
the quantity ∫

ϕdν1
τ −

∫
ϕdν2

τ

is preserved. This immediately implies the monotonicity of W1. A more general
result was obtained in [174], [173]. A natural object connected with Ricci flows is
the so-called Perelman L -length

L (γ) =
∫ τ2

τ1

√
τ(R(γ(τ), τ) + |γ′(τ)|2g(τ)) dτ,

where γ is some curve in M (for each moment τ its own Riemannian metric is
involved); see [175]. The indicated L -functional determines a Riemannian ‘met-
ric’ on M × [τ1, τ2] (this functional does not completely correspond to the classical
concept of length, since L may be negative). P. Topping considered an L -optimal
transportation of probability measures and the corresponding Kantorovich ‘dis-
tance’. It turns out that on the space of measures there is a functional Θ con-
structed as a certain ‘renormalized’ Kantorovich L -distance and possessing mono-
tonicity along the flow of diffusions. From the monotonicity of this functional one
can derive (by a suitable limit procedure) both the result of McCann and Topping
in [172] and the monotonicity of the so-called W -entropy introduced by Perelman in
his proof of the Poincaré conjecture.

3.7.7. Transport networks. The theory of optimal transport networks is an
interesting and in a sense alternative branch of the theory of optimal transporta-
tion. Unlike the familiar regular solutions to the Monge–Kantorovich problem, the
behaviour of solutions to problems in the theory of transport networks is com-
pletely different. Visually these solutions can be represented as discrete collections
of one-dimensional branching objects similar to trees or blood vessels. The cost of
transportation can be easily defined on discrete objects. For example, suppose that
for a discrete set of vertices (terminals) we are given flows between ϕ terminals.
The total cost of transportation equals

∑
i ϕ

α
i λi for some constants 0 < α < 1

(λi is the edge length). For formulating the problem in the continuous case we
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recall that the Monge–Kantorovich problem admits a formulation in the language
of dynamical optimal plans, that is, measures on the space of curves. Similarly, an
optimal transport network is defined as a measure P on the space Ω of Lipschitz
curves γ : [0,+∞) → Rd with given projections P ◦ π−1

0 (‘the irrigating measure’)
and P ◦ π−1

∞ (‘the irrigated measure’) that minimizes Gilbert’s functional

E α(P ) =
∫

Ω

∫
R+
|γ(ω, t)|α−1

P |γ̇(t)| dt dP (γ).

Here 0 6 α 6 1 and the quantity |γ(ω, t)|P , called the multiplicity, is defined as
P ({γ : there is a t for which γ(t) = x}). When α = 1 we obtain the classical Monge
problem. For more details on this, see [176], [177].

3.8. Infinite-dimensional Monge–Kantorovich problems

3.8.1. Existence of optimal maps on the Wiener space. In this subsection
we discuss analysis on an infinite-dimensional locally convex space X equipped with
a Radon Gaussian measure γ.

Definition 3.8.1. A Radon probability measure γ on a locally convex space X is
said to be Gaussian if its one-dimensional image γ ◦ f−1 is a Gaussian measure
for all f ∈ X∗. If all the measures γ ◦ f−1 are symmetric, then γ is said to be
symmetric or centred.

Below we shall assume for simplicity (if is not explicitly stated otherwise) that
X = R∞ (the countable power of the real line), and by an infinite-dimensional
Gaussian measure we shall mean the countable product γ =

⊗∞
i=1 γi of the standard

Gaussian measures on the real line. According to the well-known Tsirelson theorem,
every centred Radon Gaussian measure not concentrated on a finite-dimensional
subspace is isomorphic to γ via a measurable linear map, so the results discussed
below are valid for the whole class of these measures. The general theory of Gaussian
measures is presented in detail in the book [104]. Below we briefly discuss some
particular features of analysis on a space with a Gaussian measure. Unlike in the
finite-dimensional case, the measure γh obtained from the measure γ by a shift by
some vector h ∈ H, that is, γh(A) = γ(A − h), need not be absolutely continuous
with respect to γ. Let us consider this question for the countable product γ =⊗∞

i=1 γi. Let h = (hi) ∈ R∞. A formal computation of the Radon–Nikodym
density gives the expression

dγh
dγ

= E

( ∞∑
i=1

hixi −
1
2

∞∑
i=1

h2
i

)
. (3.8.1)

This makes sense if
∑∞
i=1 h

2
i < ∞, that is, h ∈ l2. Indeed, the coordinate func-

tions xi are independent standard Gaussian random variables on the space R∞ with
the measure γ. Since ∥Sm+n − Sm∥2L2(γ) =

∑m+n
i=m+1 h

2
i , where Sn =

∑n
i=1⟨x, hi⟩,

the series
∑∞
i=1 hixi converges in L2(γ) for h ∈ l2. Moreover, one has convergence

γ-a.e., since {Sn} is a martingale with supn ES2
n < ∞. This implies the equiv-

alence of the measures γh and γ for h ∈ l2. But if h /∈ l2, then the measures
γ and γh are mutually singular, since one can find an element k ∈ l2 for which
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n=1 knhn = +∞, and then the set K of sequences (xn) for which the series of

terms knxn converges has γ-measure 1, but (K + h) ∩K = ∅.

Definition 3.8.2. The space H = {h ∈ X : γh ∼ γ} is called the Cameron–Martin
space of the measure γ.

It is clear from what has been said that γh ∼ γ (that is, the measures are
equivalent: each of them is absolutely continuous with respect to the other) for all
h ∈ H, and for all other h the measures γ and γh are mutually singular. The space
H is linear and has measure zero with respect to γ if it is infinite-dimensional.

We recall that the Wiener process {wt}t∈[0,1], w0 = 0, gives a measure on the
space of paths on [0, 1]. In a special way it can be restricted to the space of
continuous paths, which gives the Wiener measure PW on the space C[0, 1] of conti-
nuous functions.

Example 3.8.3. For the countable product γ of standard Gaussian measures we
have H = l2. For PW the Cameron–Martin space is the Sobolev class

W 2,1
0 = {h : h is absolutely continuous, h(0) = 0, h′ ∈ L2[0, 1]}.

Every vector h in the Cameron–Martin space defines a so-called measurable
linear functional ĥ on X. For γ =

∏∞
i=1 γi this is ĥ(x) =

∑∞
i=1 hixi. In the case of

the measure PW this is the stochastic integral

w 7→
∫ 1

0

h′(t) dwt

of the deterministic function h′. Thus, to the vector h there corresponds a random
variable (a measurable linear functional) ĥ on the space with a Gaussian measure.
The space H is equipped with a natural norm by the equality

|h|2H = ∥ĥ∥2L2(γ) =
∫
X

ĥ2 dγ,

with which H becomes a separable Hilbert space.
Analysis on the space X with the Gaussian measure γ is closely related to the

Cameron–Martin space. In a certain sense, naturally differentiable functions are
differentiable only along the Cameron–Martin space. With this understanding of
differentiation, it is possible to construct analogues of Sobolev spaces on the Wiener
space. For defining these Sobolev spaces let us introduce some notation. As before,
it is convenient to assume that X = R∞ and x = (xi). Let L2(γ,H) denote the
Hilbert space of H-valued γ-measurable maps v with finite norm

∥v∥L2(γ,H) =
(∫

X

|v(x)|2
H
γ(dx)

)1/2

.

The Hilbert–Schmidt norm of a symmetric operator A on H is defined by the
formula ∥A∥H =

(∑∞
i=1(Aei, Aei)H

)1/2, where {ei} is an orthogonal basis in H.
The σ-algebra generated by the coordinate functions x1, . . . , xn is denoted by Fn.
The space FC∞b of smooth cylindrical functions consists of all functions of the form
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ζ(x1, . . . , xn), where ζ ∈ C∞b (Rn) for some n. The Sobolev class W 2,1(γ) consists
of all functions f ∈ L2(γ) having a generalized gradient ∇Hf ∈ L2(γ,H) along H
determined by the equality∫

X

∂hϕf dγ = −
∫
X

ϕ⟨∇Hf, h⟩H dγ +
∫
X

ϕfĥ dγ

for all h ∈ H and ϕ ∈ FC∞
b , where ∂hϕ(x) = limt→0(ϕ(x + th) − ϕ(x))/t. The

Sobolev class W 2,2(γ) consists of the functions that are twice H-differentiable in
the generalized sense and have finite norm

∥f∥W 2,2(γ) =
(∫

X

f2 dγ +
∫
X

|∇Hf |2H dγ +
∫
X

∥D2
Hf∥2H dγ

)1/2

.

The matrix elements ∂ei
∂ej

f of the operator D2
Hf are defined via the integration

by parts formula.
Finite-dimensional results independent of the dimension (the logarithmic Sobolev

inequality and so on) are automatically true on the infinite-dimensional space if in
place of the usual Euclidean norm we take the norm on the Cameron–Martin space.
For example, the logarithmic Sobolev inequality takes the form∫

f2 log
f2

∥f∥2L2(γ)

dγ 6 2
∫
|∇Hf |2H dγ.

The Radon–Nikodym density dγh/dγ in the case of an abstract Gaussian measure
has the form

dγh
dγ

= E

(
ĥ(x)− 1

2
|h|2H

)
.

In the case γ =
⊗∞

i=1 γi this is the formula (3.8.1). In the case of PW we arrive at
the classical Cameron–Martin formula

dPWh
dPW

= E

(∫ 1

0

h′(t) dwt −
1
2

∫ 1

0

|h′(t)|2 dt
)
.

For Gaussian measures it is useful to consider non-linear shifts along the Cameron–
Martin space of the form

T (x) = x+ F (x), (3.8.2)

where F is a map with values in H. Under rather broad assumptions it is possible to
prove for maps of this form that the measure γ ◦T−1 is absolutely continuous with
respect to γ and to write explicitly the change of variables formula. For example,
such maps can be defined by solutions to stochastic differential equations, and the
corresponding ‘change of variables formula’ is called Girsanov’s formula. For quite
a long time it was an open question (discussed in particular in [178]) as to which
measures of the form ν = g · γ are images of γ under maps of the form (3.8.2). An
answer was obtained in [179].

Theorem 3.8.4. Every probability measure of the form ν = g · γ is representable
in the form ν = γ ◦ T−1 , where T (x) = x+ F (x), F : X → H .
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The map T was constructed with the aid of triangular maps, and an analogue
of the transport inequality for triangular maps was essentially used; such maps
are discussed in the last section. However, the question is open as to whether
a map T of the form (3.8.2) can itself always be chosen to be triangular. As
we shall see, non-linear shifts along the Cameron–Martin space arise also in the
Monge–Kantorovich problem for | · |2H , which was first studied by Feyel and Üstünel
[180], [181]. In this situation, the problem is to minimize the functional

KH(µ, ν,m) =
∫
X×X

|x− y|2H dm, m ∈ Π(µ, ν).

Let
W2(µ, ν) =

√
KH(µ, ν) .

Letting KH(µ, ν) = inf{KH(µ, ν,m) : m ∈ Π(µ, ν)} and introducing the finite-
dimensional continuous functions hn(x, y) =

∑n
i=1 |xi − yi|2, we note that

KH(µ, ν) = sup
n
KH,n(µn, νn), (3.8.3)

where KH,n corresponds to the finite-dimensional cost function hn, and µn and νn
are the projections of µ and ν on Rn. This follows from the monotone convergence
theorem and the facts that hn ↑ h and the integral of the function hn with respect
to the measure σ equals the integral with respect to the projection of σ on Rn×Rn.

A substantial novelty in this situation is that here we have a much more narrow
class of measures m on which KH(µ, ν,m) assumes finite values. Partly this is
connected with the fact that h(x, y) = +∞ almost everywhere with respect to γ⊗γ.
We have not encountered this phenomenon in the previous sections. Of course,
if we deal with measures concentrated on H, then all these troubles disappear,
but the whole substantive part of the case attached to the measure γ will also
disappear with them. We stress that this concerns both measures and not just µ.
For example, if µ = γ and the measure ν is concentrated on H (even if it is the
Dirac measure at the origin), then we have KH(µ, ν,m) = +∞ for all m ∈ Π(µ, ν)
since otherwise writing m in the form m(dxdy) = my(dx)ν(dy), we get for ν-a.e.
y ∈ H that the measure my must also be concentrated on H (if |x − y|H < ∞,
then x ∈ H), and hence γ(H) = 1, which is false. If the quantity KH(µ, ν) is finite,
then the general reasoning about the existence of the corresponding solution to the
Kantorovich problem remains valid due to the fact that the lower semicontinuity
of the functional m 7→ KH(µ, ν,m) is preserved here.

We consider another example: ν is the image of γ under the homothety x 7→ 2x.
Then KH,n(γn, νn) = n, since the map Tx = 2x taking γn to νn is a gradient, and
hence by the uniqueness theorem it serves as the optimal transportation of γn to νn
for the cost function hn, and then KH,n(γn, νn) = M(γn, νn, T ) is the integral of
|x− 2x|2H = |x|2H with respect to the measure γn and equals n.

Thus, we have to impose certain additional conditions on the measure ν. A com-
mon (but not the only possible) situation arises if both measures µ and ν are abso-
lutely continuous with respect to γ (but even this still does not guarantee that
KH(µ, ν) < ∞). An effectively verifiable sufficient (but by no means necessary)
condition is the following.
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Proposition 3.8.5. Let µ = ϱµ ·γ and ν = ϱν ·γ be probability measures such that
Entγ µ <∞ and Entγ ν <∞. Then

KH(µ, ν) = W 2
2 (µ, ν) 6 4 Entγ µ+ 4 Entγ ν. (3.8.4)

Proof. This follows from (3.8.3) and the finite-dimensional Talagrand inequality
(3.3.2), since Entγ µ = supn Entγn µn and similarly for ν. The last facts follow
from the fact that the Radon–Nikodym densities ϱn = dµn/dγn, considered on the
space R∞ with the measure γ, form a martingale with respect to the σ-algebras
generated by the projections on Rn, and it converges γ-a.e. to ϱ = dµ/dγ. �

We note that by Jensen’s inequality for the conditional expectations the quanti-
ties Entγn

µn are increasing and do not exceed Entγ µ.
Without Talagrand’s inequality it is not even obvious that KH(γ, ν) < ∞ for

the measure ν = γ/γ(A), where A is a set with γ(A) > 0. Thus, here it is rare to
find explicitly at least one measure σ ∈ Π(µ, ν) with K(µ, ν, σ) <∞.

Of course, in addition to being an analogue of the Kantorovich problem the
problem here is also an analogue of the Monge problem of minimizing the functional∫

X

|x− T (x)|2H µ(dx)

over maps T taking the measure µ to the measure ν, where T must necessarily be
of the form (3.8.2). Consider a pair of probability measures µ = ϱµ · γ, ν = ϱν · γ.
We are interested in the question of whether one can map µ to ν by a map of the
form (3.8.2) minimizing the indicated functional. It turns out that this is possible,
and under broad assumptions F must in a certain sense be a gradient along H. We
remark that even for the identity map T (x) = x the equality x = ∇H |x|2H/2 is not
meaningful in the infinite-dimensional space, since the Cameron–Martin space has
measure zero. Therefore, one cannot expect that T itself will be a gradient along H.
A situation arises that is similar to the situation on manifolds. One should look for
a solution of the form

T (x) = x+∇Hf(x),

where f is a so-called 1-convex function (see [182]). A function f is said to be
1-convex if the map h 7→ Fx(h) := f(x + h) + |h|2/2 from H to L0(γ) (with its
natural ordering) is convex, that is, given h, k ∈ H and α ∈ [0, 1], one has

Fx(αh+ (1− α)k) 6 αFx(h) + (1− α)Fx(k) for γ-a.e. x,

where the corresponding measure-zero set may depend on h, k, and α. One can
show that, given an orthonormal basis {ei} in H, for every fixed i there is a version
of f such that the functions t 7→ f(x + tei) + t2/2 are convex. Hence, the partial
derivatives ∂eif exist almost everywhere. We define ∇Hf(x) as

∑∞
i=1 ∂eif · ei

if this series converges in H. Finite-dimensional 1-convex functions are (up to
modifications) functions of the form ϕ(x)− |x|2/2, where ϕ is convex. It should be
noted that typically in such problems partial derivatives are defined in the Sobolev
sense (see [104]).

We now give a result of Feyel and Üstünel [180].
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Theorem 3.8.6. Let µ = ϱµ · γ and ν = ϱν · γ be probability measures such that
Entγ µ < ∞ and Entγ ν < ∞. Suppose additionally that µ satisfies the Poincaré
inequality (for instance, µ = γ), that is, there exists a C > 0 such that∫ (

f −
∫
f dµ

)2

dµ 6 C−1

∫
|∇Hf |2 dµ for all f ∈ FC∞

b .

Then there exists a map T (x) = x+ F (x) such that ν = µ ◦ T−1 and F = ∇Hf ∈
H , where f is a 1-convex function. The map T is unique up to µ-equivalence, is
a unique solution to the Monge problem, and generates a unique solution to the
Kantorovich problem.

Proof. As indicated above, the Kantorovich problem described for the functional
KH and the pair µ, ν has a solution. Moreover, W2(µ, ν) < ∞ by (3.8.4). We
assume further thatX = R∞ and γ is the countable power of the standard Gaussian
measure. Then H = l2, so in the notation for the norm and gradient we omit the
index H. Denote by π and πn some solutions to the Kantorovich problem for the
pairs µ, ν and µn, νn, respectively. Since the projection of the measure π on Rn×Rn
has the marginals µn and νn, we obtain the obvious inequality

W2(µn, νn) 6
∫ n∑

i=1

|xi − yi|2 π(dx dy) 6 W2(µ, ν).

Similarly, W2(µm, νm) 6 W2(µn, νn) if m 6 n. It follows from this and the above
inequalities that limn→∞W2(µn, νn) = W2(µ, ν). Let Φn(x), Ψn(y) be a solution
to the dual Kantorovich problem for µn, νn, and let ϕn(x) = Φn(x) − |x|2/2 and
ψn(y) = Ψn(y)− |y|2/2. We observe that

Fn(x, y) = ϕn(x) + ψn(y) +
1
2
|x− y|2 > 0,

and exact equality is attained πn-a.e. It is clear that∫
Fn(x, y)π(dx dy) = W2(µ, ν)−W2(µn, νn) → 0.

Therefore, Fn → 0 in L1(π). Hence the sequence {Fn} is uniformly integrable.
Since µ satisfies the Poincaré inequality, this inequality holds for the projections
µn (with the same constant). By the Poincaré inequality,

W2(µ, γ) > W2(µn, γn) =
1
2

∫
|∇ϕn|2 dµn >

C

2

∫ (
ϕn −

∫
ϕn dµn

)2

dµn.

Subtracting constants, we pass to the case
∫
ϕn dµn = 0. The estimate obtained

gives the uniform integrability of the sequence {ϕn} with respect to the measure µ.
Hence, the sequence {ψn} is uniformly integrable with respect to the measure ν.
One can thus assume that the sequences {ϕn} and {ψn} are uniformly integrable
with respect to the measure π. By a well-known result, for some subsequence of
indices {nk} sequences {ϕ′n} and {ψ′n} of convex combinations of the functions ϕnk
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and ψnk
converge π-almost everywhere and in L1(π) to some functions ϕ and ψ,

respectively. Let us set

ϕ = lim supϕ′n, ψ = lim supψ′n

everywhere (and not just where they converge). We have ϕ(x)+ψ(y)+|x−y|2/2 > 0,
and the equality is satisfied π-a.e. Fix an h ∈ H. The equality |x + h − y|2 =
|x − y|2 + 2⟨h, x − y⟩ + |h|2 implies that ϕ(x + h) − ϕ(x) > −⟨h, x − y⟩ − |h|2/2
π-a.e. The latter means that y = x+∇ϕ(x) for µ-a.e. x, and T (x) = x+∇ϕ(x) is
the desired map. We now observe that every L1(π)-limit ϕ̃ of convex combinations
of the functions ϕn will satisfy the equality ∇ϕ̃(x) = y − x π-a.e. It follows that
∇ϕ(x) = ∇ϕ̃(x) for µ-a.e. x. If now γ̃ is some other solution to the Kantorovich
problem, then it is also concentrated on the graph of ∇ϕ, where ϕ is any limit point
of our finite-dimensional approximations. It follows that we have obtained a unique
solution to both the Kantorovich problem and the Monge problem. �

Remark 3.8.7. It is not difficult to prove that the map T (x) = x+∇ϕ(x) is invertible
and T−1(y) = S(y) for ν-a.e. y and that S(y) = y+∇ψ(x) is also an optimal map.

The paper [180] contains a formulation (with a proof that is not completely clear
to us) of a more general result on the existence of an optimal map between a pair
of measures with a finite Kantorovich distance. In [183] an alternative proof of the
existence of a transportation of a measure f · γ to the measure γ was proposed,
based on the inequality (3.3.1). Using this inequality in the case when m = γ,
µ = f · γ, and ν = g · γ, we obtain the inequality

Entµ ν =
∫
g log

f

g
dγ >

1
2

∫
|∇Φf −∇Φg|2f dγ. (3.8.5)

From (3.8.5) one can readily deduce the existence of an optimal map T of a measure
f · γ with Entγ f < ∞ to the measure γ. Indeed, the finite-dimensional optimal
transportations Tn mapping fn · γ to γ, where fn = EFn

γ f , satisfy the inequality∫
fn log

fm
fn

dγ >
1
2

∫
|∇Φfm

−∇Φfn
|2fm dγ.

From the fact that
lim

n,m→∞

∫
fn log

fm
fn

dγ = 0,

it is easy to show that the sequence {∇Φfn
} converges f ·γ-a.e. This implies the exis-

tence of the desired map. Moreover, this proof can be extended to broader classes
of measures; in particular, it can be used to construct examples of optimal trans-
portations of mutually singular infinite-dimensional measures (see Theorem 3.8.8).

In the recent paper [184] the existence of an optimal map was established between
any two probability measures absolutely continuous with respect to γ.

The question of which pairs of measures (mutually singular in general) possess
optimal transportations is undoubtedly a central issue in the infinite-dimensional
Monge–Kantorovich theory. A weaker version of a solution to this problem is
given in the next theorem, which we state without proof (it is based on the esti-
mate (3.8.5)). In this theorem T is obtained as a limit (almost everywhere) of
finite-dimensional optimal maps.
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Theorem 3.8.8. Let µ be a probability measure on R∞ . Suppose that the finite-
dimensional projections µn = µ ◦ P−1

n = gn dx have the property that

lim
m→∞

sup
n>m

e(n,m) = 0,

where e(n,m) = infτ∈M(n,m) Entµm×τ
(
dµn/d(µm × τ)

)
, and M(n,m) is the space of

probability measures on the subspace Lm,n generated by {em+1, . . . , en}. Then there
is a map T of µ to γ almost everywhere equal to the limit of the finite-dimensional
optimal maps.

The hypothesis of the theorem is satisfied for any measure µ having finite entropy
with respect to some product measure.

3.8.2. The change of variables formula. Under some restrictions on the mea-
sures, it becomes possible to prove an infinite-dimensional change of variables for-
mula for optimal maps. Let γ be the standard Gaussian measure on R∞ as above.
Let T (x) = x+∇ϕ(x) be the optimal transportation of the measure g · γ to γ, and
let S(x) = T−1(x) = x + ∇ψ(x) be the inverse map. A formal expression for the
change of variables formula takes the form

g = det2(I +D2ϕ)E
(

Lϕ− 1
2
|∇ϕ|2

)
,

where D2 is the second derivative,

Lϕ(x) = ∆ϕ(x)− ⟨x,∇ϕ(x)⟩ = divγ(∇ϕ)(x)

is the Ornstein–Uhlenbeck operator, and det2 is the Fredholm–Carleman determi-
nant defined by the formula det2(I+K) =

∏∞
i=1(1+ki)e−ki , whereK is a symmetric

Hilbert–Schmidt operator with eigenvalues ki. In the class W p,2(γ) one can intro-
duce the operator L as the generator of the Ornstein–Uhlenbeck semigroup in
Lp(γ) or one can define L f as a limit in Lp(γ) of the functions L fn for some
functions fn ∈ FC∞

b convergent to f in W p,2(γ).
For the inverse map T−1(x) = x+∇ψ(x) the change of variables formula takes

the form
g(x+∇ψ(x)) det2(I +D2ψ(x))E

(
Lψ − 1

2
|∇ψ|2

)
= 1. (3.8.6)

In the general case the question as to which maps satisfy the change of variables
formula is non-trivial (see [104], [67], and [178]). In our case one can make use of
a special form of T . The equality (3.8.6) was obtained in [180] under the assumption
that g · γ is uniformly convex, that is, −D2 log g + I > ε Id for some ε > 0. As
shown in [185], under the assumption that Entγ g <∞ and g > c > 0 one has

g = det2(I +D2
aϕ)E

(
Laϕ−

1
2
|∇ϕ|2

)
,

where D2
aϕ and Laϕ are the absolutely continuous parts of D2ϕ and Lϕ, respec-

tively. Similarly, under the assumptions that Entg·γ 1
g <∞ and g < c one has

g(x+∇ψ(x)) det2(I +D2
aψ(x))E

(
Laψ −

|∇ψ|2

2

)
= 1.
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The next theorem is proved in [84].

Theorem 3.8.9. Suppose that Iγg :=
∫ |∇g|2

g dγ <∞. Then D2ϕ belongs to H S

g · γ-a.e.,
∫
∥D2ϕ∥2H S g dγ < ∞, Lϕ ∈ L1(g · γ), and the change of variables

formula g = det(I +D2ϕ)E(Lϕ− |∇ϕ|2/2) holds g · γ-a.e.

In this theorem Lϕ is understood in the sense of integration by parts, but under
the additional condition that 1/g ∈ Lr(γ) for some r > 1 one has the inclusion ϕ ∈
W 2r/(1+r),2(γ), so that Lϕ exists in the sense of W 2r/(1+r),2(γ). In [84] there are
some other results on the regularity of ϕ (see also § 2.2.5). A natural problem in this
area is the regularity of the optimal map (solved partially in Theorem 3.8.9). Let γ
be a Gaussian measure on an infinite-dimensional space, and let T (x) = x+∇ϕ(x)
be the optimal transportation of a probability measure f ·γ to a probability measure
g · γ. It is of interest to find a priori Sobolev estimates for ϕ in the general case.

The Kantorovich metric connected with the Wiener space is studied also in [186].
Optimal transportations on configuration spaces are considered in [187].

3.9. Some other types of transformations of measures

3.9.1. Triangular maps. Suppose that we are given a finite or countable number
of spaces Xk and let X =

∏
kXk. A map T = (T1, T2, . . . ) : X → X is said to be

triangular if Tk(x) = Tk(x1, . . . , xk) for all k. If Xk = R1 for all k, then a triangular
map is said to be increasing if all the functions xk 7→ Tk(x1, . . . , xk) are increas-
ing. Similarly, one defines increasing triangular maps on subsets of R∞. We note
that no monotonicity in other variables is required. Triangular maps appeared in
the 1950s (M. Rosenblatt, H. Knothe; see references in [17]). Later, Gromov used
triangular maps for deriving the classical isoperimetric inequality (see § 3.1). Basic
properties of triangular maps are presented in [29], § 10.10 (vii) and [67], § 10.7.
The word ‘triangular’ in this name is explained by the fact that the derivative
of a differentiable triangular map on Rn is given by a triangular matrix. In spite of
their rather special form, triangular maps possess rich possibilities for transform-
ing measures. In the one-dimensional case Lebesgue measure λ on (0, 1) can be
taken to an arbitrary probability measure ν on (0, 1) by an increasing function T
by using the distribution function Fν of the measure ν (if Fν is strictly increas-
ing, then T = F−1

ν ). It follows from this that any atomless probability measure
µ on the real line can be taken to any probability measure on the real line (if µ
has a positive density, then this transformation can be found as a non-decreasing
function). We show how to construct a triangular map on the plane transforming
an absolutely continuous probability measure µ to a probability measure ν. Let µ1

and ν1 denote the projections of the measures µ and ν on the first coordinate line,
and consider the one-dimensional map T1 taking µ1 to ν1. Let µx1 and νx1 denote
the conditional probability measures on the second coordinate line, x1 ∈ R1. For
µ1-almost every x1 the measure µx1 has a density. Hence, it can be taken to the
measure νT1(x1) by a function x2 7→ T2(x1, x2), which can be made to be increasing
in the case of a positive density. It is clear that T := (T1, T2) is a triangular map
which is increasing if the density of µ is positive. One can prove directly that it
takes µ to ν. The construction is continued inductively by using one-dimensional
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conditional measures on the last coordinate line. Therefore, for any pair of abso-
lutely continuous probability measures on Rn one can construct a triangular map T
transforming one of the measures into the other. A more general fact can be proved
in a completely analogous way.

Theorem 3.9.1. Let X =
∏∞
n=1Xn , where Xn are Souslin spaces. Let µ be a Borel

probability measure on X such that for all n its projections on
∏n
j=1Xj and its con-

ditional measures on Xn have no atoms. Then for every Borel probability measure ν
on X there is a triangular Borel map T : X → X such that µ ◦ T−1 = ν .

If Xn = R1 for all n and the projections of µ on all the spaces Rn have positive
densities, then this triangular map can be made to be increasing. The latter property
uniquely defines it up to µ-equivalence, and it is called the canonical triangular map.

Triangular maps are almost never optimal (except for the one-dimensional case);
this is already seen from the fact that the Jacobi matrix of a triangular map is
triangular and for an optimal map it is symmetric, which can occur simultaneously
only for diagonal matrices. Nevertheless, many properties of increasing triangular
maps are close to properties of optimal transportations. For example, it is proved
in [188] that the following transport inequality holds. A measure e−V dx on Rn is
said to be convex with constant C > 0 if V ′′ > C · Id.

Theorem 3.9.2. Suppose that a Borel probability measure µ on X = R∞ is uni-
formly convex with constant C > 0, that is, its projections on all the spaces Rn are
convex with a constant C > 0, and let H = l2 . If ν ≪ µ is a probability measure
such that f = dν/dµ satisfies f log f ∈ L1(µ), then the canonical triangular map
Tµ,ν has the property that∫

X

|Tµ,ν(x)− x|2
H
µ(dx) 6

2
C

∫
X

f log f dµ.

About probabilistic applications of triangular maps see [188], [189]. In [190]
triangular maps are represented in the form of limits of solutions of the Monge
problem with specially chosen cost functions.

3.9.2. Moser transformations, semigroups, and transport equations.
Some maps transforming a given pre-image measure to a given image measure can
be constructed by means of the classical Liouville theorem on change of volume.
The idea of such constructions goes back to Moser’s paper [191] on diffeomorphisms
of manifolds with measures. For example, in [192] the following construction
was realized. Let us consider the semigroup Pt = etL generated by the elliptic
operator L = ∆− ⟨∇V,∇⟩ = eV div(e−V · ∇), and the flow of probability measures
νt = Pt(e−W+V ) · µ. It is obvious that µ is an invariant measure for Pt, ν0 = ν,
and ν∞ = µ. We write an equation for νt:

d

dt
νt = LPt(e−W+V ) · µ = div

[
∇Pt(e−W+V ) · e−V

]
= div

[
∇ logPt(e−W+V ) · νt

]
.

By Liouville’s theorem, if X(t) is the solution of the equation dX(t)/dt = b(X(t))
with X(0) = I, where b is smooth, then the image ϱt dx of Lebesgue measure with
respect to the diffeomorphism X(t) satisfies the equation ∂ϱt/∂t = div(ϱt · b).
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The corresponding flow of diffeomorphisms is given by the equation dSt/dt =
−∇ logPt(e−W+V ) ◦ St with S0 = Id, where νt and St are related by the equality
νt = ν ◦ S−1

t . In particular, the limiting map S∞ = limt→∞ St takes ν to µ.
For results on evolution equations and results related to optimal transportations,

see [193]. On connections with Young measures, see [194]. On the Monge and Kan-
torovich problems with several measures, see [195] and [15]. Differential forms on
the space of probability measures are considered in [196]. The flow of publications
on the questions considered above is very intensive; the bibliography below covers
considerably less than half of it.
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discontinus”, Mém. Acad. Sci. Inst. France, vol. 29, no. 3, Paris 1887, 208 pp.

[21] В. Н. Судаков, “Геометрические проблемы теории бесконечномерных
вероятностных распределений”, Тр. МИАН СССР, 141, 1976, с. 3–191;
English transl., V.N. Sudakov, “Geometric problems of the theory of
infinite-dimensional probability distributions”, Proc. Steklov Inst. Math. 141
(1979), 1–178.

[22] L. Ambrosio, B. Kirchheim, and A. Pratelli, “Existence of optimal transport maps
for chrystalline norms”, Duke Math. J. 125:2 (2004), 207–241.

[23] L. C. Evans and W. Gangbo, Differential equations methods for the
Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc., vol. 137,
no. 653, 1999, viii+66 pp.

[24] T. Champion and L. De Pascale, “The Monge problem in Rd”, Duke Math. J.
157:3 (2011), 551–572.

[25] В. И. Богачев, “О работах Г.М. Фихтенгольца по теории интеграла”,
Истор.-матем. исслед. Сер. 2, no. 9(44), 2005, с. 252–264. [V. I. Bogachev, “On
G.M. Fichtenholz’s work on the theory of the integral”, Istor.-Mat. Issled. (2),
no. 9(44), 2005, pp. 252–264.]

[26] Л.В. Канторович, Математические методы организации и планирования
производства, Изд-во ЛГУ, Л. 1939, 67 с.; репринтное изд.:, Изд. дом
СПбГУ, СПб. 2012. [L.V. Kantorovich, Mathematical methods for manufacturing,
organizing and planning, Leningrad State University Publishing House, Leningrad
1939, 67 pp.]; Reprint of the 1939 edition, St. Petersburg University Publishing
House, St. Petersburg 2012.

[27] А.М. Вершик, “Многозначные отображения с инвариантной мерой
(полиморфизмы) и марковские операторы”, Проблемы теории

http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1090.35002
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1090.35002
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1090.35002
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0954.35011
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0954.35011
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0954.35011
http://dx.doi.org/10.1007/BF02392620
http://dx.doi.org/10.1007/BF02392620
http://arxiv.org/abs/1011.2911v1
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0990.60500
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0990.60500
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1106.90001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1106.90001
http://dx.doi.org/10.1007/978-3-540-71050-9
http://dx.doi.org/10.1007/978-3-540-71050-9
http://mi.mathnet.ru/eng/rm5406
http://mi.mathnet.ru/eng/rm5406
http://dx.doi.org/10.1070/RM1970v025n05ABEH003798
http://dx.doi.org/10.1070/RM1970v025n05ABEH003798
http://dx.doi.org/10.1070/RM1970v025n05ABEH003798
http://mi.mathnet.ru/eng/tm2577
http://mi.mathnet.ru/eng/tm2577
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0409.60005
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0409.60005
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0409.60005
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0409.60005
http://dx.doi.org/10.1215/S0012-7094-04-12521-7
http://dx.doi.org/10.1215/S0012-7094-04-12521-7
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0920.49004
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0920.49004
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0920.49004
http://dx.doi.org/10.1215/00127094-1272939
http://dx.doi.org/10.1215/00127094-1272939
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1094.01003
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1094.01003
http://mi.mathnet.ru/eng/znsl1960
http://mi.mathnet.ru/eng/znsl1960


The Monge–Kantorovich problem 881

вероятностных распределений. IV, Зап. научн. сем. ЛОМИ, 72, Наука, Л.
1977, с. 26–61; English transl., A.M. Vershik, “Many-valued measure-preserving
mappings (polymorphisms) and Markovian operators”, J. Soviet Math. 23:3
(1983), 2243–2266.

[28] В. Л. Левин, “О теоремах двойственности в задаче Монжа–Канторовича”,
УМН 32:3(195) (1977), 171–172. [V. L. Levin, “Duality theorems in the
Monge–Kantorovich problem”, Uspekhi Mat. Nauk 32:3(195) (1977), 171–172.]

[29] В. И. Богачев, Основы теории меры, т. 1, 2, 2-е изд., НИЦ “Регулярная
и хаотическая динамика”, М.–Ижевск 2006, 584, 680 с.; English transl.,
V. I. Bogachev, Measure theory, vols. I, II, Springer-Verlag, Berlin 2007, xviii+500,
xiv+575 pp.

[30] R. Fortet and E. Mourier, “Convergence de la répartition empirique vers la
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entropies and optimal transportation”, Recent advances in the theory and
applications of mass transport, Contemp. Math., vol. 353, Amer. Math. Soc.,
Providence, RI 2004, pp. 73–94.

http://dx.doi.org/10.1016/S0001-8708(03)00080-X
http://dx.doi.org/10.1016/S0001-8708(03)00080-X
http://dx.doi.org/10.1016/S0001-8708(03)00080-X
http://dx.doi.org/10.1016/j.na.2005.05.069
http://dx.doi.org/10.1016/j.na.2005.05.069
http://dx.doi.org/10.1007/BF02921860
http://dx.doi.org/10.1007/BF02921860
http://dx.doi.org/10.1007/s00526-007-0105-x
http://dx.doi.org/10.1007/s00526-007-0105-x
http://dx.doi.org/10.1007/s00526-007-0105-x
http://dx.doi.org/10.1007/s00222-010-0261-z
http://dx.doi.org/10.1007/s00222-010-0261-z
http://dx.doi.org/10.1007/s002220100160
http://dx.doi.org/10.1007/s002220100160
http://dx.doi.org/10.1007/s002220100160
http://dx.doi.org/10.5802/afst.1132
http://dx.doi.org/10.5802/afst.1132
http://dx.doi.org/10.5802/afst.1132
http://dx.doi.org/10.1016/j.jfa.2010.03.001
http://dx.doi.org/10.1016/j.jfa.2010.03.001
http://arxiv.org/abs/0908.2711
http://dx.doi.org/10.2307/2373688
http://dx.doi.org/10.2307/2373688
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0995.60002
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0995.60002
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0883.60032
http://dx.doi.org/10.1006/jfan.1998.3326
http://dx.doi.org/10.1006/jfan.1998.3326
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1130.53001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1130.53001
http://arxiv.org/abs/math/0211159
http://mi.mathnet.ru/eng/znsl2693
http://mi.mathnet.ru/eng/znsl2693
http://mi.mathnet.ru/eng/znsl2693
http://dx.doi.org/10.1007/BF01425510
http://dx.doi.org/10.1007/BF01425510
http://dx.doi.org/10.1007/s004400050137
http://dx.doi.org/10.1007/s004400050137
http://dx.doi.org/10.1007/s12220-008-9039-6
http://dx.doi.org/10.1007/s12220-008-9039-6
http://dx.doi.org/10.1016/0022-1236(85)90079-5
http://dx.doi.org/10.1016/0022-1236(85)90079-5
http://dx.doi.org/10.4171/RMI/482
http://dx.doi.org/10.4171/RMI/482
http://dx.doi.org/10.4171/RMI/482
http://dx.doi.org/10.1090/conm/353
http://dx.doi.org/10.1090/conm/353
http://dx.doi.org/10.1090/conm/353
http://dx.doi.org/10.1090/conm/353


886 V. I. Bogachev and A. V. Kolesnikov

[114] E. Milman and S. Sodin, “An isoperimetric inequality for uniformly log-concave
measures and uniformly convex bodies”, J. Funct. Anal. 254:5 (2008), 1235–1268.

[115] S. G. Bobkov, “Isoperimetric and analytic inequalities for log-concave probability
measures”, Ann. Probab. 27:4 (1999), 1903–1921.

[116] A. V. Kolesnikov, “Modified log-Sobolev inequalities and isoperimetry”, Atti Accad.
Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18:2 (2007),
179–208.

[117] M. Talagrand, “Transportation cost for Gaussian and other product measures”,
Geom. Funct. Anal. 6:3 (1996), 587–600.

[118] В. И. Богачев, А. В. Колесников, “Интегрируемость абсолютно непрерывных
преобразований мер и применения к оптимальному переносу масс”, Теория
вероятн. и ее примен. 50:3 (2005), 433–456; English transl., V. I. Bogachev
and A.V. Kolesnikov, “Integrability of absolutely continuous transformations of
measures and applications to optimal mass transportation”, Theory Probab. Appl.
50:3 (2006), 367–385.

[119] F. Otto and C. Villani, “Generalization of an inequality by Talagrand and links
with the logarithmic Sobolev inequality”, J. Funct. Anal. 173:2 (2000), 361–400.

[120] S.G. Bobkov, I. Gentil, and M. Ledoux, “Hypercontractivity of Hamilton–Jacobi
equations”, J. Math. Pures Appl. (9) 80:7 (2001), 669–696.

[121] P. Cattiaux and A. Guillin, “On quadratic transportation cost inequalities”,
J. Math. Pures Appl. (9) 86:4 (2006), 342–361.

[122] N. Gozlan, “Characterization of Talagrand’s like transportation-cost inequalities
on the real line”, J. Funct. Anal. 250:2 (2007), 400–425.

[123] N. Gozlan, “A characterization of dimension free concentration in terms of
transportation inequalities”, Ann. Probab. 37:6 (2009), 2480–2498.

[124] I. Gentil, A. Guillin, and L. Miclo, “Modified logarithmic Sobolev inequalities and
transportation inequalities”, Probab. Theory Related Fields 133:3 (2005), 409–436.

[125] H. Djellout, A. Guillin, and L. Wu, “Transportation cost-information inequalities
and applications to random dynamical systems and diffusions”, Ann. Probab.
32:3B (2004), 2702–2732.

[126] F. Bolley and C. Villani, “Weighted Csiszár–Kullback–Pinsker inequalities and
application to transportation inequalities”, Ann. Fac. Sci. Toulouse Math. (6) 14:3
(2005), 331–352.

[127] N. Gozlan, C. Roberto, and P.M. Samson, “A new characterization of Talagrand’s
transport-entropy inequalities and applications”, Ann. Probab. 39:3 (2011),
857–880.

[128] P. Cattiaux, A. Guillin, and L.-M. Wu, “A note on Talagrand’s transportation
inequality and logarithmic Sobolev inequality”, Probab. Theory Related Fields
148:1-2 (2010), 285–304.
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[180] D. Feyel and A. S. Üstünel, “Monge–Kantorovitch measure transportation and
Monge–Ampère equation on Wiener space”, Probab. Theory Related Fields 128:3
(2004), 347–385.
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