
Math-Net.Ru
Общероссийский математический портал

A. V. Arutyunov, Smooth abnormal problems in extremum
theory and analysis, Russian Mathematical Surveys,
2012, Volume 67, Issue 3, 403–457

DOI: 10.1070/RM2012v067n03ABEH004793

Использование Общероссийского математического портала Math-Net.Ru под-

разумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 18.221.97.20

10 января 2025 г., 20:18:30



Russian Math. Surveys 67:3 403–457 c⃝ 2012 RAS(DoM) and LMS

Uspekhi Mat. Nauk 67:3 3–62 DOI 10.1070/RM2012v067n03ABEH004793

To the memory of Evgenii Frolovich Mishchenko

Smooth abnormal problems
in extremum theory and analysis

A. V. Arutyunov
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1. Introduction

Analysis of non-linear extremal problems with constraints (problems on a condi-
tional extremum) is based on the Lagrange principle, put forward by Lagrange at
the end of the 18th century. A rigorous substantiation of the Lagrange principle for
a broad class of problems required the serious efforts of many mathematicians and
was mostly completed in the second half of the 20th century (see [1] and the bibli-
ography there). In effect, this marked the end of the classical stage in the develop-
ment of the theory. However, we shall explain below that the necessary first-order
conditions in the form of the Lagrange principle are only meaningful when the
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constraints satisfy conditions of non-degeneracy (normality). In the abnormal case
the Lagrange principle does not yield information.

The theory of inverse function theorems (more generally, implicit function the-
orems) is a closely related topic. Such theorems provide an important apparatus
for the analysis of non-linear maps and are exceptionally important for theory and
applications. The first inverse function theorems were proved in the second half
of the 19th century, and by the end of the 20th century they had been extended
to a maximally general situation which also includes non-smooth maps. However,
all these results were obtained under the assumption that the map in question is
non-degenerate (normal), which in the smooth case means that the derivative of
the map at the point under consideration defines a surjective linear operator. Thus,
by the end of the last century the classical stage in the development of the theory
was basically complete (see, for instance, [2]). Using two of the problems described,
we shall explain more thoroughly what abnormality means.

The theory of extremal problems. Let X be a vector space. We consider the
problem of minimization with constraints

f0(x) → min, F (x) = 0, (1.1)

where F : X → Y = Rk is a fixed map, and we seek the minimum of the given
function f0 : X → R on the admissible set M = {x ∈ X : F (x) = 0}. For simplicity
we assume first that X is a Banach space (we can even consider X = Rn) and
that f0 and F have continuous second-order derivatives in some neighbourhood of
a point x0 which is a local minimum point in the problem (1.1).1 Then the Lagrange
principle holds at x0. To state this principle let us introduce the Lagrange function

L(x, λ) = λ0f0(x) +
〈
y∗, F (x)

〉
, λ = (λ0, y∗), λ0 ∈ R, y∗ ∈ Y ∗, (1.2)

where the (k + 1)-dimensional vector λ = (λ0, y∗) and its components are called
Lagrange multipliers and the angle brackets, as usual, denote the inner product.2

Theorem 1.1 (Lagrange principle). Let x0 be a local minimum point in the prob-
lem (1.1). Then there exists a Lagrange multiplier λ such that

∂L

∂x
(x0, λ) = 0, λ0 > 0, λ ̸= 0. (1.3)

The Lagrange principle brings with it necessary first-order conditions for an
extremum and is very well known (see [1], [3], and others).

We consider two cases. First, let x0 be a normal point, which means that
imF ′(x0) = Y . (Russian authors often say that the Lyusternik condition holds
at x0, and besides normal the terms non-degenerate and regular point are also
used.) Thus, if the minimum point x0 is normal, then λ0 > 0 by (1.3), and there-
fore, bearing in mind that the relations in (1.3) are positive-homogeneous with
respect to λ, we can assume that λ0 = 1. In this case a unique Lagrange multiplier

1For simplicity we make excessive smoothness assumptions in the Introduction.
2The Lagrange multiplier y∗ is taken in the topological dual space Y ∗ of Y . However, when Y

is assumed to be a finite-dimensional arithmetic space, we shall identify Y and its dual and treat
the Lagrange multiplier y∗ as an element of Y .
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exists, has the form λ = (1, y∗), and satisfies the classical necessary second-order
conditions

∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ X : F ′(x0)x = 0 (1.4)

(see [3], § 3.4, p. 287). Here the square brackets denote the action of the bilinear
form.

Now we look at the second case: x0 is an abnormal point, that is, imF ′(x0) ̸= Y .
Then the Lagrange principle (1.3) holds at this point for λ0 = 0 and an arbitrary
y∗ ̸= 0 in the kernel kerF ′(x0)∗ of the conjugate operator. This kernel is non-trivial,
because imF ′(x0) ̸= Y . Thus, the Lagrange principle holds automatically at each
abnormal point whatever the functional f0 being minimized might be: it is just an
direct consequence of the definition of abnormality. Hence, the Lagrange principle is
of no use when we ask whether an abnormal point is extremal. As for the classical
necessary second-order conditions (1.4), they can fail at an abnormal minimum
point. Here is a simple two-dimensional example:

X = R2, f0(x) = −|x|2 → min,

F1(x) = x2
1 − x2

2 = 0, F2(x) = x1x2 = 0,
(1.5)

where x = (x1, x2) ∈ R2. In this problem x0 = 0 is the unique point satisfying the
constraints, so of course it is a minimum point. However, conditions (1.4) do not
hold at it for any Lagrange multiplier λ satisfying (1.3). We see that the Lagrange
principle gives no information at an abnormal point, while the classical necessary
second-order conditions can fail. Thus, we have the problem of finding meaningful
necessary minimum conditions in the problem (1.1) when no a priori assumption is
made that the point under consideration is normal.

The inverse function theorem. Let F : X → Y be a continuously differentiable
map in a neighbourhood of a point x0 ∈ X and let y0 = F (x0). The question is
whether y0 has a neighbourhood V such that for all y ∈ V the equation

F (x) = y (1.6)

has a solution x(y) such that x(y0) = x0 and the map x(·) is continuous at y0,
or better, continuous in the whole neighbourhood V . If x0 is a normal point,
then the classical inverse function theorem answers this question in the affirmative,
and the map x(·) can be taken to be continuously differentiable. However, this is
no longer so when x0 is an abnormal point. For example, in a neighbourhood of the
origin the scalar equation x2

1 +x2
2 = y has no solutions for y < 0, while the equation

x2
1 − x2

2 = y has infinitely many continuous solutions satisfying x(0) = 0, but all of
them are non-differentiable at the origin, and moreover, they do not even satisfy
a Lipschitz condition. Thus, we have the problem of finding conditions weaker than
normality which ensure that equation (1.6) has a solution x(·) with the required
properties.

The discussion of these two problems and others close to them is the subject of
this survey. We shall focus on the latest progress and mostly leave aside the history
of the problem and earlier results which were subsequently improved. In the next
sections, §§ 2 and 3, we present necessary first- and second-order conditions for an
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extremum in problems with different types of constraints. Their distinctive feature
is that they make sense and are derived without the a priori assumptions of normal-
ity, and in the normal case they become the classical conditions. The two sections
are different in the approaches they present: in the first approach we obtain results
in terms of the indices of the second derivatives of the classical Lagrange function L,
while the investigations in § 3 are based on the generalized Lagrange function LA .
§ 4 contains sufficient second-order conditions. Apart from the classical conditions,
we give there sufficient conditions for problems with non-closed image and sufficient
conditions in terms of the function LA for classes of abnormal problems in which
the classical sufficient conditions are automatically degenerate. In § 5 we investi-
gate quadratic problems, which present a typical example in the class of abnormal
problems, and we prove several results in the theory of quadratic maps. § 6 contains
various versions of inverse function theorems and implicit function theorems. Like
the results mentioned above, they make sense and are obtained without a priori
assumptions of normality, while in the normal case they become the classical results.
In § 7, as applications of the abstract theory presented in §§ 2 and 3, we obtain nec-
essary second-order optimality conditions in various optimal control problems. § 8 is
devoted to applications of abstract results to bifurcation theory, sensitivity theory,
controllability of dynamical control systems, and the theory of quadratic maps.

2. Necessary second-order conditions
for an extremum. The index approach

An extremal problem with constraints of equality and inequality type.
As before, let X be a vector space and Y = Rk. Let fi : X → R, i = 0, . . . , l, be
given functions and f : X → Y a fixed map. We consider an extremal problem with
constraints of equality and inequality type:

f0(x) → min, fj(x) 6 0, j = 1, . . . , l, f(x) = 0. (2.1)

Let x0 ∈ X be a point satisfying the constraints in (2.1). For simplicity, in what
follows we assume that all the indices corresponding to constraints of inequality
type are active, that is, fj(x0) = 0, j = 1, . . . , l. This involves no loss of generality,
because our considerations are local, so that constraints of the form fj(x0) < 0 can
be omitted.

The fixed functions fj and the map f : X → Y are assumed to be smooth in the
following sense. Let M be the set of finite-dimensional subspaces M ⊆ X, each
endowed with the unique topology of a separable topological vector space. Let ∥·∥M

be one of the (equivalent) norms generating this topology in M . In the vector space
X we introduce the so-called finite topology: the open sets in X are precisely the
sets having open intersection with each M ∈ M . If X is infinite-dimensional,
then in general the finite topology does not make it a topological vector space,
since addition is generally discontinuous. On the other hand, the finite topology is
stronger than any topology of a topological vector space on X. A local minimum
in the finite topology is the weakest type of local minimum under consideration.

As for f , we assume that it is twice continuously differentiable in a neigh-
bourhood of x0 with respect to the finite topology τ . This means that for any



Smooth abnormal problems in extremum theory and analysis 407

finite-dimensional linear subspace M the restriction of f to M has continuous sec-
ond derivatives in some neighbourhood of x0 (depending on M). Thus, there exist
a linear operator A : X → Y , a bilinear map Q : X×X → Y , and a map α : X → Y
such that

f(x) = f(x0) +A(x− x0) +
1
2
Q[x− x0, x− x0] + α(x− x0) ∀x ∈ X,

and for each finite-dimensional subspace M∥∥α(x− x0)
∥∥

∥x− x0∥2M
→ 0, x→ x0, x ∈M.

We denote the maps A and Q by f ′(x0)
(
or ∂f

∂x (x0)
)

and f ′′(x0)
(
or ∂2f

∂x2 (x0)
)

and
call them the first and second derivatives of f . The analogous assumptions hold for
all the functions fj . Smoothness with respect to the finite topology is the weakest
assumption of all those that are usually considered.

It is important to note that the results below will be interesting also in the
case when X = Rn and f and fj have continuous second derivatives in the usual
sense. So the reader who is not concerned with the infinite-dimensional context can
assume that X = Rn with no loss of understanding of the general ideas.

Let us introduce the Lagrange function of the problem (2.1):

L(x, λ) =
l∑

j=0

λjfj(x) +
〈
y∗, f(x)

〉
, λ = (λ0, . . . , λl, y∗), λj ∈ R, y∗ ∈ Y ∗.

We consider the set of normalized Lagrange multipliers of the problem (2.1) that
correspond to the point x0 by the Lagrange principle:

Λ(x0) =
{
λ :

∂L

∂x
(x0, λ) = 0, λj > 0 ∀ j,

l∑
j=0

λj + |y∗| = 1
}
. (2.2)

(Note that here we drop the complementary slackness conditions λjfj(x0) = 0,
j = 1, . . . , l, since by our assumption fj(x0) = 0 for j = 1, . . . , l.)

For non-negative integers s we introduce the sets Λs(x0) (some of them can be
empty) of Lagrange multipliers λ ∈ Λ(x0) such that there exists a linear subspace
Π ⊆ X (depending on λ) for which

codimΠ 6 s, Π ⊆ kerF ′(x0),
∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ Π. (2.3)

Here and in what follows, F = (f1, . . . , fl, f) acts from X to Rm, and

m = k + l.

We consider the so-called critical cone

K (x0) =
{
h ∈ X :

〈
f ′j(x0), h

〉
6 0, j = 0, . . . , l; f ′(x0)h = 0

}
.

Obviously, it is non-empty and convex (0 ∈ K (x0)).
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Theorem 2.1 (necessary second-order conditions). In the problem (2.1) let x0 be
a local minimum point in the finite topology. Then the set Λm(x0) is non-empty,
and moreover,

max
λ∈Λ

∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ K (x0), Λ = Λm(x0). (2.4)

The proof uses the following construction.

Lower estimate for the upper topological limit of a sequence of subspaces.
If {Πi} is a sequence of subsets of a metric space, then let Ls{Πi} denote its upper
topological limit, which consists of all the limit points of sequences {xi} with xi ∈ Πi

for all i.
Let X be a Banach space and let {Ai}∞i=1 be a sequence of continuous lin-

ear operators from X to Y = Rk. We assume that {Ai} converges in norm to
a linear operator A : X → Y . Let M = Ls{kerAi}. Obviously, M is closed and
non-empty (0 ∈M), and M ⊆ kerA. If A is surjective, then M = kerA, but if not,
then M ̸= kerA in general and M is not even necessarily convex.

Theorem 2.2. X has a closed subspace Π such that

codimΠ 6 k, Π ⊆ Ls{kerAi}, Π ⊆ kerA.

This is an immediate consequence of the following result, which is also of inde-
pendent interest.

Theorem 2.3. Let {Πi} be a sequence of closed subspaces of X with codimΠi 6 k
for all i. Then there exists a closed subspace Π ⊆ X such that

codimΠ 6 k, Π ⊆ Ls{Πi}. (2.5)

Theorem 2.3 shows that for each s the set Λs(x0) is closed and therefore compact
whenX is a Banach space and the maps fi and f are smooth. We use this important
property below. We defer the proof of Theorem 2.3 till the end of the section.

Proof of Theorem 2.1. Following [4]–[6], we divide the proof of Theorem 2.1 into
three steps. First (Step I), assuming that X is finite-dimensional, we prove that
Λm(x0) is non-empty. In Step II we prove the theorem for finite-dimensional X.
Finally, in Step III we prove it in full generality (that is, we drop the assumption
that dimX <∞).
Step I. Suppose that X is finite-dimensional. Then without loss of generality we
can take X = Rn. Let δ > 0 be such that x0 is a minimum point in the problem

f0(x) → min, fj(x) 6 0, j = 1, . . . , l, f(x) = 0, |x− x0| 6 δ.

We remove all the constraints in this problem (apart from the last one) using the
penalty method. For positive integers i let

ϕi(x) = f0(x) + i

( l∑
j=1

(
fj(x)+

)4 +
∣∣f(x)

∣∣4) + |x− x0|4,
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where a+ = max(a, 0), and consider the sequence of minimization problems

ϕi(x) → min, |x− x0| 6 δ,

which we call the i-problems. The i-problem is solvable, since ϕi is continuous and
a closed ball in the finite-dimensional space X is compact. Let xi be a solution of
the i-problem.

We assert that xi → x0. Indeed, since X is finite-dimensional, we can pass to
a subsequence and assume the convergence xi → x̄. Let us show that x̄ = x0. We
have

ϕi(xi) 6 ϕi(x0) = f0(x0) ∀ i
⇒ lim

i→∞
fj(xi) 6 0, j = 1, . . . , l, f(xi) → 0

⇒ fj(x̄) 6 0, j = 1, . . . , l, f(x̄) = 0
⇒ f0(x̄) > f0(x0).

Moreover, from the first inequality it follows that

f0(xi) + |xi − x0|4 6 f0(x0) ∀ i
⇒ f0(x̄) + |x̄− x0|4 6 f0(x0) 6 f0(x̄) ⇒ x̄ = x0.

Thus, we have shown that xi → x0. Hence, for large i (which are the ones we
consider in what follows) we have |xi−x0| < δ, so the i-problem is locally equivalent
to the problem of minimizing a smooth function without constraints, and hence the
necessary first- and second-order conditions in this problem are as follows:

ϕ′i(xi) = 0, ϕ′′i (xi)[x, x] > 0 ∀x.

Writing them out in detail, we have

∂L

∂x
(xi, λi) + κi · 4(xi − x0)|xi − x0|2 = 0, (2.6)

∂2L

∂x2
(xi, λi)[x, x] + 12κi

(
i

m∑
j=1

(
fj(xi)+

)2∣∣〈f ′j(xi), x
〉∣∣2

+ i
∣∣f(xi)

∣∣2∣∣f ′(xi)x
∣∣2 + 1(i)|x|2

)
> 0 ∀x,

(2.7)

where 1(i) → 0 as i→∞ and λi = κi(1, λ̄1
i , . . . , λ̄

l
i, ȳ

∗
i ), with

λ̄j
i = 4i(fj(xi)+)3, j = 1, . . . , l, ȳ∗i = 4i

∣∣f(xi)
∣∣2f(xi),

κi =
(

1 +
l∑

j=1

(λ̄j
i )

2 + |ȳ∗i |2
)−1/2

.

By construction, |λi| = 1 and λ̄j
i > 0 for all i and all j 6 l. Hence, passing to

a subsequence and then taking the limit in (2.6), we get that λi → λ ∈ Λ(x0).
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Now we show that a subspace Π satisfying (2.3) for s = m exists. To do this we
consider the linear operators Ai = F ′(xi). By Theorem 2.2 there exists a subspace Π
such that Π ⊆ kerF ′(x0), Π ⊆ Ls{kerAi}, and codim Π 6 m. Let h ∈ Π be an
arbitrary vector. By the definition of the upper topological limit there exist hi ∈
kerF ′(xi) such that, after passing to a subsequence, we have hi → h. Substituting
x = hi in (2.7) and passing to the limit as i→∞, we see that ∂2L

∂x2 (x0, λ)[h, h] > 0.
Since h ∈ Π is arbitrary, we have ∂2L

∂x2 (x0, λ)[x, x] > 0 for all x ∈ Π. Thus, we have
proved that λ ∈ Λm(x0).
Step II. As before, let X = Rn. We shall prove (2.4). For convenience let x0 = 0
and f0(x0) = 0. Let us introduce a function γ by

γ(χ) = 0 ∀χ 6 1, γ(χ) = (χ− 1)4 ∀χ > 1.

We fix an arbitrary unit vector h ∈ K (x0) such that |h| = 1 (if K (x0) ̸= {0}, of
course). For ε = i−1, i = 1, 2, . . . , we consider the following minimization problem
with respect to the variables (x, χ) ∈ X × R:

fε(x, χ) → min, fj(x)− χfj(εh) 6 0, j = 1, . . . , l,
f(x)− χf(εh) = 0, χ > 0, |x| 6 δ;

we call it the ε-problem. Here δ is the same as above and

fε(x, χ) = f̃0(x)− χf̃0(εh) + γ(χ), f̃0(x) = f0(x) + |x|4.

For ε < δ (the only values we consider) the ε-problem is solvable, because the
point x = εh, χ = 1 satisfies all the constraints in the problem, the ball {x : |x| 6 δ}
is compact, and γ(χ)/χ→∞ as χ→∞.

Among the solutions (xε, χε) of the ε-problem there is one with χε > 0. Indeed,
let (xε, 0) be a solution. We assert that xε = 0. In fact, xε satisfies all the
constraints in the problem (2.1), and if xε ̸= 0, then

fε(xε, 0) = f0(xε) + |xε|4 > f0(0) + |xε|4 > 0 and fε(εh, 1) = 0 ⇒ fε(xε, 0) 6 0.

This contradiction shows that xε = 0, so that the minimum in the ε-problem is
equal to zero. Hence, the point (εh, 1) also solves the problem, which proves the
required result.

Let {xε, χε} be a family of solutions of the ε-problems. Since γ(χ)/χ → ∞ as
χ → ∞, the sequence {χε} is bounded. Hence, from the inequality fε(xε, χε) 6 0
we have f̃0(xε) 6 const

∣∣f̃0(εh)∣∣ → 0 as ε→ 0. Thus, f0(x̃) + |x̃|4 6 0 for any limit
point x̃ of the sequence {xε}. At the same time, f0(x̃) > 0, because x̃ satisfies all
the constraints in (2.1). Hence x̃ = 0, so that xε → 0 as ε → 0. Thus, for small
ε > 0 (to which we confine ourselves) we have |xε| < δ.

The solution {xε, χε} of the ε-problem with χε > 0 satisfies the necessary con-
ditions found in Step I: there exist a Lagrange multiplier λε = (λ0

ε, . . . , λ
l
ε, y

∗
ε ) and

a linear subspace Πε such that |λε| = 1, λj
ε > 0 for all j,

L(εh, λε) + λ0
εε

4 = λ0
εγ
′(χε) > 0,

∂L

∂x
(xε, λε) + 4λ0

εxε|xε|2 = 0,

Πε ⊆ kerF ′(xε), codimΠε 6 m,

∂2L

∂x2
(xε, λε)[x, x] + 12λ0

ε|xε|2|x|2 > 0 ∀x ∈ Πε.

(2.8)



Smooth abnormal problems in extremum theory and analysis 411

Here we have benefited from being able to drop the constraint χ > 0 in the Lagrange
function for the ε-problem, which is possible because χε > 0 for the solution,
so that the Lagrange multiplier corresponding to this constraint vanishes (by the
complementary slackness conditions).

By passing to a subsequence we can assume that {λε} converges to a unit vec-
tor λ. Taking the limit in the relations obtained, we see that λ ∈ Λ(x0). By
Theorem 2.3 there exists a subspace Π such that codim Π 6 m and Π ⊆ Ls{Πε}.
Passing to the limit as ε→ 0, we get as in Step I that

Π ⊆ kerF ′(x0),
∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ Π.

Hence λ ∈ Λm(x0). Finally, expanding L(·, λε) up to second-order terms and consid-
ering that h ∈ K (x0), we get from the inequality in (2.8) that ∂2L

∂x2 (x0, λ)[h, h] > 0.
Since h is arbitrary, this completes the argument in Step II.
Step III. We now prove the theorem in full generality. Let h ∈ K (x0) be arbitrary
and let M̃ be the set of subspaces M ∈ M such that h ∈ M and F ′(x0)(M) =
imF ′(x0). For an arbitrary M ∈ M̃ we consider the problem obtained from (2.1)
by replacing X by M . As was shown in Step II, for this finite-dimensional problem
we can find Lagrange multipliers λM such that

|λM | = 1, λj
M > 0 ∀ j, ∂L

∂x
(x0, λM ) ∈M⊥,

∂2L

∂x2
(x0, λM )[h, h] > 0,

and there exists a subspace ΠM ⊆ kerF ′(x0) of codimension at most m in M such
that ∂2L

∂x2 (x0, λM )[x, x] > 0 for all x ∈ ΠM .3 We denote the set of such λM by
Λm(M). Clearly, by Theorem 2.3 it is closed.

For any M1, . . . ,Ms ∈ M̃ we obviously have
⋂s

i=1 Λm(Mi) ⊇ Λm(M1 + · · · +
Ms) ̸= ∅. Hence, the system of non-empty closed sets Λm(M), M ∈ M̃ , has
the finite intersection property. Since the unit sphere in Rm+1 is compact, the
intersection

⋂
M∈M̃

Λm(M) is non-empty. Obviously, for any λ in this intersection

we have λ ∈ Λm(x0) and ∂2L
∂x2 (x0, λ)[h, h] > 0. The proof is complete.

Discussion of Theorem 2.1. If the problem (2.1) contains no constraints of
inequality type (that is, l = 0), then we can replace the critical cone K (x0) in the
statement of the theorem by the subspace ker f ′(x0) (for if h ∈ ker f ′(x0) in this
case, then either h ∈ K (x0) or (−h) ∈ K (x0)). Furthermore, if x0 is a normal
point, then Theorem 2.1 gives the classical necessary second-order conditions (1.4),
because for a normal point the set Λ(x0) is a singleton and therefore Λ(x0) = Λk(x0)
(in this case (2.4) is a consequence of the last equality, since Π = ker f ′(x0) at
a normal point).

The strongest second-order conditions known previously for the problem (2.1)
are due to Milyutin [7], [8]. We state them now. To do this we let Λ+(x0) denote
the set of λ ∈ Λ(x0) such that the quadratic form ∂2L

∂x2 (x0, λ) has finite index.
Recall that the index ind q of a quadratic form q is the maximum dimension of
a subspace on which the form is negative definite; equivalently, this is the minimum

3M⊥ is the annihilator of the subspace M .
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codimension of a subspace on which q is non-negative definite. Milyutin’s theorem
states that if x0 is a local minimum point, then the condition obtained from (2.4) by
replacing Λm(x0) by Λ+(x0) is satisfied. However, if X is a finite-dimensional space,
then obviously Λ+(x0) = Λ(x0), and hence if x0 is an abnormal point for f , that
is, im f ′(x0) ̸= Y , then Milyutin’s conditions automatically hold (for then Λ(x0)
contains two points, λ1 = (0, . . . , 0, y∗) and λ2 = −λ1) and provide no additional
information. In any case, Milyutin’s necessary conditions in [7] and [8] are weaker
than the conditions in Theorem 2.1, since we always have Λm(x0) ⊆ Λ+(x0).

Necessary second-order conditions requiring that Λm(x0) ̸= ∅, without an a pri-
ori assumption of normality, were first obtained in [9] for the time-optimality prob-
lem, and then in [10] for the general optimal control problem and the mathematical
programming problem. The conditions (2.4) were obtained in [4].

We point out an important feature which goes hand in hand with constraints
of inequality type. Assume that the Mangasarian–Fromovitz regularity condition
holds at x0:

im f ′(x0) = Y, ∃ d ∈ ker f ′(x0) :
〈
f ′j(x0), d

〉
< 0, j = 1, . . . , l,

which is a natural generalization of the Lyusternik condition to problems with
inequalities. Then λ0 > 0 for all λ ∈ Λ(x0), but there is not necessarily a ‘uni-
versal’ Lagrange multiplier λ for which ∂2L

∂x2 (x0, λ)[x, x] > 0 for all x ∈ K (x0).
A corresponding example with X = R3 and l = 4 was presented in [11] (§ 2.4,
p. 159).

Condition (2.4) in the theorem can be represented in the following equivalent
form. For each y ∈ Rl × Rk let

ω(y) = inf
{
f ′′0 (x0)[x, x], x ∈ Ω(y)

}
∀ y : Ω(y) =

{
x ∈ K (x0) : y = F ′′(x0)[x, x]

}
̸= ∅,

where this infimum can also be equal to −∞. It is easy to see that (2.4) is equivalent
to

∀ y : Ω(y) ̸= ∅ ∃λ = (λ0, λ1, . . . , λl, y∗) ∈ Λm(x0) : λ0ω(y) + ⟨λ̄, y⟩ > 0, (2.9)

where λ̄ = (λ1, . . . , λl, y∗). Here if ω(y) = −∞, then the last inequality in (2.9)
means that λ0 = 0 and ⟨λ̄, y⟩ > 0.

Some generalizations. In the analysis of optimal control problems with geo-
metric constraints (see § 7 below) it is convenient to use the following version of
Theorem 2.1. Let X be a normed space and C ⊆ X a closed convex cone. We
consider the problem

f0(x) → min, fj(x) 6 0, j = 1, . . . , l, f(x) = 0, x ∈ C, (2.10)

which differs from (2.1) by the additional constraint x ∈ C.
We present necessary minimum conditions for the problem (2.10) at x0. Let

Λ̃(x0) be the set of normalized Lagrange multipliers λ corresponding to x0 by the
Lagrange principle for the problem (2.10):〈
∂L

∂x
(x0, λ), x0

〉
= 0,

∂L

∂x
(x0, λ) ∈ C∗, λj > 0 ∀ j,

l∑
j=0

λj + |y∗| = 1,
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where C∗ = {ξ ∈ X∗ : ⟨ξ, x⟩ > 0 ∀x ∈ C} is the dual cone of C. We set

K̃ (x0) =
{
x ∈ C + span{x0} : ⟨f ′j(x0), x⟩ 6 0 ∀ j, f ′(x0)x = 0

}
.

Let N = C ∩ (−C) (so that N is the maximal linear subspace of C) and let Λ̃m(x0)
be the set of Lagrange multipliers λ ∈ Λ̃(x0) such that there exists a linear subspace
Π ⊆ N satisfying (2.3), where s = m = k + l and codim is the codimension with
respect to the subspace N .

Theorem 2.4. In the problem (2.10) let x0 be a local minimum point. Then

Λ = Λ̃m(x0) ̸= ∅, max
λ∈Λ

∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ K̃ (x0). (2.11)

The proof is similar to the proof of Theorem 2.1; it can be found in [6]. The
structure of the cone K̃ (x0) is important in (2.11): it is not necessarily closed.
In fact, if the cone C is not polyhedral (cannot be represented as an intersection
of finitely many half-spaces) and x0 lies on the boundary of C but x0 ̸= 0, then
the cone C + span{x0} in the definition of K̃ (x0) is not necessarily closed. On the
other hand, since Λ̃m(x0) is a compact set and the maximum function is continuous
on this compact set, (2.11) holds for all x ∈ cl K̃ (x0). (Here and throughout, cl
denotes the closure of a set.)

In this connection it seems natural to ask whether condition (2.11) survives the
replacement of K̃ (x0) by the cone{

x ∈ cl
(
C + span{x0}

)
: ⟨f ′j(x0), x⟩ 6 0 ∀ j, f ′(x0)x = 0

}
. (2.12)

(Note that cl(C + span{x0}) coincides with the tangent cone TC(x0) to the convex
cone C at x0.) The example of the problem

f0(x) = x2 − x2
1 → min, x ∈ C, x3 − 1 = 0, x = (x1, x2, x3) ∈ R3,

where C is the closed conical hull of the set {x : x2 > x2
1, x3 = 1} and x0 = (0, 0, 1),

answers this question in the negative (see [12] for details).
At the same time, in the second-order conditions (2.11) we can take the cone

(2.12) in place of K̃ (x0), but we must then add a certain term to the quadratic
form ∂2L

∂x2 (x0, λ)[x, x] in (2.11). We can explain this by the example of the following
more general problem (see [13]):

f0(x) → min, F (x) ∈ C, (2.13)

where F : X → Y = Rk, and C is an arbitrary closed (but not necessarily convex)
subset of Y . We note that an even more general problem than (2.13) was considered
in [13], a problem with the additional constraint x ∈ C̃, where C̃ is a subset of X
closed in the finite topology (but not necessarily convex).

To state the theorem we introduce the requisite concepts. Let y0 = F (x0) ∈ C.
Recall that a vector d is said to be tangent to C at a point y0 if there exists
a sequence {εn} ↓ 0 such that

dist(y0 + εnd,C) = o(εn),
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where dist(y, C) = infξ∈C

{
∥ξ− y∥

}
is the distance from y to C. The set of tangent

vectors to C at y0 forms a cone (the Bouligand cone), denoted by TC(y0).
Let N(C; y0) denote the Mordukhovich normal cone to C at y0 (see [13]). We

define the second-order outer tangential set to C at y0 ∈ C in the direction d ∈
TC(y0) by the formula

O2
C(y0, d) =

{
w ∈ Y : ∃ {εn} ↓ 0, dist

(
y0 + εnd+

1
2
ε2nw,C

)
= o(ε2n)

}
.

The linear subspace P ⊆ Y is called a locally invariant subspace with respect to
C at y0 ∈ C if there exists a δ > 0 such that (C∩B(y0, δ))+(P∩B(0, δ)) ⊆ C, where
B(y, δ) is the ball of radius δ about y. Obviously, the trivial subspace is locally
invariant. Since Y is finite-dimensional, there exists a maximal locally invariant
subspace with respect to inclusion; we denote it by IC . Let

K C(x0) =
{
x : F ′(x0)x ∈ TC(y0),

〈
f ′0(x0), x

〉
6 0

}
,

λ = (λ0, y∗), λ0 ∈ R, y∗ ∈ Y ∗,

Λ(C;x0) =
{
λ : λ0 > 0, y∗ ∈ N(C; y0),

∂L

∂x
(x0, λ) = 0, |λ| = 1

}
.

(Of course, here we define the Lagrange function L by (1.2).)
Consider the set of Lagrange multipliers λ ∈ Λ(C;x0) for which there exists

a subset Π ⊆ X (depending on λ) such that

codimΠ 6 k, F ′(x0)(Π) ⊆ IC ,
∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ Π. (2.14)

The set of these Lagrange multipliers will be denoted by Λk(C;x0).

Theorem 2.5. In the problem (2.13) let x0 be a local minimum point in the finite
topology. Then the set Λk(C;x0) is non-empty, and moreover, for any x ∈ K C(x0)
and w ∈ O2

C

(
F (x0), F ′(x0)x

)
max
λ∈Λ

(
∂2L

∂x2
(x0, λ)[x, x]− ⟨y∗, w⟩

)
> 0, where λ = (λ0, y∗), Λ = Λk(C;x0).

(2.15)

The proof is presented in [13]. By the minimax theorem (see [13], Appendix A),
(2.15) implies the following assertion.

Under the hypotheses of Theorem 2.5 the following inequality holds for any
convex set T (x) ⊆ O2

C

(
F (x0), F ′(x0)x

)
:

max
λ∈Λ

(
∂2L

∂x2
(x0, λ)[x, x]− σ(y∗,T (x))

)
> 0, where Λ = conv Λk(C;x0), (2.16)

σ(·, T ) is the support function of a set T ⊆ X, that is, σ(y∗, T ) = supy∈T ⟨y∗, y⟩ for
y∗ ∈ Y , and conv is the convex hull of a set.

Now we discuss Theorem 2.5. It generalizes in a natural way results in [14]
and [15], where it was additionally assumed that either the Robinson regularity
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condition 0 ∈ int
(
F (x0)+ imF ′(x0)−C

)
holds or that intC ̸= ∅ (see [13] and [16]

for details).
Let F ′(x0)x ∈ IC . Then 0 ∈ O2

C

(
F (x0), F ′(x0)x

)
, and for w = 0 we get from

(2.15) that

max
λ∈Λ

∂2L

∂x2
(x0, λ)[x, x] > 0.

If C is a convex set, then σ
(
y∗,T (x)

)
6 0 for all y∗ such that (λ0, y∗) ∈ Λ(C;x0)

for some λ0 > 0 (see [14], p. 178 or [13], p. 4). On the other hand, if C is a convex
polyhedral cone (for instance, in the case C = Rl

−×Rk, where Rl
− is the non-positive

orthant, we arrive at the problem (2.1)), then σ(y∗,T (x)) = 0 for all such y∗.
At the same time, if C is not convex, then the term σ(y∗,T (h)) can be strictly

positive. For example, let C =
{
y = (y1, y2) ∈ R2 : yl

1 > ym
2

}
, where l and m,

m < l 6 2m, are positive integers. We take h = (1, 0) ∈ TC(0). Then the set
O2

C(0, h) contains a ball B about the origin, and hence σ(ζ,B) > 0 for all ζ ̸= 0.
Let l = 2, m = 1, f0(x) = x2

1−x2, Y = R2, and F (x) ≡ x. Then x0 = 0 is a solution
of the problem (2.13), h ∈ K C(0), y∗ = −f ′0(0), but σ(−f ′0(0), B) > 0.

Abnormal problems. We return to the problem (2.1). If x0 is a normal point
for the map F , then the set Λ(x0) is a singleton and Theorem 2.1 gives the clas-
sical necessary second-order conditions (which become (1.4) for l = 0). Therefore,
these conditions cannot be strengthened in the normal case. On the other hand,
if x0 is an abnormal point for F , that is, F ′(x0) is not a surjective operator, then
Theorem 2.1 can be improved by replacing Λm(x0) by a smaller set. We formulate
the corresponding result.

Let C ⊆ Y be a closed convex set, and define the inner second-order tangential
set to C at y ∈ C in the direction d ∈ TC(y) by

T 2
C(y, d) =

{
w ∈ Y : dist

(
y + εd+

1
2
ε2w,C

)
= o(ε2), ε > 0

}
.

This is a closed convex set, and T 2
C(y, d) ⊆ O2

C(y, d), although the last inclusion
may be strict (see [14]).

Theorem 2.6. In the problem (2.13) let x0 be a local minimum point in the finite
topology and assume that imF ′(x0)+IC ̸= Y (in this case x0 is called an abnormal
point). Then Λk−1(C;x0) is non-empty, and for each x ∈ K C(x0)

max
λ∈Λ

(
∂2L

∂x2
(x0, λ)[x, x]− σ

(
y∗, T 2

C

(
F (x0), F ′(x0)x

)))
> 0,

where Λ = conv Λk−1(C;x0).
(2.17)

Note that in Theorem 2.6 (just as in Theorem 2.5), we can replace the maximal
(with respect to inclusion) local invariant subspace IC by any other local invariant
subspace, for instance, the trivial one.

A proof of Theorem 2.6 which uses results of real algebraic geometry is presented
in [17], and also in [18] for C = {0}. For C = Rl

− × {0} ⊂ Rl × Rk we obtain the
problem (2.1), and hence Theorem 2.6 implies the following theorem.
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Theorem 2.7. In the problem (2.1) let x0 be a local minimum point in the finite
topology, and let x0 be an abnormal point for the map F (that is, imF ′(x0) ̸= Y ).
Then the set Λm−1(x0) is non-empty and

max
λ∈Λ

∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ K (x0), where Λ = Λm−1(x0). (2.18)

Note that the example of the problem (1.5) shows that in Theorem 2.6 we cannot
in general replace (k − 1) by (k − 2) even for k > 2.

The ‘gap’ between necessary and sufficient second-order conditions. A
major characteristic of necessary second-order conditions is the size of the ‘gap’
which exists between them and sufficient second-order conditions. It is reasonable
to treat such a gap as the smallest possible (in the class of necessary second-order
conditions) if the necessary conditions become sufficient after implementing arbi-
trarily small perturbations, in the C2-metric, of the function to be minimized and
the map giving the constraints, without changing their values nor the values of
their first derivatives at the point under consideration. In the case of the necessary
second-order conditions obtained above we find out when such a gap in the problem
(2.1) is smallest possible.

Let X be a Hilbert space. First we assume that x0 is a normal point for F and
that the necessary second-order conditions (2.4) hold at x0. Then for an arbitrary
ε > 0 the function f0,ε(x) = f0(x)+ε|x−x0|2 has a strict local minimum at x0 under
the constraints of the problem (2.1) in view of the sufficient second-order conditions
(see [7], [5] or Theorem 4.1 in § 4 below), although the size of the neighbourhood
in which x0 is a minimum point can tend to zero as ε→ 0.

Assume now that x0 is an abnormal point for F . It turns out that everything
then depends on whether or not the convex hull conv Λm−1(x0) contains the origin.
In fact, the maximum over Λ = Λm−1(x0) in (2.18) coincides with the maximum
over the convex hull of this set. Hence if 0 ∈ conv Λ, then (2.18) necessarily holds.
In this case condition (2.18) is satisfied for any function f0 to be minimized, so it
can give no additional information in the minimization problem (2.1). The situation
here is the same as with the Lagrange multiplier rule at an abnormal point. Hence
if 0 ∈ conv Λ, then in general we should not expect to make x0 a local minimum in
a perturbed problem by means of C2-small perturbations of the functions f and fj

without changing their values nor the values of their first derivatives at x0. This is
confirmed by the example of the problem

f0(x) = x1 → min,

x1x2 = 0, x1x3 = 0, l = 0, m = k = 2, x = (x1, x2, x3) ∈ R3.

Here 0 ∈ conv Λ1(0), and no perturbations of the type described above can make
x0 = 0 a local minimum point (this follows from Theorem 3.1 proved below). The
case when 0 ̸∈ conv Λ is utterly different.

For integers s > 0 let F 2
s (x) be the set of y∗ ∈ Y ∗ with |y∗| = 1 such that

f ′(x)∗y∗ = 0 and X has a subspace Π for which

Π ⊆ ker f ′(x), codimΠ 6 s,〈
∂2f

∂x2
(x)[ξ, ξ], y∗

〉
> 0 ∀ ξ ∈ Π.

(2.19)
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Clearly, if x is a normal point for f , then F 2
s (x) = ∅ for all s.

Definition. A map f is said to be 2-normal at a point x if 0 ̸∈ conv F 2
k−1(x) (in

particular, if F 2
k−1(x) = ∅). The map f is said to be 2-normal if it is 2-normal at

each point.

Obviously, y∗ ∈ F 2
k−1(x) ⇔ (0, y∗) ∈ Λk−1(x) (here l = 0 and m = k). This

is a geometric definition which is not convenient for testing 2-normality. In [5]
(Chap. 1, § 1.9) the reader can find sufficient conditions for 2-normality in terms
of f . It is also proved there that if X = Rn and n≫ k (for instance, n > 2(k − 2),
(n− k− 1)(n− k) > 2(k− 1)), then 2-normality is a generic property: in the space
C3

s (Rn,Rk) with the Whitney topology (see [19], Chap. 2, § 1) the set of 2-normal
maps is massive (that is, contains an intersection of countably many dense open
subsets) and therefore dense.

Theorem 2.8. Let X be a Hilbert space, and let f be a map that is 2-normal at
a point x0 at which the necessary second-order conditions (2.18) are satisfied. Then
there exists a vector ȳ ∈ Y such that for each ε > 0 the point x0 supplies a strict
local minimum in the perturbed problem

f0,ε(x) = f0(x) + ε|x− x0|2 → min,

fj,ε(x) = fj(x) + ε|x− x0|2 6 0, j = 1, . . . , l, fε(x) = f(x) + ε|x− x0|2ȳ = 0.

The proof is based on sufficient second-order conditions; it is presented in [5],
Chap. 1, § 1.8.

Proof of Theorem 2.3. This is proved for an arbitrary Banach space in [5], but
here we confine ourselves to a special case by assuming that X is a Hilbert space.
This makes the argument considerably simpler. Theorem 2.3 first appeared in [9]
just in the Hilbert case.

Without loss of generality we assume that codimΠi = k for all i. In each orthog-
onal complement Π⊥i we select some orthonormal basis ei,1, . . . , ei,k. Passing to
subsequences, we can assume that as i → ∞ the sequence {ei,j} converges weakly
to a vector ej for each j ∈ {1, . . . , k}. We assert that Π =

{
x ∈ X : ⟨ej , x⟩ = 0 for

all j ∈ {1, . . . , k}
}

is the required subspace. For the proof it suffices to find for an
arbitrary point x0 ∈ Π a sequence {xi} with xi ∈ Πi for all i which converges to it.
To do this, for each i we consider the minimization problem

|x− x0|2 → min, ⟨ei,j , x⟩ = 0, j = 1, . . . , k.

We readily see that each of these problems is solvable; let xi be the corresponding
solution. By the Lagrange principle,

∃λi,j : xi − x0 =
k∑

j=1

λi,jei,j ⇒ |xi − x0|2 =
k∑

j=1

λ2
i,j ⇒ |λi,j | 6 |xi − x0| ∀ i, j.
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Hence, taking the inner product of the first equality with xi − x0, we have

|xi − x0|2 = −
k∑

j=1

λi,j⟨ei,j , x0⟩ 6
k∑

j=1

|λi,j |
∣∣⟨ei,j , x0⟩

∣∣ 6 |xi − x0|
k∑

j=1

∣∣⟨ei,j , x0⟩
∣∣

⇒ |xi − x0| 6
k∑

j=1

∣∣⟨ei,j , x0⟩
∣∣ → k∑

j=1

∣∣⟨ej , x0⟩
∣∣ = 0. �

3. Necessary extremum conditions of
the first and second order; 2-regularity

The generalized Lagrange function LA . In this section we consider another
approach to necessary conditions in extremal problems, based on the generalized
Lagrange function LA and the concept of 2-regularity. For greater transparency
we confine ourselves to problems with constraints of equality type,

f0(x) → min, F (x) = 0, (3.1)

where f0 is a given function to be minimized, F : X → Y is a given map, and the
spaces X and Y are as in the previous section. Let x0 be a local minimum point
in the problem under consideration (with respect to the finite topology). In what
follows we assume that f0 is twice continuously differentiable in a neighbourhood
of x0, F is thrice continuously differentiable in the finite topology (see § 2), and its
third derivative satisfies a Lipschitz condition.

Now we introduce the requisite concepts. Let π denote the operator of orthogonal
projection of Y onto

(
imF ′(x0)

)⊥. We consider the non-empty cone (0 ∈ H)

H = H(x0) =
{
h ∈ X : F ′(x0)h = 0, F ′′(x0)[h, h] ∈ imF ′(x0)

}
. (3.2)

This cone is very important for investigations of the admissible set M =
{
x ∈

X : F (x) = 0
}
. In fact, it is easy to see that if h is a tangent vector to M at the

point x0, then h ∈ H(x0). However, it is much more important that the converse
result also holds under certain additional but natural assumptions. To explain this
we introduce an important notion.

For an arbitrary fixed h ∈ H(x0) let G(x0, h) : X × kerF ′(x0) → Y be the linear
operator defined by

G(x0, h)(x1, x2) = F ′(x0)x1 + F ′′(x0)[h, x2], x1 ∈ X, x2 ∈ kerF ′(x0).

Definition. The map F is said to be 2-regular at a point x0 in a direction h ∈
H(x0) if the operator G(x0, h) is surjective.4 A map F is said to be 2-regular at x0

if it is 2-regular at x0 in any non-zero direction h ∈ H(x0).

In another (although equivalent) form the notion of a 2-regular direction was
introduced in [20]. Note that if a map is normal at some point, then it is obviously
2-regular at this point, but the converse fails in general.

4We use the word ‘direction’ as more intuitive, but treat it as a synonym for ‘vector’.
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Thus, as proved in [20], if F is a 2-regular map at a point x0 in a direction h ∈
H(x0), then h is a tangent vector to M at x0. (This also follows from Theorem 3.3
proved below.) In particular, if F is 2-regular at x0, then H(x0) coincides with the
tangent cone to M at x0. So from a description of the tangent cone to an admissible
set at a minimum point we can deduce necessary conditions for a minimum in an
extremal problem.

Let us consider the function LA : X × R × Y ∗ × Y ∗ × H(x0) → R introduced
in [20]:

LA (x, λA, h) = λ0f0(x) +
〈
y∗1 , F (x)

〉
+

〈
y∗2 , F

′(x)h
〉
,

λA = (λ0, y∗1 , y
∗
2), λ0 ∈ R, y∗1 , y

∗
2 ∈ Y ∗, h ∈ H(x0).

The vector λA and its components are also called Lagrange multipliers. Note that
λA, in comparison to the classical Lagrange multipliers λ considered above, has the
additional component y∗2 , and the function LA differs from the Lagrange function L
by the presence of the last term containing y∗2 . The vector h plays the role of
a parameter in the function LA .

Theorem 3.1. Let x0 be a local minimum point in the problem (3.1) with respect
to the finite topology. Then for each h ∈ H(x0) there exists a λA such that

∂LA

∂x
(x0, λA, h) = 0, (3.3)

y∗1 ∈ imF ′(x0), y∗2 ∈
(
imF ′(x0)

)⊥
, λ0 > 0, λ0 + |y∗2 | ≠ 0. (3.4)

Theorem 3.2. Let x0 be a local minimum point in the problem (3.1) with respect
to the finite topology, and assume that the function f0 is twice continuously differ-
entiable in a neighbourhood of x0 with respect to the finite topology.

Then for each vector h ∈ H(x0) there exists a Lagrange multiplier λA satisfying
(3.3), (3.4), and the relation

∂2LA

∂x2

(
x0, λ

0, y∗1 ,
1
3
y∗2 , h

)
[h, h] > 0. (3.5)

Theorems 3.1 and 3.2 yield necessary conditions of orders 1 and 2. They were
established in [20] in the case when X and Y are Banach spaces, the maps f0 and F
have sufficiently many derivatives, and the subspace imF ′(x0) is closed.

2-regularity. Before proving these results we discuss them. If x0 is a normal
point, then y∗2 = 0 by (3.4), LA becomes the ordinary Lagrange function L, and
the Lagrange multiplier λA = (λ0, y∗1 , 0), without the last component equal to zero,
becomes an ordinary Lagrange multiplier λ = (λ0, y∗), while Theorem 3.1 becomes
the Lagrange principle (1.3). (To see the last assertion, let h = 0 in Theorem 3.1.)
Incidentally, Theorem 3.2 becomes (1.4). Thus, when the normality condition is
imposed, the above theorems are equivalent to the classical necessary second-order
conditions.

If x0 is an abnormal point and, moreover, F is not 2-regular in a direction
h ∈ H(x0), then any Lagrange multiplier λA = (0, y∗1 , y

∗
2) with y∗1 a non-zero vector

in
(
imG(x0, h)

)⊥ and y∗2 = πy∗1 satisfies Theorem 3.1. Hence, Theorem 3.1 gives
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us no information in this case (in fact, λ0 = 0 and the functional to be minimized
is not involved in the conditions (3.3) and (3.4)): it simply expresses the lack
of 2-regularity in the direction h. In addition, Theorem 3.2 contains no useful
information in this case, because together with a Lagrange multiplier λA, (−λA)
also satisfies conditions (3.3) and (3.4), so that (3.5) holds automatically.

The most interesting case is the third, when x0 is an abnormal point, but F is
2-regular in the direction h. Then it is easy to see that λ0 > 0, and Theorem 3.1
provides useful information about the gradient of the function to be minimized,
while Theorem 3.2 gives information about the second derivative of the same func-
tion. Furthermore, since the linear operator G(x0, h) is surjective, the Lagrange
multipliers λA are determined by (3.3) and (3.4) uniquely up to normalization.

Proofs of Theorems 3.1 and 3.2. The proofs are based on the following result.

Theorem 3.3. Let h ∈ H(x0) and let F be a 2-regular map at x0 in the direction h.
Then there exist an h2 ∈ X and a finite-dimensional subspace X̃ ⊆ X such that

F ′(x0)h2 +
1
2
F ′′(x0)[h, h] = 0, F ′′(x0)[h, h2] +

1
6
F ′′′(x0)[h, h, h] ∈ imF ′(x0),

(3.6)

F
(
h(ε)

)
= 0 ∀ ε, h(ε) ∈ X̃ ∀ ε, where h(ε) = x0 + εh+ ε2h2 +O(ε3). (3.7)

Proof. For convenience, here and in what follows we assume that x0 = 0, and
we omit x0 in the notation for the derivatives at this point (for example, f ′0 =
f ′0(x0), F ′′ = F ′′(x0), and so on). Since Y has finite dimension, X contains
a finite-dimensional subspace X̃ such that the restriction of the linear operator
G(x0, h) to X̃ × (kerF ′ ∩ X̃) is surjective, as before. Hence, replacing X by X̃, we
can assume that X is finite-dimensional.

In view of the 2-regularity in the direction h there exist h2, h3 ∈ X such that

F ′h2 +
1
2
F ′′[h, h] = 0, F ′h3 + F ′′[h, h2] +

1
6
F ′′′[h, h, h] = 0 (3.8)

(see [5], § 5, pp. 72, 73 for greater detail). For a fixed ε we seek h(ε) in the form

h(ε) = εh+ ε2h2 + ε3h3 + ε2r2 + ε3r1,

where the unknowns r1 = r1(ε) ∈ X and r2 = r2(ε) ∈ kerF ′ are to be determined.
In a neighbourhood of the origin F has the representation

F (x) = F ′x+
1
2
F ′′[x, x] +

1
6
F ′′′[x, x, x] +R(x)[x, x, x],

where R(x) is a multilinear map for each x, R(0) = 0, and R(·) is locally Lipschitz.
For a fixed ε ̸= 0 we consider the equation F

(
h(ε)

)
= 0 with respect to r1 ∈ X and

r2 ∈ kerF ′. In view of the above representation and (3.8), after division by ε3 this
equation takes the form

G(x0, h)(r1, r2) = ∆(ε, r1, r2), (3.9)

where ∆ is a continuous map such that ∆(0, r1, r2) ≡ 0, and on the unit ball the
map ∆(ε, ·, ·) satisfies a Lipschitz condition with Lipschitz constant k(ε) → 0 as
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ε → 0. Since the operator G(x0, h) is surjective (has the covering property), we
can apply the theorem on the existence of coincidence points (Theorem 1 in [21])
to (3.9). This shows that for any ε with sufficiently small absolute value there exists
a solution r1(ε), r2(ε) of equation (3.9) such that

∣∣r1(ε)∣∣ +
∣∣r2(ε)∣∣ 6 const |ε|. �

Proof of Theorem 3.1. By the above, it is sufficient to consider the case when F is
2-regular at x0 = 0 in the direction h, so that is what we do. By Theorem 3.3 the
vectors h and (−h) are tangent to the set M =

{
x : F (x) = 0

}
at x0 = 0. Hence

⟨f ′0, h⟩ = 0.
Let TH(h) be the tangent cone to H = H(x0) at the point h. We consider

the linear operator G̃(h) : X → Y defined by G̃(h)x = F ′x + πF ′′[h, x]. Since
G(x0, h) is surjective, so is G̃(h). We define the map g : X → Y by the formula
g(x) = G̃(x)x. Obviously, H =

{
x : g(x) = 0

}
and h is a normal point for the

map g. Hence, Lyusternik’s theorem (on the tangent cone; see [1]) implies that
ker G̃(h) ⊆ TH(h). Therefore, for any x ∈ ker G̃(h) there exist a sequence {αi} of
positive numbers tending to zero and a sequence {ai} in X of vectors tending to
zero such that hi = h + αix + αiai ∈ H for all large i. However, by Theorem 3.3
all the vectors in H that are sufficiently close to h are also tangent to the set M .
This applies to the vectors hi for large i, so that ⟨f ′0, hi⟩ 6 0 ⇒ ⟨f ′0, x⟩ 6 0 for all
x ∈ ker G̃(h). Hence ⟨f ′0, x⟩ = 0 for all x ∈ ker G̃(h), since if x belongs to ker G̃(h),
then so does (−x).

Thus, we have proved that

⟨f ′0, x⟩ = 0 ∀x ∈ X : F ′x = 0, πF ′′[h, x] = 0.

The annihilator lemma (see [1], p. 26) now shows that there exist y∗1 and y∗2 such
that λA = (1, y∗1 , y

∗
2) satisfies (3.3) and (3.4). �

Remark. It follows from the proof of Theorem 3.1 in [20] that ifX is a Banach space,
then it suffices in Theorem 3.1 to assume only that F is Fréchet-differentiable twice
at x0. We note that in [5] (§ 1.13) necessary extremum conditions of higher order
are found.

Proof of Theorem 3.2. We take h2 such that (3.6) and (3.7) hold. Then by (3.7)

⟨f ′0, h2⟩+
1
2
f ′′0 [h, h] > 0. (3.10)

Let λA = (1, y∗1 , y
∗
2) be a Lagrange multiplier satisfying (3.3) and (3.4). Then from

(3.6) we get that ⟨f ′0, h2⟩ =
(〈
y∗1 , F

′′[h, h]
〉

+
〈
y∗2 , F

′′′[h, h, h]
〉
/3

)
/2. Substitution

of this in (3.10) yields (3.5). �

The classical Lagrange principle in abnormal problems. The next result
strengthens Theorem 3.1.

Theorem 3.4. Let x0 be a local minimum point in the problem (3.1) in the finite
topology. If F is a 2-regular map in a direction h ∈ H(x0), then there exists
a Lagrange multiplier λA such that conditions (3.3) and (3.4) hold, and also〈

y∗2 , F
′′(x0)[x, x]

〉
= 0 ∀x : F ′(x0)x = 0, F ′′(x0)[h, x] ∈ imF ′(x0). (3.11)
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Proof. By Theorem 3.1 the vector h corresponds to a unique Lagrange multiplier
with first component equal to 1, λA = (1, y∗1 , y

∗
2). As was shown in the proof of

Theorem 3.1, for an arbitrary x ∈ ker G̃(h) there exist a sequence {αi} of posi-
tive numbers tending to zero and a sequence {ai} ⊂ X of vectors lying in some
finite-dimensional subspace and tending to zero such that hi = h + αix + αiai ∈
H(x0) for all i, and the map F is 2-regular in each of the directions hi. It then
follows from Theorem 3.1 that for all i there exist Lagrange multipliers λi

A =
(1, y∗1,i, y

∗
2,i) such that (3.4) holds and

∂LA

∂x
(x0, λ

i
A, hi) = 0. (3.12)

Since the operator G̃(h) is surjective, the sequences {y∗1,i} and {y∗2,i} are bounded,
and thus, passing to subsequences, we can assume that {y∗s,i} → ỹ∗s as i → ∞,
s = 1, 2. Obviously, λ̃A = (1, ỹ∗1 , ỹ

∗
2) corresponds to the vector h by Theorem 3.1.

Hence λ̃A = λA ⇒ λi
A → λA, and therefore, applying the left-hand side of (3.12)

to the vector x ∈ ker G̃(h), bearing in mind that f ′0 ∈
(
ker G̃(h)

)⊥ and y∗2,i ∈(
imF ′(x0)

)⊥, and passing to the limit as i→∞, we obtain (3.11). �

The next simple example demonstrates that in Theorem 3.4 the assumption that
F is 2-regular in the direction h is essential.

Example 3.1. For positive integers 1 6 m < n and a ∈ Rn with a ̸= 0 we consider
the problem

f0 = ⟨a, x⟩ → min, F (x) =
m∑

i=1

x2
i +

n∑
i=m+1

x4
i = 0.

Its solution is the point x0 = 0, and H(0) = {h : hi = 0, i = 1, . . . ,m} ⇒
F ′′(0)h = 0 for all h ∈ H(0). Let h ∈ H(0) with h ̸= 0 be arbitrary. For any
Lagrange multipliers λA corresponding to this h it follows from (3.3) and (3.4)
that λ0 = 0 ⇒ y∗2 ̸= 0. At the same time, F ′′(0) ̸= 0, so that for y∗2 ̸= 0 the
condition (3.11) fails. The point is that the map F is not 2-regular in any direction
h ∈ H(0).

In the problem (3.1) assume that the minimum is attained at an abnormal
point x0. Then by the Lagrange principle (1.3) this point corresponds to a Lagrange
multiplier λ̄ = (0, ȳ∗). At the same time, Theorem 3.4 provides sufficient conditions
for the existence in this problem of, besides λ̄, also the so-called normal Lagrange
multiplier λ = (1, y∗). This means the validity of the classical Lagrange principle,
that is, the principle in the form stated by Lagrange himself:

∃ y∗ : f ′0(x0) + F ′(x0)∗y∗ = 0. (3.13)

Lemma 3.1. In the problem (3.1) let x0 be a local minimum point in the finite
topology and assume that the set of directions h ∈ H(x0) in which the map F is
2-regular at x0 is non-empty. Suppose that at least one of the following assumptions
holds :
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a) for any non-zero y∗2 ∈
(
imF ′(x0)

)⊥ the restriction of the quadratic form〈
y∗2 , F

′′(x0)[x, x]
〉

to the subspace kerF ′(x0) has a zero cone containing no subspaces
of codimension codim

(
imF ′(x0)

)
;

b) F is 2-normal at x0.
Then the classical Lagrange principle (3.13) holds at x0.

Proof. Assume that a) holds, let h ∈ H(x0) be a vector such that F is 2-regular
along h, and assume that a Lagrange multiplier λA = (λ0, y∗1 , y

∗
2) corresponds to

this vector by Theorem 3.4. We assert that y∗2 = 0. Indeed, by (3.11) the quadratic
form

〈
y∗2 , F

′′(x0)[x, x]
〉

vanishes on the subspace ker G̃(h), which lies in the subspace
kerF ′(x0) and has codimension codim

(
imF ′(x0)

)
there. Hence y∗2 = 0, so λ0 > 0

by (3.4). Then (3.13) follows from (3.3).
Assume that b) holds and (3.13) fails. Then λ0 = 0 for all λ ∈ Λk−1(x0).

Therefore by Theorem 2.7, for all x ∈ kerF ′(x0) there exists a y∗ ∈ F 2
k−1(x0)

such that
〈
y∗, F ′′(x0)[x, x]

〉
> 0. Since F is 2-normal, by the separation theorem

for convex sets there exists a ȳ ∈
(
imF ′(x0)

)⊥ such that ⟨y∗, ȳ⟩ > 0 for all y∗ ∈
conv F 2

k−1(x0). The map F is 2-regular in the direction h, therefore there exists
a finite-dimensional subspace X̃ such that G̃(h)X̃ = Y . For ε small in absolute
value we consider the system of equations

F ′(x0)x = 0, πF ′′(x0)[x, x] + εȳ|x|2 = 0 (3.14)

with respect to x ∈ X̃. For ε = 0 it has the solution x = h. We apply to this
system the classical implicit function theorem at the normal point x = h and
deduce that if ε is small in absolute value, then equation (3.14) has a solution
h(ε) such that h(ε) → h as ε → 0. In view of the foregoing, for each ε there
exists a y∗(ε) ∈ F 2

k−1(x0) such that
〈
y∗(ε), F ′′(x0)

[
h(ε), h(ε)

]〉
> 0. Taking the

inner product of the second equation in (3.14) for x = h(ε) (ε > 0) and y∗(ε),
and considering that

〈
y∗(ε), ȳ

〉
> 0, we arrive at a contradiction to the previous

inequality. �

Lemma 3.2. Let x0 be an abnormal point for F which is a local minimum point
in the problem (3.1) with respect to the finite topology. Suppose that at least one of
the following assumptions holds :

c) for each non-zero y∗ ∈
(
imF ′(x0)

)⊥ the quadratic form
〈
y∗, F ′′(x0)[x, x]

〉
has

index greater than codim
(
imF ′(x0)

)
−1 on the subspace kerF ′(x0), or equivalently,

the set F 2
k−1(x0) is empty ;

d) there exists a vector x̄ ∈ kerF ′(x0) such that
〈
y∗, F ′′(x0)[x̄, x̄]

〉
< 0 for all

y∗ ∈ F 2
k−1(x0).

Then the classical Lagrange principle (3.13) holds at x0.

Proof. Assume that (3.13) fails. Then λ0 = 0 for all λ ∈ Λk−1(x0). Since x0 is an
abnormal point, Theorem 2.7 shows that Λk−1(x0) is non-empty. Hence, the set
F 2

k−1(x0) is non-empty too, and thus the assumption c) fails. Moreover, by Theo-
rem 2.7 there exists a y∗ ∈ F 2

k−1(x0) such that
〈
y∗, F ′′(x0)[x̄, x̄]

〉
> 0. Therefore,

the assumption d) also fails. This contradiction completes the argument. �
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Problems with non-closed image. The first proofs of Theorems 3.1 and 3.2
in [20] were in the case of Banach spaces X and Y , under the assumption that the
subspace imF ′(x0) is closed. Subsequently, these theorems were generalized in [22]
to the case when imF ′(x0) is not a priori closed (of course, the Banach space Y is
infinite-dimensional). Here we present several of these results.

We assume that the maps f0 and F are twice continuously Fréchet differentiable
in a neighbourhood of x0, and moreover, the second derivative of F satisfies
a Lipschitz condition. As simple examples show (see [22], Examples 3 and 4), if
the subspace imF ′(x0) is not closed at a local minimum point x0 of the problem
(3.1), then the Lagrange principle (1.3) may fail at this point. Moreover, even the
necessary first-order condition f ′0(x0) ∈

(
kerF ′(x0)

)⊥ may fail. Nevertheless,
the following result holds.

Theorem 3.5. Let x0 be a local minimum in the problem (3.1). Then for any
h ∈ X with

F ′(x0)h = 0, F ′′(x0)[h, h] ∈ cl
(
imF ′(x0)

)
(3.15)

such that the subspace imG(x0, h) is closed, there exist a λ0 > 0 and a y∗ ∈ Y ∗ not
simultaneously zero (and depending on h) satisfying the conditions

∂Lh

∂x
(x0, λ

0, y∗) ∈
(
kerF ′(x0)

)⊥ and F ′(x0)∗y∗ = 0.

Furthermore, if imG(x0, h) = Y (that is, the map F is 2-regular at x0 in the
direction h), then λ0 > 0.

Here Lh is the family of functions depending on the parameter h ∈ X and the
variables (x, λ0, y∗) ∈ X × R× Y ∗ and defined by the formula

Lh(x, λ0, y∗) = λ0f0(x) +
〈
y∗, F ′(x)h

〉
.

Theorem 3.6. Let x0 be a local minimum in the problem (3.1), and assume that
the range imF ′(x0) is dense in Y and that imG(x0, h) = Y for some h ∈ kerF ′(x0).

Then there exists a normal Lagrange multiplier λ = (1, y∗), y∗ ∈ Y ∗, such that
the classical Lagrange principle (3.13) holds and, moreover,

∂2L

∂x2
(x0, λ)[h, h] > 0.

The proofs of both theorems are presented in [22]. In [23] these results were
generalized to the problem (2.13), where C is an arbitrary closed convex subset
of the Banach space Y . In this case the necessary second-order conditions for the
problem (2.13) contain a ‘sigma’-term, just as in (2.16).

As of now, the interconnections between the two approaches we have presented
to the study of necessary extremum conditions in abnormal problems, that is, the
index approach and the one based on the generalized Lagrange function LA and
the concept of 2-regularity, are poorly understood. In fact, only the recent results
in [24] show that if F does not have 2-regular directions at a point x0, then for the
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problem (3.1) we have the conditions

max
λ∈Λ

∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ kerF ′(x0),

where Λ =
{
λ ∈ Λk−1(x0) : λ0 = 0

}
,

which are even stronger than the necessary conditions (2.4).

4. Sufficient second-order conditions for an extremum

Sufficient conditions in terms of the Lagrange function. Let us consider the
problem (2.1). The previous two sections were devoted to necessary second-order
conditions. We now consider sufficient second-order conditions, assuming that X
and Y are normed spaces. Here it is important whether or not the spaces X and Y
are finite-dimensional. We assume that all the functions fj and the map f have
two continuous Fréchet derivatives in a neighbourhood of the point x0. If both X
and Y are finite-dimensional, then sufficient second-order conditions at x0 are well
known for the problem (2.1):

Λ = Λ(x0) ̸= ∅, max
λ∈Λ

∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ K (x0) : x ̸= 0. (4.1)

Let X be infinite-dimensional and Y finite-dimensional. Then the conditions (4.1)
are sufficient only for a local minimum in the finite topology but not for a local
minimum with respect to the actual topology in X, even when there are no con-
straints (an example: X = l2, f0(x) =

∑∞
i=1(i

−1x2
i − x4

i ), x0 = 0). Here we discuss
only local minima with respect to the actual topology in X.

Theorem 4.1. Let Y be a finite-dimensional space, and assume that the set Λ =
Λ(x0) is non-empty and that there exists an ε > 0 such that

sup
λ∈Λ

∂2L

∂x2
(x0, λ)[x, x] > ε∥x∥2 ∀x ∈ K (x0). (4.2)

Then x0 is a strict local minimum in the problem (2.1).

This was proved in [5] (see § 1.7, Theorem 7.1).
Condition (4.2) leads us to the following problem: let X be a complete space

and assume for simplicity that there are no constraints of inequality type and that
x0 is a normal point. Then (4.2) takes the form ∂2L

∂x2 (x0, λ)[x, x] > ε∥x∥2 for all
x ∈ ker f ′(x0), from which it follows (see [1], § 7.2.2, pp. 307, 308) that the subspace
ker f ′(x0) is homeomorphic to a Hilbert space. This is a significant deficiency of
the sufficient condition (4.2), which can in fact be used only in Hilbert spaces,
while in most cases of applications to infinite-dimensional problems neither X nor
ker f ′(x0) is a Hilbert space. For example, in a non-linear optimal control problem
we minimize over the Banach space L∞[t1, t2] of measurable essentially bounded
functions.

If Y is infinite-dimensional, then, as we show below, Theorem 4.1 holds under
the assumptions that X and Y are complete spaces and the subspace im f ′(x0)
is closed. The next example demonstrates that the assumption that im f ′(x0) is
closed cannot be dropped here.
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Example 4.1. Let X = Y = l2 (Hilbert spaces). Consider the compact linear
operator A : l2 → l2 and the quadratic map Q : l2 → l2 defined by the formulae
Ax = (x1, x2/2, . . . , xj/j, . . . ) and Q(x) = (x2

1, x
2
2, . . . , x

2
j , . . . ). We look at the

problem
f0(x) = −|x|2 → min, f(x) = Ax−Q(x) = 0.

In it the condition (4.2) is satisfied for x0 = 0, since (1, 0) ∈ Λ(0) and ker f ′(x0) =
kerA = {0} by construction. However, x0 = 0 is not a local minimum point.

Indeed, letting xi ∈ l2 be the sequence of elements with i−1 at the ith position
and zeros elsewhere, we get that f(xi) = 0, f0(xi) < 0 for all i, and xi → 0 as
i→∞. In this example the point is that the subspace im f ′(x0) is not closed.

Problems with an infinite-dimensional image. For infinite-dimensional Y
the assumption that im f ′(x0) is closed is quite restrictive. Our first goal is to
present sufficient second-order conditions involving neither this assumption nor the
assumption that ker f ′(x0) is homeomorphic to a Hilbert space.

We use a construction proposed in [25]. Fix a point x0 ∈ X, and let {Di} be
a sequence of subsets of X such that x0 ∈ Di for all i and {Di} converges to x0 in
the sense that each sequence {xi} with xi ∈ Di converges to x0. For example, the
Di can be the balls

{
x : ∥x− x0∥1 6 ρi

}
with ρi → 0+, where ∥ · ∥1 is a norm in X

dominating the original norm.
We assume that f is a second-order Taylor map at x0 with respect to {Di}, that

is, there exist a continuous linear operator A : X → Y , a continuous symmetric
bilinear map B : X ×X → Y , and a numerical sequence {αi} → 0+ such that for
each i

f(x) = f(x0) +A(x− x0) +
1
2
B[x− x0, x− x0] + ∆(x− x0),∥∥∆(x− x0)

∥∥ 6 αi∥x− x0∥2 ∀x ∈ Di.

For convenience we use here the same notation ∥ · ∥ for the norms in X and Y . We
denote the linear operator A, called the relative first differential, by ∂f

∂x (x0), and
the bilinear form B, called the relative second differential, by ∂2f

∂x2 (x0). Note that
these relative differentials A and B are not necessarily uniquely defined (everything
depends on the choice of the sequence of sets {Di}).

The functions fj are also assumed to be second-order Taylor functions at x0

with respect to {Di}, and we use similar notation for their relative differentials and
for partial derivatives of the Lagrange function with respect to the variable x. We
note that even in the finite-dimensional case and with Di =

{
x : ∥x− x0∥ 6 i−1

}
,

a second-order Taylor function at some point is not even necessarily continuous
in a neighbourhood of this point.

Again, for convenience we assume that fj(x0) = 0 for all j > 1. Let

K1(x0) =
{
x ∈ X :

〈
∂fj

∂x
(x0), x

〉
6 0, j = 0, . . . , l

}
.

Theorem 4.2. Let Λ = Λ(x0) be non-empty and assume that there exist a γ and
an ε > 0 such that

sup
λ∈Λ

∂2L

∂x2
(x0, λ)[x, x] + γ

∥∥∥∥∂f∂x (x0)x
∥∥∥∥2

> ε∥x∥2 ∀x ∈ K1(x0). (4.3)
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Then x0 is a strict minimum point on the set Di0 in the problem (2.1) for some i0,
that is,

f0(x) > f0(x0) ∀x ̸= x0 : x ∈ Di0 , fj(x) 6 0, j = 1, . . . , l, f(x) = 0.

Proof. For convenience let x0 = 0 and f0(x0) = 0. By Hoffman’s lemma5 [3],

∃ c1 > 0: dist
(
x,K1(x0)

)
6 c1

l∑
j=0

max
(〈

∂fj

∂x
(x0), x

〉
, 0

)
∀x. (4.4)

We give a proof by contradiction: assume that there exists a sequence {xi} such
that

f(xi) = 0, fj(xi) 6 0, j = 0, . . . , l, xi ∈ Di, xi ̸= 0 ∀ i. (4.5)

Since {xi} tends to zero, it follows from the representations for f and fj that∥∥∥∥∂f∂x (x0)xi

∥∥∥∥ = o
(
∥xi∥

)
,

〈
∂fj

∂x
(x0), xi

〉
6 o

(
∥xi∥

)
, j = 0, . . . , l. (4.6)

Hence by (4.4) there exists a sequence {x̃i} such that xi = x̃i + o
(
∥x̃i∥

)
, x̃i ̸= 0,

and x̃i ∈ K1(x0) for all i, where o
(
∥x̃i∥

)
/∥x̃i∥ → 0 as i → ∞. By (4.3), for all i

there exists a λi = (λ0
i , . . . , λ

l
i, y

∗
i ) ∈ Λ such that

∂2L

∂x2
(x0, λi)[x̃i, x̃i] + γ

∥∥∥∥∂f∂x (x0)x̃i

∥∥∥∥2

>
ε

2
∥x̃i∥2. (4.7)

We have

0
(1)

> λ0
i f0(xi)

(2)

> L(xi, λi)
(3)
= L(x0, λi) +

∂L

∂x
(x0, λi)xi

+
1
2
∂2L

∂x2
(x0, λi)[xi, xi] + o

(
∥xi∥2

) (4)
=

1
2
∂2L

∂x2
(x0, λi)[x̃i, x̃i] + o

(
∥x̃i∥2

)
(5)
=

1
2

(
∂2L

∂x2
(x0, λi)[x̃i, x̃i] + γ

∥∥∥∥∂f∂x (x0)x̃i

∥∥∥∥2)
+ o

(
∥x̃i∥2

) (6)

>
ε

4
∥x̃i∥2 + o

(
∥x̃i∥2

)
.

Here the inequalities
(1)

> and
(2)

> follow from (4.5) and the non-negativity of the λj
i ,

the equality
(3)
= follows from the representations for f and fj and the boundedness

of the set Λ,
(4)
= holds because λi ∈ Λ in view of the construction of the sequence

{x̃i},
(5)
= holds because

∥∥∂f
∂x (x0)xi

∥∥2 = o
(
∥xi∥2

)
in view of (4.6), and the inequality

(6)

> follows from (4.7). Thus, we have 0 > ε∥xi∥2/4 + o
(
∥xi∥2

)
. This contradiction

proves the theorem. �

5Although in the statement of Hoffman’s lemma it is usually assumed that X is complete, it
follows immediately from its proof in [3] that for the polyhedral cone K1(x0) under consideration
it also holds in an arbitrary normed space X.
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Remark. In fact, we have proved more. Namely, f0(x) > f0(x0) + ε∥x− x0∥2/4 for
all x in Di0 satisfying the constraints in the problem (2.1).

We discuss the theorem just proved. The case Di =
{
x : ∥x − x0∥ 6 i−1

}
corresponds to a local minimum in the problem (2.1). Let us compare the sufficient
conditions (4.2) and (4.3). Obviously, (4.3) always implies (4.2). It turns out that
if we impose the additional assumptions that X and Y are Banach spaces and
im f ′(x0) is closed, then (4.2) implies (4.3). This is a consequence of the following
generalization of a theorem of Finsler [26].

Let A : X → Y be a fixed continuous linear operator, and suppose that at least
one of the following two assumptions holds: either Y is finite-dimensional, or X
and Y are complete spaces and imA is closed. Let Bσ(·, ·) : X×X → R be a family
of symmetric bilinear maps depending on a parameter σ which ranges over a given
set Σ. We assume that the Bσ are bounded uniformly with respect to σ, that
is, there exists a c2 > 0 such that

∣∣Bσ(x1, x2)
∣∣ 6 c2∥x1∥ ∥x2∥ for all σ ∈ Σ. Let

Bσ(x) = Bσ(x, x). We also consider the polyhedral cone K =
{
x ∈ X : ⟨aj , x⟩ 6 0,

j = 1, . . . , k
}
, where the aj ∈ X∗ are fixed.

Lemma 4.1. Assume that for some ε > 0

sup
σ∈Σ

Bσ(x) > ε∥x∥2 ∀x ∈ kerA ∩K.

Then
∃ γ > 0: sup

σ∈Σ
Bσ(x) + γ∥Ax∥2 >

ε

4
∥x∥2 ∀x ∈ K.

Proof. Consider the cone K̃ = {x ∈ K : Ax = 0}. Estimating the distance from
K̃ to a point x ∈ K, we have from Hoffman’s lemma that for some c3 > 0 an
arbitrary vector x ∈ K can be represented as x = a+ b, where a ∈ K, Aa = 0, and
c3∥b∥ 6 ∥Ab∥.

Let x ∈ K be arbitrary. Using this representation, we get that for γ > 0

sup
σ∈Σ

Bσ(x) + γ∥Ax∥2 = sup
σ∈Σ

Bσ(a+ b, a+ b) + γ∥Ab∥2

> sup
σ∈Σ

Bσ(a)− 2c2∥a∥ ∥b∥ − c2∥b∥2 + γc23∥b∥2

> ε∥a∥2 − 2c2∥a∥ ∥b∥+ (γc23 − c2)∥b∥2.

We take γ > 0 such that the expression on the right-hand side of this inequality
has the lower bound ε

(
∥a∥2 + ∥b∥2

)
/2. Considering that ∥a∥2 + ∥b∥2 > ∥x∥2/2, we

complete the proof. �

It follows from this lemma that if Y is a finite-dimensional space or ifX and Y are
Banach spaces and im f ′(x0) is closed, then the sufficient conditions (4.2) and (4.3)
are equivalent. At the same time, we see from the above example that, without the
assumption that im f ′(x0) is closed, the relation (4.2) is not sufficient for a local
minimum. We give an example where the subspace im f ′(x0) is not closed, but the
hypotheses of Theorem 4.2 are satisfied. Consider the problem

f0(x) = |x|2 − |αAx|2 + r(x) → min, f(x) = Ax−Q(x) +R(x) = 0,
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where X = Y = l2, the linear operator A and the quadratic map Q are as in
Example 4.1, α is an arbitrary constant, and r and R are arbitrary smooth maps
whose first two derivatives vanish at zero. Obviously, all the assumptions of
Theorem 4.2 hold at x0 = 0, and therefore x0 = 0 is a local minimum, although
im f ′(x0) = imA is not closed.

Non-linear optimal control problems can be formulated in a natural way as min-
imization problems in the space X = L∞ = L∞[t1, t2]. In this space (4.2) fails, and
if we endow L∞ with the L2-norm, then the space is no longer complete and we
cannot use Theorem 4.1 either. On the other hand, Theorem 4.2 does not require X
to be complete, so it is applicable.

We explain the above by looking at the Lagrange problem

ẋ = f(x, u, t), t ∈ [t1, t2],
∫ t2

t1

f0(x, u, t) dt→ min (4.8)

with fixed left-hand endpoint x(t1) and with constraints of equality and inequal-
ity type for the right-hand endpoint x(t2). As X we take the Euclidean space of
bounded measurable functions u(·) on the given interval [t1, t2] and import to X
the inner product from L2[t1, t2], which generates the norm ∥ · ∥. As Y we take
a finite-dimensional space whose dimension is determined by the number of con-
straints at the endpoints. As the Di we take the balls Di =

{
u : ∥u−u∗∥L∞ 6 i−1

}
,

where u∗ is the admissible control being investigated in the minimization problem.
It is straightforward to verify that if the vector-valued function f and the func-
tion f0 are twice continuously differentiable with respect to the finite-dimensional
variables (x, u), then Theorem 4.2 can be applied and yields sufficient conditions
for a weak local minimum in the problem (4.8).

Sufficient conditions for abnormal problems. The sufficient conditions in
Theorems 4.1 and 4.2 are stated in terms of the classical Lagrange function L and
hold without a priori regularity assumptions. However, when x0 is an abnormal
point, these conditions cannot hold for some large classes of problems. We shall
explain this; for simplicity we confine ourselves to the problem (3.1) from the pre-
vious section and assume that X is a Banach space, Y is finite-dimensional, f0 has
two and F has three continuous derivatives in a neighbourhood of a point x0, and
the third derivative of F satisfies a Lipschitz condition in this neighbourhood.

Let x0 be an abnormal point solving the problem (3.1), and assume that the
classical Lagrange multiplier rule (3.13) fails at this point, that is, there does not
exist a y∗ ∈ Y ∗ such that f ′0(x0) + F ′(x0)∗y∗ = 0, and also the cone H(x0) is
distinct from zero. (If X is finite-dimensional and x0 is not an isolated point of the
set

{
x : F (x) = 0

}
, then this cone is distinct from zero.) Then the assumptions of

Theorems 4.1 and 4.2 cannot hold, because in this case

∂2L

∂x2
(x0, λ)[x, x] = 0 ∀λ ∈ Λ(x0), ∀x ∈ H(x0) ⊆ KerF ′(x0), H(x0) ̸= {0}.

In terms of the generalized Lagrange function LA we state sufficient second-order
conditions for an extremum which remain useful in the situation just described, but
which hold only under the following assumptions of strong 2-regularity.
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Definition. A map F is said to be strongly 2-regular at a point x0 if there exists
an ε > 0 such that

G̃(h)(BX) ⊇ εBY ∀h ∈ X : ∥h∥ = 1,
∥∥G̃(h)h

∥∥ 6 ε,

with BX and BY the unit balls about 0 inX and Y , respectively, G̃(h)x = F ′(x0)x+
πF ′′(x0)[h, x], and π the operator of orthogonal projection of Y onto

(
imF ′(x0)

)⊥.

Note that if X is finite-dimensional, then strong 2-regularity is equivalent to
2-regularity. This is not so in infinite-dimensional spaces. There are tests for
strong 2-regularity in a Hilbert space in [27] and [28].

Theorem 4.3. Let F be a strongly 2-regular map at a point x0. Assume that there
exists a δ > 0 such that for each h ∈ H(x0) \ {0} there are Lagrange multipliers
λA = (λ0, y∗1 , y

∗
2) with |λA| = 1 satisfying (3.3) and (3.4) such that

∂2LA

∂x2

(
x0, λ

0, y∗1 ,
1
3
y∗2 , h

)
[h, h] > δ∥h∥2. (4.9)

Then x0 is a strict local minimum point in the problem (3.1).

This theorem was proved in [5], Chap. 1, § 1.14.
It follows from Theorem 4.3 that if F is a strongly 2-regular map at a point x0

and H(x0) = {0}, then x0 is a strict local minimum point in the problem (3.1).
Furthermore, if X is finite-dimensional, then it is sufficient to take δ = 0 in (4.9).
Now we give an example where the assumptions of Theorem 4.3 are satisfied, but
those of Theorems 4.1 and 4.2 are not.

Example 4.2. Let k = 2 and x = (x1, . . . , xn) ∈ Rn = X, and consider the
problem

f0(x) = x1 +
n∑

i=2

x2
i → min,

F1(x) = x1(x1 − 2xn) = 0, F2(x) =
1
2
x2

1 +
n−1∑
i=2

x2
i − x2

n = 0.

Here x0 = 0 satisfies the Lagrange multiplier rule, but each Lagrange multiplier
λ ∈ Λ(0) has the form λ = (0, y∗). Hence ∂2L

∂x2 (x0, λ)[h, h] = 0 for all h ∈ H(x0) ={
x : F (x) = 0

}
and all λ ∈ Λ(0), so that (4.2) fails.

On the other hand, h1 = 0 for each h ∈ H(0), and the map F is 2-regular at
zero. Therefore, for each λA satisfying (3.3) and (3.4) we have

λ0 > 0, y∗1 = 0 ⇒ ∀h ∈ H(0) \ {0} ∃λA = (λ0, 0, y∗2) :

∂2LA

∂x2

(
0, λ0, 0,

1
3
y∗2 , h

)
[h, h] = λ0

n∑
i=2

h2
i > 0.

In contrast to Theorems 4.1 and 4.2, we assume in Theorem 4.3 that F is strongly
2-regular. The next example shows that this assumption is essential.
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Example 4.3. Let k = 1 and x = (x1, x2) ∈ R2 = X. Obviously, x0 = 0 is not
a minimum point in the problem

f0(x) = −|x|2 → min, F (x) = x2
1 + x3

2 = 0.

At the same time, H(x0) =
{
h = (h1, h2) : h1 = 0

}
, and thus (4.9) holds for

λA = (0, 0, 1) and δ = 1. The point here is that F is not 2-regular at the origin.

Sufficient higher-order conditions in the problem (2.1) were obtained in Chap. 1
of [5] (§ 1.14), while sufficient second-order conditions in the problem (2.13) with
C a closed convex set were obtained in [15].

5. Quadratic maps and quadratic problems

Sign-definiteness of a quadratic form on an intersection of quadrics. A
typical example of an extremal problem in which the extremum is always attained
at an abnormal point is given by the following classical algebraic problem. Let Qi,
i = 0, . . . , k, be k + 1 symmetric n × n matrices which define the quadratic forms
qi(x) = ⟨Qix, x⟩ on X = Rn. It is required to find conditions ensuring that

q0(x) > 0 ∀x : q1(x) = q2(x) = · · · = qk(x) = 0, (5.1)

where n and k are fixed positive integers. This problem is of interest both in itself
and also for applied problems (see [29]–[31], among others). Obviously, (5.1) is
equivalent to the following: x0 = 0 is a minimum point in the problem

q0(x) → min, qi(x) = 0, i = 1, . . . , k. (5.2)

However, this point is necessarily abnormal.
Applying the necessary second-order conditions (2.18) in Theorem 2.7 to (5.2),

we see that if (5.1) holds, then

Λk−1 ̸= {∅}, max
λ∈Λk−1

(
λ0q0(x) +

k∑
j=1

y∗j qj(x)
)

> 0 ∀x ∈ X, (5.3)

where

Λs =
{
λ = (λ0, y∗) : λ0 > 0, ind

(
λ0q0 +

k∑
j=1

y∗j qj

)
6 s, |λ| = 1

}
.

However, for some of the vectors λ ∈ Λk−1 we can have λ0 = 0. In this case the
conditions (5.3) will no longer depend on the form q0, and may not yield information
as a result. This occurs when 0 ∈ conv Λk−1, because (5.3) then holds automatically.
Here is a corresponding example: k = 2, q1(x) = x1x2, and the forms q0 and q2
are arbitrary. Obviously, conv Λ1 contains the segment (0, λ1, 0) with |λ1| 6 1, and
thus (5.3) holds for any forms q0 and q2, including ones for which (5.1) fails (for
example, for q0(x) = −|x|2 and q2 = 0).

Our immediate goal is to find conditions ensuring that if (5.1) holds, then in (5.3)
we can confine ourselves to λ with λ0 > 0. The next (obvious) example shows that
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without additional assumptions this is impossible. Moreover, it can happen that
λ0 = 0 for all λ ∈ Λk−1. In fact, let k = 1, n = 2, q0(x) = x1x2, and q1(x) = x2

1.
Then obviously, q0(x) = 0 if q1(x) = 0, but λ0 = 0 for all λ ∈ Λ0.

Let us introduce some notation required in what follows. We consider the bilinear
map Q̃ : X ×X → Y = Rk which associates with arbitrary x1, x2 ∈ X the vector
y = Q̃[x1, x2] with ith component yi = ⟨Qix1, x2⟩. Since the matrices Qi are
symmetric, this bilinear map Q̃ is also symmetric. We set Q(x) = Q̃[x, x]. The
map Q : X → Y is said to be quadratic. For fixed h ∈ X let Qh be the linear
operator from X to Y acting by the formula Qh(x) = Q̃[h, x]. For y∗ ∈ Y ∗ let

y∗Q =
k∑

i=1

y∗iQi, y∗Q(x) =
k∑

i=1

y∗i qi(x).

For a closed convex cone C in Y we consider the cone

K =
{
x ∈ X : Q(x) ∈ C, x ̸= 0

}
.

Definition. The quadratic map Q is said to be regular at a point h ∈ K with
respect to the cone C if

imQh− C = Y.

The quadratic map Q is said to be regular with respect to the cone C if it is
regular at each point h ∈ K. For C = {0} the points in K are called non-trivial
zeros of the quadratic map Q. The regularity of Q at a point h where Q(h) = 0
means that the vectors Q1h, . . . , Qkh are linearly independent, so this point h is
called a regular zero. The regularity of Q means that all its non-trivial zeros (if
there are any) are regular.

The quadratic map Q is said to be surjective if Q(X) = Y . If Q has a regular
zero h, then Q is surjective. Indeed, Q(h) = 0 and the vectors Q1h, . . . , Qkh are
linearly independent. Hence, applying the classical inverse function theorem to the
equationQ(x) = y at x = h, we see that theQ-image of the unit-ball neighbourhood
of h contains a neighbourhood of zero, and since Q is positive-homogeneous, it is
surjective.

For y ∈ (Q(X)− C) let ω(y) be the infimum in the problem

q0(x) → inf, Q(x)− y ∈ C, (5.4)

and let ω(y) = +∞ for all y ̸∈
(
Q(X) − C

)
. The function ω thus defined is

positive-homogeneous, and if

q0(x) > 0 ∀x : Q(x) ∈ C, (5.5)

then ω(0) = 0. Let S =
{
y ∈ Y : |y| = 1

}
be the unit sphere.

Lemma 5.1. Assume that (5.5) holds and, furthermore, if h ∈ K and q0(h) = 0,
then Q is regular at h with respect to the cone C . Then the function ω is bounded
below on S, that is, there exists a d > 0 such that ω(y) > −d for all y ∈ S.



Smooth abnormal problems in extremum theory and analysis 433

Proof. Assume the converse. Then there exist sequences {xi} ⊂ X and {η̃i} ⊂ C
such that Q(xi) − η̃i = yi ∈ S for all i and q0(xi) → −∞, so that |xi| → ∞. Let
hi = xi|xi|−1 and ηi = η̃i|xi|−2. Since |hi| = 1, by passing to a subsequence we can
assume that hi → h, and therefore ηi → η ∈ C, because

∣∣Q(hi)− ηi

∣∣ = |xi|−2 → 0.
Obviously, q0(h) 6 0, and also Q(h) = η ⇒ h ∈ K. Hence q0(h) = 0, and thus
the quadratic map Q is regular at the point h with respect to the cone C, so
that it satisfies the Robinson condition. Therefore, by Robinson’s theorem [16],
in a neighbourhood of h the distance to the set K has the estimate dist(hi,K) 6
const×dist(Q(hi), C) 6 const |yi| |xi|−2 = const |xi|−2, because Q(hi)− yi|xi|−2 =
ηi ∈ C. Recall that dist denotes the distance from a point to a set, and also, const
will be our notation for a constant whose concrete value is not important for us.
Hence, for large indices i there exist an h̃i ∈ K and a ξi such that hi = h̃i + ξi and
|ξi| 6 const |xi|−2. Then

q0(hi) = q0(h̃i) + q0(ξi) + 2⟨Q0h̃i, ξi⟩ > − const |ξi| > − const |xi|−2

(because q0(h̃i) > 0 by (5.5)), and thus q0(xi) = |xi|2q0(hi) > − const for all i.
This is a contradiction. �

Corollary. Under the assumptions of Lemma 5.1

q0(x) + d
∣∣Q(x)− η

∣∣ > 0 ∀x ∈ X, η ∈ C, (5.6)

where d > 0 is the constant in the lemma.

In fact, since the function ω is positive-homogeneous, ω(y) + d|y| > 0 for all y.
Let η ∈ C and x ∈ X. Substituting y = Q(x) − η in the above inequality and
bearing in mind that q0(x) > ω(y), we obtain (5.6).

For ε > 0 and integers s > 0 let

Λs(C) =
{
λ = (λ0, y∗) ∈ Λs : y∗ ∈ C0

}
, Λε

s(C) =
{
λ ∈ Λs(C) : λ0 > ε

}
,

where C0 =
{
y∗ : ⟨y∗, y⟩ 6 0 for all y ∈ C

}
is the polar cone of C.

In what follows we assume that C is a polyhedral cone, that is, it can be described
by finitely many homogeneous linear inequalities.

Theorem 5.1. Assume that the conditions (5.5) hold, and also that if h ∈ K and
q0(h) = 0, then Q is regular at h with respect to the cone C . Then there exists an
ε > 0 such that

Λ = Λε
k−1(C) ̸= ∅, max

λ∈Λ

(
λ0ω(y) + ⟨y∗, y⟩

)
> 0 ∀ y. (5.7)

Note that we do not exclude the case K = ∅. In this case the inequality in (5.7)
holds automatically for y ̸∈

(
Q(X)− C

)
, because ω(y) = +∞ for such y.

For the proof of the theorem we require the following lemma.

Lemma 5.2. Let ϕ : X → R and Φ: X → Y be fixed smooth maps and let d be
a positive constant. Assume that the function f(x, η) = ϕ(x) + d|Φ(x) + η| attains
its minimum with respect to x ∈ X and η ∈ C at a point (x0, η0) such that

Φ(x0) + η0 = 0, im Φ′(x0) + span Γ = Y, η0 ∈ ri Γ,
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where Γ is a face of the cone C , and ri denotes the relative interior of a convex set.
Then there exists a y∗ ∈ C0 such that |y∗| 6 d,

ϕ′(x0) + Φ′(x0)∗y∗ = 0, (5.8)

and for q0 = ϕ′′(x0) and Q = Φ′′(x0)

q0(x) + y∗Q(x) > 0 ∀x : Φ′(x0)x ∈ span Γ. (5.9)

The proof of the lemma is similar to the proof of Proposition 2 in [32], where
the case Γ = {0} was treated.

We now prove Theorem 5.1. Since ω is a positive-homogeneous function, it is
sufficient to show that there exists an ε > 0 such that the set Λ = Λε

k−1(C) is non-
empty and the inequality in (5.7) holds for each y ∈ S. Let us show this.

By assumption the cone C has finitely many faces. For each face we consider the
orthogonal projection of Y onto the orthogonal complement of the linear hull of this
face. Omitting the zero operator (if it is present) and renumbering the remaining
operators, we let them be P1, . . . , Pr0 .

We fix an arbitrary point y ∈ S. By Sard’s theorem, the set of critical values
of each smooth map PrQ : X → imPr has Lebesgue measure zero. Hence, the set of
points which are regular values of each of the maps PrQ, r = 1, . . . , r0, is dense
in Y . Moreover, each of these maps is positive-homogeneous. Then there exists
a sequence {ys} converging to y such that ys ∈ S for all s and each Prys is a regular
value of all the maps PrQ, r = 1, . . . , r0.

By Lemma 5.1, (5.6) holds for some d > 0. For a positive integer i we set
q0,i(x) = q0(x) + i−1|x|2 and Q0,i = Q0 + i−1I, where I is the identity matrix. We
fix an arbitrary index s and consider the family of problems

fi(x, η) = q0,i(x) + d
∣∣Q(x)− η − ys

∣∣ → inf, x ∈ X, η ∈ C,

which depend on the positive integer parameter i. They are called the i-problems.
By Lemma 5.1 the infimum in each i-problem is finite. We assert that it is attained.
Indeed, let {xj , ηj} be a minimizing sequence in the i-problem. Then fi(xj , ηj) >
i−1|xj |2 − d|ys| by (5.6), so if |xj | → ∞, then fi(xj , ηj) → ∞ as j → ∞, which
is impossible. Hence, the sequence {xj} is bounded and therefore {ηj} is also
bounded. Passing to subsequences, we obtain two convergent sequences, so that
their limits give a solution of the i-problem.

Let xi,s, ηi,s be some solution of the i-problem. For fixed i we consider two cases.
The first case: Q(xi,s)− ηi,s ̸= ys. Then the function fi being minimized in the

i-problem is smooth in a neighbourhood of the solution (xi,s, ηi,s). Therefore, by
the classical necessary conditions of orders 1 and 2,

∂fi

∂x
(xi,s, ηi,s) = 2(Q0,i + y∗i,sQ)xi,s = 0,

∂fi

∂η
(xi,s, ηi,s) = −y∗i,s ∈ −C0, (5.10)

q0,i(x) + y∗i,sQ(x) > 0 ∀x ∈ kerQxi,s, (5.11)

where y∗i,s = d
(
Q(xi,s)−ηi,s−ys

)
/
∣∣Q(xi,s)−ηi,s−ys

∣∣. Let us analyse these relations.
First let Q(xi,s) ̸= 0. Then we set Πi = kerQxi,s + span{xi,s}. By (5.10) and

(5.11) we have q0,i(x) + y∗i,sQ(x) > 0 for all x ∈ Πi. Moreover, codimΠi 6 k − 1
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because xi,s ̸∈ kerQxi,s, since (Qxi,s)xi,s = Q(xi,s) ̸= 0. Hence, in view of (5.10)
we have

y∗i,s ∈ C0, |y∗i,s| 6 d,

λ0
i,s(1, y

∗
i,s) ∈ Λk−1 for λ0

i,s =
(
1 + |y∗i,s|2

)−1/2
.

(5.12)

Taking the inner product of the first formula in (5.10) and xi,s, and using the
definition of y∗i,s, we get that

q0,i(xi,s) + d
∣∣Q(xi,s)− ηi,s − ys

∣∣ + ⟨y∗i,s, ys⟩ = −⟨y∗i,s, ηi,s⟩ > 0.

On the other hand,

q0,i(x) + d
∣∣Q(x)− η − ys

∣∣
> q0,i(xi,s) + d

∣∣Q(xi,s)− ηi,s − ys

∣∣ ∀x ∈ X, ∀ η ∈ C, (5.13)

because (xi,s, ηi,s) solves the i-problem. Thus, by the previous inequality

min
{
q0,i(x) + d

∣∣Q(x)− η − ys

∣∣, x ∈ X, η ∈ C}
+ ⟨y∗i,s, ys⟩ > 0. (5.14)

Let Q(xi,s) = 0. Taking the inner product of (5.10) and xi,s, we get that
q0,i(xi,s) = 0. Hence, (0, ηi,s) is also a solution of the i-problem. Substituting the
point x = 0 for xi,s in (5.11), we have q0,i(x) + y∗i,sQ(x) > 0 for all x, which yields
(5.12). The proof of (5.14) is similar.

The second case: Q(xi,s) − ηi,s = ys. Each point in a polyhedral cone lies in
the relative interior of one of its faces. Then C has a face Γ such that ηi,s ∈ ri Γ.
First let span Γ ̸= Y . Taking the corresponding projection operator Pr ̸= 0 onto
(span Γ)⊥, we have Prηi,s = 0 ⇒ PrQ(xi,s) = Prys. Hence, imQxi,s + spanΓ = Y
by construction, and thus the assumptions of Lemma 5.2 hold for the i-problem.
By the lemma there exist y∗i,s satisfying (5.10) and (5.12). Here we have used (5.9)
and the fact that the subspace Πi =

{
x : Q[xi,s, x] ∈ span Γ

}
has codimension at

most (k − 1). On the other hand, if span Γ = Y , then ηi,s ∈ intC, which easily
shows that conditions (5.10) and (5.12) hold for y∗i,s = 0.

Taking the inner product of the first equality in (5.10) and xi,s, we get that
q0,i(xi,s)+

〈
y∗i,s, Q(xi,s)

〉
= 0. Then using (5.13) and taking account of the relations

Q(xi,s)− ηi,s − ys = 0 and ⟨y∗i,s, ηi,s⟩ 6 0, we arrive at (5.14).
Thus, by considering the above two cases we have proved that there exist y∗i,s

such that (5.12) and (5.14) hold. For each fixed s we select from the bounded
sequence {y∗i,s} a convergent subsequence, so that y∗i,s → y∗s as i→∞ for some y∗s
with |y∗s | 6 d. Similarly, passing from {y∗s} to a subsequence, we can assume that
y∗s → ŷ∗ as s → ∞ for some ŷ∗. We fix x ∈ X and η ∈ C and pass to the limit
in (5.12) and (5.14): first, for fixed s as i→∞, and then as s→∞. Since the set
Λk−1 is closed, we have |ŷ∗| 6 d, ŷ∗ ∈ C0,

λ = (λ0, y∗) ∈ Λk−1(C) for λ0 =
(
1 + |ŷ∗|2

)−1/2
, y∗ = λ0ŷ∗,

λ0 inf
{
q0(x) + d

∣∣Q(x)− η − y
∣∣, x ∈ X, η ∈ C}

+ ⟨y∗, y⟩ > 0.

From the last inequality we get that λ0q0(x) + ⟨y∗, y⟩ > 0 for all x such that
Q(x)− y ∈ C ⇒ λ0ω(y) + ⟨y∗, y⟩ > 0. Let ε = (1 + d2)−1/2. Then λ0 > ε, because
|ŷ∗| 6 d. The proof is complete.
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The above proof of Theorem 5.1 is based on an analysis of the problem

f(x, η) = q0(x) + d
∣∣Q(x)− η − y

∣∣ → inf, x ∈ X, η ∈ C, (5.15)

in which by Lemma 5.1 the infimum is finite for each y. If the infimum in (5.15)
could be attained for each y, then in the proof of the theorem we could do without
the family of i-problems, simply by analysing the minimum points of f . If the
form q0 is positive on K, then by increasing d if necessary we easily deduce from
Lemma 5.1 that each minimizing sequence in the problem (5.15) is bounded, and
therefore the minimum in the problem is attained. However, even for k = 1 this
does not hold without the additional assumption that q0 is positive on K. Indeed,
let C = {0}, q0(x) = x2

1, and Q(x) = q1(x) = x1x2. Then for any d > 0 and
y ∈ Y \ {0} the infimum in (5.15) is zero, but it is not attained.

Examples in [32] show that even for C = {0} the following cases are possible:
all the assumptions of Theorem 5.1 hold, but the infimum in (5.4) is not attained
whatever the choice of y ̸= 0; for each α ∈ R there exists a y = y(α) such that
the infimum in (5.4) is equal to α, but is not attained; the quadratic map Q is
surjective and each y ̸= 0 is a regular value of it, but all the non-trivial zeros of Q
are irregular and q0 vanishes on K, while ω(y) = −∞ for all y ̸= 0.

Theorem 5.1 has the following consequence.

Theorem 5.2. Assume that q0(x) > 0 for all x ∈ K . Then there exists an ε > 0
such that

Λ = Λεε
k−1(C) ̸= ∅ and max

λ∈Λ

(
λ0q0(x) + y∗Q(x)

)
> ε|x|2 ∀x ∈ X,

where the set Λεε
s (C) consists of those λ = (λ0, y∗) such that |λ| = 1, λ0 > ε,

y∗ ∈ C0, and there exists a linear subspace Π ⊂ X such that

codim Π 6 s, λ0q0(x) + y∗Q(x) > ε|x|2 ∀x ∈ Π.

Theorems 5.1 and 5.2 describe necessary conditions for q0 to be non-negative
definite and positive definite on the cone K, respectively. Obviously, they are also
sufficient.

Unfortunately, Theorems 5.1 and 5.2 are essentially finite-dimensional, and their
statements can fail if dimX = ∞. Here is an example of this.

Example 5.1. Let X be an infinite-dimensional Hilbert space, let Y = R, let C =
{0}, let A : X → X be a symmetric compact positive-definite linear operator, let
q0(x) = −|x|2, and let q1(x) = ⟨Ax, x⟩. Then K = ∅, but at the same time Λε

0 = ∅
for all ε > 0, because the Legendrian quadratic form (−q0/2+λ1q1) has finite index
for each λ1 (see [1], § 6.2), and thus ind(q0 + λ1q1) = ∞ for all λ1.

Example 5.2 (see [32], Example 3). Let n = 4, k = 2, C = {0}, q0(x) = x2x4,
q1(x) = x1x2, and q2(x) = −x2

1 + x2
2 + x2

3. It can be immediately verified that the
irregular zeros have the form x = (0, 0, 0, x4), while all the other non-trivial zeros
are regular. Furthermore, if Q(x) = 0, then x2 = 0 ⇒ q0(x) = 0. At the same time,
ω
(
(0, 1)

)
= −∞, so that neither the assertion of Lemma 5.1 nor the inequality (5.7)

in Theorem 5.1 holds.
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This example shows that if (5.1) holds, but the quadratic map Q has at least
one irregular non-trivial zero h such that q0(h) = 0, then Theorem 5.1 can fail even
for C = {0}. However, Theorem 5.2 has the following consequence.

For ε > 0 let Λ̃(ε) be the set of λ = (λ0, y∗) such that |λ| = 1, λ0 > 0, y∗ ∈ C0,
and there exists a linear subspace Π ⊂ X such that

codimΠ 6 k − 1, λ0q0(x) + y∗Q(x) + ελ0|x|2 > 0 ∀x ∈ Π \ {0}.

Corollary. Assume that (5.5) holds. Then for each x ∈ X \ {0}

∀ ε > 0 ∃λ = λ(ε) = (λ0, y∗) ∈ Λ̃(ε) : λ0q0(x) + y∗Q(x) + ελ0|x|2 > 0. (5.16)

This follows by applying Theorem 5.2 to the quadratic form q0,ε = q0(x)+ ε|x|2.
Let Λ̃k−1(C) = Ls

{
Λ̃(1/i)

}
be the upper topological limit of the sequence of sets{

Λ̃(1/i)
}
. If (5.5) holds, then

Λ̃ = Λ̃k−1(C) ̸= ∅, max
λ∈Λ̃

(
λ0ω(y) + ⟨y∗, y⟩

)
> 0 ∀ y. (5.17)

This follows from the family of conditions (5.16), because each limit point of
a sequence {λi} with λi ∈ Λ̃(1/i) for all i belongs to Λ̃k−1(C).

In turn, (5.17) implies condition (5.3) (in which the set Λk−1 must be replaced
by Λk−1(C) if the cone C is distinct from zero), because obviously Λ̃k−1(C) ⊆
Λk−1(C). In general the converse is not true, as the following example shows:
n = 2, k = 1, C = {0}, q0(x) = −|x|2, and q1(x) = x2

1. Here (5.3) holds but (5.17)
fails, since obviously Λ̃(ε) = ∅ for all ε > 0 ⇒ Λ̃k−1(C) = ∅. Thus, in the general
case condition (5.3), which is necessary for the quadratic form to be non-negative
on the cone K, is weaker than (5.17) and therefore is weaker than the family of
conditions (5.16).

Application to the theory of extremal problems. Let us return to the prob-
lem (3.1), in which we take X = Rn. We shall present conditions ensuring that in
(2.18) we can manage with only the Lagrange multipliers for which λ0 > 0.

Lemma 5.3. Let x0 be an abnormal point, let F be a 2-regular map at this point,
and assume both the classical Lagrange principle (3.13) and the quadratic growth
condition

∃ δ1, δ2 > 0: f0(x)− f0(x0) > δ1|x− x0|2 ∀x : F (x) = 0, |x− x0| 6 δ2.

Then there exists an ε > 0 such that

Λ =
{
λ ∈ Λk−1(x0) : λ0 > ε

}
̸= ∅

and max
λ∈Λ

∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ kerF ′(x0).

Proof. In view of (3.13), we can assume without loss of generality that f ′0(x0) = 0.
Since F is 2-regular at x0, by Theorem 1 in [28] the set

{
x : F (x) = 0

}
is locally

diffeomorphic in a neighbourhood of this point to the cone H(x0) in a neighbour-
hood of zero. From the last assumption of the lemma we get that f ′′0 (x0)[x, x] > 0
for all x ∈ H(x0) with x ̸= 0. Using Theorem 5.2, we finish the proof. �
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Let us return to the sufficient extremum conditions (4.1). Comparing them
to the necessary conditions (2.18), we see that they contain different sets Λ(x0)
and Λk−1(x0) of Lagrange multipliers. This disparity seems unnatural. However,
replacing the set Λk−1(x0) in the necessary conditions by the larger set Λ(x0) is
unreasonable, because weaker necessary conditions will simply hold automatically
in abnormal problems.

In this connection we can ask the following: if we replace Λ(x0) in (4.1) by the
smaller set Λk−1(x0), will this make the sufficient conditions (4.1) weaker? Formally
yes, but the following lemma demonstrates that the sufficient conditions (4.1) do
not actually become weaker after such a replacement.

Lemma 5.4. Let x0 be an abnormal point and assume that (4.1) holds. Then

max
λ∈Λ

∂2L

∂x2
(x0, λ)[x, x] > 0 ∀x ∈ kerF ′(x0), x ̸= 0, Λ = Λk−1(x0).

This follows from Theorem 5.2 (see the details in [33], pp. 35, 36).

Surjectiveness and non-trivial zeros of quadratic maps. We ask about
a possible link between non-trivial zeros of a quadratic map and its surjective-
ness. As already pointed out, if the quadratic map Q has a regular zero, then Q
is surjective. At the same time (see [30]), all generic quadratic maps are regular.
Hence, if a generic quadratic map has a non-trivial zero, then it is surjective. The
converse is not true: the simplest example of a surjective quadratic map with no
non-trivial zeros is given by

Q : R2 → R2, Q(x) = (x1x2, x
2
1 − x2

2). (5.18)

However, there are no such examples for n≫ k. Namely, the following result holds.

Lemma 5.5. Let Q be a surjective quadratic map and let

n > k2 − 1. (5.19)

Then the set of its non-trivial zeros is non-empty (K ̸= ∅).

The proof of this lemma is based on Theorem 5.1; it is presented in [32]. The
lemma refines Proposition 1 in [30], which states that if a quadratic map Q is essen-
tially surjective (this means that each quadratic map close to Q is surjective too)
and (5.19) holds, then the set of non-trivial zeros of Q is non-empty. Incidentally,
it is at present unclear whether there exists a surjective quadratic map which is not
essentially surjective.

The estimate (5.19) in Lemma 5.5 can be improved. For instance, if k = 2, then
the lemma holds already for n > 3. We consider the question of when the image
Q(X) of the quadratic map is convex or almost convex (a set M is said to be almost
convex [31] if there exists a convex set C such that C ⊂M ⊂ clC). This question
is interesting both in itself and for applications (see [31] and the bibliography there
for details). We note only that for k = 2 the set Q(X) is convex [29], whereas for
k > 3 it may not even be almost convex. The following map is an example of this:

Q : R3 → R3, Q(x) = (x1x2, x1x3, x2x3).
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In it y1y2y3 > 0 for all y = (y1, y2, y3) ∈ Q(R3), but at the same time Q(R3)
contains three straight lines: y1 = y2 = 0, y2 = y3 = 0, and y1 = y3 = 0.

For the most common case Q(X) is convex thanks to the presence of a regular
zero, because then Q(X) = Y . Here we present weaker conditions ensuring that
Q(X) is almost convex. For integers s > 0 we set

Ys = {y∗ : y∗ ̸= 0, ind(y∗Q) 6 s}. (5.20)

Lemma 5.6. Assume that

∃h ∈ X :
〈
y∗, Q(h)

〉
< 0 ∀ y∗ ∈ Yk−1 \ Y0. (5.21)

Then
int(Y ∗

0 ) ⊆ Q(X) ⊆ Y ∗
0 .

As above, here Y ∗
0 is the conjugate cone of Y0.

Corollary. If (5.21) holds, then the set Q(X) is almost convex, that is, there exists
a convex set D such that D ⊂ Q(X) ⊂ clD.

The proofs of these results are presented in [32].

Quadratic forms vanishing on an intersection of quadrics. Let ai, i =
1, . . . , k, be fixed linear functionals. If a linear functional a0 vanishes on the sub-
space

{
x : ⟨ai, x⟩ = 0, i = 1, . . . , k

}
, then by the annihilator lemma (see [1]) there

exist αi such that a0 =
∑k

i=1 αiai. We shall investigate the analogous question for
quadratic maps.

We say that a form q0 annihilates a cone
{
x : Q(x) = 0

}
if q0(x) = 0 for all x

such that Q(x) = 0. The question is whether in this case

∃ y∗ ∈ Y ∗ : Q0 = y∗Q? (5.22)

Already for k = 1 the example when Q1 is the identity matrix shows that without
additional assumptions about Q the answer is negative (since then any form q0
vanishes on the cone

{
x : Q(x) = 0

}
= {0}).

We present conditions on Q ensuring that (5.22) holds for each quadratic form q0
vanishing on

{
x : Q(x) = 0

}
. (A cone

{
x : Q(x) ∈ C

}
of more general form was

considered in [34].)

Theorem 5.3. Let conv Y2(k−1) be an acute cone (that is, a cone containing no
non-trivial subspaces) and assume that

∃h ∈ X :
〈
Q(h), y∗

〉
< 0 ∀ y∗ ∈ Yk−1. (5.23)

Then (5.22) holds for each quadratic form q0 vanishing on
{
x : Q(x) = 0

}
.

Proof. By Lemma 6.1 established below (see also Lemma 2 in [35]) and (5.23)
the map Q is surjective. Since the cone conv Y2(k−1) is acute, its polar cone has
a non-empty interior. Hence

∃ ĥ ∈ X :
〈
y∗, Q(ĥ)

〉
< 0 ∀ y∗ ∈ Y2(k−1). (5.24)
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In the minimization problem (5.2) the minimum is attained at the abnormal
point x0 = 0, so by (2.18) (see Theorem 2.7) there exists a λ = (λ0, y∗) ∈ Λk−1

such that λ0q0(ĥ) +
〈
y∗, Q(ĥ)

〉
> 0. Then λ0 > 0 (for if λ0 = 0, then y∗ ̸= 0,

ind(y∗Q) 6 (k − 1), and ⟨y∗, Q(ĥ)⟩ > 0, in contradiction to (5.24)). Hence

∃ y∗1 : ind(Q0 + y∗1Q) 6 k − 1, q0(ĥ) +
〈
y∗1 , Q(ĥ)

〉
> 0.

Similarly, if in the problem (5.2) considered above we replace q0 by (−q0), then we
have

∃ y∗2 : ind(−Q0 + y∗2Q) 6 k − 1, −q0(ĥ) +
〈
y∗2 , Q(ĥ)

〉
> 0.

We shall prove that y∗2 = −y∗1 . Assume the contrary: y∗1 + y∗2 ̸= 0. Then bearing
in mind that the index of a sum of quadratic forms is not larger than the sum
of their indices, we get that (y∗1 + y∗2) ∈ Y2(k−1),

〈
(y∗1 + y∗2), Q(ĥ)

〉
> 0. This is

a contradiction to (5.24). Thus, y∗2 = −y∗1 . Hence setting y∗ = y∗1 , Q̃0 = Q0 + y∗Q,
and q̃0(x) = ⟨Q̃0x, x⟩, we see that

ind Q̃0 6 k − 1, ind(−Q̃0) 6 k − 1, q̃0(ĥ) = 0. (5.25)

We assert that Q̃0 = 0. Assume the contrary. Then q̃0 ̸= 0. Hence, by (5.24)
there exists an h̃ sufficiently close to ĥ such that〈

µ∗, Q(h̃)
〉
< 0 ∀µ∗ ∈ Y2(k−1), q̃0(h̃) ̸= 0. (5.26)

The quadratic form q̃0 constructed also vanishes on
{
x : Q(x) = 0

}
. Hence, using

arguments analogous to those above, we get for it and the vector h̃ that

∃ ỹ∗ : ind(Q̃0 + ỹ∗Q) 6 k − 1, ind
(
−(Q̃0 + ỹ∗Q)

)
6 k − 1,

q̃0(h̃) +
〈
ỹ∗, Q(h̃)

〉
= 0.

(5.27)

From the first inequality in (5.25) and the second inequality in (5.27),

2(k − 1) > ind
(
Q̃0 − (Q̃0 + ỹ∗Q)

)
= ind(−ỹ∗Q)

⇒ ind(−ỹ∗Q) 6 2(k − 1).

Similarly, from the second inequality in (5.25) and the first inequality in (5.27) we
have ind(ỹ∗Q) 6 2(k − 1). Thus, ±ỹ∗ ∈ Y2(k−1) ⇒ ỹ∗ = 0, because conv Y2(k−1)

is an acute cone. However, since ỹ∗ = 0, the equality in (5.27) yields q̃0(h̃) = 0,
contradicting (5.26) and showing that Q̃0 = 0 ⇒ Q0 + y∗Q = 0. �

The theory of quadratic maps is now at its initial stage of development, so we
present some problems in this theory which have not yet been solved.

Problem 1. Let Q : Rn → Rk be a surjective quadratic map. Is it true that any
sufficiently close quadratic map is also surjective? (We understand the closeness
of quadratic maps in an obvious sense: the matrices defining theme are pairwise
close.) A positive answer was given in [35] under the additional assumption that
the cone conv Yk is acute. The answer in the general case is not yet known.
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Problem 2. Let Q : Rn → Rk be a surjective quadratic map. Is it true that 0 ∈
intQ(B)? Here B is the unit ball in Rn.

Problem 3. Let Q : Rn → Rk be a quadratic map with no non-trivial zeros. Then
the set Yk−1 is non-empty. This follows from application of Theorem 2.7 to the
problem (5.2) for q0(x) ≡ −|x|2.

For k = 2, 3, 5, 9 [36] contains examples of quadratic maps with no non-trivial
zeros, but with Yk−2 = ∅. The question is whether there are examples of such
quadratic maps for k ̸= 2, 3, 5, 9?

6. Inverse function theorems

The index approach. Let F : X → Y , where X is a linear space and Y = Rk.
Fix x0 ∈ X and let y0 = F (x0). We present conditions ensuring that there exists
a neighbourhood V of y0 such that for each y ∈ V equation (1.6) has a solution x(y)
for which x(y0) = x0 and the map x(·) is continuous at y0 in the finite topology
and satisfies some a priori bounds.

Theorem 6.1. Suppose that the map F is twice continuously differentiable in
a neighbourhood of x0 with respect to the finite topology τ . Assume that

∃h ∈ X : F ′(x0)h = 0,
〈
y∗, F ′′(x0)[h, h]

〉
< 0 ∀ y∗ ∈ F 2

k (x0). (6.1)

Then there exist a constant const, a neighbourhood V of the point y0, and a finite-
dimensional linear subspace Π̃ ⊆ X such that

∀ y ∈ V ∃x(y) ∈ Π̃ : F
(
x(y)

)
= y,∥∥x(y)− x0

∥∥
Π̃

6 const
(
|y − y0|+

∣∣π(y − y0)
∣∣1/2)

.
(6.2)

As above, here π is the orthogonal projection of Y onto
(
imF ′(x0)

)⊥ and F 2
s (x)

is the set of y∗ ∈ Y ∗ such that |y∗| = 1, F ′(x)∗y∗ = 0, and X has a subspace Π
such that (2.19) holds.

Moreover, if 0 ̸∈ conv F 2
k (x0) and (6.2) is satisfied, then (6.1) holds. However, it

was observed in § 2 (see also [5], Chap. 1, § 1.9) that for n ≫ k generic maps have
the property that 0 ̸∈ conv F 2

kx) for all x, and therefore for them Theorem 6.1
gives not only sufficient but also necessary conditions for an inverse function x(·)
to exist.

If x0 is a normal point, then F 2
k (x0) = ∅, π = 0, and Theorem 6.1 becomes in

fact a classical inverse function theorem (here is easy to prove separately that the
map x(·) can be taken to be smooth). On the other hand, if x0 is abnormal, then
π ̸= 0 and for the solution we have only the estimate (6.2) with orders 1 and 1/2
in the arguments, in contrast to the linear estimate in the classical case.

A proof of the above results in the general case based on necessary second-order
conditions in § 2 is presented in [35]. To describe the central idea of the proof we
establish the following result, which yields Theorem 6.1 in the special case when
x0 = 0 and F is a quadratic map.

Lemma 6.1. Let Q : Rn → Y = Rk, k > 2, be a quadratic map and assume that

∃h ∈ Rn :
〈
Q(h), y∗

〉
< 0 ∀ y∗ ∈ Yk−2 (6.3)
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(see (5.20)). Then there exists a constant const such that

∀ y ∈ Y ∃x(y) ∈ Rn : Q
(
x(y)

)
= y,

∣∣x(y)∣∣ 6 const |y|1/2.

Proof. Assume the converse. Then it is easy to see that for each i there exists
a yi ∈ Y such that |yi| = 1, and the point x = 0, χ = 0 is a solution in the
minimization problem

|x|2 − iχ→ min, Q(x)− χyi = 0, (x, χ) ∈ Rn × R.

By the necessary second-order conditions (2.18) for this problem, there exist λ0
i > 0,

y∗i ∈ Y with λ0
i + |y∗i | = 1, and a linear subspace Π̃i ⊆ Rn × R such that

codim Π̃i 6 k − 1, χ = 0 ∀ (x, χ) ∈ Π̃i, iλ0
i + ⟨y∗i , yi⟩ = 0,〈

y∗i , Q(x)
〉

+ λ0
i |x|2 > 0 ∀x ∈ Πi =

{
x ∈ Rn : (x, χ) ∈ Π̃i

}
,〈

y∗i , Q(h)
〉

+ λ0
i |h|2 > 0.

Then codimΠi 6 k − 2 ⇒ ind(y∗iQ + λ0
i I) 6 k − 2 (I is the identity matrix).

Furthermore, λ0
i → 0 ⇒ |y∗i | → 1. By going to a subsequence we can assume that

y∗i → y∗, |y∗| = 1. Passing to the limit as i→∞, we get that
〈
y∗, Q(h)

〉
> 0, and

then y∗ ∈ Yk−2 by Theorem 2.3. This is a contradiction to (6.3). �

For k = 1 we must replace (6.3) by (5.23) or by Y0 = ∅: these relations are
equivalent for k = 1.

Lemma 6.1 gives sufficient conditions for quadratic maps to be surjective. It
is important to point out that in view of Example 4 in [37] the example of the
map (5.18) shows that there is not necessarily a continuous map x(·) in Lemma 6.1.

2-regularity. A mere solution of (1.6) is often insufficient for applications: one
must find solutions x ∈ K, where K is a fixed subset of Y . Of course, along with
abnormality, the constraint x ∈ K brings additional complications to the problem.

Let us consider the following problem, which is more general than (1.6): find
a solution to the equation

F (x, σ) = 0, x ∈ K, (6.4)

where F : X×Σ → Y is a given map, X and Y are Banach spaces, Σ is a topological
space, and K ⊆ X is a closed convex cone. Suppose that there exist an x0 ∈ K
and a σ0 ∈ Σ such that F (x0, σ0) = 0.

Under the assumption that F is smooth, it follows from Robinson’s stability
theorem [16], [14] that if the Robinson regularity condition

∂F

∂x
(x0, σ0)

(
K + span{x0}

)
= Y (6.5)

holds (for K = X the Robinson condition is the condition of normality), then the
point σ0 has a neighbourhood O such that for each σ ∈ O there exists an x(σ) ∈ K
for which

F
(
x(σ), σ

)
≡ 0,

∥∥x(σ)− x0

∥∥ 6 const
∥∥F (x0, σ)

∥∥ ∀σ ∈ O. (6.6)

Though the question of whether the map x(·) can be taken to be continuous was
not discussed in the papers cited, the following result holds.
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Theorem 6.2 (classical implicit function theorem). Let F : X×Σ → Y be continu-
ous in a neighbourhood of a point (x0, σ0), assume that F is strictly x-differentiable
at this point uniformly with respect to σ, and assume that the Robinson condition
(6.5) is satisfied. Then the point σ0 has a neighbourhood O in which there exists
a continuous map x(·) : O → K such that (6.6) holds.

Let us now consider implicit function theorems without the a priori imposition
of the Robinson condition. As for F , we assume that it is twice continuously
x-differentiable uniformly with respect to σ in a neighbourhood of (x0, σ0) and
that for each fixed σ its second partial derivative ∂2F

∂x2 (·, σ), regarded as a symmet-
ric bilinear map, satisfies a Lipschitz condition with respect to x with Lipschitz
constant independent of σ (see [38] for details). We assume that the maps F (x0, ·),
∂F
∂x (x0, ·), and ∂2F

∂x2 (x0, ·) are continuous in a neighbourhood of σ0.
Let

K = K + span{x0}, C =
∂F

∂x
(x0, σ0)(K ).

We assume that the linear span spanC of the cone C is closed and is a topologi-
cally complemented subspace. Let π denote the continuous linear operator which
projects Y onto a complementary subspace to spanC.

Definition. Let

h ∈ K ,
∂F

∂x
(x0, σ0)h = 0, −∂

2F

∂x2
(x0, σ0)[h, h] ∈ C. (6.7)

Then the map F is said to be 2-regular at a point (x0, σ0) with respect to K in the
direction h if

∂F

∂x
(x0, σ0)(K ) +

∂2F

∂x2
(x0, σ0)

[
h,K ∩ ker

∂F

∂x
(x0, σ0)

]
= Y. (6.8)

In the case when riC ̸= ∅ another definition of 2-regularity, which is equivalent
to the above, was presented in [39]. For K = X both definitions become the
2-regularity condition discussed in the previous sections.

Theorem 6.3. Let riC ̸= ∅ and assume that there exists an h ∈ X such that the
map F is 2-regular at a point (x0, σ0) with respect to K in the direction h (that is,
(6.7) and (6.8) hold). Then for each l ∈ riC there exist a neighbourhood O of σ0,
a δ > 0, and a continuous map x(·) : O → K such that

F
(
x(σ), σ

)
= 0 ∀σ ∈ O, (6.9)∥∥x(σ)− x0

∥∥ 6 const
(
∆1(σ) + ∆2(σ) +

∥∥F (x0, σ)
∥∥

+ ρ
(
−F (x0, σ), Cδ

)1/2) ∀σ ∈ O, (6.10)

where

∆1(σ) = sup
{∥∥∥∥π∂F∂x (x0, σ)x

∥∥∥∥, x ∈ spanK, ∥x∥ 6 1
}
,

∆2(σ) = sup
{∥∥∥∥∂F∂x (x0, σ)x

∥∥∥∥, x ∈ ker
∂F

∂x
(x0, σ0) ∩K , ∥x∥ 6 1

}
,

and Cδ = cone
(
Bδ(l)

)
∩ spanC (cone denotes the conical hull of a set).
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Making the additional assumption

the cone
∂F

∂x
(x0, σ0)(K) is a subspace, (6.11)

we can improve the estimate (6.10) in Theorem 6.3 by dropping the term ∆2(σ).
Namely, the following result holds.

Theorem 6.4. Under the assumptions of Theorem 6.3 suppose that condition (6.11)
also holds. Then the point σ0 has a neighbourhood in which there exists a continuous
map x(·) : O → K such that both (6.9) and the estimate∥∥x(σ)− x0

∥∥ 6 const
(
∆1(σ) +

∥∥F (x0, σ)
∥∥ +

∥∥πF (x0, σ)
∥∥1/2) ∀σ ∈ O (6.12)

hold.

The classical implicit function theorem follows from Theorem 6.4 (for if the
Robinson condition holds, then π = 0). Theorem 6.4 also yields a generalized
implicit function theorem concerned with solving the equation F (x, σ) = y with
respect to x ∈ K (see Theorem 5 in [38] for details).

From Theorem 6.4 and the results of [24] we can deduce Theorem 6.1, even
improving it in the abnormal case. Namely, let x0 be an abnormal point and
assume that

∃h ∈ X : F ′(x0)h = 0,
〈
y∗, F ′′(x0)[h, h]

〉
< 0 ∀ y∗ ∈ F 2

k−1(x0). (6.13)

Then there exist a neighbourhood V of y0 = F (x0), a finite-dimensional linear
subspace Π̃ ⊆ X, and a continuous map x(·) : V → Π̃ such that (6.2) holds.

Indeed, by (6.13) and Theorem 2 in [23] there is a direction h ∈ X such that F
is 2-regular at x0 along h. Hence the required result follows from Theorem 6.4 with
K = X, because F is linear in σ under the assumptions of Theorem 6.1, and then
the term ∆1 in (6.12) vanishes for K = X.

Theorems 6.3 and 6.4 hold only provided that the cone riC is non-empty. How-
ever, if Y is infinite-dimensional, then a convex cone C in Y can have empty relative
interior. Therefore, we present an implicit function theorem which holds without
the a priori assumption that riC is non-empty.

Theorem 6.5. Let F be a 2-regular map at (x0, σ0) with respect to K in some
direction h ∈ X (that is, (6.7) and (6.8) hold). Then the point σ0 has a neighbour-
hood O in which there exists a continuous map x(·) : O → K such that (6.9) holds
and ∥∥x(σ)− x0

∥∥ 6 const
(
∆1(σ) + ∆2(σ) +

∥∥F (x0, σ)
∥∥1/2) ∀σ ∈ O.

These results were obtained in [38] and [40], where there are also some examples
given as illustrations. We note that the estimates for

∥∥x(σ)−x0

∥∥ in these theorems
have orders 1 and 1/2 with respect to the arguments, in contrast to the linear
estimate in the classical implicit function theorem.

For K = X an implicit function theorem at an abnormal point was obtained
in [41], where under the assumption that F is 2-regular in some direction it was
proved that there exists a map x(·) satisfying (6.9) and the estimate (6.12) with
∆1 = 0. The question of the continuity of x(·) was not treated in [41].
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Equations with non-closed image. We return to equation (1.6) in the case
when X and Y are Banach spaces. Theorems 6.3–6.5 can also be applied to (1.6),
but under the assumption that the range imF ′(x0) is closed. However, if x0 is
an abnormal point and the space Y is infinite-dimensional, then this assumption
can be a burden. Here we present an inverse function theorem in which we do not
assume that imF ′(x0) is closed. Let F be a map with two continuous derivatives
such that the second derivative is Lipschitz-continuous in a neighbourhood of x0.

Theorem 6.6. Let F be a 2-regular map in some direction h satisfying condi-
tions (3.15). Then there exist r, c, c1 > 0 such that for each l ∈ imF ′(x0) and each
y ∈ BY

(
y0, r(l)

)
there is an x(y) ∈ BX(x0, r) for which

F
(
x(y)

)
= y, ∥x(y)− x0∥ 6 c1

(
b(l)∥y − y0∥+ ∥y − y0∥1/2∥θ(y − y0)− θ(l)∥1/2

)
,

where y0 = F (x0), BX(x, ρ) is the ball in X of radius ρ about x, θ(y) = y/∥y∥
for y ̸= 0, θ(0) = 0, b(y) = inf

{
∥x∥ : F ′(x0)x = θ(y)

}
for y ∈ imF ′(x0), and

r(l) = min
{
cr/b(l), cr2

}
.

For l = 0 this theorem has an important consequence.

Corollary. Under the assumptions of Theorem 6.6 there exist r, c > 0 such that

∀ y ∈ BY (y0, r) ∃x(y) : F (x(y)) = y,
∥∥x(y)− x0

∥∥ 6 c∥y − y0∥1/2.

Theorem 6.7. Let F be a 2-regular map in some direction h ∈ H(x0) (see (3.2)).
Then there exist constants r, c, c1, c2 > 0 such that for each l ∈ imF ′(x0) and each
y ∈ BY

(
y0, r(l)

)
∃x(y) ∈ BX(x0, r) : F

(
x(y)

)
= y, x(y) = x0 + t(y)(h+ ξ + χ1) +O

(
t2(y)

)
,

where r(l) is as defined above,

t(y) = max
{
c1∥y − y0∥b(l)r−1, c2∥y − y0∥1/2

∥∥θ(y − y0)− θ(l)
∥∥1/2

r−1/2
}
,

and ξ and χ1 are arbitrary solutions of a certain linear-quadratic system of equations
(explicitly written out in Theorem 2 in [23]).

This theorem includes the assertion that the required ξ and χ1 exist. The proofs
of both theorems and examples illustrating them can be found in [22].

7. Necessary second-order conditions in optimal control problems

The Lagrange problem. As one application of the results in § 2 we obtain neces-
sary conditions for a weak minimum in an optimal control problem. We start with
the Lagrange problem, that is, the problem without constraints on the controls:

ẋ = f(x, u, t), t ∈ [t1, t2], (7.1)

K1(p) 6 0, K2(p) = 0, where p = (x1, x2), x1 = x(t1), x2 = x(t2), (7.2)

J = J(p, u) = K0(p) +
∫ t2

t1

f0(x, u, t) dt→ min . (7.3)
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Here t ∈ [t1, t2] is the time, and the moments of time t1 < t2 are fixed; x ∈ Rn is the
phase variable, and u ∈ Rm is the control parameter; f is a given n-dimensional
vector-valued function, and K0 and f0 are scalar functions. The functions K1

and K2 take values in the arithmetic spaces of dimension d(K1) and d(K2), respec-
tively. (Throughout, d(z) is the dimension of a vector z.)

As for the functions K0, K1, and K2, they are assumed to be twice continuously
differentiable. The functions f0 and f are twice continuously differentiable with
respect to (x, u) for almost all t. Moreover, together with all their partial derivatives
of orders 1 and 2 with respect to (x, u), they are measurable in t for any fixed (x, u)
and are bounded and continuous in (x, u) on each bounded set uniformly with
respect to x, u, and t. We take the space of functions u = u(·) ∈ Lm

∞[t1, t2] for the
class of admissible controls.

As for the constraints (7.2), called the endpoint constraints, the following con-
dition of regularity is assumed: for each p satisfying (7.2),

rank
∂K2

∂p
(p) = d(K2),

∃ p̃ = (x̃1, x̃2) ∈ R2n : p̃
∂K2

∂p
(p) = 0,

〈
∂K1,j

∂p
(p), p̃

〉
< 0

∀ j : K1,j(p) = 0, j = 1, . . . , d(K1).

A pair of vector-valued functions (x(t), u(t)), t ∈ [t1, t2], is called an admissible
process if u(·) is an admissible control and x(·) is the corresponding solution of
(7.1) which satisfies the endpoint constraints (7.2). The original problem consists
in finding the minimum of the functional J on the set of admissible processes.

We set K = (K1,K2). Let H : Rn × Rm × R × (Rn)∗ × R → R and l : R2n ×
R1+d(K) → R be the Pontryagin function and the endpoint Lagrange function
defined by the formulae

H(x, u, t, ψ, λ0) =
〈
f(x, u, t), ψ

〉
− λ0f0(x, u, t),

l(p, λ) = λ0K0(p) +
〈
λ1,K1(p)

〉
+

〈
λ2,K2(p)

〉
, λ = (λ0, λ1, λ2) ∈ R1+d(K),

where λ0 ∈ R, λs ∈ Rd(Ks), s = 1, 2, and ψ is an n-dimensional column vector.
We say that an admissible process (x0(·), u0(·)) satisfies the Euler–Lagrange

equation if there exists a vector λ with

|λ| = 1, λ0 > 0, λ1 > 0,
〈
λ1,K1(p0)

〉
= 0 (7.4)

such that the vector-valued function ψ solving the Cauchy problem

ψ̇ = −∂H
∂x

(
x0(t), u0(t), t, ψ, λ0

)
, ψ(t1) =

∂l

∂x1
(p0, λ) (7.5)

satisfies

ψ(t2) = − ∂l

∂x2
(p0, λ), where p0 =

(
x0(t1), x0(t2)

)
, (7.6)
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and

∂H

∂u

(
x0(t), u0(t), t, ψ(t), λ0

)
= 0 ∀̇ t, (7.7)

where ∀̇ t means ‘for almost all t’. Note that since the endpoint constraints are
regular, we have λ0 +

∣∣ψ(t)
∣∣ > 0 for all t.

Let Λ(x0(·), u0(·)) denote the set of vectors λ corresponding to an admissible
process

(
x0(·), u0(·)

)
by virtue of the Euler–Lagrange equation; this set gives us

necessary first-order conditions for an extremum which are weaker in general than
the Pontryagin maximum principle and which are equivalent to it in the case of
problems linear in the control. A process satisfying the Euler–Lagrange equation
is called an extremal.

We consider an extremal
(
x0(·), u0(·)

)
. From the endpoint constraints (7.2) we

shall again remove for convenience all the constraints of inequality type correspond-
ing to the inactive indices and assume that K1(p0) = 0. The system of equations
in variations corresponding to this extremal has the form

d

dt
δx = δx

∂f

∂x

(
x0(t), u0(t), t

)
+ δu(t)

∂f

∂u

(
x0(t), u0(t), t

)
,

δu ∈ Lm
∞[t1, t2].

(7.8)

We look at the space X = Rn × Lm
∞[t1, t2] and in it the cone K

(
x0(·), u0(·)

)
of

critical directions consisting of the pairs (ξ, δu) such that

(
δx(t1), δx(t2)

)∂K1

∂p
(p0) 6 0,

(
δx(t1), δx(t2)

)∂K2

∂p
(p0) = 0. (7.9)

Here and below, δx is the solution of the system of equations in variations (7.8)
corresponding to δu and with the initial condition δx(t1) = ξ. Let

NK =
{

(ξ, δu) ∈ X :
(
δx(t1), δx(t2)

)∂K
∂p

(p0) = 0
}
.

Obviously, NK is the maximal linear subspace of K
(
x0(·), u0(·)

)
.

For λ ∈ Λ
(
x0(·), u0(·)

)
we define a quadratic form Γ(λ) on X:

Γ(ξ, δu;λ) =
∂2l

∂p2
(p0, λ)

[(
δx(t1), δx(t2)

)
,
(
δx(t1), δx(t2)

)]
−

∫ t2

t1

∂2H

∂(x, u)2
(
x0(t), u0(t), t, ψ(t), λ0

)[(
δx(t), δu(t)

)
,
(
δx(t), δu(t)

)]
dt.

Let Φ be the fundamental matrix of the system of equations in variations (7.8),
that is, the solution of the homogeneous linear system d

dtΦ = Φ∂f
∂x

(
x0(t), u0(t), t

)
with Φ(t1) = I, where I is the identity matrix. We set

A =
∂K

∂x1
(p0) + Φ(t2)

∂K

∂x2
(p0), B(t) =

∂f

∂u

(
x0(t), u0(t), t

)
Φ−1(t)Φ(t2)

∂K

∂x2
(p0)
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and consider the extended controllability matrix

D = A∗A+
∫ t2

t1

B∗(t)B(t) dt (7.10)

(of size d(K) × d(K)). Let d be the dimension of the kernel of D. Finally, let
Λθ = Λθ

(
x0(·), u0(·)

)
denote the set of λ ∈ Λ

(
x0(·), u0(·)

)
such that the restriction

of the form Γ(λ) to the subspace NK has index at most θ = min(d, 2n).

Theorem 7.1. Let
(
x0(·), u0(·)

)
be an admissible process which supplies a weak

minimum in the problem (7.1)–(7.3). Then Λθ ̸= ∅ and for arbitrary (ξ, δu) ∈ K
satisfying〈(

δx(t1), δx(t2)
)
,
∂K0

∂p
(p0)

〉
+

∫ t2

t1

〈(
δx(t), δu(t)

)
,
∂f0

∂(x, u)
(
x0(t), u0(t), t

)〉
dt 6 0

(7.11)
the following inequality holds :

max
λ∈Λθ

Γ(ξ, δu;λ) > 0. (7.12)

The proof consists in reformulating the optimal control problem (7.1)–(7.3) in
the abstract form (2.1) and applying to it Theorem 2.1, after which the result must
be deciphered. Namely, by the standard existence and uniqueness theorems, for
any

(
x1, u(·)

)
∈ X sufficiently close to

(
x0(t1), u0(·)

)
the Cauchy problem

ẋ = f
(
x, u(t), t

)
, x(t1) = x1, t ∈ [t1, t2],

has a unique solution, which we denote by x(·). For
(
x1, u(·)

)
as above we set

Fs

(
x1, u(·)

)
= Ks

(
x1, x(t2)

)
, s = 1, 2,

f0
(
x1, u(·)

)
= K0

(
x1, x(t2)

)
+

∫ t2

t1

f0
(
x(t), u(t), t

)
dt.

Let us consider the problem

f0
(
x1, u(·)

)
→ min, F1

(
x1, u(·)

)
6 0, F2

(
x1, u(·)

)
= 0. (7.13)

The point
(
x0(t1), u0(·)

)
supplies a local minimum in this problem with respect to

the finite topology. Hence, we can apply the necessary conditions of orders 1 and
2 from Theorem 2.1. After standard transformations (see [3], § 4.1 for details) the
Lagrange principle (2.2) gives rise to the Euler–Lagrange conditions, while (2.4),
after similar transformations, gives rise to (7.12). Here it is used that the subspace
NK ⊆ X has codimension d(K) − d (see Proposition 1 in [42]) and NK coincides
with the kernel of the derivative of the map F = (F1, F2) : X → Rd(K) at the point(
x0(t1), u0(·)

)
.

We discuss the theorem. It is known that for an extremal
(
x0(·), u0(·)

)
the

condition d = 0 is tantamount to the controllability of the system of equations in
variations (7.8) (the normality condition), which ensures the local controllability of
the system (7.1) in a neighbourhood of

(
x0(·), u0(·)

)
. If one or both of the endpoints
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x1 and x2 of the trajectory are free (so that the map K does not depend on the
corresponding variable x1 or x2), then d = 0. On the other hand, if at least one
endpoint, x1 or x2, is fixed in advance, then we can take θ = min(d, n).

Assume that there are no endpoint constraints of inequality type (so d(K1) = 0).
Then we can omit the assumption (7.11) in the statement of the theorem. In
addition if d = 0, then Λ

(
x0(·), u0(·)

)
consists of a unique point λ, and the theorem

guarantees that the form Γ(λ) is non-negative on K , which is the classical necessary
second-order condition. On the other hand, if an extremal supplies a weak minimum
but is abnormal (that is, d ̸= 0), then a λ ∈ Λ

(
x0(·), u0(·)

)
such that Γ(λ) is

non-negative on K does not necessarily exist: a corresponding example is due to
E. J. McShane and goes back to 1941 (see [11]).

Problems with mixed constraints. We consider the optimal control problem
with mixed constraints

R1(x, u, t) 6 0, R2(x, u, t) = 0, (7.14)

where the Rs : Rn × Rm × R → Rd(Rs), s = 1, 2, are given maps satisfying the
same smoothness assumptions as f . An admissible process in this problem is
a pair of vector-valued functions

(
x(t), u(t)

)
, t ∈ [t1, t2], in which u(·) is an admis-

sible control and the corresponding solution x(·) of equation (7.1) must satisfy
the endpoint constraints (7.2) and the mixed constraints R1

(
x(t), u(t), t

)
6 0 and

R2

(
x(t), u(t), t

)
= 0 for almost all t.

Consider an admissible process
(
x0(·), u0(·)

)
. We assume that the mixed con-

straints are regular on this process, that is, there exists an ε0 > 0 such that for
almost all t ∈ [t1, t2] the matrix ∂R

∂u (t) contains a minor of order
∣∣Iε0(t)

∣∣ with mod-
ulus at least ε0 located in the last d(R2) columns and the columns with indices
i ∈ Iε0(t). Here R = (R1, R2), |I| is the cardinal number of a set I, and

Iε(t) :=
{
i : 1 6 i 6 d(R1), R1,i(t) > −ε

}
for ε > 0; we also use the notation

R1(t) := R1

(
x0(t), u0(t), t

)
,

∂R

∂u
(t) :=

∂R

∂u

(
x0(t), u0(t), t

)
, and so on.

We say that an admissible process
(
x0(·), u0(·)

)
satisfies the Euler–Lagrange

equation in the problem with mixed constraints if there exist a vector λ satisfying
(7.4) and a vector-valued function

η = (η1, η2) : ηs ∈ Ld(Rs)
∞ [t1, t2], s = 1, 2,

η1(t) > 0,
〈
η1(t), R1(t)

〉
= 0 ∀̇ t ,

such that the vector-valued function ψ solving the Cauchy problem

ψ̇ = −∂H
∂x

(
x0(t), u0(t), t, ψ, λ0

)
+ η(t)

∂R

∂x
(t)∗, ψ(t1) =

∂l

∂x1
(p0, λ),

satisfies conditions (7.6) and

∂H

∂u

(
x0(t), u0(t), t, ψ(t), λ0

)
− η(t)

∂R

∂u
(t)∗ = 0 ∀̇ t.
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Using the regularity of the mixed constraints and Gronwall’s inequality, we
get that each vector λ corresponds by virtue of the Euler–Lagrange conditions
to a unique pair

(
ψ(·), η(·)

)
. Let ΛR

(
x0(·), u0(·)

)
be the set of λ such that for some

vector-valued function η the pair (λ, η) corresponds to the process
(
x0(·), u0(·)

)
by

virtue of the Euler–Lagrange equation in the problem with mixed constraints.
Let KR denote the set of pairs (ξ, δu) ∈ X satisfying (7.9) and the conditions〈

δx(t),
∂R1,i

∂x
(t)

〉
+

〈
δu(t),

∂R1,i

∂u
(t)

〉
6 0 ∀ i ∈ I0(t),

δx(t)
∂R2

∂x
(t) + δu(t)

∂R2

∂u
(t) = 0 ∀̇ t.

In X we consider the subspace NR of all (ξ, δu) such that〈
δx(t),

∂R1,i

∂x
(t)

〉
+

〈
δu(t),

∂R1,i

∂u
(t)

〉
= 0 ∀ i ∈ I0(t),

δx(t)
∂R2

∂x
(t) + δu(t)

∂R2

∂u
(t) = 0 ∀̇ t.

For λ ∈ ΛR

(
x0(·), u0(·)

)
we define a quadratic form ΓR(λ) on X by

ΓR(ξ, δu;λ) = Γ(ξ, δu;λ)

+
∫ t2

t1

〈
η(t),

∂2R

∂(x, u)2
(
x0(t), u0(t), t

)[(
δx(t), δu(t)

)
,
(
δx(t), δu(t)

)]〉
dt.

Let ΛθR
= ΛθR

(
x0(·), u0(·)

)
denote the set of λ ∈ ΛR

(
x0(·), u0(·)

)
such that the

restriction of the form ΓR(λ) to the subspace NK ∩NR has index at most θR =
min(dR, 2n). Here dR is the dimension of the kernel of the extended controllability
matrix DR, which is explicitly written in [42]. In the particular case when the
map R is independent of x, DR can be calculated by the formula (7.10) with B(t)
replaced by the matrix BR(t) = P (t)B(t), where P (t) is the operator of orthogonal
projection of Rm onto the subspace{

u ∈ Rm :
〈
∂R1,i

∂u
(t), u

〉
= 0 ∀ i ∈ I0(t), u

∂R2

∂u
(t) = 0

}
.

Theorem 7.2. Let
(
x0(·), u0(·)

)
be an admissible process which supplies a weak

minimum in the problem with mixed constraints (7.1)–(7.3), (7.14). Then ΛθR
̸= ∅

and for arbitrary (ξ, δu) ∈ KR satisfying (7.11),

max
λ∈ΛθR

ΓR(ξ, δu;λ) > 0. (7.15)

The proof of Theorem 7.2 is essentially as follows. First we introduce an addi-
tional control v ∈ Rd(R1) and consider the problem (7.1)–(7.3) with the mixed
constraints

R1(x, u, t)− v = 0, R2(x, u, t) = 0, v 6 0;

obviously, it is equivalent to the original problem (7.1)–(7.3), (7.14). Since the
mixed constraints (7.14) are regular, we can solve the system R1(x, u, t) − v = 0,
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R2(x, u, t) = 0 locally with respect to some of the variables and reduce the original
problem to one which involves only geometric constraints on the controls v 6 0
instead of mixed constraints (see [42] for details).

Restating the problem under consideration as a minimization problem in the
Banach space Rn × Lm

∞[t1, t2], we obtain the problem (7.13) with an additional
constraint on the control: v(·) ∈ C, where C =

{
v(·) ∈ Ld(R1)

∞ : v(t) 6 0 for almost
all t

}
. Applying Theorem 2.4 to this problem (see [43] for details), we see that

ΛθR
̸= ∅ and (7.15) holds for arbitrary (ξ, δu) ∈ K̃ . Here K̃ consists of those

(ξ, δu) ∈ X such that (7.9) and (7.11) hold and the condition δv ∈ C + span{v0}
is satisfied, where δv and v0 are the first d(R1) components of the vector-valued
functions δu and u0, respectively. However, by Theorem 2 in [12] the closure of the
set K̃ coincides with the set of (ξ, δu) ∈ KR such that (7.11) holds. Furthermore,
as noted in § 2 (see also Lemma 1 in [12]), the set ΛθR

is compact, and therefore
the maximum function γ(ξ, δu) = maxλ∈ΛθR

Γ(ξ, δu;λ) is continuous. The required

result holds because the function γ is non-negative on K̃ .
In optimal control problems with phase constraints and non-fixed time the neces-

sary second-order conditions which require that the set Λs of Lagrange multipliers
be non-empty for an appropriate choice of s were deduced in [9]–[11]. In these
papers necessary conditions of the first order were taken in the form of the Pon-
tryagin maximum principle rather than in the form of the Euler–Lagrange equation.

8. Some applications

Bifurcation theory. Let X, Σ, and Y be Banach spaces and let F : X×Σ → Y be
a fixed map which is twice continuously differentiable in a neighbourhood of a point
(x0, σ0). We assume that the subspace ker ∂F

∂x (x0, σ0) is topologically complemented
and the subspace im ∂F

∂x (x0, σ0) has finite codimension (and hence is closed). Let
F (x0, σ) = 0 for all σ in some neighbourhood of σ0.

Recall that (x0, σ0) is a bifurcation point if there exists a sequence
{
(xi, σi)

}
with

xi ̸= 0 for all i that converges to (x0, σ0) and is such that F (xi, σi) = 0 for all i. If
x0 is a normal point, that is, im ∂F

∂x (x0, σ0) = Y , then bifurcations are described in
terms of the kernel ker ∂F

∂x (x0, σ0). Bifurcation points (x0, σ0) where x0 is abnormal
are of particular interest.

Using the results of § 2, we can find sufficient conditions for a bifurcation also in
the abnormal case. Consider the point (x0, σ0) mentioned above. First, using the
Lyapunov–Schmidt construction, we reduce the problem to the case when Y = Rk

and ∂F
∂x (x0, σ0) = 0. Then we consider the minimization problem

f0(x, σ) := ⟨x− x0, x
∗⟩ → min, F (x, σ) = 0,

where x∗ is an arbitrary non-zero continuous linear functional on X. If (x0, σ0) is
not a local minimum point in this problem, then obviously it is a bifurcation point.
Therefore, using Theorem 2.7 (more precisely, writing out the negation of condition
(2.18)), we obtain sufficient conditions for a bifurcation (see [44]).
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Sensitivity theory. In applications it is often necessary to investigate a whole
family of extremal problems instead of a single problem, for example,

f0(x, σ) → min, F (x, σ) = 0,

where σ ∈ Σ is a parameter. We are interested in the dependence on σ of the
minimum points in these problems or at least the minimum values ω(σ), or we
can even ask whether the set

{
x : F (x, σ) = 0

}
of admissible points is non-empty

for all σ close to the distinguished value σ0 of the parameter for which we known
the solution x0. For instance, the continuity of the minimum function ω means
that the problem is well posed. If x0 is a normal point, then these questions have
been well studied with the use of the classical implicit function theorem (see [14]
and the bibliography there). However, if x0 is an abnormal point, then we can
no longer use this machinery. Nevertheless, also in this case the upper and lower
semicontinuity of ω has been investigated using the implicit function theorems in
§ 6 and closely related results in [45], and upper and lower bounds for this function
have been obtained, as well as asymptotic expansions of it. In [46] these results
were extended to a problem with constraints F (x, σ) ∈ C, C being a closed convex
cone.

Controllability theory. We consider a control system (7.1) with the initial con-
dition x(t1) = x1, where x1 is fixed. Let

(
x0(·), u0(·)

)
be a given admissible process.

We ask whether it is locally controllable, that is, whether we can use admissible
controls sufficiently close to u0(·) to attain an arbitrary point in a neighbourhood
of the point x0(t2) at the time t2 by moving along the trajectory of the control
system (7.1). If the linear system of equations in variations (7.8) is controllable for
the process under consideration, that is, the extended controllability matrix (7.10)
has a null kernel, then the classical inverse function theorem gives us an affirmative
answer to this question. But if the kernel is distinct from zero, so that the process(
x0(·), u0(·)

)
is abnormal, then the classical inverse function theorem cannot be

used for studying local controllability. However, also in this case the implicit and
inverse function theorems in § 6 yield sufficient conditions for local controllability
(see [47]).

The theory of quadratic maps. In the recent paper [48] two open problems in
the theory of quadratic maps were stated among others. The first is as follows: for
a fixed quadratic map Q = (q1, . . . , qk): X = Rn → Rk find sufficient conditions
in terms of the matrices Qi which ensure that the set K =

{
x : Q(x) = 0, x ̸= 0

}
of non-trivial zeros is empty. The second problem consists in finding sufficient
conditions ensuring that

max
{
q1(x), . . . , qk(x)

}
> 0 ∀x ̸= 0(

or max
{
q1(x), . . . , qk(x)

}
> 0 ∀x

)
.

(8.1)

The solution of these problems is based on the results in § 5. For integers s > 0 we
set

Y +
s = {y∗ ̸= 0: ind+ y∗Q 6 s}, Ỹs = {y∗ ∈ Ys : y∗ > 0},

Ỹ +
s = {y∗ ∈ Y +

s : y∗ > 0},
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where ind+ q is the non-negative index of the quadratic form q, that is, the number
of non-positive eigenvalues of its matrix. Note that in contrast to Ys, the cone Y +

s

can have a non-closed intersection with the unit sphere.

Theorem 8.1. The condition K = ∅ is equivalent to the condition

∀x ∈ X \ {0} ∃ y∗ ∈ Y +
k−1 :

〈
y∗, Q(x)

〉
> 0.

If (5.19) holds, then the condition K = ∅ is equivalent to the condition

∀x ∈ X \ {0} ∃ y∗ ∈ Y +
k−2 :

〈
y∗, Q(x)

〉
> 0.

Theorem 8.2. The first condition in (8.1) is equivalent to the condition

∀x ∈ X \ {0} ∃ y∗ ∈ Ỹ +
k−2 :

〈
y∗, Q(x)

〉
> 0.

The second condition in (8.1) is equivalent to the condition

∀x ∈ X ∃ y∗ ∈ Ỹk−2 :
〈
y∗, Q(x)

〉
> 0.

We see that Theorem 8.1 solves the first problem and Theorem 8.2 solves the
second. The proof of Theorem 8.1 is based on Theorem 5.2, while Theorem 8.2 is
a consequence of Theorem 8.1.
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