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Sturm–Liouville oscillation theory for impulsive problems

Yu.V. Pokornyi, M. B. Zvereva, and S.A. Shabrov

Abstract. This paper extends the Sturm–Liouville oscillation theory on
the distribution of zeros of eigenfunctions to the case of problems with
strong singularities of the coefficients (of δ-function type). For instance,
these are problems arising in the study of eigenoscillations of an elastic
continuum with concentrated masses and localized interactions with
the surrounding medium. The extension of the standard description
of the problem is carried out by replacing the usual form of the ordinary
differential equation

−(pu′)′ + qu = λmu

by the substantially more general form

−(pu′)(x) + (pu′)(0) +

∫ x

0

u dQ = λ

∫ x

0

u dM

with absolutely continuous solutions whose derivatives, as well as the coef-
ficients p, Q, M , belong to BV[0, l]. The integral is understood in the
Stieltjes sense.
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0. Foreword

0.1. The present paper is based on the replacement of the standard theory of the
ordinary differential equation

− (pu′)′ + qu = f (0.1)

by an analogous theory for a substantially more general equation

−(pu′)(x) + (pu′)(0) +
∫ x

0

u dQ =
∫ x

0

dF, (A)

developed in the first part of the paper (see §§ 1 and 2). It is convenient to represent
the equation (A) (in Stieltjes differentials) in the form

−d(pu′) + u dQ = dF, (dA)

which can be quite conditionally interpreted as

−
(
p
du

dx

)′
+Q′u = F ′, (A′)

where Q′ and F ′ are generalized derivatives of the functions Q and F . In contrast
to the last two equations, which are understood in the sense of distributions (or,
more precisely, of functionals), the equation (A) has a pointwise meaning, which
makes it basically similar to ordinary differential equations and enables one to study
qualitative properties of solutions such as the distribution of zeros and extrema, the
number of zeros and sign alternations, and so on, which cannot even be rigorously
defined for distributions. If the coefficients p, Q, and F turn out to be smooth
functions, then the equations (A), (dA), and (A′) are equivalent to the ordinary

equation (0.1) with q(x) =
d

dx
Q(x) and f(x) =

d

dx
F (x).

Along with (A), we shall consider the equation with a parameter,

−(pu′)(x) + (pu′)(0) +
∫ x

0

u dQ = λ

∫ x

0

u dM, (Aλ)

whose generalized form (in differentials) is

−d(pu′) + u dQ = λu dM. (dAλ)

0.2. Sturm oscillation theory: what does it mean? The Sturm–Liouville
problem in the classical form

−(pu′)′ = λu, (0.2)
u(0) = u(l) = 0 (0.3)

was posed and studied by Sturm in [1] almost two centuries ago when he was
investigating heat propagation in an inhomogeneous rod (see the comments in [2]).
The description of the oscillation properties of the eigenfunctions (the number of
zeros, alternation of zeros, and so on) given by Sturm amazed scientists during
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the entire 19th century by the depth of mathematical penetration into physical
problems. Even at the beginning of the 20th century these properties were referred
to as famous, and Hilbert called them astonishing and remarkable.

In the mid-20th century Sturm’s oscillation theorems were extended to equations
of the more general form

− (pu′)′ + qu = λmu (0.4)

with positive continuous coefficients. However, by now the oscillation properties
have been forgotten in general education courses, despite the fundamental role
played by the Sturm–Liouville problem in science. One can read about these prop-
erties only in special and less accessible publications (like [2]–[4]), and the name of
Sturm is mainly associated with the following comparison theorem in a standard
university course.

Theorem (S-1). For equations

(pu′)′ + q1u = 0,
(pv′)′ + q2v = 0

with continuous coefficients p, q1, q2 (p > 0) on [0, l] it follows from the inequality
q1(x) 6 q2(x) that for any non-trivial solution u(x) of the first equation and between
any two distinct zeros of this solution there is at least one zero of any solution v(x)
of the second equation provided that v(x) is not collinear to u(x).

This theorem remains unused even in serious publications like [5]–[7], as if hang-
ing in mid-air, together with the question of its relation to the problem (0.2)–(0.3),
and it arises only in quite special problems in some special courses (for instance,
as in [8]). Although an equation of the form (0.4) is one of the most widely used
tools for describing problems in the most diverse areas of science and technology (it
suffices just to recall the Schrödinger equation), the contemporary literature gives
no understandable reason why Sturm’s theorems amazed and fascinated scientists
so much until the middle of the 20th century.

In fact, Theorem (S-1) was used by Sturm to prove the oscillation properties
themselves, which we present now in somewhat modernized formulation and, for
convenience, in two steps.

Theorem (S-2). The spectrum of the problem (0.2)–(0.3) consists of an unboun-
ded sequence of positive simple eigenvalues. If we enumerate them in ascending
order, (0 < ) λ0 < λ1 < λ2 < · · · , then the corresponding eigenfunctions ϕ0(x),
ϕ1(x), ϕ2(x), . . . have the following properties:

(i) ϕ0(x) has no zeros inside (0, l);
(ii) ϕk(x) has exactly k zeros inside (0, l), and each zero is simple (a node);
(iii) for any k (∈ {1, 2, . . . }) there is exactly one node of the function ϕk(x)

between any neighbouring zeros of the function ϕk+1(x);
(iv) for any k and any α0, . . . , αk the generalized polynomial α0ϕ0 + · · ·+ αkϕk

has at most k zeros in (0, l) (that is, {ϕi}k
0 is a Chebyshev system of order k

on (0, l)).
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This oscillation theorem is complemented by the following theorem.

Theorem (S-3). The eigenfunctions ϕ0, ϕ1, . . . form an orthogonal basis in the
space of sourcewise representable functions.

0.3. In what follows, these theorems of Sturm are extended almost without mod-
ification to the case of the equation (Aλ) under the assumptions (0.3), that is, to
the problem −(pu′)(x) + (pu′)(0) +

∫ x

0

u dQ = λ

∫ x

0

u dM,

u(0) = u(l) = 0

in the class E of absolutely continuous functions whose derivatives are in BV[0, l].

0.4. Evolution of the oscillation theory. From the moment of its origin the
Sturm–Liouville problem was constantly a topical subject in engineering and phys-
ical mathematics, even in its simplest form (0.2)–(0.3). Naturally, it became nec-
essary to develop a theory for this problem. However, the scientific destiny of
Theorems (S-2) and (S-3) turned out to be quite different.

Theorem (S-3), which arose from the problem of justifying the Fourier method,
was assimilated in the context of integral operators with symmetric kernels already
by the end of the 19th century and served as a basis for the subsequent development
of spectral analysis (see, for instance, [9]), which is now an area of functional
analysis. However, the role of this theorem seemed to be essential mainly for ‘pure
mathematics’, and Theorem (S-3) was not a result which made the name of Sturm
famous.

The researchers of the 19th century were impressed mainly by the oscillation
properties, and especially by the physical nature of the terms (for example, the dis-
tribution of nodes). For elastic oscillations (with which the Sturm–Liouville prob-
lem (0.2)–(0.3) was associated) the properties of the eigenharmonics were observ-
able, and they completely agreed with intuitive ideas about the shapes of eigenwaves
(standing waves) of a vibrating string.

Attempts to extend Sturm’s oscillation theorems to more complicated prob-
lems were initiated already in the 19th century. For example, Theorem (S-2) was
extended by Stieltjes (see [2]) to the case of an elastic string with beads; in modern
terms, this means that the distribution of masses m(x) in the equation (0.4) (for
q ≡ 0) coincides with a finite combination of δ-functions.

Almost half a century later, the Stieltjes result was extended (also for q ≡ 0)
by Gantmakher and Krein [10] to the case of an arbitrary distribution of masses.
This was done in terms of the problem

u(x) = λ

∫ l

0

K(x, s)u(s) dM(s),

where M is a non-decreasing function with infinitely many points of growth and
K(x, s) is the influence function of a homogeneous string (for which p(x) ≡ const).
This result used the very refined theory of Kellogg kernels based on tensor analysis.
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A function K(x, s) is a Kellogg kernel if the associated kernels

K

(
ξ1, . . . , ξm
τ1, . . . , τm

)
=

∣∣∣∣∣∣
K(ξ1, τ1) . . . K(ξ1, τm)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
K(ξm, τ1) . . . K(ξm, τm)

∣∣∣∣∣∣
are non-negative on the simplex ξ1 < ξ2 < · · · < ξm, τ1 < τ2 < · · · < τm and
strictly positive on the ‘diagonal’ τi = ξi (i = 1, . . . ,m). These results, which
involved a thorough analysis of the Green’s function, became the basis for a broad
circle of oscillation problems for higher-order equations (see the references in the
papers [11]–[16]).

In the 1930s the need arose to investigate equations of the form (0.4) more general
than (0.2) in which the coefficient q can be a combination of δ-functions (in the
language of physics). Although publications about equations with distributional
coefficients formed a rather broad front beginning in the 1960s (see, for instance,
[17]–[29]), work on carrying spectral properties related to oscillations over to the
case of impulsive singularities seemed to stop.

This can be understood. The apparatus of the theory of distributions existing
at that time did not allow one to regard the equation (0.4) with δ-functions in
the coefficients as a pointwise equality of functions of a scalar argument [30]. And
neither the formulations nor the known methods for proving the properties (i)–(iv)
in Theorem (S-2) can be carried over to the language of distributions. A max-
imal advance of the oscillation theory into the area of distributions was due to
Myshkis [31], who obtained a weakened version of Theorem (S-1) for q1 = q2 for
the equation u′′ + qu = 0 with a distributional coefficient q.

A physically meaningful extension of Theorem (S-2) to more general problems
began at the very end of the 20th century, involving the inclusion of δ-functions
(as physicists understood them) in the coefficients with preservation of the usual
pointwise understanding of the equation. This was the beginning of the extension
of the Sturm–Liouville oscillation theory to the case of problems with singularities,
summarized in part by the present paper (according to the results in [32]–[38]).

0.5. Concluding sketch of the present investigation. In outward appear-
ance it looks quite simple: the assertions of Theorems (S-2) and (S-3) are literally
preserved for a more general object than the ordinary differential equation of the
form (0.4), namely, for the integro-differential equation (Aλ), where Q and M are
non-decreasing functions, and the integrals are understood in the Stieltjes sense.

One can obtain the equation (Aλ) by formally integrating the canonical equa-

tion (0.4) and setting
∫ x

a

q(x) dx = Q(x) and
∫ x

a

m(x) dx = M(x). Corresponding

to the Stieltjes problem of an elastic string with beads is the equation (Aλ) for
p(x) ≡ 1 and Q(x) ≡ const (that is, q(x) ≡ Q′(x) ≡ 0) if M(x) is a piecewise
constant (step) function. Similarly, a piecewise constant function Q(x) corresponds
to a linear combination of δ-functions in q(x). Here the equation (Aλ) is pointwise,
that is, it contains no Schwartz–Sobolev distributions.

Naturally, to rigorously prove the Sturm oscillation theorem, Theorem (S-2),
we had to develop a new theory for the equation (Aλ) (and first of all, for the
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equation (A)) which is parallel to the theory of ordinary differential equations with
the usual kind of coefficients.

Below we give a systematic exposition of the oscillation theory developed for the
equation (Aλ) by the authors over the last decade. The use of the integro-differential
form (Aλ) was suggested by the following Atkinson–Krein mathematical model of
the Stieltjes string ([2], [39]):

u′+(x) = u′−(0)− λ

∫ x+0

0

u dM,

where u′+(x) is the right-hand derivative and u′−(0) is a certain ‘extended value’ of
the derivative. The relation

− d

dM
u′+(x) = λu(x)

suggested itself as a formal expression of the equation. Somewhat earlier, the last
equation was obtained by Feller (see [2]) in a problem on diffusion [40]. Oscillation
properties were not discussed in these papers.

0.6. Horizons of difficulties. In retrospect the investigation presented here
appears as the following fairly transparent scheme going back to Sturm (and used,
for instance, in [2] and [4]).

We denote by u(x, λ) the solution of the equation −(pu′)′ = λu with the initial
conditions u(0) = 0, u′(0) = 1. If the function u(x, λ∗) vanishes at the right
endpoint (that is, at x = l) for some λ = λ∗, then λ = λ∗ is an eigenvalue and
y(x) ≡ u(x, λ∗) is an eigenfunction. For λ = 0 the function u(x, 0) obviously has
no zeros on (0, l].

One should next analyze how the number N(λ) def= N(u(x, λ)) of zeros of the
function u(x, λ) on (0, l] depends on λ. The comparison theorem, Theorem (S-1),
helps here.

Suppose that the function u(x, λ) has k zeros on (0, l] for some λ. We denote
them in increasing order by

(z0 = 0) < z1(λ) < z2(λ) < · · · < zk(λ) 6 l.

It follows from Theorem (S-1) that, as λ increases, every zero point zi(λ) shifts
to the left, that is, the number N(u(x, λ)) of zeros of the function u(x, λ) on (0, l]
does not decrease. Moreover, each additional zero can appear as a result of shift-
ing the rightmost zero (coinciding with the right endpoint x = l) to the left (as λ
increases somewhat). Thus, the function N(λ) = N(u(x, λ)) turns out to be piece-
wise constant and increases by 1 every time the value λ passes the next point of
the spectrum.

We refer to the above argument as the ‘accumulation of zeros’. This reasoning is
intelligible enough and was regarded until some time ago as sufficiently convincing,
up to the point of being presented without additional comments as a proof of the
oscillation properties by such authoritative authors as Levitan [4], Atkinson [2], and
others. However, quite recently some complications were discovered, connected with
almost obvious (or so it seemed earlier) circumstances in the study of oscillation
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properties (see [41], [38]) of the Sturm–Liouville problem on a graph (a spatial
network [38]), and these circumstances have in fact a quite non-trivial nature.

Let us describe the circumstances, which require a sufficiently thorough investi-
gation even in the case of smooth coefficients p, q, m of the equation (0.4).

The smooth dependence of the function uλ(x) ≡ u(x, λ) on λ is ensured by
standard theorems. But how do the zeros of this function depend on λ?! A detailed
analysis of a series of questions is necessary here.

Suppose that u(l, λ∗) = 0 for some λ = λ∗, that is, λ∗ is a point of the
spectrum, and assume that the eigenfunction u(x, λ∗) has m zeros on (0, l),
(0 < ) z1 < z2 < · · · < zm < (zm+1 = l). As λ increases, these zero points are
preserved. We represent their dependence on λ in the form of functions z1(λ),
z2(λ), . . . , zm(λ), and zm+1(λ). As was already noted above, by Theorem (S-1)
these functions are non-decreasing. However, to rigorously justify the scheme of
‘accumulation of zeros’, one must be sure that

(a) each of the functions zk(λ) is continuous;
(b) each of them is strictly monotone;
(c) neighbouring zeros zk(λ) and zk+1(λ) do not merge;
(d) zeros cannot be lost (do not disappear) as λ increases unboundedly;
(e) zeros do not accumulate near some interior point in (0, l), that is, each

zero zk(λ) inevitably approaches the point x = 0 ( = z0) without ‘stalling’
on the way.

Finally, one must understand what mechanism ‘creates’ the next additional zero
of u(x, λ) at the right endpoint and why no additional zeros appear inside (0, l) by
detaching from some interior zero.

What is known about the answers to these questions? Only that the func-
tions zk(λ) are determined by the identities

u(zk(λ), λ) = 0,

that is, these are implicit functions determined by the equation

u(z, λ) = 0. (0.5)

It is known in advance about these implicit functions determined by the single
equation (0.5) that there are many of them and that each of them is defined (how-
ever, this needs an explanation) on its own domain {λk < λ <∞}, where λk is the
corresponding point of the spectrum.

To characterize the behaviour of each of the branches of this multivalued implicit

function, one must study the derivative
∂u(x, λ)
∂λ

in a neighbourhood of each point
λ∗ of the spectrum of the original problem. For each of these values λ = λ∗ the

corresponding function h(x) ≡ ∂u(x, λ∗)
∂λ

turns out to be a solution of the equation

−(ph′)′ + qh = λ∗h+ u(x, λ∗),

which is characteristic for adjoint functions. Investigations of the number of solu-
tions of this equation in the context of oscillation theorems are nowhere to be



116 Yu. V. Pokornyi, M.B. Zvereva, and S. A. Shabrov

found and have never been carried out, not even for the classical equation (0.4) on
an interval.

In implementing the scheme of ‘accumulation of zeros’ for the equation (Aλ),
we will have to find answers to all these questions for the problem with impulsive
singularities. To this end, we must first construct a system of facts analogous to
the theory of linear equations on an interval with ordinary coefficients.

1. Basic facts

In this section we study the equation

−(pu′)(x) + (pu′)(0) +
∫ x

0

u dQ = F (x)− F (0) (A)

in the case of smooth coefficients p, Q, and F ; this equation is equivalent to the
ordinary equation

− (pu′)′ + qu = f (1.1)

with q = Q′ and f = F ′. The equation (A) inherits the universal property of
the equation (1.1) for quite diverse problems in science and technology, from the
Schrödinger equation in quantum mechanics to processes in electrical circuits, and
for acoustic systems, nerve fibres, diverse waveguides, and so on.

The replacement of the usual ordinary differential equation (1.1) by the equa-
tion (A) broadens the class of problems admitting investigation and requires us to
take into account the purely mathematical novelty of this object. What is really
new here?

The coefficients p, Q, F in the equation (A) are discontinuous in general, and
the integral is used in the Stieltjes sense. Preserving the explicit occurrence
of the scalar argument, the equation (A) shows also its singular values; these are
the points at which the derivative u′(x) and the functions p, Q, F can be dis-
continuous and the values of the upper limit of the integral at which it becomes
meaningless. The last condition is the most insidious circumstance (from the point
of view of associations customary for elementary analysis) arising in the equa-
tion (A) due to the Stieltjes integral, namely, if in (A) a point x coincides with
one of the discontinuity points ξ of the function Q(x) and if Q(ξ) ̸= Q(ξ − 0)

and Q(ξ) ̸= Q(ξ + 0) at the point, then the corresponding value
∫ ξ

0

u(x) dQ(x)

differs both from
∫ ξ−0

0

u(x) dQ(x) and from
∫ ξ+0

0

u(x) dQ(x), which makes the

symbol u′(ξ) in (A) meaningless, because u′(ξ) stands for the common value of
the left- and right-hand derivatives u′−(ξ) and u′+(ξ). Here each of the expres-

sions
∫ ξ−0

0

u dQ and
∫ ξ+0

0

u dQ, which arise as a rule in this very way in papers

involving the use of the Stieltjes integral in differential equations (see, for instance,

[2], [38], [37]), requires in fact additional explanation. For example,
∫ ξ−0

0

u dQ

stands for either the integral over the half-open interval [0, ξ) or for the improper
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integral lim
δ↓0

∫ ξ−δ

0

u dQ. Below we show that if u(x) is absolutely continuous and

its derivative u′(x) has bounded variation, that at any point ξ ∈ [0, l] there are
right- and left-hand derivatives coinciding with the corresponding one-sided limits
of u′(x), that is, u′+(ξ) = u′(ξ + 0) and u′−(ξ) = u′(ξ − 0). This enables us, for

instance, to identify the improper integral
∫ ξ−0

0

f dµ = lim
ε↓0

∫ ξ−ε

0

f dµ with the

proper integral over the half-open interval [0, ξ), that is,
∫

[0,ξ)

f dµ. A deeper prob-

lem remains unsolved here, namely, the differentiability with respect to the upper
limit. However, we shall discuss this in due time. In order to get rid of the indicated
sources of possible misunderstandings, we replace every singular point ξ by the pair
of symbols {ξ − 0, ξ + 0}.

Against the background of these ‘nuances’, we construct in this section a system
of facts needed in what follows, a system analogous to the conventional theory of
ordinary differential equations. We first briefly recall the notions and facts we need
from the theory of the integral. For a more detailed exposition of the information
presented below, see, for instance, [42]–[48].

The definition of the Stieltjes differential dG for any function G(·) in BV (this
definition is given in 1.1.6) is absent in the literature known to the authors.

1.1. Preliminary facts.

1.1.1. The Riemann–Stieltjes integral

∫ l

0

f(x) dµ(x). This integral is defined for

a pair of functions f(x), µ(x) on [0, l] by passing to the limit of the integral sums
n∑

i=1

f(ξi)[µ(xi+1) − µ(xi)], with the same stipulations as for the usual Riemann

integral. It follows immediately from the definition that the integrals
∫ l

0

f dµ and∫ l

0

µdf exist or do not exist simultaneously, and if they exist, then their sum is

equal to f(l)µ(l) − f(0)µ(0). The Stieltjes integral
∫ l

0

f dµ certainly exists if one

of the functions f(x), µ(x) is continuous and the other has bounded variation.

1.1.2. The space BV[0, l]. This space is defined as the set of functions whose (total)

variation Var[0,l] u(x) = sup
06x0<x1<···<xk6l

k−1∑
i=0

|u(xi+1) − u(xi)| is bounded. For

simplicity, we often write V l
0 [u(x)] instead of Var[0,l] u(x). Every function u(x)

in BV[0, l] admits a Jordan decomposition u = u1 − u2, where u1 and u2 are
non-decreasing functions.

1.1.3. Jumps of functions in BV. For any u(x) in BV[0, l] and at any point ξ ∈ (0, l]
(at any point ξ ∈ [0, l)) the left-hand (right-hand) limit exists, that is, the limit
u(ξ + 0) = limx→ξ, x>ξ u(x) (u(ξ − 0) = limx→ξ, x<ξ u(x)). By the simple jump
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of u(x) at a point x = ξ we mean the quantity ∆u(ξ) def= u(ξ+0)−u(ξ− 0) (we set
u(0 − 0) = u(0) and u(l + 0) = u(l)). When speaking of a simple jump ∆u(ξ) for
0 < ξ < l, we ignore the true value u(ξ) of the function at the point x = ξ and take
into account only the left-hand (u(ξ − 0)) and right-hand (u(ξ + 0)) limit values.

Everywhere below, we denote by Su the set of discontinuity points of a func-
tion u(x). For any u(x) ∈ BV[0, l] the set Su is at most countable. We define the
jump function us(x) for u(x) in BV[0, l] by

us(x) =
∑
ξ6x

∆u(ξ). (1.2)

For any u(x) in BV[0, l] the difference u0(x) = u(x) − us(x) has equal left- and
right-hand limits at any discontinuity point ξ ∈ Su: u0(ξ − 0) = u0(ξ + 0), that
is, u0 has a removable discontinuity there. Redefining the function u0(x) at these
points by the common value of these limits, we denote the continuous function thus
obtained by ū0(x).

It turns out that for the Stieltjes integral with µ(x) ∈ BV[0, l] we have∫ l

0

f(x) dµ(x) =
∫ l

0

f(x) dµ0(x) +
∫ l

0

f(x) dµs(x)

=
∫ l

0

f(x) dµ̄0(x) +
∑
ξ∈Sµ

f(ξ)∆µ(ξ), (1.3)

and the expressions dµ0 and dµ̄0 are equivalent under the sign of the (Stieltjes)
integral.

In order to avoid confusion in formulations involving the (inessential for us) true
values of functions in BV[0, l] at their discontinuity points, we assume that these
functions are left continuous, that is, belong to BV0[0, l].

1.1.4. Riesz theorem. The Stieltjes integral, which was seemingly not noticed by
mathematicians for a long time, revealed its basic possibilities after Riesz proved
the following fundamental fact.

For any continuous linear functional l(u(·)) on the space C[a, b] of continuous

functions there is a function g(·) in BV[a, b] such that l(u) =
∫ b

a

u(x) dg(x).

1.1.5. Theorem on a transform of a measure. For any function σ(x) in BV[0, l]
and an arbitrary function u(x) in C[0, l]∫ l

0

ϕdµ =
∫ l

0

ϕudσ, (1.4)

where µ(x) =
∫ x

0

u dσ.

1.1.6. The Stieltjes differential. Turning to the basic meaning of the differential in
the notion of integral, we define the Stieltjes differential of a function g(x) in BV[0, l]
to be the functional dg in C∗[0, l] given by

(dg, ϕ) =
∫ l

0

ϕdg (ϕ ∈ C[0, l]).
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The reason for using the symbol dg to denote this functional will become clear from
the properties discussed below.

The fact that the differential is homogeneous and additive is clear.
The norm of dg in C∗[0, l] does not exceed the variation V l

0 [g(x)]. It follows

immediately from the definition of the Stieltjes integral that
∫ β

α

dg = g(β)− g(α),

and
∫ ξ+0

ξ−0

dg = g(ξ + 0)− g(ξ − 0).

If g(·) ∈ C1[0, l], then we obviously have dg = g′dx =
dg

dx
(x) dx.

Proposition 1.1. The Stieltjes differential dg is the zero functional in C∗[0, l] (this
is denoted by dg = 0) if and only if g(x) = const.

The theorem on a transform of a measure gives a meaning to formal multipli-
cation of a continuous function u(x) by a differential dg; namely, the following
assertion holds.

Proposition 1.2. If u(x) ∈ C[0, l] and g(·) ∈ BV[0, l], then there is a function h(x)
in BV[0, l] such that dh = u(x) dg, that is, u(x)dg is the same object as dg.

This implies the very useful formal relation

d

∫ x

0

ϕdg = ϕdg.

And this is a precise explanation for the fact that the original integro-differential
equation (Aλ) is equivalent to the equality of general form

−d(pu′) + u dQ = λu dM, (dAλ)

while the inhomogeneous version (A) is equivalent to the equality

−d(pu′) + u dQ = dF. (dA)

In what follows, we sometimes write (for brevity)

Du ≡ −d(pu′) + u dQ.

It is interesting to note that the functional l(u) = u(ξ), where ξ ∈ (0, l), in the
theory of distributions is identified with the Dirac delta function δ(x− ξ). Since

u(ξ) =
∫ l

0

u(x) dΘ(x),

where Θ(x) is the Heaviside function, that is, Θ(x) = 0 for x < 0 and Θ(x) = 1 for
x > 0, it follows that this functional coincides with dΘ, that is, δ(x) = dΘ(x). Here
we can also speak of a δ-function supported at one of the endpoints of the interval.
For δ(x − l) the corresponding function generating the functional has the form
Θ(x− l) = 0 for x < l and Θ(x− l) = 1 for x = l.
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1.1.7. Differential inequalities. We shall write dg > 0 and say that the differen-
tial dg is positive if the corresponding functional is non-negative, that is, (dg, ϕ) =∫ l

0

ϕdg > 0 for any non-negative continuous function ϕ(x) on [0, l].

Proposition 1.3. For dg to be positive it is necessary and sufficient that the func-
tion g(x) be non-decreasing on [0, l].

This assertion will be of importance for us, for example, in the study of solutions
of a differential inequality of the form Du > 0, that is, −d(pu′) + u dQ > 0, which

for us is equivalent to the function z(x) = −(pu′)(x) + (pu′)(0) +
∫ x

0

u dQ being

non-decreasing on [0, l]. A similar pointwise description can also be given to the
symbolic inequality v0(x)Du > 0.

It will sometimes be convenient to use the notation

(Lu)(x) = −(pu′)(x) + (pu′)(0) +
∫ x

0

u dQ,

which is connected with Du by the formal equality Du = d(Lu).

Theorem 1.1 (on factorization). Suppose that the homogeneous equation Lu = 0
has in E a solution without zeros on [0, l]. Then there are strictly positive func-
tions z0(x) and z1(x) such that

Du = −z0 d(z1(z0u)′)

for any u(x) in E, or Lu(x) = −
∫ x

0

z0 dg for g(x) = z1(x)
d

dx
(z0(x)u(x)).

Proof. Let ϕ(x) be a solution (ϕ ∈ E) of the equation Du = 0 and let ϕ(x) > 0
on [0, l]. We write z0(x) = 1/ϕ(x) and z1(x) = ϕ2(x)p(x). In this case the desired
factorization is obtained by a trivial manipulation based on the theorem on a trans-
form of a measure.

In the classical non-oscillation theory a similar result plays a fundamental role
and is connected with the names Pólya and Frobenius (see [14] and [49]).

The following theorem is a good demonstration of the fact that this factorization
is effective.

Theorem 1.2. Suppose that the equation Lu = 0 has in E a solution ϕ(x) without
zeros on [0, l]. Then every non-negative solution u(x) ̸≡ 0 of the inequality Du > 0
has no zeros in (0, l), and moreover, |u(0)|+ |u′(0)| > 0 and |u(l)|+ |u′(l)| > 0.

Proof. Let u(x) ∈ E and Du > 0, where u(x) ̸≡ 0 and u(x) > 0. We use the

previous theorem, setting g(x) = z1(x)
d

dx
(z0(x)u(x)). Since z0 dg = −Du 6 0

and z0(x) > 0, it follows that dg 6 0, that is, the function g(x) is non-increasing
on [0, l]. If g(x) changes sign, then this happens only once, and it is from plus to
minus.

Let us consider the set Ω = {x : u(x) > 0}. It is relatively open on [0, l]. We
must prove that Ω ⊃ (0, l).
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Suppose the contrary. Let (τ0, τ1) be one of the intervals forming Ω, and assume
that τ0 > 0. Then u(τ0) = 0, and u(x) > 0 on (τ0, τ1). The same holds for
z0(x)u(x). Therefore, the right-hand derivative (z0u)′+(τ0) is non-negative at the
point x = τ0. Thus, g(τ0 + 0) > 0. Similarly (since u(x) > 0 to the left of x = τ0),
we see that g(τ0 − 0) 6 0. Since g(x) is non-increasing (also at τ0, that is, for
the passage from g(τ0 − 0) to g(τ0 + 0)), the last two inequalities must mean that
0 > g(τ0 − 0) > g(τ0 + 0) > 0, that is, g(τ0 − 0) = g(τ0 + 0) = 0. This, together
with the fact that the function g(x) is non-increasing, implies that g(x) 6 0 to
the right of τ0. Therefore, we also have (z0u)′ 6 0 to the right of τ0. Then the
function (z0u)(x), which is non-increasing to the right of τ0 and is zero at the point
x = τ0, must satisfy the inequality (z0u)(x) 6 0, which, together with the original
assumption, means that u(x) ≡ 0 to the right of τ0 and, in particular, on (τ0, τ1).

Thus, the case τ0 ̸= 0 is impossible. Suppose now that τ0 = 0, that is,
u(0) = 0. If u′(0) = 0, then (z0u)′(0) = 0 and g(+0) = 0. But then since g(x)
is non-increasing, we must have g(x) 6 0 to the right of τ0 (as above), that is,
(z0u)′(x) 6 0, and (z0u)(x) is non-increasing and has a zero at x = 0. Therefore,
z0u 6 0, which, together with the original condition u(x) > 0, means that u(x) ≡ 0.
The property |u(l)| + |u′(l)| > 0 can be proved in a similar way. This completes
the proof of Theorem 1.2.

Remark 1.1. As will be proved below, the existence condition for a solution without
zeros certainly holds if dQ > 0. However, we shall be able to discuss these conditions
(there is a solution such that . . . ) only if we have an existence theorem. We shall
obtain such a theorem in the next section.

Remark 1.2. In the proof we in fact identify the right-hand derivative (z0u)′+(τ0)
of the function (z0u) with the right-hand limit

lim
ε→+0

(z0u)′(τ0 + ε) = (z0u)′(τ0 + 0).

The same holds to the left of τ0. This is one of the trickiest points here. In Theo-
rem 1.4 we shall prove that this identification is admissible.

Remark 1.3. The importance of the last theorem is determined already by the fact
that the influence function (Green’s function) certainly satisfies the differential
inequality of the form Du > 0.

1.2. Cauchy problem. Existence theorem. We begin a more thorough inves-
tigation of the main equation (A), that is,

−(pu′)(x) + (pu′)(0) +
∫ x

0

u dQ =
∫ x

0

dF.

Everywhere below, it is assumed that the functions p(x), Q(x), and F (x) are contin-
uous at the points x = 0 and x = l and have bounded variation on [0, l]; moreover,
inf [0,l] p > 0. By the theorem on a transform of a measure, the integral term on the
left-hand side of (A) must belong to BV[0, l]. But then the function (pu′)(x) must
belong to the space BV[0, l] together with u′(x).
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1.2.1. Space of admissible solutions. Let us introduce the norm

∥u∥ = sup
[0,l]

|u(x)|+ V l
0 [u′(x)] (1.5)

on the set E of absolutely continuous functions on [0, l] whose derivatives belong
to BV[0, l].

Theorem 1.3. The space E is complete with respect to the norm (1.5).

Proof. Let {un(x)} be a Cauchy sequence with respect to the norm (1.5). Then
it is a Cauchy sequence in C[0, l] as well, and hence converges uniformly to some
function u∗(x) ∈ C[0, l]. We assert that u∗(·) ∈ E.

Consider the sequence zn(x) = u′n(x). Since {un} is bounded in E, there is
a fixed finite number C such that

V l
0 [zn] 6 C. (1.6)

Since for any z(·) in BV[0, l] and any α, β ∈ [0, l] we have the inequality |z(β) −
z(α)| 6 V β

α [z], it follows that

|u′n(x)| 6 |u′n(l)|+ V l
0 [u′n],

and by (1.6),
|u′n(x)| 6 |u′n(l)|+ C (0 6 x 6 l). (1.7)

On the other hand,

un(l) = un(0) +
∫ l

0

u′n(s) dx = un(0) + u′n(l)l −
∫ l

0

x du′n,

and hence

lu′n(l) =
∫ l

0

x du′n + un(l)− un(0).

Therefore,
l|u′n(l)| 6 lV l

0 [u′n] + |un(l)|+ |un(0)|.
The last two terms are uniformly bounded with respect to n by the Cauchy prop-
erty of {un} in the metric of C[0, l], and the same holds for the first term by (1.6).
This implies that supn |u′n(l)| < ∞, which, together with (1.7), means the exis-
tence of a constant c2 such that |u′n| 6 c2. Thus, the sequence zn(x) = u′n(x)
is uniformly bounded, which, together with (1.6), implies that the conditions of
Helly’s second theorem are satisfied (see [45], Chap. VI, § 6.5), according to which
the sequence {zn} is compact with respect to the weak topology (of pointwise
convergence). Therefore, there is a subsequence {znk

} which converges to some
function z∗(x). Then by Helly’s first theorem ([45], Chap. VI, § 6.5), we have
z∗(x) ∈ BV[0, l].

The convergence of the entire sequence {zn} to z∗ follows now from its Cauchy
property with respect to the semimetric ρ(z, z∗) = V l

0 [z − z∗], which ensures the
pointwise convergence of zn to z∗. Therefore, u′∗ = z∗. The final conclusion about
convergence of un(x) to u∗(x) with respect to the norm (1.5) follows from the

equality un(x) = un(0) +
∫ x

0

u′n(s)ds. This completes the proof of Theorem 1.3.
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Remark 1.4. The Banach space E introduced above is contained (in the set-
theoretic sense) in the Sobolev space W 1

1 [0, l].

1.2.2. Meaning of the equation (A) at singular points. If ξ is one of the discon-
tinuity points of one of the functions p, Q, or F , then jumps at this point of the
derivative u′(x) and of the integral term regarded as a function of the upper limit
of integration are unavoidable.

Theorem 1.4. For any function g ∈ E the relations

g′(ξ + 0) = lim
x→ξ+0

g′(x) = lim
ε→0+0

g(ξ + ε)− g(ξ)
ε

= g′+(ξ)

hold for ξ < l. A similar condition holds from the left at any point ξ > 0.

Proof. Let ξ < l. We assert first that the right-hand derivative g′+(ξ) exists at the
point ξ. Since g ∈ E, it follows that the derivative g′(x) belongs to BV[0, l],
and thus there is a finite limit limt→ξ+0 g

′(t) = g′(ξ + 0). Let us show that

limε→+0
g(ξ + ε)− g(ξ)

ε
= g′(ξ + 0). Since g(x) is absolutely continuous, we have

g(ξ + ε) = g(ξ) +
∫ ξ+ε

ξ

g′(t) dt. Therefore,

∣∣∣∣1ε (
g(ξ + ε)− g(ξ)

)
− g′(ξ + 0)

∣∣∣∣ =
∣∣∣∣1ε

∫ ξ+ε

ξ

g′(t) dt− g′(ξ + 0)
∣∣∣∣

=
1
ε

∣∣∣∣∫ ξ+ε

ξ

(
g′(t)− g′(ξ + 0)

)
dt

∣∣∣∣ 6
1
ε

∫ ξ+ε

ξ

∣∣g′(t)− g′(ξ + 0)
∣∣ dt,

as was to be proved. The arguments for the left-hand derivatives are similar. This
completes the proof of Theorem 1.4.

Thus, the equation (A) makes sense at x = ξ − 0 and at x = ξ + 0 for any
problem point ξ at which one of the functions p, Q, and F can have a jump, and
the following equality holds:

−∆(pu′)(ξ) + u(ξ)∆Q(ξ) = ∆F (ξ).

Assigning to x in (A) the true value x = ξ of such a point does not make sense.

1.2.3. Extended domain of the argument of the equation (A). Denote by SA the set
of all points at which the functions p(x), Q(x), F (x) have non-zero simple jumps,
that is, distinct left- and right-hand limits. Let us remove the set SA from [0, l] and
replace each point ξ ∈ SA by the pair {ξ− 0, ξ+ 0}. We assume that ξ− 0 > x for
any x < ξ and ξ+ 0 < x for any x > ξ. Let [0, l]A be the set obtained from [0, l] by
replacing the points ξ ∈ SA by the corresponding pairs {ξ − 0, ξ + 0}.

One can give the following correct definition of the set [0, l]A regarded as
a one-dimensional metric space.

Taking a Jordan representation of the original coefficients p, Q, F in the form
p = p+ − p−, Q = Q+ −Q−, and F = F+ − F−, we denote by σA(x) the following
sum of non-decreasing functions:

σA(x) = x+ p+(x) + p−(x) +Q+(x) +Q−(x) + F+(x) + F−(x).
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Without loss of generality we can assume that the function σ(x) has discontinuities
(full jumps) only at the points of the set SA.

Let us equip the set [0, l] \ SA with the metric ρ(x, y) = |σA(x) − σA(y)|. If
SA ̸= ∅, then this metric space is obviously not complete. Its standard metric
completion coincides (up to isomorphism) with [0, l]A and induces a topology on
this space.

It is clear that this space is disconnected and compact.
We consider the equation (A) on the set of values x in [0, l]A (thus, without

permitting values of x in SA for (A)). On [0, l]A the functions p(·), Q(·), and F (·)
become continuous, because the values p(ξ + 0), p(ξ − 0), Q(ξ + 0), Q(ξ − 0),
F (ξ + 0), and F (ξ − 0) of them which were limit values on [0, l] now become true
values at the corresponding points of [0, l]A.

The continuity of the functions u(·) under consideration enables us to preserve
the usual Riemann–Stieltjes meaning for the integral term in (A) at x = ξ − 0
and x = ξ + 0, regarding the previous limit values as true values.

Thus, it is as if we regard the equation (A) in two layers: the lower level is for
the values x ∈ [0, l] when speaking about the solutions u(x) themselves (under the
integral sign), and the second level is for the values x in the identity (A) with x

taken from [0, l]A. This now affects the definition of the Cauchy problem, namely,
it is in the usual sense for x ̸∈ SA, that is, the values of the solution u(ξ) and
its derivative u′(ξ) are assumed to be given, but for ξ ∈ SA one of the one-sided
derivatives u′(ξ − 0) or u′(ξ + 0) can be prescribed in advance along with the
value u(ξ).

1.2.4. Existence and uniqueness theorem.

Theorem 1.5. For any u0, v0 ∈ R and for any point x0 ∈ [0, l]A there is a unique
solution u(x) of the equation (A) such that

u(x0) = u0, u′(x0) = v0. (1.8)

Proof. Taking into account the initial conditions, the equation (A) becomes

(pu′)(x) =
∫ x

x0

u(s) dQ(s)− F (x) + p(x0)v0 + F (x0), (1.9)

which can be rewritten in the form u = Au+ z, where

(Au)(x) =
∫ x

x0

1
p(t)

( ∫ t

x0

u(s) dQ(s)
)
dt, (1.10)

z(x) = u0 +
∫ x

x0

(
p(x0)v0 − F (t) + F (x0)

) dt

p(t)
. (1.11)

The operator A defined by the formula (1.10) acts from C[0, l] to C[0, l]. Obvi-
ously, z(x) ∈ C[0, l]. We assert that the operator I − A has an inverse. To
prove this, it suffices to show that the spectral radius ρ(A) is less than 1. In this
case the resolvent operator (I − A)−1 can be represented as the Neumann series
(I − A)−1 =

∑∞
k=0A

k, which converges with respect to the operator norm due to
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the inequality ρ(A) < 1. Let us show that ρ(A) = 0 in our case. We apply the
formula ρ(A) = limn→∞

n
√
∥An∥ and assert that

n
√
∥An∥ 6 C∗

1
n
√
n!

(1.12)

for some constant C∗. To show this, we prove that

|(An(ϕ))(x)| 6 Cn∥ϕ∥ |x− x0|n

n!
(1.13)

for any positive integer n and arbitrary ϕ(x) in C[0, l], where C = V l
0 [Q]/c0, c0 =

min
[0,l]A

p(x), and ∥ϕ∥ is the norm of ϕ in C[0, l].
We carry out the proof of the inequality (1.13) by induction. For n = 1 we have

|(A(ϕ))(x)| 6
∣∣∣∣∫ x

x0

1
p(t)

∫ t

x0

dQ(s) dt
∣∣∣∣ ∥ϕ∥

6
1
c0

∣∣∣∣∫ x

x0

|Q(t)−Q(x0)| dt
∣∣∣∣ ∥ϕ∥ 6 C|x− x0| ∥ϕ∥,

as was to be proved. Assuming the validity of (1.13) for n = k, we obtain in
succession

|A(Akϕ)(x)| 6
∣∣∣∣∫ x

x0

1
p(t)

∫ t

x0

(Akϕ)(s) dQ(s) dt
∣∣∣∣

6
∥ϕ∥
c0

∣∣∣∣∫ x

x0

∣∣∣∣∫ t

x0

|s− x0|k

k!
Ck dQ(s)

∣∣∣∣ dt∣∣∣∣
6
∥ϕ∥
c0

Ck

k!
V l

0 [Q]
∣∣∣∣∫ x

x0

|t− x0|k dt
∣∣∣∣ =

Ck+1

(k + 1)!
∥ϕ∥ |x− x0|k+1,

as was required for (1.13).
The fact that the function u(x) belongs to the space E (which is connected with

the fact that the derivative u′(·) belongs to the space BV[0, l]) follows immediately
from (1.9) by the theorem on a transform of a measure. This completes the proof
of Theorem 1.5.

Remark 1.5. In traditional textbooks the corresponding proof (whose nature is sim-
ilar in essence) does not explain the possibility of passing to the limit in an equal-
ity of the form un = Aun + z. In fact, this is possible in the classical situation
because C1[0, l] is complete and holds in our case because the space E is complete.

Remark 1.6. The following norms on the space E are obviously equivalent:

∥u∥E = max
[0,l]

|u|+ V l
0 [u′],

∥u∥1 = max
[0,l]

|u|+ V l
0 [pu′],

∥u∥2 = max
{
max
[0,l]

|u|, V l
0 [u′]

}
.
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1.2.5. Continuous dependence of the solution on the parameters.

Theorem 1.6. Under the assumptions of Theorem 1.5 the solution of the prob-
lem (A), (1.8) depends continuously on the initial data u0, v0 and on the variations
of the functions p(·), Q(·), and F (·) on [0, l].

The proof follows immediately from the continuity of (I − A)−1 and from the
explicit representation for z(x).

We shall study the problem of continuous dependence on the parameter λ for
the solution of the previous equation (A), that is,

−(pu′)(x) + (pu′)(0) +
∫ x

0

u dQ = F (x)− F (0),

with initial data depending on λ at some x0 ∈ [0, l]A:

u(x0) = ψ1(λ), u′(x0) = ψ2(λ). (1.14)

Theorem 1.7. If the functions ψ1(λ) and ψ2(λ) are continuous with respect to λ,
then the solution u(x, λ) of (A) corresponding to the initial conditions (1.14)
depends continuously on λ with respect to the norm (1.5).

Proof. Let v(x) be the solution of (A) with the conditions v(x0) = v′(x0) = 0.
Let ϕ1(x) and ϕ2(x) be the solutions of the homogeneous equation Lu = 0, that is,

−(pu′)(x) + (pu′)(0) +
∫ x

0

u dQ = 0,

with the conditions

u(x0) = 1, u′(x0) = 0 and u(x0) = 0, u′(x0) = 1,

respectively. Then the solution of the problem (A), (1.14) can be represented in
the form

u(x, λ) = v(x) + ψ1(λ)ϕ1(x) + ψ2(λ)ϕ2(x).

Thus, the difference

u(x, λ)− u(x, λ0) = ϕ1(x)
(
ψ1(λ)− ψ1(λ0)

)
+ ϕ2(x)

(
ψ2(λ)− ψ2(λ0)

)
can be estimated as follows:

∥u(x, λ)− u(x, λ0)∥ 6 |ψ1(λ)− ψ1(λ0)| ∥ϕ1∥+ |ψ2(λ)− ψ2(λ0) ∥ϕ2∥,

where ∥ · ∥ is the norm in C[0, l]. Since

u′(x, λ)− u′(x, λ0) = ϕ′1(x)
(
ψ1(λ)− ψ1(λ0)

)
+ ϕ′2(x)

(
ψ2(λ)− ψ2(λ0)

)
,

it follows that

V l
0 [u′(x, λ)− u′(x, λ0)] 6 |ψ1(λ)− ψ1(λ0)|V l

0 [ϕ′1] + |ψ2(λ)− ψ2(λ0)|V l
0 [ϕ′2].

Therefore,

∥u(x, λ)− u(x, λ0)∥E 6 |ψ1(λ)− ψ1(λ0)| ∥ϕ1∥E + |ψ2(λ)− ψ2(λ0)| ∥ϕ2∥E .

This completes the proof of Theorem 1.7.
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We now consider the equation

− d(pu′) + u dQ(λ, x) = dF (λ, x) (1.15)

for Q(λ, x) = Q0(x) + ψ1(λ)Q1(x) and F (λ, x) = F0(x) + ψ2(λ)F1(x), where Q0,
Q1, F0, and F1 are functions of bounded variation and Q1 ̸= const.

Theorem 1.8. Let u(x, λ) be the solution of (1.15) satisfying the conditions u(x0)
= u0 and u′(x0) = v0 for some x0 ∈ [0, l]A. Then u(x, λ) depends continuously on λ
with respect to the norm (1.5) if ψ1(λ) and ψ2(λ) are continuous, and u(x, λ) is
differentiable with respect to λ as many times as ψ1(λ) and ψ2(λ) are differentiable.

The proof is quite similar to the previous arguments and is omitted because it
is routine and cumbersome.

1.2.6. Boundary-value problem. Consider the homogeneous equation

−(pu′)(x) + (pu′)(0) +
∫ x

0

u dQ = 0. (A0)

It is clear that the set M0 ⊂ E of solutions of this equation is a linear subspace
of E.

Lemma 1.1. dim M0 = 2.

Proof. This follows trivially from Theorem 1.5.

Following the traditions of the theory of ordinary differential equations, we refer
to any basis in M0 as a fundamental system of solutions of the homogeneous equa-
tion (A0).

Lemma 1.2. Let u(x), v(x) be a fundamental system of solutions of the homo-
geneous equation (A0), and let z(x) be a solution of the inhomogeneous equa-
tion (A). Then every solution h(x) of the inhomogeneous equation is of the form
h(x) = α1u(x) + α2v(x) + z(x) for some α1 and α2.

Proof. This is trivial, because h− z belongs to M0.

By the boundary-value problem we mean the equation (A) (Du = dF ) under
the conditions

l1(u) = c1, l2(u) = c2,

where l1, l2 are some linear functionals on E.
This problem is said to be non-degenerate if it is uniquely soluble for any c1, c2

and any F (x) ∈ BV[0, l].

Theorem 1.9. For the boundary-value problem to be non-degenerate, it is neces-
sary and sufficient that the corresponding homogeneous problem

Du = 0, l1(u) = 0, l2(u) = 0

have only the trivial solution u(x) ≡ 0.
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Proof. By the previous lemma, if u(x) is a solution of the inhomogeneous problem,
then it has the form u = α1u1 + α2u2 + z, where z is some solution of the inhomo-
geneous equation (A) (which certainly exists by Theorem 1.5 under arbitrary but
fixed initial conditions). The corresponding values of the coefficients α1, α2 can
be found from the conditions l1(u) = c1, l2(u) = c2. This is a system of algebraic
equations (with respect to α1 and α2), namely,

α1l1(ϕ1) + α2l1(ϕ2) = c1 − l1(z),
α1l2(ϕ1) + α2l2(ϕ2) = c2 − l2(z).

For the last system to be uniquely soluble, it is necessary and sufficient that its
determinant ∣∣∣∣l1(ϕ1) l1(ϕ2)

l2(ϕ1) l2(ϕ2)

∣∣∣∣
be non-zero. But this condition is equivalent to the condition that the system arising
in the same way from the homogeneous problem Du = 0, l1(u) = 0, l2(u) = 0 have
only the trivial solution. This proves Theorem 1.9.

Below we are interested in the following special case of boundary conditions:

u(0) = 0, u(l) = 0.

For this problem to be non-degenerate, it is sufficient that every non-trivial solution
of the homogeneous equation Lu = 0 have at most one zero on [0, l]. It is this
condition that is the basis for the discussion below.

2. Linear theory

2.1. Homogeneous equation. Let us consider the homogeneous equation (A0),
that is,

Du = 0 ⇔ −pu′(x) + pu′(0) +
∫ x

0

u dQ = 0.

We note that if one of the functions p, Q is discontinuous at some point ξ, then at
this point we have

− pu′(ξ + 0) + pu′(ξ − 0) + u(ξ)∆Q(ξ) = 0. (2.1)

2.1.1. Wronskian. For a pair of functions ϕ1, ϕ2 in E we consider the determinant

W [ϕ1, ϕ2](x) =
∣∣∣∣ϕ1(x) ϕ2(x)
ϕ′1(x) ϕ′2(x)

∣∣∣∣
on [0, l]A. If it is clear from the context what pair of functions ϕ1, ϕ2 is meant, then
we shall write W (x) instead of W [ϕ1, ϕ2](x). At the singular points we distinguish
between W (ξ − 0) and W (ξ + 0).
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Lemma 2.1. The following properties are equivalent for any two solutions ϕ1, ϕ2

of the homogeneous equation (A0):
(a) The determinant W [ϕ1, ϕ2](x) is non-zero at any point of [0, l]A;
(b) W (x) differs from zero at least at one point of [0, l]A;
(c) the functions ϕ1(x) and ϕ2(x) are linearly independent.

Proof. We prove the chain of implications (a) ⇒ (b) ⇒ (c) ⇒ (a).
The implication (a) ⇒ (b) is obvious. Let the property (b) hold and let x∗ be

a point of [0, l]A such that W (x∗) ̸= 0. If the functions ϕ1(x) and ϕ2(x) were
linearly dependent, then the rows of the determinant would be proportional for
any x ∈ [0, l]A, that is, we would have the equality W (x) = 0 for any x in [0, l]A,
whereas W (x∗) ̸= 0.

If the property (c) holds and W (x∗) = 0 for some x∗ in [0, l]A, then the function
v(x) = ϕ1(x)ϕ2(x∗)−ϕ2(x)ϕ1(x∗) satisfies both the conditions v(x∗) = v′(x∗) = 0
and the equation Lv = 0, and therefore we must have v(x) ≡ 0 by Theorem 1.5, that
is, the functions ϕ1(x) and ϕ2(x) are linearly dependent. This proves Lemma 2.1.

A function G(x) ∈ BV[0, l] is said to be continuous on [0, l] if its left- and
right-hand limits coincide (we redefine G(x) at these points by the common value
of these limits).

Lemma 2.2. For any two solutions ϕ1(x), ϕ2(x) of the homogeneous equation (A0)
the function p(x)W [ϕ1, ϕ2](x) is continuous on [0, l].

Proof. Let x = s− 0, where s ∈ SA. Since p(s+ 0)ϕ′i(s+ 0)− p(s− 0)ϕ′i(s− 0) =
ϕi(s)∆Q(s) (i = 1, 2), we have

p(s+ 0)W (s+ 0)− p(s− 0)W (s− 0)
= −ϕ1(s+ 0)ϕ2(s+ 0)∆Q(s) + ϕ1(s+ 0)ϕ2(s+ 0)∆Q(s) = 0.

The case x = s+ 0 can be treated in a similar way.
If the functions p and Q are continuous at a point x, then so are ϕ′1(x) and ϕ′2(x)

(this follows from the equation (A0) and the fact that p > 0), and thus the func-
tion pW is continuous at x. This proves Lemma 2.2.

2.1.2. Main property of the Wronskian.

Theorem 2.1. p(x)W (x) ≡ const on [0, l]A for any pair of solutions ϕ1(x), ϕ2(x)
of the equation (A0).

Proof. This theorem is based on the following lemma.

Lemma 2.3. Let h(x) ∈ BV[0, l] and let ϕ(x) = V x
0 [h]. Then the following rela-

tions hold for any ξ < l:

lim
ε→+0

V ξ+ε
ξ+0 [h] = lim

ε→+0

(
ϕ(ξ + ε)− ϕ(ξ + 0)

)
= 0, (2.2)

and limε→+0

(
ϕ(ξ − 0)− ϕ(ξ − ε)

)
= 0 for any ξ > 0. In other words, the function

ϕ(x) = V x
0 [h] is right continuous at any ‘point ’ ξ + 0 and left continuous at any

‘point ’ ξ − 0.
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Proof. If h(ξ−0) = h(ξ+0), then the assertion is obvious. If a discontinuity point ξ
of the function h(x) lies to the left of l, then the proof of (2.2) follows easily from
the readily verifiable equality V x

0 [h] = V ξ+0
0 [h] + V x

ξ+0[h] for ξ < x. The proof for
a point ξ > 0 is similar.

We proceed to the proof of the theorem. We extend the definition of the
function pW (x) by continuity to the entire interval [0, l]. Let us prove first that
(pW )′(x+0) ≡ 0. For an arbitrary function h(x) we write ∆εh(x) = h(x+ε)−h(x)
for ε > 0. Since ϕ1 and ϕ2 belong to M0,

∆ε(pW )(x)
ε

=
∆εϕ1(x)

ε

∫ x+ε

0

ϕ2 dQ+
p(0)ϕ2

′(0)∆εϕ1(x)
ε

− ∆εϕ2(x)
ε

∫ x+ε

0

ϕ1 dQ−
p(0)ϕ1

′(0)∆εϕ2(x)
ε

+
1
ε

(
ϕ1(x)

∫ x+ε

x+0

ϕ2 dQ− ϕ2(x)
∫ x+ε

x+0

ϕ1 dQ

)
.

Let us show that the limit of the last term as ε → +0 vanishes. Denoting the
variable of integration (with respect to dQ) by s, we obtain∣∣∣∣1ε

∫ x+ε

x+0

(
ϕ1(x)ϕ2(s)− ϕ2(x)ϕ1(s)

)
dQ(s)

∣∣∣∣
6

1
ε

(
max

x6s6x+ε
|ϕ1(x)ϕ2(s)− ϕ2(x)ϕ1(s)|

)
V x+ε

x+0 [Q].

Note that

|ϕ1(x)ϕ2(s)− ϕ2(x)ϕ1(s)| 6 ∥ϕ1∥ · |ϕ2(s)− ϕ2(x)|+ ∥ϕ2∥ · |ϕ1(x)− ϕ1(s)|

6 ∥ϕ1∥ ·
∣∣∣∣∫ x

s

|ϕ′2(τ)| dτ
∣∣∣∣ + ∥ϕ2∥ ·

∣∣∣∣∫ x

s

|ϕ′1(τ)| dτ
∣∣∣∣.

Since ϕ1, ϕ2 ∈ E, it follows that the variations of the functions ϕ′1 and ϕ′2 are finite,
and thus there is a constant c0 for which |ϕ′2(τ)| 6 c0 and |ϕ′1(τ)| 6 c0. Then

|ϕ1(x)ϕ2(s)− ϕ2(x)ϕ1(s)| 6 (∥ϕ1∥+ ∥ϕ2∥)c0ε,

and hence

1
ε

max
x6s6x+ε

|ϕ1(x)ϕ2(s)− ϕ2(x)ϕ1(s)| 6 (∥ϕ1∥+ ∥ϕ2∥)c0.

Since V x+ε
x+0 [Q] → 0 as ε→ +0, we obtain the desired relation. This yields

(pW )′(x+ 0) = ϕ′1(x+ 0)
∫ x+0

0

ϕ2 dQ+ p(0)ϕ′2(0)ϕ′1(x+ 0)

− ϕ′2(x+ 0)
∫ x+0

0

ϕ1 dQ− p(0)ϕ′1(0)ϕ′2(x+ 0). (2.3)
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Each of the functions ϕ1(x) and ϕ2(x) must satisfy the equality

p(x+ 0)ϕ′(x+ 0)− p(0)ϕ′(0) =
∫ x+0

0

ϕdQ,

therefore, (pW )′(x+ 0) ≡ 0 by (2.3).
The arguments for the left-hand derivative (pW )′(x− 0) are similar. This com-

pletes the proof of Theorem 2.1.

2.2. Non-degenerate boundary-value problem. We denote by E0 the set of
functions in E with u(0) = u(l) = 0 and consider the problem

Du = dF, u(0) = u(l) = 0. (2.4)

In the standard theory of boundary-value problems the possibility of integral
representations of solutions is realized by constructing the Green’s function defined
by a system of axioms, as in [6] and [50]–[52]. However, as was noted recently [53],
this approach is incorrect. And it is even impossible to apply this approach to our
problem. For this reason, we follow a more physical path.

2.2.1. The influence function. A rigorous definition. We give an exact descrip-
tion of the influence function, starting from the physical or, more precisely, the
variational motivation for the equation (A). At the physical level, the influence
function K(x, s) is defined as the deformation of the original system under the
action of a unit force applied at the point x = s.

We recall that for an elastic continuum the potential energy corresponding to
a virtual (fictitious) shape u(x) arising under the influence of an external force
f(x) dx = dF (x) is expressed by the functional

Φ(u) =
∫ l

0

p
(u′)2

2
dx+

∫ l

0

u2

2
dQ−

∫ l

0

u dF.

If the external load has unit value and is applied only at a point x = s, then the
work of this force is equal to u(s), and the last term in the representation of Φ

becomes u(s) =
∫ l

0

u dθ(x− s), where θ(x) is the classical Heaviside function.

According to variational principles, the functionK(x, s) minimizes the functional

ϕ(u) =
∫ l

0

p
u′2

2
dx+

∫ l

0

u2

2
dQ− u(s).

One can readily see that a function u0(x) provides the minimum of this functional
if and only if ∫ l

0

pu′0h
′ dx+

∫ l

0

u0h dQ− h(s) = 0

for any admissible function h(x) (that is, for h(x) belonging to E0). Setting z(x) =∫ x

0

u dQ and h(s) =
∫ l

0

h(x) dθ(x − s) here, we see after integrating the first two

terms by parts that ∫ l

0

h d(−(pu′)(x) + z(x)− θ(x− s)) = 0,
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and hence the corresponding Stieltjes differential, which is zero, must be generated
by a constant, that is, −(pu′)(x) + z(x)− θ(x− s) ≡ const, and this means (by the
definition of z(x)) that

− (pu′)(x) +
∫ x

0

u dQ = θ(x− s)− (pu′)(0). (2.5)

Definition 1. By the influence function K(x, s) of the original problem (2.4) we
mean the solution at any s ∈ (0, l) of the equation (2.5) under the conditions
u(0) = u(l) = 0.

2.2.2. Main properties of the influence function. The properties listed below can
be obtained immediately from (2.5).

1. For any s0 ∈ (0, l) the function g(x) = K(x, s0) satisfies the homogeneous
equation Lu = 0 on the intervals (0, s0) and (s0, l).

2. For any s0 ∈ (0, l) the function g(x) = K(x, s0) satisfies the following equali-
ties on the diagonal x = s0:

(α) if ξ is not a discontinuity point of Q, then −∆(pg′)(s0) = 1,
(β) if ξ is a discontinuity point of Q, then −∆(pg′)(s0) + g(s0)∆Q(s0) = 1.

Theorem 2.2. Suppose that the equation Lu = 0 has a solution without zeros
on [0, l]. Then K(x, s) > 0 for any x and s distinct from 0 and l. Moreover, if the
function Q(x) is non-decreasing, then maxx∈[0,l]K(x, s) = K(s, s).

Proof. We denote by ϕ(x) a positive solution of the equation Lu = 0 which has
no zeros on the interval [0, l]. Let us show that the function g(x) = K(x, s0) is
non-negative for any s0 ∈ (0, l). By the factorization theorem (Theorem 1.1), we
have

d

(
ϕ2p

d

dx

(
g

ϕ

))
= −ϕdθ(x− s) 6 0,

that is, the function ϕ2p
d

dx

(
g

ϕ

)
is non-increasing on [0, l]. Thus, the function

d

dx

(
g

ϕ

)
can change sign at most once, and only from plus to minus. Since ϕ(x) is

positive, it follows from the conditions g(0) = g(l) = 0 that g(x) > 0 on [0, l].
Since the function g(x) satisfies the inequality Du > 0, it follows from Theo-

rem 1.2 that g(x) > 0 on (0, l). For x < s0 we have

(pg′)(x) = (pg′)(0) +
∫ x

0

g(s) dQ(s),

and it is clear that (pg′)(0) > 0, which implies that (pg′)(x) > 0 on (0, s0), and
hence g′(x) > 0 at the same points x. This means that g(x) increases on (0, s0).
Similarly, g(x) is strictly decreasing on (s0, l). Thus, g(x) has a unique maximum
at x = s0. This completes the proof of Theorem 2.2.

2.2.3. One-pair representation of the influence function. Suppose that the prob-
lem (2.4) is non-degenerate. Let ϕ1(x), ϕ2(x) be the solutions of the homogeneous
equation Lu = 0 that satisfy the conditions

ϕ1(0) = 0, ϕ′1(0) = 1, (2.6)
ϕ2(l) = 0, ϕ′2(l) = −1. (2.7)
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Theorem 2.3. The influence function K(x, s) of the problem (2.4) exists and can
be represented as

K(x, s) =
1

p(0)ϕ2(0)

{
ϕ1(s)ϕ2(x) for 0 6 s 6 x 6 l,

ϕ2(s)ϕ1(x) for 0 6 x 6 s 6 l.
(2.8)

Proof. Since the problem is non-degenerate, we have ϕ2(0) ̸= 0 and ϕ1(l) ̸= 0. One
can readily see that the system {ϕ1, ϕ2} is a basis in M0.

The function K(x, s) (as a solution) satisfies the equation Lu = 0 with respect
to x (for x ̸= s). Therefore,

K(x, s) =

{
c1(s)ϕ1(x), 0 6 x < s,

c2(s)ϕ2(x), s < x 6 l,
(2.9)

for some functions c1(s) and c2(s). Since the function g(x) = K(x, s0) must be
continuous at x = s0, it follows that

c1(s0)ϕ1(s0) = c2(s0)ϕ2(s0). (2.10)

The function g(x) = K(x, s0) must satisfy the equation Du = dF for F (x) =
Θ(x − s0), which implies that ∆(pg′)(s0) = g(s0)∆Q(s0) − 1. In turn, this must
mean that

c2(s0)(pϕ′2)(s0 + 0)− c1(s0)(pϕ′1)(s0 − 0) = K(s0, s0)∆Q(s0)− 1.

Replacing c2(s0) by c1(s0)ϕ1(s0)/ϕ2(s0) here according to (2.10), we obtain

c1(s0)
ϕ1(s0)(pϕ2)′(s0 + 0)

ϕ2(s0)
− c1(s0)(pϕ′1)(s0 − 0) + 1 = K(s0, s0)∆Q(s0). (2.11)

Since ϕ1(x) satisfies the homogeneous equation, we have

(pϕ′1)(s0 − 0) = (pϕ1)′(s0 + 0)− ϕ1(s0)∆Q(s0).

Substituting the expression thus obtained into (2.11) and taking into account the
equality

c1(s0)ϕ1(s0) = K(s0, s0),

we obtain

c1(s0)ϕ1(s0)
(pϕ2)′(s0 + 0)

ϕ2(s0)
− c1(s0)(pϕ′1)(s0 + 0) + 1 = 0,

that is, we have lost the term with the jump ∆Q(s0), and (the main point) only
right-hand limit values appear.

This implies easily that

c1(s0)p(s0 + 0)W [ϕ1, ϕ2](s0 + 0) + ϕ2(s0) = 0,

and hence
c1(s0) = − 1

(pW )(s0 + 0)
ϕ2(s0).
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The denominator in the last expression, that is, the function (pW )(x), is a constant
(by Theorem 2.1) equal to

(pW )(s0 + 0) = (pW )(l) = (pW )(0) = −p(l)ϕ1(l) = −p(0)ϕ2(0).

Therefore,

c1(s0) =
ϕ2(s0)

p(0)ϕ2(0)
=

ϕ2(s0)
p(l)ϕ1(l)

.

In a similar way one can show that c2(s) =
ϕ1(s)

p(0)ϕ2(0)
for any s. This completes

the proof of Theorem 2.3.

Corollary 2.1. The influence function is symmetric, that is, K(x, s) = K(s, x).

Corollary 2.2. The influence function is jointly continuous on the square [0, l]×
[0, l].

2.2.4. Integral invertibility of a non-degenerate problem.

Theorem 2.4. Suppose that the problem (2.4) is non-degenerate and let K(x, s) be
its influence function. Then for any F (x) in BV[0, l] the corresponding solution u(x)
of the problem (2.4) can be represented in the form

u(x) =
∫ l

0

K(x, s) dF (s). (2.12)

Proof. We denote the right-hand side of (2.12) by v(x), that is,

v(x) =
ϕ2(x)

p(0)ϕ2(0)

∫ x

0

ϕ1 dF +
ϕ1(x)

p(0)ϕ2(0)

∫ 1

x

ϕ2 dF.

The equalities v(0) = v(l) = 0 are obvious. To prove the equality Dv = dF , we
show first that v(·) ∈ E. For arbitrary α 6 β

v(β)− v(α) =
1

p(0)ϕ2(0)

((
ϕ2(β)− ϕ2(α)

) ∫ β

0

ϕ1 dF +
(
ϕ1(β)− ϕ1(α)

) ∫ 1

β

ϕ2 dF

)
+

1
p(0)ϕ2(0)

∫ β

α

((
ϕ2(α)− ϕ2(s)

)
ϕ1(s) +

(
ϕ1(s)− ϕ1(α)

)
ϕ2(s)

)
dF (s),

which implies the absolute continuity of the function v(x).
Let us show that the derivative v′(x) of v(x) is defined by the equality

v′(x) =
ϕ′2(x)

p(0)ϕ2(0)

∫ x

0

ϕ1 dF +
ϕ′1(x)

p(0)ϕ2(0)

∫ 1

x

ϕ2 dF. (2.13)

Let ∆εh(x) = h(x + ε) − h(x), where ε > 0. We carry out the proof for the
right-hand derivative (the arguments for the left-hand derivative are similar). We
have

∆εv

ε
=

1
p(0)ϕ2(0)

∆εϕ2

ε

∫ x+ε

0

ϕ1 dF +
1

p(0)ϕ2(0)
∆εϕ1

ε

∫ 1

x+ε

ϕ2 dF

+
1

p(0)ϕ2(0)

∫ x+ε

x+0

ϕ2(x+ 0)ϕ1(s)− ϕ1(x+ 0)ϕ2(s)
ε

dF (s).
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As in the case of Theorem 2.1, one can show that

lim
ε→+0

1
ε

( ∫ x+ε

x+0

(
ϕ2(x+ 0)ϕ1(s)− ϕ1(x+ 0)ϕ2(s)

)
dF (s)

)
= 0,

which implies (2.13). It follows from (2.13) that v′ ∈ BV[0, l], and thus v ∈ E.
Let us show now that Dv = dF . First, we have∫ x

0

v dQ =
1

p(0)ϕ2(0)

∫ x

0

ϕ2(s)
∫ s

0

ϕ1 dF dQ

+
1

p(0)ϕ2(0)

∫ x

0

ϕ1(s)
∫ 1

s

ϕ2 dF dQ.

Both the iterated integrals are applied here to the continuous function ϕ1ϕ2, and
therefore by Fubini’s theorem (see, for instance, [45]) we can interchange the limits
of integration. Using the equalities Dϕ1 = 0 and Dϕ2 = 0 here, we obtain

1
p(0)ϕ2(0)

∫ x

0

ϕ2(s)
∫ s

0

ϕ1 dF dQ

=
1

p(0)ϕ2(0)

∫ x

0

ϕ1(t)
(
(pϕ′2)(x)− (pϕ′2)(t)

)
dF (t).

Similarly, by the identity

p(0)ϕ′1(0) +
∫ x

0

ϕ1 dQ = p(x)ϕ′1(x)

and the conditions (2.6), we have

1
p(0)ϕ2(0)

∫ x

0

ϕ1(s)
∫ l

s

ϕ2 dF dQ

=
1

p(0)ϕ2(0)

∫ x

0

ϕ2(t)
(
p(t)ϕ′1(t)− p(0)

)
dF (t)

+
1

p(0)ϕ2(0)

∫ l

x

ϕ2(t)
(
p(x)ϕ′1(x)− p(0)

)
dF (t)

=
1

p(0)ϕ2(0)

∫ x

0

ϕ2pϕ
′
1 dF −

1
ϕ2(0)

∫ x

0

ϕ2 dF

+
p(x)ϕ′1(x)
p(0)ϕ2(0)

∫ l

x

ϕ2 dF −
1

ϕ2(0)

∫ l

x

ϕ2 dF .

Substituting the expression obtained for
∫ x

0

v dQ into (2.4) and using the equality

p(t)
(
ϕ2(t)ϕ′1(t)− ϕ1(t)ϕ′2(t)

)
= −p(0)ϕ2(0)

(which follows from Theorem 2.1), that is, (pW )(t) = −p(0)ϕ2(0), we obtain a true
equality. Thus, the function v(x) is a solution of the problem (2.4).
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2.3. Distribution of zeros. We consider the homogeneous equation Lu = 0,
that is,

Du = 0 ⇔ −(pu′)(x) + (pu′)(0) +
∫ x

0

u dQ = 0.

Proposition 2.1. Every non-trivial solution in E of the equation Lu = 0 can have
only finitely many zeros on the interval [0, l].

Proof. If u(ξn) = 0 and if u(x) is a non-trivial solution of the homogeneous equation,
then at any accumulation point ξ∗ of the sequence {ξn} we must have the equalities
u(ξ∗) = u′(ξ∗) = 0, which is impossible.

2.3.1. Alternation of zeros. Consider two equations

d(pu′) = u dQ1, (2.14)
d(pv′) = v dQ2. (2.15)

Theorem 2.5 (a comparison theorem). Let dQ1 > dQ2, that is, let the function
Q1−Q2 be non-decreasing on [0, l]. Let ξ1 < ξ2 be neighbouring zeros of a non-trivial
solution u(x) of the equation (2.14). Then any solution v(x) of (2.15) not collinear
to u(x) has a zero between ξ1 and ξ2.

Proof. Let u(x) > 0 for any x ∈ (ξ1, ξ2). Suppose that v(x) > 0 for any x ∈ [ξ1, ξ2].
We consider the case in which the functions p, Q1, Q2 are all continuous at ξ1 and
one of them is discontinuous at ξ2 (the other cases are treated similarly). Since

pu′(x)− pu′(0) =
∫ x

0

u dQ1,

it follows from the theorem on a transform of a measure that for any continuous
function ϕ(x) we have ∫ ξ2−0

ξ1

ϕd(pu′) =
∫ ξ2−0

ξ1

ϕudQ1,

which gives ∫ ξ2−0

ξ1

v d(pu′) =
∫ ξ2−0

ξ1

uv dQ1

for ϕ = v. Similarly, ∫ ξ2−0

ξ1

u d(pv′) =
∫ ξ2−0

ξ1

uv dQ2.

Therefore, after transforming the integrals
∫ ξ2−0

ξ1

u d(pv′) and
∫ ξ2−0

ξ1

v d(pu′) by

integrating by parts, we have for their difference

v(ξ2)p(ξ2 − 0)u′(ξ2 − 0) = v(ξ1)p(ξ1)u′(ξ1) +
∫ ξ2−0

ξ1

uv d(Q1 −Q2). (2.16)

Since u′(ξ1) > 0, the right-hand side of (2.16) is strictly positive. On the other
hand, u′(ξ2 − 0) < 0, an obvious contradiction. Thus, v(x) has a zero in the
interval (ξ1, ξ2).
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For dQ1 = dQ2 we obtain a corollary.

Theorem 2.6 (alternation theorem). Let ϕ1(x) and ϕ2(x) be linearly independent
solutions of the equation (A0). Then there is at least one zero of the function ϕ2(x)
between any two neighbouring zeros of ϕ1(x), and vice versa.

2.3.2. Non-oscillation of the homogeneous equation. As we have seen, a non-trivial
solution in E of the equation (A0) can have at most finitely many zeros. It turns
out that the most important case occurs if there is at most one zero.

Definition 2. An equation Du = 0 (Lu = 0) is said to be non-oscillating on the
interval [0, l] if any non-trivial solution of the equation has at most one zero on [0, l].

The simplest example of this equation is −d(pu′) = 0, that is, (A0) with dQ = 0.
For any solution ϕ(x) of this equation we must have (pϕ′) = const, and the function
ϕ(x) is clearly strictly monotone. By the comparison theorem (Theorem 2.5), this
gives the following result.

Proposition 2.2. For an equation −d(pu′)+u dQ = 0 to be non-oscillating on [0, l]
it is sufficient that dQ > 0, that is, that the function Q(x) be non-decreasing.

In the calculus of variations the so-called Jacobi condition is common. It is
defined using the notion of conjugate point. We recall that a point ξ is said to be
conjugate to a point η for an equation −(pu′) + qu = 0 if there is a non-trivial
solution with zeros at the points x = η and x = ξ. The Jacobi condition is that
there are no points on [a, b] (other than a) that are conjugate to a.

Theorem 2.7. The following conditions are equivalent :
(a) the homogeneous equation Du = 0 is non-oscillating on [0, l];
(b) there are no points on [0, l] conjugate to x = 0 and distinct from x = 0, and

similarly, there are no points conjugate to x = l and distinct from x = l;
(c) there is a non-negative solution of the equation Du = 0 on [0, l] such that

u(0) > 0 (or u(l) > 0);
(d) there is a strictly positive solution of the equation Du = 0 on [0, l].

Proof. We prove the chain of implications (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a). First, we
need the following lemma.

Lemma 2.4. For the homogeneous equation (A0) every non-trivial solution on [0, l]
with constant sign has no zeros in the interval (0, l).

Proof. Let u(x) be a solution of the equation (A0) and let u(x) > 0 on [0, l].
Let 0 < ξ < l be a point at which u(ξ) = 0. This means that the function u(x)
has a minimum at the point x = ξ, and therefore the derivative u′(x) must change
sign at this point together with (pu′)(x). If ξ ̸∈ SA, then pu′ is continuous at
the point, and therefore (pu′)(ξ) = 0, that is, u′(ξ) = 0, which together with the
equality u(ξ) = 0 implies the identity u(x) ≡ 0 by Theorem 1.5, which is impos-
sible. Suppose now that ξ ∈ SA, that is, u′(ξ − 0) ̸= u′(ξ + 0). In this case
u′(ξ−0) 6 0 and u′(ξ+0) > 0. On the other hand, it follows from the equality (2.1)
that (pu′)(ξ + 0) − (pu′)(ξ − 0) = 0 (by the condition u(ξ) = 0), and therefore
(pu′)(ξ−0) = (pu′)(ξ+0). As was noted above, u′(ξ−0) = u′(ξ+0) = 0, and thus,
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together with the condition u(ξ) = 0, we have the zero Cauchy problem, and hence
u(x) ≡ 0. Lemma 2.4 is proved.

Let us proceed to the proof of the theorem. The implication (a) ⇒ (b) is trivial.
Let (b) hold. Taking a solution u(x) with the conditions u(l) = 0 and u′(l) = −1,
we see that it cannot have zeros on [0, l] distinct from x = l by (b), and therefore
u(x) > 0 on [0, l). Thus, (b) ⇒ (c).

Let (c) hold, and let u(x) be a non-negative solution with u(0) > 0. It follows
from the inequality u(x) > 0 (by the above lemma) that u(x) cannot have zeros
interior to [0, l], that is, u(x) > 0 on [0, l). Let v(x) be a similar solution which is
non-zero at x = l. The sum u(x) + v(x) is a solution which is strictly positive on
[0, l], that is, (c) ⇒ (d).

We prove the implication (d) ⇒ (a). Let u(x) be a strictly positive solution
on [0, l]. If some other solution v(x) had two zeros on [0, l], then by the theorem on
alternation of zeros, the function u(x) would have at least one zero between these
two zeros, which is impossible. This completes the proof of Theorem 2.7.

The next result for smooth functions p and Q is equivalent to the classical de la
Vallée–Poussin theorem.

Theorem 2.8. For an equation Du = 0 to be non-oscillating it is necessary and
sufficient that the equation Du = u dH have a strictly positive solution for some
non-decreasing function H(x).

Proof. The necessity follows from the previous theorem for dH = 0. Let ϕ ∈ E
and let Dϕ = ϕdH with dH > 0. Then the equation Du − u dH = 0, that is,
−d(pu′) + u dQ1 = 0 with Q1 ≡ Q − H, has a strictly positive solution on [0, l]
and does not oscillate on [0, l]. Since dQ 6 dQ1, the non-oscillation of the original
equation follows from an analogue of the Sturm comparison theorem, Theorem 2.5.

2.3.3. Non-oscillation of differential inequalities. A homogeneous equation Du = 0
is said to be critically non-oscillating on the interval [0, l] if it does not oscillate on
any interval [a, b] ⊂ [0, l] distinct from [0, l] but oscillates on [0, l].

This means that the point x = l is conjugate to the point x = 0 but there
are no conjugate points in (0, l). In other words, [0, l] is an interval of critical
non-oscillation if the homogeneous equation Lu = 0 has a non-trivial solution
strictly positive on (0, l) and with zeros at the endpoints.

Proposition 2.3. Let the homogeneous equation Du = 0 be critically non-oscilla-
ting on [0, l]. Then every solution u(x) ̸≡ 0 of the differential inequality Du > 0
such that u is non-negative on [0, l] has no zeros on the interval (0, l). Moreover,
u′(0) ̸= 0 (u′(l) ̸= 0) if u(0) = 0 (u(l) = 0).

Proof. Since the equation Du = 0 is non-oscillating on [ε, l] and on [0, l − ε] for
ε > 0, our assertion follows from Theorem 1.2.

Theorem 2.9. Let the equation Du = 0 be critically non-oscillating on [0, l]. Then
every non-trivial solution z(x) of the inequality Du > 0 with the conditions

u(0) > 0, u(l) > 0 (2.17)
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transforms all these inequalities into equalities, that is, is a solution of the problem

Dz = 0, z(0) = 0, z(l) = 0. (2.18)

The following example shows to what extent the circle of problems under consid-
eration deepens the usual qualitative properties discussed in the traditional theory
of ordinary differential equations. According to the last theorem, a function u(x)
satisfying the inequalities

−u′′ > u, u(0) > 0, u(π) > 0,

cannot be other than u(x) ≡ C sinx for some C = const.

Proof. Let v(x) be a positive solution of the problem (2.18) on the interval (0, l).
Let u(x) be a non-trivial solution of the inequality Du > 0 and let u satisfy (2.17).
We consider the function ϕ = u/v, which is continuous on (0, l). Assume that
ϕ ̸= const. If the greatest lower bound λ0 = inf(0,l) ϕ is achieved at one of the
interior points x0 ∈ (0, l), then the function h = u− λ0v is a non-negative solution
of the inequalityDu > 0 and vanishes at the point x0 ∈ (0, l), which thus contradicts
the previous theorem. Let inf(0,l) ϕ be attained at one of the boundary points of
(0, l), for instance, at the point x = 0. If λ0 > −∞, then it follows from the equality
v(0) = 0 that u(0) = 0. But then λ0 = limx→0(u(x)/v(x)) = u′(0)/v′(0), and the
function h = u − λ0v, which is non-negative on [0, l] and satisfies the differential
inequality Du > 0, would have both zero value and zero derivative at the point
x = 0, which would contradict the previous theorem.

Suppose now that λ0 = inf(0,l) ϕ = −∞. By the inequality u(0) > 0, this is
possible only if u(0) = 0. Since v′(0) > 0 and the limit of ϕ = u/v as x → 0
is equal to u′(0)/v′(0), it follows that the equality λ0 = −∞ is impossible. Thus,
the function ϕ = u/v is constant. Theorem 2.9 is proved.

Theorem 2.10. Let v0(x) be a non-trivial solution of the problem (2.18), that is,

Du = 0, u(0) = u(l) = 0,

let u(x) be a solution of the inequality

v0(x)Du > 0 (x ∈ (0, l)), (2.19)

and let the equality p(ξ − 0)u′(ξ − 0) = p(ξ + 0)u′(ξ + 0) hold at any zero point ξ
of the function v0(x). Suppose that u(0) = 0 and v′0(l − 0)u(l) 6 0. Then the
functions v0(x) and u(x) are collinear, that is, the identity u(x) = Cv0(x) holds for
some constant C .

Proof. We carry out the proof by induction on the number of zeros of the func-
tion v0(x) on (0, l). For k = 0 (in which case the function v0(x) is of constant sign
on (0, l)) the assertion follows from the previous theorem.

Suppose that the theorem holds for any function v0(x) with k zeros on (0, l).
If {ξi}k+1

1 are the zeros of some solution z0(x) of the problem (2.18), then all
the conditions of the previous theorem are satisfied on the interval (0, ξ1), which
implies that u(x) ≡ C0z0(x) on (0, ξ1) for some C0. All the conditions of the
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theorem we are proving now hold on the interval (ξ1, l), and z0(x) has k zeros there.
By the induction hypothesis, there is a C1 such that u(x) ≡ C1z0(x) on (ξ1, l).
Let us now show that C0 = C1. To this end, we note first that the function pz′0
is continuous at the point ξ1. If ξ1 belongs to SA, then we have the equality
(pz′0)(ξ1 + 0)− (pz′0)(ξ1 − 0) = 0, which means precisely that pz′0(x) is continuous
at ξ1. If ξ1 ̸∈ SA, then the continuity of pz′0(x) is obvious. The equality C0 = C1 now
follows easily from the continuity of the functions pu′ and pz′0 at ξ1. Thus, u(x) ≡
C0z0(x) on the entire interval (0, l). This completes the proof of Theorem 2.10.

3. Sturm–Liouville spectral problem

Let the function Q(x) be non-decreasing and the function M(x) be strictly
increasing on [0, l] and let the functions p(x), Q(x), and M(x) be continuous at
the points x = 0 and x = l. We consider the problem{

−d(pu′) + u dQ = λu dM,

u(0) = u(l) = 0
(3.1)

in the class E of absolutely continuous functions on [0, l] with derivatives in BV[0, l].
All functions are assumed to be real.

A number λ = λ∗ (which can be complex) is called a point of the spectrum (or
a spectral point) of the problem (3.1) if the problem becomes degenerate at this
value of λ, that is, has a non-trivial solution u∗(x). Such a solution is called an
eigenfunction, and the corresponding spectral point λ∗ is called an eigenvalue.

3.1. Structure of the spectrum. We assert that the spectrum of the prob-
lem (3.1) is non-empty and consists of positive eigenvalues which are simple (in the
sense of both algebraic and geometric multiplicity).

3.1.1. Discreteness and simplicity of the spectrum. Suppose that the function Q(x)
is non-decreasing on the interval [0, l], that is, dQ > 0. We consider the auxiliary
problem {

−d(pu′) + u dQ = dF,

u(0) = u(l) = 0.
(3.2)

Since this problem is non-degenerate (by dQ > 0), it admits an influence func-
tion K(x, s).

If λ∗ is a spectral point and u∗(x) is the corresponding eigenfunction, then,
setting dF = λ∗u∗ dM , that is,

F (x) = λ∗
∫ x

0

u∗ dM,

we can invert the corresponding boundary-value problem Du = dF , u(0) = u(l) = 0
by using the influence function and thereby obtain the equality

u∗(x) = λ∗
∫ l

0

K(x, s)u∗(s) dM(s). (3.3)
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Theorem 3.1. The operator

Au(x) =
∫ l

0

K(x, s)u(s) dM(s)

acts on the space C[0, l] and is compact (completely continuous).

Proof. This theorem follows in a rather standard way (see [45]) from the joint
continuity of the kernel K(x, s) of the operator.

Thus, the equation (3.3) turns out to be in the domain of applicability of the gen-
eral Riesz–Schauder theory, and this enables us to immediately establish the fol-
lowing property.

Corollary 3.1. The spectrum of the operator A consists of eigenvalues, it is at
most countable, and the only possible accumulation point of the eigenvalues of A is
the point λ = 0.

We note that the term spectrum can have two meanings here. Properly speaking,
the points of the spectrum of the boundary-value problem are characteristic values
of the operator A rather than its eigenvalues. More precisely, if λ is an eigenvalue of
the boundary-value problem, then µ = 1/λ is an eigenvalue of the operator A, and
conversely. Therefore, for instance, the spectrum of the integral operator can accu-
mulate only near zero, whereas that of the boundary-value problem can accumulate
only in a ‘neighbourhood of infinity’.

Thus, the spectrum of the problem (3.1) consists of eigenvalues, it is at most
countable, and the only possible accumulation point of the eigenvalues is the point
at infinity.

Theorem 3.2. The algebraic and geometric multiplicities of any eigenvalue are
equal to one.

Proof. Let ϕ1(x) and ϕ2(x) be two eigenfunctions corresponding to an eigenvalue λ0.
Then ϕ1(0) = 0 and ϕ2(0) = 0, and hence the Wronskian W [ϕ1, ϕ2](0) vanishes,
that is, the system of functions ϕ1, ϕ2 is linearly dependent. Thus, ϕ1(x) = cϕ2(x).

Let us prove the absence of adjoint functions. Suppose that u(x) is an adjoint
function. Then u(x) is a solution of the equation

Du = λ0u dM + ϕdM

with the conditions u(0) = u(l) = 0, where ϕ(x) is an eigenfunction of the orig-
inal problem corresponding to the eigenvalue λ0. Thus, the function u(x) satis-
fies the equality D1u = ϕdM for D1u = Du − λ0u dM , which implies that u
satisfies the equation ϕD1u = ϕ2 dM > 0, and the assumptions of Theorem 2.10
turn out to be satisfied. By this theorem, ϕ ≡ 0.

3.1.2. Real-valuedness and positivity of the spectrum.

Theorem 3.3. Every eigenvalue of the problem (3.1) is positive. The correspond-
ing eigenfunctions can be chosen to be real-valued.
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Proof. The spectrum is real because the influence function is symmetric. We assert
that the eigenvalues are positive. Let u(x) be a real-valued eigenfunction corre-
sponding to an eigenvalue λ. Then

−d(pu′) + u dQ = λu dM,

and by the theorem on a transform of a measure,

−
∫ l

0

u d(pu′) +
∫ l

0

u2 dQ = λ

∫ l

0

u2 dM.

Consequently, ∫ l

0

p(u′)2 dx+
∫ l

0

u2 dQ = λ

∫ l

0

u2 dM,

which shows that λ > 0.

3.1.3. Non-emptiness of the spectrum. Let us prove now that the spectrum of the
problem (3.1) is non-empty.

Lemma 3.1. Let ξ ∈ (0, l) be a zero of a non-trivial solution u0(x) of the equation
Du = λu dM . Then upon passage through the point ξ the function u0(x) changes
sign, that is, the point ξ is a node.

Proof. Let u0(ξ) = 0. Suppose that the function u0(x) is of constant sign in some
neighbourhood of the point ξ. Then the derivatives u′0(ξ − 0) and u′0(ξ + 0) vanish
(the proof is just like that in Lemma 2.4), and this implies the equality u0(x) ≡ 0,
which is impossible.

Theorem 3.4. Let the function Q(x) be non-decreasing on the interval [0, l] and
let the function M(x) be strictly increasing on [0, l]. Then there is a finite positive
number λ∗ such that the problem (3.1) has a non-trivial solution for λ = λ∗.

Proof. The integral operator Au generated by the influence function has a kernel
continuous on the square 0 6 x, s 6 l and strictly positive interior to it. Therefore,
by a theorem of M.G. Krein [54], this operator has an eigenfunction which is strictly
positive in (0, l) and corresponds to an eigenvalue λ0 such that all the spectral points
of the operator satisfy the inequality |λ| < λ0.

3.2. Oscillation properties of the eigenfunctions. The goal of the present
subsection is to complete the proof of the main oscillation theorem for the problem

Du = λu dM, u(0) = u(l) = 0. (3.4)

To this end, we introduce a function u(x, λ) satisfying the equation

−d(pu′) + u d(Q− λM) = 0

and the conditions
u(0) = 0, u′(0) = 1.
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It is clear that if u(x, λ) vanishes at the right endpoint x = l for some λ = λ∗,
then λ∗ is an eigenvalue, and the function z(x) = u(x, λ∗) is an eigenfunction
corresponding to this eigenvalue. Thus, the set of solutions of the equation

u(l, λ) = 0

with respect to λ contains the spectrum of the original problem. We shall study
the solutions of this equation, analyzing the dependence on λ for the solutions x(λ)
of the more general equation

u(x, λ) = 0

and fixing the values of λ such that x(λ) = l.

3.2.1. Method of accumulation of zeros. Let us extend the coefficients p, Q, M
of the original equation to the right of the point x = l, that is, to the set [l,∞),
in such a way that they become continuous at x = l and the functions p and Q
are constant to the right of l, whereas M is a linear increasing function on [l,∞)
(M(x) = m0x+c with m0 > 0). The solutions of this extended equation are defined
on [0,∞), and they coincide with solutions of the original equation on [0, l]. We
keep the original notation for the extended coefficients. On [l,∞) this equation
becomes

−d(p0u
′) = λm0u dx,

that is, −p0u
′′ = λm0u (here p0 = p(l)). Extending the corresponding solution

u(x, λ) of the problem with u(0) = 0, u′(0) = 1 to [l,∞), we note that this function
has infinitely many zeros on [l,∞) for any λ > 0, and thus infinitely many zeros
on [0,∞).

Denote by z0(λ), z1(λ), . . . , zk(λ), . . . the zeros of u(x, λ) on (0,∞) in increasing
order. All of them are simple zeros of u(x, λ) continuously dependent on λ. By
Theorem 2.5, each of the functions zk(λ) is strictly decreasing as a function of λ if
its value belongs to the ray (0,∞).

For the value of λ coinciding with the leading eigenvalue λ0 we obviously have
the equality z0(λ0) = l. For λ = 0 the function u(x, 0) has no zeros on (0, l],
because the equation −d(pu′) + u dQ = 0 is non-oscillating on [0, l] (since dQ > 0).
Therefore, λ0 > l. As λ increases continuously, all the zero points zi(λ) move
continuously to the left without stopping anywhere (this is to be proved). When one
of these points, say zk(λ), coincides with l, the corresponding solution u(x, λ), which
vanishes at the point x = l, turns out to be an eigenfunction of the problem (3.4),
and the value λ for which zk(λ) = l turns out to be an eigenvalue. Since the
occurrence of zk(λ) at the point l must be preceded by the passage of the preceding
zeros z0(λ), z1(λ), . . . , zk−1(λ) through the same point, it follows that the equality
zk(λ) = l determines λk, that is, the kth eigenvalue.

One can readily predict the character of the forthcoming difficulties by using
the same function u(x, λ). The connection between the zeros of this function
with parameter λ and their evolution as λ varies is determined by the equation
u(x, λ) = 0 in the form of an implicit function x(λ). This function is certainly
multivalued (for any λ the function u(x, λ) can have many zeros with respect to x,
and the number of zeros on [0, l] increases as λ increases). It is convenient to treat
this multivaluedness by distinguishing continuous branches.
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3.2.2. Main theorem.

Theorem 3.5. Let the function Q(x) be non-decreasing and let M(x) be strictly
increasing on [0, l]. Then the spectrum Λ of the problem (3.4) consists of an
unbounded sequence of real strictly positive simple eigenvalues λ0 < λ1 < · · · .
Moreover, the eigenfunction ϕk(x) corresponding to λk has exactly k zeros in (0, l)
and changes sign at each of them; the zeros of ϕk(x) and ϕk+1(x) alternate.

As was proved above, any point of the spectrum Λ is real, strictly positive, and
simple.

We denote by Z(λ) the set of zeros of uλ(x) on [0, l], where uλ(x) denotes the
function u(x, λ) satisfying the conditions

Du = λu dM, u(0) = 0, u′(0) = 1.

Lemma 3.2. Under the assumptions of the theorem, there is a countable family
{ζk(λ)}∞k=1 of continuous and strictly decreasing functions with respective domains
(λk−1,+∞) and with values in (0, l) such that ζk(λk−1 + 0) = l and such that the
set Z(λ) of zeros of the function uλ is {ζ1(λ), . . . , ζk(λ)} for any λ ∈ R.

This lemma implies the assertion of the theorem about the number of zeros of
the eigenfunctions of the problem under consideration.

Proof. This central lemma follows from a series of auxiliary considerations.

We denote by Uδ(x0, λ0) the set of points (x;λ) in (0,+∞)×R with |x−x0| < δ
and |λ− λ0| < δ.

Lemma 3.3. Suppose that u(x0, λ0) = 0, u(x, λ) is continuous in some neighbour-
hood Uδ(x0, λ0) of the point (x0, λ0) and has continuous partial derivative u′λ with
finite variation for fixed λ ∈ [λ0− δ, λ0 + δ], and the derivative u′x (which can have
discontinuities in general) has finite variation on the interval [x0 − δ, x0 + δ] for
any fixed λ ∈ [λ0 − δ, λ0 + δ]. If the derivative u′x(τ, λ) is non-zero and of constant
sign for any τ ∈ [x0 − δ, x0 + δ]A and λ ∈ [λ0− δ, λ0 + δ], then there is a rectangle
{x0−δ1 < x < x0 +δ1, λ0−δ2 < λ < λ0 +δ2} inside which the equation u(x, λ) = 0
determines x as a single-valued function of λ for λ0 − δ2 < λ < λ0 + δ2 taking the
value x0 at λ = λ0 and having a derivative that is defined on (λ0− δ2, λ0 + δ2) and
has finite variation on this set.

The proof is quite natural but routine, so we omit it because it is cumbersome.

Lemma 3.4. For any number λ∗ > 0 there are numbers ε > 0 and δ > 0 such that
for any zero z of the function u(x, λ∗) (that is, for any z ∈ Z(λ∗) = {x ∈ (0, l) |
uλ∗(x) = 0}) there is a unique function ζ : Uδ(λ∗) → Uε(z) satisfying the conditions

1) ζ(λ∗) = z,
2) uλ(ζ(λ)) ≡ 0,

and ζ is decreasing and continuous on Uδ(λ∗). If λ∗ ∈ Λ here, then the numbers
ε > 0 and δ > 0 can be chosen in such a way that a function ζ1 : (λ∗, λ∗+δ) → Uε(l)
satisfying the conditions

1) ζ1(λ∗ + 0) = l,
2) uλ(ζ1(λ)) ≡ 0,

exists and is unique, and ζ1 is decreasing and continuous on (λ∗, λ∗ + δ).



Sturm–Liouville oscillation theory 145

As above, Uδ(ξ) denotes the δ-neighbourhood (ξ − δ, ξ + δ) of the point ξ.

Proof. We write Dλu = Du − λu dM . Let z ∈ Z(λ∗). Substituting the func-
tion u(x, λ) in the equation Du = λu dM and differentiating the identity thus
obtained with respect to λ (this differentiation is admissible by Theorem 1.8), we
get that

D(u′λ) = λu′λ dM + u dM.

After substituting λ∗, we obtain

Dλ∗h ≡ Dh− λ∗h dM = u dM, (3.5)

where h(x) =
∂

∂λ
u(x, λ∗). Multiplying the equality (3.5) by uλ∗(x), we obtain

uλ∗Dλ∗h = u2
λ∗ dM > 0,

where h(0) = 0. If the inequality h(z)u′(z − 0, λ∗) 6 0 holds, then one can apply
Theorem 2.10 on (0, z), deducing from the inequality that the identity Dλ∗h ≡ 0
holds on (0, z). This, together with the equality Dλ∗h = uλ∗ dM , means that uλ∗

is trivial on (0, z), which contradicts the condition that the set of zeros of uλ∗ is
finite. Thus, h(z)u′(z − 0, λ∗) > 0, which implies the first part of the lemma after
using the implicit function theorem (since Z(λ∗) is finite).

The second part of the lemma (concerning the case λ∗ ∈ Λ) is established by
the same arguments, the only difference being that the implicit function theorem
is ‘one-sided’. Lemma 3.4 is proved.

Lemma 3.5. The number of zeros is constant on any interval (ν1, ν2) containing
no spectral points, that is, |Z(λ)| ≡ const on (ν1, ν2).

Proof. Since uλ is uniformly continuous with respect to λ, it follows that the set
GZ = {(λ;x) ∈ R × [0, l] | uλ(x) = 0} is closed. Indeed, if (λk;xk) ∈ GZ and
(λk;xk) → (λ0;x0), then x0 ∈ [0, l] and

|uλ0(x0)| = |uλk
(xk)− uλ0(x0)| 6 |uλk

(xk)− uλ0(xk)|+ |uλ0(xk)− uλ0(x0)|.

It remains to use the uniform convergence of uλk
to uλ0 and the continuity of uλ0 .

Let σ ∈ (ν1, ν2). By Lemma 3.4 we have |Z(λ)| > |Z(σ)| in some neighbour-
hood of σ; therefore, if |Z(λ)| ̸≡ const in any sufficiently small neighbourhood of σ,
then there is a sequence σk → σ such that |Z(σk)| > |Z(σ)|. Thus, there are at
least |Z(σ)|+ 1 termwise distinct sequences {zi

k}∞k=1 ⊂ (0, 1) (i = 1, . . . , |Z(σ)|+ 1;
zi
k ̸= zj

k for i ̸= j) such that uσk
(zi

k) = 0 for all i and k, and no two of these
sequences can converge to the same point of Z(σ)∪{l} by Lemma 3.4 (the sequences
{zi

k}∞k=1 can be assumed to converge, because [0, l] is compact). As a consequence,
there is an i0 such that zi0

k converges to 0. But since Z(σk) is finite, this contra-
dicts the condition that uσk

(x) cannot have zeros, for example, on an interval of
non-oscillation of the equation Lσ+1u = 0 (and such an interval abutting on x = 0
certainly exists).

This proves that |Z(λ)| ≡ |Z(σ)| in some neighbourhood of the point σ. Since σ is
arbitrary, this implies that there is a covering of the interval (ν1, ν2) by intervals on
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which |Z(λ)| is constant. By the Heine–Borel lemma, any closed interval contained
in (ν1, ν2) admits a finite subcovering of this covering, which implies that |Z(λ)| is
constant on any closed interval in (ν1, ν2). This proves Lemma 3.5.

Remark 3.1. One can prove similarly that if ν2 ∈ Λ under the assumptions of the
previous lemma, then |Z(λ)| = |Z(ν2)| for any λ ∈ (ν1, ν2]. The only difference is
that in the case σ = ν2 one must consider left-sided neighbourhoods of the point ν.

Lemma 3.6. If λ∗ ∈ Λ, then |Z(λ∗ − 0)| = |Z(λ∗)| = |Z(λ∗ + 0)| − 1, that is,
when λ passes through a spectral point of the problem (3.1), the number of zeros
of uλ(x) increases by exactly 1.

Proof. The equality |Z(λ∗ − 0)| = |Z(λ∗)| follows from the last remark. By the
second part of Lemma 3.4 we have |Z(λ∗+0)| > |Z(λ∗)|, and therefore if |Z(λ∗)| ≠
|Z(λ∗ + 0)| − 1, then |Z(λ∗ + 0)| > |Z(λ∗)|+ 2. This, together with the inequality
|Z(λ∗) ∪ {l}| < |Z(λ∗ + 0)|, contradicts Lemma 3.4.

4. Bibliographical comments

As was noted in the Foreword, the present paper is devoted to an exposition
of the theory extending Sturm’s oscillation theorems to the case of equations with
impulsive coefficients.

Sturm’s oscillation theory served well the needs of the scientific and technolog-
ical advances of the 19th century and sufficed for problems of oscillation theory,
the theory of critical stresses of columns and beams, and other important prob-
lems in the rapid development of science and technology. Under conditions for
which the structure of the spectrum was obviously simple (discrete, real-valued),
the qualitative properties of the eigenfunctions (amplitude functions) reflecting the
manifest properties of harmonic oscillations, standing waves, and shapes in loss of
stability (like the number of nodes, the number of extremum points, their mutual
arrangement, and so on) were most significant, and the Sturm oscillation theory
was devoted to these very problems.

These results on the form of eigenoscillations began to be carried over to the
case of non-smooth systems (irregularly loaded elastic continua) at the beginning
of the 20th century. Papers of Stieltjes on a string with beads and of Krein and
Gantmakher on arbitrarily loaded rods and papers of Kellogg showed a direction of
investigations in the interests of physical oscillation theory. This is the direction to
which the present paper has been devoted.

In the mid-20th century, under the influence of questions in theoretical physics
(quantum mechanics), interest arose in the structure of the spectrum, its asymptotic
behaviour, completeness of the spectrum, diverse properties of the continuous spec-
trum, the structure of singular components of the spectrum (spectral gaps, instabil-
ity zones), trace problems, and so on. The spectral theory of differential operators
developed rapidly and became a backbone of functional analysis. This direction
was stirred to activity by problems in theoretical physics (quantum mechanics) and
attracted the attention of a rather broad circle of researchers, which led to the writ-
ing of fundamental monographs like [55]–[62] and subsequently of many hundreds
of papers (see the references in [63]–[78]). One can obtain a definite impression of
the investigations in this direction by scanning the references in [72]–[78].
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It should be noted that cases involving diverse impulsive perturbations (singular
potentials) of Sturm–Liouville (Schrödinger) differential operators have been quite
actively studied during the past decade. The deepest recent results are connected
mainly with the names of A. A. Shkalikov and his students [80]–[85], B. S. Mitya-
gin [86]–[88], V. A. Mikhailets [79], R. O. Hryniv [Griniv] and Ya. V. Mykytyuk
[Mikityuk] [89], and others.

The problems treated in the present paper do not require modern methods
of spectral analysis because of the extremely simple structure of the spectrum.
We have developed approaches related to fundamental ideas from the beginning
of the 20th century and involving a pointwise interpretation of differential equa-
tions.
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