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Introduction

By the Stefan problem in the wide sense of the word one means at
present the class of mathematical models describing heat, diffusion, or even
thermo-diffusion processes accompanied by phase changes of the medium
and absorption or emission of latent heat. Such processes occur, for
example, in the formation of monocrystals, in several branches of
contemporary metallurgical technology, in the formation and evolution of
the interior structure of the earth and the polar ice as well as in a number
of other fields of science and practice. The most characteristic peculiarity
of these processes, which is the reason why their mathematical models are
non-linear and difficult to analyse, is the ““free” boundaries between
different phases which are unknown beforehand (in the case of a homogeneous
medium) or a “multiphase zone’ (in a multicomponent medium), both of
which are defined in terms of level surfaces of the functions describing the
thermo-diffusion state of the system.

The first work devoted to this type of problem was the article [302]
published by Lamé and Clapeyron in 1831, in which they studied the
solidification of a homogeneous fluid filling a half-space and found at the
temperature of the phase change at the initial moment under the influence
of a constant temperature on the boundary. It was this paper that first
established that the thickness of the solid phase (in a one-phase setting) is
proportional to the square root of time. Almost thirty years passed before
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Franz Neumann, according to Weber [339], considered in unpublished
lectures a two-phase setting in a half-space, when at the initial moment a
homogeneous medium is at a constant temperature greater than that of the
phase change, and cooling is again effected by a constant temperature on
the boundary. However, problems of this type were named after Joseph
Stefan, who published in 1889 four papers ([327] -[330]) devoted to the
study of heat and diffusion processes. In the first of these he considered a
one-phase setting in a half-space, when crystallization of a fluid or melting
of a solid takes place at the temperature of the phase change under the
action of a constant temperature at the boundary. In the same paper he
considered the two-phase ‘‘heat stroke” problem when at the initial moment
two half-spaces come in contact with each other that are filled with
different phases at constant temperatures other than that of the phase
change. In these statements apart from the condition of isothermality,
another relation (which is now called the “Stefan condition™) is prescribed
on the phase interfaces expressing the law of conservation of energy with
the latent heat taken into account. All these statements are automodelied
and were solved by means of probability integral. The third article is
devoted to the one-phase problem on the freezing of water in a half-space at
the temperature of the phase change under the action of variable temperature
on the boundary. The author gives a formal solution of this problem in the
form of a power series in the space variable, provides approximate solutions
for the description of the evolution of polar ice, writes down a solution of
“running wave” type and in its simplest form considers the statement which
we could now call the “inverse Stefan problem”.

There followed a quiet period of about four decades in the study of such
problems. The next decades are characterized by an increasing scientific and
practical interest in a description of phase change processes. This was
furthered by Brillouin’s survey [223] (1931) and also, without doubt, by
the importance of technical applications. The main efforts were directed
towards the study of one-dimensional problems and also of problems with
cylindrical or spherical symmetry under conditions that ensure the existence
of automodel solutions; the first attempts were also made (in 1930) to
reduce the relevant problems in the one-dimensional case to integro-
differential equations. (The main results and a bibliography until
approximately the middle 50’s can be found in [110], Ch. XI.) At the end
of the 40’s existence and uniqueness theorems were obtained (in a short
time) for the one-dimensional Stefan problems by the method of reduction
to integral equations of Volterra type; a beginning was made of the study
of the problems of stability and of the asymptotic behaviour of a free
boundary (as t = 0 or ¢t = o0); and methods of the approximate and
numerical solution were studied intensively. (A historical survey, the main
results, and a fairly complete bibliography until approximately the middle
60’s can be found in [176].)
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The beginning of the contemporary stage of the qualitative study of the
Stefan problem, to which the present survey is mainly devoted, can be dated
back to the end of the 50’s and the beginning of the 60’s, when new general
methods of the study of linear and non-linear elliptic and parabolic equations
and related problems were created and intensively developed. The work of
Olga Oleinik ([163], [165], and [166] and others), devoted to the study of
discontinuous problems of elliptic and parabolic type, has a direct connection
to the Stefan problem. These new methods were applied to the many-
dimensional quasilinear non-stationary Stefan problem: the concept of a
generalized solution was used, existence and uniqueness theorems of
generalized solutions were established, and the method of ‘“smoothing” of
coefficients in the theory of quasilinear parabolic equations was developed
([164], [108], etc.). And so the many-dimensional Stefan problem, in
particular, the study of qualitative properties of a generalized solution of it,
was made the order of the day, and also the main aims of the qualitative
analysis of the problem were determined for the next decades. An approach
conceputally similar to the discontinuous statement in the example of
diffraction problems was worked out by Olga Ladyzhenskaya (see [128],
Ch. III, §13 and Ch. V, §10 and the bibliography there).

The most important circumstance guaranteeing substantial progress in the
analysis of generalized solutions of the many-dimensional Stefan problem at
the beginning of the 70’s was the introduction and further development of
new methods created in mathematical physics at that time. We are speaking,
first of all, of the method of variational inequalities, which at the beginning
of the 60’s emerged in potential theory and the mechanics of elastic-plastic
media and in the subsequent decade was very intensively developed in its
theoretical as well as practical aspects. The introduction of a new unknown
function enabled Baiocchi [216] in 1971 to reduce a problem with a free
boundary in the theory of filtration to an elliptic variational inequality, and
two years later Duvaut [260] by using a similar substitution reduced the
many-dimensional one-phase non-stationary Stefan problem to a parabolic
variational inequality. Existence and uniqueness theorems for generalized
(‘“‘weak’) solutions were reobtained comparatively simply in this manner,
however, the basic merit of the new approach consisted in that it potentially
contained the tools of further research on the properties of a free boundary.
The next outstanding step was made in 1975 in a paper by Friedman and
Kinderlehrer [276], in which they found, in particular, conditions under
which the free boundary in a cone-phase many-dimensional Stefan problem
can be represented in a polar coordinate system by means of a continuous
function that increases monotonically in the time variable and uniformly
satisfies a Lipschitz condition in the angular variables. Approximately in
these years (1976-1977) outstanding results were obtained mainly in papers
of Caffarelli ([234], [235], [236]) in the study of properties of a free
boundary in general problems “with an obstruction”. In 1978 a synthesis
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of these achievements enabled Kinderlehrer and Nirenberg [295] to prove
that the generalized solution of the many-dimensional one-phase non-
stationary Stefan problem constructed by the method of variational
inequalities is in fact the classical solution. A few years later the classical
solubility was also established ([197]-[199]) for the ‘“contact” one-phase
many-dimensional Stefan problem, when the free boundary intersects the
given one. The two-phase problem also admits a variational formulation
[261], [2631, and although in this way so far no substantial progress in the
qualitative study of the properties of the unknown boundary has been
achieved, the reduction to ‘‘pseudoparabolic™ variational inequalities can
serve as a basis for the numerical analysis of many-dimensional Stefan
problems [286], {287].

The beginning of the 80’s in the theory of the many-dimensional one-
phase Stefan problem is marked by the appearance of a new general method
based on modern forms of the abstract implicit function theorem. We are
speaking of Nash’s theorem [310]}, which was established at the end of the
50’s and that form of it that was obtained in the research of J. Moser [307]
(see also [161], Ch. 6). In the mid-70’s in papers of Héormander and
Schaeffer the methods based on this theorem were applied to problems with
an unknown boundary of hydrodynamic and geodesic origin and in 1981 in
a paper of Hanzawa [284] to the many-dimensional Stefan problem. Under
certain compatibility conditions (the order of which rises undoubtedly) this
method makes it possible to establish the theorem on the classical local
solubility in the time variable of the many-dimensional one-phase non-
stationary Stefan problem. In similar terms, but by an entirely different
method, the classical local solubility in the time variable was established
recently [10], [101] also for many-dimensional Stefan problems with
convection.

An entirely new point of view concerning the essence of the Stefan
problem was expressed by Tikhonov and Samarkii [194] (first ed. 1951) at
the beginning of the 50’s. The main idea of this approach consists in the
introduction of the notion of “‘effective” heat capacity, including also the
latent heat of the phase change, concentrated on the phase interfaces. This
makes it possible to write with the use of the Dirac delta-function a single
quasilinear equation for the energy in the entire domain occupied by the heat-
conducting medium, and Stefan’s condition is a consequence of this equation.
In this way an effective method of the numerical analysis of the non-stationary
many-dimensional Stefan problem was worked out by means of the process of
smoothing the coefficients of the resulting mathematical model [187] (see also
[58]). An analogous approach to the Stefan problem was suggested by
Albasiny {215] as the basis of a finite difference method for numerical
analysis. The enthalpic form of the energy equation, based on the indicated
idea also served as a starting point for the qualitative analysis of the many-
dimensional Stefan problems in the papers [164] and [108] already cited.
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At the beginning of the 70’s the author of this survey and his collaborators
started a study of the quasistationary formulations of the Stefan problem,
which are important from the applied point of view. In 1973 for their
approximate and numerical analysis they used [115] a variational method
based on the theory of integral functionals with a variable domain of
integration. The attempt made at that time to apply this method to the
theory of permanent periodic waves [72] (see also the augmented English
edition [256]) was applied to a modified statement of the established
regimes of the Stefan problem in cylindrical domains. The questions arising
in this approach of minimizing functionals of the indicated class, were the
object of research in several papers by Bazalii and Shelepov [11]-[16]; the
problem of an effective construction of a minimizing sequence, based on the
Ritz method, was studied in [89], [111], [154], etc.; a computation of
temperature fields and of crystallization fronts was carried out in [207] and
[208]. The results thus obtained showed that the proposed variational
approach was an effective method of the approximate and numerical analysis
of the many-dimensional quasistationary Stefan problem in both the one-
phase and multiphase settings. In recent years Borodin has shown [43],
[44] that this approach combined with Rothe’s method also makes it
possible to obtain the classical solution of many-dimensional non-stationary
two-phase problems globally in the time variable. A few years earlier
another device of this kind, “‘the method of fibering into isothermals” was
used by Meirmanov [141], [142] to establish the classical solubility (locally
in the time variable) of the many-dimensional non-stationary Stefan problem.

Precise statements and ideas of proof of the majority of the basic results
that exist at present in the theory of the Stefan problem, principally in its
heat exchange interpretation, are contained in the corresponding chapters
and sections of the survey. In conclusion of this brief introduction we wish
to mention that there is an increasing interest in the Stefan problem, its
generalizations and numerous applications, in the past decades. This
stimulates, in particular, the discovery and application of approximate and
numerical methods of the analysis of practically important statements.
There is a long-standing tradition of this at the computing centers of the
Moscow State University ([206], [174], [175], etc.) and the Latvian State
University ({21, [168], etc). Abroad there have been several international
conferences devoted to this range of problems ([308], [309], (267], etc.);
the material of a similar conference held in the USSR is reflected in the
collection of papers [195]. We also mention the books [62], [132], [120],
etc. devoted to practical methods of solution of the simplest problems of
phase changes and also the survey [119] devoted to the engineering method
of the solution of crystallization problems and the extensive bibliography
there. Modern methods of solving parabolic problems with a free boundary
are contained in [312], where, together with [248], there is also an
extensive bibliography of the Stefan problem.
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CHAPTER |
GENERAL STATEMENT OF THE STEFAN PROBLEM AND SOME OF ITS VARIANTS

1.1. Equations of energy and momentum exchange.
We assume that the coefficient of heat conductivity has the structure

(1.1) AT, E, t)=A (T, E, 1:)+ A,(T E InN(T—Ty)

here £ = (£,,€,,&3) are the space variables, 7 is the time variable, T the
temperature, the A; (f = 0, 1, ..., m) are defined and have a certain
smoothness on the closure of the set (—oo, o0) X D x (0, 75), where D is the
domain filled with the medium, 7y € (0, o°) is given, the 7; (j = 1, ..., m)
are the temperatures of the phase changes, and n is the characteristic
function of the positive semi-axis. The heat capacity ¢ and density p have
similar representations.

We introduce the notation (T4 = —o0, Ty = +o00):

(1.2) Dy ={:8€D, T,<TE 1)<Tyy} T€(0, 1),

D,= U (DJ.‘X{T}) (j=i, ...,m+1).
0<t<%o

For a continuous 7(, 7) these sets are open, D, . is the part of D occupied

by the phase ®; at the moment of time 7. The relatively closed sets

zl-f={§: gEDs T(g’ T)=Tj}: TE(O’ To)y

A3 V%= U @Epexfd) =1 ...m)
0<t<%,
dividing them may have a quite complicated structure, in general.

In the simplest case the coefficients on the right-hand sides of the
representations of the form (1.1) are constants, characteristic for the
corresponding phase ®;. For m = 1 the quantities relating to the phase &,
(or ®,) are equipped with a plus (or minus) sign.

Convection in the liquid (gas) phase are characterized by the velocity field
V(f 7), which in the laminar case satisfies the Navier-Stokes equations (see,
for example, [122], part II, Ch. II, A):

(1.4) p & =K +div T,

where K is the vector of mass forces, II is the viscous stress tensor,
dldt = 8ot + V- -grad is the substantional derivative. To this we have to
add the equation of continuity

(1.5) ' T‘i—log p4dive =0

and the equation of state, connecting the pressure p, density p, and
temperature 7.
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‘The general equation of energy exchange has the form (see ibidem, §10)
ar d .
(1.6) o = —Ap 5o log p=div; (Agrady T) + 1,

where ¢, is the heat capacity per constant volume, A is the thermal
equivalent of heat, and f are all possible heat sources.

With a view to simplification, in the planar (or axially symmetric) case,
convection can be described by the equation

(1.7) w§‘§‘+\pelg.=—; in D+, 1p=0 on 0D+,

where { is the flow function and &3 is the given intensity of rotation. In
the most general case the flow function { is determined from the Navier-
Stokes equations in the Helmholtz form. For p = const, within the solid
phase, (1.6) represents the usual equation of heat conductivity, which is
sometimes also used for a fluid medium with “‘effective” characteristics.

1.2. Boundary conditions.

We assume that 0D is the union of the closures of finitely many sufficiently
smooth (compact or non-compact) manifolds I'; (j = 1, ..., n). The most
general boundary condition describing the interaction of the process inside D

(2]
with an outside medium of temperature ‘T can be represented in the form

(0) -
(1.8) AL ppa(T—T)=g & VED ;X 0, 1),

i=1

where # in the outward normal; x; and x, are the “indicator” functions
assuming the value O or 1 on each I';, x;+Xx, =2 1; a> 0 and g are given
functions of (7, &, 7). For the corresponding choice of x; and x, we obtain
from (1.8) the condition of Dirichlet, Neumann, or of the third boundary-
value problem, as well as all possible combinations of them. It follows from
experimental results quoted in [136], Ch. I, §11, for example, that
o = a—b/T, where a and b are positive constants, quite satisfactorily in the
neighbourhood of the temperature of phase change.

Now we consider the conditions on the sets (1.3). In accordance with
the physical meaning, these are the isothermal sets

(1.9) TG 1) =T;, G vVEZ
G=1,..., m.

We denote by v; the (signed) velocity of the motion of I, ; along the
outward normal #n; to D;4,. Assuming that 7(§, 7) is continuously
differentiable with respect to & and 7 up to Z; and that Z; ¢is a smooth
manifold, we obtain the formula v; = — T#/| grad T+ | as a consequence of
(1.9). Let %; be the latent heat of the phase change per unit volume.
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Balancing the energy in the neighbourhood of a point § € Zj, ¢ and assuming
that fin (1.6) is bounded, we obtain “‘the Stefan condition” (the plus sign
indicates the phase with the higher temperature):
or+ . or-
(1.10) }v+—aﬁ—7\. —5;;=—X}U,=XIT$”gTad§Ttl on 21'1
(j=1, ..., m),

on the right-hand side of which one has to take one of the two signs. In
describing convection by means of effective parameters, the effective
coefficient of heat conductivity At appears in (1.10). There is also a
physical interpretation of (1.10) with a free term ([266], [267], [247],
[338], etc.).

We assume that p undergoes a jump in the passage through Z; ¢ and we
denote by Va; the normal component of the velocity of the fluid on Z; ;.

From the law of conservation of mass and from the condition of continuity
of the medium we obtain
K W P~ \ *
(1.41) V= ‘F) vy= —(1—-5,—)T,/|gradT | on I,
(j=1, Y | m)'

If viscosity is taken into account, then the tangential component of V, y is

additionally equated to zero. Along with the Archimedean body force,
(1.11) causes a natural convection in the liquid phase during crystallization.
Sometimes instead of (1.9) one considers the more general conditions:

(1.12) TE v=7¢ v, & Ve,
(j=11 "'Vm)’

where the 7, ; are given functions. This is the way the requirement of
“jsothermality” looks in compressible media, in the core of the earth, etc.

1.3. The initial data.
We assume that To(£) is defined on the closure D+ 0D and is piecewise
continuous there, and we put

(1.13) TE 0=7,(¢), &eD.

The presence of discontinuities on the right-hand side of (1.13) enables us
to include the phenomenon of “heat stroke”, when at the initial moment of
time different phases with non-zero temperature overfall enter in the
interaction. In the most important case Ty(£) undergoes discontinuities only
along the initial position of the phase interfaces. By analogy with (1.2) and
(1.3) we put

Jl Dy o={& k€D, Tf<io(§)<T;_‘} G=1, ..., m41);
(1.14) )
| Zpo= & teD, To®=T) G=1, ... m).
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In the general case these sets can have a very complicated structure, in
particular, the Z;,4 can be of positive measure. If the Z;4 are closed
manifolds or manifolds with boundary and if on the complement to their
union TO(E) is continuous, then the Dj, o are open. Although T(§, 1) € C(£2)
may cease to be continuous along Zj;as 7 = +0, we have

(1.15) dist(S) oo B0 =0 as T +0, I, o= 0%,

for non-empty X; ,. Under the assumptions made, (1.13) must be satisfied
at all points E€ D\ U 2y, o
We assume that among the phases of the initial state there are liquid or

gaseous phases with velocity distribution Vo@)- Extending f",(g) to be
identically zero on the remaining part of D, we put

(1.16) VE 0)=V,®, E&eD.

In the case of a viscous medium, in contrast to the ideal case, the right-hand
side of this condition is continuous on D+ dD.

1.4. Compatibility conditions.
The general Stefan problem reduces to the relations (1.4)-(1.6), (1.8)-(1.10),
(1.13), and (1.16). To guarantee that its solution belongs to a preassigned
function class, some a priori assumptions must be imposed on the initial
data. The ‘“‘natural” compatibility conditicns (“‘conditions of the order
minus 1°’) ensure the regularity of the surfaces (1.3), the continuity and
boundedness of T(%, 7) on D x (0, 7o) and the local integrability of A grad, T
on two-dimensional manifolds within the boundaries of D. Such solutions
describe processes of a heat stroke when either the right-hand side of (1.13)
becomes discontinuous or the right- and left-hand sides of (1.8) do not
coincide at the initial moment of time. But if 7(§, 7) on (D+09D) x [0, 7]
and (1.3) up to the moment 7 = 0 must have a certain degree of smoothness,
then the compatibility conditions require, first of all, that the initial data
have the corresponding smoothness, and secondly, that certain relations on
oD and Z;, from (1.14) hold for 7 = 0. For the sake of simplicity we
confine ourselves to important special cases.

If we assume that p is a known function of 7T, then (1.6) takes the form
of the convective equation of heat conduction:

(147  ep %=div; (hgrad: T)+f, c=c,=App'p2.

In the absence of convection and heat sources and for constant ¢, p, and A
we obtain the usual homogeneous equation of heat conduction 7, = a?A,T,
a®> = N pc. If we also take into account that o = const in (1.8), then for
(1.13) and (1.8) we can write the compatibility condition in the form

é A 3 A 0) a
(1.18) Xt 5o AT ®)+ x08d [To ()= T1 = —£-,
j=0’ 1,...,7'; T=O’ EEaD.
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The number r = 0 is called the order of the compatibility conditions (1.13)
and (1.8). For a general parabolic linear equation of order 2 the compatibility
conditions are given in [128], Ch. IV, §5, and for the non-linear case
(implicitly) in the arguments and results of Ch. V, §7 of the same book.

In passing to the compatibility conditions for (1.9), (1.10), and (1.13),
we assume that T(§, 7) and To(‘g‘) are sufficiently smooth functions on the
closure of their domains of definition. From (1.9) we obtain as 7 = +0
that

T.® =T,

on Z;,; consequently, the normal to X, 4 is defined in terms of ToE).
Elinimating 77 from the equation of heat conduction and then calculating
in (1.10) the limit along 3;as 7 - +0, we obtain a second compatibility
condition of order zero on Xj 4. Similar arguments apply to the
differentiated conditions (1.9) and (1.10) along 2 and to the heat conduction
equation on both sides of ;. In the end we arrive at the conclusion that
the compatibility conditions of any order r; have the form

(h) "~ - -~
(1.19) vy (7%, 0,75, ..., 82 T5)=0 on 3,,,
k=1,..., r,; jﬂi, ceoy M,

(k)
where the ; are known elementary functions of the indicated variables. In
the general case, r and r; in (1.18) and (1.19) are distinct. In the one-phase
quasilinear case the relations (1.19) are written out in detail in [142], §3.

1.5. Stationary and quasistationary probiems.

In the general form above the Stefan problem has not yet been studied
completely. In the search for simpler statements it can be assumed that the
temperature fields do not depend on three but rather on two or one space
variable (““‘two-" or “‘one-dimensional” problem) or that the state has already
been established (‘‘stationary’ problem). It can also be assumed that m = 1
and only one of the phases has a non-constant temperature (“‘one-phase”
problems).

More general than the “stationary” is the so-called ‘‘quasistationary” Stefan
problem, which arises in cylindrical domains (of an arbitrary cross-section) if
we assume that the phase interface moves along the generators at a constant
velocity without changing its form, and that the entire phenomenon does
not depend on the time variable in the corresponding moving coordinate
system. The solution of the resulting elliptic problem with an unknown
boundary generates a running wave in an absolute coordinate system
(“crystallyzation soliton’). Such statements are important for some
technological procedures (the growing of monocrystals, electrical slag
melting, etc.).
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1.6. Simplified variants. .
In the quasistationary case T (&, &, & T) = T'E,, &3 83y —v 7), and (1.9) and
(1.10) are equivalent to the following [89]:

a a a A~ det
W PINIPR= AP I P =xp AT +ATg) =08
i'(gu §z’ §3)=Tj (j=1, ....m) on f.'.j,

where 3 jis a time-independent surface and the temperature of each phase
satisfies a self-adjoint elliptic equation. If va. from (1.20) is assumed to be
known, then the entire problem becomes self-adjoint (see 84 .1). So we
obtain the “simplified” two-phase quasistationary Stefan problem. The
“simplified” one-phase problem is obtained if we regard as known the sum
of @f subtracted on the left in (1.20) and Q,;. The construction of @§; and
@} can be carried out by means of the “zero-th approximation”, corresponding
to the vanishing latent heat. The deviation of the solution of the simplified
problems from the exact one can be estimated by means of two
“discrepancies” in the one-phase and a single one in the two-phase version.
The case v = 0 corresponds to the stationary Stefan problem in the exact
statement.

Sometimes the transversal dimensions of the solid phase can be assumed
to be small ([73] and [78]). The resulting versions of the Stefan problem
can be studied fairly completely (see also [74], [79], [98], [179], [186],
etc.). In multicomponent media, crystallization is accompanied by transport
of the ingredient. The corresponding simplified versions [131], [36] can be
studied qualitatively ([80}], [81], and [85]).

(1.20)

1.7. On the inverse Stefan problem.
The heart of the Stefan problem for a medium with given characteristics

is the determination of the operators Z(f, 2".,, Y1 Xe» &), Which describe
the unknown phase interfaces. The essence of the inverse Stefan problem
consists in the fact that from the given surfaces 2; (or some parts of them)
we have to determine the quantities generating them (or some part). The
inverse Stefan problem is ill-posed. In the quasilinear case, for example, it
reduces to a mixed elliptic problem in one of the phases and to an elliptic
probiem with Cauchy data on a free boundary in the other phase. So we
arrive at an “‘optimization” setting {90] with heat (or temperature) flow as
the “control”. Under real-life conditions this flow is determined by a
velocity v, which appears as a numerical parameter of the “control” [96]
(see §3.3). A few years later in [178] the problem of optimal control was
considered in the non-stationary one-phase problem when the deviation is
measured by the L,(£2)-norm and the role of control is played by the
temperature on a given portion of the boundary.
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The statement of inverse problems goes back to Stefan’s paper [330] in
which also a solution in the form of a running wave for a half-space was
considered. The next papers were, apparently, [134] and [135], also
devoted to one-dimensional statements. In the recent paper [66] the one-
dimensional quasilinear inverse problem is considered when not the free
boundary, but rather the temperature on a given curve is assumed to be
known. Problems of Stefan type are of theoretical and possibly practical
interest in all possible combinations in the various phases of equations of
elliptic, parabolic, and hyperbolic type.

CHaPTER ||
THE ONE-DIMENSIONAL NON-STATIONARY PROBLEM

2.1. Quasilinear one-phase problem.
We consider it in the following statement (T = T*@, 1), A = A*, f = pc):

lk(gv T, T)T§]E=f(§v T, T)T'h T>0) 0<§<6(T);
LT (0, T)=g(1), T>0;
1) 718(x), 11=0, >0, 8(0)=0,

x B0 _p_a(8(x), v, O)T[6(x), 7], >0, b0,

We assume that the functions A, f and g have continuous first and second
derivatives and that

2.2) { 0<M<AE, 1, T)=A4, (v) + terms vanishing at £=0;
. FE W DNZf>0, 0<g<—e((0)/h(1)<<g° < + o0;
2=0, Ar<0, (A/Hr<O,

where b, A% f,, g° and g, are constants. The Stefan condition (1.10) is
obtained from the last equality of (2.1) for b = 0.

Theorem 2.1 [300]. Let 179 > O be given. Under the above hypotheses
(2.1) has one and only one classical solution {T &, 1), 8(x)} defined for
0<EKH), 077

The problem in question is equivalent to the integro-operator equation
T
2.3)  xb(7)= S [b— g (0)] do—
0
&ty Tn,two) 1 6(o) T(n, 0; 8)
—fan | 1 v opdog+ (do [an | 1o, 0, o),
) o 0 0 0
in which T(§¢, r; &) is a function satisfying the relations in the first three
lines of (2.1) for the given 6(7). It is easy to obtain (2.3) from the last
relation in (2.1) if for the elimination of A[8(7), 7, O] T¢[8(7), 7] we
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integrate the first equality of (2.1) with respect to £ and use the first line of
(2.2). The solubility of (2.3) can be established by means of the Schauder
fixed point theorem in the space [0, 7,] (an account of [300] is also given
in [176}, Ch. VII, §1).

Even earlier (2.1) for » = 0 and constant A, f, and g was studied by this
method in [265] and the uniqueness in a less general statement was
established in [258].

2.2. The quasilinear multiphase problem.

In the one-dimensional case & = § the domain D is the strip

{—ool 80+, <<EC 8 < +oo0 }. We assume that (1.2) is connected and we
represent (1.3) in the form

(2.4) 2’: §=6,(T)_ (j—"=1, e ny m);
o <bm< ...<8l<8); 8%=8;(0).

We consider the quasilinear equation

2.5) pT = (ATt} + aTy + a7, @, 7T)€ED;

G=1,....m+1),

where a and g like A, ¢, and p have the structure (1.1). We assume that the
coefficients in (2.5) and their first derivati\@s with respect to T satisfy a
Holder condition with respect to (&, 7) in D;, uniformly in
rTelry, r;,01 (G =1, .., m+1)and that

(2.6) O0<PBe<<A c,p<P°< 4o, & v, T)ED x [0, 1,l.

If D is finite, then conditions of the form (1.8)
(2.7) T @Bnats ©=8m+:(v), T8, D=81(7), €O, ),

are given, in which gn+, and g, are continuous on {0, 7,] together with their
first derivatives. The function TO(E) in (1.13) is continuous on D, and

Fo@®) =T5 T;<To® < Ty, EE1S, 88,0 G =1, ..., m);
it belongs to C**¥18§, &%,1 (G =1, ..., m + 1) with
@ +0=>00G=1, ..., m
and in the presence of (2.7) it satisfies the compatibility conditions (of

order 7e10) gm+1(0) = Fo(8%+1), 2o(0) = To(5).
Besides (1.9), conditions of the form (1.10)

;()

(2.8) %y[8;(v), Tl —5—=AT;—ATt on I; (j=1, ..., m),

must be satisfied, in which the »;(, 7) satisfy estimates of the form (2.6).
We also assume that the first derivatives of A, ¢, p, and x; with respect to &
and 7 are continuous and uniformly bounded.
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Theorem 2.2 [139). Under the assumptions made above, the problem (2.5),
(2.7, (1.13), (1.9), and (2.8) has a unique classical solution {T, &, ..., 6n}
and 8,(7) € CUO, 1), TE, 7)€ W2{(D;) NCHD;) NCLYD,) if D; is finite,
and TE, 7)€ C2MDy) NCYD;) if D; is infinite (j = 1, ..., m).

The proof is based on the inversion of the operator of differentiation in
(2.8):

T
v _ _ — + . —_ d
(29) 6,(1)=63+§ {}\.ijg [6] (0), g, ﬁl—lxiT [6, (O)O; al}m'
j=1, ..., m,

- -
where 6§ = (8, ..., 6,,) and T(§, 7; §) is the solution of the problem for
given §;(), on establishing the lower estimate | §;(t) — 8§;_,(1) | = 8, >0,
and on the proof of the inclusions T (§, 7) € H/3. 118 Dpii=1,..m+1)
by successive application of the Leray-Schauder principle to the operator on
the right-hand side of (2.9).

In a more general setting the problem is studied in [196]. In this paper
the equation of the energy is brought to the form (1.17) where f is assumed
to depend on &, 7, T, T}, §;, and 6,’-, the requirement of isometry is stated in
the form (1.12) and the condition (2.10) contains a free term of the form
®;(¢, 7, T, T) on X, Sufficient conditions for the existence of a classical
solution are stated, the device of “linearization of interfaces” and results on
the solubility of mixed problems for uniformly parabolic second-order
equations are used, and the method of finite differences is justified for the
relevant statement of the Stefan problem.

We also mention the papers [25]-[27] in which Rothe’s method for a
quasilinear two-phase Stefan problem is used to prove the existence of a
classical solution and the case is studied when the compatibility conditions
are not necessarily satisfied. In [259] the one-dimensional multiphase
problem with intersecting free boundaries (‘‘the vanishing of phases™) is
considered, the monotonicity and stabilization properties of these boundaries
are studied, and an estimate is given for the time of the existence of the
classical solution.

2.3. Piecewise continuous initial temperature (‘‘heat stroke”).
The following formulation is considered:

C*P*T'? (E' T)=“T§§ (Eo T)v (Ev 7)60:':;

T 0)=TFo(®), EEIO, 5/2)U(b/2, oo);

7¢O, 1)=0, O<t<<ty; T5(0, ©)=0, t1>1

dé (7)
dt

(2.10)

Tk, t11=T,, % =AT{—MTfon 2, 0<t<t,,

in which Q > 0 is given and 7; € (0, %) is not known beforehand. _The
function To(£) is continuous for & 5 5/2 and has the finite values To(h/2 + 0),
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which are, in general, distinct, and TO(E) T, for £ € [0, b/2] and
TO(E) < 7, for £ > b/2; moreover, the derivative TO exists and is bounded
for £ < b/2.

Theorem 2.3 [84]1. a) Under the assumptions made above, the problem
(2.10) is equivalent to a system of three non-linear integral equations for
w*(1), 8(7), and the initial values w*(0) and with them also « can be
determined from a non-linear system of two transcendental equations.

b) The indicated system, and with it also (2.10), has a unique solution
{w* (v), 8(v)} continuous on [0, 7] at least for small T and

To(b2 —0) — To(b/2 + 0).

¢) There is a representation (a4 = A*/ptc*):

{ 6(1)=-—g-+2u;‘al/-'-t[1+o (V7)l, signa=sign4,
2.11)

=2 [Fy (4 —0) =1, ] - [7~ Ty (4-+0)].

d) Let T (8) <0, & 5= b/2, T (8) € L(b/2, o0), and let a(0, 1, be the
maximal segment on which w*(7) and 8(7) exist and are continuous. Then T,
is finite and 8(t,) = 0.

The system equivalent to (2.10) is not a Volterra system, since the norm
of the corresponding operator does not tend to zero as 7 —> 0. Its solubility
follows from the implicit function theorem in the Banach space C[0, 7] x
Cl[0, 7]. The sign of A in (2.11) determines the direction of the process in
the initial period. The interaction of the water and ice with discontinuous

iccewise constant 7p(§) was first considered in Stefan’s paper [327]. For
subsequent research on such problems, see [110], Ch. XI.

2.4. Reduction of the Stefan problem to a Cauchy problem.

Suppose that in the space of the variables £ = &, n = &, liquid phase at the
initial moment of time occupies the half-plane & = 0, that TO(O, n) = Ty,
and that on the axis £ = 0 a homogeneous (g = 0) condition (1.8) is given
for x; = x, = 1. We assume that

(212) Z;: E=08(m, 1), —o<n<<oo, T=0; 8y, 0) =0,

for a sufficiently smooth 6(n, 7). Applying Green’s formula and the
formulae for the jumps of the temperature potentials, we obtain the
equation

oo

At ry a "
(248) % Dty | 9 [ Fa—8.(n, 1Tl
0

-00
_ I8tn, 0=+ -D) T o
. 4 ®

X e ot dE+ 22 (do § 8¢, o) x

0 — oo

_ 81, D -8R, OH(M=)*
S§(n, /=8, 0)—b8y(n, V) (n— b, = 4"(5('0-";” ) dt =0
(t—o)2 . N
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(0)
if T = T,. A similar equation can also be derived in the presence of heat

(0)
sources at the initial period of the two-phase statement for T << T,.

Theorem 2.4 [79]. Under the assumptions made above, the non-stationary
Stefan problem with two space variables is equivalent to the Cauchy
problem (2.12)-(2.13).

A theory of equations of the form (2.13) has not yet been worked out in
general. A substantial simplification occurs when To does not depend on n;
such an equation appeared in the mathematical model of hardened slag [73],
[74]. These investigations were later continued in [98], [179], [180],
[182], etc. We also mention [117}, [118], [29], etc., which are devoted
to the two-phase one-dimensional Stefan problem on a finite interval with
Neumann boundary values at the ends and conditions of the form (1.12) on
the unknown boundary, in the absence of one of the phases at the time
7=0.

CrarpTteR I
THE QUASISTATIONARY MANY-DIMENSIONAL PROBLEM

3.1. The one-phase quasistationary problem.

For the sake of simplicity we consider the case of two space variables &, &,.
Let D be the lower semi-infinite strip £, € (—R, R), R > 0, £, < 0.
Introducing the variables x = §&,/R, y = &/R—vr,u= (T —T,) / (T, — (70';"
and denoting by G, < G = {(z, ¥): —1 < z <1, y < 0} the domain of
the solid phase, where 7 is the phase interface curve, which is symmetric
with respect to x = 0 with the end-points (+1, 0), we arrive at the following
dimensionless statement of the problem in question:

Upe +uy, +ou,=0 in G,, o= Rpev/h;
3.4 U+ ou=0, z=4+1, y<0, o,=Rali;.
-1)
0)
u=1, u,=xcos(n, y), (z, y)€vy, x= Rw/A" (T,-—‘T);

u=0, —1<zr<<i, y= —oo.

For fixed thermophysical and geometric characteristics (3.1) contains two
independent dimensionless parameters, say, the Pekle number ¢ and the
Nusselt number w,. The conditions on y express the isothermicity of (1.9)
and the Stefan relation (1.10) for T* = T, in the quasistationary phase.

We put u = 1 on G\év and consider the function w(x, y), which is
uniquely determined by the relations w,(x, y) = u(x, y), w(x, 0) = 0,
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x € (-1, 1). We introduce the notation

8y, 0, (U, V)= S S eV [u, v, + uyvyl dz dy + o, \. e“vur dy,

G T
(3.2

lu)= —“S u(z, O)d:c-l-(og S evudz dy+ x 5 g eV (u—y),dr dy,
| ¢ ¢

where T is the vertical portion of the boundary 9G, and (v —y), is the non-
negative part of (u—y). Let Hy, ,(G) be the Hilbert space corresponding to
the bilinear form in (3.2) for wy > 0. The functional /() is convex,
bounded, and lower semicontinuous.

Theorem 3.1 [87]). a) If (u, 7y) is the classical solution of (3.1), then
w(x, y) satisfies the variational inequality

(3.3) o, 0, (0, v—w)+1 @)=L (w)>=0 forall vEH! (G);

©, @,

b) for fixed w and wg (3.3) has a unique solution
w(z, ¥; o, 0y € Hy, 0,(G);

c) (3.1) has a classical solution if and only if w and w, satisfy the
“solubility equation” w(l, 0; w, wg) = 0; '

d) [100] for every wqo > O this equation has a unique strictly increasing
sohition, w = w(wg) and w(wg) =~ 0 as wgy —~> +0.

Thus, the solution of (3.1) depends on a single real parameter wy.
which determines w uniquely, that is, the velocity v. Model problems of the
form (3.1) for domains of finite height have been considered earlier in
[38]-[41], {46], [47], and [197].

The one-dimensional two-phase quasistationary problem [17], [82], and
[83] admits a complete study. In the last two papers the statement with a
condition on the upper section is considered, which models heat and mass
transfer simultaneously. Consequences of this are the phenomena of
unsolubility or non-uniqueness of solutions. For a circular cylinder of
radius R << 5cm there are the inequalities vy << U << vy Where for iron
Umin = 6.8-107% cm/sec, vpax= 6.5-10-2 cm/sec.

3.2. Boundary properties of a free surface and of a heat flow.

In the quasistationary statements of the Stefan problem (see §1.5) the phase
interfaces intersect a given part of the boundary of the relevant domain.

The behaviour of the free boundary at the points of its intersection with the
given boundary, in particular, the existence and magnitude of the angle
under which they intersect, also determine the properties of the heat flows
in closed domains. A complete study of these questions can be accomplished
under the hypotheses of the preceding section.
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Theorem 3.2 [88]. a) The curve v is symmetric with respect to x = 0 and
strictly increasing for x € (0, 1); consequently, it admits the explicit
representation y = y(x), x € (—1, 1); the function y(x) is analytic for

x € (—1, 1) and admits the properties

¥ (0)=0, 0<y (z)<+o0, z€(0, 1);
(3-4) { Jim y (@) =y (1—0) <+o0; " (2)>0, 2€[0, 1);
b) the heat flow (uy, uy) is bounded in G,, and u, is continuous on the

closure G.;
¢) if Quwo/n) =1, then u, has a discontinuity at (1, 0); but if 2we/xn) < 1,
then for the continuity of u, on (_?7 it is necessary and sufficient that

2,
% !

(3.9) sin 2arctgy’ (1—0)=

d) the derivative y'(x) satisfies a Holder condition on the closed set
[-1, 1].

The proof of the first three assertions relies on the fact that y(x) is a root
of the equation w(x, y)—y = 0, where w is the solution of (3.3). The last
assertion of Theorem 3.2 (which is not included in [88]) requires an
extension of u(x, y) through I" and an application of the theory of systems
of singular integral equations. In the derivation of these equations, as in the
proof of b), one uses the integral representation of the heat flow in terms of
its boundary values, deduced without assuming the boundedness of the flow
in G,.

3.3. The inverse two-phase quasistationary problem (problem of control).
As an example we consider the statement (r, z are cylinder coordinates)

-

uu+-’1_—-(ru,),+(ouz=0, O<r<t, z<0;
u,+ou=0, r=1, z2<0;

B8 | w=f(r, v)=a(v+b(r), 0Kr<d, :z=0;
u=1, u;—Aul=wi(1+r})t on v,
u=0, 0<r<l, 2= — o0,

in which A = A*/\", w and w, have the same meaning as in (3.1) and are
piecewise constant; the functions a(r) and b(r) are known, r = r(z) is the
equation of the unknown boundary . Experimental and theoretical data
tell us that in real-life statements v is an affine function of the force of the
exterior stream; therefore, v can play the role of ‘““control”.

Let / =2 0 be the height of the upper phase along r = 1, A+1 the total
depth of this phase, and £ the curvature of vy at r = 1. Suppose that vy
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admits the representation
z2=2(r)=—(h+D+ari+(h—a,)ri4 ..., 0<<r<{;
@ | r@=20+1+le+Va+ik—a) Grita),
) —(h+)<2<<— 1
k=20Bh—a)[1+44(2h—a)?]-%2, 0<<a,<2h.

Theorem 3.3 [96]. We assume that the curvatures of all isothermals differ
little from k for r = 1. Then h and | for fixed values of the coefficients of
the terms of the highest degree in (3.7) are single-valued functions of v and
k with a finite domain of definition of the “boomerang’ type in the first
quadrant and the map (v, k) = (h, 1) is one-sheeted.

The most important consequence of this analysis is that for the solubility
of (3.6) it is necessary that v € [Vmin, Umax)s ¥ € lkmin, Amagl, and 7 € [0, /],
where the right-hand end-points of these intervals are finite, vpp and kmin
are positive, and l; & 1. By the choice of the values of v the form of the
liquid phase can be ‘“controlled” by means of the criteria I > 0, h+1 < 2.

3.4. Quas1statlonary problem with convection. _,

Letv = (0, v) be the vector of transfer velocity, V, the velocxty field in the
liquid phase with respect to a moving coordinate system, V = 0 within the
limits of the solid phase, and suppose that the relevant domain G be the
semistrip {—1 <-x <1, y << 0}. We consider the statement

b* (I-;i—;) §’7u=t=Au=t on G.|G;

(Va—0) V] Vs +Vp=AV,/Re+f(us), V-V,o=0 in G,

(3.8 | Ve=00n 6. uj=h(), y=0, —1<z<i, h(—2)=h(a);
ur =0, —H<y<0; uf=owput, —co<y<—H, H>O0;

ut=1, u;—AMuf=vx/V1+y%(@@ on y: y=y(2);
u =0, =—o00, z€(—1, 1),

in which b, w,, Re, v, %, and X\ are given and positive, f(u) is a Lipschitz
function, #(x) is a known positive function on [—1, 1] belonging to
c**e[—1, 1], h'(—=1) = A'(1) = 0, and H is a given number. Let w* be the
solution of the stationary problem without convection with the same
conditions (3.8) for v = 0 and suppose that —H < yg(1) < 0, yo(x) < 0 for
the free boundary vy4:y = yofx) on [—1, 1].

Theorem 3.4 [101]. Under these hypotheses for sufficiently small v and Re
(3.8) has a solution, and y(z) € C2**[—1,1], Ve Wi (G,) N C*=(G,)
Vp € L(Gs) r >0, ux € C** on Gz\ {(x=1, —H)).

The weak solubility of stationary Stefan problems with convection was
established in [225]-[227]1. The classical solubility of the problem with
convection described by an equation of the form (1.7) was established in
{71, [8]. A similar many-dimensional stationary problem is given in [167].
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The paper [105] is devoted to the numerical solution of the Stefan problem
with convection within the framework of the boundary layer.

3.5. On model two-phase quasistationary problems.

In the exact setting, the many-dimensional two-phase quasistationary
problem has been studied less completely than the one-phase one. As a
supplement to the resuits of 3.4 we quote one result on the classical
solubility of the following model problem:

Aw+ - B@)=0 in 6\Z,, B w)=pw+pp (v);
w=0 for y=0, w=c,>0 for y=#n
(3.9) w,+aw) =0 for z=+1, 0<y<h

& (w) = ogw + po: (w) =0;
w=clE(0’ 02), w;l_w;=}"(x) cos (n1 y} on 2!»

where G = {(z, y): —1<z<<1, 0 <<y <<h), ¢y, c3, By, ®p and u are
numerical parameters; fB(w), a(w) are twice continuously differentiable
functions; A(x) is an even function defined on [—1, 1] satisfying a Holder
condition, and A(1) = 0. Let wy(x, y) be the solution of (3.9) for A = 0,
u = 0, and suppose that wey(x, y) > 0 in G, as is true for Bo = 0.

Theorem 3.5 [3). Under the hypotheses made above, for every pair

(A(x), u) from some neighbourhood of zero in C*[0, 1) x R, 1/2 <a <1,
(3.9) has a unique classical solution (w, 2,)and the function y(x; X\, i)
defining the free boundary 2, belongs to C**2[—1, 1land y(0; A, u) = 0.

We also mention the article [173] devoted to the problem with a free
boundary for two-dimensional second-order elliptic equations with variable
coefficients. The Stefan condition is understood in a certain weak sense,
and sufficient conditions are stated for a generalized solution from the class
W} N C with a Lipschitz phase interface curve. Yet another version of the
model quasistationary two-phase Stefan problem is considered in [42],
where the method of straight lines is used to prove the existence of a
generalized solution from the class W1 N C with an increasing free boundary
for x = 0.

CHAPTER |V

THE METHOD OF INTEGRAL FUNCTIONALS WITH A VARIABLE DOMAIN OF
INTEGRATION

4.1. First variation; main lemma.

The variational approach to problems with free boundaries, based on the
method of integral functions with a variable domain of integration, apparently
goes back to [316] (see also [30] Chrs. IV and VII). Applied to stream
and cavitational flows, it was developed in [277], [281], [282], etc., and
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to the theory of steady-state waves in a number of aritcles summarized later
in [72] (see also the enlarged English edition [256]). In this chapter this
method is expounded as applied to thermophysical problems with a free
boundary.

To begin with we consider the simplified one-phase quasistationary
problem (see §1.6). Introducing the dimensionaless coordinates x, y, z and
writing § = Z,, G, = G_, we arrive at the statement

Lu = (e97uy), - (evuy)y +(eu,), =0 in Gy
up,+ou=0 on 9G\S; u=0 for z=—o0;
u=1, |gradu|2=Q%(z, y, z; v) on S,
Q*=»MA|grad u*|®*+ = (1 + M) ul, A=AY/A,

where u is a dimensionless temperature, the parameters w, wg,, and % have
the same meaning as in (3.1), and «™ is uniquely determined by the
following conditions: 1) in the cylinder G it satisfies the equation in (4.1)
for w = wy; 2) on the upper section of S, (z = 0), it satisfies the
dimensionless condition (1.8); 3) on aG\JS, it satisfies the condition in the
second line of (4.1) for wg = wg. The triple (u*, u~, S) is an approximate
solution of the two-phase quasistationary Stefan problem; its deviation from
the exact solution can be estimated by the discrepancies sup |u* — 1 |and
sup [(u] — Auz)/(u; + Aui)l on S. In the two-phase statement only one
discrepancy occurs.

{4.1) is of a variational nature (this property is alien to the original Stefan
problem). We consider the functional

4.2) J(@, S)=Hew= (2 +u -+ ul + Q2] dz dy dz + w, S o2 do,

G, AN

(4.1)

depending on the pair (&, §). A pair (u, S) is said to be “‘admissible’ if it is
sufficiently smooth and the second condition in the second line and the first
condition in the third line of (4.1) are satisfied. The first variation of the
functional (4.2) has the form

(4.3) &J (u, S; bu, 6:): -2 S{ g oufudrdydz+
Gs

+ S ez |2 — |grad u|?] ;{6—;d0+2 S €% [u, + wou) du do,
5 3G\ S
where 8u is the variation of u for fixed S, 6-; is the variation of the
independent variables, describing the passage from S to a “‘close” surface, and

n is the outward normal to §. The following lemma is a consequence of (4.3).

Lemma 4.1 (the “main” lemma) [115]. If (v, S) is the classical solution of
(4.1), then it is also a critical point of the functional (4.2) on the indicated
set of admissible pairs, that is, the first variation of (4.3) vanishes. The
converse assertion is also true if S has no points of self-intersection.
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We emphasize that the second condition on § (together with the equality
on dD,\S and the equation in G;) in (4.1) is “‘natural” for the variational
problem with respect to (4.2) on the indicated set of admissible pairs. The
two-phase version of the simplified quasistationary Stefan problem also is of
a variational nature [111], [112].

4.2. Passage to a fixed domain (fibering into isothermals).

The map (x, ¥, z) = (x, », u) takes G, to a cylinder A in the strip 0 <u <1
with the same cross-section if v, > 0. As the unknown, one can consider
the solution z(x, y, u) of the equation u(x, y, z)—u = 0. Then G is
fibered into isothermals, and the value ¥ = 1 corresponds to S. Putting
w(x, ¥, u) = exp wz(x, y, u), w > 0, for convenience, instead of (4.2) we
obtain the following functional with a fixed domain of integration:

~ def © ~
(4.4) J(u, S)=J (W)= iuzwudo-}-
OANT

to S S {w2+wj+ 02+ Q2 (2, y, 5 log w; v) wy} L
A

Wy

where I is the upper section u = 1, ds = dsdu and ds is the line element of
the boundary of the cross-section of G. The variables (x, y, u) applied to
(4.1) are similar to (x, y, ¢) (Y is the stream function) used in their time
by von Mises and Friedrichs in theoretical hydrodynamics. The passage
from (4.2) to (4.4) clears the way to an approximate and numerical method
for the construction of the critical pairs (u, S).

Lemma 4.2 [115]. On the set of admissible pairs (u, S), u, > 0 in G, the
functional (4.2) admits the representation (4.4). A similar transformation is
valid in the two-phase case [111].

4.3. Second variation; uniqueness problem.

The conditions for the admissibility of w(x, y, u) in (4.4) are as follows:

1) w is defined and positive on A, continuous on A, and vanishes for v = 0;
2) the first derivatives exist and are piecewise continuous on A;

(0)
3) wy(x, ¥, u) > 0in A. Let w be the admissible function corresponding to

)
the classical solution (u, S) of (4.1), w any admissible function, and
) (0) (€) 0
8w = w — w. Then for all £ € [0, 1] the function 1: = w4 ebw is

admissible and

@~ ® 3 ® © (®) @
(45) de2 J (w) = S S [(wuawx— w.vawu)2+ (wuawy— w{lﬁwu)~ +
A
(e) () dx dyd 2 dxd
+ (wobw —wdw, ) ERL L 2 [ 00, (dwp = —,
w3 aAN lu=1) wd (z, ¥, 1)
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It is not hard to show that for Q, =2 0 the right-hand side of (4.5) vanishes
only for 8w = (0. We also use the formula

(4.6) J(w)—-J(w)+\(1- )‘”‘"” de.

Theorem 4.1 [115]. Let QQ, 20in G. Then J(uSy) > J(u, S),

for any admissible pair (uy, S;) and any function w, respectively.
Consequently, (4.1) for fixed w and wg has at most one classical solution in
the class of functions u, > 0.

In {277] this method of proving the uniqueness theorem was used as
applied to stream flows ( = const). A generalization of Theorem 4.3 to
two-phase versions was given in [111] and [112].

4.4. The problem of minimization of the functional (4.4).

For simplicity we consider the case of two variables x, y and use an
approach based on the Ritz method. Assuming that Q(x, y) and the
required temperature are even functions of x, we take as a basis the
functions u*z%. We arrive at the non-linear system of equations

m M m ™
(4.7) { dapg (2 2 apaiut )’H‘ 0, 2 D) ap;—ewh=0

k=1 j=0 k=1 j=0

(g=0, 1, ...,my p=1,...,m)

for the unknowns ay; and the Lagrange multiplier X; in a first approximation,
the number # < 0 is equal to the depth of the isothermal u* = 1 for x = [;
better approximations are found by minimizing the discrepancies. We
assume that 0 < w, wo < A < 7%/16, Ay tan Ay = wq and

Cer v < Q (z, Yy, Qy(z, y)=0 in G, >0,
(4.8) - 1/2
0 <o, <(1—A)cos? VA, po= —0/2+ ((0?/4) +22)"/2,
The function Q(x, y) constructed according to the method indicated in §4.1
satisfies (4.8).

Theorem 4.2 [91]. a) Under the conditions (4.8) there is a non-empty set
of pairs (w, wy) in the neighbourhood of zero in the first quadrant for
which the non-linear Ritz systems (4.7) have simultaneously unique solutions.

b) If Qy[.t,.— log w(z, 1)] > q(w) for some q(w) > 0, then under the
conditions in a), the sequence of successive Ritz approximations converges

)
to w in the norm of L,(A) and Wi(A N {u >~}), v € (0, 1), and the traces
onu =1 converge in Ly(—1, 1).

¢) [153] For u =z v > 0 the convergence is uniform.
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The solubility of the system (4.7) for every approximation was established
earlier in [89] and [113], and the numerical variational approach was
realized in [207] and [208]. The single discrepancy in the two-phase
version does not exceed a few percentage points, which has to be viewed as
practically satisfactory, since the thermophysical parameters determined
experimentally have a larger error. In [90] the variational approach is
applied to the optimization of the Stefan problem. We also mention the
paper [37] devoted to the quasistationary Stefan problem with a free
boundary of small curvature.

4.5. The existence problem for simplified quasistationary Stefan problems.
The method of integral functionals is also effective in the study of existence
problems of classical solutions of the problems under discussion. The
simplest of them, which is considered in [11] (see also [20]), corresponds
to the planar version of (4.1) for w = 0, @ = const. A more general case
was studied for w > 0 in [14]). We dwell in more detail on the following
version of the two-phase simplified stationary problem:

Ues+ Uy, =0 in TINy, H={(z, y): —l<z<<1, O<y<<h};
u=0 for y=0; u=c¢>0o0ny, u=c;>¢ for y=h;
Uup+w,(u)=0 for z==41, O<y<<h;

lgrad u*|>— |grad u~]2=Q?(z, y) on y.

(4.9)

To the case Q% = 0 there corresponds the stationary Stefan problem [12],
[13]. To (4.9) we assign the functional

410) I 1= [ Ueredw 2+ Q2 (z, widzdy+
Gy

B olutt, )
+ (| lgradupazay+2 f ay [ 2(s) 0 (s)ds +
¢, 0 )
ho oelu(-1, 1)
+2 S dy 5 A (s) w, (5) ds,
0 0
where G, is the domain of the solid phase of G7, v(u) is the function
inverse to the solution u(v) of the problem u'(v) = A(v), u(0) = 0, and A is
the coefficient of heat conductivity. The conditions of admissibility are
written in the second line of (4.9). We also mention the article [159],
which is devoted to the existence problem of the two-phase version of (4.1).

Theorem 4.3. a) [15] Suppose that Q(x, y) is even in x, continuously
differentiable in 11, and satisfies the conditions Q, < 0, Q, =0 for x 2 0;
suppose also that wo(u) is continuous, wy0) = 0 and w(u) > 0 for u > 0.
Then (4.9) has a solution (u, v) for which u(x, y) is continuous on II, v is
symmetric wWith respect to the y-axis, is Jordan, and increases for x € (0, 1);
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suppose finally that the last relation in (4.9) holds almost everywhere on 7,
and the remaining ones hold in the classical sense. The functional (4.10)
attains its smallest value at (u, vy) on the indicated class of admissible
elements. If Q(x, y) = 0, then (4.9) has a classical solution (u, v), u, >0
in II, which is unique in this class.

b) [152] Suppose that Q(x, y) is analytic in G={—1 < z < 1, y <0}
and even in x, that Q, <0, Q, 2 0 for x 2 0, and that (4.8) hold. Then
on the set of pairs (w, wg) as in Theorem 4.2 a), the planar one-phase
problem (4.1) has the classical solution (u, v) (S = ) for which v is even,
analytic at the interior points and increasing for x € (0, 1); moreover,

u(x, y)is even in x and u, <0, u, 2 0 for x 2 0in G,. The pair (u, ) is
a minimum place for the functional (4.2) on the set of pairs (u, v), u = 1
on .

In addition to what has been said we mention the paper [16]. Detailed
proofs of b) were given in [154]. All papers cited generalize the methods
worked out in [281] and [282] for axially symmetric cavitational streams.
In [71]. [72}], and [256], this method is applied to the problem of
permanent waves, and in [33] and [35] and other papers to the study of
interior waves between liquids of different densities. In the above mentioned
investigations of the author and his collaborators the assumptions of [71]
were sharpened in that part which concerns the problem of minimization of
functionals of the form (4.2) (see also [213]).

4.6. The non-stationary two-dimensional two-phase Stefan problem on a
finite time interval.

We assume that the thermophysical parameters of the medium are piecewise
constant and we introduce the dimensionless variables x;, x,, ¢ and the
temperature. Let TI* = {0 <z, <1, 0 <z, << b}, I}, = II* X (0, t,),
b >0, ty > 0; let S be the phase interface in the space (x;, x5, )

(corresponding to X, for j = 1 in (1.3)) and let J_\f be the unit normal vector
to S, directed toward the side of higher temperature. The problem is
considered in the following setting:

u;—az(u)Au=0 for (zy, z,, t) €I} \S;

A u,+ou=0 forz;=1, 0<z,<<b, O0<t<<ty

u, =0 forz;, =0, O<<z,<<b, O<<t<ty
u=20 forz,=0, O<a, <1, O<<t<<t
(4.11) y u=g¢>1 forz,=b, 0<z;<<1, 0<<t <ty g=const;

2
u=1, 3 (A‘u;.—l*u}i)cos(N, z;)+xncos(N, t)=0 on §;
i=1 !

u(zy, 3 O)=¢(‘zh z;) in I+ 4 S,
Se=8N{t=0}: z,=y,(z)), Oz, <.
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We assume that S, does not decrease on (0, 1) and that Y(x,;, x,) satisfies
the relations

VEWLITNCH(IT), 0<B<l, <O, ¥+,=0 on I*\S;
(4-12) { Y=0o0n <z, <1, z,=0}, ¢=1 on §,,
v=g on {0<z,<<1, z,=0}.
From (4.11) we easily obtain the identity

(4.13) ( ( [a2 (u) Vu vV + un — %y ml dz dt 4 o, 5 undzr,dt =0,
}',f. {x1=1, D<x4<b}

where n € wh ! (I13,) and 7 vanishes forz = tyand on {0 < 2z, < 1, z, = 0} U
U {0< z, <1, 2, = b} and where x(x, ?) is the characteristic function of
the solid phase of G™. Applying Rothe’s method to (4.13) and passing from
the integral over ¢ to the corresponding sum, we obtain finitely many elliptic
problems with free boundaries, similar to the ones considered earlier, that is,
of a variational nature. We write down the functional arising in the first
step:

444 T, S; ¥, Sp= H [a21Vul2 + - (u—9)2] dr, dz,+

G;UG;;
o o 1 o
+oo | wdnt+ ([ @ivers 4 @—veddn s
{xy=1, D<x,<b) o\ (G,UG,)

+ 2% g \ %(1—u)dx, dz,.
(G UGs)\ Gy,

Here G; denotes the domain of the solid phase with the free boundary S,
which is a Jordan curve with end-points on the vertical portions of the

boundary 9II*. The requirement of admissibility of the pair (u, S) includes
also the relation

veW,IHNCcMYid<a <1, 2, =0)U{0< 2<1, 2z, =b}, u =0

on the lower base of I[I*, ¥ = 1 on S, u = ¢ on the upper base of I1*,
O<u<l1lonG;U Gs, and | < u < g on the complement.

Theorem 4.4. a) [43] Under the conditions (4.12) there is a pair (u, S) at
which the functional (4.14) attains its smallest value on the indicated set,

moreover, u € C** ([1*), 0 < B, < 1, u is differentiable on TI*\S, U, <0,

Uy, 2= 0 S is a non-decreasing curve, and G5 < G

b) [43] Under the assumptions (4.11) has a unique solution (u, S) in the
sense of the identity (4.13), u € WL (I13,) N HS2(M},), 0 < § < 1, the free
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boundary S satisfies a Lipschitz condition and the Stefan condition on it is
satisfied almost everywhere.

c) [44] Suppose that Y satisfies the conditions in (4.11) on the vertical
portions of 31" and a®?Ay = fin Gs, and a*Ap = fin I*\ Gs, where
a_ Za,, f€C(TY), <0, fr, =0, fr, <O. Then (4.11) has a unique
solution for which the free boundary S is continuously differentiable at
every interior point of it.

This theorem shows that the method of integral functionals with a
variable domain of integration combined with Rothe’s method is effective in
the solution of the existence problem of classical solutions even in the case
of non-stationary many-dimensional two-phase Stefan problems on an
arbitrary finite time interval.

CHAPTER V
THE MANY-DIMENSIONAL NON-STATIONARY PROBLEM

5.1. The enthalpic form of the energy equation; generalized solutions (the
method of integral identities).
We introduce the notation

T m
H(T, &, 0=\ (po)(s, & DVds+ Q »m(T—Ty), T+T,

=1
(i=1,...,m);
T T
64 { AT ED= | A& nds, AT, E )= S A, (s B ) ds
me m+1

(j=1,2 3);

T
(I B 0=1T 50+ [ (e(s & s,
Tnul

where the ®; are from (1.10) and f is the constant term in (1.17). The first
function in (5.1) is equal to the enthalpy (heat content) per unit volume
and undergoes the jump x;in the passage through the phase interface. If
T(¢, 7) satisfies (1.17) without convection, then, as simple transformations
show, within each phase D,

oH & oA : 8A;
(5-2) =2 i 2 5+ o
j=1 Je==1

in which 7T(§, 1) is substituted in the functions in (5.1).
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We assume that (T, Z;) is a classical solution of the non-stationary many-
dimensional Stefan problem:

3
pC%Z—:Z 52]( 0§1)+f’ f=aE OT+b(E, 1);

de=1

6.3 | a@—T)=g on DX (0, v T (& =T, teD:

3
ar+ - or-
T=T, i}j,, [xz] G5 — Mz, g | cos (N, &) —scos (N, 1) =0

on Zj,
j=1, ..., m.

Let F(£, 7) be a smooth function defined on & = D x [0, 7,] and vanishing
on the upper section 7 = 7y and for (¢, 7) € 0D x [0, 15]. We multiply
(5.2) by F(§, 7) and then integrate over each phase D; in (1.2). Using the
Gauss-Ostrogradskii formula, the boundary conditions on T(¢, 7) and F(§, 7).
the Stefan condition, and adding up the resulting equalities, we arrive at the
identity

G4 [(({FHITE 0, & a+A0F-AITE D, 8 1+
Q

3
+FLIT E ), & T+ D) Py A TG, 0), & Tl}dide +

j=1

+5§F<§,0>Hu‘"o<§>,§,01d§+jﬁ S A[EED 17, t, 1] do=0
0

D

for every function F(§, n) in the indicated class. We assume that A, p, and ¢
satisfy the conditions of §1.1 and f(T, & 7) = a;(¢. )T+ b;(§, 1), where
a;(&¢, 7) and b;(¢, 7) are bounded measurable functions. Under these
assumptions the last three functions in (5.1) are defined and bounded for
any bounded measurable function T = T(¢, 7), while to the first function in
(5.1), which is discontinuous as T passes through the 7;, for T = T(£, 7) at
the points 7(§, ) = T; some bounded values are assigned from the interval
[H(T,— 0. & 7). H(T;+0, & 7)]. With these conventions. a bounded
measurable function T(&, 7) is called a generalized solution of the Stefan
problem if (5.3) holds on the relevant class of functions F(&, 7).

Theorem 5.1 [164]. a) (5.3) has at most one generalized solution if a;(§¢. T)
and b;(§, 1) do not depend on j and are smooth functions on D x [0, 75):

b) under the same assumptions a) holds also when the »y depend
smoothly on (&, 1), wy(E, T) = » >0, in the class of generalized solutions
whose free boundaries Xy T'(E, t) = I'yare of measure zero;
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c) we assume that the boundary 0D is sufficiently smooth and \, p, and ¢
are piecewise constant functions of T and A € CQ); also, p, ¢, %y € CY(Q),
To(¥) € CU(D), g(& 1) € C*aD x [0, 7)).

Then (5.3) has a generalized solution, which can be obtained as the limit
of solutions of a quasilinear equation of the form (5.2) with “smoothed”
functions (5.1). In the case of a single space variable there is uniform
convergence, consequently, the generalized solution is continuous on 2.

A detailed account is contained in [166] (lecture 4) for a general
parabolic operator with a single space variable. The method goes back to
earlier work of the same author, which is devoted to the analysis of
boundary-value problems for second-order equations of elliptic or parabolic
type with discontinuous coefficients {163]. Somewhat earlier the many-
dimensional multi-phase non-stationary Stefan problem with thermophysical
parameters depending only on the temperature was discussed in [106]. To
begin with, the uniqueness of a generalized solution in the sense of an
identity of the form (5.4) was established by the method of {163], and
then the method of finite differences, as proposed earlier in [215], was used
to prove the existence of a generalized solution for any bounded functions
g(&, 1) and H[fo(z)] in (5.3) that are continuous almost everywhere. A
complete exposition of these results was given in [107] and [108].

The papers just mentioned mark the beginning of the contemporary stage
in the study of the Stefan problem, which is devoted mainly to the case of
many space variables. We mention here the paper [269] in which the two-
phase Stefan problem is considered for general parabolic second-order linear
operators £ with sufficiently smooth coefficients within each phase. As
above, the generalized solution is sought in the class of bounded measurable
functions satisfying an identity of the form (5.7) with the Laplace operator
replaced by the adjoint operator to the elliptic part of Z; in particular,
conditions ensuring the existence and uniqueness of a generalized solution
are stated; under some additional restrictions this solution satisfies an
energy estimate and, consequently, has a finite norm in Wwa 1(Q); a
comparison theorem also holds, under the hypotheses of which the
inequalities g, = g, Ty, o(8) = T(E) imply that T,(¢, t) > T(&, 1) almost
everywhere in £2. In the same range of ideas and methods the non-
stationary many-dimensional quasilinear two-phase Stefan problem is treated
in the recent paper [311}: existence and uniqueness theorems are proved
for the generalized solution, conditions are given that ensure the continuity
of its dependence on the initial data, a comparison theorem is established,
etc. In the one-dimensional case these results were established in [50].

5.2. Generalized solutions in Sobolev spaces.

0)
We consider (5.3) under the assumption that f= 0, g= —aT and the
thermophysical parameters of the medium under the preceding assumptions
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depend only on the temperature. Then (5.3) takes the form

3
%) _ B(A)A, = %, B (A)=/(cpr™") (T);

a1t 3

=1
AE, ©)=0 on aDx(0, ©); A 0)=7F,®), E€D;
(5.5) r, s
A=A;= }, A (s) ds, Z [Agi—Agi] cos (N, §)=xycos (N, t)=0

T dei

on 21,
j=1, ..., m,

where b(A) is an increasing function on [0, ]; b'(A) = B(A) for
A€ Aj=yy Ay (G=1,..., m), Ay =0
bAj+ 0) —b(Ay —0) = —un3y (G =1,..., m);

0
and b(0) = 0. If now n(&, 7) is an arbitrary element of wi! (@) (the
closure of functions of compact support in £2), then instead of (5.4) we
obtain from (5.5) that

. ({]
5.6) || | {=b(A) no+ gradg A-grady n} dE dr =0 for all ne W' (@),
02

which must necessarily be satisfied by the classical solutions of the problem
(5.5) (provided that it exists). We supplement the definition of H(A) at the
points A; by arbitrary values in the interval [6(A;—0), b(A;+0)] and we
take the identity (5.6) and the initial condition in (5.5) as definition of the
generalized solution of (5.5) in the class of bounded functions A from

0
Wi (Q) (that vanish on 3D x (0, 75)). This definition in contrast to the
one in §5.1, guarantees for the generalized solution of the Stefan problem
an a priori degree of smoothness of elements in the Sobolev space Wi i(Q).

Theorem 5.2 ([128], Ch. V, §9). Suppose that 6D € H?**® and that B(A) is
positive and piecewise smooth. Then (5.5) has one and only one generalized
solution in the class of bounded functions from Wé’ 1(Q) that vanish on

oD x (0, 7o), provided that the initial distribution TO(E). supplemented by

zero on 3D x (0, 7o), is the trace of a function belonging to H**5 1782y
g>o0.

The proof uses a method that was worked out earlier in connection with
the general diffraction problem for parabolic equations (for results and a
bibliography, see [128], Ch. III, §13); the uniqueness depends on an
existence theorem for the generalized solution of a certain auxiliary mixed
problem for a parabolic equation with bounded measurable coefficients; the
existence uses the method of smoothing the coefficients.
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0
By choosing (5.6) the n(£, 7) from the class €= (Q)we can verify that the
energy equation in (5.5) can be treated also in the sense of distributions:

we arrive at the following statement: for any element f from the dual space
D'(Q),

] 3
a_dr b(A)— ag, --f(§ 1) in the sense of D' (Q);
(5.7) i=1

a(T—T)=g on D x (0, T); b(A)E 0)=b[A(Fo)]E), EeD.

Theorem 5.3 [220]. We assume that dD consists of two disjoint infinitely
differentiable mamfolds and that for m = 1 (the unique critical value of the

0)
temperature) gla + T < T, for the interior manifold and gla. + T > T, for
the exterior one. Suppose that TO(E) #* T, almost everywhere and that there

is a function Ak, T) € WYQ) such that X = blA(glo + T)]on aD x (0, 74)
and (¢, 0) = b[A(TO(S))] on D. Then (5.7) has a unique solution A&, 1)
in the class L,(0, 1o; Wi(D)) for any f(§, 7) from Lo(S2).

The proof is also given in the book [130] (Ch. 2, §3, 3.3). It is based
on the general theory of monotone operators.

5.3. Numerical methods for the analysis of the many-dimensional problem.
The enthalpic form of the energy equation and the smoothing of its
coefficients are used in [187] as a basis for an effective numerical method
of solving many-dimensional non-stationary quasilinear Stefan problems.
Assuming that 7(§, 7) is an infinitely differentiable function of (¢, 7) and
that gradg; 4 TE, 7) =0 along 2,2 TE, 7v) == I;(j =1, ..., m) and
differentiating the composite function n[7(¢, 7)— 7;] with respect to 7 in
the sense of distributions, from the first formula in (5.1) we obtain

(5.8 wHITE 1), 8 1=
T
= | (005 & Dast+ {7 & 0. 81+ 2 %8 (T (€ ) —T;1} o,
m+1
where 8(T— T;) is the Dirac distribution on £;. When we then take the

energy equation in the form (5.2), we derive from this and from (5.1) the
following equation for the temperature:

(5.9) [(pe) (T, & 1)+ :‘. x;8 (T —T;)] T =divg (A grady T) + 1.
=

This leads to the equation of heat conduction in (5.3) inside each phase. As
was shown in [187], under the assumption that the X; are smooth and

T(§, 7) is piecewise smooth, (5.9) also implies the Stefan condition on X},
where also 7(§, ) = T;. Consequently, it is sufficient to adjoin to (5.9) the
initial and boundary conditions on T (second line in (5.3)). (5.9) has the
following intuitive physical meaning: the terms »;6(I = T';) represent the
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condensed heat capacity on the phase interface, that occurs in the energy
equation additvely along with the usual specific heat capacity pc (per unit
volume).

The smoothing method now consists in replacing the delta-function
8(T— T;) by an approximately delta-shaped function §(T—T;, A), where A
is the length of the subinterval on which this function is different from zero.
The same result is obtained if in the first formula (5.1) the discontinuous
function n(T— T;) is replaced by a smooth n(7— T;, A) with preservation of
the condition n'(§, A) = 8(§, A). For simplicity we assume that the
thermophysical parameters depend only on the temperature and we introduce

the “effective’ heat capacity (pe)(T) = (pe)(T) + 2. %;6(T — T;, A) for

sufficiently small A > 0, assuming also that the mtegral of 6(T—1T;, A) with
respect to T on the set (—oo, o) is 1 (conservation of enthalpy). The
functions f(T) and A(T) are smoothed similarly. We then apply the finite
difference method of the numerical solution to the resulting mixed problem
for the quasilinear equation of heat conduction. A comparison with exact
model solutions shows that the accuracy of this method is satisfactory.
Another advantage of it is that the process of smoothing is independent of
the number of space variables and the results depend weakly on the specific
choice of &(&, A).

Simultaneously and independently, a similar approach was proposed in
[58] to the numerical analysis of the many-dimensional multi-phase non-
stationary quasilinear Stefan problem with a proof of convergence in L,(Qd).
For the Stefan problem in which the condition (1.9) of isothermality is
replaced by more general conditions of the form (1.12) a numerical method
of analysis was proposed in [189] (see also [53], [54], [60], [175], and
the bibliographies in them).

A justification of the method of smoothing (in the space C) in the theory
of mixed problems for quasilinear equations of heat conduction with
piecewise smooth coefficients is contained in [80] (see also [81]; a detailed
account is given in [86]). Here conditions are stated under which in the
many-dimensional case, the solution of the problem with smoothed
coefficients converges in the uniform metric to the unique solution of the
original problem, and the latter solution has a piecewise continuous Holder
gradient with respect to the space variable £ for almost all values of 7.

5.4. The method of parabolic variational inequalities.

We consider the one-phase non-stationary Stefan problem in a domain D
whose boundary is the union of three parts I'j, I'3, T, where I} N T, = ©
and mes '} > 0. We assume that the thermophysical parameters of the
medium are constant, that 7, = 0 on I'}, that (1.8) holds for x; = x, = |

) ©)
that g = —aT or that T = T on I';: the homogeneous Neumann condition
(x; =1, X, = 0, g = 0) and the Dirichelt’s zero condition (7 = 0) on I';.
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We also assume that the initial temperature distribution is identically zero
(TO(E) = (0). The temperature field 7(§, 7) in the liquid phase

D, = {E, 7): TE, t) > 0} is non-trivial if « > 0. Now we introduce the
notation:

T

u v)=| T o)xo,(t 0)do, (5 1EQ=Dx (0, 7o)
[}

(5.10) { K={weW; (D), v=0 in D, v=0 on Iy};

K, (v)={vE )W (D), v=(20')1: on I, v>=0 on D}

for all T € (0, 19)-
It is not hard to verify that u(§, 7) satisfies the relations
Uy (gs T)*a:AEu (gv T) = -—x‘/k" in Di;

(0 0
AMup,+aw—Tt)=0or u=Tv onTy; u,=0 on Ty;
u(, 00=0o0n D; u=0, gradgu=0on Z;
u(, )€K or K, (r) for all T€(0, 7y); u (&, t)=0 outside D,,

(5.11)

which are equivalent to the Stefan problem in question.

Theorem 5.4 [260]. a) If (T, X,)is the classical solution of the one-phase
non-stationary Stefan problem, then the function u(§, 1) in (5.10) satisfies
the relations (5.11);

b) every such solution of (5.11) satisfies the variational inequality

(5.12)  (uy, v—u)rpy+ af (gradyu, grady (v—u))rpy+

(0)
T S (u—T7) dT, > (— %, (A*, v—u))pypy for all vEK;
Ty

uE VEK foral v€(0, t); u(E 0)=0, TeD;
or, respectively, the inequality
(5.13) (uy, v—u)rLpy+ ai (gradyu, gradg (v—u))Lp)>
=(—%/AY v—u)LD)
forall veK (v); u(g, 1)€EK,(v) forall t€(0, 1); u(k 0)=0, EeD;
¢) there is one and only one solution u, of (5.12) in the class
0

Ugy € Ly(0, 1o, W, (D)) N L0, to; Wi (D)), where
Wi (D) = {ve Wy (D), v=0 on I'|};

d)

(5.14) { 0< ttg, &, V)L to, & VK H7 for all 0<a,<ay;

0y, (& ©)<<H for all 1€(0, 1),
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where H(§) is uniquely determined as the solution of the stationary problem

(]
AdH=0inD,H=T onT), H,=00nT}, and H=0o0nT}3;
e) there is one and only one solution of (5.13) in the class

ug€ Ls(0, 7; l%’a‘ (D) NLw(0, 103 W3 (D)), ut € Ly(0, 143 W3 (D)); if ¢ > +o0,

0
then u, = u strongly in Ly(0, 14 W] (D)) and weakly in L0, 1, Wy (D)),
and u,  — us weakly in Lo(D X (0, 7).

The introduction of a new unknown by the first formula in (5.10) goes
back to [217], which is devoted to the problem with a free boundary in the
theory of filtration. The proof of Theorem 5.4 is based on the penalty
method ([130], Ch. 3, §8§5, 6). The estimates (5.14) are proved by
application of the maximum principle, and then d) is used in the proof.

A detailed proof can be found in the book [103] (Appendix, §3). The
solutions of the variational inequalities (5.12) and (5.13) obtained in
Theorem 5.4 are taken as generalized (‘‘weak”) solutions of the original
Stefan problem.

The two-phase non-stationary Stefan problems also admit a generalized
statement in terms of certain variational inequalities [261], [263]. However,
these inequalities belong to a class for which a theory has not yet been
worked out. In the quasilinear case the reduction to a variational inequality
in the one-phase Stefan problem was realized in [279]. An evolution
problem of the form (5.3) for an elliptic energy equation (¢ = 0) is also
studied [247]. In conclusion we mention the recent paper [338], which is
devoted to the degenerate quasilinear many-dimensional two-phase non-
stationary Stefan problem; to begin with, under certain minimal assumptions
on the enthalpy and the remaining initial data the existence of a generalized
solution in the class T, H(T) € L.(0, 15; L,(D)) is established by the
smoothing method (the thermophysical parameters of the medium depend
only on the temperature) and then also in the class of weak solutions cases
are studied when the latent heat of crystallization vanishes identically or the
specific heat capacity can vanish (c(7) = 0).

5.5. Improving smoothness; the classical nature of generalized solutions.
Under certain additional restrictions on the initial data the generalized
solutions of the Stefan problem constructed above have an increased
smoothness, in particular, properties of a classical solution. For a one-phase
Stefan problem in the case of n =2 2 space arguments the classical character
of generalized solutions was established step-by-step by overcoming
substantial mathematical difficulties.

In this direction we mention first of all the paper [276] in which the
method of variational inequalities similar to the one developed in the
preceding subsection was used to establish existence and uniqueness
theorems for generalized solutions and to prescribe additional conditions
that guarantee a certain original degree of smoothness of the free boundary.



On the Stefan problem 191

It is assumed that the boundary aD of the domain D consists of two smooth
components: a closed manifold I'; and the boundary I', of a ball of
sufficiently large radius R. At the initial moment of time the non-trivial
(liquid) phase D; occupies the domain D, o, = {£: E€ D, Tof) >0}, m =1,
T, = 0, of positive measure, bounded by I'y and a manifold Xz, ,thatis
smooth and disjoint from T'; (see the notation (1.14)). We assume that

(1.8) holds on Ty x {0, 75] for x; = 0, X, = 1 and g(§, 1) € C¥(Iy x [0, 7]),

while ?‘0@) € C¥(D,, ,) is positive on D, o\ $. o (In Theorem 5.4 we had
T(E) =0, g(§, 7) = 0.) The same substitution as in (5.10) reduces the
Stefan problem in question to the following:

(ug—aAgu) v—u)=f(v—u) a.e. in Q;
for all ve Wi (D), v>0 in D, f.—_foxpho—x, (1—xp,, J/A"%;

(©
(5.15) g (&, o)do+ Tt on T, X [0, 7,),

D ey o

u(, )=y=

u(t, 1)=0 on TIy;

u, 0)=0, teD.

In contrast to (5.12) and (5.13), here the inequality for u(§, 7) is written in
pointwise form. A solution of (5.15) in one class or another of

L,(0, 7o; WX(D)) is called a generalized solution of the original non-
stationary one-phase Stefan problem. Such solutions were constructed
([276], §2) by the penalty method for an appropriate choice of the penalty
function B, namely: Be(t) € C= (RY), B.(t) = Ofor r = £ > 0, B (0) = —1,
Be (1) >0, P ¢)<< O for t € (—oo, ). Then in § §3-4 of this paper some
preliminary smoothness properties of the temperature and the free boundary
are established. Before giving the exaxt statements we introduce some

definitions and notation. Let T, € H**8 g, ©) € H**B(I, x [0, 1,}),

io(g) € H**B(D) and let u(§, 7) be a solution of (5.15) with a bounded non-
negative derivative u,(0 < u, < K), where the bound K depends only on the
upper bounds of |fland |¢l|. Applying the Schauder estimates to

T(¢, 7) = u (& 1) near I'; x [0, 79] (see, for example, [128], Ch. 1V, §5),
we obtain the inequality | Ap,T | < Q, where Ar, is the tangential component
of the Laplace operator on I'} and the constant Q depends only on the
norms of the initial data in the indicated spaces. Suppose that T is star-like
with respect to the origin and that p = r(0) is its representation in polar
coordinates.

Theorem 5.5 [276]. a) (5.15) has a unique solution u(t, 1) satisfying the
relations u € L..(0, To: Wi(D), 1 < p < o0 u, € Lo(0, 7: Lu(D)),
O<u(§, 1)< Kae in Q& =D x (0, 1y), where K depends only on the
upper bounds of | fland |y !|. If u, denotes the classical solution of the
problem with penalty, then u, — u weakly in W;,(SZ), 1 <p <oo weakly in
W2(D), 1| <p <o, forall T € (0, 7o), and consequently, uniformly in Q and
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also ugg, — ug, uniformly in D for all T €(0, 7). If D,(z) = {&: u(, 1) >0},
then Dy(t) C Dy(+') for 1 < 7', where 7, 7" € [0, 7], and all the D\(1) are
contained inside a ball of sufficiently large radius with boundary sphere T'y;
finally, u(t, 7) = 0 and grad; u(¢, 7) = 0 on 2, = 8D, N Q, and in D, the
equation in (5.11) is satisfied near Z,.

b) Let TO(E) =Qon 'Zyl‘ o- Then the function T(§ 1) = u.(§ 1) satisfies
the energy inequality, that is,

(5.16) N

j

uie, @& &+ | uk @ naedr<e,

Q

ey

where C does not depend on TE 0, 7). R 5
c) As before, suppose that T(§) > 0in D,, and T(§) = 0on 2, , and

o) = 9@ 0) = T + g, )/, L€ T,

and

(5.47) (02T, (B)p<<O in Dy, g, e (&, T) — s (§, 0)—r2(8) Q1 >0
on Ty (0, 1),

where (p, 8) are polar coordinates. Then the free boundary £, = 2; X {t}
admits the representation p = p*(8, 1), 0 < 7 < 79, in which p’(0, 1) is a
Lipschitz function in 0 (with a Lipschitz constant independent of 1) and
continuous in 7, moreover, u, < 0 in D,.

d) A function u(§, 1) € L0, 19; WA(D)) satisfies (5.15) if and only if
T(& 7) = u & 1) satisfies the corresponding integral identity of the form
(5.4).

When TI'; is the sphere p = r > 0, the second inequality in (5.17) is
replaced by the more precise P&, T) — €, 0) — r-24yE, 1) >0 on
I'; x (0, 1y), where A is the spherical component of the Laplace operator.
These conditions mean that the heat-generating surface I'; must be
“sufficiently planar” with respect to the growth of Yy(&, 7) in 7. Combined
with the first condition in (5.17), they guarantee that (p214p)p = 0 on
I'; x (0, 79) (in the three-dimensional case) and consequently, u << 0 in D;.
See also [274], Ch. 1, §9.

The next step on the way to establishing the classical nature of a
generalized solution was made in [235] under the additional assumption
that

(5.18) sup vrai [ugz, G D<+oo

(the elliptic case is studied in [234] and complete proofs are given in [236];
see also [274], Ch. 2, §9).
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Theorem 5.6 [235]. Suppose that in some neighbourhood W C D, of

€, 1) € Z, the function u(§ 1) in Theorem 5.5, a) also satisfies the local
condition (5.18). If at a point §¢ € Zyx) NOW, Zy = I, X {1}, the
complementary set of (Q\D,) X {t} has positive Lebesgue density, then in
some neighbourhood of (&y, To) the free boundary X, is a smooth surface in
Q, and all second derivatives of u(§, 7) are continuous up to the indicated
neighbourhood on %,.

Under the hypotheses of this theorem, the generalized solution in
Theorem 5.5, a) is locally a classical solution of the one-phase many-
dimensional non-stationary Stefan problem. But under the hypotheses of
Theorem 5.5, c¢) every point of the surface Z,, . has positive Lebesgue
density with respect to the complement, since p*(0, 7) satisfies a Lipschitz
condition in 8, consequently, Theorem 5.6 is applicable globally to the
entire free surface 3,.

The final step in the positive solution of the problem under consideration
was made in [295]. Here to begin with (§1) a sketch of a proof of (5.18)
is given by means of a method of the paper [221], next it is proved that a
similar estimate holds for the second derivatives uy;;(€, ©)(§2) and then by
using an elliptic analogue of Theorem 5.6 in [234] and some other results
the assertion of Theorem 5.6 is proved for the function u(§, 7) in
Theorem 5.5. Before stating rigorously this and other results of [295] we
recall that a function a(&, 7) € C™ is analytic in £ and belongs to the second
Jevret class in 7 if

| 681022083000 | < CMPH™ 2 + 1o ), @ = a, + ay + as,
where M and C are positive constants.

Theorem 5.7 [295]. a) Let u(& 1) be a function satisfying the first three
assertions of Theorem 5.5 for »,(§, ) € C®(Q). (The estimate (5.18) is a
consequence of them.) Then in the domain 2 = D x (0, 1) the free
boundary Z, is a C'-manifold, ug, (¢, ) €C'(D; U Z,) (i =1, 2, 3),and
the function g, representing 3, . = 2y X {x} locally has a positive derivative
with respect to T (Z,, . is strictly increasing in T); the pair (u, Z,) is a
classical solution of the one-phase Stefan problem.

b) Under the same assumptions, w(k, ©) €C* (Dy U Zy). If %,(§, T)is
analytic in & and belongs to the second Jevret class, then so do u(§, 1) and
g1 1) in some neighbourhood of every point of D, |J) 2,.

c) Let Ty be a sphere of fixed radius and let Y(& 1) > 0 be analytic on
I'y x (0, 79). Then the free boundary X, is an analytic hypersurface in Q.

The infinite differentiability of the free boundary in the one-dimensional
case was established earlier in [232] and [321], and its analyticity in the
case of one space variable was proved in {272]. For the one-dimensional
Stefan problem, as stated in [73], the analyticity of the free boundary was
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established in [181] by the method of extending integral equations
equivalent to the original problem to the domain of complex values of the
time variable. An account of the main results of this subsection in the one-
dimensional case can be found in the book [298}, Ch. VIIIL

5.6. The one-phase quasilinear contact problem; the pseudoparabolic
inequality.

Let D denote a cylindrical domain in the variables & = (&, &,, ..., £,).

n 2 2, situated in the layer 0 < &, < +1 and let I'; and I'; be the lower and
upper bases of I, respectively; let 'y = D\ {I'; U T's}. We consider the
following setting:

¢ (7)o (T) 2L divy [A(T) grady T) =0 in Dy;
T=Ty4-g(k, 7)/a on 8D, {8D X (0, 7,)};

TE O=T,®, E€D.o

=T, A é}l Ty, cos (N, &)+ %4cos (N, t)=0 on I,,

(5.19)

in which N has the same meaning as in (4.11). Let

[ ToeWi(D), To<To@® <T,in Dy TE=T, in D\D,
g€ Ly (0, 1 Wi (9D)), g.€ L, (0, v; W3 ' (D)),

(5.20) < 0<e<La(T,—Ty);
f=To+g/a for v=0, E€aD; A, c, p€EC(R),

0<e, <A, py €6 <<+ o0, ¢4, cy=const.

Let go(¢, 7) be a harmonic function in & € D taking values T+ g(§, 7)/a on
oD for 0 <1 < 1, and let

1

_ _ [ @)
Q(z—§ A(s)ds/ik(s)ds, B(z)-—o o ds,

F=B1Q T+, ,— 1) xh*(T)[ | A () ds,
0

(5.21)
w=Fi (T) (gv T)= {go(x, '])"‘QIT (gv 'f])]} dT],

T=T,in Q\D,,

[ LA |

K={ve L, (0, 19 W(D)): v2ge—1 ace. in Q}.
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Here the last but one formula plays the role of a change of the unknown in
(5.10). If (T, Z,)is a sufficiently smooth solution of (5.19), then w satisfies
the variational pseudoparabolic inequality

<o

(5.22) [ (Blg—w)~Bw—1, v—w)1,m,dv>0,
forallveK; w,€K, w(z, 0)=0.

Theorem 5.8 [1971. a) If (T, Z)is a classical solution of (5.19), then w in
(5.21) is a solution of the pseudoparabolic inequality (5.22);

b) under the assumptions (5.20), the variational inequality (5.22) has one
and only one solution w; to it there corresponds a generalized solution
(T, Z)of (5.19), where T = F* (), D; = {8, W €Q, T < T}, T € WYQ),
T = f"0+g/0c, and T = f’o for T = 0 in the sense of the theory of traces, and
D, is measurable (a brief account is also given in [199]);

¢) we assume that in addition to the assumptions (5.20) the following are
also satisfied: n = 2, the initial poistion 3y, 4 of the free boundary X, in
D* =D N {z; > 0}is an increasing Cl-curve not intersecting the lower or
upper base of D; Ty € WL(D"), Ty, <0, Ty, > 0 ae. in DY,
g € L0, tos Wi (Ly), 8¢ € Ly(Ty X (0, 1)), where T, is the vertical portion
of the boundary dD; the integral of (g, — grat,) 0n (0, T) is non-positive a.e.
on Ty, x (0, 7o); T = Ty+g/aon Tyand Ty = 0 on the lower base of T;.
Then (5.19) with coefficients N, p, and c independent of T, has a unique
classical solution,and T € C* (D, U Z,), T and 2, are analytic in § and belong
to the second Jevret class in T.

Analogous results have been obtained for the case when instead of the
Dirichlet conditions boundary-value conditions of the second and third kind
are considered. The difference of ¢) from the corresponding assertions of
the preceding sections consists in the fact that another geometry of D is
considered and the free boundary intersects a fixed part of the boundary.

b) can be proved by the method of regularization and is an improvement of
the corresponding result in [280]. We also mention that similar results are
contained in [197] also for the case when the coefficients of the differential
equations depend on the point £ € D (see §6.2). An analogous problem for
the linear equation of heat conduction was considered earlier in [198].

5.7. The implicit function method.
In [284] this method was used to prove the classical solubility of the one-
phase many-dimensional non-stationary Stefan problem in the following
setting:

T.—a*A;T=0, (§ 1)€Dy;

T O)=To(), E€Ds TE D=Tot—e 1)

on Ty > 10, 1,);
=Ty, Oyi—(A*/%,) grady I'-grad; @, =0 on Z,.

(5.23)
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As in §5.5, we assume that the boundary 8D,, , of the initial domain of
disposition of the solid phase D,, , consists of two connected disjoint
manifolds Iy and I'y; I'y, T, € C*. Under certain conditions on Tj and g

the free boundary 21 is diffeomorphic to T’y x [0, 15] for sufficiently small
To >> 0 and can therefore be described by a distance function p of I'; in the
space of the variables £. Correspondingly, the domain D; C £ is diffeomorphic
to D,y o X (0, 1,). A sufficiently narrow strip N, around T, admits a local
coordinate system of class C™ according to the rule & = (w(§), A(§)), where
w(§) €T, is the projection of £ onto I'; along the normal #,, and A(§) is the
distance from I'; along n,,. Now the function ®,(§, 7) in the Stefan
condition (5.23) can be defined as follows: ®4&, 1) = M) — plw(®), 71,

where p € C™ (I'; x [0, 74]). Consequently,

Z"’II = {(§9 T) E No X [0v 1"0]: q)p (Ev t) = 0}’

and the solution of (5.23) is a pair (p, T).

Let €™ (D) = H™ (D) be the ordinary Holder space (see, for example,
{1281, Ch. I, §1). We also consider the weighted Holder space
Cc™ (D % 10, 7,l), r = 0, whose elements have derivatives d3d%f (¢, 7) €
€C (D x 10, 7)) for lal+2a < [r] ([r] is the integral part of r) and have
finite norm | f l¢r; to define it for any integer i 22 0 we denote by (N the
sum of the norms of the derivatives of order lal+ 24 =i in C(D x [0, Tol)
and (for i 2 1) the Holder constants of order 1/2 with respect to 7 of the
derivatives of order lal+2a = i—1; if r is not an integer, then {f), denotes
the sum of the Hélder constants of order r—{r] in ¢ and of order (r—1{r])/2
in 7 of the derivatives of order lal+2a = [r] and the Holder constants of
order (r—[r]+ 1)/2 in 7 of the derivatives of order lal+2a = [r]— 1. Now
for an integer r = 0 we set | f [, equal to the sum of the (f)q for
i=0,1, .., rand in the case of a non-integral r > 0 we also add the
number (/). The spaces C™on manifolds in (§, 7) are defined by means of
partitioning the boundary and the local coordinates.

Theorem 5.9 [284]. Let ro = ny+ &y, ng = 7 an integer, and €, € (0, 1).
We assume that: a)To€ CT D (D, o), g € C739 (T, x 10, 1,1); b) on I

the pair {To, Ty + gla} satisfies the compatibility conditions (1.18) of the
heat | equation for X, = 0, X, = 1 up to the order [(ro+39)/2] 5 ©) TO(E) 2T
on Dy ¢; Totg/a=Tyon Ty x [0, 75]; AT, a; € (0, ); d) TO(.E) satisfies
the compatibility conditions (1.19) up to the order [(ro+39)/2] — 1.

Then for sufficiently small 1o > O there is a pair {(p, T), p €
€ C (T, X [0, Tol), p(&, 0) = 0, T € C» (D), that is the solution of (5.23).

The idea of the technically quite complicated proof is simple. For a
given p there is a unique solution of (5.23) without the last condition. This
solution T, can be obtained by standard methods, for example, those in
[128], if as a preliminary we rewrite the problem in the cylindrical domain
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D, ¢ X [0, 7,l, using the function p(§, 7). The substitution of 7, and the
formula for @, indicated above in the left-hand side of the Stefan problem
(5.23), generate an operator F(p), and the problem itself reduces to the
equation F(p) = 0. An analysis of the solubility of this equation is given in
[310] on the basis the implicit function theorem, more precisely, on its
version in [307]. Theorem 5.9 gives apparently excessive sufficient
conditions for the existence of the (unique) classical solution of (5.23)
locally in 7 up to 7 = 0; that is, in particular, it answers the question left
open in §5.5 on the behaviour of the free boundary as 7 — +0.

5.8. The non-stationary many-dimensional Stefan problem with convection.
Suppose that the boundary dD of the domain D C R3 consists of two
connected manifolds I" and Ty of class H***, 0 < «a < 1, and that T lies
inside the domain with the boundary T'y. Let w = (w;, w,) be any point

of Iy, g(m) the corresponding point of R3, and ;(m) the inward unit normal
to Iy. Let v, be a positive number such that the surfaces

{t = to) =+ Zr_z’(u))?, 0 << 9 < vo} do not have points of self-intersection
and do not intersect I',, We denote by n(w, 7) a tunction in

HE+e G2 [T 50, 1)) , such that n(w, 0) = 0, In(w, 7)< v,. Finally,
let Qq, « be the domain bounded by the planes 7 = 0, 7 = 73 and the surfaces
I x [0, 7], T X [0, Tol, Ty, = {& 1) £ = tlw) + n(o)n(e, 1)}

_, For simplicity we consider the one-phase problem: we look for functions

V(E 1), p(§, 1), T(§, 7) and n(w, 7) defined on Qy, , and Ty, ,,respectively,
satisfying the conditions

3
T AV =3 o= [MD) g ]=0in @n,
k=1
TE 0)=To@¥), 2€D; T=b(, 1) on Tx (0, %); T=T4

Tn, <:
(5.24) on e

- - -

A+ V-V Vp=AV/Re+f(T), divV=0 in Qp «,;

v
V(E 0)=V,(, E€D, V=0 on [Tx (0, )]1UTy, «;

3
xcos (N, t)—A4 21T§k cos (N, &)=0 on Ty,
h=

where N = 1—\7(m. T) is the normal to I'y, ., directed towards the interior of
Q. 1., P is the exposure, and _I; is the velocity of the convective motion. We
assume that N(7) € H¥R?), f(T) € H'(RY), b(E, 1) € H>*® 1+e/2,

Vo € H*%(D), Ty € Hi*a(D), also b(E, 7) = by > 0, MT) € [v, v,

v = const > 0, f,,n |= ag >0 on Iy, and that the compatibility conditions
up to the first order are satisfied (see §1.4).
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Theorem 5.10 [10]. There is a sufficiently small number
To = To(0e, v, | Ty 840, |V, [@+0), | b @+, D) >0,
such that (5.24) has a solution with the properties
N € H2*e G2y x [0, 1,]), N« € H¥e Ma2 (T X [0, T,),
T € H**e +)2@Qy o), Vp € HB.B2 @, ), V € H¥*B. 4002 @, o),
I<B<a<1.

The proof of this theorem relies on the Schauder fixed point theorem.
As in [284], as a preliminary we reduce the proglem to an equivalent one
in a fixed domain D x [0, 7,}; then for a given V', T) we construct the
temperature field 7(&, 7) by the method of [6]; finally, the inverse of the
hydrodynamical part of (5.24) is constructed by devices developed in the
theory of Navier-Stokes systems. As a result, we obtain the classical
solubility of the one-phase Stefan problem with convection locally in the
time variable. The case of the two-phase problem is treated similarly.

The classical local solubility of the many-dimensional problem without
convection in the time variable was established in [141] (proofs are given in
[142]). The approach suggested here is based on the parabolic regularization
of the Stefan condition and fibration into isothermal surfaces (see §4.2).
We mention the paper [147], which is devoted to the one-phase many-
dimensional Stefan problem with constant thermophysical parameters in the
absence of the heat-carrying part of the boundary. The original problem is
reformulated in terms of distinctive ““Lagrange variables”, the linearization
of the problem is studied, etc.

We also mention the papers [251] and [317], which are devoted to non-
stationary Stefan problems in a “finely grained” medium (the statement
dates back to [305]). In these papers e-approximations (for a fixed ¢) of a
periodic ‘“‘grain” are considered and then problems of the passage to the
corresponding limit situation as & — 0 are studied. A one-phase one-
dimensional Stefan type problem has also been considered for a hyperbolic
equation (see [319], 437-450). In conclusion we mention the papers [55]
and [56] in which results concerning the classical solubility of a many-
dimensional multi-phase Stefan problem are announced. The proofs in [57]
are not convinging.
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CHAPTER VI
STABILITY AND STABILIZATION. OPEN QUESTIONS

6.1. L,-stability and L,-stabilization of temperature.

Let D be a domain in the space of the variables &€ = (&, ..., £,), n =2 2,
bounded by disjoint manifolds I'; and T, of class C%**®, « > 0. We consider
the following statement of the Stefan problem:

W= 3 an® o a§,+2b.<§ st OT)

i, k=1

€ neED;, j=1,2

(6.1) A
T=T0+gi(§v T)/a on Ph i=10r2; T(gv O)=T(§)v gED;

n
T=T, 2 (aual§®;, —aulfdy,)=xD, on I,
i, k=1

where ®(¢, 7) > 0 in D,, (¢, 7) <0 in D;, and ®(¢, 7) = 0O on X;. We
assume that: a) the functions a;x, Viam, V2am, b;, Vib, b;, and ¢/ are
continuous in D, ¢/(§) < 0, and that the matrix a; satisfies the condition
of uniform ellipticity with constants u; and u,; b) To+g/a = v, > T, on
Iy x [0, 1], To+g/a <y, <TyonT, x [0, 7], ¥1, ¥2 = const;

¢) To(§) > T, in Dy.q, To(§) < Ty in Dy o, and To(§) = T, only on Z,,; thus,
- 1)’ TO(E) = v3 > Ty. v3 = const in some §-neighbourhood of T'; (i = 1 or 2);
d) To(g’) € C(D) N WD), and there is a function (&, 7) that is Holder
continuous together with Vg, Vip and ¢, in the closed domain £2,

Q=D x (0, 1), and Y = Tp+g/a on 3D x [0, 75] and ¢ = Ty(§) in the
indicated &-neighbourhood of the boundary aD. In the relevant case

H(T) = 0y(T — Tr4y) for Tpyy < T <Tyand H(T) = &y(T — Trm1) + %
for T 2 T,. The generalized solution of (6.1) is defined by menas of an
identity of the form (5.4) with A, replaced by the operator adjoint to the
right-hand side of the first equation in (6.1). We denote by M the set of
pairs (g, T) satisfying the conditions listed above with fixed constants

Y1, Ya. ¥3. 8 and A = max |Tyl+ max lgl. Next, we denote by g..(§) a
function from C**2(dD) that is positive on I'; and negative on I',, and we
consider the function w(§) defined by the conditions

n

(6.2) S aw(®) ag aéh +2, by (8) o ag = tc(E, w)w=0 in D,

i, k=1
W=foo (E) for §€aD,
where (& w) = CU(§) for w < T} and c(§, w) = C¥¥) for w > T;.
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Theorem 6.1 [269]. a) Under the assumptions made above there is a
constant B depending only on the class M, the constants &', a¥, %y, iy, Hgy To
and the least upper bounds of the norms of the coefficients of (6.1) such
that

T —T 0y <B{N To—To oy + | =P by +
+ 1l Vv — ey Lo}

2e

6.3 | 1T=Tihe<B{If=Tollo+ § 1§ [(—¥)2+

+ |Veb — Ve 2] dE d +

[

{ le—gr+ Vg —vigltl doyar},
8D

0 << 2e < 71y,

where (g, To) and (Z;, 70) are arbitrary elements of M and T and T are the
corresponding generalized solutions of (6.1), e is fixed,

b) we assume in addition that the assumptions made earlier are satisfied
up to 179 = %0 and that ¢’(x) =0 (i = 1 or 2) and g(§, 1) are bounded on
0D x [0, o0) together with their first derivatives and the Hélder constant of
Vig(E, ©) with respect to the argument ¢ € 3D,

64 N=| Y [(§ — 8=)? + | V18 — Vg |2] dog dT <<+ 00,
e oD

_\ S lgxldog dv << oo}
0 4D
then

©5 [ [Ir¢E o—werdadas

D

<B{N+1lw®—To® i+

S 8
0
m

D Cnmmy

[ lw—v2+ v — vl de e},
D

where B has the same properties as in a);
¢) for n 2 2 and p < 2n/(n—2) L,-stabilization holds:

(6.6) (1T@ n—v@Prd—>0 a 1o,

b
and for n = 1 the convergence T(§, 1) = w(§) as T = o is uniform in ¢ € D.

In particular, T can be a classical solution of (6.1) (under certain
conditions from the preceding chapter) and then (6.3) gives estimates for the
deviation from its generalized solution T corresponding to the approximate
initial data. These estimates also imply the uniqueness of generalized
solutions and if g does not depend on 7(g =g..), then, by (6.5), T(¢, 7) = w(§)
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identically, (¢, 7) € D x (0, 75). Theorem 6.1 admits generalizations to the
case of a quasilinear energy equation for a multi-phase problem in domains
with an aribtrary number of boundary manifolds I';, and to more general
boundary conditions of the form (1.8), etc. ([269], §6, see also [274],
Ch. 5, §10). When the results of §3.5 are taken into account, it seems
plausible that Theorem 6.1 also holds when there is a separate energy
equation in each phase. We also mention that in [311] the L,-continuous
dependence of the generalized solution on the initial data is also established
for a general quasilinear two-phase Stefan problem with a non-linear
boundary condition within the framework of being L ,well-posed in the
sense of Hadamard.

6.2. W!-stabilization of temperature and mes-stabilization of the phase in a
one-phase contact problem,
Let D be the same domain as in §5.6. We consider the setting

ar . .
T divg [4 () grady T} =0 in Dy;
T'=Ty on I''x|{0, %), T=Ty+g(§ t)/o on Ty x [0, 7], or
AT -n+a () [T—To)=0 on Ty, , X [0, 15], AViT-n=0
(6.7) on @D, T X [0, Tol;
=T, Z‘ ATy, cos (N, )+ %ycos (N, 1)=0 on Z,,

4

» =

TE 0=To(®), €Dy,

Here A is a given uniformly positive definite symmetric matrix. We assume
that

F,®ewWiD), To<T® <7, in Dy.o, To® =T, in D\D,,;
a®)>a>0 on T,UTy; gE 7)€L, (0, 1 Wi (9D)),
0<g & W<a(T,—T,), g 0)=0 onT,NTy;
To@®)=To+g(E v)/a for 1=0, E€T,, To@®) =T, for EET,

(6.8)

and we introduce the notation

wE V=—{TEodo, v& H=wE /%
0

6.9) | (42, v)=| Aviz-vwdt+ S @ (8 zvds for all z, v € W (D);

D 8D

b

P =" ({lz+71 -G+, 1= ~To® —x 1= yp, , (B
D
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K = WX(D) in the case of Dirichlet conditions or
K={z: 2€Wi(D), z=—TyvonT, z=—Ton Ty,

T

z2= —TOT——;' S g(g’ O)dG on r2}7
0

where @(§) = 0 in the first case and @(¢) = a(§) on I UT,, &) =0on Ty
in the second case.

Theorem 6.2 [197]. a) If (T, Z,)is a classical solution of (6.7), then
w(0) = 0 and

(6.10) (wyy z— W)Ly + (AW, 2—w)+ ¥ (2)—Y (W) = (f, z—W)L.D)
forall zeK

almost everywhere on (0, 19); under conditions (6.8) this inequality has one
and only one solution w(r) € K, w(0) = 0, which is, by definition, a
generalized solution of (6.7);

b) the generalized solution of (6.7) has the following properties:
T 1) € Lo(D x (0, 19)), To < T(§ 1) < Ty almost everywhere, and the
domain D, . occupied by the solid phase is monotone expanding (generally
speaking, in the wide sense of the word) as 7 increases;

c) in the case of a boundary condition of the third kind the generalized
solution (T, Z,) of (6.7) has the properties

x
(6.11) mes (D\D,, ) = O (v°3), “ = § T¢ 0)do—T, Hwéw) — 0 (-1);
d) suppose that T.(§) is a solution of the Dirichlet problem
(6.12) divg [A(E) gradg Tl = 0in D, T = Ty+ g«(E) on 6D,
and that
1 ¢ :
(6.13) v(»c)—_—”E i g, 0)do—ge ”Wé,z(w)—»o as T oo.
Then
T
619 |76 @ do-Te @, =0y

if g.(§) = —T1+d almost everywhere on oD for some constant d > 0, then

(6.15) mes (DN\D,, ) = O(z-2 + v(1)).

We also mention that w(§, 7) satisfies the energy equation in (6.7) almost
everywhere in Dy, and in the case of heat exchange also the conditions in
the third line of (6.7) almost everywhere on 0D x (0, 7y). Moreover, a
sufficient condition for (6.13) is that g(§, 7) = ag.(§) in W;/2 (D) as 7 — oo.
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6.3. Stabilization of temperature and of a free boundary in the uniform

metric.

Suppose again that the geometry of D is the same as in §5.6. We consider

the setting (in the dimensionless case):

YW u—Au+a@w)=0 in Dyc DX (0, o)) (i=1 or 2);

u(z, 0)=uy(z), z€D; u,(z, t)=0 on I, x [0, oo);

u(@',0,t)=f(,1), (2, t)eT x[0,0);u(z,1,t)=F (1),
(z', t) €T3 X [0, oo);

0<u(z, t)<<1 on D,\3,, u(z, t)>1on D,\Z;

u=1, uz—ut=Axg,/V 1+ V.92 on Z;: z,=¢(z, ).

(6.16)

We assume that o(u) and y(u) are continuously differentiable functions of
u € [0, ) and that uy(x) and f;(x’, ¥) (i = 1 or 2) are continuous and
satisfy the compatibility conditions guaranteeing the existence of a classical
solution of (6.16) for t € [0, %), and that

0<uo ()<<t in Dy, up(z)>1 in Dy o\Zy, 05

0<fy (&, )<<, (&, ) €T X [0, o0); fo(a, 1) > 1,

(6.17) (z', t) €T3 x [0, o0);
y(u)=v>0, ¢ ©=0, a(0)=0, A>0;

fo(2', )0, f,(z', t)>p>1 as it — oo, uniformly in z’.

We also consider the corresponding one-dimensional stationary problem:
Ver—a (V) =0, z€(0, 1), z7=h,€(0,1);

v(0)=0, v({)=p, 0<v <<t on [0, &),

v>1 ma (hp, 1)];

vE(hp)=1, vi(hp)—vi(h,)=0

(6.18)

and we write U (Z) = v(z,), 2y e %, = hp.

Theorem 6.3 [24]. a) The stationary problem (6.18) has one and only one
solution (v. hp); if (u, Z,)is a classical solution of (6.16), then it tends to
Uy B, &), uniformly in x and x', respectively, as t — oo,
b) suppose that for some constants A > 0, £ >0
[ file’, &) | << Ae vt [f,@", t) —p [ < Aewt, £2>0.
Then there are positive constants B, B', v, v' such that
6.19 2, {(z, t): |z, —hy| << Be-vt, t>=0},
(6-19) { [u(z, t)—uw(z)|<Bevt, z€D, t>0;

¢) a similar statement holds if e~wtis replaced by (1 4+ ).
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Earlier studies dealt with the process of exit of a non-stationary solution
to a quasistationary regime [17] and also with the case of a general one-
dimensional quasilinear problem [18], [22]. Closely related problems were
treated in {191, [21], and [23]. We also mention the papers [28] and
[29], in which the problem of the stabilization in the uniform metric of the
solution of a one-dimensional Stefan problem was studied on a finite interval
0 < x <! when Neumann conditions are prescribed at the end-points and
the conditions of isothermality have the form (1.12) with a right-hand side
independent of 7.

In the case of infinite domains D the free boundary may move away to
infinity. Such a one-dimensional problem concerning the freezing of soil
was already considered in Stefan’s paper [329]. For general one-phase
problems in the half-space x = 0 for the equation of heat conduction with a
Neumann condition at the end-point x = 0, the asymptotic behaviour of the
free boundary was described in [200], Ch. VIII, §3 (see also {269], §7).
In [69] conditions are investigated for the free boundary to move to
infinity for a general linear one-dimensional parabolic equation on the entire
axis. The situation can change if not the temperature, but rather the heat
flow has positive values at infinity ([73], [98], [180], etc.).

The stability and stabilization in the neighbourhood of a stationary
solution in Hélder spaces are considered in [5], [144].

6.4. Stability of the Stefan problem with convection.

We consider a two-phase problem with spherical symmetry, when D is the
layer Ry < r < R, %, can be represented by spherical coordinates (r, p, 8) in
the form r = Y(p, 0, 7) € (Ry, R), and (1.8) reduces to the spedification of
constant temperatures T, < T3, Ty > T, for r = Ry and r = R, respectively.
We take the energy equation in the liquid phase in the form (1.17) with
constants p, ¢, and A and f = 0, and in the solid phase in the form of the
homogeneous equation of heat conduction. Convection is described by (1.5)

and the system (1.4) with the right-hand side {—Vp + plvw + vAf’]},
where w = —gr is the potential created by the relevant heat-conducting mass.
On the unknown boundary X, the conditions (1.9) of isothermality and
Stefan’s condition (1.10) must be satisfied and also the condition of

adhesion for r = R and the vanishing of the tangential components of Z, on

V.. For the unknown T=, I-;, p, and X, ., the corresponding initial data are
also prescribed. Here only on the right-hand side of the equations of
motion Vw we put p = p(T) = p*[1— T+~ T,)], where a = const is the
coefficient of expansion, and in all remaining cases p = p™.

The problem in question has a spherically symmetric stationary solution
in the absence of mixing in the liquid phase. The original problem can be
linearized in the neighbourhood of this solution; from the resulting linear
problem the time 7 can be eliminated by means of the exponential function.
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The spectral problem thus obtained can then be studied by the method of
separation of variables. As a result of this analysis, the following assertion
is obtained.

Theorem 6.4 [99). Let p™ = p~. Then the spectrum of the corresponding
spectral problem is located inside the left half-plane; in other words, the
original non-stationary Stefan problem with convection is stable in the linear
approximation as T = oo,

Stability in the planar case and in the case of cylindrical symmetry was
considered in [126] and [127].

6.5. Some unsolved problems.

1. To develop a general theory of an integro-differential equation of the
form (2.13) and, by the same token, to give an analysis of the corresponding
Cauchy problem equivalent to the non-stationary Stefan problem.

2. To study many-dimensional ‘“‘piecewise continuous’ statements where
the initial data are not continuous (see §2.3) and the boundary of the
relevant domain is not smooth. So far in this direction only simplified
formulations (the model of ““fine hell”’) have been studied ([78], [79], etc.).

3. To give a complete analysis of many-dimensiona! statements of the
inverse Stefan problem (see § §1.7 and 3.3) and to work out methods for
approximate and numerical solutions.

4. To study the boundary properties of the phase interfaces in the many-
dimensional non-stationary contact Stefan problems (compare with §3.2).

5. In the statement of the Stefan problem, to take account of both
forced and natural convection caused by the Archemedean forces, the
dependence of the density of the medium on the phase (‘‘contraction’), etc.

6. To lay the foundations of a calculus of variations “in the large” for
many-dimensional integral functionals of the form (4.2) with a variable
domain of integration (on the two-dimensional case, see [72], [256]) and
to work out methods of search for their critical points.

7. To study problems of Stefan type with all possible combinations of
equations of elliptic, parabolic, and hyperbolic types in the various phases
(see §1.5 and [319], 437).

8. To study stability and stabilization problems of solutions of the
Stefan problem in many-dimensional statements in Holder function spaces,
among them cases when a solution does not exist or is not unique in the
limit case (§3.1, [82]).

9. To find methods of numerical and approximate solutions of many-
dimensional Stefan problems in cases when the existence of a classical
solution has been established.

10. The mathematical modelling of processes of phase change during
simultaneous heat and mass exchanges goes beyond the scope of this survey.
However, we mention it here as a problem of great theoretical and practical
significance.
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