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Two-dimensional Dirac operator and the theory of surfaces

I. A. Taimanov

Abstract. A survey is given of the Weierstrass representations of surfaces
in three- and four-dimensional spaces, their applications to the theory of
the Willmore functional, and related problems in the spectral theory of the
two-dimensional Dirac operator with periodic coefficients.
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§ 1. Introduction

In this paper we survey some results and problems relating to global representa-
tions of surfaces in three- and four-dimensional spaces in terms of solutions of the
Dirac equation and to the Willmore functional and its generalizations.

This activity started ten years ago [1]. Under this approach, the Gauss map of
a surface is represented in terms of solutions ψ of the Dirac equation

Dψ = 0,

where D stands for the Dirac operator with potentials:

D =
(

0 ∂

−∂ 0

)
+
(
U 0
0 V

)
.

This representation has different forms for surfaces in R3. However, in the above
explicit form involving the Dirac equation, the representation was first written out
in [2] to construct surfaces admitting soliton deformations (also introduced in [2]).

The appearance of an operator with a well-developed spectral theory made it
possible to use this theory to study problems in the global theory of surfaces.
Moreover, this approach explains the importance of the Willmore functional, since,
up to a factor, this functional is the squared L2-norm of the potential U = V = U
of the operator D for surfaces in R3 [1].

The approach to the proof of the Willmore conjecture for tori proposed in [1]
and [3] and based on the theory of spectral curves (at some energy level) [4] led to
a very interesting paper by Schmidt [5], where substantial progress was achieved.
However, the conjecture remained unproved.

In this case a spectral curve of the operator D with doubly periodic potentials
leads to the notion of spectral curve of a torus in R3 [3], and the latter curve encodes
a lot of information about the geometry of the surface.

Another approach to obtaining lower bounds for the Willmore functional involved
methods of the inverse scattering problem and algebraic geometry of curves and led
to estimates that are quadratic with respect to the dimension of the kernel of D .
Estimates of this kind were first obtained for spheres of revolution and some of their
generalizations and conjectured for all spheres in [6] using the inverse scattering
problem. These estimates were proved in full generality for surfaces of all genera
in [7], where the theory of algebraic curves was applied to the theory of surfaces in
a surprising and unusual way.

This representation was later extended to surfaces in R4 ([8], [9]) and to Lie
groups of dimension three ([10], [11]). In [12] and [7] it was proposed to consider
the representations of surfaces in R3 and R4 in the conformal setting from the very
beginning. However, the analogues of the Willmore functional for non-commutative
non-compact three-dimensional groups acquire the form∫ (

αH2 + βK̂ + γ
)
dµ,
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where H is the mean curvature, K̂ is the sectional curvature of the ambient space
along the tangent plane to the surface, and dµ is the induced measure on the surface.
We note that functionals of similar form,∫ (

αH2 + βK + γ
)
dµ,

are widely known in physics as Helfrich functionals [13] (see also, for instance, [14]
and [15]). Even for surfaces in R3, these functionals are not conformally invariant
for values of α, β, γ in general position. Here the term containing the Gaussian
curvature K cannot be reduced to a topological term for surfaces with boundaries,
which are of interest for physical applications.

Although up to now these representations have been mainly applied to problems
related to the Willmore functional and its generalizations, we are sure that the
representations can be effectively used to study other problems of the global theory
of surfaces.

§ 2. Representations of surfaces in three- and four-dimensional spaces

2.1. Generalization of the Weierstrass formula for surfaces in RRR3. The
Grassmann manifolds (Grassmannians) of oriented two-dimensional planes in Rn
are diffeomorphic to quadrics in CPn−1.

Indeed, let us take a two-dimensional plane and choose a positively oriented
orthonormal basis u = (u1, . . . , un), v=(v1, . . . , vn) in it, that is, |u|= |v|, (u, v)=0.
This basis is determined by a vector y = u+ iv ∈ Cn such that

y2
1 + · · ·+ y2

n = [(u, u)− (v, v)] + 2i(u, v) = 0.

The plane determines such a basis up to a rotation of the plane by an angle ϕ,
0 6 ϕ 6 2π, and this results in the transformation y → reiϕy. Therefore, the
Grassmannian G̃n,2 of oriented two-dimensional planes in Rn is diffeomorphic to
the quadric

y2
1 + · · ·+ y2

n = 0, (y1 : . . . : yn) ∈ CPn−1,

where (y1 : . . . : yn) are homogeneous coordinates in CPn−1. The Grassmannian
Gn,2 of unoriented two-dimensional planes in Rn is the quotient space of the mani-
fold G̃n,2 with respect to the free action of the antiholomorphic involution y → y.

For a given immersed surface

f : Σ → Rn

with a (local) conformal parameter z the Gauss map of this surface is

Σ → G̃n,2 : P → (x1
z(P ) : . . . : xnz (P )),

where x1, . . . , xn are the Euclidean coordinates in Rn and P ∈ Σ.
There are only two cases in which the Grassmannian admits a rational parametri-

zation, namely, the manifolds

G̃3,2 = CP 1 and G̃4,2 = CP 1 × CP 1

admit Weierstrass representations of surfaces.
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Let us first consider surfaces in R3.
The Grassmannian G̃3,2 is the quadric

y2
1 + y2

2 + y2
3 = 0,

which admits the following rational parametrization:1

y1 =
i

2
(b2 + a2), y2 =

1
2
(b2 − a2), y3 = ab, (a : b) ∈ CP 1.

We write
ψ1 = a, ψ2 = b,

and substitute these expressions into the formulae for xkz = yk, k = 1, 2, 3. Since
xk ∈ R for any k, we have

Imxkzz̄ = 0, k = 1, 2, 3.

In terms of ψ this condition becomes the Dirac equation

Dψ =
[(

0 ∂

−∂ 0

)
+
(
U 0
0 U

)](
ψ1

ψ2

)
= 0, U = U. (1)

Moreover, if for a complex-valued function f we have Im fz̄ = 0, then locally we
have f = gz, where g is a real-valued function of the form

g =
∫

[Re f dx− Im f dy].

We have the following theorem.

Theorem 1. 1) [2] If ψ satisfies the Dirac equation (1), then the formulae

xk = xk(0) +
∫

(xkz dz + xkz dz̄), k = 1, 2, 3, (2)

where
x1
z =

i

2
(ψ2

2 + ψ2
1), x2

z =
1
2
(ψ2

2 − ψ2
1), x3

z = ψ1ψ2 (3)

define a surface in R3.
2) [1] Every smooth surface in R3 is locally defined by formulae of the form (2)

and (3).

The proof of the second statement is given above, and the proof of the first
statement is as follows: by the Dirac equation, the integrands in (2) are closed
forms and, by the Stokes theorem, the values of the integrals do not depend on the
choice of a path in a simply connected domain in C.

This representation of a surface is called a Weierstrass representation. For U = 0
it reduces to the classical Weierstrass (or Weierstrass–Enneper) representation of
minimal surfaces.

The following proposition is derived by straightforward computations.
1This is well known in number theory as the Lagrange representation of all integer solutions

of the equation x2 + y2 = z2.
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Proposition 1. If Σ is a surface defined by the formulae (2) and (3), then :
1) z is a conformal parameter on the surface, and the induced metric has the

form
ds2 = e2α dz dz̄, eα = |ψ1|2 + |ψ2|2;

2) the potential U of the Dirac operator is equal to

U =
Heα

2
,

where H is the mean curvature,2 that is, H =
κ1 + κ2

2
, where κ1 and κ2 are the

principal curvatures ;
3) the Hopf differential is equal to Adz2 = (fzz, N) dz2 and

|A|2 =
(κ1 − κ2)2e4α

16
, A = ψ2∂ψ1 − ψ1∂ψ2;

4) the Gauss–Weingarten equations become[
∂

∂z
−
(
αz Ae−α

−U 0

)]
ψ =

[
∂

∂z̄
−
(

0 U
−Ae−α αz̄

)]
ψ = 0;

5) the Gauss–Codazzi equations of the form

Az̄ = (Uz − αzU)eα, αzz̄ + U2 −AAe−2α = 0

are the compatibility conditions for theGauss–Weingarten equations, and theGauss-
ian curvature is K = −4e−2ααzz̄ .

It can readily be seen that if ϕ satisfies the Dirac equation (1), then the vector
function ϕ∗ defined by the formula

ϕ =
(
ϕ1

ϕ2

)
→ ϕ∗ =

(
−ϕ2

ϕ1

)
, (4)

also satisfies the Dirac equation.
Let us identify the space R3 with the linear space of 2×2 matrices spanned (over

the field R) by the matrices

e1 =
(

0 −i
i 0

)
, e2 =

(
0 −1
1 0

)
, e3 =

(
−1 0
0 1

)
.

We have the following orthogonal representation of SU(2) on R3:

ek → ρ(S)(ek) = S
>
eiS = S∗ekS, k = 1, 2, 3,

S =
(
λ µ

−µ λ

)
∈ SU(2), that is, |λ|2 + |µ|2 = 1,

which can be factorized through SO(3) = SU(2)/{±1}. The following lemma is
proved by straightforward computations.

2We note that the normal vector N satisfies the equation

∆f = 2HN,

where ∆ = 4e−2α∂∂ is the corresponding Laplace–Beltrami operator on the surface.
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Lemma 1. If a surface Σ is given by a vector function ψ by the Weierstrass
representation, then :

1) the function λψ+µψ∗ defines the surface obtained from Σ by the transforma-
tion ρ(S) of the ambient space R3;

2) the function λψ with λ ∈ R defines the image of Σ under the homothety
x→ λx.

Remark. The formulae (1) and (3) were introduced in [2] to construct surfaces
admitting soliton deformations described by the modified Novikov–Veselov equa-
tion (the mNV equation). These formulae originate from complex-valued formulae
derived for other reasons by Eisenhart [16]. A similar representation for CMC
surfaces (surfaces of constant mean curvature) in terms of the Dirac operator was
proposed in 1989 by Abresch (at his talk in Luminy). It was very soon under-
stood that these formulae give a local representation of a general surface (see [1];
while in the above proof we followed the paper [10], another proof was later
given in [17], and from the physical point of view the representation was also
described in [18]). Moreover, this representation turned out to be equivalent to the
Kenmotsu representation [19], which does not involve the Dirac operator explicitly.

2.2. Global Weierstrass representation. The global Weierstrass representa-
tion of closed surfaces was introduced in [1]. For this it was necessary to use special
ψ1-bundles over surfaces and consider the Dirac operator defined on sections of the
bundles. Furthermore:

a) the Willmore functional arises as the integral of the squared norm of the
potential U , and the conformal geometry of a surface is connected with
the spectral properties of the corresponding Dirac operator;

b) as was proved in [1], the tori are deformed into tori by the flow determined by
the modified Novikov–Veselov equation, and this flow preserves the Willmore
functional, therefore, the moduli space of immersed tori can be embedded in
the phase space of an integrable system for which the Willmore functional is
an integral of motion.

By the uniformization theorem, any closed oriented surface Σ is conformally
equivalent to a surface Σ0 of constant sectional curvature, and any choice of a
conformal parameter z on Σ determines an equivalence Σ0 → Σ of this kind.

Since the quantities

ψ
2

2 dz, ψ2
1dz, ψ1ψ2dz, e2α dz dz̄, H = 2Ue−α

are defined globally on the surface Σ0, this leads to the following description.

Theorem 2 ([1], [6]). Every oriented closed surface Σ immersed in R3 admits a
Weierstrass representation of the form (2), (3), where ψ is a section of some bun-
dle E over a surface Σ0 conformally equivalent to Σ which has constant sectional
curvature, and Dψ = 0. Moreover:

1) if Σ = C ∪ {∞} is a sphere, then ψ and U , which are defined on C, can be
extended to a neighbourhood of the point at infinity by the formulae

(ψ1, ψ2) → (zψ1, zψ2), U → |z|2U for z → −z−1, (5)
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and U has at infinity the asymptotic behaviour

U =
const
|z|2

+O

(
1
|z|3

)
as z →∞;

2) if Σ is conformally equivalent to a torus Σ0 = R2/Λ, then

U(z + γ, z̄ + γ) = U(z, z̄), ψ(z + γ, z̄ + γ) = µ(γ)ψ(z, z̄) for any γ ∈ Λ,

where µ ∈ {±1} is the group character Λ → {±1} giving the bundle

E
C2

−→ Σ0

of which the vector function ψ = (ψ1, ψ2)⊥ is a section ;
3) if Σ is a surface of genus g > 2, then Σ0 = H /Λ, where H is the Lobachevskii

upper half-plane and Λ is a discrete subgroup of PSL(2,R) that acts on H =
{Im z > 0} ⊂ C by the formula

z → γ(z) =
az + b

cz + d
,

(
a b
c d

)
∈ SL(2,R),

and here the ψ-bundle

E
C2

−→ Σ0

is given by the monodromy rules

γ : (ψ1, ψ2) → (cz + d)(ψ1, ψ2) (6)

and
U(γ(z), γ(z) ) = |cz + d|2U(z, z̄).

The bundle E splits into a sum E = E0 ⊕ E0 of two conjugate bundles, and ψ1

and ψ2 are sections of E0 and E0, respectively.

Since PSL(2,R) = SL(2,R)/{±1}, any element γ ∈ PSL(2,R) defines a mon-
odromy up to a sign. A similar situation holds for a torus. For this reason, the
bundles E are called spin bundles.

The potential U is fixed if a conformal parameter on Σ is given, and U gives the
potential of the representation. Moreover, we have

W (Σ) = 4
∫

Σ

U2 dx ∧ dy.

Every section ψ ∈ Γ(E) such that Dψ = 0 determines a surface which is non-closed
in the general case and has only a periodic Gaussian map. In this case the Weier-
strass formulae define an immersion of the universal covering space Σ̃ of the sur-
face Σ. The following proposition lists the cases in which this immersion can be
factorized through an immersion of the corresponding compact surface.
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Proposition 2. The Weierstrass representation defines an immersion of the
compact surface Σ if and only if∫

Σ0

ψ
2

1 dz̄ ∧ ω =
∫

Σ0

ψ2
2 dz̄ ∧ ω =

∫
Σ0

ψ1ψ2 dz̄ ∧ ω = 0 (7)

for any holomorphic differential ω on Σ0.

We see that corresponding to any immersed torus Σ ⊂ R3 with a fixed conformal
parameter z is the Dirac operator D with doubly periodic potential

U = V =
Heα

2
,

where H is the mean curvature and e2α dz dz̄ is the induced metric.

2.3. Surfaces in three-dimensional Lie groups. For surfaces in Lie groups of
dimension three the Weierstrass representation can be generalized as follows.

Let G be a three-dimensional Lie group with a left-invariant metric and let

f : Σ → G

be an immersion of a surface Σ in G. We denote by G the Lie algebra of G. Let
z = x+ iy be a conformal parameter on the surface.

We consider the pullback of the tangent bundle TG to a G -bundle over Σ, G →
E = f−1(TG) π→ Σ, and the differential

dA : Ω1(Σ;E) → Ω2(Σ;E),

which acts on the E-valued 1-forms,

dA ω = d′A ω + d′′A ω,

where ω = u dz + u∗ dz̄ and

d′A ω = −∇∂fu dz ∧ dz̄, d′′A ω = ∇∂fu
∗ dz ∧ dz̄.

By straightforward computations we obtain the first derivational equation

dA (df) = 0. (8)

The tension vector τ(f) is determined from the equation

dA (∗df) = f · (e2ατ(f)) dx ∧ dy =
i

2
f · (e2ατ(f)) dz ∧ dz̄,

where f · τ(f) = 2HN , N is the normal vector, and H is the mean curvature. This
gives the second derivational equation,

dA (∗df) = ie2αHN dz ∧ dz̄. (9)

Since the metric is left invariant, we can rewrite the derivational equations in
terms of the functions

Ψ = f−1∂f, Ψ∗ = f−1∂f
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as follows:
∂Ψ∗ − ∂Ψ +∇ΨΨ∗ −∇Ψ∗Ψ = 0, (10)

∂Ψ∗ + ∂Ψ +∇ΨΨ∗ +∇Ψ∗Ψ = e2αHf−1(N). (11)

The equation (10) is equivalent to the equation (8) and the equation (11) to the
equation (9).

Let us take an orthonormal basis e1, e2, e3 in the Lie algebra G of the group G
and decompose the functions Ψ and Ψ∗ with respect to this basis:

Ψ =
3∑
k=1

Zkek, Ψ∗ =
3∑
k=1

Zkek.

The equations (10) and (11) become∑
j

(∂Zj − ∂Zj)ej +
∑
j,k

(ZjZk − ZjZk)∇ejek = 0, (12)

∑
j

(∂Zj + ∂Zj)ej +
∑
j,k

(ZjZk + ZjZk)∇ejek

= 2iH
[
(Z2Z3 − Z2Z3)e1 + (Z3Z1 − Z3Z1)e2 + (Z1Z2 − Z1Z2)e3

]
. (13)

We assume here that the basis {e1, e2, e3} is positively oriented, and therefore

f−1(N) = 2ie−2α
[
(Z2Z3 − Z2Z3)e1 + (Z3Z1 − Z3Z1)e2 + (Z1Z2 − Z1Z2)e3

]
(this formula becomes f−1(N) = 2ie−2α[Ψ∗,Ψ] for G = SU(2) with the Killing
metric). Since the parameter z is conformal, we obtain

〈Ψ,Ψ〉 = 〈Ψ∗,Ψ∗〉 = 0, 〈Ψ,Ψ∗〉 =
1
2
e2α,

which can be rewritten as

Z2
1 + Z2

2 + Z2
3 = 0, |Z1|2 + |Z2|2 + |Z3|2 =

1
2
e2α.

Hence, as in the case of surfaces in R3, the vector Z is parametrized in terms of ψ
as follows:

Z1 =
i

2
(ψ2

2 + ψ2
1), Z2 =

1
2
(ψ2

2 − ψ2
1), Z3 = ψ1ψ2. (14)

We show how to recover a surface from a vector function ψ satisfying the deriva-
tional equations (10) and (11). In the case of non-commutative Lie groups this
recovery cannot be achieved by using integral Weierstrass formulae.

Let ψ be defined on a surface Σ with a complex parameter z and let Ψ be
constructed from ψ and satisfy the equations (10) and (11). Let P ∈ M . We
substitute ψ into the formula (14) for the components Z1, Z2, Z3 of the vector
Ψ =

∑3
k=1 Zkek = f−1∂f and solve the linear equation

fz = fΨ
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in the Lie group G with the initial data f(P ) = g ∈ G. Thus, we obtain the desired
surface as the map

f : Σ → G.

For the group R3 a solution of the equation is given by the Weierstrass formulae (2)
and (3).

It is clear from the proof of the equations (10) and (11) that every surface Σ
in G can be constructed by this procedure, which is just the generalized Weierstrass
representation for surfaces in Lie groups. In this case we say that the function ψ
generates the surface Σ.

We write the derivational equations (10) and (11) in terms of ψ. These equations
can be represented as the Dirac equation,

Dψ =
[(

0 ∂

−∂ 0

)
+
(
U 0
0 V

)]
ψ = 0, (15)

the induced metric is given by the same formula,

ds2 = e2α dz dz̄, eα = |ψ1|2 + |ψ2|2,

and the Hopf differential Adz2 is equal to

A =
(
ψ2∂ψ1 − ψ1∂ψ2

)
+
(∑
j,k

ZjZk∇ej
ek, N

)
.

For any compact Lie group equipped with the Killing metric (in particular, for
G = SU(2)) we have ∇ejek = −∇ek

ej , and the Hopf differential has the same form
as for surfaces in R3, that is, A = ψ2∂ψ1 − ψ1∂ψ2.

We consider three-dimensional Lie groups with Thurston’s geometries. Let us
recall that, by Thurston’s theorem ([20], [21]), the three-dimensional maximal sim-
ply connected geometries (X, IsomX) admitting compact quotients can be listed
as follows:

1) the geometries of constant sectional curvature, X = R3, S3, and H3;
2) two product geometries, X = S2 × R and H2 × R;
3) three geometries modelled on Lie groups, Nil, Sol, and S̃L2, with some

left-invariant metrics.
The group R3 with Euclidean metric was already treated above. Hence, it

remains to consider the following four groups:

SU(2) = S3, Nil, Sol, S̃L2,

where Nil is a nilpotent group, Sol is a soluble group, and S̃L2 is the universal
covering group of SL2(R),

Nil =


1 x z

0 1 y
0 0 1

 , Sol =


e−z 0 x

0 ez y
0 0 1

 ,

x, y, z ∈ R.
The case G = SU(2) was studied in [10] and the surfaces in the other groups

were treated in [11], with the following results.
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a) G = SU(2):

U = V =
1
2
(H − i)(|ψ1|2 + |ψ2|2),

the Gauss–Weingarten equations are[
∂

∂z
−
(
αz Ae−α

−U 0

)]
ψ =

[
∂

∂z̄
−
(

0 U
−Ae−α αz̄

)]
ψ = 0,

and their compatibility conditions (that is, the Gauss–Codazzi equations)
become

αzz̄ + |U |2 − |A|2e−2α = 0, Az̄ = (Uz − αzU)eα,

where Adz2 is the Hopf differential,

A = ψ2∂ψ1 − ψ1∂ψ2.

b) G = Nil:

U = V =
H

2
(|ψ1|2 + |ψ2|2) +

i

4
(|ψ2|2 − |ψ1|2),

the Gauss–Weingarten equations are[
∂

∂z
−
(
αz − i

2ψ1ψ2 Ae−α

−U 0

)]
ψ = 0,[

∂

∂z̄
−
(

0 U

−Ae−α αz̄ − i
2ψ1ψ2

)]
ψ = 0,

and the Gauss–Codazzi equations become

αzz̄ − |A|2e−2α +
H2

4
e2α =

1
16

(3|ψ1|4 + 3|ψ2|4 − 10|ψ1|2|ψ2|2),

Az̄ −
Hz

2
e2α +

1
2
(|ψ2|4 − |ψ1|4)ψ1ψ2 = 0,

where the Hopf differential is

A = (ψ2∂ψ1 − ψ1∂ψ2) + iψ2
1ψ

2

2.

c) G = S̃L2:

U =
H

2
(|ψ1|2 + |ψ2|2) + i

(
1
2
|ψ1|2 −

3
4
|ψ2|2

)
,

V =
H

2
(|ψ1|2 + |ψ2|2) + i

(
3
4
|ψ1|2 −

1
2
|ψ2|2

)
,

the Gauss–Weingarten equations are[
∂

∂z
−
(
αz + 5i

4 ψ1ψ2 Ae−α

−U 0

)]
ψ = 0,[

∂

∂z̄
−
(

0 V

−Ae−α αz̄ + 5i
4 ψ1ψ2

)]
ψ = 0,
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and the Gauss–Codazzi equations become

αzz̄ − e−2α|A|2 +
1
4
e2αH2 = e2α − 5|Z3|2,

∂

(
A+

5Z2
3

2(H − i)

)
=

1
2
Hze

2α + ∂

(
5

2(H − i)

)
Z3

2,

where the Hopf differential is

A = (ψ2∂ψ1 − ψ1∂ψ2)−
5i
2
ψ2

1ψ
2

2.

d) G = Sol: we consider only domains such that Z3 = ψ1ψ2 and for which

U =
H

2
(|ψ1|2 + |ψ2|2) +

1
2
ψ

2

2

ψ1

ψ1
,

V =
H

2
(|ψ1|2 + |ψ2|2) +

1
2
ψ

2

1

ψ2

ψ2
;

the Gauss–Weingarten equations are formed by the Dirac equation and the
system

∂ψ1 = αzψ1 +Ae−αψ2 −
1
2
ψ

3

2, ∂ψ2 = −Ae−αψ1 + αz̄ψ2 −
1
2
ψ

3

1,

and the Gauss–Codazzi equations become

αzz̄ − e−2α|A|2 +
1
4
e2αH2 =

1
4
(6|ψ1|2|ψ2|2 − (|ψ1|4 + |ψ2|4)),

Az̄ −
1
2
Hze

2α = (|ψ2|4 − |ψ1|4)ψ1ψ2,

where
A = (ψ2∂ψ1 − ψ1∂ψ2) +

1
2
(ψ

4

2 − ψ4
1).

We must make several explanatory remarks.
1) The formulae for the last three groups contain the term Z3. The direction of

the vector e3 has a different meaning for these groups.
1a) The groups Nil and S̃L2 admit an S1-symmetry given by the rotations about

the geodesic drawn in the direction of e3. These rotations, together with the left
translations, generate the isometry group IsomG.

1b) For the group Sol the vectors e1 and e2 commute. Hence, the equation
Z3 = ψ1ψ2 = 0 can hold on an open subset B of the surface, and the Dirac
equation cannot be extended by continuity to the entire surface. Since H = 0 in B,
we set

U = V = 0 for ψ1ψ2 = 0 and G = Sol .

However, the potentials USol and VSol are not always correctly defined on the bound-

ary ∂B of the set {Z3 6= 0}, because the expression
ψ1

ψ1
is undefined for ψ1 = 0,

and the Dirac equation with the given potentials is satisfied outside ∂B.
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2) For G = R3 or SU(2) the Gauss–Codazzi equations can be derived as follows.
We have

Rψ = (∂ −A )(∂ −B)ψ − (∂ −B)(∂ −A )ψ = (Az̄ −Bz + [A ,B])ψ = 0,

where (∂−A )ψ = (∂−B)ψ = 0 are the Gauss–Weingarten equations and the vector
function ψ∗ (see (4)) satisfies the same equation Rψ∗ = 0, which, together with the
condition Rψ = 0, implies that R = Az̄ −Bz + [A ,B] = 0. For the other groups
the equations Dψ∗ = 0 and Rψ∗ = 0 fail to hold and, in particular, the kernel
of the Dirac operator cannot be treated as a vector space over the quaternions. For
this reason, the Gauss–Codazzi equations are derived in [11] in another way.

3) In fact, the Dirac equations for non-commutative Lie groups are non-linear
with respect to ψ due to constraints on the potentials. Hence, if a function ψ
determines a surface, then λψ need not determine any surface for |λ| 6= 1,
since these groups do not admit homotheties. For the group SU(2) the map (4)
takes a solution of the Dirac equation into another solution of the equation,
and the following analogue of part 1) of Lemma 1 holds: the sum λψ + µψ∗,
where |λ|2 + |µ|2 = 1, defines the image of the initial surface under some inner
automorphism of SU(2) corresponding to a rotation of the Lie algebra.

We present some corollaries. Since the case G = SU(2) has been thoroughly
studied,3 we consider only the other groups.

Theorem 3. 1) If a function ψ generates a minimal surface in a Lie group of
dimension three, then the following equations hold :

∂ψ1 =
i

4
(|ψ2|2 − |ψ1|2)ψ2, ∂ψ2 = − i

4
(|ψ2|2 − |ψ1|2)ψ1 for G = Nil,

∂ψ1 = i

(
3
4
|ψ1|2 −

1
2
|ψ2|2

)
ψ2, ∂ψ2 = −i

(
1
2
|ψ1|2 −

3
4
|ψ2|2

)
ψ1 for G = S̃L2,

∂ψ1 =
1
2
ψ

2

1ψ2, ∂ψ2 = −1
2
ψ1ψ

2

2 for G = Sol .

2) (Abresch [22]) If a surface has constant mean curvature, then the following
quadratic differential Ã dz2 is holomorphic:

Ã dz2 =
(
A+

Z3
2

2H + i

)
dz2 for G = Nil,

Ã dz2 =
(
A+

5
2(H − i)

Z2
3

)
dz2 for G = S̃L2.

3) If the differential Ã dz2 is holomorphic for a surface in G = Nil, then the
surface has constant mean curvature.

3The equations of the minimal surfaces for SU(2) are

∂ψ1 = −
i

2
(|ψ1|2 + |ψ2|2)ψ2, ∂ψ2 =

i

2
(|ψ1|2 + |ψ2|2)ψ1,

and the CMC surfaces are distinguished by the condition Az̄ = 0.
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It would be of interest to understand the relationship between the formulae for
surfaces of constant mean curvature and soliton equations. Relationships of this
kind are well known for surfaces in R3 and SU(2).

Analogues of the assertion 2) are also known for surfaces in S2×R andH2×R [23].
However, the converse assertion (the assertion 3) has been proved only for surfaces
in Nil.4

We note that an analogue of the Weierstrass representation for minimal surfaces
in Nil and Sol was obtained in another way in [25] and [26]. Other approaches to
the study of surfaces in Lie groups were used in [27] and [28].

2.4. Quaternion language and quaternionic function theory. Pedit and
Pinkall [8] wrote out the Weierstrass representation for surfaces in R3 in the lan-
guage of quaternions and then extended this representation to surfaces in R4 (see
some preliminary results in [29]–[31]).

Indeed, the idea of using quaternions comes from the symmetry of the kernel
of the Dirac operator under the transformation (4) (we note that this symmetry
holds for surfaces in R3 and SU(2) if U = V and fails for surfaces in the other
three-dimensional Lie groups).

We identify C2 with the space H of quaternions,

(z1, z2) → z1 + jz2 =
(
z1 −z̄2
z2 z̄1

)
,

and we consider the two matrix operators

∂ =
(
∂ 0
0 ∂

)
, jU = j

(
U 0
0 U

)
=
(

0 −U
U 0

)
.

Here j is one of the standard generators of the quaternion algebra, and we have

j2 = −1, zj = jz̄, ∂j = j∂.

The Dirac equation becomes

(∂ + jU)(ψ1 + jψ2) = (∂ψ1 − Uψ2) + j(∂ψ2 + Uψ1) = 0.

Since, by (6), both ψ1 and ψ2 are sections of the same bundle E0, it is more
reasonable to rewrite the Dirac equation in terms of quaternions in the form

(∂ + jU)(ψ1 + ψ2j) = 0.

One can regard L = E0⊕E0 as a quaternionic line bundle whose sections are of
the form ψ1 + ψ2j and which is endowed with a quaternionic linear endomorphism
J such that J2 = −1. In our case J simply acts as the right multiplication by j:

J : (ψ1, ψ2) → (−ψ2, ψ1) or ψ1 + ψ2j → (ψ1 + ψ2j)j = −ψ2 + ψ1j.

4After the present paper was submitted for publication, it was proved that an analogue of this

statement fails for surfaces in fSL2 and H2 ×R, that is, there are surfaces for which the quadratic
differential eAdz2 is holomorphic and the mean curvature is not constant [24].
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This map J determines a canonical splitting of any quaternion fibre into the sum
C⊕C (in our case, this is a splitting into ψ1 and ψ2). In [8] and [12] such a bundle
is called a complex quaternionic line bundle.

The Dirac operator in these terms is

Dψ = (∂ + jU)(ψ1 + ψ2j) = (∂ψ1 − Uψ2) + (∂ψ2 + Uψ1)j,

and we see that the kernel of this operator is invariant with respect to right mul-
tiplications by constant quaternions (see Lemma 1), and hence the kernel can be
regarded as a vector space over the skew field H of quaternions. According to (6),
we have the operator

D : Γ(L) → Γ(KL),

where for a given bundle V the symbol Γ(V ) stands for the space of sections of V
and K is the bundle of 1-forms of type (0, 1) (that is, of the form f dz̄) over the
surface Σ0.

This operator is certainly non-linear with respect to right multiplications by
quaternion-valued functions, and the following obvious formula holds:

D(ψλ) = (Dψ)λ+ ψ1(µ+ j∂η) + ψ2(−∂η + j∂µ),

where λ = µ+ jη = µ+ ηj. In [8] this formula is represented in the coordinate-free
form as

D(ψλ) = (Dψ)λ+
1
2
(ψ dλ+ Jψ ∗ dλ),

the potential U multiplied from the left by j is called the Hopf field Q = jU of the
connection D on L, and the quantity

W =
∫

Σ0

|U |2 dx ∧ dy

is called the Willmore energy of D .
Although the quaternion language seemed at first to be very artificial (at least to

the author), it led to an extension of the Weierstrass representation for surfaces in
R4 [8]. Later on it was transformed into an investigative tool for developing analo-
gies between complex algebraic geometry and the theory of complex quaternionic
line bundles. It turns out that this tool can be effectively applied to study spe-
cial types of surfaces and Bäcklund transforms in the framework of the conformal
approach when R4 and S4 are not distinguished ([12], [32]). Finally, this approach
had led to a remarkable extension of Plücker-type relations from complex alge-
braic geometry to the geometry of complex quaternionic line bundles and to their
application to the proof of lower bounds for the Willmore functional [7] (see § 5.4).
Moreover, this theory deals with general bundles L, which need not come from the
theory of surfaces [7]. The bundles connected with surfaces are distinguished by
their degrees, namely, it follows from (5) and (6) that

degE0 = genus(Σ0)− 1 = g − 1.
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2.5. Surfaces in RRR4. The Grassmannian of oriented two-dimensional planes in R4

is diffeomorphic to the quadric

y2
1 + y2

2 + y2
3 + y2

4 = 0, y ∈ CP 3.

Let us consider other coordinates y′1, y
′
2, y

′
3, y

′
4 in C4:

y1 =
i

2
(y′1 + y′2), y2 =

1
2
(y′1 − y′2), y3 =

1
2
(y′3 + y′4), y4 =

i

2
(y′3 − y′4).

In these coordinates the manifold G̃4,2 is given by the equation

y′1y
′
2 = y′3y

′
4.

Obviously, there is a diffeomorphism

CP 1 × CP 1 → G̃4,2

defined by the Segre map

y′1 = a2b2, y′2 = a1b1, y′3 = a2b1, y′4 = a1b2,

where (a1 : a2) and (b1 : b2) are homogeneous coordinates on different copies of
CP 1.

We parameterize the coordinates xkz , k = 1, 2, 3, 4, in terms of these coordinates
and we set

a1 = ϕ1, a2 = ϕ2, b1 = ψ1, b2 = ψ2.

In contrast to the three-dimensional situation, this parametrization is not unique,
not even up to multiplication by ±1, and the vector functions ψ and ϕ are deter-
mined up to gauge transformations of the form(

ψ1

ψ2

)
→
(
efψ1

efψ2

)
,

(
ϕ1

ϕ2

)
→
(
e−fϕ1

e−fϕ2

)
, (16)

where f is an arbitrary function. However, the maps

Gψ = (ψ1 : ψ2), Gϕ = (ϕ1 : ϕ2)

into CP 1 are well defined and split the Gauss map

G = (Gψ, Gϕ) : Σ → G̃4,2 = CP 1 × CP 1.

We have the following formulae for an immersion of the surface:

xk = xk(0) +
∫

(xkz dz + xkz dz̄), k = 1, 2, 3, 4, (17)

where
x1
z =

i

2
(ϕ2ψ2 + ϕ1ψ1), x2

z =
1
2
(ϕ2ψ2 − ϕ1ψ1),

x3
z =

1
2
(ϕ2ψ1 + ϕ1ψ2), x4

z =
i

2
(ϕ2ψ1 − ϕ1ψ2).

(18)
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Of course, as in the three-dimensional case, these formulae define a surface if and
only if the integrands are closed forms, or equivalently,

Imxkzz̄ = 0, k = 1, 2, 3, 4.

This condition can be rewritten as

(ϕ2ψ1)z̄ = (ϕ1ψ2)z, (ϕ2ψ2)z̄ = −(ϕ1ψ1)z. (19)

These conditions cannot be represented in terms of Dirac equations for generic
vector functions ϕ and ψ.

However, the following assertion holds.

Theorem 4. Let r : W → R4 be an immersed surface with a conformal parameter
z and let Gψ = (eiθ cos η : sin η) be one of the components of the corresponding
Gauss map.

There is another representative ψ of the map Gψ = (ψ1 : ψ2) that satisfies the
Dirac equation

Dψ = 0, D =
(

0 ∂

−∂ 0

)
+
(
U 0
0 U

)
(20)

with some potential U .
The vector function ψ = (eg+iθ cos η, eg sin η) is determined from the equation

gz̄ = −iθz̄ cos2 η (21)

whose solution g is determined up to addition of an arbitrary holomorphic func-
tion h, and the corresponding potential U is given by

U = −eg−g−iθ(iθz sin η cos η + ηz)

up to multiplication by eh−h.
If a vector function ψ is given, then any function ϕ representing another com-

ponent Gϕ of the Gauss map satisfies the equation

D∨ϕ = 0, D∨ =
(

0 ∂

−∂ 0

)
+
(
U 0
0 U

)
. (22)

Different lifts to C2 × C2 of the Gauss map G : Σ → CP 1 × CP 1 are connected
by the gauge transformations(

ψ1

ψ2

)
→
(
ehψ1

ehψ2

)
,

(
ϕ1

ϕ2

)
→
(
e−hϕ1

e−hϕ2

)
, U → exp (h− h)U, (23)

where h is an arbitrary holomorphic function on W .

Corollary 1. Every oriented surface in R4 is defined by formulae (17) and (18)
with the vector functions ψ and ϕ satisfying the Dirac-type equations (20) and (22):

Dψ = D∨ϕ = 0.
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The induced metric is

e2α dz dz̄ = (|ψ1|2 + |ψ2|2)(|ϕ1|2 + |ϕ2|2) dz dz̄,

and the norm of the mean curvature vector H = 2xzz̄/e2α satisfies the equality

|U | = |H|eα

2
.

Let us consider the diagonal embedding

G̃3,2 = CP 1 → G̃4,2 = CP 1 × CP 1.

If ϕ and ψ generate a surface and lie on the diagonal, ϕ = ±ψ, then x4 = 0, and
we obtain a Weierstrass representation of the surface in R3.

The formulae (17) and (18) appeared in [9] in the construction of surfaces. This
corollary shows that they have a general nature; however, this fact must follow
from [8], where such a representation was first indicated in the language of quater-
nions.

We indicate two specific features of the representation of surfaces in R4 that were
not discussed in the previous papers:

a) for a given surface a representation need not be unique, and different repre-
sentations are connected by non-trivial gauge transformations;

b) a Weierstrass representation of some domain need not be extendable to the
entire surface and, in contrast to the three-dimensional case, to obtain a
representation of the entire surface, one must solve the ∂-problem (21) on the
surface.

Indeed, let us take ψ and ϕ that generate a surface Σ, a domain W ⊂ Σ, and
a holomorphic function f on W that admits no analytic continuation outside W .
Using (16), we then construct from ψ, ϕ, and f another representation of W which
also cannot be continued outside W .

Example. Lagrangian surfaces in RRR4. We present the Weierstrass representation
for Lagrangian surfaces in R4 that was obtained by Hélein and Romon [33]. The
reduction of the formulae (18) to formulae in [33] was indicated by Hélein in [34].

Let us consider the following symplectic form on R4:

ω = dx1 ∧ dx2 + dx3 ∧ dx4.

We recall that an n-dimensional submanifold Σ of a 2n-dimensional symplectic
manifold M2n with symplectic form ω is said to be Lagrangian if the restriction of
ω to Σ vanishes:

ω
∣∣
Σ

= 0.

This means that at any point x ∈ Σ the restriction of the form ω to the tangent
space TxΣ vanishes, that is, TxΣ is a Lagrangian n-plane in R2n.

The condition that a two-dimensional plane is Lagrangian in R4 can be repre-
sented in the form

Im(y1y2 + y3y4) = 0,



Two-dimensional Dirac operator and the theory of surfaces 97

or
|y′1|2 − |y′2|2 − |y′3|2 + |y′4|2 = 0.

In terms of a1, a2, b1, and b2, this condition becomes

|b1|2 = |b2|2.

Hence, the Grassmannian of Lagrangian two-dimensional planes in R4 is the prod-
uct of manifolds

GLag
4,2 = CP 1 × S1,

where the space CP 1 is parameterized by (a1 : a2) and the circle S1 is parametrized
by the quantity

β =
1
i

log
b1
b2

mod 2π,

the so-called Lagrangian angle.
We conclude that a surface is Lagrangian if and only if

|ψ1| = |ψ2|

in its Weierstrass representation. Let us set

s =
(
eiβ√

2
,

1√
2

)
, (s1 : s2) = (ψ1 : ψ2) ∈ CP 1,

and apply Theorem 4. We obtain the following formulae:

g = − iβ
2
, U = −1

2
βz, ψ1 = ψ2 =

1√
2
eiβ/2.

For any solution ϕ of the equation D∨ϕ = 0 we obtain a Lagrangian surface
determined by the vector functions ψ and ϕ by the formulae (18). Moreover, all
Lagrangian surfaces can be represented in this form.

Let
f : Σ → R4

be an immersion of an oriented closed surface into R4. By Theorem 4, this surface is
locally defined by the formulae (17) and (18). A globalization of this representation
is similar to the case of surfaces in R3 and was described in [8] and [12] in the
language of quaternions; however, to obtain the globalization, one must solve the
∂-problem on the surface [35]. The following assertion holds.

Proposition 3. For any Weierstrass representation of an immersion of an ori-
ented closed surface Σ into R4 the corresponding functions ψ and ϕ are sections of
C2-bundles E and E∨ over Σ that have the following form :

1) E and E∨ split into sums of pairwise conjugate line bundles,

E = E0 ⊕ E0, E∨ = E∨0 ⊕ E
∨
0 ,

in such a way that ψ1 and ψ2 are sections of E0 and ϕ1 and ϕ2 are sections of E∨0 ;
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2) the pairing of sections of E0 and E∨0 defines a (1, 0) form on Σ, that is, if

α ∈ Γ(E0), β ∈ Γ(E∨0 ),

then
αβ dz

is a well-defined 1-form on Σ;
3) the Dirac equation Dψ = 0 implies that U is a section of the same line bundle

EU as the section

∂γ

α
∈ Γ(EU ) for α ∈ Γ(E0), γ ∈ Γ(E0),

and UU dz ∧ dz̄ is a well-defined (1, 1)-form on Σ whose integral over the surface
is equal to ∫

Σ

UU dz ∧ dz̄ = − i
2
W (Σ),

where W (Σ) =
∫

Σ

|H|2 dµ is the Willmore functional.

The gauge transformation (23) shows that, in contrast to the three-dimensional
case, the vector functions ψ are not necessarily sections of spin bundles.

For tori we can derive the following result from Theorem 4.

Theorem 5 [35]. Let Σ be a torus in R4 conformally equivalent to C/Λ and let z
be a conformal parameter on the torus.

Then there are vector functions ψ and ϕ and a function U on C such that :
1) ψ and ϕ give a Weierstrass representation of Σ;
2) the potential U of this representation is Λ-periodic;
3) the functions ψ, ϕ, and U satisfying the conditions 1) and 2) are determined

up to gauge transformations(
ψ1

ψ2

)
→
(
ehψ1

ehψ2

)
,

(
ϕ1

ϕ2

)
→
(
e−hϕ1

e−hϕ2

)
, U → eh−hU, (24)

where
h(z) = a+ bz, Im(bγ) ∈ πZ for any γ ∈ Λ.

As in the case of surfaces in R3, the vector functions ψ and ϕ determine in
general an immersion of the universal covering surface Σ̃ of Σ into R4.

Proposition 4. The immersion of Σ̃ can be factorized through an immersion of Σ
if and only if∫

Σ

ψ1ϕ1 dz̄ ∧ ω =
∫

Σ

ψ1ϕ2 dz̄ ∧ ω =
∫

Σ

ψ2ϕ1 dz̄ ∧ ω =
∫

Σ

ψ2ϕ2 dz̄ ∧ ω = 0 (25)

for any holomorphic differential ω on Σ.

For ψ1 = ±ϕ1 and ψ2 = ±ϕ2 the formula (25) is reduced to (7).
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§ 3. Integrable deformations of surfaces

3.1. The modified Veselov–Novikov equation. The hierarchy of modified
Veselov–Novikov (mVN) equations was introduced by Bogdanov ([36], [37]), and
the equations of this hierarchy have the form of L,A,B-triples

∂L

∂tn
= [L,An]−BnL,

where L = D is the Dirac operator

L =
(

0 ∂

−∂ 0

)
+
(
U 0
0 U

)
and An and Bn are matrix differential operators such that the leading term of the
operator An is given by

An =

(
∂2n+1 + ∂

2n+1
0

0 ∂2n+1 + ∂
2n+1

)
+ · · · .

In contrast to L,A-pairs, any L,A,B-triple preserves only the zero energy level of
the operator L, deforming the corresponding eigenfunctions. Indeed, we have

∂Lψ

∂t
= Ltψ + Lψt = L[(A+ ∂t)ψ]− (A+B)[Lψ].

Hence, if ψ satisfies the equation

∂ψ

∂t
+Aψ = 0 (26)

and if Lψ0 = 0 for the initial data ψ0 = ψ
∣∣
t=t0

of this evolution equation, then

Lψ = 0

for any t > t0.
For n = 1 we have the original mVN equation

Ut =
(
Uzzz + 3UzV +

3
2
UVz

)
+
(
Uz̄z̄z̄ + 3Uz̄V +

3
2
UV z̄

)
, (27)

where
Vz̄ = (U2)z. (28)

We see that if the initial data U
∣∣
t=0

of the Cauchy problem are given by a real-valued
function, then the solution is also real-valued. If the function U

∣∣
t=0

depends only
on the variable x, then we have U = U(x, t), and the mVN equation reduces to the
modified Korteweg–de Vries equation

Ut =
1
4
Uxxx + 6UxU2 (29)

(here V = U2).
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This reduction explains the name of the equation, since Novikov and Veselov
introduced in [38] and [39] a hierarchy of (2+1)-dimensional soliton equations which
have the form of L,A,B-triples for the scalar operator L = ∂∂+U (two-dimensional
potential Schrödinger operator) and pass into the Korteweg–de Vries equation in
the (1 + 1)-limit. The original Novikov–Veselov equation is

Ut = Uzzz + Uz̄z̄z̄ + (V U)z + (V U)z̄, Vz̄ = 3Uz

and its proof was later modified by Bogdanov to derive the mNV equation.
It follows from the formulae (2) and (3) of the Weierstrass representation that

it is the zero energy level of the Dirac operator that corresponds to surfaces in R3.
This leads to the following assertion.

Theorem 6 [2]. Let U(z, z̄, t) be a real-valued solution of the mVN equation (27).
Let Σ be a surface constructed using the Weierstrass representation (2), (3) from
a vector function ψ0 satisfying the Dirac equation Dψ0 = 0 with the potential
U = U(z, z̄, 0). Let ψ(z, z̄, t) be a solution of the equation (26) with the initial data
ψ
∣∣
t=0

= ψ0.
Then the surfaces Σ(t) constructed from ψ(z, z̄, t) using the Weierstrass repre-

sentation determine a soliton deformation of the surface Σ.

The deformation given by this theorem is called the mNV deformation of a
surface.

Of course, this theorem holds for all equations of the mNV hierarchy. No recur-
sion formula for these functions is known, and the equations presented below were
not written out explicitly until recently, except for the case n = 2 [1]. Finite-gap
solutions of the mNV equations were constructed in [40] (see also [41]).

As was proved in [1], this deformation has a global character for tori and preserves
the Willmore functional.

Theorem 7 [1]. The mNV deformation takes tori into tori and preserves both their
conformal classes and the values of the Willmore functional.

The proof of this theorem is as follows. To correctly define the deformation, we
must solve (28), and this can indeed be done for tori, as was shown in [1]. We must
take a solution V of (28) normalized by the condition∫

Σ

V dz ∧ dz̄ = 0.

The form (U2)t dz ∧ dz̄ is an exact form on the torus Σ,

UUt =
(
UUzz −

U2
z

2
+

3
2
U2V

)
z

+
(
UUz̄z̄ −

U2
z̄

2
+

3
2
U2V

)
z̄

,

and hence the Willmore functional is preserved,

d

dt

∫
Σ

U2 dz ∧ dz̄ =
∫

Σ

(U2)t dz ∧ dz̄ = 0.

The flat structure on the torus enables us to identify differentials with periodic
functions. For example, formally, U2 dz dz̄ is a (1, 1)-differential and V dz2 is a
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quadratic differential. This is impossible for surfaces of higher genera, and this
therefore prevents a global definition of mNV deformations of these surfaces.

An attempt to redefine soliton deformations in completely geometric terms was
made in [42]. In the end it was impossible to avoid introducing a conformal param-
eter on the surface; however, some interesting geometric properties of deformations
were revealed.

After the papers [2] and [1], some other soliton deformations of surfaces with geo-
metric conservation laws were introduced and studied in [43]–[45] in the framework
of affine geometry and Lie spherical geometry.

3.2. The modified Korteweg–de Vries equation. If the potential U depends
only on x = Re z, then the Dirac equation Dψ = 0 for functions of the form

ψ(z, z̄) = ϕ(x) exp
(
iy

2

)
(30)

reduces to the Zakharov–Shabat problem

Lϕ = 0, L =
[(

0 1
−1 0

)
d

dx
+
(

q −ik
−ik q

)]
, q = 2U,

for k = i/2.
We note that for surfaces of revolution the function ψ acquires the form (30)

with respect to some conformal coordinate z = x+ iy, where y stands for the angle
of rotation. However, there are many other surfaces with intrinsic S1-symmetry for
which the potential U depends only on x. The function ϕ is periodic for tori of
revolution and is rapidly decreasing for spheres of revolution [6].

The operator L is associated with the soliton hierarchy of modified Korteweg–de
Vries equations that admit a representation in the form of an L,A pair

dL

dt
= [L,An].

The simplest of these equations are

qt = qxxx +
3
2
q2qx, n = 1,

qt = qxxxxx +
5
2
q2qxxx + 10qqxqxx +

5
2
q3x +

15
8
q4qx, n = 2.

The first equation here coincides with the reduction (29) of the mNV equation
after the substitution q → 4U and after rescaling the time parameter t → 4t. In
fact, the mKdV hierarchy is a reduction of the mNV hierarchy for U = U(x).

We see that, in the case of the mKdV equations, we have no conditions of the
form (28), and we can readily define mKdV deformations of surfaces of revolution.
Moreover, in this case there is a recursion formula for the higher equations:

∂q

∂tn
= Dnqx, D = ∂2

x + q2 + qx∂
−1
x q.
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We introduce the Kruskal–Miura integrals. Their densities Rk are defined by the
following recursion procedure:

R1 =
iqx
2
− q2

4
, Rn+1 = −Rnx −

n−1∑
k=1

RkRn−k.

One can show that the expressions R2n are total derivatives if and only if the
integrals

Hk =
∫
R2k−1 dx

do not vanish identically.

Theorem 8 [46]. For every n > 1 the nth mKdV equation (as the reduction of
the mNV deformation) transforms the tori of revolution into tori of revolution and
preserves their conformal types and the values of the functionals Hk, k > 1.

The proof of the analogous theorem for spheres of revolution (they are studied
in [6]) is in fact the same as for tori.

We note that the preservation of tori is a non-trivial assertion. The operator L
also appears in the L,A-pair for the sine-Gordon equation, which thus also induces
deformations of surfaces of revolution. However, this deformation develops tori into
cylinders.

We see that

H1 = −1
4

∫
q2 dx = −4

∫
U2 dx = − 2

π

∫
U2 dx ∧ dy,

and hence the first Kruskal–Miura integral is proportional to the Willmore func-
tional. The next integrals are

H2 =
1
16

∫
(q2 − 4q2x) dx, H3 =

1
32

∫
(q6 − 20q2q2x + 8qxx2) dx.

It would be of interest to answer the following question.

What is the geometric meaning of the functionals Hk, and what are the
extremals of these functionals among the compact surfaces of revolu-
tion?

The mKdV deformations of surfaces of revolution determine deformations of
curves in the upper half-plane that generate the surfaces upon revolution. Both the
geometry of these deformations and the relationship between the recursion relations
and the geometry of curves were studied in [47], [48].

3.3. The Davey–Stewartson equation. The mNV equations are themselves
reductions (for U = −p = q) of the Davey–Stewartson (DS) equations represented
by L,A,B-triples with

L =
(

0 ∂

−∂ 0

)
+
(
−p 0
0 q

)
.
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In fact, this reduction of the Davey–Stewartson equations gives more equations of
the form

Ut = i(∂2nU + ∂
2n
U) + · · ·

or
Ut = ∂2n+1U + ∂

2n+1
U + · · ·

for n > 1. The equations in the first series do not preserve the ‘realness condition’
U = U , and the second series reduces to the mNV hierarchy for U = U .

The first two equations here are the DS2 equation

Ut = i(Uzz + Uz̄z̄ + 2(V + V )U), (31)

where
Vz̄ = ∂(|U |2), (32)

and the DS3 equation (sometimes called the Davey–Stewartson equation I):

Ut = Uzzz + Uz̄z̄z̄ + 3(V Uz + V Uz̄) + 3(W +W ′)U, (33)

where
Vz̄ = (|U |2)z, Wz̄ = (UUz)z, W ′

z = (UUz̄)z̄. (34)

The Davey–Stewartson equations determine soliton deformations of surfaces
in R4. As in the case of surfaces in R3, these deformations were introduced by
Konopel’chenko, who proved the corresponding analogue of Theorem 6 in [9].

However, in this case we face two specific problems.
1) As was already noted in § 2.5, a Weierstrass representation of a surface in R4

is not unique. Is it true that deformations of the Davey–Stewartson equations are
geometrically different for different representations?

2) The constraints for the Davey–Stewartson equations are more complicated.
How must one solve the conditions (32) and (34) in order to obtain global defor-
mations of closed surfaces?

We have considered these problems in [35].
The answer to the first question shows a significant difference from mVN defor-

mations, namely:
Deformations of the Davey–Stewartson equations are well defined only
for surfaces with given potentials U of their Weierstrass representations,
and these deformations are geometrically different for different choices
of the potential.

It would be of interest to understand the geometric meaning of the different
deformations of the same surface.

The answer to the second question is given by the following analogue of Theo-
rem 7.

Theorem 9. 1) For the function V uniquely determined by the equation (32) and

the normalization
∫
V dz ∧ dz̄ = 0 the DS2 equation determines a deformation of

tori into tori that preserves their conformal classes and the values of the Willmore
functional.
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2) For

Vz̄ = (|U |2)z,
∫
V dz ∧ dz̄ = 0, W = ∂∂

−1
(uuz), W ′ = ∂∂−1(uuz̄) (35)

the DS3 equation determines a deformation of tori into tori that preserves their
conformal classes and the Willmore functional.

The surface is deformed by deformations of the vector functions ψ and ϕ, and
these deformations are connected with the operator A in the L,A,B-triple. There
are many other additional potentials appearing in A and the DS equations, as was
explained in [9]. We do not explain here the reductions in the formula for A that are
necessary to keep the surface closed in the course of the deformations. We note only
that the formula (34) determines periodic potentials W and W ′ up to constants,
and the formula (35) normalizes these constants. This normalization is necessary to
preserve the Willmore functional. The resolution of all these constraints is presented
in [35], and we refer to [35] for details.

§ 4. Spectral curves

4.1. Some facts from functional analysis. For a given domain Ω ⊂ Rn we
denote by Lp(Ω) and W k

p the Sobolev spaces that are the closures of the space of
compactly supported closed functions on Ω with respect to the norms

‖f‖p =
∫

Ω

|f(x)|p dx1 · · · dxn

and

‖f‖k,p =
∑

06l1+···+ln=l6k

∫
Ω

∣∣∣∣ ∂lf

∂l1x1 · · · ∂lnxn

∣∣∣∣p dx1 · · · dxn,

respectively. For a torus Tn = Rn/Λ we denote by Lp(Tn) and W k
p (Tn) the anal-

ogous Sobolev spaces of Λ-periodic functions. Here the integrals in the definitions
of the norms are taken over some compact fundamental domain of the translation
group Λ.

Proposition 5. Let Ω be a compact closed domain in Rn or a torus. In this case:
a) (Rellich) there is a natural continuous embedding W k

p (Ω) → Lp(Ω), which is
compact for k > 0;

b) (Hölder) multiplication by any function u ∈ Lp is a bounded operator from
Lq to Lr with ‖uv‖r 6 ‖u‖p‖v‖q , 1/p+ 1/q = 1/r;

c) (Sobolev) there is a continuous embedding W 1
p (Ω) → Lq(Ω), q 6 np/(n− p),

whose norm is called the Sobolev constant ;
d) (Kondrashov) the Sobolev embedding is compact for q < np/(n− p).

Let us denote the spaces of two-component vector functions on a torusM = R2/Λ
by

Lp = Lp(M)× Lp(M) and W k
p = W k

p (M)×W k
p (M),

respectively, to distinguish them from the spaces L2(M) and W 1
p (M) of scalar-

valued functions.
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Let H be a Hilbert space. An operator A : H → H is said to be compact if the
closure of the image A(B) of the unit ball B = {|x| < 1 : x ∈ H} is compact. The
spectrum SpecA of any compact operator A is bounded and can have a limit point
only at the origin.

For a given Hilbert space H and an operator A (not necessarily bounded) we
denote by R(λ) the resolvent of A. This is an operator pencil of the form

R(λ) = (A− λ)−1,

which has poles at the non-zero points of SpecA and is holomorphic with respect
to λ outside SpecA.

The Hilbert identity says that

R(µ)R(λ) =
1

µ− λ
(R(λ)−R(µ)), (36)

or, otherwise expressed,

1
A− µ

1
A− λ

=
1

µ− λ

(
1

A− λ
− 1
A− µ

)
.

If a resolvent is given on some domain in C, then it can be meromorphically con-
tinued to the entire plane C by using the following corollary to the Hilbert identity:

R(µ) = R(λ)((µ− λ)R(λ) + 1)−1

(we note that R(λ)R(µ) = R(µ)R(λ)).

Proposition 6. If the operator R(λ) is compact at λ = λ0 and the operator func-
tion is holomorphic with respect to λ near λ0, then :

1) the resolvent R(µ) is compact for any µ ∈ C \ SpecA and has poles only at
the points of SpecA;

2) R(λ) is holomorphic on C \ SpecA.

4.2. Spectral curve of the Dirac operator with bounded potentials. In
this section we explain a scheme for proving the existence of a spectral curve
for a differential operator with periodic coefficients. We used this scheme in [3] for
Dirac operators with bounded potentials. This case covers all Dirac operators cor-
responding to tori in R3.

Let

D =
(

0 ∂

−∂ 0

)
+
(
U 0
0 V

)
= D0 +

(
U 0
0 V

)
.

Here we denote by D0 the free Dirac operator,

D0 =
(

0 ∂

−∂ 0

)
. (37)

A Floquet eigenfunction ψ of the operator D with the eigenvalue (or energy) E
is a formal solution of the equation

Dψ = Eψ
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satisfying the periodicity conditions

ψ(z + γj , z̄ + γj) = e2πi(k,γj)ψ(z, z̄) = µ(γj)ψ(z, z̄), j = 1, 2,

where

(k, γj) = k1γ
1
j + k2γ

2
j , γj = γ1

j + iγ2
j ∈ C = R2, k = (k1, k2).

The quantities k1, k2 are called quasi-momenta of the function ψ and the pairs
(µ1, µ2) = (µ(γ1), µ(γ2)) are called multipliers of ψ.

We represent a Floquet eigenfunction ψ as the product

ψ(z, z̄) = e2πi(k1x+k2y)ϕ(z, z̄), z = x+ iy, x, y ∈ R,

where the function ϕ(z, z̄) is Λ-periodic. The equation Dψ = Eψ becomes[(
0 ∂

−∂ 0

)
+
(

U πi(k1 − ik2)
−πi(k1 + ik2) V

)](
ϕ1

ϕ2

)
= E

(
ϕ1

ϕ2

)
.

We have an operator pencil of the form

D(k) = D + Tk, (38)

where

Tk =
(

0 πi(k1 − ik2)
−πi(k1 + ik2) 0

)
, (39)

and this pencil is analytic with respect to k1 and k2.
We see that finding a Floquet eigenfunction ψ with some quasi-momenta k1, k2

and some energy E is the same as finding a periodic solution ϕ of the equation

D(k)ϕ = Eϕ.

Let us consider the solutions of this equation that belong to L2.
We choose an E0 such that the operator (D0 − E0) is invertible on L2, that is,

the inverse operator
(D0 − E0)−1 : L2 →W 1

2

exists. We represent the function ϕ in the form

ϕ = (D0 − E0)−1f,

substitute this expression into the equation

(D(k)− E)ϕ = 0,

and arrive at the equation

(1 +A(k,E))f = 0, f ∈ L2,

where

A(k,E) =
(
U + (E0 − E) πi(k1 − ik2)
−πi(k1 + ik2) V + (E0 − E)

)
(D0 − E0)−1 = B(k,E)(D0 − E0)−1.
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Finally, the existence problem for Floquet functions with given quasi-momenta
k and energy E reduces to the problem of solving the equation

(1 +A(k,E))f = 0

in L2. We note that the operator A(k,E) can be decomposed into the following
chain of operators:

L2
(D0−E)−1

−→ W 1
2

embedding−→ L2
multiplication−→ L2. (40)

The first map is continuous, the second map is compact, and if the potentials U and
V are assumed to be bounded, then the third map (the multiplication by B(k,E))
is continuous. Hence, the following assertion holds.

Proposition 7. For any given bounded potentials U and V the analytic pencil of
operators A(k,E) : L2 → L2 consists of compact operators.

We can now use the Keldysh theorem ([49], [50]), which is the Fredholm alter-
native for analytic operator pencils of the form [1+A(µ)], where the operator A(µ)
is compact for every µ. This theorem asserts the following.

The resolvent of the pencil [1 + A(µ)] : H → H, where A(µ) is an ana-
lytic pencil of compact operators, is a meromorphic function of µ. Its
singularities correspond to solutions of the equation (1 + A(µ))f = 0
and form an analytic subset Q in the space of parameters µ.

In what follows, we consider only Floquet functions with E = 0.
For an operator D with potentials U and V we have µ = (k,E) ∈ C3. We write

Q0(U, V ) = Q ∩ {E = 0}. (41)

This set is invariant with respect to translations by the vectors in the dual lattice
Λ∗ ⊂ R2 = C:

k1 → k1 + η1, k2 → k2 + η2.

We recall that the dual lattice consists of the vectors η = η1 + iη2 such that (η, γ) =
η1γ

1 + η2γ
2 ∈ Z for any γ = γ1 + iγ2 ∈ Λ.

The spectral curve is defined as

Γ = Q0(U, V )/Λ∗.

Remark. One can readily see that the composition of the operator

(D(k)− E)−1 = (D0 − E0)−1(1 +A(k,E))−1 : L2 →W 1
2

with the canonical embedding W 1
2 → L2 is the resolvent R(k,E) of the operator

D(k) = D +
(

0 πi(k1 − ik2)
−πi(k1 + ik2) 0

)
.

The intersection of the set of poles of the resolvent R(k,E) with the plane E = 0
is the set Q0(U, V ).

We arrive at the following definitions.
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a) The spectral curve Γ of the operator D with potentials U and V is the complex
curve Q(U, V )/Λ∗ regarded up to biholomorphic equivalence.

b) A multiplier map is defined on Γ: a local embedding at any generic point,
namely,

M : Γ → C2 : M (k) = (µ1, µ2) = (e2πi(k,γ1), e2π(k,γ2)),

where γ1 and γ2 are the generators of Λ ⊂ C and (k, γj) = k1 Re γj+k2 Im γj ,
j = 1, 2.5

c) To each point of Γ one assigns the space of Floquet functions with the given
multipliers. The dimension of these spaces increases in general at singular
points of Γ.

Proposition 8. Let k = (k1, k2) be the quasi-momenta of a Floquet function of the
operator D .

1) If U = V , then Γ admits the antiholomorphic involution τ : k → −k.
2) If U = U and V = V , then Γ admits the antiholomorphic involution k → k.
3) If U = U = V , then the composition of involutions in 1) and 2) gives the

holomorphic involution σ : k → −k.

These conditions are standard for spectral curves (see, for instance, the case of
a potential Schrödinger operator in [38] and [39]) and are explained for the Dirac
operator in [5], [40], [41]. The simplest of these conditions is the first one, which is
proved by the following obvious lemma.

Lemma 2. If U = V , then the transformation ϕ → ϕ∗ in (4) takes any Floquet
function to a Floquet function and modifies the multipliers by the rule k → −k.

We denote by Γnm the normalization of Γ. The Riemann surface Γ is not alge-
braic, but is a complex space for which the existence of a normalization was proved
in [51]. Since we are in a one-dimensional situation, all singular points are isolated
and the normalization has the following form:

1) if a point P ∈ Γ is reducible, that is, several branches of Γ meet at P , then
these branches are unglued;

2) for an irreducible singular point P the normalization Γnm → Γ is a local
homeomorphism near P and can be represented in terms of series in local parame-
ters:

k1 = ta + · · · , k2 = tb + · · · , a > 1, b > 1.

Here t is a local coordinate near P on Γnm.
If there are no reducible singular points, then the normalization map Γnm → Γ

is a homeomorphism.
The genus of the complex curve Γnm is called the geometric genus of Γ and is

denoted by pg(Γ). An operator is called a finite-gap operator (at the zero energy
level) if pg(Γ) <∞.

5This map depends on the choice of generators γ1, γ2. If the basis γ1, γ2 is replaced by another
basis eγ1 = aγ1 + bγ2, eγ2 = cγ1 + dγ2, then the quantity M = (µ1, µ2) is transformed according
to the formula

M → fM = (µa1 µ
b
2, µ

c
1 µ

d
2). (42)



Two-dimensional Dirac operator and the theory of surfaces 109

The analogue of the arithmetic genus for Γ (which appears in theorems of
Riemann–Roch type) is always infinite, pa(Γ) = ∞.

We have the following assertion.
The non-singular points of the normalized spectral curve Γnm parame-
trize (up to factors) the Floquet functions ψ, Dψ = 0. In contrast to Γ,
the one-to-one correspondence of this parametrization is violated at only
finitely many singular points.6

In § 4.7 we shall show that if the genus of Γnm is finite, then it is better to
replace the curve Γnm by the curve Γψ whose definition involves the Baker–Akhiezer
function of the operator D .

Example. The spectral curve for U = V = 0 (the free operator). For
simplicity, we assume that Λ = Z + iZ. The Floquet functions are

ψ+ = (eλ+z, 0), ψ− = (0, eλ−z̄)

and are parametrized by a pair of complex lines with parameters λ+ and λ−. These
complex lines form the normalized spectral curve Γnm. Since the curve is of finite
genus, we compactify it by two points at infinity such that ψ has exponential
singularities at these points. The quasi-momenta of these functions are

k1 =
λ+

2πi
+ n1, k2 =

λ+

2π
+ n2 for ψ+,

k1 =
λ−
2πi

+m1, k2 = −λ−
2π

+m2 for ψ−,

where mj , nj ∈ Z. The functions ψ+ and ψ− have the same multipliers at the
points

λm,n+ = π(n+ im), λm,n− = π(n− im), m, n ∈ Z,

which form resonance pairs. The complex curve Γ is obtained from the two complex
lines by the pairwise identification of points in resonance pairs.

Remark. The spectral curve and the Kadomtsev–Petviashvili equation. We presented
above the scheme which we used in 1985 to define spectral curves of differential oper-
ators with periodic coefficients (this paper was never published, though a reference
to it can be found in [52]). We found out later that a very similar scheme was
used by Kuchment [53] (see also [54]). However, we should mention an important
observation made at the time concerning the Kadomtsev–Petviashvili equations.
There are two Kadomtsev–Petviashvili (KP) equations,

∂x(ut + 6uux + uxxx) = −3ε2uyy,

where ε2 = ±1. This equation is called the KPI equation for ε = i and the
KPII equation for ε = 1. From the point of view of physics, these equations are
drastically different. The two equations admit similar representations in the form
of an L,A-pair L̇ = [L,A] with the operator L of the form

L = ε∂y + ∂2
x + u.

6This follows from the asymptotic behaviour of the spectral curve (see § 4.3).
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Here the potential u is doubly periodic or, which is the same, is defined on some
torus R2/Λ. The free operator is equal to L0 = ε∂y−∂2, and to prove the existence
of the spectral curve by the above scheme, we must consider the inverse operator

(L0 − E0)−1 : L2 →W 2,1
2 ,

where W 2,1
2 is the space of functions u on the torus such that u, ux, uxx, uy belong

to L2. To simplify the calculations, we consider the case in which the lattice Λ is
spanned by the vectors (2π, 0) and (0, 2πτ−1). In this case, the Fourier basis in L2

is formed by the functions

ei(kx+lτy), k, l ∈ Z.

The operator (L0 − E0) is diagonal in this basis, and

(L0 − E0)ei(kx+lτy) = (iεlτ − k2 − E0)ei(kx+lτy).

Since ε = 1 for the KPII equation, we obtain a bounded operator for E0 > 0,

(L0 − E0)−1ei(kx+lτy) =
1

ilτ − k2 − E0
ei(kx+lτy).

One can readily see that if ε = i, then for any E0 either the operator (L0 − E0) is
not invertible or its inverse is unbounded. This holds for any lattice Λ. One can
derive from these considerations that there is no spectral curve for the operator
L = i∂y + ∂2

x + u. For the heat operator L = ∂y + ∂2
x + u the spectral curve exists

and is preserved by the KPII equation.
The spectral curve of a two-dimensional periodic differential operator L on the

zero energy level was first introduced in the paper [4] of Dubrovin, Krichever, and
Novikov in the case of the Schrödinger operator. It was shown in [4] that:

1) the periodic operator, which is a finite-gap operator on the zero energy level,
can be recovered from some algebraic data including this curve;7

2) this curve is a first integral of the deformations of the operator L that are
determined by the L,A,B-triples.

Proposition 9 [4]. Let L be a two-dimensional periodic operator, let Γ be its spec-
tral curve, and let M be the multiplier map.

Let an evolution equation

∂L

∂t
= [L,A]−BL

be given, where the operator A is also periodic. In this case the deformation of the
operator L preserves the curve Γ and the map M .

This result generalizes the conservation law for the spectral curve of a one-dimen-
sional operator L under a deformation of this operator determined by an L,A-pair
∂L

∂t
= [L,A] (this fact was first established by Novikov for the periodic KdV equa-

tion in [56]).
7For the Dirac operator D one can find the recovery formula (51), together with the proof,

in [55] and in § 4.7.
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This assertion follows from the deformation equation ψt+Aψ = 0 for the Floquet
functions, which preserves the multipliers (see § 3.1 and the equation (26)). The
preservation of the zero-level spectrum for general operators was first indicated by
Manakov in [57], where the L,A,B-triples were introduced.

Corollary 2. The spectral curve Γ and the multiplier map M of the periodic Dirac
operator D are preserved by the modified Novikov–Veselov equations and by the
Davey–Stewartson equations.

For the mKdV equations we have two spectral curves, namely, the curve Γ
defined for the two-dimensional Dirac operator and the curve Γ′ defined for the
one-dimensional operator LmKdV in both the Zakharov–Shabat problem (see § 3.2)
and the representation in the form of an L,A-pair for the mKdV equation. These
complex curves are related by the canonical branched two-sheeted covering Γ → Γ0

[40], and both the curves are preserved by the mKdV equation. The complex curve
Γ0 is uniquely recovered from the Kruskal–Miura integrals Hk, k = 1, 2, . . . , which
are thus also first integrals of the mKdV equation.

4.3. Asymptotic behaviour of the spectral curve. The spectral curve of the
operator D is a perturbation of the spectral curve of the free operator D0. Although
this perturbation could be rather strong in a bounded domain |k| 6 C, it reduces
to a transformation of double points corresponding to resonance pairs into handles
outside the domain. Moreover, the size of handles decreases as |k| → ∞ and can
be estimated in terms of the perturbation.

Thus, we have:
1) a compact part of the form Γ0 = Q0 ∩ {|k| 6 C} whose boundary consists of

a pair of circles;
2) a complex curve Γ∞ obtained from the planes k1 = ik2 and k1 = −ik2 by

removing the domains {|k| 6 C} from these planes and by transforming some
double points corresponding to resonance pairs into handles;

3) Γ0 and Γ∞ are glued together along their boundaries;
4) Γ has two ends at which the image M (Γ) has the same asymptotic behaviour

as the free operator.
This complex curve is obtained from the spectral curve Γ by ungluing the double

points that corresponded to resonance pairs and were preserved under the pertur-
bation. We denote this curve again by Γ.

The operator is called a finite-gap operator (on the zero energy level) if only
finitely many double points are transformed into handles under the perturbation
D0 → D .

This picture is typical in soliton theory, where the spectral curve of some operator
with potentials is a perturbation of the spectral curve of the corresponding free
operator and the perturbation is small for large values of quasi-momenta. The
picture was rigorously justified for the two-dimensional Schrödinger operator by
Krichever [52], who used asymptotic methods. In [10] we proposed a justification
of this geometric picture for the Dirac operator by using the same methods, and
we formulated the desired statement as a ‘pretheorem’.

The theory of spectral curves initiated the development of the analytic theory
of Riemann surfaces (not only hyperelliptic) of infinite genus ([58], [59]).
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In [5] Schmidt proposed another approach to the justification of this asymptotic
behaviour of the spectral curve. His approach is based on his result on the existence
of spectral curves for the Dirac operators with L2-potentials and on the continuous
behaviour of these curves with respect to weakly convergent sequences of potentials.

Theorem 10 [5]. For U, V ∈ L2(T 2) the equation

D(k)ϕ = (D + Tk)ϕ = Eϕ,

where k ∈ C2, E ∈ C, has a solution in L2 if and only if (k,E) ∈ Q, where Q is an
analytic subset of C3. This subset Q is formed by the poles of the operator pencil

(1 +AU,V (k,E))−1 L2 → L2,

where the operator AU,V (k,E) is a polynomial in k and E. Moreover, if

Un, Vn
weakly−→ U∞, V∞

in {‖U‖2;ε 6 C, ‖V ‖2;ε 6 C},8 then

‖AUn,Vn
(k,E)−AU∞,V∞(k,E)‖2 → 0

uniformly near every point k ∈ C2.

We present the proof of this theorem in Appendix 1. Let us return to the
asymptotic behaviour of the spectral curve.

We first note the following identity, which can be verified by straightforward
computations: (

e−a 0
0 e−b

)(
D0 +

(
U 0
0 V

)
+ Tk

)(
eb 0
0 ea

)
= D0 +

(
eb−aU 0

0 ea−bV

)
+ Tk +

(
0 az
−bz̄ 0

)
(43)

for any smooth functions a, b : C → C.
For any κ = (κ1, κ2) ∈ Λ∗ ⊂ C we define Λ-periodic functions

ψ±κ(z, z̄) = e±2πi(κ1x+κ2y),

and we choose functions a(z, z̄) and b(z, z̄) of the form

a(z, z̄) = 2πi(α1x+ α2y), b(z, z̄) = 2πi((α1 − κ1)x+ (α2 − κ2)y),

where

α(κ) = (α1, α2) =
(
κ1 + iκ2

2
,
−iκ1 + κ2

2

)
.

The following equalities are clear: eb−a = ψ−κ and az = bz̄ = 0. This, together
with (43), implies the following assertion.

8We recall that a sequence {un} in a Hilbert space H is said to be weakly convergent to u∞,

un
weakly−→ u∞, if limn→∞〈un, v〉 = 〈u∞, v〉 for any v ∈ H, where 〈u, v〉 is the inner product in H.
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Proposition 10 [5]. If a function ϕ ∈ L2 satisfies the equation[
D0 +

(
ψ−κU 0

0 ψκV

)
+ Tk

]
ϕ = 0,

then the function ϕ′ =
(
ψ−κ 0
0 1

)
ϕ ∈ L2 satisfies the equation

(D + Tk+α)ϕ′ = 0.

Hence,
Q0(ψ−κU,ψκV ) = Q0(U, V ) + α(κ) for any κ ∈ Λ∗

(where the right-hand side stands for the set Q0(U, V ) translated by α).

The functions ψκ, κ ∈ Λ∗ stand for the Fourier basis in L2. The map U → Û =
ψκU , U =

∑
ν∈λ∗ Uνψν , shifts the Fourier coefficients of the function U , namely,

Ûν = Uν−κ. Hence, we have

ψκU
weakly−→ 0 as |κ| → ∞.

Theorem 10 (see Appendix 1) and Proposition 10 imply that the intersection of
Q0(U, V ) with O(k) + α(κ) is very close to the intersection of Q0(0, 0) with O(k)
in small bounded neighbourhoods O(k) of the points k ∈ C2 for large values of |κ|:

Q0(U, V ) ∩ [O(k) + α(κ)] ≈ Q0(0, 0) ∩O(k) as |κ| → ∞.

We conclude that, asymptotically as |k| → ∞, the behaviour of the spectral curve
for the operator D is similar to that of the spectral curve of the free operator D0

on L2.
For U = V = 0 the spectral curve Γ is biholomorphically equivalent to a pair of

two planes (complex lines) defined in C2 by the equations

k2 = ik1, k2 = −ik1,

and glued together at infinitely many pairs of points corresponding to the so-called
resonance pairs,(

k1 =
γ1n− γ2m

γ1γ2 − γ1γ2

, k2 = ik1

)
↔
(
k1 =

γ1n− γ2m

γ1γ2 − γ1γ2

, k2 = −ik1

)
,

where m,n ∈ Z. Moreover, these planes are naturally completed by a pair of points
at infinity ∞± obtained as the limits (k1,±ik1) → ∞± as k1 → ∞. A double
covering Γ → C : (k1, k2) → k1 is defined near any generic point. By Proposition 10,
we have the following assertion.

Corollary 3. For any Dirac operator with L2-potentials the image M (Γ) has the
asymptotic behaviour

k2 ≈ ±ik1

for sufficiently large values of |k|. Hence, M (Γ) has at most two irreducible com-
ponents such that every component contains at least one of the asymptotic ends.



114 I. A. Taimanov

The bound for the number of irreducible components is clear, because the other
components must be localized in a bounded domain of C2, which is impossible for
one-dimensional analytic sets.

We thus arrive at the following definition compatible with that used in the theory
of finite-gap integration ([4], [60]).

If the spectral curve Γ of an operator D has finite genus, then D is a
finite-gap operator, and the completion of Γ by a pair ∞± of points at
infinity is called the spectral curve of the finite-gap operator.

We conclude with a procedure for recovering the value of∫
C/Λ

UV dx ∧ dy

from (Γ,M ) provided that Γ is of finite genus. Near the asymptotic end at which
k2 ≈ ik1, we introduce a local parameter λ−1

+ such that the multipliers have the
following behaviour:

µ(γ) = λ+γ +
C0γ

λ+
+O(λ−2

+ ).

Then ∫
C/Λ

UV dx ∧ dy = −C0 · (Area(C/Λ)) (44)

(see [61] and [10] in the case U = V ).
A similar formula for the area of minimal tori in S3 was derived by Hitchin

in [62].
This formula gives a reason to treat the pair (Γ,M ) as a generalization of the

Willmore functional. This was first discussed for tori of revolution in [46]. In
this case the spectral curve is recovered from infinitely many quantities known as
Kruskal–Miura integrals.

4.4. Spectral curves of tori. For a torus Σ immersed in one of the three-dimen-
sional Lie groups G = R3, SU(2) = S3, Nil, or S̃L2 and for a Weierstrass represen-
tation of Σ we consider the spectral curve Γ of the operator D in this representation.

We refer to this curve as the spectral curve of the torus Σ.
This curve is defined for all smooth tori and not just for integrable tori (see

§ 4.6). This definition was originally introduced in [3] for tori in R3 and in [6] for
tori in S3 in connection with the physical explanation of the Willmore conjecture.
The formula (44) shows that the Willmore functional can be recovered from Γ and
the multiplier map M (at least if Γ is of finite genus).

This definition does not depend on the choice of a conformal parameter on the
torus Σ = R2/Λ. The multiplier map M depends on the choice of a basis in Λ, and
any change of the basis leads to a simple algebraic transformation of M (see (42)).

We define the spectral curve for tori in R4.
As we have explained in [35], a Weierstrass representation is not unique for

surfaces in R4. The potentials of different representations of a torus are connected
by the formula

U → U exp (a+ bz − a− bz), (45)
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where Im bγ ∈ πZ for any γ ∈ Λ. The multiplier map M depends on the choice of
U and changes as follows under the transformation (45):

µ(γ) → ebγµ(γ), γ ∈ Λ.

As in the case of tori in R3, the integral of the squared norm of the potential U can
be recovered from (Γ,M ) by the same formula (44).

The conformal invariance of the Willmore functional led us to the conjecture
which we justified by numerical experiments in [46] and which was confirmed in [61]
(soon after its formulation) as follows.

Theorem 11. For any torus in R3 the spectral curve Γ and the multiplier map M
of the torus are invariant with respect to conformal transformations of R3.

The proof in [61] works rigorously only for spectral curves of finite genus and is
as follows. We consider the generators of the conformal group SO(4, 1) and write
out the deformation equations for the Floquet functions ϕ; these equations are

Dδϕ+ δU · ϕ. (46)

It suffices to verify the invariance only for inversions and even only for one inversion,
because any two inversions are conjugate by orthogonal transformations. For an
inversion let us choose the generator

δx1 = −2x1x3, δx2 = −2x2x3, δx3 = (x1)2 + (x2)2 − (x3)2,

and compute the corresponding variation of the potential,

δU = |ψ2|2 − |ψ1|2,

where ψ generates the torus. An explicit formula for this variation was found in [61]
for a solution of the equation (46) in terms of functions meromorphic on the spectral
curve. It follows from this explicit formula that the multipliers are preserved. One
can readily find these meromorphic functions for any spectral curve of finite genus.
If the spectral curve in question is of infinite genus, then one must clarify some
analytic details, which in our opinion is really possible and depends on a rigorous
and careful study of the asymptotic behaviour of the spectral curve.

Another proof of Theorem 11 for isothermal tori was given in [10]. It is geometric
and works for spectral curves of arbitrary genus.

4.5. Examples of spectral curves.
Products of circles in R4. We consider the tori Σr,R defined by the equations

(x1)2 + (x2)2 = r2, (x3)2 + (x4)2 = R2.

These tori are parametrized by angle variables x, y defined modulo 2π, namely,
x1 = r cosx, x2 = r sinx, x3 = R cos y, x4 = R sin y. The conformal parameter,
the period lattice, and the induced metric are of the form

z = x+ i
R

r
y, Λ =

{
2πm+ i2π

r

R
n : m,n ∈ Z

}
, ds2 = r2 dz dz̄,
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respectively. A formula for the Gauss map can be obtained by simple computations,

a1/a2 = −ei(y−x), b1/b2 = e−i(y+x).

Let us apply Theorem 4 to the map

Σr,R → (b1 : b2) =
(
e−i(x+y)√

2
:

1√
2

)
∈ CP 1.

We have g =
i(x+ y)

2
,

U =
1
4

(
r

R
+ i

)
,

and the torus Σr,R is defined in terms of the Weierstrass representation by the
vector functions

ψ1 = ψ2 =
1√
2

exp
(
− i(x+ y)

2

)
, ϕ1 = −ϕ2 = − r√

2
exp
(
i(y − x)

2

)
.

The values of the Willmore functional on these tori are given by the formula

W (Σr,R) = 4
∫

Σr,R

|U |2 dx ∧ dy = π2

(
r

R
+
R

r

)
and attain their minimum at the Clifford torus Σ in R4, that is, W (Σr,r) = 2π2.

The spectral curve Γ(u) of the Dirac operator

D =
(

0 ∂

−∂ 0

)
+
(
u 0
0 u

)
, u = const,

with the constant potential U = u is the complex sphere with a pair of distinguished
points (‘points at infinity’), namely, λ = 0 and λ = ∞,

Γ(u) = CP 1.

The normalized Baker–Akhiezer function (or Floquet function) is

ψ(z, z̄, λ) =
(
ψ1

ψ2

)
=

λ

λ− u
exp
(
λz − |u|2

λ
z̄

)(
1

−u/λ

)
.

The normalization means that the following two asymptotic formulae hold:

ψ ≈
(
eλ+z

0

)
as λ+ →∞, ψ ≈

(
0

eλ−z̄

)
as λ− → 0

with the local parameters given by the formulae λ+ = λ near λ = ∞ and λ− =
−|u|2/λ near λ = ∞.

For the tori Σr,R we have the following assertions:
a) the function ψ generating the torus under the representation (18) is equal to

ψ(z, z̄,−u), where u = 1
4 ( rR + i), and has the monodromy

ψ(z + 2π, z̄ − 2πi,−u) = ψ

(
z + i2π

R

r
, z̄ − i2π

R

r
,−u

)
= −ψ(z, z̄,−u);
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b) there are exactly four points on the spectral curve Γ(u) for which the function
ψ(z, z̄, λ) has the same monodromy as the function ψ(z, z̄,−λ), namely, the
points λ = ±u,±u, and moreover,(

ψ1(z, z̄,−u)
ψ2(z, z̄,−u)

)
=
(
−ψ2(z, z̄, u)
ψ1(z, z̄, u)

)
;

c) the spectral curve Γ(u) is smooth.
Here k1 and k2 are the quasi-momenta of the Floquet functions ψ(z, z̄, λ).
A periodic potential U is determined up to gauge transformations of the form (24).

For b = 0 and for ea−a = − 1+i√
2

this transformation takes the potential U of the
Clifford torus to the potential

1
4
(1 + i) → ea−a

4
(1 + i) = − i

2
√

2
,

which coincides with the potential of the same torus regarded as a torus in the
three-dimensional sphere S3 ⊂ R4 [10]. This leads to the following questions.

1) Do the spectral curves of a torus in S3 ⊂ R4 as a torus in S3 and as a torus
in R4 always coincide?

2) Is it true that for any torus in S3⊂R4 the potential U of a Weierstrass repre-
sentation of it in R4 is gauge equivalent to the potential of its Weierstrass

representation in S3: U = (H−i)eα

2 , where H stands for the mean curvature
of the torus in S3?

A positive answer to the second question implies a positive answer to the first.
We think that the answers to both the questions are affirmative.

The Clifford torus in R3. The Clifford torus in R3 is the image of the Clifford
torus in S3 ⊂ R4 under the stereographic projection

(x1, x2, x3, x4) →
(

x1

1− x4
,

x2

1− x4
,

x3

1− x4

)
,

∑
k

(xk)2 = 1.

The torus is regarded up to conformal transformations of R3, and hence can be
obtained as the following torus of revolution: if we take a circle of radius r = 1 in
the x1x3 plane with the distance between the centre of the circle and the x1 axis
equal to R =

√
2, then the Clifford torus can be obtained by rotating this circle

about the x1 axis.

Theorem 12 [55]. The Baker–Akhiezer function of the Dirac operator D with the
potential

U =
sin y

2
√

2(sin y −
√

2)
(47)

is a vector function ψ(z, z̄, P ), z ∈ C, P ∈ Γ, such that :
1) the complex curve Γ is the sphere CP 1 = C with two distinguished points

∞+ = (λ = ∞) and ∞− = (λ = 0), where λ is an affine parameter on
C ⊂ CP 1, and with two double points obtained by identifying the points in the
pairs (

1 + i

4
,
−1 + i

4

)
and

(
−1 + i

4
,
1− i

4

)
;
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2) the function ψ is meromorphic on Γ \ {∞±} and has at the distinguished
points (‘at infinity’ ) the asymptotic behaviour

ψ ≈
(
ek+z

0

)
as k+ = λ→∞, ψ ≈

(
0

ek−z̄

)
as k− = −|u|

2

λ
→∞,

where u =
1 + i

4
and k−1

± are local parameters near ∞±;

3) ψ has three poles Γ \ {∞±} which do not depend on z and are located at the
points

p1 =
−1 + i+

√
−2i− 4

4
√

2
, p2 =

−1 + i−
√
−2i− 4

4
√

2
, p3 =

1√
8
.

The geometric genus pg(Γ) and the arithmetic genus pa(Γ) of the curve Γ are

pg(Γ) = 0, pa(Γ) = 2.

The Baker–Akhiezer function satisfies the Dirac equation Dψ = 0 with the poten-
tial U given by (47) at any point of Γ \ {∞+,∞−, p1, p2, p3}.

The Clifford torus can be constructed by using the Weierstrass representation (2)
and (3) from the function

ψ = ψ

(
z, z̄,

1− i

4

)
.

As was shown, the function ψ is of the form

ψ1(z, z̄, λ) = eλz−
|u|2

λ z̄

(
q1

λ

λ− p1
+ q2

λ

λ− p2
+ (1− q1 − q2)

λ

λ− p3

)
,

ψ2(z, z̄, λ) = eλz−
|u|2

λ z̄

(
t1

p1

p1 − λ
+ t2

p2

p2 − λ
+ (1− t1 − t2)

p3

p3 − λ

)
,

where u =
1 + i

4
and the functions q1, q2, t1, t2 depend only on y and are 2π-periodic

with respect to y. These functions can be found from the following conditions:

ψ

(
z, z̄,

1 + i

4

)
= ψ

(
z, z̄,

−1 + i

4

)
, ψ

(
z, z̄,−1 + i

4

)
= ψ

(
z, z̄,

1− i

4

)
.

4.6. Spectral curves of integrable tori. A surface is said to be integrable if
the Gauss–Codazzi equations are the compatibility conditions,

[∂x −A(λ), ∂y −B(λ)] = 0, (48)

for the linear problems

∂xϕ = A(λ)ϕ, ∂yϕ = B(λ)ϕ,

where A and B are Laurent series in the spectral parameter λ. It is also assumed
that λ appears in this representation non-trivially. To obtain explicit solutions of
the zero curvature equation (48), one can use the whole machinery of soliton theory
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and, in particular, of the theory of integrable harmonic maps originating from the
papers [63]–[65] and intensively developed during the last thirty years (the current
state of this theory is presented in [66]–[68]). The most complete list of integrable
surfaces in R3 is given in [69] (see also [70]).

This theory works well for spheres, where it suffices to use algebraic geometry
of complex rational curves, and for tori, where explicit formulae for surfaces are
derived in terms of theta functions on certain Riemann surfaces. However, the
theory of integrable systems has not led to substantial progress for surfaces of
higher genera. This probably has serious reasons related to the fact that tori are
the only closed surfaces admitting flat metrics.

The spectral curves of integrable tori arise as spectral curves of operators in
these auxiliary linear problems. The complex curves (Riemann surfaces) serve to
construct explicit formulae for tori in terms of theta functions of these Riemann
surfaces.

It turns out that this property is not accidental, and these spectral curves of
integrable tori are special cases of the general spectral curves defined in § 4.4 for all
tori (and not only integrable tori).

In [10] we proved this coincidence (modulo additional irreducible components)
for tori of constant mean curvature and for isothermal tori in R3 and for minimal
tori in S3. Corollary 3 excludes the existence of additional components.

A) Tori of constant mean curvature (CMC tori) in R3. The Ruh–Vilms
theorem gives us that the Gauss map of a surface in R3 is harmonic if and only
if this surface is of constant mean curvature [71]. By the Gauss–Codazzi equations,
this is equivalent to the condition that the Hopf differential Adz2 is holomorphic:

Az̄ = 0.

Every holomorphic quadratic differential on the sphere vanishes, and therefore
by the Hopf theorem the CMC spheres in R3 are exactly the round spheres (that
is, spheres of constant curvature) [72].

It was also conjectured by Hopf that the immersed closed CMC surfaces in R3 are
exactly the round spheres. Although this conjecture was confirmed for embedded
surfaces by Alexandrov [73], it was disproved for immersed surfaces of higher genera.
The existence of CMC tori was established in the early 1980s by Wente by using the
implicit function theorem for Banach spaces [74]. The first explicit examples were
found by Abresch in [75], and the investigation of these examples in [76] indicated a
relationship between this problem and integrable systems. As was proved later, for
a CMC torus the complex curve Γ is of finite genus [77], which enabled one to apply
the Baker–Akhiezer functions to derive explicit formulae for tori of this kind in terms
of theta functions of Γ (this programme was realized by Bobenko in [78], [79]). The
existence of CMC surfaces of genera exceeding one was established by Kapouleas,
also by implicit methods [80], [81], and the problem of explicit description of these
surfaces remains open. We note that another interpretation of CMC surfaces in
terms of an infinite-dimensional integrable system was proposed in [82] and is based
on the Weierstrass representation.

Every holomorphic quadratic differential on the torus has constant coefficients
(with respect to a conformal parameter z). For a given CMC torus one can reduce
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everything to the situation with

Adz2 =
1
2
d z2, H = 1

by a homothety of the surface and a linear transformation z → az of the conformal
parameter. In this case the Gauss–Codazzi equations become

uzz̄ + sinhu = 0,

where u = 2α and e2αdzdz̄ is the metric on the torus. This equation is the com-
patibility condition for the system[

∂

∂z
− 1

2

(
−uz −λ
−λ uz

)]
ψ = 0,

[
∂

∂z̄
− 1

2λ

(
0 e−u

eu 0

)]
ψ = 0. (49)

Let Λ be the period lattice for the torus. We consider the linear problem

Lψ = ∂zψ −
1
2

(
−uz 0
0 uz

)
ψ =

1
2

(
0 −λ
−λ 0

)
ψ.

Since the operator L is a first-order 2 × 2 matrix operator, the system (49) has a
two-dimensional space Vλ of solutions for any λ ∈ C, and these spaces are invariant
with respect to the translation operators of the form

T̂jϕ(z) = ϕ(z + γj), j = 1, 2,

where γ1 and γ2 are the generators of the lattice Λ. The operators T̂1, T̂2, and L
commute, and hence have common eigenvectors, which are glued together into a
meromorphic function ψ(z, z̄, P ) on the two-sheeted covering

Γ̂ → C : P ∈ Γ̂ → λ ∈ C,

branched at the points at which the operators T̂j and L cannot be diagonalized
simultaneously. This is the standard procedure of constructing spectral curves of
periodic operators [56].

Corresponding to each point P ∈ Γ̂ is a unique (up to a constant factor) Floquet
function ψ(z, z̄, P ) with multipliers µ(γ1, P ) and µ(γ2, P ). The complex curve Γ̂
can be compactified by four points ∞1

±,∞2
± ‘at infinity’ in such a way that the

points ∞1
± project to λ = ∞ and the points ∞2

± project to λ = 0, and we can
take a function ψ meromorphic on Γ̂ with the following essential singularities at
the points ‘at infinity’:

ψ(z, z̄, P ) ≈ exp
(
∓λz

2

)(
1
±1

)
as P →∞1

±,

ψ(z, z̄, P ) ≈ exp
(
∓ z̄

2λ

)(
1
±1

)
as P →∞2

±.

The multipliers tend to ∞ as λ→ 0,∞.
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The complex curve Γ admits an involution preserving the multipliers, namely,

σ(λ) = −λ,
(
ϕ1

ϕ2

)
→
(
ϕ1

−ϕ2

)
, σ(∞1

±) = ∞1
∓, σ(∞2

±) = ∞2
∓.

The complex quotient curve Γ̂/σ is called the spectral curve of the torus of constant
mean curvature.

The following assertion holds.

Proposition 11 [10]. The vector function ϕ satisfies the equation (49) if and only
if the function ψ = (λϕ2, e

αϕ1)> satisfies the Dirac equation Dψ = 0 with U =
Heα

2
=
eα

2
.

We thus have an analytic map of Γ onto the spectral curve (defined in § 4.4) of
the generic torus, and the map preserves the values of the multipliers. This implies
that the complex curves coincide up to irreducible components. This, together with
Corollary 3, implies the next proposition.

Proposition 12. The spectral curve of any CMC torus in R3 coincides with the
(generic) spectral curve of the torus as defined in § 4.4.

B) Minimal tori in S3. Let us regard the unit sphere in R4 as the Lie group
SU(2). For minimal surfaces in SU(2) the derivational equations (10) and (11) can
be simplified, and we obtain the Hitchin system [62]

∂Ψ− ∂Ψ∗ + [Ψ∗,Ψ] = 0, ∂Ψ + ∂Ψ∗ = 0. (50)

It follows from the first equation that the SL2-connection A = (∂ + Ψ, ∂ + Ψ∗) on
f−1(TG) is flat, and it follows from the second equation that this connection can
be extended to an analytic family of flat connections,

Aλ =
(
∂ +

1 + λ−1

2
Ψ, ∂ +

1 + λ

2
Ψ∗
)
,

where A = A1 and λ ∈ C \ {0}. We thus obtain an L,A-pair with a spectral
parameter and can conclude that this system is integrable. This trick is standard
for integrable harmonic maps.

We define the spectral curve.
Suppose that Σ is a minimal torus in SU(2) and {γ1, γ2} is a basis for the

lattice Λ. Let us define matrices H(λ) and H̃(λ) ∈ SL(2,C) that describe the mon-
odromy of the connection Aλ along a closed loop realizing γ1 and γ2, respectively.
These matrices commute and hence have common eigenvectors ϕ(λ, µ), where µ is
a root of the characteristic equation for H(λ):

µ2 − TrH(λ)µ+ 1 = 0.

The eigenvalues

µ1,2 =
1
2

(
TrH(λ)±

√
Tr2H(λ)− 4

)
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are defined on a Riemann surface Γ which is a two-sheeted covering of CP 1 branched
at the simple zeros of the function (Tr2H(λ)−4) and also at 0 and ∞ (the multiple
zeros are removed under the normalization). The complex curve Γ is called the
spectral curve of the minimal torus in SU(2) and it has finite genus.

Above we presented Hitchin’s results that remain valid for any harmonic torus
in S3 (this includes both cases of minimal tori in S3 and harmonic Gauss maps into
S2 ⊂ S3) [62]. Let us now restrict ourselves to minimal tori in S3.

Let D be the Dirac operator associated with this torus and let a spinor ψ′

generate the torus by means of the Weierstrass representation. Let

L =
1√
2

(
a −b
b a

)
, a = −iψ′1 + ψ′2, b = −iψ′1 + ψ

′
2.

The following assertion holds.

Proposition 13 [10]. The Hitchin eigenfunctions ϕ are transformed according to
the map

ϕ→ ψ = eα
(

0 iλ
1 0

)
· L−1ϕ

into solutions of the Dirac equation Dψ = 0 corresponding to the torus Σ in S3.

As in the case of CMC tori in R3 (see above), this proposition, together with
Corollary 3, implies the following assertion.

Proposition 14. The spectral curve of a minimal torus in S3 coincides with the
(generic) spectral curve of the torus as defined in § 4.4.

4.7. Singular spectral curves. A perturbation of the free operator can be
so strong that the spectral curve Γ can acquire other singularities (besides reso-
nance pairs). If Γnm is an algebraic curve, then we write out the corresponding
Baker–Akhiezer function ψ(z, z̄, P ) such that:

1) Dψ = 0;
2) ψ is meromorphic on Γ and has at the points at infinity the asymptotic

behaviour

ψ ≈
(
eλ+z

0

)
as P →∞+, ψ ≈

(
0

eλ−z̄

)
as P →∞−,

where λ−1
± are local coordinates near ∞±, λ−1

± (∞±) = 0 and one can set
λ± = 2πik1.

The function ψ is formed by Floquet functions ψ(z, z̄, P ) taken at different points
of the spectral curve so that ψ is meromorphic and has the above asymptotic
behaviour. The function ψ already ‘draws’ the complex curve Γψ on which it is
defined in such a way that no Floquet function is taken into account twice at
different points of Γψ. There is a chain of maps

Γnm → Γψ → Γ

such that their composition is a normalization of Γ and the first map in the chain
is a normalization of the curve Γψ. We have the obvious inequalities

pg(Γ) = pg(Γψ) 6 pa(Γψ) <∞,
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where pa(Γψ) is the arithmetic genus of the curve Γψ (this genus differs from the
geometric genus of Γψ owing to the contribution of singular points).

The function ψ can be pulled back to the non-singular curve Γ, where it has
exactly pa(Γψ) + 1 poles (this follows from finite-gap integration theory). For the
Dirac operator the number pa(Γψ) is one less than ‘the number of poles of its
normalized Baker–Akhiezer function’.

We arrive at the following conclusion.
a) The Baker–Akhiezer function ψ determines the Riemann surface Γψ in the

classical spirit of Riemann’s work, as a surface on which the given function
ψ is naturally defined. This surface can be obtained from Γ by normalizing
the singularities only if the normalization reduces the dimension of the space
of Floquet functions at the point (for instance, this is the case for resonance
pairs).

b) In contrast to Γnm, the complex curve Γψ gives a one-to-one parametrization
of all Floquet functions (up to constant multiples).

This situation is explained in detail for minimal tori in S3 in [62].
If we want to construct a torus of finite spectral genus in terms of theta functions,

then we must again work with the curve Γψ, as was shown in § 4.5 in the case of
the Clifford torus.

The following definition of Γψ comes from finite-gap integration theory.
Let D be a Dirac operator with doubly periodic potentials U and V
and let Γψ be a Riemann surface (possibly singular) of finite arithmetic
genus pa(Γψ) = g with two distinguished non-singular points ∞± and
local coordinates k−1

± near these points such that k−1
± (∞±) = 0. Let

ψ(z, z̄, P ) be a Baker–Akhiezer function ψ defined on C × Γψ \ {∞±},
and:

1) let ψ be meromorphic with respect to P outside the points ∞± ∈ Γ
and have poles at g + 1 non-singular points P1 + · · ·+ Pg+1;

2) let ψ have at ∞± the asymptotic behaviour

ψ ≈ ek+z
[(

1
0

)
+
(
ξ+1
ξ+2

)
k−1
+ +O(k−2

+ )
]

as P →∞+,

ψ ≈ ek−z̄
[(

0
1

)
+
(
ξ−1
ξ−2

)
k−1
− +O(k−2

− )
]

as P →∞−

and let it satisfy the Dirac equation Dψ = 0 everywhere on Γψ
except for the ‘points at infinity’ ∞± and the poles P1, . . . , Pg+1.

We say that Γψ is the spectral curve of the finite-gap operator D .
Such a function is unique for any generic divisor P1+· · ·+Pg+1, and the potentials

can be recovered by the formulae

U = −ξ+2 , V = ξ−1 . (51)

An attempt to define a Riemann surface of this kind in the case pg(Γ) = ∞ faces
many analytic complications.

We refer to [55] for a more detailed exposition of some facts relating to singular
spectral curves.
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As we saw in § 4.5, for the Clifford torus Σ1,1 ⊂ R4 the potential is constant and
the spectral curve is the sphere. Moreover,

pg(Γ) = pa(Γψ) = 0.

However, the potential of its stereographic projection, which is the Clifford torus
in R3, is equal to

U =
sinx

2
√

2(sinx−
√

2)
,

where x is one of the angle variables, and by Theorem 12, we have for the operator
with this potential that

pg(Γ) = 0, pa(Γψ) = 2.

Hence, stereographic projection of the Clifford torus in S3 to R3 leads to the appear-
ance of singularities for the curve Γψ.

This leads to an interesting problem:
What is the relationship between the spectral curve of a torus in the unit
sphere S3 ⊂ R4 and the spectral curve of its stereographic projection?

In our opinion the answer to this question is as follows: the potentials are con-
nected by some Bäcklund transformation leading to a transformation of the spectral
curve. Possibly there is an analogy with a similar transformation (presented in [83])
for the one-dimensional Schrödinger operator. We also conjecture that the answer
to the following question is positive:

Is it true that the images M (Γ) of the multiplier map for a torus in S3

and for its stereographic projection coincide?
There is another interesting problem:

Characterize the spectral curves of tori in R3 and R4.
The answers must differ for tori in R3 and R4. Indeed, as was already men-

tioned in [78], the spectral curves for CMC tori in R3 must be singular (for these
curves this means that there are multiple branch points that are transformed by
the normalization into pairs of points transposed by the hyperelliptic involution).9

However, the spectral curve for the Clifford torus in R4 is non-singular.

§ 5. The Willmore functional

5.1. Willmore surfaces and the Willmore conjecture. The Willmore func-
tional for closed surfaces in R3 is defined by the formula

W (Σ) =
∫

Σ

H2 dµ, (52)

where dµ is the induced area form on the surface. It was introduced by Willmore
in the context of variational problems [84]. Willmore was the first to pose a global

9As was shown in [5], for any torus in R3 the image M (Γ) contains a point of multiplicity at
least four or a pair of double points at which the differentials dk1 and dk2 vanish (here k1 and k2
are the quasi-momenta). We note that this does not mean that Γψ satisfies the same conditions;
for instance, for the Clifford torus in R3 the spectral curve Γψ has a pair of double points at which
dk1 and dk2 do not vanish and contains no other singular points.
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problem of conformal geometry of surfaces, the so-called Willmore conjecture, which
we discuss below. The Euler–Lagrange equation for this functional is

∆H + 2H(H2 −K) = 0,

where ∆ is the Laplace–Beltrami operator on the surface. Any surface satisfying
this equation is called a Willmore surface.

We note that H =
κ1 + κ2

2
, and by the Gauss–Bonnet theorem, for a compact

oriented surface Σ without boundary we have∫
Σ

K dµ =
∫

Σ

κ1κ2 dµ = 2πχ(Σ),

where χ(Σ) is the Euler characteristic of Σ. By adding a topological term to W ,
we obtain a functional with the same extremals among closed surfaces, and we
can simplify the variational problem. This is the case for spheres. Namely, by
considering the functional

Ŵ (Σ) =
∫

(H2 −K) dµ = W (Σ)− 2πχ(Σ),

we see that10

Ŵ =
1
4

∫
Σ

(κ1 − κ2)2 dµ.

We recall that a point on a surface is said to be umbilical if κ1 = κ2 at the point. A
surface is said to be totally umbilical if any point of the surface is umbilical. By the
Hopf theorem, a totally umbilical surface in R3 is a domain either in a round sphere
or in a plane. For spheres this gives a lower bound for the Willmore functional and
a description of all its minima:

For spheres we have
W (Σ) > 4π,

and W (Σ) = 4π if and only if Σ is a round sphere.
This trick does not work for surfaces of higher genera.
The functional Ŵ was introduced by Thomsen [85] and Blaschke [86], who called

it the conformal area for the following reasons:
1) the quantity (H2 − K)dµ is invariant with respect to the conformal trans-

formations of the ambient space, and hence for any compact oriented surface
Σ ⊂ R3 and any conformal transformation G : R3 → R3 taking Σ into a
compact surface we have

Ŵ (Σ) = Ŵ (G(Σ));

2) if Σ is a minimal surface in S3 and π : S3 → R3 is the stereographic projection
taking Σ into R3, then π(Σ) is a Willmore surface.

Moreover, as was proved in [87],
3) there is a quartic differential Â (dz)4 defined outside the umbilical points, and

it is holomorphic for Willmore surfaces.
10This trick is similar to the instanton trick which helped to discover self-dual connections.



126 I. A. Taimanov

We present these results in Appendix 2.
By 2), there are examples of compact closed Willmore surfaces. We note that

a compact Willmore surface need not be the stereographic projection of a minimal
surface in S3 (this was first proved for tori in [88]).

It follows from 3) that outside the umbilical points Willmore surfaces admit a
good description similar to the description of CMC surfaces in terms of the holo-
morphic property of the quadratic Hopf differential. However, there are examples
of compact Willmore surfaces that contain whole curves consisting of umbilical
points [89].

By 1), the minimum of the Willmore functional in each topological class of
surfaces is conformally invariant, and hence degenerate. We note that the existence
of a minimum which is a real-analytic surface was proved for tori by Simon [90]
and for surfaces of genus g > 2 by Bauer and Kuwert [91]. Recently, Schmidt
presented a proof of the following result: for a given genus and a given conformal
class of oriented surfaces the Willmore functional achieves its minimum on some
surface which a priori can have branch points or can be a branched covering of
an immersed surface [92]. Schmidt’s technique uses the Weierstrass representation
and some ideas from [5].11

Bryant initiated a programme for classifying the Willmore spheres based on
the fact that a holomorphic differential of degree four vanishes identically on every
sphere, and hence Willmore spheres admit a description in terms of algebro-
geometric data [87]. The following assertion holds.

The image of any minimal surface in R3 under any Möbius transfor-
mation (x − x0) → (x − x0)/|x − x0|2 is a Willmore surface, and any
minimal surface Σ with planar ends is taken by every Möbius trans-
formation with centre x0 outside the surface into a smooth compact
Willmore surface Σ′ such that

W (Σ′) = 4πn,

where n is the number of planar ends of Σ.
Bryant proved that all Willmore spheres are Möbius images of minimal surfaces
with planar ends, the case n = 1 corresponds to round spheres, and there are no
such spheres with n = 2 and 3. He also described the Willmore spheres with n = 4.
Later on, it was proved in [93] that Willmore spheres exist for any even n > 6 and
any odd n > 9. The remaining cases n = 5 and 7 were finally excluded in [94].

The Willmore conjecture asserts the following.
For tori one has

W > 2π2,

and the Willmore functional attains its minimum on the Clifford torus
and its images under conformal transformations of R3.

The Clifford torus was already introduced in § 4.5.
Since the Willmore functional is conformally invariant and the stereographic

projection π : S3 → R3 is conformal, we do not distinguish between the original

11See Appendix 1.
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Willmore conjecture for tori and its version for tori in S3, for which the Willmore
functional is replaced by

WS3 =
∫

(H2 + 1) dµ, WS3(Σ) = W (π(Σ)). (53)

Willmore expressed his conjecture in [84], where he verified it for round tori of
revolution. This conjecture has been proved for many special cases:

1) for tube tori, that is, for tori formed by carrying a circle centred on a closed
curve along this curve such that the circle always lies in the normal plane,
by Shiohama and Takagi [95] and by Willmore [96] (if a modification of the
radius of the circle is admitted, then we obtain channel tori, for which the
conjecture was established in [97]);

2) for tori of revolution by Langer and Singer [98];
3) for tori conformally equivalent to R2/Γ(a, b), where 0 6 a 6 1/2,

√
1− a2 6

b 6 1, and the lattice Γ(a, b) is generated by the vectors (1, 0) and (a, b)
(Li–Yau [99]);

4) the previous result of Li and Yau was improved by Montiel and Ros, who
extended it to the closed domain

(
a− 1

2

)2 + (b− 1)2 6 1
4 [100];

5) for tori in S3 which are invariant under the antipodal map (Ros [101]);
6) Li and Yau [99] also proved that if a surface has a self-intersection point of

multiplicity n, then W > 4πn, and hence the conjecture is proved for tori
with self-intersections.

Some other partial results were obtained in [102] and [103].
In the paper [104] a formula for the second variation of the functional W was

computed for the Clifford torus and it was proved that this form is non-negative. A
formula for the second variation for general Willmore surfaces was obtained in [105].

The Willmore conjecture remains open in the general case.
In the next section we discuss a new approach used in [5].
According to (53), the following conjecture is a special case of the Willmore

conjecture and is also open:
For the minimal tori in S3 the volume is bounded below by 2π2 and
attains its minimal value on the Clifford torus in S3.

By the Li–Yau theorem on surfaces with self-intersections this conjecture is
implied by the following conjecture of Hsiang and Lawson:

The Clifford torus is the only minimal torus embedded in S3.
Since any holomorphic differential of order four on a torus has constant coef-

ficients, there are two possibilities: the differential either vanishes or is equal to
c(dz)4, c = const 6= 0.

In the first case the torus is obtained as the Möbius image of a minimal torus
with planar ends. For obvious reasons, it is clear that there are no such tori with
n = 1 or 2 ends. The case n = 3 was excluded by Kusner and Schmitt, who also
constructed examples with n = 4 [106]. The first examples of minimal rectangular
tori with four planar ends were constructed by Costa [107]. Recently, Shamaev
constructed examples of tori of this kind for any even n > 6 [108]. Although it is
clear from the construction that these tori have no branch points, this has been
rigorously proved only for n = 6, 8, and 10.
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In the second case Codazzi-type equations for Willmore tori without umbilical
points coincide with the four-particle Toda lattice [109], [110].12 Theta formulae for
Willmore tori of this kind were derived in [110] by using Baker–Akhiezer functions
connected with this Toda lattice.

Another construction of Willmore tori using methods of the theory of integrable
systems was proposed in [111].

Candidates for minima of the Willmore functional for surfaces of higher genera
were suggested by Kusner [112].

There is a conjecture that the Willmore functional
∫
|H|2 dµ for tori in R4

attains its minimum on the Clifford torus in R4, that is, on the product of two
circles of the same radius (see [113], [114]). Since this is a Lagrangian torus, the
conjecture can be weakened as follows: the Clifford torus is the minimum of the
Willmore functional on the smaller class of Lagrangian tori. This conjecture is
discussed in [115], where it is proved that the functional W attains its minimum
among Lagrangian tori at some real-analytic torus.

We do not discuss generalizations of the Willmore functional for surfaces in
arbitrary Riemannian manifolds,∫

(|H|2 + K̂) dµ,

where K̂ is the sectional curvature of the ambient space along the tangent plane to
the surface. The quantity (|H|2−K+ K̂ ) dµ is invariant with respect to conformal
transformations of the ambient space [116].

In [11] another generalization of the Willmore functional for surfaces in Lie
groups of dimension three is proposed. It is based on the spectral theory of Dirac
operators in Weierstrass representations (see also § 5.5).

We should also mention the Willmore flow, which is similar to the mean curvature
flow and reduces the value of W (see the paper [117] and the references therein).

We conclude this subsection by a remark on constrained Willmore surfaces. By
definition, these are critical points of the Willmore functional restricted to the space
of surfaces of a given conformal type. It was first observed by Langer that com-
pact surfaces of constant mean curvature in R3 are constrained Willmore surfaces,
since the Gauss map is harmonic for the compact CMC surfaces [118]. For the
fundamentals of the theory of these surfaces, see [119].

5.2. Spectral curves and the Willmore conjecture. As was shown in [1], in
terms of the potential U of the Weierstrass representation of a torus in R3, the
Willmore functional becomes

W = 4
∫
M

U2 dx dy.

Thus, it measures the perturbation of the free operator.
We recall that the Willmore conjecture claims that this functional for tori attains

its minimum at the Clifford torus, for which the value of the functional is 2π2.

12See Appendix 2.



Two-dimensional Dirac operator and the theory of surfaces 129

Starting from the observation that the Willmore functional is the first integral
of the mNV flow deforming tori into tori and preserving the conformal class (see
§ 3.1), we made the following conjecture in 1995 (see [1]).

A torus non-stationary with respect to the mNV flow cannot be a local
minimum of the Willmore functional.

This conjecture was based on the assumption that the minimum of a variational
problem of this kind is non-degenerate, and thus must be stable with respect to
soliton deformations determined by equations in the mNV hierarchy and preserv-
ing the value of the Willmore functional. As is known from soliton theory, these
equations are linearized on the Jacobi variety of the normalized spectral curve, and
generically these linear flows span the whole Jacobi variety, which is an Abelian
variety of complex dimension pg(Γ), or a Prym submanifold of the Jacobi variety.

A geometric analogue of the conjecture was formulated in [3], where we intro-
duced a notion of spectral genus of a torus as the number pg(Γ):

For a given conformal class of tori in R3 the minima of the Willmore
functional are attained at tori of minimal spectral genus.

In [3] we proposed the following explanation of the lower bounds for W : for
small perturbations of the zero potential U = 0 the Weierstrass representation
gives planes that cannot be converted into tori, and since the Willmore functional
for surfaces in R3 is the squared L2-norm of U , the lower bound shows how large a
perturbation of the zero potential must be in order to convert planes into tori.

The strategy of the proof of the Willmore conjecture after proving the last con-
jecture is to compute the values of the Willmore functional for tori of minimal
spectral genus (by using the formula (44) or in another way) and to verify the
Willmore conjecture.

We have already mentioned the paper [5] by Schmidt. This paper contains a
series of interesting results.13 For our purposes, we present only those relating
to the asymptotic behaviour of the spectral curve. Although we did not go through
the details of [5] until recently, we must say the following.

In fact, the paper [5] proposes a proof only of our last conjecture (see
above); the value of pa(Γψ) is a priori unbounded, but the computations
of the Willmore functional in [5] are carried out only for the minimal
possible values of pg(Γ) and pa(Γψ).

In the spirit of the above hypotheses, it is natural to make the following conjec-
ture.

For a given conformal class of tori in R3 and a given spectral genus, the
minima of the Willmore functional are attained at tori with the minimal
value of pa(Γψ).

This conjecture also agrees with the soliton approach, because the additional
degrees of freedom corresponding to the difference pa(Γ)−pg(Γ) (or a part of it if the
flows are linearized on the Prym manifold) also correspond to soliton deformations.

13This paper also proposes a proof of the fact that the spectral genus of a constrained Willmore
torus in R3 is finite. Another proof was proposed by Krichever (unpublished). This fact is
non-trivial even for Willmore tori, because in this setting the trick based on soliton theory and
used in [62] and [77] for harmonic tori in S3 and tori of constant mean curvature in R3 (see
also [79]) fails to work for arbitrary tori. It deals only with tori described by the four-particle
Toda lattice without umbilical points at which eβ = 0 (see Appendix 2).
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In our opinion these conjectures are of independent interest. We note that proofs
of the last two conjectures, together with computations of the Willmore functional
for tori with minimal possible values of pg(Γ) and pa(Γψ), would lead to a verifica-
tion of the Willmore conjecture.

We would also like to note another interesting problem:
How can this theory of spectral curves be generalized to compact im-
mersed surfaces of higher genera?

5.3. Lower bounds for the Willmore functional. In [6] we established (in a
special case) a lower bound for the Willmore functional. This bound was quadratic
with respect to the dimension of the kernel of the Dirac operator.

Let us represent the sphere as an infinite cylinder Z compactified by a pair of
points in such a way that z = x + iy is a conformal parameter on Z, y is defined
modulo 2π, x ∈ R, and these two points at infinity are obtained upon passing to
the limits x→ ±∞.

Lemma 3 [6]. For a sphere in R3 the function ψ and the potential U have the
following asymptotic behaviour :

|ψ1|2 + |ψ2|2 = C±e
−|x| +O(e−2|x|), U = U±e

−|x| +O(e−2|x|) as x→ ±∞,

where C± and U± are constants. If C+ = 0 or C− = 0, then the corresponding
distinguished point x = +∞ or x = −∞ is a branch point.

The kernel of the operator D on the sphere is formed by the solutions ψ of the
equation Dψ = 0 on the cylinder such that |ψ1|2 + |ψ2|2 = O(e−|x|) as x→ ±∞.

Suppose that the potential U of the Dirac operator depends only on x. For
example, a situation of this kind arises for a sphere of revolution, where y is the
angle of rotation. However, this is the case for many other surfaces with intrinsic
S1-symmetry reflected by the potential of the Weierstrass representation, and not
only for spheres of revolution.

Theorem 13 [6]. Let D be a Dirac operator on M = S2 with a real-valued potential
U = V depending only on x. Then∫

M

U2 dx ∧ dy > πN2, (54)

where N = dimH KerD = 1
2 dimC KerD . These minima are attained at the poten-

tials

UN (x) =
N

2 coshx
.

The proof of this theorem is based on the method of the inverse scattering
problem applied to a one-dimensional Dirac operator. The quadratic estimate arises
from the Faddeev–Takhtadzhyan trace formulae [120].

Along with the proof of Theorem 13, we expressed the following conjecture.

Conjecture 1 [6]. For any Dirac operator on the two-dimensional sphere the esti-
mate (54) holds.
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Before passing to the proof of Theorem 13, we present one of the corollaries of
the conjecture, namely, Theorem 14.

Soon after the electronic publication [6], Friedrich indicated the following corol-
lary to the conjecture.14

Theorem 14 [121]. Suppose that Conjecture 1 is true. Let λ be an eigenvalue
of the Dirac operator on a two-dimensional spin-manifold homeomorphic to the
two-dimensional sphere S2. The following inequality holds:

λ2 Area(M) > πm2(λ), (55)

where m(λ) is the multiplicity of λ.

We note that, due to the symmetry (4) of the operator KerD, the multiplicity of
an eigenvalue is always even. In the case m(λ) = 2 the inequality (55) was proved
by Bär [122].

Proof of Theorem 14. We first recall the definition of the Dirac operator on a
spin-manifold (see [123] and [124] for detailed expositions).

A spin n-manifold M is a Riemannian manifold with a spin bundle E over M
such that a Clifford multiplication

TpM × Ep → Ep

is defined at each point p ∈M such that

v · w · ϕ+ w · v · ϕ = −2(v, w)ϕ, v, w ∈ TpM, ψ ∈ Ep.

We also assume that there is a Riemannian connection ∇ inducing a connection
on E. In this case the Dirac operator is defined at every point p ∈M by the formula

Dϕ =
n∑
k=1

ek · ∇ek
ϕ,

where e1, . . . , en is an orthonormal basis in TpM and ϕ is a section of the bundle E.
For example, let us consider a two-dimensional spin manifold M with a flat

metric. The Clifford algebra Cl2 is isomorphic to H. Thus, we have a C2-spin
bundle over M (here we identify H with C ⊕ C). For the flat metric on M the
Clifford multiplication is represented by the matrices

e1 = ex =
(

0 1
−1 0

)
, e2 = ey =

(
0 −i
−i 0

)
.

One can readily see that

exey + eyex = 0, e2x = e2y = −1.

14The conjecture was finally proved by Ferus, Leschke, Pedit, and Pinkall in [7] together with
a generalization of the formula (54) in the form of the so-called Plücker formula for surfaces of
higher genera, for all g > 0 (we present this proof in § 5.4).
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The Dirac operator D0 is given by the formula

D0 = ex · ∂x + ey · ∂y = 2
(

0 ∂

−∂ 0

)
= 2D0,

and its square is equal to the Laplace operator (up to a sign):

D2
0 = −∂2

x − ∂2
y .

For a conformally Euclidean metric eσ dz dz̄ the Dirac operator becomes

D = e−3σ/4D0e
σ/4

(see [125]). Hence, the eigenvalue problem

Dϕ = λϕ

for the Dirac operator associated with a metric of this kind becomes

D0[eσ/4ϕ]− λeσ/2[eσ/4ϕ] = 0,

which can be rewritten as

(D0 + U)ψ = 0, U = −λe
σ/2

2
, ψ = eσ/4ϕ.

If Conjecture 1 holds, then we have the inequality∫
M

U2 dx ∧ dy =
λ2

4
Area(M) > π

(
dimC Ker(D0 + U)

2

)2

= π
m2(λ)

4
.

This proves Theorem 14.

Proof of Theorem 13. If the potential U depends only on x, then the linear space
of solutions of the equation Dψ = 0 on the sphere S2 = Z ∪±∞ = Rx × S1

y ∪∞ is
spanned by functions of the form ψ(x, y) = ϕ(x)eκy such that

Lϕ :=
[(

0 ∂x
−∂x 0

)
+
(

2U 0
0 2U

)]
ϕ =

(
0 iκ
iκ 0

)
ϕ,

where e2πκ = −1 (this condition defines the spin bundle over the sphere; see [45])
and ϕ is exponentially decaying as x → ±∞. This means that ϕ is a bound state
of L, or equivalently, κ belongs to the discrete spectrum, which is invariant with
respect to the complex conjugation κ → κ. Hence, dimC D = 2N is the doubled
number of bound states satisfying the condition Im κ > 0.

The trace formula (76) (see Appendix 3) for p = q = 2U becomes

∫ ∞

−∞
U2(x) dx = − 1

4π

∫ ∞

−∞
log(1− |b(k)|2) dk +

N∑
j=1

Im κj .
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For a given dim Ker D = N the functional
∫
M

U2(x) dx ∧ dy = 2π
∫ ∞

−∞
U2(x) dx

attains its minimum on the potential with the following spectral data:

b(k) ≡ 0, κk =
i(2k − 1)

2
, k = 1, . . . , N,

and we have ∫
S2
U2(x) dx ∧ dy > 2π

(
1
2

+
3
2

+ · · ·+ N

2

)
= πN2.

In fact, there is an N -dimensional family of potentials parameterized by λ1, . . . , λN ,
and moreover, this family is invariant with respect to the mKdV equations. One
can readily show that each such family contains the potential UN = N/(2 coshx),
and pN (x) = 2UN (x) = N/ coshx is the famous N -soliton potential of the Dirac
operator.

This completes the proof of Theorem 13.

We see that equality in (54) is attained on some special spheres, which are partic-
ular cases of the so-called soliton spheres. By definition, these are spheres for which
the potential of the Dirac operator D is a soliton (reflectionless) potential U(x).
It is reasonable to distinguish a special subclass of soliton spheres defined by the
condition that all poles κ1, . . . ,κN , Im κk > 0, of the transition coefficient T (k)

are of the form
(2m+ 1)i

2
, m ∈ N.

Soliton spheres can readily be constructed from the spectral data by using the
inverse scattering method (see (77) in Appendix 3).

We proved in [6] that:
a) the lower estimate (54) becomes an equality on the soliton spheres corre-

sponding to the potentials UN =
N

2 coshx
;

b) generally, a soliton sphere is not a surface of revolution;15

c) the class of soliton spheres is preserved by the mKdV deformations (we
note that these deformations are given by 1 + 1-equations) for which the
Kruskal–Miura integrals are integrals of motion;

d) the soliton spheres corresponding to the potentials UN = N/2 coshx are
described in terms of rational functions,16 that is, these spheres can be called
rational spheres;

e) the soliton spheres such that each pole κj is of the form (2mj + 1)i/2 are
critical points of the Willmore functional restricted to the class of spheres
with one-dimensional potentials.

15Indeed, denote by f1 = ϕ1(x)eκ1y , . . . , fn = ϕNe
κNy the distinct generators of Ker D .

Then any linear combination f = α1f1 + · · · + αNfN determines a sphere in R3 by means of
the Weierstrass representation. If there is a pair of non-zero coefficients αj and αk such that
Im κj 6= Im κk, then the sphere is not a surface of revolution.

16It is clear from the recovery formulae (77) that this holds for all reflectionless potentials.
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5.4. Plücker formula. Our attempts to prove Conjecture 1 had failed because
of the absence of a well-developed inverse scattering method for two-dimensional
operators. However, in the remarkable paper [7] this conjecture was proved together
with its generalization to surfaces of arbitrary genera by using methods of algebraic
geometry.

As was mentioned in [8], the following statement can be derived from the results
of [126] (see also [127]).

Proposition 15. Let E be a C2-bundle over a surface M and let ψ be a non-trivial
section of E such that Dψ = 0. Then the zeros of ψ are isolated, and

ψ = zkϕ+O(|z|k+1)

for any local complex coordinate z on M with origin located at some zero p of the
function ψ (that is, if ψ(p) = 0 and z(p) = 0), where ϕ is a local section of E that
does not vanish in some neighbourhood of p. The integer k is well defined and does
not depend on the choice of the coordinate z.

The integer k is called the order of the zero p:

ordp ψ = k.

Let us now recall the equation (see Proposition 1 in § 2.1)

αzz̄ + U2 − |A|2e−2α = 0, eα = |ψ1|2 + |ψ2|2. (56)

We assume for simplicity that M is a sphere and E is a spin bundle. If the
section ψ vanishes nowhere, then it determines a surface in R3, and, integrating
the left-hand side of (56) over M , we obtain∫

M

αzz̄ dx ∧ dy +
∫
M

U2 dx ∧ dy −
∫
M

|A|2e−2α dx ∧ dy = 0. (57)

By the Gauss theorem, the first term is equal to

−1
4

∫
M

(−4αzz̄e−2α)e2α dx ∧ dy = −1
4

∫
M

K dµ = −π,

where K stands for the Gaussian curvature and dµ for the measure corresponding
to the induced metric. Thus,17∫

M

U2 dx ∧ dy = π +
∫
M

|A|2e−2α dx ∧ dy > −
∫
M

αzz̄ dx ∧ dy = π.

In the general case, for any surface and for any section ψ satisfying the equation
Dψ = 0 (that is, we do not assume here that ψ vanishes nowhere) we have∫

M

U2 dx ∧ dy = π

(
−degE0 +

∑
p

ordp ψ
)

+
∫
M

|A|2e−2α dx ∧ dy

> π(−degE0 +
∑
p

ordp ψ)

17For general complex quaternionic line bundles L = E0 ⊕ E0 we have

Z
M
αzz̄ dx ∧ dy =

π degE0 = πd.
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(see [8]). The integrand |A|2e−2α has singularities at the zeros of ψ, but the integral
converges and is non-negative.

Returning to the case of spin bundles over spheres (degE0 = g − 1 = −1) and
assuming that dimH KerD = N , we choose a point p and a function ψ ∈ KerD in
such a way that ordp ψ = dim KerH D − 1 = N − 1. We now substitute ψ into (56)
and obtain∫

M

U2 dx ∧ dy = π(1 +N − 1) +
∫
M

|A|2e−2α dx ∧ dy > πN.

However, this estimate is too rough, because we can see from the proof of Theo-
rem 13 that it is not just the function in KerD with maximal order of zeros that
contributes to lower bounds for the Willmore functional, and one must consider the
flag of functions.

In [7] a deep analogy was discovered between this problem and the Plücker
relations connecting the degrees and the ramification indices of curves associated
with some algebraic curve in CPn. This enabled one to write out the flag and to
consider the contribution of the entire kernel of the operator D to the Willmore
functional. This led finally to establishing lower bounds for the Willmore functional
that are quadratic in dimH KerD .

To formulate the main result of [7], we introduce some definitions. Let H be a
subspace of KerD . For any point p we write

n0(p) = min ordp ψ for ψ ∈ H.

Then we write, step by step,

nk(p) = min ordp ψ for ψ ∈ H such that ordp ψ > nk−1(p).

We have the Weierstrass gap sequence

n0(p) < n1(p) < · · · < nN−1(p), N = dimH H,

and a chain of embeddings

H = H0 ⊃ H1 ⊃ · · · ⊃ HN−1,

where Hk consists of the functions ψ such that ordp ψ > nk(p). The order of the
linear system H at the point p is then defined as

ordpH =
N−1∑
k=0

(nk(p)− k) =
N−1∑
k=0

nk(p)−
1
2
N(N − 1).

We say that p is a Weierstrass point if ordpH 6= 0.
It is now possible to formulate the main result of the theory.

Theorem 15 [7]. Let H ⊂ KerD and dimH H = N . Then∫
M

|U |2 dx ∧ dy = π(N2(1− g) + ordH) + A (M), (58)

where the summand A (M) is non-negative and reduces to
∫
M

|A|e−2α dx ∧ dy in

the case of (57).



136 I. A. Taimanov

In fact, the main result of [7] remains valid for the Dirac operators with complex-
conjugate potentials, U = V ,18 on arbitrary complex quaternionic line bundles
of arbitrary degree d (this follows immediately from the proof) and explains the
summand A (M) in terms of dual curves,∫

M

|U |2 dx ∧ dy = π(N((N − 1)(1− g)− d) + ordH) + A (M),

where g is the genus of the surface M and d = degL = degE0. In Theorem 15 we
set d = g − 1, that is, we consider the case which is of interest for the theory of
surfaces.

For U = 0 we have A (M) = 0, and the Plücker formula (58) reduces to the
original Plücker relation for algebraic curves (see, for instance, [128]),

ordH = N((N − 1)(g − 1) + d).

For g = 0 we have the following result.

Corollary 4 [7]. Conjecture 1 is true:
∫
U2 dx ∧ dy > πN2.

For g > 1 we obtain an effective lower bound, in terms of ordH only, because
the term quadratic in N vanishes for g = 1 and is negative for g > 1.

To obtain effective lower bounds for the Willmore functional, it was proposed
in [7] to use some special linear systems H. Let dim KerD = N . We take in KerD a
k-dimensional linear system H distinguished by the condition that ordp ψ > N − k
for some fixed point p and for any ψ ∈ H. The corresponding Weierstrass gap
sequence satisfies the inequality

nl(p) > N − k + l, l = 0, 1, . . . , k − 1,

and hence ordpH > k(N − k). It follows from (58) that∫
U2 dx ∧ dy > π(k2(1− g) + k(N − k)) = kN − k2g. (59)

If g = 0, then the right-hand side attains its maximum at k = N , and we obtain
the estimate (54).

For g > 1 the function f(x) = xN − x2g attains its maximum at the point
xmax = N/(2g). Hence, the right-hand side of (59) attains its maximum either at
k = [N/(2g)] or at [N/(2g)]+1, that is, at an integer point closest to the point xmax.
This readily implies a rough lower bound which holds for any g. Of course, this
bound can be improved in special cases; for example, for g = 1.

Corollary 5 [7]. The following inequalities hold :∫
U2 dx ∧ dy >

π

4g
(N2 − g2) (60)

18In this case
1

4
W =

Z
UV dx ∧ dy =

Z
|U |2 dx ∧ dy, where W is the Willmore functional.
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for g > 1, and ∫
U2 dx ∧ dy >


πN2

4
if N is even,

π(N2 − 1)
4

if N is odd
(61)

for g = 1.

The proof of Theorem 14 can be directly applied to derive the following corollary.

Corollary 6 [7]. The following inequalities hold for a given eigenvalue λ of the
Dirac operator on a two-dimensional spin-manifold of genus g :

λ2 Area(M) >

πm
2(λ) for g = 0,

π

g
(m2(λ)− g2) for g > 1,

where m(λ) stands for the multiplicity of the eigenvalue λ.

Another important application of the formula (61) involves lower bounds for the
area of CMC tori in R3 and minimal tori in S3. One can see from the explicit con-
struction of spectral curves (see § 4.6) that, in both cases, the normalized spectral
curves are the hyperelliptic curves

µ2 = P (λ)

such that a pair of branch points correspond to the ‘points at infinity’ ∞±. There
are also 2g other branch points (here g stands for the genus of this hyperelliptic
curve) at which the multipliers of Floquet functions are equal to ±1 (by the con-
struction of spectral curves). Moreover, there is also a pair of points which are
transposed by the hyperelliptic involution and at which the multipliers are also
equal to ±1 (the tori are constructed in terms of these Floquet functions, as was
shown in [62] and [78]). Thus, we have the space F with dimC F = 2g + 2 that
consists of solutions of the equation Dψ = 0 with the multipliers ±1. Let us take
a four-sheeted covering M̂ of a torus M which doubles both the periods. The pull-
backs of the functions in F to this covering are doubly periodic functions, that is,
they are sections of the same spin bundle over M̂ . The complex dimension of the
kernel of the operator D acting on this spin bundle is at least 2g + 2, and thus

dimH KerD > g + 1. Applying (61), we obtain lower bounds for
∫
|U |2 dx ∧ dy.

For CMC tori we have H = 1 and U =
eα

2
. Hence,

∫
cM U2 dx ∧ dy =

1
4

Area(M̂) = Area(M).

For minimal tori in S3 we have U = − ie
α

2
, and thus

∫
cM |U |2 dx ∧ dy = Area(M).

We obtain the following assertion.



138 I. A. Taimanov

Corollary 7. The following lower bounds for the area hold for minimal tori in S3

and CMC tori in R3 of spectral genus g:

Area >


π(g + 1)2

4
if g is odd,

π((g + 1)2 − 1)
4

if g is even.

As was noted in [7], it follows from [62] that for minimal tori in S3 the bound
can be improved by replacing g + 1 by g + 2. Moreover, the bound remains valid
for the energy of all harmonic tori in S3.

The genus of the spectral curve was recently applied by Haskins to a completely
different problem, namely, in the study of special Lagrangian T 2-cones in C3 [129].
Haskins obtained linear (in the genus) lower bounds for some quantities characteriz-
ing the geometric complexity of these cones and conjectured that these bounds can
be improved to quadratic estimates. We note that the approach of the paper [129]
totally differs from the methods used in [7].

The contribution of the term ordH can readily be shown by the example of
soliton spheres for which the poles of the transition coefficient are of the form
(2l + 1)i/2. In this case the number ordKer D counts the gaps in filling these
energy levels.

Recently, the definition of soliton spheres was generalized in the spirit of lower
estimates for the Willmore functional: a sphere is called a soliton sphere if the
‘Plücker inequality’ ∫

M

|U |2 dx ∧ dy > π(N2(1− g) + ordH)

becomes an equality for it, that is, A (M) = 0 [130].
As was shown by Bohle and Peters [131], this class of spheres contains many

other interesting examples.
Before formulating their result, we recall that Bryant surfaces are exactly the

surfaces of unit constant mean curvature in the hyperbolic three-dimensional
space [132]. By [131], a Bryant surface M in the three-dimensional ball B3 ⊂ R3,
which gives the Poincaré model of hyperbolic space, is a smooth Bryant end if there
is a point p∞ on the asymptotic boundary ∂B3 such that M ∪ p∞ is a conformally
immersed open disc in R3. Generally, a Bryant surface is called a compact Bryant
surface with smooth ends if it is conformally equivalent to a compact surface with
finitely many punctured points each having open neighbourhoods isometric to a
smooth Bryant end.

This is a clear generalization of minimal surfaces with planar ends.
The following assertion holds.

Theorem 16 [131]. The Bryant spheres with smooth ends are soliton spheres. The
possible values of the Willmore functional for these spheres are 4πN , where N is a
positive integer different from 2, 3, 5, and 7.

As was noted by Bohle and Peters, they obtained this theorem by using the obser-
vation that the simplest soliton spheres corresponding to the potentials
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UN =
N

2 coshx
can be treated as Bryant spheres with smooth ends. Bohle and

Peters also announced that all Willmore spheres are soliton spheres (we note that,
according to the results of Bryant and Peng, the possible values of the Willmore
functional on the Willmore spheres coincide with those for the Bryant spheres with
smooth ends; see [87], [94], [93]).

5.5. Willmore-type functionals for surfaces in Lie groups of dimension
three. The formula (44) shows that it is reasonable to consider the functional

E(Σ) =
∫

Σ

UV dx ∧ dy.

for surfaces. For tori this functional measures the asymptotic flatness of the spectral
curve, and for surfaces in R3 it is equal to E = 1

4W [1]. In [11] this functional
was considered for surfaces in other Lie groups and was called the energy of a
surface. Although the product UV is not always real-valued for closed surfaces, the
functional is real-valued and takes the following values:

for SU(2) [10],

E =
1
4

∫
(H2 + 1) dµ,

that is, E is a multiple of the Willmore functional;
for Nil [11],

E =
1
4

∫ (
H2 +

K̂

4
− 1

16

)
dµ;

for S̃L2 [11],

E(M) =
1
4

∫
M

(
H2 +

5
16
K̂ − 1

4

)
dµ;

the energy E is well defined for surfaces in Sol, because the potentials are
undetermined only on zero-measure sets; however, we still do not know the
geometric meaning of the energy.

We recall that the symbol K̂ stands here for the sectional curvature of the ambi-
ent space along the tangent plane to a surface.

These functionals have not been studied, and many problems remain open:
1) Are they bounded below (this is confirmed by some numerical experiments)?
2) What are their extremals?
3) What are the analogues of the Willmore conjecture for these functionals?

Appendix 1. Existence of a spectral curve
for the Dirac operator with L2-potentials

In this appendix we present a proof of Theorem 10 following the lines of [5],
where the exposition is too brief in our opinion.

Moreover, the ideas of the proof of this theorem are important for the proof of
the main result in [92] claiming that the minimum of the Willmore functional on
a given conformal class of surfaces is constructed as follows. Let us consider the
infimum of the Willmore functional on this class and take a sequence of surfaces (or,
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more precisely, of Weierstrass representations of surfaces) in the class for which the
values of the Willmore functional converge to the infimum. Then there is a weakly
convergent sequence of potentials of the corresponding Dirac operators. The Dirac
operator with the limit potential also has non-trivial kernel (this follows from the
convergence of the resolvents), and the desired minimizing surface is constructed
from a function in this kernel by the Weierstrass representation. Of course, it is
necessary to control the smoothness, which is possible. However, as was mentioned
in [92], one cannot say that there are no branch points on the limit surface.

An analogue of the decomposition (40) is the following sequence:

Lp
(D0−E0)

−1

−→ W 1
p

Sobolev embedding−→ L 2p
2−p

multiplication−→ Lp, p < 2. (62)

The operators in the sequence are only continuous, and we cannot argue as in § 4.2.
Let M = C/Λ be a torus and let z be a linear complex coordinate on M defined

modulo the lattice Λ. We denote by ρ(z1, z2) the distance between points z1, z2∈M
with respect to the metric induced by the Euclidean metric on C under the cover-
ing C → C/Λ.

The following proposition can be derived from the definition of the resolvent

(D0 − E)R0(E) = δ(z − z′)

by straightforward computations.

Proposition 16. The resolvent

R0(E) = (D0 − E)−1 : L2 →W 1
2 → L2

of the free operator D0 : L2 → L2 is an integral matrix operator of the form

f(z, z̄) → [R0(E)f ](z, z̄) =
∫
M

K0(z, z′, E)f(z′, z̄′) dx′ dy′, z′ = x′ + iy′,

with the kernel K0(z, z̄, z′, z̄′, E) =
(
r11 r12
r21 r22

)
, rik = rik(z, z̄, z′, z̄′, E), where

r12 =
1
E
∂r22, r21 = − 1

E
∂r11,

1
E

(∂∂ + E2)r11 =
1
E

(∂∂ + E2)r22 = −δ(z − z′).

Corollary 8. The integral kernel of the resolvent R0(E) is equal to

K0(z, z′, E) =
(
−EG −∂G
∂G −EG

)
,

where G stands for the (modified) Green function of the Laplace operator on the
torus M :

(∂∂ + E2)G(z, z′, E) = δ(z − z′).

Example. For the torus M = C/{2πZ + 2πiZ} we have

δ(z − z′) =
∑
k,l∈Z

ei(k(x−x
′)+l(y−y′)), z = x+ iy, z′ = x′ + iy′,

G(z, z′, E) = −4
∑
k,l∈Z

1
k2 + l2 − 4E2

ei(k(x−x
′)+l(y−y′)). (63)
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For other period lattices Λ the analogue of the series (63) for G has almost the
same form and very similar analytic properties. We do not write it out and always
refer to (63) when considering the analytic properties of the series.

The following proposition is obvious.

Proposition 17. The series (63) converges for E = iλ, where λ ∈ R and λ � 0
(that is, λ is sufficiently large).

To compute the operator

R0(k,E) = (D0 + Tk − E)−1 : L2 →W 1
2

embedding−→ L2,

we use the identity

D0 + Tk − E = (1 + Tk(D0 − E)−1)(D0 − E) = (1 + TkR0(E))(D0 − E),

which implies the following formula for the resolvent:

R0(k,E) = R0(E)(1 + TkR0(E))−1 = R0(E)
∞∑
l=0

[−TkR0(E)]l, (64)

provided that the series on the right-hand side converges.

Remark. For a given p, 1 < p < 2, the symbol

R0(E) = (D0 − E)−1 or R0(k,E) = (D0 + Tk − E)−1

means one of the following objects in diverse situations:
a) the operator A : Lp →W 1

p ;
b) the composition B : Lp → Lq, q = 2p/(2 − p), of the above operator A and

the Sobolev embedding W 1
p → Lq;

c) the composition C : Lp → Lp of the above operator A and the natural embed-
ding W 1

p → Lp.
The action of these operators is the same on the space of smooth functions, which
can be regarded as the space embedded in W 1

p or in Lq (the ambient spaces are
the closures of the space of smooth functions with respect to the different norms).
Hence, it suffices to prove the necessary estimates for smooth functions only, which
can be done by using explicit formulae for the resolvents.

We decompose resolvents into sums of integral operators as follows.

Let χε be the function χε(r) =
{

0 for r > ε
1 for r 6 ε

}
, defined for r > 0, r ∈ R. For

a given δ > 0 we decompose the resolvent R0(k,E) into the sum of two integral
operators

R0(k,E) = R6ε
0 (k,E) +R>ε0 (k,E) : Lp → Lq,

where the ‘near’ part R6ε
0 (k,E) is determined by the kernel

K6ε
0 (z, z̄, z′, z̄′, E) = K0(z, z̄, z′, z̄′, E)χε(ρ(z, z′))

and the ‘distant’ part R>ε0 (k,E) has the kernel

K>ε
0 (z, z̄, z′, z̄′, E) = K0(z, z̄, z′, z̄′, E)(1− χε(ρ(z, z′))).
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Proposition 18. For given p with 1 < p < 2, k̂ = (k̂1, k̂2) ∈ C2, and δ with
0 < δ < 1 there is a real constant λ0 � 0 such that

‖TkR0(iλ)‖Lp→Lp < δ

for any λ > λ0 and for any k sufficiently close to k̂.
Hence, for such λ and k:
1) the series in (64) converges and defines a bounded operator from Lp to W 1

p ,
Lq , or Lp (depending on the meaning of the symbol R0(E) multiplied from the
left by the series);

2) the norm of the operator

R0(k, iλ) : Lp →W 1
p

is bounded by some constant rp;
3) for a given ε > 0

lim
λ→∞

‖R>ε0 (k, iλ)‖Lp→Lq
= 0, q =

2p
2− p

.

This proposition follows from the explicit formula (63) for the kernel of the
resolvent.

We denote by rinj the injectivity radius of the metric on M , and we introduce
the norms ‖ · ‖2;ε defined for 0 < ε < rinj as follows. For any U ∈ L2(M) we denote
by U |B(z,ε) the restriction of U to the ball B(z, ε) = {w ∈ M : ρ(z, w) < ε} and
define ‖U‖2;ε by

‖U‖2;ε = max
z∈M

‖U |B(z,ε)‖2.

Proposition 19. 1) For any U ∈ L2(M)√
πε2

vol(M)
6 ‖U‖2;ε 6 ‖U‖2.

2) For any C > 0 and ε the sets {‖U‖2;ε 6 C} are closed, and hence compact with
respect to both the weak topology and the topology of weak convergence on L2(M).

Proof. Obviously, ‖U‖2;ε 6 ‖U‖2. Moreover, we have

‖U‖22;ε vol(M) >
∫
M

∫
B(z,ε)

|U(z + z′, z̄ + z̄′)|2 dz′ dz

=
∫
M

∫
B(0,ε)

|U(z + z′, z̄ + z̄′)|2 dz′ dz

=
∫
B(0,ε)

[∫
M

|U(z, z̄)|2 dz
]
dz′ = πε2‖U‖22,

where dz = dx ∧ dy, dz′ = dx′ ∧ dy′. The second assertion is well known from
functional analysis.
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Let us consider the resolvent

R(k,E) = (D + Tk − E)−1 : Lp → Lp.

We again use the identity

D + Tk − E =
[
1 +

(
U 0
0 V

)
(D0 + Tk − E)−1

]
(D0 + Tk − E),

which implies the equality

R(k,E) = R0(k,E)
∞∑
l=0

[
−
(
U 0
0 V

)
R0(k,E)

]l
.

Proposition 20. Let 1 < p < 2, let k̂ = (k̂1, k̂2) ∈ C2, let ε be sufficiently small,
and let 0 < δ < 1. There is a γ > 0 such that∥∥∥∥(U 0

0 V

)
R0(k, iλ)

∥∥∥∥
Lp→Lp

< δ

for any λ > λ0, for k sufficiently close to k̂, and for U and V such that ‖U‖2;ε < γ
and ‖V ‖2;ε < γ.

Proof. The following inequality is obvious:

‖R6ε
0 (k,E)‖ 6 ‖R0(k,E)‖ for any ε.

Let Sp be the Sobolev constant for the embedding W 1
p → Lq (see Proposition 5).

For λ > λ0 we have
‖R0(k, iλ)‖Lp→W 1

p
6 rp

(see Proposition 18). Let us now consider the composition of maps

Lp
R

6ε
0 (k,E)
−→ W 1

p
embedding−→ Lq

×(U 0
0 V )
−→ Lp,

where the norm of the first map is bounded above by the constant rp and the norm
of the second by the constant Sp. We compute the norm of the third map.

Since the integral kernel of the operator R6ε
0 (k,E) is localized within the closed

domain {ρ(z, z′) 6 ε}, it follows that[(
U 0
0 V

)
R6ε

0 (k,E)f
] ∣∣∣∣
B(x,α)

=
[(
U 0
0 V

)
R6ε

0 (k,E)
] (
f
∣∣
B(x,α+ε)

)
for any ball B(x, α). Applying the Hölder inequality to the right-hand side of the
last formula, we obtain∥∥∥∥∥

[(
U 0
0 V

)
R6ε

0 (k,E)f
] ∣∣∣∣
B(x,α)

∥∥∥∥∥
p

6 m‖R6ε
0 (k,E)‖Lp→Lq

‖
(
f
∣∣
B(x,α+ε)

)
‖p 6 mrpSp

∥∥(f ∣∣
B(x,α+ε)

)∥∥
p
,
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where m = max(‖U‖2;ε, ‖V ‖2;ε). Let us now recall the identity∫
M

‖gB(x,α)‖pp dx = volB(x, α)‖g‖pp = πα2‖g‖pp

and apply it to the previous inequality. We obtain∥∥∥∥(U 0
0 V

)
R6ε

0 (k,E)
∥∥∥∥
p

6 mrpSp

(
1 +

ε

α

)2/p

.

Since we use the Sobolev constant Sp for the torus, we must assume that
(α+ ε) < rinj. If

m = max
(
‖U‖2;ε, ‖V ‖2;ε

)
<

δ

rpSp
p
√

4
(65)

and α = ε < rinj/2, then ∥∥∥∥(U 0
0 V

)
R6ε

0 (k,E)
∥∥∥∥
p

< δ.

This completes the proof of the proposition.

Proposition 21 [5]. Let p and k̂ ∈ C2 be the same as in Proposition 20, let γ <
(rpSp

p
√

4)−1, and let λ� 0, that is, λ is sufficiently large. Let ε > 0 be sufficiently
small. For operators U and V such that ‖U‖2;ε 6 C 6 γ and ‖V ‖2;ε 6 C 6 γ the
series

R(k, iλ) = R0(k, iλ)
∞∑
l=0

[
−
(
U 0
0 V

)
R0(k, iλ)

]l
(66)

is uniformly convergent near k̂ and defines the resolvent of the operator

D + Tk : Lp → Lp.

The action of this resolvent on smooth functions can be extended to the resolvent
of the operator D + Tk on the space L2,

(D + Tk − E)−1 : L2 →W 1
2

embedding−→ L2.

This pencil of compact operators is holomorphic with respect to k in a neighbour-
hood of k̂. If (Un, Vn)

weakly−→ (U∞, V∞) in {‖U‖2;ε 6 C , ‖V ‖2;ε < C}, then the
corresponding resolvents are norm convergent to the resolvent of the operator with
potentials (U∞, V∞).

Proof. By Proposition 20 and (65),∥∥∥∥(U 0
0 V

)
R6ε

0 (k, iλ)
∥∥∥∥
p

< σ = γrpSp
p
√

4 < 1

near k̂ for λ > λ0. By Proposition 18, for sufficiently large real values of λ we have∥∥∥∥(U 0
0 V

)
R>ε0 (k, iλ)

∥∥∥∥
p

< 1− σ,
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since the norm of the embedding Lq → Lp is finite. This means that the inequality∥∥∥∥(U 0
0 V

)
R0(k, iλ)

∥∥∥∥
p

6

∥∥∥∥(U 0
0 V

)(
R6ε

0 (k, iλ) +R>ε0 (k, iλ)
)∥∥∥∥
p

< 1

holds for λ� 0, and the series (66) is uniformly convergent near k̂ and defines the
resolvent of the operator D + Tk : Lp → Lp.

The action of R(k, iλ) on smooth functions is given by the formula (66). We
extend this action to a compact operator on L2 as follows. Let

B =
∞∑
l=0

[
−
(
U 0
0 V

)
R0(k, iλ)

]l
and consider the following composition of operators:

L2
embedding−→ Lp

B→ Lp
(D+Tk−E)−1

−→ W 1
p

embedding−→ L2,

where all operators are bounded and the embedding W 1
p → L2 is compact by the

Kondrashov theorem (see Proposition 5). This shows that the action of R(k, iλ) on
smooth functions can be extended to a compact operator on L2. Since the series (66)
is holomorphic with respect to k, the resolvent R(k, iλ) is also holomorphic with
respect to k.

It remains to prove that the resolvent is continuous with respect to U and V .

Every occurrence of the matrix
(
U 0
0 V

)
in some term of the series (66) is bracketed

by resolvents of the form R0(k, iλ), which are bounded integral operators. Let l = 1
and let K(z, z′, k, iλ) be the integral kernel of one of these operators. Then the
composition

R0(k, iλ)
(
U 0
0 V

)
R0(k, iλ)

acts on smooth functions as the integral operator with kernel

F (z, z′′) = K(z, z′, k, iλ)
(
U(z′) 0

0 V (z′)

)
K(z′, z′′, k, iλ).

It is clear that an integral operator of this kind is continuous with respect to weak
convergence of potentials U, V ∈ L2(M). The proof is similar for other values of l.
By Proposition 19, every term of the series (66) is continuous with respect to weak
convergence of potentials in {‖U‖2;ε 6 C, ‖V ‖2;ε 6 C}. Since the series (66) is
uniformly convergent, the same continuity property holds for the sum of the series.
This proves the proposition.

This proposition establishes the existence of the resolvent only for large values
of λ, where E = iλ. The resolvent can be extended to a meromorphic function on
the E-plane by using the Hilbert formula (see Proposition 6).

Proof of Theorem 10. By Proposition 21, there exist k0 ∈ C2 and E ∈ C such that
the operator

(D + Tk0 − E0)−1 : L2 →W 1
2

embedding−→ L2
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is correctly defined. We substitute the expression ϕ = (D + Tk0 − E)−1f into the
equation

(D + Tk − E)ϕ = 0

and rewrite this equation in the form

(D + Tk0 − Tk0 + Tk − E0 + E0 − E)(D + Tk0 − E)−1f = [1 +AU,V (k,E)]f = 0,

where
AU,V (k,E) = (Tk − Tk0 + E0 − E)(D + Tk0 − E)−1.

Since the first factor in this formula is a bounded operator for any k and E
and since the second factor is a compact operator, the family AU,V (k,E) is a
pencil of compact operators that are polynomials in k and E. By applying the
Keldysh theorem as in § 4.2, we complete the proof of the theorem.

The spectral curve can now be defined as usual by the formula

Γ = Q0(U, V )/Λ∗.

Remark. The resolvents of operators on non-compact spaces do not depend contin-
uously on the potentials under weak convergence of them. Indeed, let us consider
the Schrödinger operator

L = − d2

dx2
+ U(x),

where U(x) is a soliton potential (and hence the operator does have bound states).
The isospectral sequence of potentials UN (x) = U(x+N) converges weakly to the
zero potential U∞ = 0, for which the Schrödinger operator has no bound states.
The same holds for the one-dimensional Dirac operator.

Appendix 2. The conformal Gauss map and the conformal area

In this appendix we present known results on the Gauss conformal map, mainly
following the lines of [87], [133], [109].

We denote by Sq,r the round sphere of radius r in R3 centred at a point q and
by Πp,N the plane in R3 passing through a point p and with normal vector N . All
these spheres and planes are parametrized by a quadric Q4 ⊂ R4,1. Indeed, let

〈x, y〉 = x1y1 + · · ·+ x4y4 − x5y5

be the inner product in R4,1. We set

Q4 = {〈x, x〉 = 1} ⊂ R4,1,

Sq,r →
1
r

(
q,

1
2
(|q|2 − r2 − 1),

1
2
(|q|2 − r2 + 1)

)
,

Πq,N → (N, 〈q,N〉, 〈q,N〉).

For a surface f : Σ → R3 its conformal Gauss map

Gc : Σ → Q4



Two-dimensional Dirac operator and the theory of surfaces 147

assigns to a point p ∈ Σ the sphere of radius 1/H tangent to the surface at p for
H 6= 0,

Gc(p) = Sp+N/H,1/H ,

and the tangent plane at p for H = 0. In the coordinates on Q4, this map has the
form

Gc(p) = H ·X + T,

where

X =
(
f,

(f, f)− 1
2

,
(f, f) + 1

2

)
, T = (N, (N, f), (N, f)).

This map is a special case of the so-called sphere congruences, one of the main topics
in conformal geometry (the modern state of this theory is presented in [134]).

We have 〈X,X〉 = 0, 〈T, T 〉 = 1 and 〈X,T 〉 = 0, which implies that 〈dX,X〉 =
〈dT, T 〉 = 0, 〈dT,X〉 = 〈−dX, T 〉. One can readily see that

〈dX, T 〉 = (df,N) = 0, 〈dX, dX〉 = (df, df) = I,

〈dX, dT 〉 = (df, dN) = −II, 〈dT, dT 〉 = (dN, dN) = III,

where the third fundamental form of a surface (we denote it by III) measures the
lengths of images of curves under the Gauss map and satisfies the identity

K · I− 2H · II + III = 0

connecting the third form with I and II, the first and the second fundamental forms
of a surface. This implies that

〈Yz, Yz〉 = 〈Yz̄, Yz̄〉 = 0, 〈Yz, Yz̄〉 = eβ =
(H2 −K)e2α

2
= (H2 −K)(fz, fz̄),

where Y denotes Gc for brevity, z is a conformal parameter on the surface, and
I = e2α dz dz̄ is the induced metric on the surface. We conclude that

the conformal Gauss map is regular and conformal outside umbilical
points.

It is clear that X and Y are linearly independent vectors. Outside umbilical
points, the set of vectors Y , Yz, Yz̄, X is uniquely completed by a vector Z ∈ R5

to form a basis

σ = (Y, Yz, Yz̄, X, Z)T

for the complexification C5 of R5 such that the inner product in R4,1 takes the form
1 0 0 0 0
0 0 eβ 0 0
0 eβ 0 0 0
0 0 0 0 1
0 0 0 1 0

 .
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Analogues of the Gauss–Weingarten equations are as follows:

σz = Uσ, σz̄ = Vσ,

U =


0 1 0 0 0
0 βz 0 C2 C1

−eβ 0 0 C4 C3

0 −e−βC3 −e−βC1 C5 0
0 −e−βC4 −e−βC2 0 −C5

 ,

V =


0 0 1 0 0
−eβ 0 0 C4 C3

0 0 βz̄ C2 C1

0 −e−βC1 −e−βC3 C5 0
0 −e−βC2 −e−βC4 0 −C5

 ,

where

C1 = 〈Yzz, X〉4,1, C2 = 〈Yzz, Z〉4,1, C3 = 〈Yzz̄, X〉4,1,
C4 = 〈Yzz̄, Z〉4,1, C5 = 〈Xz, Z〉4,1.

The identity

∆Y + 2(H2 −K)Y = (∆H + 2H(H2 −K))X

can be verified directly. In particular, this identity implies that

C3 = 0, C4 =
e2α

4
(∆H + 2H(H2 −K)).

Here ∆ = 4e−2α∂∂ stands for the Laplace–Beltrami operator on the surface. Taking
this into account and keeping in mind that the quantity C4 is real-valued, we derive
the Codazzi equations for the conformal Gauss map:

βzz̄ + eβ − (C1C2 + C1C2)e−β = 0, C1z̄ = C1C5,

C2z̄ + C2C5 = C4z − βzC4 + C4C5, C5z̄ − C5z = e−β(C1C2 − C1C2).
(67)

Straightforward calculations show that

C1 = A = 〈N, fzz〉, eβ = 2|A|2e−2α.

The conformal area V c of a surface Σ is the area of the image of Σ in Q4,

V c(Σ) =
∫

Σ

(H2 −K) dµ,

where dµ is the area form on Σ. The Euler–Lagrange equations for V c take the
form

∆H + 2H(H2 −K) = 0.
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A surface in R3 is said to be conformally minimal (or a Willmore surface) if it
satisfies the above equation. We conclude that

conformally minimal surfaces are exactly the surfaces whose images
under the conformal Gauss map Gc are minimal surfaces in Q4.

For any non-umbilical point p ∈ Σ the tangent space to Q4 at the point Y (p) is
spanned by the vectors Yz, Yz̄, X, and Z. We see that the map Y is conformally
harmonic (that is, ∆Y is everywhere orthogonal to the tangent plane to Q4) if and
only if the surface is conformally minimal.

It follows from the Gauss–Weingarten equations for Gc and the Euler–Lagrange
equations for V c that if Σ is conformally minimal, that is, C4 = 0, then the quartic
differential

ω = 〈Yzz, Yzz〉(dz)4 = C1C2(dz)4

is holomorphic.
We recall that a holomorphic quartic differential vanishes on any two-dimensional

sphere (ω = 0) and has constant coefficients on any torus (ω = const · (dz)4).
A minimal surface in Q4 is said to be superminimal if ω = 0.
Let

ϕ = log
C1

C1
.

We note that the condition C1 ≡ 0 holds only for totally umbilical surfaces, and
by the Hopf theorem these are domains either in a round sphere in R3 or in the
plane.

If ω ≡ 0 and C1 6= 0, then C2 ≡ 0, and the Gauss–Codazzi equations for the
conformal Gauss map reduces to

βzz̄ + eβ = 0, ϕzz̄ = 0.

The first of these equations is the Liouville equation and the second is the Laplace
equation. These equations describe superminimal not totally umbilical surfaces.

Let us consider the case of a conformally minimal surface that is not super-
minimal. Locally, by changing the conformal parameter, we reduce everything to
the case

1
2
〈Yzz, Yzz〉4,1 = C1C2 =

1
2
.

Then the Gauss–Codazzi equations acquire the form of the four-particle Toda lattice

βzz̄ + eβ − e−β coshϕ = 0, ϕzz̄ + e−β sinhϕ = 0.

Appendix 3. Inverse scattering problem for the
Dirac operator on the line and the trace formulae

Here, addressing mainly geometers, we present some facts needed to prove The-
orem 13 and to introduce soliton spheres in § 5.4. This is a subset of the appendix
to the electronic version of the paper [6] (which can be found on the Internet:
see http://arxiv.org/math.DG/9801022), where Theorem 13 was originally
proved.
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The inverse scattering problem for the Dirac operator on the line was solved
in [135] like the same problem for the Schrödinger operator −∂2

x + u(x) [136] (see
also [137]).

We consider the following spectral problem (well known as the Zakharov–Shabat
problem):

Lψ =
(

0 ik
ik 0

)
ψ, (68)

where

L =
(

0 ∂x
−∂x 0

)
+
(
p 0
0 q

)
. (69)

We assume that the potentials p and q are rapidly decreasing as x → ±∞.
It is clear from the proofs that it suffices to assume that p(x) and q(x) decay
exponentially.

If p = q = 0, then for each k ∈ R \ {0} we have a two-dimensional space of
solutions (free waves) spanned by the columns of the matrix

Φ0(x, k) =
(

0 e−ikx

eikx 0

)
.

If p and q are non-trivial, then for any k ∈ R\{0} we again have a two-dimensional
space of solutions that behave asymptotically like free waves as x → ±∞. These
spaces are spanned by the so-called Jost functions ϕ±l , l = 1, 2. To define these
functions, we consider the matrices Φ+(x, k) and Φ−(x, k) satisfying the integral
equations

Φ+(x, k) = Φ0(x, k) +
∫ +∞

x

Φ0(x− x′, k)
(
p 0
0 q

)
Φ+(x′, k) dx′,

Φ−(x, k) = Φ0(x, k) +
∫ x

−∞
Φ0(x− x′, k)

(
p 0
0 q

)
Φ−(x′, k) dx′.

These equations have the form Φ± = Φ0 + A±Φ±, where A± are Volterra opera-
tors, and hence each equation has a unique solution given by the Neumann series
Φ±(x, k) =

∑∞
l=0(A

±)lΦ0(x, k). The columns of the matrix Φ± are the Jost func-
tions ϕ±l , l = 1, 2. We see that, by construction, the Jost functions behave like free
waves:

ϕ±1 ≈
(

0
eikx

)
, ϕ±2 ≈

(
e−ikx

0

)
as x→ ±∞.

Straightforward computations show that for a pair of solutions θ =
(
θ1
θ2

)
and

τ =
(
τ1
τ2

)
of the equation (68) the Wronskian W = θ1τ2 − θ2τ1 is constant; in

particular, we have
detΦ±(x, k) = −1. (70)

In what follows we assume that the potentials p and q are complex conjugate:

p = q.
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One can also show by straightforward computations that the transformation

ψ =
(
ψ1

ψ2

)
→ ψ∗ =

(
−ψ2

ψ1

)
(71)

takes solutions of the equation (68) to solutions of the same equation. In particu-
lar, it follows from the asymptotics of the Jost functions that these functions are
transformed as follows:

ϕ±1
∗−→ −ϕ±2 , ϕ±2

∗−→ ϕ±1 . (72)

Since the Jost functions ϕ+
l , l = 1, 2, and ϕ−l , l = 1, 2, give bases for the same

space, they are connected by a linear transform(
ϕ−1
ϕ−2

)
= S(k)

(
ϕ+

1

ϕ+
2

)
.

It follows from (70) that detS(k) = 1, and we can see from (72) that the scattering
matrix S(k) is unitary, S(k) ∈ SU(2), that is,

S(k) =
(
a(k) −b(k)
b(k) a(k)

)
, |a(k)|2 + |b(k)|2 = 1.

The respective quantities

T (k) =
1

a(k)
, R(k) =

b(k)
a(k)

are called the transmission coefficient and the reflection coefficient. The operator L
is said to be reflectionless if its reflection coefficient vanishes: R(k) ≡ 0.

The vector functions ϕ−1 e
−ikx and ϕ+

2 e
ikx can be analytically continued to the

lower half-plane Im k < 0, and the vector functions ϕ−2 e
ikx and ϕ+

1 e
−ikx can be

analytically continued to the upper half-plane Im k > 0.
Without loss of generality, it suffices to prove this fact for ϕ−1 e

−ikx. This function
satisfies the Volterra-type equation

f(x, k) =
(

0
1

)
−
∫ x

−∞

(
0 −e−2ik(x−x′)

1 0

)(
p 0
0 q

)
f(x′, k) dx′

and, since the integral kernel decays exponentially for Im k < 0, the Neumann series
for the solution of the equation converges in this half-plane.

This implies that T (k) can be analytically continued to the upper half-plane
Im k > 0.

It can be shown that:
a) a(k) is nowhere zero on R \ {0};
b) the poles of T (k) correspond to bound states, that is, to solutions of (68) that

decay exponentially as x → ±∞; these solutions are ϕ+
1 (x,κ) and ϕ−2 (x,κ),

where a(κ) = 0, and hence

ϕ−2 (x,κ) = µ(κ)ϕ+
1 (x,κ), µ(κ) ∈ C, (73)

and the multiplicity of each eigenvalue κ is equal to 1;
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c) T (k) has only simple poles in the half-plane Im k > 0, and for exponentially
decaying potentials there are only finitely many such poles;

d) since the set of solutions of the equation (68) is invariant under (71), the
discrete spectrum of the operator L is preserved by the complex conjugation
κ → κ and is formed by the poles of T (k) and their complex conjugates.

The spectral data of the operator L consist of:
1) the reflection coefficient R(k), k 6= 0;
2) the poles κ1, . . . ,κN of the function T (k) in the upper-half plane Im κ > 0;
3) the quantities λj = iγjµj , j = 1, . . . , N , where γj = γ(κj) is the residue of

T (k) at the pole κj and µj = µ(κj) (see (73)).
If the potential p = q is real-valued, then

ϕ±j (x,−k) = ϕ±j (x, k) for k ∈ R \ {0},

and this implies that

a(k) = a(−k), R(k) = R(−k), T (k) = T (−k),

the poles of T (k) are symmetric with respect to the imaginary axis, and

λj = λk for κj = −κk.

Let us now apply the Fourier transform (with respect to k) to the equality

T (k)ϕ−2 = R(k)ϕ+
1 + ϕ+

2 . (74)

After some substitutions, we can represent the equations (74) for the components
of the vector functions in the form of the Gel’fand–Levitan–Marchenko equations

B2(x, y) +
∫ +∞

x

B1(x, x′)Ω(x′ + y) dx′ = 0,

Ω(x+ y)−B1(x, y) +
∫ +∞

x

B2(x, x′)Ω(x′ + y) dx′ = 0

for B1 and B2, where

Ω(z) =
1
2π

∫ +∞

−∞
R(k)e−ikz dk −

N∑
j=1

λje
iκjz

for y > x, and the following limits exist:

lim
y→∞

Bk(x, y) = 0, lim
y→x+

Bk(x, y) = Bk(x, x), k = 1, 2.

These are Volterra-type equations, and they can be solved uniquely. The recovery
formulae for the potentials are

p(x) = −2B1(x, x), p(x)q(x) = p(x)p(x) = 2
dB2(x, x)

dx
. (75)

For the detailed derivation of these formulae from [135], see, for instance, [138].
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In what follows, we assume for simplicity that the potential p(x) takes only real
values.

A series of formulae derived in [120] expresses the Kruskal integrals in terms
of the spectral data; that is, these are the so-called trace formulae. We mention
only the formula for the first non-trivial integral,∫ ∞

−∞
p2(x) dx = − 1

π

∫ ∞

−∞
log(1− |b(k)|2) dk + 4

N∑
j=1

Im κj . (76)

For reflectionless operators the recovery procedure reduces to algebraic equations
(for details, see, for instance, [135], [138], [6]). The spectral data consist of the poles
κk and the corresponding quantities λj , j = 1, . . . , N . Let

Ψ(x) = (−λ1e
iκ1x, . . . ,−λNeiκNx),

Mjk(x) =
λk

i(κj + κk)
ei(κj+κk)x, j, k = 1, . . . , N.

We have

p(x) = 2
d

dx
arctan

Im det(1 + iM(x))
Re det(1 + iM(x))

,

ϕ+
1 (x, k) =

(
〈Ψ(x) · (1 +M2(x))−1|W (x, k)〉

eikx − 〈Ψ(x) · (1 +M2(x))−1M(x)|W (x, k)〉

)
,

(77)

where 〈u|v〉 = u1v1 + · · ·+ uNvN and

W (x, k) =
(

i

κ1 + k
ei(κ1+k)x, . . . ,

i

κN + k
ei(κN+k)x

)
.

Concluding remark. This research was started and a significant part of it was written
during a stay of the author in the Max-Planck-Institut für Mathematik between
October 2003 and January 2004, and the final proofreading was carried out in the
same institute in December 2005.
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