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Abstract. Existence and stability of ε-selections (selections of operators
of near-best approximation) are studied. Results relating the existence of
continuous ε-selections with other approximative and structural proper-
ties of approximating sets are given. Both abstract and concrete sets
are considered — the latter include n-link piecewise linear functions, n-link
r-polynomial functions and their generalizations, k-monotone functions,
and generalized rational functions. Classical problems of the existence,
uniqueness, and stability of best and near-best generalized rational approx-
imations are considered.
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1. Introduction

The most important problems in geometric approximation theory are those deal-
ing with the existence, uniqueness, and stability of best (or near-best) approxi-
mants, as well as problems of solarity and protosolarity. Stability of best appro-
ximation or the lack thereof are fundamental properties of approximating sets,
which are related directly to their structural characteristics, from which, in turn,
one can frequently derive other approximative properties. The stability of best
approximation depends, inter alia, on the existence of continuous, uniformly con-
tinuous, or even smooth ε-selections to the approximating set (the corresponding
definitions are given below in § 3). So it is important to see which structural char-
acteristics of abstract approximating sets imply such stability or the lack of it. In
this way the approximative properties of concrete objects of approximation can
be ascertained. In the present paper we try to give an account of the stability of
ε-selections, and demonstrate their relation to other approximative properties of
some classical objects of approximation, among which we consider, in particular,
algebraic rational functions, generalized rational functions, piecewise polynomial
functions, and so on (some approximative properties of such sets are considered,
for example, in the books [15], [46], [14], [38], and [5]). The above problems are con-
sidered both in normed linear spaces and in more general spaces with asymmetric
norm or seminorm.

The paper is organized as follows. In § 2 basic definitions of the theory of asym-
metric spaces and generalizations thereof are given. In § 3 we present general the-
orems on the existence of continuous selections to the set of near-best approxi-
mants. We also give results on the existence of continuous selections relative to
cost functionals and their families. In § 4 we provide some results on the existence
of continuous selections in normed and asymmetric normed spaces. The following
examples of sets admitting continuous ε-selections for all ε > 0 are considered:
n-link piecewise linear functions, n-link r-polynomial functions and their general-
izations, k-monotone functions, and generalized rational functions. Some classical
problems (the existence, uniqueness, stability, and characterization of best approx-
imants) of generalized rational approximation are outlined in § 5. Problems of the
existence of continuous selections to the set of generalized rational functions in
Lp-spaces, 0 < p < ∞, are considered in § 6. In § 7 some results on uniformly
continuous selections to some classes of generalized rational functions in spaces
of continuous functions are provided.

2. Spaces with asymmetric distance and their generalizations

In what follows, in parallel with usual normed and seminormed spaces, we
consider spaces equipped with asymmetric (semi)norm, spaces with asymmetric
(semi)metric, and spaces X equipped with a cost function G : X ×X → R.

An asymmetric norm ∥ · | on a real linear space X is defined by the following
axioms:

1) ∥αx| = α∥x| for all α ⩾ 0, x ∈ X;
2) ∥x+ y| ⩽ ∥x|+ ∥y| for all x, y ∈ X;
3) ∥x| ⩾ 0 for all x ∈ X, and
3a) ∥x| = 0 ⇔ x = 0.
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The class of asymmetric spaces, which is an important and useful extension of the
class of normed linear spaces, has numerous applications to problems of approxima-
tion, variational calculus, computer science, and mathematical economics. A func-
tional ∥ · | satisfying axioms 1)–3) is called an asymmetric seminorm.

The theory of asymmetric normed spaces and their applications is in active
development at the present time. For example, various topological and functional-
analytic topics are considered in [17], [18], and [24], optimal location problems (with
asymmetric norms) are studied, for instance, in [25], [47], and [43] (in such problems,
an important role is also played by Chebyshev centres and Chebyshev nets relative
to the asymmetric norms), and problems related to principal component analysis
in statistics (one of the most popular methods of compact representation of data)
are dealt with in [56]. For other applications, also see [17]. In geometric approx-
imation theory, asymmetric norms proved to be useful in many problems (see, for
example, [4], [6], [27], [29], and [68]). Asymmetric distances also appear naturally in
approximation theory (in particular, in problems of best one-sided approximations),
serving as a ‘bridge’ between best approximation and best one-sided approximation.
For a survey of some results on the general theory of asymmetric normed subspaces
and the problem of characterization of best approximants by convex sets in such
spaces, we refer the reader to [18], [17] and [1].

Definition 2.1. A function ρ : X ×X → R+ is called an asymmetric semimetric
on a set X if:

1) ρ(x, x) = 0 for all x ∈ X;

2) ρ(x, z) ⩽ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X.

The pair (X, ρ) is called an asymmetric semimetric space. The function

σ(x, y) := max{ρ(x, y), ρ(y, x)}

is known as the symmetrization semimetric.

A space (X, ρ) is complete if it is complete with respect to the symmetrization
semimetric σ.

Below, approximative and geometric properties of sets will also be considered
relative to a general cost function

G : X ×X → R;

an asymmetric (semi)norm ∥ · | on a linear space X is a particular case of G( · , · ).

Definition 2.2. Let (X, ρ) be a semimetric space. A mapping G : X ×X → R is
a cost function if G ⩾ 0 and G(x, x) = 0 for all x ∈ X.
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Definition 2.3. Let (X, ρ) be a semimetric space, A ⊂ X, and let G : X ×X → R
be a continuous (relative to the semimetric ρ) cost function. We set

ρG(x,A) = inf
z∈A

G(x, z), (2.1)

BG(x, r) = {y ∈ X | G(x, y) ⩽ r},
B̊G(x, r) = {y ∈ X | G(x, y) < r}

(x ∈ X, r ∈ R+).

In the particular case where G(x, y) = ∥x− y|, we have

B(x, r) := B∥ · |(x, r) = {y ∈ X | ∥y − x| ⩽ r}

and

B̊(x, r) := B̊∥ · |(x, r) = {y ∈ X | ∥y − x| < r};

B(x, r) is a closed ball, and B̊(x, r) is an open ball in a seminormed (or asymmetric
seminormed) linear space X = (X, ∥ · ∥) (respectively, X = (X, ∥ · |)) with centre x
and radius r.

Remark 2.1. Below the subscript G (∥ · |, or ∥ · ∥) is used to denote the cost function
(or the asymmetric (semi)norm ∥ · |, which is a particular case of a cost function)
with respect to which the approximative and geometric properties of sets are stud-
ied. The subscript G (or ∥ · |) is dropped if the context makes it clear which cost
function G (or asymmetric (semi)norm ∥ · |) is considered.

In what follows we work mostly with symmetric and asymmetric (semi)norms
on X. We say that the original (semi)norm ∥ · ∥ is equivalent to an asymmetric
norm ∥ · | if the topology generated by the open balls B̊∥ · |(x, r) coincides with that
generated by the (semi)norm ∥ · ∥.

Given a subset M of an asymmetric (semi)normed space X, we let PM and P εM
denote, respectively, the metric projection operator and the ε-metric projection
operator defined by

PMx := {y ∈M | ∥y − x| = ρ(x,M)},
P εMx := {y ∈M | ∥y − x| ⩽ ρ(x,M) + ε},
P̊ εMx := {y ∈M | ∥y − x| < ρ(x,M) + ε},

(2.2)

where ρ(y,M) := infz∈M ∥z − y| is the distance of y ∈ X to M .
In a semimetric space (X, ρ), the distance of a point y ∈ X to a non-empty set

M ⊂ X is defined by ρ(y,M) := infz∈M ρ(y, z). It is easily checked that for all
x, y ∈ X:

1) ρ(x,M) ⩽ ρ(y,M) + ρ(x, y);
2) |ρ(x,M)− ρ(y,M)| ⩽ max{ρ(x, y), ρ(y, x)}.
The structural and topological properties of the sets of near-best approximants

(2.2) are now actively studied; results of this kind also have applications to numer-
ical mathematics. In addition to the papers cited above, we mention the following
ones: [3], [7], [23], [34], [42], [62]–[67], and [70].
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3. Definition of a continuous ε-selection.
General theorems on continuous selections.

Continuous selections relative to cost functionals and their families

It is well known (Stechkin, Cline, Maehly, Witzgall, Werner; see, for example,
Remarks 2.6 and 15.17 in [5]) that in C[a, b] the metric projection operator onto
any finite-dimensional Chebyshev subspace of dimension ⩾ 2 is not stable (not
uniformly continuous on C[a, b] and not Lipschitz-continuous), and the metric pro-
jection onto the set of rational functions is discontinuous [39]. In this regard it is
natural to study the stability properties of the operators of near-best approximation
(ε-selections).

In this section we examine sets admitting ε-selection (that is, selections to the set
of near-best approximants) for all ε > 0, and also selections of the metric projection
operator (0-selections). We consider the structural and approximative properties
of such sets. In particular, we characterize the closed subsets of Banach subspaces
(and, more generally, complete asymmetric symmetrizable seminormed subspaces)
which admit continuous ε-selections for any ε > 0. We also present some results on
the existence of continuous ε-selections in the case where the sets (Theorem 4.3)
and even the (semi)norms on the ambient space vary continuously (Theorem 3.2).

Definition 3.1. Let G : X×X → R be a continuous cost function on a semimetric
space (X, ρ), and let ε > 0 and M ⊂ X.

We say that φ : X →M is an additive (multiplicative) ε-selection (of the operator
of near-best approximation) if, for all x ∈ X,

G(x, φ(x)) ⩽ ρG(x,M) + ε

(G(x, φ(x)) ⩽ (1 + ε)ρG(x,M), respectively), where the G-distance ρG(x,M) is
defined as in (2.1).

The asymmetric norm ∥x− y| (or ∥y− x|) is a particular case of a cost function
G(x, y).

For (semi)normed subspaces Definition 3.1 assumes the following form.

Definition 3.2. Let ε > 0 and M ⊂ X. A mapping φ : X → M is an additive
(multiplicative) ε-selection if, for all x ∈ X,

∥φ(x)− x∥ ⩽ ρ(x,M) + ε

(∥φ(x)− x∥ ⩽ (1 + ε)ρ(x,M), respectively).

Geometrically, these inequalities mean that, for all x ∈ X,

φ(x) ∈ B(x, ρ(x,M) + ε) ∩M = P εMx

(respectively φ(x) ∈ B(x, (1 + ε)ρ(x,M)) ∩M = P
ερ(x,M)
M x).

The operator of near-best approximation was introduced by Wulbert. The sta-
bility of near-best approximation operators was studied by Berdyshev [12], [13], Lis-
kovets, Marinov, Morozov, Wegmann, and others (see, for example, [40], [50]) with
applications, in particular, to ill-posed problems. Various results on sets admitting
stable ε-selections and on the stability of minimization problems can be found in
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[3], [32], [8]–[11], [36], [52], [53], [60], [69], and [70]. The book [48] by Repovš and
Semenov is also worth mentioning, which surveys results on continuous selections
of set-valued mappings.

It is well known that the metric projection onto the (Chebyshev) set of classi-
cal rational functions Rn,m, m ⩾ 1, is discontinuous in C[0, 1] (see (5.2) below),
but according to Konyagin [32], for any ε > 0 there exists a continuous ε-selection
to Rn,m. Another example of a non-convex set admitting a continuous additive
(multiplicative) ε-selection for all ε > 0 is the unit sphere of an arbitrary infinite-
dimensional normed space. Note also that an arbitrary convex set has an addi-
tive ε-selection for any ε > 0, and if this set is also closed, then it also admits
a multiplicative ε-selection. That there exists a continuous ε-selection to any sub-
space of a Banach space is a direct corollary of the classical Michael continuous
selection theorem (see, for example, § 16.9 in [5]). Results due to Berdyshev and
Marinov [40] and Al’brekht show that any finite-dimensional subspace admits an
additive Lipschitz ε-selection with Lipschitz constant ε−1. The differential prop-
erties of ε-selections to subspaces were studied by Al’brekht, who also found the
order of the Lipschitz constants of ε-selections with respect to ε (as ε → 0) in
some classical spaces (see, for example, [50]). These results show that there are
ε-selections which are more smooth than the metric projection operator. Tsar’kov
showed that there exists a bounded convex closed set M in C[0, 1] and a number
ε > 0 such that, for any δ > 0, there is no uniformly continuous additive ε-selection
to M in the neighbourhood Oδ(M) = {x | ρ(x,M) ⩽ δ}.

Definition 3.3. A subset A of a (symmetric or asymmetric) semimetric space
(X, ν) is called infinitely connected if for all n ∈ N, any continuous mapping
φ : bdB → A of the boundary bdB of the unit ball B ⊂ Rn has a continuous
extension φ̃ : B → A to the whole of the unit ball B (here and in what follows
bdA is the boundary of A).

If Q denotes some property (for example, connectedness), then we say that
a closed set M has the property

P -Q if, for all x ∈ X, the set PMx is non-empty and has property Q;
P0-Q if PMx has property Q for all x ∈ X;
B-Q if M ∩B(x, r) has property Q for all x ∈ X and r > 0;
B̊-Q if M ∩ B̊(x, r) has property Q for all x ∈ X and r > 0.

For example, a set M ⊂ X is B̊-infinitely connected if its intersection with any
open ball is infinitely connected.

Definition 3.4. Let G : X×X → R be a continuous cost function on a semimetric
space (X, ρ). A set M ⊂ X is called B̊G-infinitely connected if, for all x ∈ X and
r ∈ R+, the set B̊G(x, r) ∩M is infinitely connected.

As above, the subscript G (or ∥ · |) can be omitted when the cost function G (or
asymmetric (semi)norm ∥ · |) considered on X is clear from the context.

Remark 3.1. A B̊-infinitely connected set can fail to be B-infinitely connected, that
is, its intersection with some closed ball can fail to be infinitely connected (and even
connected; see Theorem 5 in [57]). Note also that the set of generalized rational
functions in C(Q) is B̊-infinitely connected (and even B-infinitely connected); see,
for example, Theorem 5.2 below.
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Definition 3.5. Let (X, ρ) be a semimetric space. A mapping ϑ : X → R is lower
semicontinuous on X if

lim
n→∞

ϑ(xn) ⩾ ϑ(x)

for any point x ∈ X and any sequence (xn) ⊂ X such that ρ(x, xn) → 0 as n→ ∞;
this is equivalent to the condition

∀ ε > 0 ∃ δ > 0 ∀x′ ∈ X (ρ(x, x′) < δ ⇒ ϑ(x′) > ϑ(x)− ε).

Theorem 3.1 (see [63]). Let (X, ∥ · ∥) be a seminormed linear space, G : X ×
X → R be a cost function uniformly continuous on any bounded set, and let M ⊂ X
be B̊G-infinitely connected. Then for any lower semicontinuous function ψ : X → R
such that ρG(x,M) < ψ(x), x ∈ X , there exists a mapping φ ∈ C(X,M) such that

G(x, φ(x)) < ψ(x) (x ∈ X).

In a similar way, given any non-empty open set D ⊂ X and a lower semicontinu-
ous function ψ : D → R such that ρG(x,M) < ψ(x) (x ∈ D), there exists a mapping
φ ∈ C(D,M) such that G(x, φ(x)) < ψ(x) (x ∈ D).

Definition 3.6. Let (X, ρ) and (Y, g) be semimetric spaces, let G ∈ C(Y × X ×
X,R), and let G = {Gy = G(y, · , · )} be a family of continuous cost functions. Set

ρG (y, x,M) := inf
z∈M

G(y, x, z), y ∈ Y, x ∈ X.

A mapping F : Y → 2X is G -stable (see [65]) if:
1) F (y) ̸= ∅ for all y ∈ Y ;
2) the function π(x, y) = ρG (y, x, F (y)) : X × Y → R is continuous on X × Y ;
3) the modulus of G -stability

ωG
E (F, y0, δ) := sup

(y,x)∈E
γ(y0,y2)⩽δ

|ρG (y, x, F (y0))− ρG (y, x, F (y2))|,

where E ⊂ Y ×X is an arbitrary bounded set and y0 ∈ Y , tends to zero as δ → 0+.

In Theorem 3.2 we prove the existence of a continuous ε-selection in the case
where both the set and the norm of the space containing this set change continu-
ously.

Theorem 3.2 (see [63]). Let (X, ∥ · ∥) be a complete seminormed linear space and
(Y, ∥ · ∥) be a seminormed linear space,G be a real-valued function uniformly contin-
uous on every bounded subset of Y ×X×X , let G = {Gy = G(y, · , · )} = {∥ · − · ∥y},
where {∥ · ∥y} is a family of seminorms on X , each of which is equivalent to the orig-
inal seminorm ∥ · ∥, and let F : Y → 2X be G -stable, and for all y ∈ Y assume that
the set My = F (y) is closed and B̊Gy -infinitely connected (that is, is B̊-infinitely
connected with respect to the semi-norm ∥ · ∥y ).

Then there exists a mapping f ∈ C(X × Y × (0,+∞);X) such that φ( · ) =
f( · , y, ε) is a continuous additive (multiplicative) ε-selection to the set My = F (y)
in the space Xy = (X, ∥ · ∥y), that is,

∥x− φ(x)∥y ⩽ ρG (y, x, F (y)) + ε∥x− φ(x)∥y ⩽ (1 + ε)ρG (y, x, F (y)), x ∈ X.
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Definition 3.7. Let (X, θ) be a semimetric space. We say that a set M ⊂ X
possesses the UVℓ-property if for any ε > 0 there exists δ > 0 such that each
continuous mapping f of the unit sphere Sℓ−1 ⊂ Rℓ to the δ-neighbourhood of M
admits a continuous extension f0 : B

ℓ → Oε(M) to the unit ball Bℓ ⊂ Rℓ (that is,
f0
∣∣
Sℓ−1 ≡ f). A set M has the UV∞-property if it has the UVℓ-property for all

ℓ ∈ N.

Below, AC(M) is the set of points of approximative compactness for M (that is,
the set of all points x such that in any sequence (yn)n∈N ⊂M satisfying ∥x−yn∥ →
ρ(x,M) there is a subsequence converging to some point in M).

Theorem 3.3 (see [67]). Let M be a B̊-infinitely connected subset of a Banach
space X , and let x ∈ AC(M). Then the set PMx has the UV∞-property, and, in
addition, PMx is a cell-like compact set.

Definition 3.8 (see [67]). A subset M of a normed linear space X is called stably
monotone path-connected if there exists a continuous mapping p : M×M×[0, 1] →M
such that p(x, y, · ) is a monotone path connecting the points x, y ∈M .

Remark 3.2. The set of generalized rational functions RU (with convex U ; see (5.3)
below) in C(Q) is stably monotone path-connected and therefore admits a contin-
uous additive ε-selection for any ε > 0 (see Theorem 2.3 in [8]).

According to [60], any approximatively compact monotone path-connected set
admits a continuous additive (multiplicative) ε-selection for all ε > 0 and therefore
is B̊-infinitely connected. Hence for any point x ∈ X the set PMx is B̊-infinitely
connected. It was shown in [62] that a stably monotone path-connected set (and
therefore its intersection with any open or closed ball) is B̊-infinitely connected,
and even B̊-contractible (B-contractible). Now, by Theorem 4.4 (see below) we
have the following result.

Corollary 3.1 (see [64]). Let X be a Banach space and M ⊂ X be a stably mono-
tone path-connected set (or P -compact monotone path-connected set) with Hausdorff
continuous metric projection. Then M admits a continuous selection of the metric
projection operator.

Let us mention some results on the structural properties of sets in a Hilbert
space.

Definition 3.9. Let n ⩾ 2. A set M ⊂ X is B̊n-infinitely connected if its intersec-
tion with any open ball is either empty or B̊n−1-infinitely connected. By definition,
a set is B̊1-infinitely connected if it is B̊-infinitely connected.

The following results hold (see [61]).

Theorem 3.4. In a Hilbert space the classes of all B̊-infinitely connected sets and
all B̊n-infinitely connected sets coincide.

Theorem 3.5. In a Hilbert space the intersection of a B̊-infinitely connected set
with a finite number of open balls is B̊-infinitely connected.
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4. Continuous selections in normed and asymmetric normed spaces

4.1. Sufficient and necessary conditions for the existence of continuous
0-selections and ε-selections. We explore which structural and approximative
properties of a given set guarantee the existence of a continuous selection to this set.
In particular, we present conditions on the structure of the set of best approximants
(or on the set itself, or on the set of near-best approximants) guaranteeing the
existence of such a selection. We also characterize the sets admitting continuous
ε-selections for all ε > 0.

The following result is a consequence of Theorem 5 in [65].

Theorem 4.1. Let X = (X, ∥ · |) be an asymmetric normed space, and let M ⊂ X
be B̊-infinitely connected. Then for any lower semicontinuous function ψ : X → R
such that ρ(x,M) < ψ(x), x ∈ X , there exists a continuous mapping φ : X → M
(the preimage is equipped with the symmetrization topology and the range, with the
original asymmetric topology) such that ∥φ(x)− x| < ψ(x) (x ∈ X ).

Definition 4.1. Let (Y, ρ) and (X, θ) be semimetric spaces. A mapping F : Y →
2X is said to be stable if

ωE(F, y0, δ) := sup
x∈E

ρ(y0,y)⩽δ

|ρ(x, F (y0))− ρ(x, F (y))| → 0 (δ → 0+)

for each y0 ∈ Y and an arbitrary bounded set E ⊂ X.

The following result was proved in [63].

Theorem 4.2. Let (X, ∥ · ∥) be a complete seminormed linear space, (Y, ∥ · ∥) be
a seminormed linear space, and let the mapping F : Y → 2X be stable, and, for all
y ∈ Y , the set My = F (y) be closed and B̊-infinitely connected. Then there exists
a mapping f ∈ C(X×Y × (0,+∞);X) such that f( · , y, ε) is a continuous additive
(multiplicative) ε-selection of My = F (y) in (X, ∥ · ∥).

Definition 4.2. Let (X, ρ) and (Y, γ) be semimetric spaces, let M ⊂ X, and let
G : X ×X → R be a continuous cost function. A mapping F : Y → 2M is said to
be G-stable if:

1) F (y) ̸= ∅ for all y ∈ Y ;
2) the function

π(x, y) = ρG(x, F (y)) : X × Y → R

is continuous on X × Y ;
3) the modulus of G-stability

ωG(F, y0, δ) = ωGE (F, y0, δ) := sup
x∈E

γ(y0,y)⩽δ

|ρG(x, F (y0))− ρG(x, F (y))|,

where E ⊂ X is an arbitrary bounded set and y0 ∈ Y , tends to zero as δ → 0+.

Theorem 4.3 (see [64]). Let (X, ∥ · |) be an asymmetric seminormed space whose
asymmetric seminorm is equivalent to some seminorm on X with respect to which X
is complete, let F : X → 2X be a ∥ · |-stable mapping, and let, for all y ∈ X , the
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set My = F (y) be closed and B̊-infinitely connected (that is, B̊-infinitely connected
relative to the seminorm ∥ · |).

Then there exists a mapping f ∈ C(X × X × (0,+∞);X) such that φ( · ) =
f( · , y, ε) is a continuous additive (multiplicative) ε-selection of My = F (y) in X =
(X, ∥ · |), that is,

∥φ(x)−x| ⩽ ρG(x, F (y))+ε (respectively , (∥φ(x)−x| ⩽ (1+ε)ρG(x, F (y))) on X.

Definition 4.3. Given non-empty sets M,N ⊂ Y , we denote by

d(M,N) := sup
y∈N

ρ(y,M)

the directed (one-sided) Hausdorff distance between M and N ; the Hausdorff dis-
tance is defined by

h(M,N) := max{d(M,N), d(N,M)}.

Recall that a mapping F : X → 2Y between the metric spaces X and Y is said
to be Hausdorff continuous (upper semicontinuous) if

h(F (x), F (xn)) → 0 (d(F (x), F (xn)) → 0) as xn → x (n→ ∞).

Theorem 4.4 (see [64]). Let X be a Banach space and M ⊂ X be an existence
set such that the metric projection operator onto M is Hausdorff continuous and
has B̊-infinitely connected values. Then M is P -contractible and has continuous
selection of the metric projection operator.

The ε-neighbourhood of a set E ⊂ X is defined by

{x ∈ X | ρ(x,E) < ε}.

Theorem 4.5 (see [64]). Let (X, ∥ · |) be an asymmetric seminormed space whose
asymmetric seminorm ∥ · | is equivalent to some seminorm ofX , and let a non-empty
set A ⊂ X be B̊-infinitely connected. Then the set A admits a continuous additive
ε-selection for any ε > 0, and any r-neighbourhood (r > 0) of A is B̊-infinitely
connected.

Definition 4.4. A compact set Y is said to be cell-like if there exists an absolute
neighbourhood retract Z and an embedding i : Y → Z such that the range i(Y ) is
contractible in each neighbourhood U ⊂ Z of itself.

Definition 4.5. Let G : X×X → R be a cost function. A set M ⊂ X is B-cell-like
(respectively, P -cell-like) if its intersection with any closed ball is either empty or
cell-like (respectively if PMx is cell-like for all x ∈ X) relative to the function G.

Given a cost function G(x, y) = ∥y − x|, we write P∥ · | and B∥ · | or simply P
and B for PG and BG, respectively, if the (asymmetric) seminorm ∥ · | is clear from
the context.

Definition 4.6. A subset A of a semimetric space (Y, ν) is called approximatively
infinitely connected (see § 7 in [3]) if, for any n ∈ N, any continuous mapping
φ : bdB → A of the boundary of the unit ball B ⊂ Rn, and any ε > 0 there exists
an ε-extension of φ to B, that is, there exists a continuous mapping φε : B → A
such that ∥φ(x)− φε(x)∥ < ε (x ∈ bdB).
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Theorem 4.6 (see [64]). Let (X, ∥ · |) be an asymmetric seminormed linear space
whose asymmetric seminorm ∥ · | is equivalent to some seminorm ∥ · ∥ with respect
to which (X, ∥ · ∥) is complete, and let M ⊂ X be B̊-approximatively infinitely
connected and closed. Then M is B̊-infinitely connected.

Theorem 4.7 (see [64]). Let (X, ∥ · |) be an asymmetric seminormed linear space
whose asymmetric seminorm ∥ · | is equivalent to some seminorm ∥ · ∥ with respect
to which the space (X, ∥ · ∥) is complete, and let M ⊂ X be a P -cell-like existence
set with Hausdorff upper semicontinuous metric projection. Then the set M is
B̊-infinitely connected and admits a ∥ · |-continuous additive (multiplicative) ε-selec-
tion for any ε > 0.

Theorem 4.8 (see [64]). Let (X, ∥ · |) be an asymmetric seminormed linear space
whose asymmetric seminorm ∥ · | is equivalent to some seminorm ∥ · ∥ with respect
to which the space (X, ∥ · ∥) is complete, and let M ⊂ X be closed and admit,
for any ε > 0, a continuous additive (multiplicative) ε-selection. Assume that
M ∩ B̊(x0, R) ̸= ∅. Then the set M ∩ B̊(x0, R) is a retract of the ball B̊(x0, R).

Theorem 4.9 (see [64]). Let (X, ∥ · |) be an asymmetric seminormed linear space
whose asymmetric seminorm ∥ · | is equivalent to some seminorm ∥ · ∥ with respect
to which the space (X, ∥ · ∥) is complete, and let M ⊂ X be B̊-infinitely connected
and closed. Then M is B̊-contractible.

Theorem 4.10 (see [64]). Let (X, ∥ · |) be an asymmetric seminormed finite-dimen-
sional space whose asymmetric seminorm ∥ · | is equivalent to some seminorm ∥ · ∥,
and let M ⊂ X be an existence set with ∥ · |-lower semicontinuous metric projection.
Then M is B-cell-like.

Definition 4.7. An seminormed space X = (X, ∥ · |) is called symmetrizable if
there exists a number K ⩾ 1 such that

1

K
∥x∥ ⩽ ∥x| ⩽ ∥x∥ for all x ∈ X,

where ∥x∥ := max{∥x|, ∥−x|}.

Theorem 4.11 (characterization of sets admitting a continuous ε-selection for all
ε > 0; see [65]). Let (X, ∥ · |) be a complete symmetrizable asymmetric seminormed
linear space, and let M ⊂ X be non-empty and closed.

Then the following conditions are equivalent:
a) for all x ∈ X and δ > 0 the set P̊ δMx is a retract of a ball;
b) for all x ∈ X and δ > 0 the set P̊ δMx is contractible to a point;
c) M is B̊-infinitely connected;
d) for each ε > 0 there exists a continuous (additive multiplicative) ε-selection

to M ;
e) for each lower semicontinuous function ψ : X → (0,+∞) such that ψ(x) >

ρ(x,M), x ∈ X , there exists a mapping φ ∈ C(X,M) such that ∥φ(x)− x∥ < ψ(x)
for all x ∈ X ;

f) for each lower semicontinuous function θ : X → (1,+∞) there exists a map-
ping φ ∈ C(X,M) such that ∥φ(x)− x∥ ⩽ θ(x)ρ(x,M) for all x ∈ X .
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Example 4.1. In the space of all continuous functions on a compact set Q consider
the asymmetric norm

∥f |ψ+,ψ− := max
x∈Q

{
f+
ψ+

,
f−
ψ−

}
,

where
f+ := max{f, 0} and f− := max{−f, 0}

where f ∈ C(Q,R), and ψ+ and ψ− are fixed positive continuous functions. Such
norms were introduced in § 4 of [26]; solar and other approximative and geometric
properties of sets in spaces with this norm, and also in more general spaces C0;ψ+,ψ− ,
were studied in [2]. The asymmetric ball B(0, R) consists of all functions f lying
between the functions Rψ+ and −Rψ−, that is, satisfying −Rψ−(x) ⩽ f(x) ⩽
Rψ+(x) for all x ∈ Q. Hence, the ball B(g,R) consists of all f for which the
function f − g lies between Rψ+ and −Rψ−. The space of continuous functions on
a compact set Q with asymmetric norm ∥ · |ψ+,ψ− will be denoted by Cψ+,ψ−(Q).

We need the following simple inequality

b

d
⩽
a+ b

c+ d
⩽
a

c
,

where c, d > 0 and b/d ⩽ a/c. This inequality implies, in particular, that

b

d
⩽
λa+ (1− λ)b

λc+ (1− λ)d
⩽
a

c

for all λ ∈ [0, 1] under the same assumptions. Consequently, for any w ∈ R,∣∣∣∣λa+ (1− λ)b

λc+ (1− λ)d
− w

∣∣∣∣ ⩽ max

{∣∣∣∣ bd − w

∣∣∣∣, ∣∣∣∣ac − w

∣∣∣∣}.
Given convex sets U, V ⊂ C(Q,R), consider the set of generalized rational func-

tions
RU,V =

{
p(x)

q(x)

∣∣∣∣ p ∈ U, q ∈ V, q > 0

}
.

The above inequality implies that

(1− λ)p0(x) + λp(x)

(1− λ)q0(x) + λq(x)
∈
[
p0(x)

q0(x)
,
p(x)

q(x)

]
for all p0(x)/q0(x), p(x)/q(x) ∈ RU,V and λ ∈ [0, 1] (in this formula the left-hand
endpoint of the interval is not necessarily smaller than the right-hand endpoint). It
follows that, for all generalized rational functions p0(x)/q0(x), p(x)/q(x) in RU,V ∩
B(g,R) or RU,V ∩ B̊(g,R), the rational function

(1− λ)p0(x) + λp(x)

(1− λ)q0(x) + λq(x)
, λ ∈ [0, 1],

also lies in RU,V ∩B(g,R) or RU,V ∩B̊(g,R), respectively. Therefore, the set RU,V is
B-, and B̊-contractible in the asymmetric space Cψ+,ψ−(Q). Hence by Theorem 3.1
the set RU,V admits a continuous additive ε-selection for all ε > 0.
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In a similar way one can consider the set

PU = {p(x)q(x) | p ∈ U, q > 0}

(here U is an arbitrary convex subset of C(Q)). The set PU is a subset of the set
of generalized rational functions RU,V , namely

PU = RU,V , where V =

{
1

q
∈ Cψ+,ψ−(Q)

∣∣∣∣ q > 0

}
(because p(x)q(x) = p(x)/(1/q(x))). This shows that the set PU is B- and
B̊-contractible in the asymmetric space Cψ+,ψ−(Q) and therefore, is B̊-infinitely
connected. Hence PU admits a continuous additive ε-selection for all ε > 0 (for
further details, see [8] and § 5 below).

The following result is a direct consequence of Theorems 4.11 and 3.5.

Theorem 4.12. Let the closed subset M of a Hilbert space admit a continuous
additive ε-selection for any ε > 0. Then the intersection of M with any number of
open balls (if non-empty) admits a continuous additive ε-selection for any ε > 0.
The closure of this intersection admits a continuous multiplicative ε-selection for
all ε > 0.

4.2. Examples of sets admitting a continuous ε-selection for all ε > 0.
The results in this section are due to Tsar’kov [66].

Definition 4.8. Let n ∈ N, and let K > 0 and a < b. We denote by S(n,K) =
S(n,K, [a, b]) the set of all n-link K-Lipschitz piecewise linear functions s ∈ C[a, b]
for which there exists a partition T = {ti}ki=0, 1 ⩽ k ⩽ n, of [a, b] such that
s
∣∣
∆j

= Ajt + Bj , where ∆j = [tj−1, tj ] are non-degenerate subintervals of the
partition, and Aj , Bj ∈ R, |Aj | ⩽ K, j = 1, . . . , k.

A continuous curve k(τ), 0 ⩽ τ ⩽ 1, in a normed linear space X is called
monotone if f(k(τ)) is a monotone function in τ for any f ∈ extS∗ (here and in
what follows extS∗ is the set of extreme points of the dual unit sphere S∗).

Definition 4.9. A set M ⊂ X is monotone path-connected if any two points in M
can be connected by a continuous monotone curve (arc) k( · ) ⊂M .

Note that any monotone path-connected set is always B-connected (that is, its
intersection with any closed — and therefore any open — ball is connected). For
further details, see § 7.7 in [5]).

Theorem 4.13. The set of all n-link piecewise linear functions Sn =
⋃∞
m=1 S(n,m)

is monotone path-connected in C[a, b].

Since the class of all closed sets admitting local ε-selections for all ε > 0 coincides
with the class of all closed sets admitting global ε-selections for all ε > 0, it follows
from Theorem 4.13 that Sn admits a continuous additive (multiplicative) ε-selection
in C[a, b] for all ε > 0. This result was proved earlier by Livshits [37].

According to [60], each approximatively compact monotone path-connected set
admits a continuous additive (multiplicative) ε-selection for any ε > 0. Hence we
have the following result.
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Theorem 4.14. The set S(n,K) has a continuous additive (multiplicative) ε-se-
lection in C[a, b] for any ε > 0.

Remark 4.1. In actual fact, the sets S(n,K) and Sn are monotone path-connected
in the space L∞[a, b], a < b, with respect to the set E = {δt}t ⊂ (L∞[a, b])∗, where
δt is the delta function on L∞[a, b], which is defined as follows: if t is a Lebesgue
point of f . then δt is the essential value of f at this point, otherwise δt is zero. The
set E is 1-defining in L∞[a, b] (see § 2 in [66]). Hence for M = Sn ∨S(n,K) and all
ε > 0 there exists a continuous mapping g : L∞[a, b] →M such that

∥g(x)− x∥L∞[a,b] < ρ(x,M) + ε.

Let F : [a, b] → 2R be a set-valued mapping such that F (t) is an interval of R,
t ∈ [a, b]. Consider the sets

SF (n,K) = {s ∈ S(n,K) | s(t) ∈ F (t) ∀ t ∈ [a, b]}

and
SFn = {s ∈ Sn | s(t) ∈ F (t) ∀ t ∈ [a, b]} =

⋃
m∈N

SF (n,m).

Note that SF (n,K) is the set of all K-Lipschitz functions in SFn . Hence SF (n,K)
is boundedly compact if SFn closed.

Theorem 4.15. If the set SFn (or SF (n,K)) is closed and non-empty, then it is
monotone path-connected in C[a, b] and admits a continuous additive (multiplica-
tive) ε-selection in C[a, b] for any ε > 0.

Proof. That SF (n,K) is monotone path-connected follows because S(n,K) is
monotone path-connected. Therefore, SFn is monotone path-connected, because

SFn =
⋃
m∈N

SF (n,m).

By Theorem 3 in [60] the bounded compactness of SF (n,K) implies the existence of
a continuous additive (multiplicative) ε-selection in C[a, b] to this set for all ε > 0.
Given an arbitrary compact set N ⊂ C[a, b], we assume that for any ε > 0 there
exists m ∈ N such that

ρ(x, SF (n,m)) ⩽ ρ(x, SFn ) +
ε

2
, x ∈ N.

Next, there exists a continuous mapping g : N → SF (n,m) such that

∥g(x)− x∥ ⩽ ρ(x, SF (n,m)) +
ε

2
⩽ ρ(x, SFn ) + ε.

By Proposition 1 in [60], since the compact set N and ε > 0 are arbitrary, the
set SFn admits a continuous additive (multiplicative) ε-selection in C[a, b] for all
ε > 0. This proves Theorem 4.15.
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Now consider the problem of the existence of a continuous ε-selections to the set
of n-link piecewise linear functions with localized knots [66].

Consider a family Tn = {[ak, bk]}nk=0 consisting of n+ 1 closed intervals, where
a = a0 = b0 ⩽ a1 ⩽ b1 ⩽ · · · ⩽ ak ⩽ bk ⩽ · · · ⩽ an = bn = b. We let S(Tn) denote
the set of piecewise linear functions s with knots {tk}nk=0 such that tk ∈ [ak, bk],
k = 0, . . . , n. We also set

κ(Tn) := min
k=0,...,n−1

{ak+1 − bk}.

Definition 4.10. The Banach–Mazur hull m(M) (also called the cover or the ball
hull) of a bounded set ∅ ̸=M ⊂ X is defined as the intersection of all closed balls
containing M .

A set M ⊂ X is m-connected (or Menger-connected [16]) if

m({x, y}) ∩M ̸= {x, y}.

Theorem 4.16. The set S(Tn) is Menger-connected in C[a, b]; if Tn consists of
disjoint intervals, then S(Tn) is a boundedly compact monotone path-connected
subset of C[a, b].

Proof. Let s1, s2 ∈ S(Tn), and let

T1 = {t1k}nk=0 and T2 = {t2k}nk=0

be the knots of the piecewise linear functions s1 and s2, respectively. We denote by

X1 = {x1k = (t1k, s1(t
1
k))}nk=0 and X2 = {x2k = (t2k, s2(t

2
k))}nk=0,

respectively, the vertex sets of these piecewise linear functions. Let us construct
recursively vertices {xk = (tk, s(tk))} and thus a piecewise linear function s ∈
m(s1, s2) distinct from s1 and s2.

Given A ⊂ S∗, set

[[x, y]]A =
{
z ∈ X | min{x∗(x), x∗(y)} ⩽ x∗(z) ⩽ max{x∗(x), x∗(y)} ∀x∗ ∈ A

}
=

{
z ∈ X | x∗(z) ∈ [x∗(x), x∗(y)] ∀x∗ ∈ A

}
.

In our case m(x, y) = [[x, y]]A , where A = {δ(· − t0)}t0∈[a,b] is the family of delta
functions, which, together with −A , comprises the set of all norm-one extreme
continuous functionals on C[a, b].

We take the point (x10 + x20)/2 as x0. If x10 ̸= x20, then we go over to the next
step, k = 1, of the construction. If x10 = x20, then there exists a minimum number
m ∈ N such that x1m ̸= x2m. We set xi = x1i = x2i for i = 0, . . . ,m − 1, put
xm = (x1m + x2m)/2, and then proceed with the next step k = m + 1 (of course, if
k < n).

Assuming that a vertex xk ∈ (x1k, x
2
k), 1 ⩽ k < n. has already been constructed,

we define the next vertex xk+1. If x1k+1 = x2k+1, then we set xi+1 = x1i+1 for all
i ⩾ k. We thus define all vertices of the piecewise linear function s, and thus the
function s itself. It can easily be checked that s is the required piecewise linear
function.
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Now assume that x1k+1 ̸= x2k+1 and that the intervals [x1k, x
1
k+1] and [x2k, x

2
k+1]

are disjoint. Assume that the interval [xk, x1k+1] ([xk, x2k+1]) has common points
with the relative interior of [x2k, x

2
k+1] (of [x1k, x

1
k+1]). Note that in this case the

interval [xk, x1k+1] (respectively, [xk, x
2
k+1]) does not meet the relative interior of

the interval [x1k, x
1
k+1] (of [x2k, x

2
k+1]). We set xi+1 = x2i+1 (xi+1 = x2i+1) for all

i ⩾ k. Thus, s ≡ s2 (respectively, s ≡ s1) on the interval [t1k+1, b], and s is the
required piecewise linear function. In the case where [xk, x

1
k+1] is disjoint from

the relative interior of [x2k, x
2
k+1], we set xi+1 = x1i+1 for all i ⩾ k. As a result,

s ≡ s1 on the interval [t1k+1, b], and s is the required piecewise linear function.
Now, if x1k+1 ̸= x2k+1, then we assume that the intervals [x1k, x

1
k+1] and [x2k, x

2
k+1]

intersect. Let ℓk be the straight line passing through their point of intersection
and xk. Let xk+1 denote the point of intersection of ℓk with the interval [x1k+1, x

2
k+1].

It is easily seen that xk+1 ∈ (x1k+1, x
2
k+1). Next we proceed with step k + 1 (if, of

course, k + 1 < n).
So at the nth step or earlier we defined all the vertices X = {xk}nk=0 of the

piecewise linear function s, and therefore the function s with the required properties
itself. Since s1 and s2 are arbitrary piecewise linear functions, the set S(Tn) is
Menger-connected in the space C[a, b].

If different closed intervals in the family Tn are disjoint, then κ(Tn) > 0, and
therefore any function in S(Tn) ∩ [[s1, s2]]A is ∥s1−s2∥/κ(Tn)-Lipschitz continuous
in C[a, b]. Hence the set S(Tn) ∩ [[s1, s2]]A is compact. By the above, this set is
also Menger-connected, and therefore monotone path-connected. Hence the func-
tions s1 and s2 can be connected by a monotone path in S(Tn). Thus, S(Tn) is
monotone path-connected. That this set is boundedly connected follows from the
fact that all functions s ∈ S(Tn) with ∥s∥ ⩽ C, are 2C/κ(Tn)-Lipschitz. This
proves Theorem 4.16.

Let F : [a, b] → 2R be a set-valued mapping such that F (t) is an interval in R,
t ∈ [a, b]. Consider the sets

SF (Tn) = {s ∈ S(Tn) | s(t) ∈ F (t) ∀ t ∈ [a, b]}.

Theorem 4.17. The set SF (Tn) has a continuous additive (multiplicative) ε-selec-
tion in C[a, b] for all ε > 0.

Proof. Let Tn = {[ak, bk]}nk=0. For each interval [ak, bk] consider the nested sequence
of intervals {[ajk, b

j
k]}j∈N such that (ak, bk) =

⋃
{[ajk, b

j
k] | j ∈ N}. Let Tn,j be

the family of closed intervals {[ajk, b
j
k]}nk=0. Note that κ(Tn,j) > 0. In addition,⋃

j S
F (Tn,j) is dense in SF (Tn).

Since SF (Tn,j) is boundedly compact and monotone path-connected, it follows
from Theorem 3 in [60] that SF (Tn,j) admits a continuous additive (multiplicative)
ε-selection for any ε > 0 in C[a, b]. Let N ⊂ C[a, b] be an arbitrary compact set.
Assume that for an arbitrary ε > 0 there exists j ∈ N such that

ρ(x, SF (Tn,j)) ⩽ ρ(x, SF (Tn,j)) +
ε

2
, x ∈ N.

There exists a continuous mapping g : N → SF (Tn,j) ⊂ SF (Tn) such that

∥g(x)− x∥ ⩽ ρ(x, SF (Tn,j)) +
ε

2
⩽ ρ(x, SF (Tn,j)) + ε.
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By Proposition 1 in [60], since the compact set K and ε > 0 are arbitrary, the
closed set SFn admits a continuous additive (multiplicative) ε-selection in C[a, b] for
all ε > 0. Theorem 4.17 is proved.

Now consider the problem of the existence of continuous ε-selections to the sets
of n-link r-polynomial functions and their generalizations in the spaces W r

p [a, b]
(see [66]).

Let Srn = Srn[a, b], a < b, denote the set of all n-link r-polynomial functions which
are r-primitives of n-link piecewise constant functions s in the set S0

n = S0
n[a, b]

defined above — these are functions s : [a, b] → R for which there exists a partition
T = {ti}ni=0 such that a = t0 ⩽ t1 ⩽ · · · ⩽ tn = b, and s|(ti−1,ti) is constant.

By W r
p =W r

p [a, b], 1 ⩽ p <∞, we mean the space of all functions f : [a, b] → R
with absolutely continuous (r − 1)st derivative f (r−1) and such that f (r) ∈ Lp =
Lp[a, b]. We equip this space with the seminorm ∥f∥W r

p
:= ∥f (r)∥Lp . We set

W 0
p [a, b] = Lp[a, b] by definition.

Theorem 4.18 (see [66]). The set Srn admits a continuous multiplicative (additive)
ε-selection in the seminormed space W r

p for all ε > 0.

Consider the following generalization of piecewise-polynomial functions.
Let Φ be a non-empty convex closed subset of Lp[0, 1], 1 ⩽ p < ∞, and let

ε ∈ (0, 1). Below we assume that Φ is boundedly compact in Lp[0, 1].
We denote by Φ[c,d] the restriction of Φ to [c, d] ⊂ [0, 1]. Sometimes, for con-

venience we assume that Φ[c,d] is naturally embedded in Lp[0, 1] (in this case each
function in Φ[c,d] is extended by zero outside [c, d]). Since Φ[c,d] is convex and
closed and Φ is boundedly compact, the mapping F : R2 → 2L

p[0,1], as defined by
F (c, d) := Φ[ĉ,d̂], where [ĉ, d̂] = [c, d] ∩ [0, 1], is stable (see Definition 4.1). By The-
orem 4.2 there exists a continuous mapping τ = τc,d(·) : Lp[0, 1]×R2 → Φ[ĉ,d̂] such
that

∥τ(f)− f∥Lp[c,d] ⩽

(
1 +

ε

4

)
ρ(f,Φ[c,d])

for any f ∈ Lp[c, d]. Here, when applying Theorem 4.2, we assume that [c, d] ⊂
[0, 1], and the functions τ(f), f ∈ Lp[c, d] are considered as elements of Lp[0, 1]
which coincide with τ(f) and f , respectively, on [c, d] and which vanish outside this
interval. However, in what follows we assume that τ(f) is an element of Lp[c, d].
We denote by SΦ

n = SΦ
n [0, 1] the set of n-piecewise Φ-functions, that is, functions

s : [0, 1] → R such that there exists a partition

T = {ti}ni=0, 0 = t0 ⩽ t1 ⩽ · · · ⩽ tn = 1,

for which s|(ti−1,ti) is some φ ∈ Φ[ti−1,ti]. We denote the r-primitives of functions
in SΦ

n by SΦ,r
n = SΦ,r

n [0, 1].

Theorem 4.19. The set SΦ,r
n admits a continuous multiplicative (additive) ε-

selection in the seminormed space W r
p for any ε > 0.

Remark 4.2. The conclusion of Theorem 4.19 remains true if the assumption of
bounded compactness is replaced by the weaker condition that Φ is closed.

The proof of Theorem 4.19 is based on the following result from [60].
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Proposition 4.1. Let M be a closed subset of a complete symmetrizable asymmet-
ric linear seminormed space such that, for any ε > 0 and an arbitrary compact set
K ⊂ X , there exists a continuous mapping ψ : K → Oε(M) such that

∥ψ(x)− x| ⩽ ρ(x,M) + ε.

Then the set M is B̊-infinitely connected and admits a continuous additive (multi-
plicative) ε-selection for all ε > 0.

Now consider the problem of the existence of continuous ε-selections to sets of
k-monotone functions (see [62]).

Below we give a positive answer to the question, raised by Kashin, as to whether
the set of k-monotone functions in C[a, b] admits a continuous ε-selection for any
ε > 0? To this end we solve the analogous problem for k-monotone vectors in the
space ℓ∞n ; this being the space of all n-dimensional vectors x = (x1, . . . , xn), xl ∈ R,
l = 1, . . . , n, with the norm

∥x∥ = ∥x∥ℓ∞n = max
l=1,...,n

|xl|.

Let L k be the set of all k-monotone vectors x = (x1, . . . , xn) ∈ ℓ∞n . This means
that there exists a set of numbers

1 = n0 < n1 < n2 < · · · < nl < nl+1 = n, l ⩽ k,

such that either

xni
⩽ · · · ⩽ xni+1

and xni+1
⩾ · · · ⩾ xni+2

or
xni ⩾ · · · ⩾ xni+1 and xni+1 ⩽ · · · ⩽ xni+2

for all i = 0, . . . , l − 1. The numbers n1, . . . , nl are called monotonicity change
moments of x, and the number l will be referred to as the number of monotonicity
changes.

Lemma 4.1 (see [62]). For all pairs of distinct x, y ∈ ℓ∞n there exists a vector
z ∈ ℓ∞n , z ∈ m(x, y) \ {x, y}, such that the number of monotonicity changes of z is
majorized by the maximum number of monotonicity changes of x and y .

Proof. Let m0 < n be the maximum number such that

x1 = y1, . . . , xm0
= ym0

.

If such a number does not exist, then we set m0 = 0. Let i be the smallest number
such that ni > m0 (here ni is a monotonicity change moment for x; if there is
no such i, then we set ni = m0 + 1). It can be assumed without loss of generality
that the number of monotonicity changes of y (which is larger than m0) is not
smaller than ni. We assume first that m0 ⩾ 1. Let us investigate various variants
of monotonicity changes for the tuples {xm0 , . . . , xni} and {ym0 , . . . , yni}.

1) The case of similar monotonicity (the coordinates are increasing):

xm0
⩽ · · · ⩽ xni

and ym0
⩽ · · · ⩽ yni

.
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We define the vector z ∈ ℓ∞n by

z1 = x1 = y1, . . . , zm0 = xm0 = ym0 ,

zj =
1

2
(xj + yj) for all j = (m0 + 1), . . . , ni.

For any j > ni we set zj = xj . The number of monotonicity changes of z is
majorized by that of x. In addition, we have zj ∈ [xj , yj ] for all j, and, as is easily
seen, z ∈ m(x, y) \ {x, y}.

2) Consider one case of different monotonicity

xm0 ⩽ · · · ⩽ xni and ym0 ⩾ · · · ⩾ yni .

In this case we set

z1 = x1 = y1, . . . , zm0 = xm0 = ym0 .

By the definition of m0,

yni ⩽ · · · ⩽ ym0+2 ⩽ ym0+1 ⩽ ym0 = xm0 ⩽ xm0+1 ⩽ xm0+2 ⩽ · · · ⩽ xni =: zni .

Here ym0+1 < xm0+1. If xm0
< xm0+1, then we set

zm0+1 =
1

2
(xm0

+ xm0+1) and zj =

{
xm0+1, j = m0 + 2, . . . , ni,

xj , j > ni.

In this case the number of monotonicity changes of z is dominated by that of x. If
xm0

= xm0+1, then we set

zm0+1 =
1

2
(ym0

+ ym0+1) =
1

2
(xm0+1 + ym0+1) and zj = yj , j > m0 + 1.

The number of monotonicity changes of z is bounded above by that of y. By
construction, z ̸= x, y and zj ∈ [xj , yj ] for all j. As a consequence, z ∈ m(x, y) \
{x, y}.

The cases
3) xm0

⩾ · · · ⩾ xni
, ym0

⩾ · · · ⩾ yni
, and

4) xm0 ⩾ · · · ⩾ xni , ym0 ⩽ · · · ⩽ yni

are dealt with similarly to cases 1) and 2), respectively.
Now assume that m0 = 0. We consider different variants of monotonicity of the

tuples {xm0
, . . . , xni

} and {ym0
, . . . , yni

}.
I) The case of similar monotonicity (the coordinates are increasing):

x1 ⩽ · · · ⩽ xni and y1 ⩽ · · · ⩽ yni .

We set
zj =

1

2
(xj + yj) for all j = 1, . . . , ni.

For all j > ni, we set zj = xj . The number of monotonicity changes of z is
majorized by that of x. In addition, zj ∈ [xj , yj ] for all j, and, as is easily seen,
z ∈ m(x, y) \ {x, y}.
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II) Let x1 ⩽ · · · ⩽ xni
and y1 ⩾ · · · ⩾ yni

. If y1 < x1, then we set

z1 =
1

2
(x1 + y1) and zj = xj , j ⩾ 2.

In this case the number of monotonicity changes of z is majorized by that of x, and
zj ∈ [xj , yj ] for all j. Hence z ∈ m(x, y) \ {x, y}.

Consider the case y1 > x1. Let m be the largest number in the range 1, . . . , ni
such that x1 = · · · = xm and y1 = · · · = ym. If m = ni, then we set

zj =
1

2
(xj + yj), j = 1, . . . , ni, and zj = xj , j > ni.

In this case zj ∈ [xj , yj ] for all j and z ∈ m(x, y) \ {x, y}. If m < ni, then we either
have ym > ym+1 or xm < xm+1. In the first case we set

zj = max

{
ym+1,

1

2
(x1 + y1)

}
if j ⩽ m+ 1, and zj = yj if j > m+ 1.

In this case zj ∈ [xj , yj ] for all j, and z ∈ m(x, y) \ {x, y}. In the second case we
put

zj = min

{
xm+1,

1

2
(x1 + y1)

}
if j ⩽ m+ 1, and zj = xj if j > m+ 1.

Here zj ∈ [xj , yj ] for all j and z ∈ m(x, y) \ {x, y}.
In all above cases the number of monotonicity changes of z is not greater than

that of the vectors x and y.
The cases
III) x1 ⩾ · · · ⩾ xni , y1 ⩾ · · · ⩾ yni , and
IV) x1 ⩾ · · · ⩾ xni

, y1 ⩽ · · · ⩽ yni

are dealt with similarly to cases I) and II), respectively. Lemma 4.1 is proved.

The segment [[x, y]] is defined by

[[x, y]] =
{
z ∈ X | min{x∗(x), x∗(y)} ⩽ x∗(z) ⩽ max{x∗(x), x∗(y)} ∀x∗ ∈ extSX∗

}
.

Remark 4.3. In finite-dimensional spaces Xn Menger-connectedness and monotone
path-connectedness are equivalent for closed sets (see, for example, § 7.7 in [5]);
in addition, any closed Menger-connect (monotone path-connected) set in a finite-
dimensional normed space admits an ε-selection for any ε > 0 (see, for example, [3]).
It is also worth noting that in any separable or reflexive space m(x, y) = [[x, y]] (see,
for example, § 7.7.1 in [5]).

Corollary 4.1. The set of all k-monotone vectors L k is Menger-connected and
monotone path-connected in ℓ∞n .

Proof. That L k is Menger-connected (m-connected) follows from Lemma 4.1, and
since ℓ∞n is finite-dimensional, L k is monotone path-connected as a convex set.

Definition 4.11. A function f ∈ C[a, b] is called k-monotone if [a, b] can be split
into at most k intervals on each of which the function f is monotone.
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Theorem 4.20. The set Mk of all k-monotone functions in C[a, b] admits a con-
tinuous additive (multiplicative) ε-selection for all ε > 0.

Proof. Since Mk is closed, it suffices to prove the theorem for an additive selection.
Consider an arbitrary compact set K ⊂ C[a, b]. Let N ⊂ K be an (ε/6)-net for K.
Given any g ∈ N , consider the function

f = fg ∈ Mk such that ∥f − g∥ ⩽ ρ(g,Mk) +
ε

12
.

We set F := {fg}g∈N . Let T = TM = {tj}M−1
j=0 be a partition of [a, b] such that

∥ψ − ℓψ∥ ⩽
ε

12

for any function ψ ∈ F ∪ N and any piecewise linear function ℓψ with vertices
{(tj , ψ(tj))}M−1

j=0 . Note that ℓψ ∈ Mk for any function ψ ∈ Mk.
Let the mapping Φ: C[a, b] → ℓ∞M be defined by Φ(f) = {f(tj)}M−1

j=0 . Then the
image of the set Mk under Φ is L k ⊂ ℓ∞M . In addition, we have

Φ(ℓψ) = Φ(ψ) and ∥Φ(ψ1)− Φ(ψ2)∥ℓ∞M = ∥ℓψ1 − ℓψ2∥C[a,b].

Next we define the mapping Φ̂ by associating with any point x = (x1, . . . , xM ) ∈ ℓ∞M
the piecewise linear function with vertices {(tj , xj+1)}M−1

j=0 . Note that Φ̂(Φ(ψ)) = ℓψ
for any function ψ ∈ C[a, b].

We set
N̂ = Φ(N), K̂ = Φ(K), and F̂ = Φ(F ).

Given any function ψ ∈ N , we have

ρℓ∞M (Φ(ψ),L k) ⩽ ρℓ∞M (Φ(ψ), F̂ ) = ρC[a,b](ℓψ, F ) ⩽ ρC[a,b](ℓψ,Mk) +
ε

6
.

Further, for any function ψ ∈ K there exists ψ0 ∈ N such that ∥ψ−ψ0∥ ⩽ ε/6. As
a consequence,

ρC[a,b](ψ,Mk) ⩽ ρC[a,b](ψ0,Mk) +
ε

6
,

which gives
ρℓ∞M (Φ(ψ),L k) ⩽ ρC[a,b](ℓψ0 ,Mk) +

ε

3
.

Let Ψ be a continuous (ε/6)-selection to the set L k in ℓ∞M (this selection exists by
Corollary 4.1 and Remark 4.3). Then we have

∥Φ̂(Ψ(u))− Φ̂(u)∥C[a,b] = ∥Ψ(u)− u∥ℓ∞M ⩽ ρℓ∞M (u,L k) +
ε

6

⩽ ρC[a,b](Φ̂(u),Mk) +
ε

2
for all u ∈ K̂.

As a result, G = Φ̂◦Ψ◦Φ is a continuous additive ε-selection to the compact set K.
Indeed, for all ψ ∈ K we have

∥ψ − ℓψ∥ ⩽
ε

6
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and

∥G(ψ)− ψ∥ ⩽ ∥G(ψ)− ℓψ∥+
ε

6
= ∥Φ̂(Ψ(Φ(ψ)))− Φ̂(Φ(ℓψ))∥+

ε

6

= ∥Φ̂(Ψ(Φ(ψ)))− Φ̂(Φ(ψ))∥+ ε

6
⩽ ρC[a,b](Φ̂(Φ(ψ)),Mk) +

4ε

6

⩽ ρC[a,b](ψ,Mk) + ∥Φ̂(Φ(ψ))− ψ∥+ 4ε

6
⩽ ρC[a,b](ψ,Mk) +

5ε

6
.

By Proposition 4.1 the set Mk admits a continuous additive ε-selection in the
space C[a, b]. This proves Theorem 4.20.

In relation to Theorem 4.20, it is interesting to consider the problem of the
existence of continuous selection of the metric projection operator to the set of all
k-monotone functions in C[a, b] as a function of k.

Let Mk,n be the set of all continuous functions

f = (f1, . . . , fn) : [a, b] → ℓ∞n

that are coordinatewise k-monotone functions, that is, fm ∈ Mk for all m =
1, . . . , n.

Theorem 4.21. The set Mk,n ⊂ C([a, b], ℓ∞n ) admits a continuous additive (mul-
tiplicative) ε-selection for all ε > 0.

Proof. The arguments for additive and multiplicative selections are similar. Let us
prove the required result for an additive selection.

Let φ : C[a, b] → Mk be the continuous ε-selection constructed in the previous
theorem. Then the required ε-selection Φ: C([a, b], ℓ∞n ) → Mk,n is given by

Φ(f) = (φ(f1), . . . , φ(fn)) for all f = (f1, . . . , fn).

Indeed,

max
x∈[a,b]

∥Φ(f)(x)− f(x)∥ℓ∞n = max
x∈[a,b]

max
m=1,...,n

|φ(fm)(x)− fm(x)|

= max
m=1,...,n

∥φ(fm)(x)− fm(x)∥C[a,b] ⩽ max
m=1,...,n

{ρC[a,b](fm,Mk) + ε}

= max
m=1,...,n

{
inf

gm∈Mk

∥gm − fm∥C[a,b]

}
+ ε

= max
m=1,...,n

{
inf

g=(g1,...,gn)∈Mk,n

∥gm − fm∥C[a,b]

}
+ ε

⩽ inf
g∈Mk,n

∥g − f∥C([a,b],ℓ∞n ) + ε = inf
g∈Mk,n

∥g − f∥C([a,b],ℓ∞n ) + ε.

This proves Theorem 4.21.
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5. Classical problems of generalized rational approximation: existence,
uniqueness, stability, and characterization of best approximants

By classical problems of rational approximation we mean problems of the exis-
tence, uniqueness, and stability of best or near-best approximants, as well as various
types of solarity (characterization of best approximants). The importance of exis-
tence and solarity problems for generalized rational functions stems from numerous
applications of the latter in approximation theory and numerical mathematics (see,
for example, [28], [45], [14], [55]).

Given a set ∅ ̸= M ⊂ X, we say that x ∈ X \ M is a solar point (see, for
example, § 10.2 in [5], and § 2 in [3]) if there exists a point y ∈ PMx ̸= ∅ (called
a luminosity point) such that

y ∈ PM ((1− λ)y + λx) for all λ ⩾ 0 (5.1)

(geometrically, this means that there is a ‘solar’ ray from y through x such that
y is a nearest point in M for any point on this ray).

A point x ∈ X \M is a strict solar point if PMx ̸= ∅ and (5.1) holds for any
point y ∈ PMx (that if, if any best approximant from M to x is a luminosity point).
Further, if for x ∈ X \M condition (5.1) is satisfied for each y ∈ PMx, then x is
called a strict protosolar point (unlike the case of strict solar points, a nearest
point y to x may fail to exist).

A closed set M ⊂ X is called a sun if any point x ∈ X \M is a solar point. A set
M ⊂ X is called a strict protosun if each point x ∈ X \M is a strict protosolar
point. A Chebyshev set (a set of existence and uniqueness) which is a sun is called
a Chebyshev sun.

Strict protosuns are the most general objects satisfying the generalized Kolmogo-
rov criterion for an element of best approximation (see, for example, [7]) —namely,
a point not lying in a strict protosun can be separated from it by a support cone
constructed from any best approximant in the set (if, of course, such a nearest
point exists). As in the case of convex sets, this separation property characterizes
suns (strict (proto)suns); see § 5 in [7]. Accordingly, strict protosuns are sometimes
called Kolmogorov sets.

Consider the following classical family of rational functions in C[a, b]:

Rn,m = Rn,m[a, b] :=

{
p

q

∣∣∣∣ p ∈ Pn, q ∈ Pm, q ̸= 0

}
, (5.2)

where Pn is the subspace of algebraic polynomials of degree at most n. It is
well known that Rn,m is a Chebyshev sun in C[a, b] (see, for example, § 2 in [8]).
However in Lp[a, b], 1 ⩽ p < ∞, Efimov and Stechkin showed, with the help of
general theorems of geometric approximation theory, that Rn,m, m ⩾ 1, is an
existence set but not a uniqueness set. They also showed that the class R0,2 is
not a uniqueness set in L1[a, b]. The same result, but for all classes Rn,m, m ⩾ 1,
was established by Tsar’kov [69] with the help of general methods of geometric
approximation theory. We also consider the following more general class of rational
functions:

RV
W :=

{
r =

v

w

∣∣∣∣ v ∈ V, w ∈W

}
,
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here Q is a metrizable compact set, V,W ⊂ C(Q) are convex sets, and W consists
of positive functions. It is well known (see, for example, [8]) that RV

W is a strict
protosun in C(Q).

Let us consider the following generalizations of the classes Rn,m and RV
W . Let

V,W ⊂ C(Q), and let U ⊂ V ×W be a non-empty convex set. Consider the class
of generalized rational functions

RU := {r ∈ C(Q) | rw = v, w ̸≡ 0, (v, w) ∈ U}. (5.3)

Theorem 5.1 (see [8]). The set of generalized rational functions RU is a strict
protosun in C(Q).

This result means that the best rational approximants in the class RU are char-
acterized in terms of the Kolmogorov criterion for an element of best approximation.
In turn, this result paves the way for the construction of algorithms for finding best
rational approximants [14], [21], [22], [44], [55].

The stability of elements of (near-) best approximation is traditionally related to
the properties of approximative compactness or existence of continuous ε-selections.
It is well known that in non-degenerate cases (that is, for m ⩾ 1) the metric
projection onto the (Chebyshev) set Rn,m has points of discontinuity in C[a, b],
but, according to Konyagin, for any ε > 0 there exists a continuous ε-selection
to Rn,m (see [32], and also § 3 bellow). The next result extends and generalizes
Konyagin’s result (see also [50]).

Theorem 5.2 (see [8]). The set of generalized rational functions RU (with convex
set U ; see (5.3)) in C(Q) is a stably monotone path-connected set and therefore
admits a continuous additive ε-selection for any ε > 0. In addition, if RU is closed,
then RU admits a continuous multiplicative ε-selection for any ε > 0. Moreover,
RU has contractible intersections with closed and open balls in C(Q).

First results on generalized rational approximation date back to Cheney, Loeb,
Rubinshtein, Boehm, Dunham, and other authors (see § 11.1 in [5]). By contrast
with the classical case of approximation by the class Rn,m in C[a, b], an element of
best uniform generalized rational approximation can fail to exist or be unique.

Definition 5.1. Let Q be a Hausdorff compact set, and let U ⊂ V ×W , where
V,W ⊂ C(Q). We say that

RU := {r ∈ C(Q) | rw = v, w ̸≡ 0, (v, w) ∈ U}

is algebraically complete (see [8]) if the conditions:
(a) (vk, wk) → (v, w) in C(Q)× C(Q), where (vk, wk) ∈ U , w ̸≡ 0,
(b) there exists a function r ∈ C(Q) such that r(t) = v(t)/w(t) for all t ∈

Q \ Z(w), where Z(w) is the set of zeros of w,
are equivalent to the condition (v, w) ∈ U .

Definition 5.2. A net (xδ) is said to ∆-converge to x ∈ C(Q) (written xδ
∆→ x)

if there exists a dense subset Q0 ⊂ Q such that xδ(t) → x(t) for any t ∈ Q0

(see [20]). A set M ⊂ C(Q) is called boundedly ∆-compact if any bounded net
from M contains a subnet ∆-converging to a point in M (see [20] and § 4.3 in [5]).
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Let Q be a compact set, V,W ⊂ C(Q) be boundedly compact sets, and let
U ⊂ V ×W be a non-empty set. Consider the class of generalized rational functions

RU := {r ∈ C(Q) | rw = v, w ̸≡ 0, (v, w) ∈ U}.

Theorem 5.3 (see [8]). Let RU be algebraically complete and, for each non-zero
function in W , let the complement of its zero set in Q be dense in Q. Then RU is
boundedly ∆-compact in C(Q); as a corollary, RU is an existence set in C(Q).

The conclusion of Theorem 5.3 also holds in L∞(Q,µ), where Q is the unit
element of the σ-algebra of Borel sets and µ is a σ-additive Borel measure on Q.

Let D be a compact domain in Rn, let V,W ⊂ C(D) be non-empty boundedly
compact sets consisting of real analytic functions, and let ∅ ̸= U ⊂ V ×W . Consider
the class of generalized rational functions

RU (D) := {r ∈ C(D) | rw = v, w ̸≡ 0, (v, w) ∈ U}.

Corollary 5.1 (see [8]). If RU (D) is algebraically complete, then RU (D) is bound-
edly ∆-compact in C(D). As a consequence, RU (D) is an existence set in C(D),
and the set PRU

x is ∆-compact for any x ∈ C(D).

As a corollary to Theorem 5.3, we obtain a result of Deutsch [20]: the set

RW
V := {r ∈ C[a, b] | rw = v, w ∈W, w ̸≡ 0, v ∈ V }

is an existence set in C[a, b], where V and W are finite-dimensional subspaces
of C[a, b] which consist of analytic functions.

The case considered in Corollary 5.1 includes that of algebraically complete mul-
tivariate algebraic rational functions RU , where U = V ×W is algebraically com-
plete.

From Theorem 5.3 we also have the following classical result (in which the pro-
ximinality of Rn,m was proved independently by Akhiezer and Walsh): the set of
rational functions Rn,m is boundedly ∆-compact in C[a, b]. In particular, Rn,m is
an existence set, and the set PRn,m

x is ∆-compact for any x ∈ C[a, b].
Now consider the problem of the existence of best rational approximation in Lp,

1 ⩽ p < ∞. It is well known (see, for example, § 11.3 in [5]) that the set Rn,m is
approximatively compact in Lp[a, b], 1 ⩽ p <∞, and therefore is an existence set.

Definition 5.3. Let Σ be a σ-algebra on Ω and µ be a σ-finite measure on Σ. We
say that a sequence of functions xn : Ω → R aes-converges1 to a function x : Ω → R
if, for any set A ∈ Σ, µ(A) < ∞, there exists a subsequence (nk) such that (xnk

)
converges to x almost everywhere on A.

A set M is aes-compact if any sequence (xn) ⊂ M contains a subsequence aes-
converging to an element x ∈M . A set is boundedly aes-compact if its intersection
with any closed ball is aes-compact.

Let µ be a σ-finite measure on Ω, and let Lp = Lp(Ω,Σ, µ), 1 ⩽ p <∞. Next, let
V ⊂ L1 and W ⊂ Lq be finite-dimensional subspaces (1/p+1/q = 1, 1 < p, q <∞;
for p = 1 we set q = ∞), and let U ⊂ V ×W be a non-empty set.

1Here ‘aes’ stands for ‘almost everywhere convergence of a subsequence’.
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Definition 5.4. A set

RU (Ω) := {r ∈ Lp | rw = v, w ̸≡ 0, (v, w) ∈ U} (5.4)

is said to be algebraically complete if the conditions
(a) (vk, wk) → (v, w) in L1 × Lq, where (vk, wk) ∈ U , w ̸≡ 0, and
(b) there exists a function r ∈ Lp such that r(t) = v(t)/w(t) holds for all t ∈

Ω \ Z(w), where Z(w) is the set of zeros of w,
are equivalent to the inclusion (v, w) ∈ U .

Theorem 5.4 (see [8]). Let RU (Ω) be algebraically complete, and for each non-zero
function from W let its zero set in Ω be a nullset. Then RU (Ω) is boundedly
aes-compact in Lp(Ω) for any 1 ⩽ p < ∞ and is approximatively compact. As
a consequence, RU (Ω) is an existence set.

Let µ be the Lebesgue measure on D, where D is a bounded domain in Rn whose
boundary is a Lebesgue nullset. Next consider the space Lp = Lp(D) = Lp(D,µ),
1 ⩽ p < ∞, and finite-dimensional subspaces V ⊂ L1 and W ⊂ Lq consisting of
real analytic functions (where 1/p + 1/q = 1 and 1 < p, q < ∞; if p = 1, then we
set q = ∞). Let U ⊂ V ×W be a non-empty set. Consider the following class of
generalized rational functions

RU (D) := {r ∈ Lp(D) | rw = v, w ̸≡ 0, (v, w) ∈ U}. (5.5)

Corollary 5.2 (see [8]). Let RU (D) be algebraically complete. Then RU (D) is
boundedly aes-compact. As a consequence, RU (D) is approximatively compact and
is an existence set in Lp(D) for any 1 ⩽ p <∞.

Note that if D = [a, b] ⊂ R, then the class of rational functions RU (D), where
D = [a, b], coincides with the class

R0
U [a, b] := {r ∈ C[a, b] | rw = v, w ̸≡ 0, (v, w) ∈ U}.

In view of this remark, using Corollary 5.2 we obtain the following well-known
result due to Deutsch and Huff [20]: the set RW

V [a, b] is approximatively compact
in Lp[a, b] for any 1 ⩽ p < ∞ and, as a consequence, is an existence set; here
V and W are finite-dimensional subspaces of Lp[a, b] consisting of real analytic
functions.

Definition 5.5 (see [69]). We say that A ⊂ M ⊂ X is not woven from closed
intervals if, for any interval [a, b], where a ∈ A and b ∈M , [a, b] ̸⊂M , and for any
number δ > 0 there exists a point c ∈ A ∩Oδ(a) such that (c, b) ∩Oδ(a) ̸⊂ A.

Given two boundedly compact sets V ⊂ L1 and W ⊂ L∞ (not necessarily
convex), consider the following class of generalized rational functions:

R̂VW :=

{
r =

v

w
∈ L1

∣∣∣∣ v ∈ V, w ∈W, w > 0

}
.

Theorem 5.5 (Tsar’kov [69]). Let R̂VW be a boundedly aes-compact Chebyshev set
in L1 , and let R̂VW lie in a linear manifold in which the zero set of each nontrivial
function is a nullset. Assume further that, for any neighbourhood O(x0) of any
point x0 ∈ R̂VW , the set O(x0) ∩ R̂VW is not woven from closed intervals. Then R̂VW
is an approximatively compact convex set.
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Let D be a bounded domain in Rn whose boundary has zero Lebesgue measure,
let µ be the Lebesgue measure on D, and set L1 = L1(D,µ). Next, let V ⊂ L1 be
a finite-dimensional subspace of dimension n ∈ N, let W ⊂ L1, and let U ⊂ V ×W
be a non-empty set. Consider the following class of generalized rational functions:

R1
U (D) :=

{
r ∈ L1(D) | rw = v, w ̸≡ 0, (v, w) ∈ U

}
.

Here, in addition, we assume that, for all distinct w1, w2 ∈W \{0} and any function
r ∈ R1

U (D) such that rw1,+rw2 ∈ V , the functions rw1 and rw2 are equal. In this
case, we say that R1

U (D) is irreducible.

Theorem 5.6 (Tsar’kov [69]). Let R1
U (D) be a boundedly aes-compact (or approxi-

matively compact) irreducible subset of L1 such that its linear hull is dense in L1(D).
Then for any (n + 1)-dimensional subspace L ⊂ L1[D] consisting of real analytic
functions there exists a function in L with at least two nearest fractions in R1

U (D).

For subspaces of Lp, 1 < p <∞, we have the following analogues of Theorem 5.6
(see [8]).

Theorem 5.7. If the set of rational functions RU (D) (see (5.5)) is algebraically
complete and not convex, then it is not a Chebyshev set in Lp(D), 1 < p < ∞.
Moreover, in this case, for any convex dense subset H of Lp(D), 1 < p <∞, there
exists a point x ∈ H such that the set PRU (D)x is not acyclic.

Theorem 5.8. If the set of rational functions Rn,m (see (5.2)) is not convex
(this set is not convex if and only if m ⩾ 1), then it is not a Chebyshev set
in Lp[a, b], 1 < p < ∞. Moreover, in this case, for any convex dense subset H
of Lp[a, b], 1 < p < ∞, there exists a point x ∈ H such that the set PRn,mx is not
acyclic.

It is interesting to compare Theorem 5.6–5.8 with the following well-known result
of Braess (see, for example, Theorem 11.6 in [5]). Let 1 < p <∞, n ⩾ 0 and m ⩾ 1.
Then any (n + 2)-dimensional subspace E of Lp[a, b] such that E ∩ Rn,m = {0}
contains a function which has at least two best approximants in Rn,m. It is worth
pointing out here that in Theorem 5.6 the result on ‘bad’ properties of values of
the metric projection operator onto the set RU (D) (and, in particular, onto Rn,m)
was obtained by general methods of geometric approximation theory.

6. Existence of continuous selections to the set of
generalized rational functions in Lp, 0 < p < ∞

The first investigations of continuous selections to the set of near-best approx-
imants for rational functions was carried out in spaces with Chebyshev norm (see
§ 3 and § 7).

In the case of subspaces of Lp[0, 1], 1 < p < ∞, Tsar’kov [58] showed that, for
sufficiently small ε > 0, any additive ε-selection of Rn,m, m ⩾ 1, is discontinu-
ous. A similar problem for generalized rational functions in Lp[0, 1] was studied by
Ryutin [51], [53].

In this section, we assume that X = Lp[0, 1], 0 < p < ∞; the norm of Lp[0, 1]
is denoted by ∥ · ∥ (if not otherwise specified). Recall that the functional ∥ · ∥ =
∥ · ∥Lp[0,1] is a norm for p ⩾ 1; for 0 < p < 1, ∥ · ∥p = ∥ · ∥pLp[0,1] is a metric.
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Definition 6.1. Let V and W be subspaces of X. Consider the following class of
generalized rational functions:

RV,W =

{
r =

v

w

∣∣∣∣ v ∈ V, w ∈W ; ess inf w > 0 on [0, 1]

}
;

the closure of this set in X is denoted by RV,W .

In what follows we assume that the sets RV,W and RV,W are non-empty. Note
that for W = span 1 each of the sets RV,W and RV,W coincides with the sub-
space V . If W = span g (ess inf g > 0), then the problem reduces to the one for
the subspace V/g. Throughout this section span{f1, f2, . . . , fk} denotes the linear
hull of the set (fj)

k
j=1 ⊂ X (k ∈ N). We will generally assume that (fj) is linearly

independent. The characteristic function of a set A is denoted by χA(·).

Definition 6.2. We say that V and W form an admissible pair in Lp[0, 1], 0 <
p <∞, if V,W ⊂ Lp[0, 1] are finite-dimensional subspaces of measurable functions
on [0, 1] such that:

1) dimV ⩾ 1 and dimW ⩾ 1;
2) there exists a function w0 ∈W such that ess inf w0 > 0 on [0, 1].

Note that if V , W is an admissible pair in Lp[0, 1], 0 < p < ∞, then RV,W is
a non-empty closed subset of Lp.

We define the function C(m,n, p) as follows: C(m,n, p) := n1/p for 1 ⩽ p < ∞,
m,n ∈ N, and C(m,n, p) := n(m+ 1)1−p for 0 < p ⩽ 1, m,n ∈ N.

Theorem 6.1. Let V , W be an admissible pair in X = Lp[0, 1], 0 < p < ∞, let
dimV = m and dimW = n, where m,n < ∞, and let R = RV,W . Then for any
constant C > C(m,n, p) there exists a continuous mapping Φ: X → R such that

∥Φ(f)− f∥ ⩽ Cρ(f,R) ∀ f ∈ X.

Note that this result is well known in the particular case where 1 ⩽ p < ∞,
V is a subspace in Lp, and W = span 1, that is, where RV,W = V (this case will
be referred to as the subspace case); in this case the required result follows easily
from Michael’s continuous selection theorem. If 0 < p < 1, then Lp is not a normed
space, and in this setting even the subspace case requires a proof. We will employ
the method of averaging used by Al’brecht (see, for example, [36]).

Let ∆ ⊂ Rm+n be a convex polyhedron of dimension m+ n, and let Σ be the
set of all simplexes σ such that each vertex of σ is a vertex of ∆, and dimσ ⩽ n.

The proof of Theorem 6.1 depends on the following lemma.

Lemma 6.1. Let ∆ ⊂ Rm+n be a convex polyhedron with non-empty interior, and
let π be an affine subspace of Rm+n , where dimπ = m. Then

∆ ∩ π = conv

{⋃
σ∈Σ

(π ∩ σ)
}
.

Proof of Theorem 6.1. We set ρ(x) := ρ(x,R) and define

Pα(x) := {r ∈ R | ∥x− r∥ ⩽ (1 + α)ρ(x)},
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where x ∈ X and α > 0. Consider

W+ := {w ∈W | ess inf w ⩾ 0 on [0, 1]}.

It is clear that W+ is a closed convex cone with non-empty interior in W . By the
definition of W+, W+ ∩ (−W+) = {0}. Hence there exists an affine hyperplane Γ
in W that does not pass through 0 and intersects any ray from 0 lying in the
cone W+ in a unique point. We set Q = W+ ∩ Γ. It is easily seen that Q is
a compact subset of Γ. Let U = V × Γ. In what follows we put u = (v, w), where
v ∈ V and w ∈ Γ. We also assume that V and Γ are equipped with the Lebesgue
measures dv and dw, respectively.

Consider the two mappings r : V ×Q→ RV,W and f : R → R defined by

r(u) :=
v

w
and f(t) = fx(t) := max{0, (1 + α)ρ(x)− t}

(r is in general not defined on the whole of V ×Q). It is easily seen that any rational
function y ∈ R can be written as y = v/w, where v ∈ V and w ∈ Q. With each
point x ∈ X we associate the bounded set

Ω(x) = {u ∈ U | r(u) ∈ Pα(x), w ∈ Q}, Ω = Ω(x) ⊂ V ×Q.

We also set

Ψ(x) =

(∫
Ω

uf(∥x(u)− r(u)∥) du
)
·
(∫

Ω

f(∥x(u)− r(u)∥) du
)−1

,

where du = dv dw. We claim that Φ = r ◦Ψ is the required mapping. To show this
we estimate the norm ∥x − Φ(x)∥ from above. Let û = (v̂, ŵ) := Ψ(x). We show
below that r(û) is well defined, that is, r(û) ∈ R ⊂ X. Note that Ψ(x) ∈ convΩ(x).
By Carathéodory’s theorem (see, for example, [5], Appendix B), there exist points

u0 = (v0, w0), u1 = (v1, w1), . . . , um+n = (vm+n−1, wm+n−1) ∈ V ×Q

and numbers
µ0, . . . , µm+n−1 ∈ [0, 1]

such that

û =

m+n−1∑
j=0

µjuj and
m+n−1∑
j=0

µj = 1

and r(uj) ∈ Pα(x) for any 0 ⩽ j ⩽ m+ n− 1. Consider the set

Y (ŵ) :=

{
ṽ =

n−1∑
k=0

ξkvjk

∣∣∣∣ n−1∑
k=0

ξk = 1, ξk ⩾ 0,

n−1∑
k=0

ξkwjk = ŵ

}
⊂ V.

Given any function ṽ ∈ Y (ŵ), we have∥∥∥∥ ṽŵ − x

∥∥∥∥ ⩽ γ(n, p)(1 + α)ρ(x), (6.1)
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where γ(n, p) := n1/p for 1 ⩽ p < ∞ and γ(n, p) := n for 0 < p < 1. Let us prove
(6.1) for 0 < p < 1. First of all, we have∣∣∣∣ ṽŵ − x

∣∣∣∣p =
∣∣∣∣∣
∑n−1
k=0 ξk(vjk − xwjk)∑n−1

k=0 ξkwjk

∣∣∣∣∣
p

⩽
n−1∑
k=0

∣∣∣∣ vjkwjk
− x

∣∣∣∣p.
Therefore,∥∥∥∥ ṽŵ − x

∥∥∥∥ ⩽
n−1∑
k=0

∥∥∥∥ vjkwjk
− x

∥∥∥∥ ⩽ n(1 + α)ρ(x) = γ(n, p)(1 + α)ρ(x).

Inequality (6.1) for 1 ⩽ p <∞ is proved similarly.
Using Lemma 6.1 for ∆ = conv{u0, . . . , um+n−1} and π = {(v, w) ∈ U | w = ŵ},

we find that v̂ ∈ conv Y (ŵ). Hence there exist numbers η0, η1, . . . , ηm ∈ [0, 1] and
points ṽ0, . . . , ṽm ∈ Y (ŵ) such that

∑m
j=0 ηj = 1 and v̂ =

∑m
j=0 ηj ṽj .

We have

∥Φ(x)− x∥ =

∥∥∥∥ v̂ŵ − x

∥∥∥∥ =

∥∥∥∥ m∑
j=0

ηj

(
ṽj
ŵ

− x

)∥∥∥∥.
An application of inequality (6.1) shows that

∥Φ(x)− x∥ ⩽
m∑
j=0

ηpjn(1 + α)ρ(x) ⩽ (m+ 1)1−pn(1 + α)ρ(x)

for 0 < p < 1. A similar argument for 1 ⩽ p <∞ shows that

∥Φ(x)− x∥ ⩽ n1/p(1 + α)ρ(x).

Thus, for all 0 < p < ∞ and δ > 0, there exists α > 0 such that ∥x − Φ(x)∥ ⩽
Cρ(x) for any x ∈ X.

Note that Ω(x) and both integrals involved in the definition of Ψ depend contin-
uously on x, and the denominator of Ψ does not vanish. Therefore, Φ is continuous.
This proves Theorem 6.1.

We show below that in X = Lp[0, 1] (0 < p < 1) there are no continuous
ε-selections for all sufficiently small ε > 0 in some simple cases of approximation
by generalized rational functions (and, in particular, in the subspace case).

Theorem 6.2. Consider the following two cases.
A. V is an arbitrary subspace of Lp[0, 1], 0 < p < 1, dimV < ∞, and W =

span 1.
B. V and W are subspaces of Lp[0, 1], 0 < p < 1, such that V = span 1,

dimW <∞, and there exists a function w0 ∈W such that ess inf w0 > 0 on [0, 1].
In both cases A and B, there is no continuous multiplicative ε-selection Φ: Lp →

RV,W for any 0 ⩽ ε < 21−p − 1.

Proof. First we verify Theorem 6.2 in case A, that is, where RV,W is a subspace
of V . There exist a hyperplane Γ in V and a function ψ ∈ V such that ∥ψ∥ = 1
and ρ(ψ,Γ) = 1. Indeed, the required function ψ can be constructed as follows: we
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take an arbitrary point q ∈ V \ Γ, and let q0 be a nearest point from Γ for q. It is
easily seen that there exists c ∈ R such that ∥ψ∥ = 1, where ψ := c(q − q0). For
arbitrary σ > 0 one can construct a curve γ = {γ(s)} ⊂ X, s ∈ [0, 1], with the
following properties:

a) γ(0) = ψ, γ(1) = −ψ;
b) (21−p − σ)ρ(γ(s), V ) < ρ(γ(s),Γ) for any s ∈ [0, 1].
If E ⊂ [0, 1], then by V [E] we denote the set of restrictions to E of elements

of V . We use an idea due to Kamuntavichius [30]. For any N > 1 one can (see [30])
construct a partition of [0, 1] (up to a nullset) into a countable set of measurable
subsets Ej (j ∈ J) with the following properties:

1) 0 < µ(Ej) and V [Ej ] ⊂ L∞(Ej) for any j ∈ J ;
2) ess supτ∈Ej

f(τ)− ess infτ∈Ej f(τ) ⩽ ∥f∥1/p/N for all f ∈ V , j ∈ J .
We fix some (sufficiently large) number N and the corresponding partition Ej

(j ∈ J). We indicate below how N should be chosen.
For each j ∈ J we fix a family {Hj(λ)}λ∈[0,1] of measurable subsets of Ej such

that µ(Hj(λ)) = λµ(Ej) and Hj(λ) ⊂ Hj(µ) if λ ⩽ µ. We also set Gj(λ) :=
Ej \Hj(λ).

The required curve {γ(s)} is defined by

γ(s) =
∑
J

ψ · χGj(s) −
∑
J

ψ · χHj(s).

We claim that γ(s) satisfies condition b). First we note that

ρ(γ(s), V ) ⩽ min
{
∥γ(s)− ψ∥, ∥γ(s) + ψ∥

}
.

We set H(s) :=
⋃
J Hj(s) and G(s) :=

⋃
J Gj(s). It is clear that

min
{
∥γ(s)− ψ∥, ∥γ(s) + ψ∥

}
= min

{∫
H(s)

|2ψ|p dµ,
∫
G(s)

|2ψ|p dµ
}
,

which is at most 2p−1.
We claim that for any δ > 0 there exists N > 0 (from condition 2)) such that

∥γ(s)− f∥ ⩾ 1− δ for all s ∈ [0, 1] and f ∈ Γ. Assume on the contrary that there
exists a number δ0 > 0 such that for any N > 0 there are f ∈ Γ and s ∈ [0, 1] such
that ∥γ(s) − f∥ ⩽ 1 − δ0. For v ∈ V we set vj := ess infτ∈Ej

v(τ) and consider
the function v̂ :=

∑
J vjχEj

. By condition 2), v̂ tends to v in the norm of L∞ as
N → ∞. For sufficiently large N we have

(i) ∥γ̂(s)− f̂∥ ⩽ 1− (2/3)δ0;
(ii) ∥ψ̂ − f̂∥ ⩾ 1− δ0/3, ∥ψ̂ + f̂∥ ⩾ 1− δ0/3,

where γ̂(s) :=
∑
J ψ̂χGj(s) −

∑
J ψ̂χHj(s). Let us show that inequalities (i) and (ii)

are inconsistent. We set

Aj := |fj − ψj |p, Bj := |fj + ψj |p, and µj := µ(Ej).

Now inequalities (i) and (ii) can be written as

(1− s)
∑
J

Ajµj + s
∑
J

Bjµj ⩽ 1− 2

3
δ0,

∑
J

Ajµj ⩾ 1− δ0
3
, and

∑
J

Bjµj ⩾ 1− δ0
3
,
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which is a contradiction. So we have shown that the curve {γ(s)} satisfies condi-
tion b), while condition a) is satisfied by the construction of {γ(s)}.

To complete the proof of the theorem in case A, we assume that Φ: X → V is
a continuous ε-selection and 1+ε < 21−p. Consider the curve {γ(s)} corresponding
to σ > 0 such that 1 + ε < 21−p − σ. We claim that no ε-selection Φ can even be
continuous on {γ(s)}. Indeed, it is easily seen that Φ(γ(0)) = ψ, Φ(γ(1)) = −ψ,
and {Φ(γ(s))} ∩ Γ = ∅. But then the set {Φ(γ(s))} cannot be connected. This
proves Theorem 6.2 in case A.

To prove the theorem in case B, consider a curve {γ̃(s)} such that γ̃(0) = 1/w0,
γ̃(1) = −1/w0, and for all s ∈ [0, 1],

(21−p − σ)ρ(γ̃(s),RV,W ) < ∥γ̃(s)∥.

Such a curve γ̃ is constructed similarly to γ. To complete the proof in case B, it
remains to take γ̃ as γ, replace Γ by {0}, and note that the set {Φ(γ̃(s))} cannot
be connected. Theorem 6.2 is proved.

Remark 6.1. In the actual fact, Theorem 6.2 establishes slightly more than we have
claimed. Namely, we showed that there are no continuous ε-selections not only
on the whole of Lp, but also on any subset M of Lp containing the curve {γ(s)}
(or {γ̃(s)}). An important example of such a set M is the unit ball of Lp.

Now consider the space X = L1[0, 1]. We claim that for small ε > 0 there is
no continuous multiplicative ε-selection to the set of generalized rational functions
in L1[0, 1].

Here we consider only the case where V is a subspace of L1[0, 1] and W is a sub-
space of C[0, 1]. Since W contains a positive function, the set RV,W is non-empty.

We recall (see [35], § II.1, and [5], Appendix A) that a linearly independent
system of functions {p0, . . . , pk−1} ⊂ Ck−1[0, 1] (k ∈ N) is an ET-system on [0, 1]
if any function p ̸≡ 0 in the linear hull of p0, . . . , pk−1 has at most k − 1 zeros
on [0, 1], where each zero is counted according to its algebraic multiplicity. By an
ETk−1-space we mean the liner hull of an ET-system of cardinality k.

We assume that V and W satisfy the following conditions:
1) V is a subspace in L1[0, 1], 1 ⩽ dimV <∞;
2) W is an ETn−1-space, n ⩾ 3.

Note that there exists a function w0 ∈W such that w0(τ) > 0 on [0, 1] (see [35],
Theorem 1.4, § II.1). In addition, it can be assumed that W contains the constant
functions. Indeed, we can change from the pair of subspaces (V,W ) to the pair

(Ṽ , W̃ ), where W̃ =
1

w0
W and Ṽ =

1

w0
V.

As before, the pair (Ṽ , W̃ ) satisfies 1) and 2). We set

W+ = {w ∈W | w(τ) ⩾ 0 on [0, 1]}.

Note that for each function r ∈ RV,W one can find a pair v ∈ V , w ∈ W+ such
that r(τ) = v(τ)/w(τ) almost everywhere on [0, 1].
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Theorem 6.3. Let the pair (V,W ) satisfy conditions 1) and 2). Then there exists
ε0 = ε0(V,W ) > 0 such that ε ⩾ ε0 for any continuous multiplicative ε-selection
Φ: L1[0, 1] → RV,W .

Let ∥ · ∥C be the Chebyshev norm on W , and let ∥ · ∥ be the usual L1-norm
on W . For brevity we will sometimes write R in place of RV,W . Further, we let
I(m) denote the set {1, . . . ,m}, where m ∈ N, and let

∆ =

{
λ = (λ1, . . . , λN ) ∈ RN

∣∣∣∣ N∑
j=1

λj = 1, λj ⩾ 0 ∀ j
}

be the ‘standard’ simplex. By a neighbourhood of a point τ ∈ [0, 1] we mean
a closed interval with centre τ .

We need some auxiliary results. Let v ∈ V , v ̸= 0. Then there exist a number
d = d(v) ∈ (0, 1) and a measurable set T = T (v) ⊂ [d/10, 1 − d/10] such that
µ(T ) = d and v(τ) ̸= 0 on T .

Lemma 6.2 (see [53]). Let a pair (V,W ) satisfy conditions 1) and 2). Then for
any δ > 0 and almost all τ̃ ∈ T there exist a function r(τ) ∈ RV,W and a neigh-
bourhood U of τ̃ such that

µ(U) ⩽ δ,

∫
U

|r(τ)| dτ = 1, and
∫
[0,1]

|r(τ)| dτ ⩽ 1 + δ.

Corollary 6.1. For all N ∈ N and δ > 0 there exist points τ1, . . . , τN ∈ T , func-
tions e1(τ), . . . , eN (τ) ∈ RV,W , and neighbourhoods U1, . . . , UN of τ1, . . . , τN such
that, for any j ∈ I(N),

min
i ̸=j

|τi − τj | ⩾
d

3N
, µ(Uj) ⩽ δ,∫

Uj

|ej(τ)| dτ = 1, and
∫
[0,1]

|ej(τ)| dτ ⩽ 1 + δ.

Lemma 6.3 (see [53]). Let the pair (V,W ) satisfy conditions 1) and 2), let h > 0,
K > n/2, and let τj ∈ (0, 1), j ∈ I(K), be distinct points. Then for any C > 0 there
exists δ > 0 such that if r(τ) ∈ RV,W , Uj are neighbourhoods of τj , µ(Uj) ⩽ δ , and

if
∫
Uj

|r(τ)| dτ ⩾ h for each j ∈ I(K), then

∫
[0,1]

|r(τ)| dτ ⩾ C.

We set F (τ, a) := [0, 1] \ [τ − a, τ + a], where a ∈ (0, 1/10) and τ ∈ [2a, 1− 2a],
and we set S(W ) := {w ∈W+ | ∥w∥ = 1}.
Lemma 6.4 (see [53]). Let W be an ETn−1-space, n ⩾ 3, and let a ∈ (0, 1/10).
Then there exist δ0 = δ0(a,W ) > 0 and k = k(a,W ) > 0 such that for all τ0 ∈
[2a, 1−2a], θ > 0 and w ∈ S(W ), w(τ0) ⩽ kθ , there exists a function f ∈W+ such
that

f(τ) ⩾ w(τ) on U = [τ0 − δ0, τ0 + δ0] (6.2)
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and

f(τ) ⩽ θw(τ) on F = F (τ0, a). (6.3)

Consider a number δ > 0 and the functions ej from Corollary 6.1 (j ∈ I(N)).
Let J ⊂ I(N) be a set of cardinality ⩽ N − 1. Then we set

G(J) := conv{(ej)j∈J} and γ := conv{(ej)j∈I(N)}.

Assume that δ < η (the conditions on the parameter η > 0 will be specified in the
proof of Lemma 6.5). Then the following result holds.

Lemma 6.5. 1) ρ(g,R) ⩽ (N − 1)(1 + δ)/N for any point g ∈ γ .
2) For all g ∈ G(J), r ∈ R and ε ∈ [0, 1) the conditions ∥g− r∥ ⩽ (1 + ε)ρ(g,R)

and j0 ∈ I(N) \ J imply that
∫
Uj0

|r(τ)| dτ ⩽ 5ε.

Proof. Let us check 1). If g =
∑N
j=1 µjej ∈ γ (µ ∈ ∆), then

ρ(g,R) ⩽ min
j

∥g − µjej∥ ⩽
(
1−max

j
µj

)
(1 + δ) ⩽

N − 1

N
(1 + δ).

Now let us verify 2). Let r(τ) =
v(τ)

w(τ)
,
∫
Uj0

|r(τ)| dτ = σ > 4ε, where v ∈ V ,

w ∈ W+, and ∥w∥C = 1. Let η < a := δ/(10N), and let O = [−a+ τj0 , τj0 + a] be
a neighbourhood of τj0 . We have Uj0 ⊂ O and O ∩ Uj = ∅ for j ̸= j0. Next, we
define U = Uj0 , E = O \ U , and F = [0, 1] \ O. Using assertion 1) of the lemma

(for ε < 1 and δ < 1/3) we have ∥r∥ ⩽ 4. As a result,
∫
O

|v(τ)| dτ ⩽ 4. For each

q > 0 there exists δ1 > 0 such that∫
U

|v(τ)| dτ ⩽ q

whenever µ(U) = δ ⩽ δ1 and
∫
O

|v(τ)| dτ ⩽ 4. As a result, minU w(τ) ⩽ q/σ. We

set θ = q/(2kε), where the number k is defined as in Lemma 6.4 and q is such that
4θ/(1 + θ) ⩽ ε/4. There exists δ1 > 0 such that we have w(τj0) ⩽ 2q/σ ⩽ kθ. An
application of Lemma 6.4 produces a function f . Consider the rational function
r̃ = v/(w + f). Let us give the necessary estimates.

First, we have∫
E

∣∣∣∣g(τ)− r̃(τ)

∣∣∣∣ dτ ⩽ δ +

∫
E

|v(τ)|
w(τ) + f(τ)

dτ ⩽ δ +

∫
E

|v(τ)|
w(τ)

dτ

⩽
∫
E

∣∣∣∣g(τ)− v(τ)

w(τ)

∣∣∣∣ dτ + 2δ,
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where we have used the fact that
∫
O

|g(τ)| dτ ⩽ δ. Second, we have

∫
U

∣∣∣∣g(τ)− v(τ)

w(τ) + f(τ)

∣∣∣∣ dτ ⩽ δ +

∫
U

∣∣∣∣ v(τ)

w(τ) + f(τ)

∣∣∣∣ dτ
⩽ δ +

1

2

∫
U

∣∣∣∣ v(τ)w(τ)

∣∣∣∣ dτ = δ +
σ

2
⩽

∫
U

∣∣∣∣g(τ)− v(τ)

w(τ)

∣∣∣∣ dτ − σ

2
+ 2δ.

Further, we have∫
F

∣∣∣∣g(τ)− v(τ)

w(τ) + f(τ)

∣∣∣∣ dτ ⩽
∫
F

∣∣∣∣g(τ)− v(τ)

w(τ)

∣∣∣∣ dτ + ∫
F

∣∣∣∣ v(τ)

w(τ) + f(τ)
− v(τ)

w(τ)

∣∣∣∣ dτ.
Since ∥r∥ ⩽ 4, the last integral is estimated as follows:∫

F

∣∣∣∣ v(τ)

w(τ) + f(τ)
− v(τ)

w(τ)

∣∣∣∣ dτ ⩽
∫
F

∣∣∣∣ v(τ)w(τ)

∣∣∣∣(1− w(τ)

w(τ) + f(τ)

)
dτ

⩽
θ

1 + θ

∫
F

∣∣∣∣ v(τ)w(τ)

∣∣∣∣ dτ ⩽
4θ

1 + θ
.

So we have ρ(g,R) ⩽ ∥g − r̃∥ ⩽ ∥g − r∥ − σ/2 + 4δ + 4θ/(1 + θ). Now using the
inequality ∥g − r∥ ⩽ (1 + ε)ρ(g,R) we obtain

σ

2
⩽ ερ(g,R) + 4δ +

4θ

1 + θ
⩽ 2ε+

ε

2

(here we assume that η ⩽ ε/16). Setting

η = min

{
δ0, δ1,

d

10N
,
1

3
,
ε

16

}
,

we have σ ⩽ 5ε, which proves Lemma 6.5.

Lemma 6.6. Let σ > 0 be sufficiently small, and let ψ : ∆ → ∆ be a continuous
mapping such that supa∈ψ(G) ρ(a,G) ⩽ σ for any face G of the simplex ∆ (0 ⩽
dimG < dim∆). Then

p ∈ ψ(∆),

where p = (1/N, . . . , 1/N) is the centre of the simplex ∆.

Proof. Assume for a contradiction that p ̸∈ ψ(∆). Consider the mapping f : ∆ → ∆
defined by f(x) = l(ψ(x); p) ∩ ∂∆, where l(a, b) is the ray from a to b. Note that
f has no fixed points. However, this contradicts Brouwer’s fixed point theorem.
Lemma 6.6 is proved.

Now we proceed with the proof of Theorem 6.3.

Proof. Let N = [n/2] + 1. We claim that for any ε ∈ (0, ε0) there exist δ > 0,
functions e1, . . . , eN (from Corollary 6.1), and a simplex

γ =

{
fλ ∈ L1[0, 1]

∣∣∣∣ fλ =

N∑
j=1

λjej , λ ∈ ∆

}
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such that Φ has points of discontinuity even on γ (the constraints on ε0 will be clear
in the course of the proof). Let rλ = Φ(fλ). Consider the mapping F : γ → RN
defined by

F (fλ) :=
1

S(fλ)
(F1(rλ), . . . , FN (rλ))

where
Fj(g) :=

∫
Uj

|g(τ)| dτ, Fj : L
1[Uj ] → R, j ∈ I(N),

and S(fλ) :=
∑N
j=1 Fj(rλ) (we show below that S(fλ) > 0). Note that F (γ) ⊂ ∆.

It suffices to verify that the above mapping F cannot be continuous on the whole
of γ. For each j ∈ I(N) we have Fj(fµ) ⩾ 1− δ. By the definition of an ε-selection,

(1 + ε)ρ(fµ, R) ⩾ ∥fµ − rµ∥ ⩾
N∑
j=1

Fj(fµ − rµ) ⩾ 1−Nδ −
N∑
j=1

Fj(rµ).

Now, by the first assertion of Lemma 6.5, for any µ ∈ ∆ we have

S(fµ) ⩾ 1−Nδ − (1 + ε)(1 + δ)
N − 1

N
.

So, S(fµ) ⩾ 1/(2N) for sufficiently small ε, δ > 0. From this estimate and the sec-
ond part of Lemma 6.5 it follows that Lemma 6.6 can be used in our setting. Hence
there exists a point fλ ∈ γ such that F (fλ) = (1/N, . . . , 1/N). From Lemma 6.3
for C = 2 we obtain the inequality ∥rλ∥ ⩾ 2, which contradicts the estimate

∥rλ∥ ⩽ (1 + ε)ρ(fλ, R) + ∥fλ∥ ⩽
N − 1

N
(1 + δ)(1 + ε) + 1 + δ.

Theorem 6.3 is proved.

Remark 6.2. (i) Theorem 6.3 applies to the classical set of algebraic rational func-
tions Rm,n, n ⩾ 2. There is also an analogue of this result for n = 1; however, the
proof in this case uses a different construction.

(ii) The above results show that ε0(V,W ) is ε0(n), that is, this quantity depends
only on dimW = n.

(iii) In fact, in Theorem 6.3 we have established that for small ε > 0 any
ε-selection is discontinuous on any set containing the above simplex γ. An impor-
tant example of such a set is the intersection of the unit ball of L1[0, 1] with the
linear hull of RV,W .

To conclude this section, we give some comments.
1. Theorems 6.1 and 6.2 can be obtained for subspaces of Lp(Z, µ), where (Z, µ)

is an arbitrary set with non-atomic measure µ, µ(Z) <∞. The proofs require only
minor modifications.

2. From the results in this section it follows that, in Lp, 0 < p < ∞, for some
sets of generalized rational functions R there exists a constant ε0 = ε0[R] ∈ [0,∞)
such that for ε ∈ [0, ε0) no multiplicative ε-selection to R is continuous on the
whole of Lp (and even on the unit ball of Lp) but, still, for any ε > ε0 one can
construct a multiplicative ε-selection to R which is continuous on the entire Lp.
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The quantity ε0[R] coincides with the infimum of ε ⩾ 0 such that there exists
a continuous ε-selection from the unit ball of Lp to the set R. This follows from
our constructions and the following simple observation. Let X be a normed linear
space, B be the unit ball of X , and K be a cone in X . If, for any ε > 0, there
exists a continuous multiplicative ε-selection Φ: B → K , then there also exists
a continuous multiplicative ε-selection Φ̃ : X → K .

The required selection is constructed as follows:

Φ̃(x) := ∥x∥Φ
(

x

∥x∥

)
for ∥x∥ > 1 and Φ̃(x) := Φ(x) for ∥x∥ ⩽ 1.

A similar construction can also be carried out in Lp, 0 < p < 1, and so the above
fact also holds in this setting.

3. Theorem 6.1 and 6.2 imply the equality ε0[V ] = 21−p−1 for any 0 < p < 1 and
any one-dimensional subspace V in Lp[0, 1] (the quantity ε0[V ] has been defined
above).

4. For some subspaces one can obtain better results than those provided by
Theorem 6.1. We define L(n) := span(χ(j)), where χ(j) := χ[(j−1)/n,j/n], and
1 ⩽ j ⩽ n. We claim that ε0

[
L(n)

]
= 21−p − 1 for all n ∈ N and 0 < p < 1. Let

πj : L
p[0, 1] → Lp[0, 1], 1 ⩽ j ⩽ n, be the projection defined by πj(f) = χ(j)f ,

where f ∈ Lp. We set Vj = πj(L
(n)) and Xj = πj(L

p[0, 1]), 1 ⩽ j ⩽ n. It
is easily seen that Vj is a one-dimensional space, and Xj can be identified with
Lp[(j − 1)/n, j/n]. From Theorem 6.1 it follows that, for all σ > 0 and 1 ⩽ j ⩽ n,
there exists a continuous multiplicative (21−p−1+σ)-selection Φj : Xj → Vj . Given
x ∈ Lp[0, 1], we set Φ(x) :=

∑n
j=1 Φj(πj(x)). We claim that, for each σ > 0, Φ is

a continuous (21−p − 1 + σ)-selection from Lp[0, 1] to L(n). Indeed,

∥Φ(x)− x∥ =

n∑
j=1

∥Φj(πj(x))− πj(x)∥ ⩽ (21−p + σ)

n∑
j=1

ρ(πj(x), Vj).

Further, for any x ∈ Lp[0, 1], we have
∑n
j=1 ρ(πj(x), Vj) = ρ(x, L(n)), which gives,

as a result, ∥Φ(x)− x∥ ⩽ (21−p + σ)ρ(x, L(n)).

7. Stability of near-best approximation
by generalized rational functions in the uniform norm

Kirchberger [31] showed that in the space C[0, 1] the (single-valued) metric pro-
jection operator onto the subspace Pn of all polynomials of degree at most n
is continuous and locally Lipschitz continuous. This result has been generalized
extensively — we mention one such extension. A well-known result due to Newman,
Shapiro, and Chebotarev (see Theorem 2.13 in [5]) states that any finite-dimensional
Chebyshev subspace L in C(Q) has the strong uniqueness property, and therefore
the metric projection operator PL onto it is locally Lipschitz continuous (see Theo-
rem 2.12 in [5]) and, in addition, locally uniformly Lipschitz continuous on C[a, b]\L
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(see Theorem 2.10 in [5]). Marinov extended this result to subspaces of C(Q) (Q is
a metrizable compact set) and obtained several non-trivial results on the stability of
the operator of near-best approximation by convex subsets of normed linear spaces
in terms of moduli of convexity and smoothness of the space.

Stechkin was the first to point out the lack of stability (uniform continuity,
or, equivalently, Lipschitz continuity) of the metric projection operator onto the
subspace of algebraic polynomials of degree at most n in the uniform norm (see
Remark 2.6 and Example 5.3 in [5]). Namely, for any ε > 0, he constructed functions
x, y ∈ C[−1, 1] such that ∥x− y∥ < ε, but ∥PLx−PLy∥ ⩾ 1, where L := span{1, t}
is a (Chebyshev) subspace in C[−1, 1]. A similar general result for an arbitrary
finite-dimensional Chebyshev subspace L ⊂ C(Q), dimL ⩾ 2 (Q is an infinite
compact set), was established subsequently by Cline2 (see § 2.2 in [5]). These results
show that the metric projection onto a finite-dimensional Chebyshev subspace of
dimension ⩾ 2 in C(Q) on an infinite compact set can fail to be (globally) Lipschitz
continuous (or, equivalently, uniformly continuous). However, in ℓ∞n the metric
projection onto any Chebyshev subspace is globally Lipschitz continuous on the
whole space (see Remark 2.6 in [5]).

Tsar’kov [59] showed that the estimates in [40] for the modulus of continuity of an
ε-selection are sharp in the order of the dimension, and established that there exist
a bounded convex closed subset Y of C[0, 1] and a number ε > 0 such that, for any
δ > 0 no uniformly continuous additive ε-selection exists from the neighbourhood
Uδ(Y ) = {x | ρ(x, Y ) ⩽ δ} on Y .

Konyagin announced the following fact in [33]: R0,1 does not admit a uniformly
continuous ε-selection in C[0, 1] for any ε ∈ (0, 2). Marinov [41] estimated the
Lipschitz constant of a locally Lipschitz selection to the set of generalized rational
functions in C[0, 1].

Ryutin [50] found sufficient conditions for the existence of a Lipschitz retrac-
tion from a neighbourhood of a manifold lying in an arbitrary normed space onto
this manifold. The construction of this retraction is related to that of a Lipschitz
multiplicative ε-selection. As a corollary, he constructed a Lipschitz multiplicative
ε-selection (for large ε > 0) from C[0, 1] to R0,1.

Let X = (X, ∥ · ∥) be a real normed linear space, M ⊂ X, and let δ0, ξ1, ξ2 > 0,
n ∈ N. We set for brevity Bn = {x ∈ Rn | |x| ⩽ 1}, where | · | is the Euclidean
norm on Rn.

Definition 7.1. A set M is called an L-surface with parameters (n, δ0, ξ1, ξ2) if:
1) there is a maximal set Σ = {mα}α∈A ⊂M such that infβ ̸=α ∥mβ −mα∥ ⩾ δ

for any α ∈ A , where δ = δ0/20;

2Cline’s result is sometimes ascribed to Bernstein, which is incorrect, because Bernstein proved
only that, for any ε, there exist a number n (depending on ε) and two functions f and g (continuous
on the interval) such that ∥f − g∥ < ε, but the best approximants to f and g lie at a distance ⩾ 2.
However, this result of Bernstein’s does not prove the lack of uniform continuity of the metric
projection operator even onto the subspace of polynomials of degree ⩽ n on the closed interval,
because in Bernstein’s result the parameter n (the degree of the best polynomials approximant)
depends on ε.
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2) for any point m ∈ Σ there exist a neighbourhood Vm ⊂M of it and a homeo-
morphism q = q(m) : Vm → Bn such that

a) B(m, δ0) ∩M ⊂ Vm,
b) for all l1, l2 ∈ Vm, ξ1|q(l1)− q(l2)| ⩽ ∥l1 − l2∥ ⩽ ξ2|q(l1)− q(l2)|;
3) for all m1,m2 ∈ Σ such that Vm1 ∩ Vm2 ̸= ∅, the mapping q12 := q(m1) ◦

q(m2)
−1 : Bn → Bn is affine; hence there exist a vector v12 ∈ Rn and a linear

operator T12 such that q12(u) = T12u+ v12.

We mention the following result [53] on the existence of a Lipschitz retraction.

Theorem 7.1. Let M ⊂ X be an L-surface with parameters (n, δ0, ξ1, ξ2). Then
there exists a K-Lipschitz retraction Φ: Oη(M) → M from Oη(M) = {x ∈ X |
ρ(x,M) < η} to M , where K = K(n, δ0, ξ1, ξ2) > 0 and η = η(n, δ0, ξ1, ξ2) > 0.

Some subclasses of L-surfaces (Lipschitz and near-Lipschitz surfaces) important
for applications were also studied.

The geometry of the set Rn,m is an interesting topic for research. The topology
of some subspaces of algebraic rational functions was considered in [19]. It turns out
that R0,m, m ∈ N, is a cone, its intersection with the sphere S(0, 1) is γm ⊔ (−γm),
and γm is homeomorphic to Rm.

In addition, γ1 is a near-Lipschitz curve, that is, there exists a parametrization
φ : R → γ1 with the following property: there exist numbers c1, c2, µ > 0 such that,
for all points t1, t2 ∈ R,

min{c1|t1 − t2|, µ} ⩽ ∥φ(t1)− φ(t2)∥ ⩽ c2|t1 − t2|.

It can be derived from the above results that there exists a Lipschitz retraction
from C[0, 1] to R0,1 (see [49]).

Unfortunately, it does not seem possible to apply Theorem 7.1 to the sets Rn,m

for n ∈ Z+ and m ⩾ 3 (as in the case of R0,1). The principal obstacle is as follows
(see [50]): if m ⩾ 3 and n ∈ Z+, then for all N ∈ N and δ ∈ (0, 1/100) there exists
a set {rj}1⩽j⩽N ⊂ Rn,m ∩ S(0, 1) such that :

1) min1⩽i ̸=j⩽N ∥ri − rj∥ ⩾ δ/10, and
2) max1⩽i ̸=j⩽N ∥ri − rj∥ ⩽ 2δ.
The existence of uniformly continuous (on the ball of the space) ε-selections

of the set of generalized rational functions for small ε > 0 in C(K), where K is
a metrizable compact set, was examined in [54].

Let V and W be subspaces in C(K) such that dimV = m and dimW = n,
where m,n ∈ N, and let there exist a function w0 ∈ W such that w0 > 0 on K.
Consider the following set of generalized rational functions:

RV,W = RV,W (K) = Cl
{
r =

v

w

∣∣∣ v ∈ V, w ∈W, w > 0 on K
}
,

where Cl is the closure in C(K).



438 A.R. Alimov, K. S. Ryutin, and I.G. Tsar’kov

Theorem 7.2 (see [54]). Let B be the unit ball in C(K), let RV,W ∩B be compact,
and let int{τ ∈ K | w(τ) = 0} = ∅ for any w ∈W \ {0}. Then for any ε > 0 there
exists a uniformly continuous multiplicative ε-selection Φ: B → RV,W .

The next theorem shows that examples of ‘compact families of rational functions’
(satisfying the assumptions of Theorem 7.2) can be found for subspaces V and W
of any finite dimension.

Theorem 7.3 (see [54]). Let B be the unit ball in C[0, 1]. Then for all m,n ∈ N
there exists a pair of subspaces V,W ⊂ C∞[0, 1] ⊂ C[0, 1] such that dimV = m,
dimW = n, and the set RV,W ∩B is non-empty and compact.

However, for small ε > 0, for some sets of generalized rational functions, there
are no uniformly continuous (on the unit ball) ε-selections.

Let V and W be subspaces in C[0, 1], where V = spanφ0 and W =
span{w1, . . . , wn}, n ⩾ 2, and let {wj}nj=1 be a basis for W . Consider the following
set of generalized rational functions in C[0, 1]:

RV,W = Cl
{
r =

v

w

∣∣∣ v ∈ V, w ∈W, w ̸= 0 on [0, 1]
}
,

where Cl denotes closure.
Assume that V and W are such that:
1) φ0(τ) > 0 for all τ ∈ [0, 1];
2) there exists a function f ∈W such that f(τ) > 0 for all τ ∈ [0, 1];
3) the zero set of any non-zero function f ∈W is nowhere dense on [0, 1].

Theorem 7.4 (see [52]). Let V and W satisfy 1)–3). Then for any ε ∈ (0, 2), there
is no uniformly continuous multiplicative ε-selection from the unit ball in C[0, 1]
to RV,W .

The assumptions on the subspaces V and W in Theorem 7.4 are not necessary.
One can find a corresponding example with relaxed condition 1) for a subspace V ,
but still one cannot eliminate this condition altogether. An analogue of Theorem 7.4
for complex-valued functions (with ε ∈ (0, 1)) was obtained in [52].

In connection with Theorems 7.2 and 7.4, Konyagin made the following conjec-
ture. Let V and W be finite-dimensional subspaces of C(K), and let B be the unit
ball in C(K). Then the following conditions are equivalent :

1) the set RV,W (K) ∩B is non-empty and compact ;
2) for each ε > 0 there exists a uniformly continuous multiplicative ε-selection

from B to RV,W (K).
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Inauguraldissertation, Univ. Göttingen, Göttingen 1902.

[32] S.V. Konyakin, “Continuous operators of generalized rational approximation”, Mat.
Zametki 44:3 (1988), 404. (Russian)

[33] S.V. Konyagin, “Uniform continuity of operators of rational approximation”,
Approximation theory and problems in numerical mathematics, Abstracts of talks,
Publishing hounse of Dnepropetrovsk University, Dnepropetrovsk 1993, pp. 108.
(Russian)

[34] F. D. Kovac and F.E. Levis, “Extended best Lp-approximation is near-best
approximation in Lq, p− 1 ⩽ q < p”, J. Approx. Theory 284 (2022), 105819, 7 pp.

[35] M.G. Krein and A. A. Nudel’man, The Markov moment problem and extremal
problems, Ideas and problems of P. L. Čebyšev and A.A. Markov and their further
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