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Abstract. This paper gives a survey of investigations in the last decade
and new results on various recent modifications of the classical Kantorovich
problem of the optimal transportation of measures. We discuss in detail
nonlinear Kantorovich problems, problems with constraints on the densities
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1. Introduction

The goal of this survey is to inform the reader about some new directions of
investigation of the Kantorovich problem of the optimal transportation of measures
that arose in the last decade. In addition to the well-known monographs [118]
and [128], in which a detailed exposition covers the main advances made in the
20th century, now there is a whole series of more recent thorough monographic
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presentations of this circle of problems; see [5], [7], [66], [69], [120], [129], [131], and
also the survey [33], dedicated to the centennial of Kantorovich’s birth, where the
principal results obtained after the publication of his foundational short note [84]
were discussed. Nevertheless, the intensive development of this area outpaces its
exposition in books. During the last decade several interesting new modifications of
the classical Kantorovich problem of optimal transportation of measures appeared.
Among many new settings of problems, ideas, and methods connected with Kan-
torovich problems we can single out nonlinear problems of Kantorovich type, in
which one deals with the minimization of integrals of functions which also depend
on measures with respect to which the integration is performed, some versions of
the classical problem with constraints on the densities of transport plans (which
do not fit yet another interesting kind of Kantorovich problem: optimal plans with
additional constraints), and also Kantorovich problems with a parameter. The aim
of this article is to give a systematic presentation of Kantorovich problems with
new formulations. Many results presented below have rather complicated and long
proofs, so we state them with references to the original works. However, in some
important cases the proofs are also included; this concerns especially assertions
that appeared in original works in some special situations, for example, for metric
spaces, but that are also valid for general completely regular spaces. Some infor-
mation about Kantorovich’s life and work can be found in the materials published
for the centennial of his birth (see [85], [124]–[126], and also [9]).

In order to formulate new versions of the Kantorovich problem we recall its clas-
sical version (in the contemporary form, since Kantorovich considered it in a more
special case). Suppose we are given probability spaces (X,BX , µ) and (Y,BY , ν)
and a non-negative BX ⊗ BY -measurable function h (called a cost function) on
the product X × Y . In Kantorovich’s foundational paper X and Y were metric
compacta with Borel measures, and the cost function (whose value at a pair of
points x, y was interpreted as the work on transportation of a unit mass from x
to y) was continuous; in the most important examples, in particular, in the joint
papers [87] and [88] with Rubinshtein, and also in [86], Chap. VIII, § 4, it equals
the distance. However, it was already noted in [84] that “some of the definitions
and results presented can be stated for spaces of more general nature”. Let Π(µ, ν)
denote the set of all probability measures on the space (X × Y,BX ⊗ BY ) having
projections µ and ν onto the factors, that is, measures σ for which

σ(A× Y ) = µ(A), A ∈ BX , and σ(X ×B) = ν(B), B ∈ BY .

Measures in the set Π(µ, ν) are called transport plans or Kantorovich plans. The
fixed measures µ and ν are called the marginal distributions. Denoting the projec-
tions of a measure σ given on (X × Y,BX ⊗ BY ) onto the factors by σX and σY ,
the above equalities can be written in the form

σX = µ and σY = ν.

The Kantorovich problem consists in minimizing the integral∫
X×Y

h(x, y)σ(dx dy)
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over the measures σ ∈ Π(µ, ν). Under broad conditions, this Kantorovich problem
has a solution, that is, there exists a measure in Π(µ, ν) at which the minimum
is attained. Such a measure (which is not always unique) is called an optimal
measure or an optimal Kantorovich plan. For example, a solution exists if the
cost function on a product of completely regular spaces with Radon measures is
lower semicontinuous and bounded (see [33]). In place of boundedness it suffices to
have a measure in Π(µ, ν) with respect to which the cost function is integrable. Of
course, if the integrals of the cost function over all plans are infinite, then one can
also assume that the minimum exists and is infinite. In the general case there is
a (possibly infinite) infimum Kh(µ, ν) of the indicated integrals:

Kh(µ, ν) = inf
σ∈Π(µ,ν)

∫
X×Y

h(x, y)σ(dx dy).

A multi-marginal Kantorovich problem can be stated similarly; in this problem
there are n (or even infinitely many) marginals and the cost function is defined on
the product of the corresponding spaces.

The Kantorovich problem is closely connected with the Monge problem stated
in the 18th century for the same triple (µ, ν, h) as in the Kantorovich problem and
consisting in minimizing the integral∫

X

h(x, T (x))µ(dx)

over all measurable maps T : X → Y taking the measure µ to ν, that is, satisfying
the equality ν = µ ◦ T−1, where the measure µ ◦ T−1 is defined by the equality

(µ ◦ T−1)(B) = µ(T−1(B))

and is called the image of µ under the map T . As in the Kantorovich problem, in
the general case there is only an infimum

Mh(µ, ν) = inf
T

∫
X

h(x, T (x))µ(dx),

where inf is taken over the maps T with the indicated property. If the minimum is
attained at some map T , then it is called an optimal Monge map. Unlike the Kan-
torovich problem, a minimum in the Monge problem is attained much more rarely,
even for nice cost functions on an interval. Sufficient conditions for the existence
of a minimum have here a rather special character; moreover, some restrictions are
needed both on the marginals and the cost function. For example, if X = Y = Rn

and h(x, y) = |x − y|, then it suffices to assume the absolute continuity of both
marginals. Thus, the Kantorovich problem turns out to be more flexible. Of course,
this is not surprising, since it deals with minimizing a linear functional on a convex
compact set of measures, while the Monge problem is essentially nonlinear. More-
over, as we will see below, even a nonlinear version of the Kantorovich problem
turns out to be closer to its linear version with regard to its properties than to
the Monge problem. Although the conditions for the existence of minima in the



772 V. I. Bogachev

two problems differ substantially, for a continuous cost function h the infima coin-
cide under quite general conditions, covering the cases that are most important for
applications: the equality

Kh(µ, ν) =Mh(µ, ν)

was established in [117] (see also [8]) for atomless measures µ and ν on complete sep-
arable metric spaces, extended to Souslin spaces in [102], and was proved for Radon
measures on completely regular spaces in [32] under the additional condition of the
separability of the measures µ and ν (that is, the separability of their L1-spaces);
moreover, the condition of separability cannot be omitted as shown in [31]. In the
most general case the inequality

Kh(µ, ν) ⩽Mh(µ, ν)

is true. This is obvious from the fact that for every map T taking the measure µ to
the measure ν, the measure σ on the graph of T in the space X×Y , obtained as the
image of µ under the map x 7→ (x, T (x)), belongs to Π(µ, ν), and the integral of h
with respect to it is the integral of h(x, T (x)) against µ. However, transport plans
can exist that are not generated by any maps of the measure µ to a measure ν.
For example, if X = Y = [0, 1], then every measure on [0, 1]2 that has a density
with respect to Lebesgue measure vanishes on the graph of every Borel map (which
is obvious from the Fubini theorem). The set of general transport plans is not
just larger than the set of plans generated by maps, but the former is compact.
This makes one of the most important distinctions between these two problems,
but an even more important feature of the Kantorovich problem is the linearity of
the functional minimized in this problem, which makes this more general problem
simpler. It is possible that for a long period of time this was the reason why there
were no investigations of the problem, quite a natural one from the point of view
of applications, of minimizing the integral of a cost function which depends also on
the transport plan, that is, of minimizing the nonlinear functional

Jh(σ) =

∫
X×Y

h(x, y, σ)σ(dx dy) (1.1)

with cost function h defined on X×Y ×P(X×Y ), where P(X×Y ) is the space of
probability measures on X × Y . In the classical problem h(x, y) has the meaning
of the cost of transportation of a unit mass from x to y and does not depend
on the way of transportation σ. It is clear that in practice it is quite natural to
expect that such a dependence can exist. This complicates substantially the search
for optimal transportations but, surprisingly, does not complicate the proof of the
existence of a minimum under the standard assumptions about h. In the first papers
[80], [4], [15], [2], and [16] on the described nonlinear problem the function h had
a more special form:

h(x, y, σ) = h(x, σx),

where the σx are the conditional measures on Y representing the plan σ in the form

σ(dx dy) = σx(dy)µ(dx),
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that is, ∫
X×Y

f(x, y)σ(dx dy) =

∫
X

∫
Y

f(x, y)σx(dy)µ(dx)

for all bounded measurable functions f on X × Y . Then the functional takes the
form

Jh(σ) =

∫
X

h(x, σx)µ(dx). (1.2)

Formally, this is a particular case of (1.1) but, actually, the functional becomes
more singular because of a possible discontinuity in x of the conditional measure.

A nonlinear problem was also considered on the set of plans Π(µ, ν) with fixed
projections, but it led to one more interesting setting of the Kantorovich problem,
which turned out to be also new in the linear case. This setting arose in the case
where the cost function is not defined on X × Y , but rather on X × P(Y ), where
P(Y ) is the space of probability measures on Y . Of course, in the usual problem one
can take an arbitrary space, including P(Y ), for the second space, but the novelty
of the problem is that, in place of the projection of the plan onto the second factor,
now we are given the barycentre of this projection. The plan itself is a measure
on X × P(Y ), its projection is a measure on P(Y ), that is, a measure on the
space of measures, and its barycentre is a measure on Y . Remark 3.5 describes
a more general formulation of the transportation problem which covers the case of
fixed projections, as well as the case of fixed barycentres. In this formulation the
restriction on the plan is that we are given the images of the plan under some maps
Ψ1 : X × Y → E1 and Ψ2 : X × Y → E2. The classical problem corresponds to the
projections onto factors.

Thus, so far we have mentioned some modifications caused by a more complicated
form of the cost function and the replacement of conditions on projections by other
conditions on plans. However, relatively recently McCann with coauthors [90]–[93]
proposed a problem, a very interesting and natural one from the point of view of
applications, in which in the classical linear situation an additional restriction is
imposed on transport plans, namely, that only those plans are admissible that are
absolutely continuous with respect to a fixed measure λ on X × Y (in their first
papers this was Lebesgue measure on Rn or a Riemannian manifold) such that
the corresponding Radon–Nikodym density does not exceed a given function Φ
on X×Y . In this modification the most suitable topology on the space of measures
turns out to be the weak topology from the space L1(λ). Investigations of this
problem were continued in [64], [30], [37], and [44], and a survey on this was given
in [29], so here we sum up briefly the results obtained by taking into account the
recent results in [37], where the problem with density constraints was combined with
the modifications mentioned above. Thus, we consider nonlinear transportation
problems of three types: with fixed marginals, with one fixed marginal and a fixed
barycentre of the second marginal, and with constraints on the densities of transport
plans. Some subtypes can also be distinguished here, when a nonlinear cost function
depends on the plans through their conditional measures. In all these types of
Kantorovich problem it is useful to consider parametric problems in which cost
functions and marginals (or other objects) depend on a parameter. Parametric
problems are discussed in a separate section, but a more detailed exposition can
be found in [34]–[36], and [29]. Finally, we touch upon briefly some questions
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connected with the topology of spaces of measures, since they have a direct relation
to all types of problem we discuss. We present results on these questions from the
recent papers [36] and [3], including estimates for the Hausdorff distances between
sets of transport plans.

In § 2 we introduce our principal definitions and notation and also discuss general
nonlinear Kantorovich problems of optimal transportation, in § 3 we consider linear
Kantorovich problems of the classical form, in which the second factor is the space of
probability measures on some space Y and, in place of the second fixed marginal,
that is, in place of a measure on the space of measures P(Y ), we are given the
barycentre of the projection of the plan onto the second factor, which is a measure
on Y . The subject of § 4 is the problem with conditional measures. In § 5 we give
a brief overview on problems with density constraints (this subject was already
presented in the paper [29], also dedicated to an anniversary of Kantorovich’s birth).
In § 6 new problems with many marginals with additional projections are discussed.
Parametric problems are considered in § 7 (to avoid overlaps with [29] this topic is
also presented very briefly), and § 8 contains some information about metrics and
topologies on spaces of measures connected with Kantorovich problems.

2. Nonlinear Kantorovich problems

Principal versions of various problems of optimal transportation involve measures
on topological spaces (although, as we will see below, there is also a version in terms
of general spaces with measures). So we recall here the basic concepts and introduce
the notation used below. A thorough exposition of these questions can be found
in the books [25] and [26].

Let X be a topological space (throughout, we deal with completely regular or
metric spaces). We let B(X) denote its Borel σ-algebra, which is the smallest
σ-algebra containing all open sets. A non-negative Borel measure µ on X (that is,
a measure on B(X)) is said to be Radon if for every Borel set B in X and every
ε > 0 there exists a compact set Kε ⊂ B such that µ(B \Kε) < ε. A signed Borel
measure µ is said to be Radon if so is its total variation |µ|, defined by |µ| = µ++µ−,
where µ+ and µ− are the positive and negative parts of the measure µ in the
Jordan–Hahn decomposition µ = µ+ − µ−. The total variation norm is defined by

∥µ∥ = |µ|(X).

A family M of Borel measures on X is called uniformly tight if for every ε > 0
there exists a compact set Kε ⊂ X such that

|µ|(X \Kε) < ε ∀µ ∈M.

The space of all Radon signed measures on the space X is denoted by M(X),
the subset of non-negative measures is denoted by M+(X), and the subset of
probability measures is denoted by P(X).

If X is a complete separable metric space, then all Borel measures on it are
Radon. The same is true for Souslin spaces, that is, the images of complete sepa-
rable metric spaces under continuous maps.

The image of a Borel measure µ under a Borel map f from the topological
space X to another topological space Y (that is, a map with Borel preimages of
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Borel sets) is defined as the Borel measure µ ◦ f−1 on Y given by the equality

(µ ◦ f−1)(B) = µ(f−1(B)), B ∈ B(Y ).

The space of measures M(X) is equipped with the weak topology by means of
seminorms of the form

pf (µ) =

∣∣∣∣∫
X

f dµ

∣∣∣∣,
where f is a bounded continuous function on X. Weak convergence of measures is
convergence of the integrals of such functions against these measures.

In the circle of questions under consideration an important role is played by
Prohorov’s theorem, according to which a bounded in variation, uniformly tight
set of measures in M(X) is contained in a weakly compact set; moreover, in the
case of a complete separable metric space X the converse is also true (see [25]
and [26]). A typical example of a weakly compact set is the set of plans Π(µ, ν)
with Radon marginals µ and ν. Here uniform tightness is obvious from the estimate

σ((X × Y ) \ (K × S)) ⩽ σ((X × Y ) \ (K × Y )) + σ((X × Y ) \ (X × S))

= σ((X \K)× Y ) + σ(X × (Y \ S))
= µ(X \K) + ν(Y \ S)

for all σ ∈ Π(µ, ν). The right-hand side is estimated by ε if we take the compact
sets K ⊂ X and S ⊂ Y such that µ(X \K) + ν(Y \ S) ⩽ ε.

If (X, d) is a metric space, then we denote by Lip1(d) the set of 1-Lipschitz
functions, which are functions f on X such that

|f(x)− f(y)| ⩽ d(x, y) ∀x, y ∈ X.

The Kantorovich–Rubinshtein norm on the space M(X) is defined by the formula

∥µ∥KR = sup

{∫
X

f dµ : f ∈ Lip1(d), |f | ⩽ 1

}
.

This norm gives rise to the Kantorovich–Rubinshtein metric

dKR(µ, ν) = ∥µ− ν∥KR.

The Kantorovich–Rubinshtein metric generates the weak topology on the set of
non-negative measures. However, on the whole space of measures the topology
generated by the Kantorovich–Rubinshtein norm differs from the weak topology in
non-trivial cases; moreover, these two topologies are uncomparable. Indeed, sup-
pose that X contains an infinite Cauchy sequence {xn}. Then the Kantorovich–
Rubinshtein norm cannot be continuous in the weak topology, since in that case it
would be estimated in terms of the sum of several seminorms of the form pf , that is,
of the sum of the absolute values of several linear functionals on the space M(X). In
our situation this space is infinite-dimensional, hence the intersection of the kernels
of a finite system of linear functionals is non-trivial, but the sum of the seminorms
under consideration vanishes on it. Thus, it is not true that the weak topology is
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stronger than the topology of the Kantorovich–Rubinshtein norm. On the other
hand, the latter is not stronger than the weak topology. This is seen from the
fact that the sequence of measures d(xn, xk)−1/2(δxn

− δxk
), where δx is the Dirac

measure at the point x, converges to zero in the Kantorovich–Rubinshtein norm in
view of the readily verified equality

dKR(δa, δb) = d(a, b)

for d(a, b) ⩽ 1. However, this sequence of measures cannot converge weakly, since
it is not bounded in variation, while any weakly convergent sequence of measures
must be bounded in variation, which follows from the Banach–Steinhaus theorem
and the fact that the norm ∥µ∥ coincides with the supremum of the integrals against
the measure µ of the continuous functions not exceeding 1 in absolute value.

On the subspace M1(X) of all measures µ such that for some (and therefore
every) x0 ∈ X the function d(x, x0) is integrable with respect to the total variation
of µ, we can define the Kantorovich norm

∥µ∥K = sup

{∫
X

f dµ : f ∈ Lip1(d), f(x0) = 0

}
+ |µ(X)|,

which generates the Kantorovich metric

dK(µ, ν) = ∥µ− ν∥K.

If X is bounded, then these norms are equivalent, and if the diameter of X is not
greater than 1, then the Kantorovich–Rubinshtein and Kantorovich metrics coincide
on the set of probability measures. Analogues of the Kantorovich–Rubinshtein and
Kantorovich norms and metrics on spaces of measures on general completely regular
spaces are discussed in § 8.

Given p ⩾ 1, the set Pp(X) ⊂ P(X) of all measures with respect to which the
function x 7→ d(x, x0)

p is integrable is equipped with the p-Kantorovich metric Wp

defined by

W p
p (µ, ν) = inf

σ∈Π(µ,ν)

∫
X2

d(x, y)p σ(dx dy).

It was an important observation of Kantorovich that the Kantorovich distance
between two probability measures µ and ν coincides with the infimum in the trans-
port problem with marginals µ and ν and cost function equal to the metric, that
is, with the minimum of the integrals of the metric against the measures in Π(µ, ν).
Subsequently, this equality, called Kantorovich’s duality formula, was extended to
a very general situation of lower semicontinuous cost functions h on the product of
completely regular spaces X and Y . Here for measures µ ∈ P(X) and ν ∈ P(Y )
the quantity Kh(µ, ν) coincides with the supremum of the sums∫

X

f dµ+

∫
Y

g dν,

taken over the bounded continuous functions f : X → R and g : Y → R satisfying
the condition

f(x) + g(y) ⩽ h(x, y) ∀x ∈ X, y ∈ Y.
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Of course, in place of the sum of f and g we can take their difference, which
better shows the connection with the case of the metric h = d, where X = Y and
f = g, and the estimate on the function becomes the condition that f is 1-Lipschitz:
f(x) − f(y) ⩽ d(x, y). Some analoguess of the duality formula also appear in the
modifications of the Kantorovich problem that we discuss.

The existence of a minimum in the nonlinear Kantorovich problem with fixed
marginals or with one fixed marginal and a fixed barycentre is proved very similarly
to the case of the linear problem, on the basis of the following readily verifiable fact.
However, the problem with conditional measures is an exception: it is not covered
by this approach and is considered separately.

Proposition 2.1. Let X be a completely regular space, Π be a uniformly tight
compact subset of the space P(X) with weak topology, and let h : X ×Π → [0,+∞)
be a lower semicontinuous function on all sets of the form K × Π, where K is
compact in X . Then the function

Jh : Π → [0,+∞], Jh(σ) =

∫
X

h(x, σ)σ(dx)

is lower semicontinuous. If h is bounded and continuous on the whole of X×P(X),
then Jh is continuous on P(X), and if h is lower semicontinuous on X × P(X),
then Jh is also lower semicontinuous.

Proof. The quantities Jmin(h,n)(σ) increase to Jh(σ) as n→ ∞. Hence the assertion
reduces to the case of a bounded function h. We can assume that h ⩽ 1.

First assume that the function h is lower semicontinuous on the whole of X×Π.
Suppose that a net of measures σα converges weakly in Π to a measure σ. Then
the Dirac measures δσα

on Π converge weakly to the Dirac measure δσ. Hence the
products σα ⊗ δσα

on Π × P(Π) converge weakly to the product σ ⊗ δσ (see [26],
Theorem 4.3.18). Therefore, by the lower semicontinuity of h we have (see [25],
Corollary 8.2.5, or [26], Corollary 4.3.5)

lim inf
α

∫
Π

∫
X

h(x, p)σα(dx) δσα(dp) ⩾
∫
Π

∫
X

h(x, p)σ(dx) δσ(dp);

in other words,

lim inf
α

∫
X

h(x, σα)σα(dx) ⩾
∫
X

h(x, σ)σ(dx),

which is equivalent to the lower semicontinuity of Jh.
Now we turn to the general case, still assuming that h ⩽ 1. Fix ε > 0. By

assumption there exists a compact set K ⊂ X such that σ(K) > 1−ε for all σ ∈ Π.
It is known (see [65], 1.7.15(c)) that one can find a family of continuous functions
hα ⩾ 0 on K ×Π for which

h(x, σ) = sup
α
hα(x, σ) ∀x ∈ K, σ ∈ Π.

Each hα extends to a continuous function gα : X×Π → [0, 1]. The function g(x, σ) =
supα gα(x, σ) is lower semicontinuous on the whole of X × Π and coincides with h
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on K ×Π; moreover, the corresponding function Jg is also lower semicontinuous as
shown above. It remains to observe that

|Jg(σ)− Jh(σ)| ⩽ 2ε ∀σ ∈ Π,

because g = h on K × Π and the integrals of the functions h(x, σ) and g(x, σ)
over the complement of K against every measure σ ∈ Π are not greater than ε.
Thus, the function Jh is uniformly approximated by lower semicontinuous functions,
and therefore it also possesses this property.

The last assertion of the proposition is clear from the reasoning above. □

The additional condition of uniform tightness of the weakly compact set Π is
automatically fulfilled for complete separable metrizable spaces, but need not hold
for Souslin spaces (for instance, it can be violated even for the set of rational
numbers: see the result of Preiss in [26], Theorem 4.8.6). So it is interesting to
clarify whether ot not it can be dropped in this proposition. One can consider
a bounded continuous cost function h, because any lower semicontinuous bounded
function h is the limit of an increasing net of bounded continuous functions hα,
hence ∫

X

hα(x, σ)σ(dx) ↑
∫
X

h(x, σ)σ(dx)

for every measure σ ∈ Π (see [25], Lemma 7.2.6). For an unbounded function h
a further step is needed, involving the truncated functions min(h, n). The additional
condition of uniform tightness is not needed if the function h is continuous and the
continuity in the second variable at every point σ0 is uniform with respect to the first
variable, that is, for every ε > 0 there exists a neighborhood U of σ0 such that

|h(x, σ)− h(x, σ0)| < ε ∀σ ∈ U, x ∈ X.

Under this condition, for every net of measures σα ∈ Π that converges weakly to
a measure σ0 there exists an index α1 such that∫

X

|h(x, σα)− h(x, σ0)|σα(dx) ⩽ ε ∀α ⩾ α1.

The same estimate also holds for σ0. Since the integrals of h(x, σ0) against the
measures σα tend to its integral against σ0, we obtain that Jh is continuous at
the point σ0.

Theorem 2.2. Assume that the cost function h is lower semicontinuous on all sets
of the form K×Π(µ, ν), where K is compact in X×Y . Then there exists an optimal
plan.

Proof. Since the set of plans Π(µ, ν) is uniformly tight and weakly compact, by
Proposition 2.1 the function Jh is lower semicontinuous on Π(µ, ν). Now the exis-
tence of an optimal plan follows from the fact that any lower semicontinuous func-
tion on a compact set attains its minimum. □
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3. Problems with fixed barycentres

There is a general concept of the barycentre or mean of a Radon measure µ
on a locally convex space X such that every continuous linear functional on X is
integrable with respect to µ: this is a vector b ∈ X such that

f(b) =

∫
X

f dµ ∀ f ∈ X∗.

A barycentre exists if X is complete (or at least quasi-complete) and all continuous
seminorms are integrable with respect to µ, that is, this measure has a strong first
moment (see [41], Corollary 5.6.8). However, in problems of optimal transportation
a more special situation arises, when we consider a Radon probability measure Q on
the space P(E) of Radon probability measures on a completely regular topological
space E, where the space of measures is equipped with the weak topology. Here
the barycentre of Q is the Borel measure βQ on E given by

βQ :=

∫
P(E)

pQ(dp),

where the vector integral is understood in the sense of the equality

βQ(A) =

∫
P(E)

p(A)Q(dp)

for all Borel sets A ⊂ E. It is known that the function p 7→ p(A) is Borel on P(E)
and the measure obtained is τ -additive (see [25], Proposition 8.9.8 and Corol-
lary 8.9.9). However, we are interested in Radon barycentres, so the question about
conditions ensuring that the measure βQ is Radon on E arises here.

Proposition 3.1. The measure βQ is Radon precisely when the measure Q is con-
centrated on a countable union of uniformly tight compact sets in P(E). In partic-
ular, this is true if E is a Souslin completely regular space.

Proof. Assume that there are increasing uniformly tight compact sets Sn in P(E)
for which Q(E \ Sn) → 0. Let ε > 0. Fix n such that

Q(E \ Sn) ⩽ ε.

By uniform tightness there exists a compact set K ⊂ E for which

p(K) ⩾ 1− ε ∀ p ∈ Sn.

Hence
βQ(K) =

∫
P(E)

p(K)Q(dp) ⩾
∫
Sn

p(K)Q(dp) ⩾ (1− ε)2,

so the measure βQ is tight. Since it is τ -additive, it is Radon (see [25], Proposi-
tion 7.2.2).

Conversely, suppose that the measure βQ is Radon. Then for every ε > 0 there
exists a compact set Kε ⊂ E such that βQ(Kε) ⩾ 1− ε2, that is,∫

P(E)

p(Kε)Q(dp) ⩾ 1− ε2.
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The set of measures
Sε := {p ∈ P(E) : p(Kε) ⩾ 1− ε} (3.1)

is closed in the weak topology on P(E). Indeed, if a net of measures pα in Sε

converges weakly to a measure p ∈ P(E), then by the criterion of weak convergence
due to A.D. Aleksandrov (see [25], Theorem 8.2.3) the following inequality holds:

p(Kε) ⩾ lim sup
α

pα(Kε) ⩾ 1− ε.

For this set we obtain the estimate

Q(Sε) ⩾ 1− ε,

since by Chebyshev’s inequality

Q(p : 1− p(Kε) ⩾ ε) ⩽ ε−1

∫
P(E)

[1− p(Kε)]Q(dp) ⩽ ε−1ε2 = ε.

Now, for a fixed number δ ∈ (0, 1) we can take sets Sδ 2−n such that their intersection

Πδ =

∞⋂
n=1

Sδ 2−n

is also closed in P(E). For this intersection the inequality

Q(Πδ) ⩾ 1− δ

is true, because Q(P(E) \ Sδ 2−n) ⩽ δ 2−n for all n. By construction and (3.1)
the set Πδ is uniformly tight. By Prohorov’s theorem (see [25], Theorem 8.6.7)
it is weakly compact. Thus, the measure Q is concentrated on the union of the
uniformly tight weakly compact sets Π1/n. □

If the space E is Souslin, then the space of measures P(E) with weak topology
is also Souslin, hence every Borel measure on P(E) is automatically Radon and is
concentrated on a countable union of compact sets. Moreover, these compacta
are metrizable (even if E itself is not). However, for rather simple spaces E (for
example, the set of rational numbers) compacta in P(E) need not be uniformly
tight. Nevertheless, every measure in P(P(E)) is concentrated on a countable
union of uniformly tight compact sets (see [25], Theorem 8.10.6). This is also true
in the more general case of a completely regular space E such that all τ -additive
measures on E are Radon. It would be interesting to find an example of a Radon
measure on the space of Radon probability measures that vanishes on all uniformly
tight compact sets.

Since the sets Πδ in the above proof were constructed on the basis of the sets Kε

selected in accordance with the values of the barycentre at them, the completely
analogous reasoning proves the following assertion.

Proposition 3.2. Suppose that a set of measures M ⊂ P(P(Y )) possesses uni-
formly tight barycentres in P(Y ). Then this set is uniformly tight in P(P(Y )) and
concentrated on a countable union of uniformly tight weakly compact sets in P(Y ).
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Corollary 3.3. Suppose that a set of measures M ⊂ P(X ×P(Y )) possesses uni-
formly tight projections onto X and uniformly tight barycentres of the projections
onto P(Y ). Then this set is uniformly tight and concentrated on a countable union
of sets of the form K × S , where K is a compact set in X and the set S in P(Y )
is weakly compact and uniformly tight.

In particular, this is true if these measures have equal projections onto X and
their projections onto P(Y ) have equal barycentres.

Proof. Set Z = X × P(Y ). We observe that for every measure P in P(Z) with
projections P1 and P2 onto the factors and for any Borel sets A ⊂ X and B ⊂ P(Y )
the inequality

P (Z \ (A×B)) ⩽ P (Z \ (A×P(Y )))+P (Z \ (X×B)) = P1(X \A)+P2(P(Y )\B)

holds. Hence it suffices to consider the projections onto P(Y ) and apply the previous
proposition. □

Note that if P is a Radon measure on the product X×P(Y ), where X and Y are
completely regular spaces, µ is its projection onto X, and there exist conditional
measures P x on P(Y ) with respect to µ, then the barycentre PP of the projection
of the measure P onto P(Y ) is given by the formula

βPP (B) =

∫
X

∫
P(Y )

p(B)P x(dp)µ(dx).

Indeed, for every Borel set B ⊂ Y we have∫
X

∫
P(Y )

p(B)P x(dp)µ(dx) =

∫
X×P(Y )

p(B)P (dx dp)

=

∫
P(Y )

p(B)PP(dp) = βPP (B).

We go over to setting the nonlinear Kantorovich transportation problem with
fixed barycentre. As the space we take here the product X × P(Y ), where X and
Y are completely regular spaces. On this product we are given a lower semicontin-
uous cost function

h : X × P(Y ) → [0,+∞).

In addition, we are given a marginal µ ∈ P(X), but in place of the second marginal
we are given a barycentre β ∈P(Y ) of the projections of admissible plans onto P(Y );
these projections are elements of P(P(Y )), so that the barycentre is understood in
the sense explained above. Thus, on the set of plans

Πβ(µ) := {π ∈ P(X × P(Y )) : πX = µ, βπP = β},

where πX is the projection of the measure π onto X, we consider the problem∫
X×P(Y )

h(x, p)π(dx dp) → min, π ∈ Πβ(µ). (3.2)
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The difference from the usual nonlinear Kantorovich problem is that the second
marginal is not prescribed. Instead, we are given the barycentre of the projection
onto the second factor.

We recall that in the general situation, given a function h on the product X×Z,
a set Γ ⊂ X × Z is called h-cyclically monotone if for all n the inequality

n∑
i=1

h(xi, zi) ⩽
n∑

i=1

h(xi+1, zi)

is true for all pairs (x1, z1), . . . , (xn, zn) ∈ Γ, where xn+1 := x1.
It is known (see [20]) that in the classical problem, where X and Z are Souslin

spaces, µ ∈ P(X), ν ∈ P(Z), and the Borel cost function h is such that there
exists an optimal measure σ ∈ Π(µ, ν), this measure is concentrated on some Borel
h-cyclically monotone set. Applying this reasoning to Z = P(Y ) we prove the
following result.

Proposition 3.4. Let h be a bounded lower semicontinuous function on X×P(Y ).
Then for any measures µ ∈ P(X) and β ∈ P(Y ) Kantorovich problem (3.2) with
a prescribed barycentre is solvable.

Any optimal measure P for this problem is also optimal for the classical linear
problem with the same cost function and marginals µ and PP , where PP is the
projection of P onto P(Y ).

Finally, if X and Y are Souslin spaces, then the measure P is concentrated on
an h-cyclically monotone set.

The proof can be found in [37]; it coincides with the standard proof for the linear
problem.

In the Kantorovich problem for a triple (µ, PP , h) we can use the duality theorem,
which shows that the minimum in problem (3.2) is equal to the quantity

sup

(∫
X

f dµ+

∫
P(Y )

g dPP

)
,

where the supremum is taken over the bounded continuous functions f on X and g
on P(Y ) satisfying the inequality

f(x) + g(p) ⩽ h(x, p), x ∈ X, p ∈ P(Y ).

Remark 3.5. The problem with a fixed marginal is a particular case of the following
more general problem with fixed images of plans. Let

Ψ1 : P(X × Y ) → E1 and Ψ2 : P(X × Y ) → E2

be measurable maps to measurable spaces (E1, E1) and (E2, E2). In addition, let two
probability measures η1 and η2 on E1 and E2, respectively, be given. For example,
assume that we have completely regular spaces X, Y , E1, E2 and Borel maps Ψ1

and Ψ2. Consider the set

Πη1,η2 = {σ ∈ P(X × Y ) : Ψi(σ) = ηi, i = 1, 2}.
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Then we can formulate the problem of minimizing the functional Jh, that is, the
integral of h, over the set Πη1,η2 . Here h can be a function on X×Y ×P(X×Y ), or a
function on X×Y ×P(Y ) when we consider the problem with conditional measures.
If the maps Ψ1 and Ψ2 are continuous and the preimages of points under the map
(Ψ1,Ψ2) are compact, while the cost function h is lower semicontinuous, then the
set Πη1,η2 is compact in the weak topology. Hence the standard reasoning yields
the existence of a minimum of the lower semicontinuous functional Jh on Πη1,η2 .
The ordinary problem corresponds to the projections of measures onto X and Y .
A problem with a fixed barycentre is obtained if as Ψ1 we take the projecting of
measures onto X, that is, Ψ1(σ) = σX , in place of Y we take P(Y ), and as Ψ2 we
take the map

Ψ2(σ) = βσP(Y )
,

where σP(Y ) is the projection of the measure σ onto P(Y ). In place of fixing
the first marginal we can state the transportation problem for a cost function on
P(X)×P(Y ) with given barycentres of the projections onto both factors. Of course,
these settings are also meaningful in the case of many marginals. A problem with
additional constraints on the densities of plans in Πη1,η2

also arises here. In this case,
in place of the weak topology on the space of measures it is natural to consider the
weak topology on L1 with respect to the corresponding measure λ. Of course,
the condition of lower semicontinuity should also refer to this topology. However,
now some other conditions on the maps Ψi are required if we wish the set Πη1,η2 to
be compact. Clearly, the transportation problem with fixed images of plans is also
meaningful in the case of a larger number of maps Ψi for which the corresponding
class of plans is not empty.

Note also that in the problem with a fixed barycentre the specific features of the
space of measures, which is taken as the second factor, play an important role. If
we take an abstract locally convex space E for the second factor, then, given a cost
function h on X × E, a fixed measure µ on X, and a fixed vector β ∈ E, one can
introduce the set of Radon probability measures on X×E with projection µ onto X
and with barycentre of the projection onto E equal to β. It is possible to minimize
the integral of h over this set. In the particular case E = P(Y ) under consideration
this set is compact. However, in the general case there is no compactness because
the set of Radon probability measures on E with barycentre β is not necessarily
compact. For example, if β = 0, then the indicated set contains all measures
(δa + δ−a)/2, where a ∈ E.

The Monge problem also has a modification with a fixed barycentre. We mention
it in the next section in connection with nonlinear problems involving conditional
measures.

4. Problems with conditional measures

In [80], [4], [15], [2], and [16] the existence of a minimum in a problem with
conditional measures was proved under the additional assumption of the convexity
of the cost function with respect to the measure-valued argument. The following
generalization of these results to completely regular spaces was obtained in [38]. In
place of Borel σ-algebras it employs the Baire σ-algebras Ba(X) and Ba(P(Y )),
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which are generated by all continuous functions on the corresponding spaces. For
a general completely regular space the Baire σ-algebra is smaller than the Borel
one, but for Souslin completely regular spaces they coincide. In particular, if Y is
a Souslin completely regular space, then Ba(P(Y )) = B(P(Y )).

Theorem 4.1. Assume that the cost function H : X×P(Y ) → [0,+∞) is measur-
able with respect to Ba(X)⊗Ba(P(Y )), lower semicontinuous on all sets of the form
K × S , where K is compact in X and S ⊂ P(Y ) is uniformly tight, and convex in
the second argument. Then the infimum

inf
σ∈Π(µ,ν)

∫
X

H(x, σx)µ(dx)

is attained, that is, an optimal plan exists.

The proof reduces to the verification of the lower semicontinuity of the inte-
gral functional to be minimized. Since the sum of lower semicontinuous functions
is also lower semicontinuous, we can combine the assertions of Theorem 2.2 and
Theorem 4.1.

Corollary 4.2. Consider a cost function of the form

H(x, y, σ) = H1(x, y, σ) +H2(x, σ
x),

where the function H1 : X × Y × P(X × Y ) → [0,+∞) satisfies the hypotheses of
Theorem 2.2 and the function H2 : X × P(Y ) → [0,+∞) satisfies the hypotheses
of Theorem 4.1. Then the minimum is attained in the nonlinear Kantorovich prob-
lem with function H , that is, an optimal plan exists.

Note that according to [2], Theorem 3.9, for a continuous bounded cost function
H(x, p) on X×P(Y ), where X and Y are complete separable metric space, the infi-
mum in the nonlinear problem with conditional measures and an atomless marginal
µ ∈ P(X) equals the minimum in the same problem with cost function H∗∗(x, p)
defined as the maximum function majorized by H(x, p), among the functions that
are convex in the second argument and lower semicontinuous.

The case of a cost function of the form H(x, y, σx), defining the functional∫
X×Y

H(x, y, σx)σ(dx dy),

has not been studied yet.
There are examples (see [4], Examples 3.2 and 3.3) when there exists no mini-

mum in a problem with conditional measures. In [37] examples of this kind have
some additional properties, in particular, both marginal distributions coincide with
Lebesgue measure on an interval and the cost function is Lipschitz. Let us describe
here these examples, referring to [37] for justifications, which are not very short.

Example 4.3. Let X = Y = [0, 1] and let µ = ν = λ be Lebesgue measure
on [0, 1]. Then there exists a bounded Lipschitz function h on X × P(Y ) (where
P(Y ) is equipped with the Kantorovich metric) for which the nonlinear problem
with conditional measures∫

X

h(x, σx)µ(dx) → inf, σ ∈ Π(µ, ν), σ(dx dy) = σx(dy)µ(dx)
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has no minimum. The function h is given by the formula

h(x, p) = min
(
∥p− ν1x∥K, ∥p− ν2x∥K

)
,

where for every x ∈ [0, 1] two probability measures ν1x and ν2x on [0, 1] are defined
by

ν1x(dy) = 2I[0,(1+x)/4]∪[(3+x)/4,1] dy, ν2x(dy) = 2I[(1+x)/4,(3+x)/4] dy.

This function is 1-Lipschitz in every variable separately, hence it is Lipschitz on
the product space. Here the set Π(µ, ν) consists of all probability measures on the
square whose projections are equal to Lebesgue measure. It includes the set of mea-
sures given by biprobability densities with respect to Lebesgue measure on [0, 1]2

(that is, densities that are probability densities in every variable separately).

The next example from [37] is interesting in that the cost function splits into
a product of functions of one variable.

Example 4.4. As above, let X = Y = [0, 1], and let µ = ν = λ be Lebesgue
measure on the interval [0, 1]. There is a bounded continuous function
g : P(Y ) → R, where P(Y ) is equipped with the weak topology, such that there is
no minimum in the nonlinear Kantorovich problem

J(σ) =

∫ 1

0

√
1 + 2x g(σx) dx→ inf, σ ∈ Π(µ, ν).

Setting f(x) =
√
1 + 2x/2, one can take the following function for g:

g(p) = min
(
min{g0(t) +M∥p− ν1t ∥K : t ∈ [f(0), f(1)]},
min{g0(t) +M∥p− ν2t ∥K : t ∈ [f(0), f(1)]}

)
,

where

g0(t) = 1− t, ν1t = ζt + η1f−1(t), ν2t = ζt + η2f−1(t),

ζt = t2 · 2I[1/2,3/4] dy + (1− t2) · 2I[3/4,1] dy,
η1s = 2I[0,(1+s)/8]∪[(3+s)/8,1/2] dy, η2s = 2I[(1+s)/8,(3+s)/8] dy, s ∈ [0, 1],

and the number M is sufficiently large.

Now we discuss an interesting modification of the Monge problem with a fixed
barycentre. This modification arises in the case where as the second space we take
the space of Radon probability measures P(Y ) on a Souslin space Y and the cost
function h is defined on X × P(Y ), where X is also a Souslin space. Also let
a Radon probability measure β be given on Y . Then for the triple (µ, β, h) the
Monge problem on X × P(Y ) with fixed barycentre β is stated as follows:∫

X

h(x, T (x))µ(dx) → inf, T : X → P(Y ),

∫
P(Y )

p µ ◦ T−1(dp) = β. (4.1)

Thus, we minimize the same integral as in the classical Monge problem, but now
the minimum is taken over the measurable maps T from X to P(Y ) such that the
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barycentre of the image measure µ◦T−1 is β, but the image itself is not fixed. The
last equality can be written as ∫

X

T (x)µ(dx) = β.

The Monge problem with fixed barycentre is connected in an interesting way with
the nonlinear Kantorovich problem with conditional measures. As we saw in the
previous section, the above Kantorovich problem can fail to have solutions. Never-
theless, it turns out that if the nonlinear Kantorovich problem∫

X

h(x, σx)µ(dx) → inf, σ ∈ Π(µ, β), σ(dx dy) = σx(dy)µ(dx), (4.2)

with conditional measures and fixed marginals µ and β has a solution, then there
also exists a solution to the Monge problem for the triple (µ, β, h) with fixed
barycentre β. In order to obtain a solution of this problem from a solution σ
of the Kantorovich problem, we make the following observation. Assuming first
that σ is an arbitrary plan in Π(µ, β) with conditional measures σx on Y , we set

T : X → P(Y ), T (x) = σx.

The barycentre of the image measure µ ◦T−1 on P(Y ) equals β, since for every set
B ∈ B(Y ) we have∫

P(Y )

p(B)µ ◦ T−1(dp) =

∫
X

σx(B)µ(dx) = σ(X ×B) = β(B).

In addition,∫
X

h(x, T (x))µ(dx) =

∫
X

h(x, σx)µ(dx) =

∫
X×Y

h(x, σx)σ(dx dy) ⩾ Kh(µ, β),

and for an optimal plan (if it exists) one has equality. It follows from this equality
that there are no measurable transformations F : X → P(Y ) of the measure µ into
a measure in P(P(Y )) with barycentre β and a smaller integral of h(x, F (x)) with
respect to µ than that for the map generated by an optimal plan. Indeed, given
such a transformation F , we can take the measure

η(dx dy) := ηx(dy)µ(dx), ηx = F (x).

Then for every set B ∈ B(Y ) we obtain∫
X

ηx(B)µ(dx) =

∫
X

F (x)(B)µ(dx) =

∫
P(Y )

p(B)µ ◦ F−1(dp) = β(B).

This means that the projection of the measure η onto Y equals β: the value η(X×B)
equals the left-hand side of the previous equality. Therefore,∫

X

h(x, F (x))µ(dx) =

∫
X

h(x, ηx)µ(dx) = Jh(η) ⩾ Jh(σ).
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Thus, any transformation F of the measure µ into the measure with barycentre β
generates a plan η in Π(µ, β) for which the integral of the function h(x, ηx) against µ
equals the integral of h(x, F (x)).

Hence, if there is a minimizing map T : X → P(Y ) in our modified Monge
problem, then the measure

η(dx dy) = ηx(dy)µ(dx), ηx = T (x),

belongs to Π(µ, β) and is minimizing in the Kantorovich problem.
Thus we arrive at the following assertion.

Theorem 4.5. Let X and Y be Souslin spaces and let two measures µ ∈ P(X)
and β ∈ P(Y ) and a Borel function

h : X × P(Y ) → [0,+∞)

be fixed. Then for every plan σ ∈ Π(µ, β) there exists a Borel map

T : X → P(Y )

for which the measure µ ◦ T−1 has barycentre β and∫
X

h(x, σx)µ(dx) =

∫
X

h(x, T (x))µ(dx).

Conversely, for every Borel map T : X → P(Y ) with βµ◦T−1 = β there exists a plan
σ ∈ Π(µ, β) satisfying the above equality.

Thus, the Kantorovich infimum Kh(µ, β) equals the infimum in the Monge prob-
lem with fixed barycentre for the triple (µ, β, h), and the existence of a solution in
one of these two problems is equivalent to the solvability of the other.

We see from the above reasoning that this assertion also remains valid in the
more general case where every measure σ in Π(µ, β) possesses conditional measures
on Y which depend Borel measurably on x.

Now assume that we consider the usual Monge problem with measures µ and ν on
completely regular Souslin spacesX and Y and with Borel cost function h onX×Y .
The space Y is canonically embedded in the space of probability measures P(Y )
by the map y 7→ δy, where δy is the Dirac measure at the point y. The image of Y
under this embedding is closed in P(Y ): see [25], Lemma 8.9.2. Let us extend the
function h from X × Y to a Borel function on X × P(Y ) such that if the original
function is continuous or lower semicontinuous, then the extension has the same
property. This is possible, since completely regular Souslin spaces are perfectly
normal (see [25], Theorem 6.7.7) and the space of measures P(Y ) is also Souslin.
To extend a continuous function h we can use Urysohn’s theorem and in the case of
a lower semicontinuous function h we employ the fact that there exist continuous
functions hα on X×Y such that h(x, y) = supα hα(x, y) for all x ∈ X, y ∈ Y , which
enables us to find continuous extensions Hα of these functions to X × P(Y ) and
obtain the lower semicontinuous functionH = supαHα on the spaceX×P(Y ). This
function coincides with the original function on X × Y . If Monge problem (4.1) on
X×P(Y ) with fixed barycentre ν possesses a minimizing map T : X → P(Y ), then
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we can call it a relaxed solution of the original Monge problem, and the new problem
can be called a relaxation of the original one. Even when the original problem has
a solution, the minimum in it need not be the minimum in the relaxed problem.
This occurs if h(x, y) = 1, but ν is not a Dirac measure, and the extension H of h
satisfies H(x, ν) = 0. Then the minimum in the relaxed problem is zero, and the
optimal map is identically equal to ν. Hence some restrictions on extensions are
required in order to make the relaxed problem meaningful. The infimum in it is
not greater than the infimum in the original problem, since if a map S : X → Y
takes µ to ν, then for the map T : x 7→ δS(x) the barycentre of the measure µ ◦ T−1

equals ν, because for every Borel set B ⊂ Y the relation ν = µ ◦ S−1 yields the
equality∫

P(Y )

p(B)µ ◦ T−1(dp) =

∫
X

δS(x)(B)µ(dx) =

∫
Y

δy(B) ν(dy) = ν(B).

In addition, H(x, δS(x)) = h(x, S(x)). Hence the integral of H(x, T (x)) against µ
coincides with the integral of h(x, S(x)). As we know from the above discussion,
Monge problem (4.1) need not have a solution even for a continuous cost function
(the corresponding Kantorovich problem with conditional measures can fail to have
a minimum). So it is of interest to have additional conditions under which there
exists a relaxed solution. One such condition is the convexity on X × P(Y ) of the
function H obtained as an extension of the original cost function from X × Y to
X × P(Y ). There exists an extension that is linear in the second argument. It is
given by the explicit formula

H(x, p) =

∫
Y

h(x, y) p(dy).

For this extension the minimum in the relaxed Monge problem equals the minimum
in the classical Kantorovich problem with function h and marginals µ and ν. If σ is
an optimal Kantorovich plan and σ(dx dy) = σx(dy)µ(dx), then the map T (x) = σx

is optimal in the relaxed Monge problem, since the barycentre of the measure
µ◦T−1 equals ν, which is readily verified, and the integral of H(x, T (x)) = H(x, σx)
against µ equals∫

X

∫
Y

h(x, y)σx(dy)µ(dx) =

∫
X×Y

h(x, y)σ(dx dy).

On the other hand, if T : X → P(Y ) is an optimal map in the relaxed Monge
problem, then the measure σ(dx dy) = σx(dy)µ(dx), σx = T (x), is optimal in
the Kantorovich problem for the function h and marginals µ and ν. Indeed, its
projection onto Y equals ν and the integral of h against this measure is as above
equal to the integral of H(x, T (x)) against µ. Other continuous functions H can
exist on X × P(Y ) that are convex in the second argument and for which

H(x, δy) = h(x, y) ∀x ∈ X, y ∈ Y.

The question about the connection between the minimum in the relaxed Monge
problem and the infimum in the original one arises for such functions.

Nonlinear problems were also considered in the recent paper [17].
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5. Optimal transportation with density constraints

A further new modification of the Kantorovich problem mentioned above was
introduced in [90]–[93]; it is connected with constraints on the densities of transport
plans. First we formulate it in the case of two marginals. Assume that, as in
the classical Kantorovich problem, we are given probability spaces (X,BX , µ) and
(Y,BY , ν) and also a BX ⊗BY -measurable cost function h ⩾ 0. Assume in addition
that we are given a probability measure λ on the σ-algebra BX ⊗ BY of the space
X × Y and a function Φ that is integrable with respect to λ. For example, we can
take the product µ⊗ ν as λ.

Consider the class ΠΦ(µ, ν) of all probability measures σ on BX⊗BY that belong
to Π(µ, ν), are absolutely continuous with respect to λ, and have a Radon–Nikodym
density satisfying the estimate

dσ

dλ
⩽ Φ.

We assume that ΠΦ(µ, ν) is not empty. A necessary condition for this is the absolute
continuity of the measures µ and ν with respect to the projections of the measure λ
onto X and Y , respectively. For example, if λ = µ ⊗ ν, then as β we can take
a constant C ⩾ 1, but not C < 1. In the case when C = 1 the set ΠΦ(µ, ν) consists
of a unique measure λ.

Consider the problem∫
X×Y

h dσ → min, σ ∈ ΠΦ(µ, ν).

A sufficient condition for the existence of a minimum in this problem turns out to
be substantially simpler and broader than in the classical problems of Kantorovich
and Monge.

Theorem 5.1. If there exists a measure σ ∈ ΠΦ(µ, ν) with finite integral of the
function h, then a minimum is attained in the above problem.

Proof. By our assumptions, for some N > 0 we have a nonempty set ΠΦ,N (µ, ν) of
measures in ΠΦ(µ, ν) such that the integral of h against them does not exceed N .
This set of measures can be identified with the set of their densities with respect to
the measure λ. Such densities p satisfy tp ⩽ Φ, and the integral of hp against λ does
not exceed N . Hence the set of densities under consideration is weakly compact
in L1(λ); see [25], Theorem 4.7.18. The functional

p 7→
∫
X×Y

hp dλ

is lower semicontinuous on ΠΦ,N (µ, ν) with weak topology, since in the case of
a bounded function h it is continuous and in the general case it is the pointwise
limit of the sequence of functionals increasing on ΠΦ,N (µ, ν) and generated by the
bounded functions min(h, n). Therefore, this functional attains its minimum on
our compact set. □

Now we can introduce a nonlinear version of the problem with constraints on the
densities of plans. Here we need some additional properties of topological nature
for the cost function.
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Let Pλ be the set of all probability densities in L1(λ). It has two natural topolo-
gies, the norm topology and the weak topology of the Banach space L1(λ). We
denote by B(Pλ) the Borel σ-algebra with respect to the norm. If L1(λ) is separa-
ble (which holds for Borel measures on Souslin spaces), then B(Pλ) coincides with
the Borel σ-algebra with respect to the weak topology.

For problems with density constraints it is useful to note straight away that if
a set M ⊂ P(X) consists of measures which are absolutely continuous with respect
to some probability measure λ0, then (after the indentification of measures with
their densities with respect to λ0) the weak topology of the space L1(λ0) arises
on M , competing with the weak topology of the space of measures. The former
is usually strictly stronger, since it is generated by the duality with the space of
all bounded Borel functions on X in place of the space of all bounded continuous
functions. However, the Borel structures induced on M by these two different
topologies, and by the even stronger norm topology, coincide in the case where
X is a Souslin space. This follows from the fact that any sequence of continuous
functions separating points on a Souslin space generates its Borel σ-algebra (see [25],
Theorem 6.8.9), while the set of probability densities in L1(λ0) is a Souslin subset
in the norm topology since it is closed and L1(λ0) is separable. Note also that
if the set of densities of measures in M is uniformly integrable (this is equivalent
to the property that its closure in the weak topology in L1(λ0) is weakly compact
and is also equivalent to its uniform countable additivity; see [25], Chap. 4), then
the weak topology of the space of measures on M coincides with the weak topology
inherited from L1(λ0). Indeed, every functional of the form

µ 7→
∫
X

f dµ,

where f is a bounded Borel function on X, is continuous on M with the weak
topology of the space of measures, because for every ε > 0 one can find δ > 0 such
that µ(B) < ε for all µ ∈ M whenever λ0(B) < δ. Then by Luzin’s theorem we
can take a continuous function g on X such that

sup
x

|g(x)| ⩽ sup
x

|f(x)| and λ0(x : f(x) ̸= g(x)) < δ.

Then for all µ ∈M we obtain∣∣∣∣∫
X

(f − g) dµ

∣∣∣∣ ⩽ 2ε sup
x

|f(x)|.

Let us present a result from the recent paper [37]. Suppose that we are given
a function

h : X × Y × Pλ → [0,+∞)

that is measurable with respect to BX ⊗BY ⊗B(Pλ) and such that for λ-almost all
(x, y) ∈ X × Y the function

p 7→ h(x, y, p)

is lower semicontinuous on ΠΦ(µ, ν) with respect to the norm of L1(λ).
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On the set ΠΦ(µ1, µ2), which is embedded in L1(λ) by means of the identification
of measures with their densities with respect to λ, we consider the functional

Jh(p) =

∫
X×Y

h(x, y, p)p(x, y)λ(dx dy)

with values in [0,+∞].

Theorem 5.2. Under the above assumptions, if the functional Jh is convex, then
it attains its minimum on the set ΠΦ(µ1, µ2).

The condition of lower semicontinuity of the function h in p with respect to
the norm, which is used in this theorem, is much weaker than a similar condi-
tion with respect to the weak topology. However, if the function h itself (rather
than the integral) is convex in p, then these conditions are equivalent. Neverthe-
less, the convexity of h in the last argument does not imply the convexity of Jh,
so the hypotheses of the previous theorem can hardly be regarded as constructive.
If the cost function has the form

h(x, y, p) = h(x, px)

for some nonnegative function h on X×P(Y ) and the conditional measures px for p
with respect to µ, then the convexity of h in the last argument obviously implies
the convexity of Jh.

In what follows we deal with Souslin completely regular spaces X and Y . Then,
as above, every measure p on X×Y with projection µ onto X possesses conditional
measures px on Y with respect to µ, that is,

p(dx dy) = px(dy)µ(dx).

If λ = µ ⊗ ν and measures p ∈ ΠΦ(µ, ν) are identified with their densities p(x, y)
with respect to the measure λ, then

px = p(x, · ) ν.

In other words, the conditional density corresponding to a fixed point x is merely
y 7→ p(x, y).

Since we deal with conditional measures on B(Y ), it is reasonable to equip the
space M(Y ) of all bounded measures on B(Y ) with the σ-algebra E(M(Y )) gener-
ated by all functions ν 7→ ν(B), B ∈ B(Y ). Note that, since Y is a completely reg-
ular Souslin space, this σ-algebra is countably generated. Indeed, there is a count-
able family of Borel sets separating points of Y and generating the Borel σ-algebra
(see [25], Theorems 6.7.7 and 6.8.9). Hence there is also a countable algebra of
sets A with this property. Consider the σ-algebra E0 generated by the countable
family of functions ν 7→ ν(A), A ∈ A. Let B0 denote the class of all Borel sets
B ⊂ Y for which the function ν 7→ ν(B) is measurable with respect to E0. This
class contains the algebra A and is monotone, that is, it contains the unions of
increasing sequences and the intersections of decreasing sequences of its elements.
By the classical monotone class theorem it contains the σ-algebra generated by
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the algebra A (see [25], Theorem 1.9.3), hence it coincides with the whole Borel
σ-algebra.

In the next theorem we assume that the function h is measurable with respect
to the σ-algebra B(X)⊗ E(M(Y )). Then the function

x 7→ h(x, px)

is Borel measurable if the map x 7→ px from X to P(Y ) is (B(X), E(M(Y )))-mea-
surable, because the map x 7→ (x, px) is measurable with respect to the pair of
σ-algebras B(X) and B(X)⊗ E(M(Y )).

Transport problems of this kind can be written in the form∫
X

h(x, px)µ(dx) → min, p ∈ ΠΦ(µ, ν), p(dx dy) = px(dy)µ(dx). (5.1)

The following theorem from [37] is analogous to the previous one, but is not
a corollary to it, because the cost function depends on conditional measures rather
than on the whole plan.

Theorem 5.3. If for µ-almost all x the function p 7→ h(x, p) is lower semicontin-
uous with respect to the total variation norm on M(Y ) and the function

Jh(p) =

∫
X

h(x, px)µ(dx)

is convex, then it attains its minimum on ΠΦ(µ, ν). In particular, this is true if the
function h is convex in the last argument.

The following example of a nonlinear Kantorovich problem with conditional mea-
sures and constraints on the densities of plans, in which there is no solution, was
constructed in [37].

Example 5.4. As in the above examples, let X = Y = [0, 1] and let µ = ν = λ be
Lebesgue measure on [0, 1]. Then there exists a bounded continuous cost function
h : X × L1[0, 1] → R (the space L1[0, 1] is equipped with the weak topology) for
which the nonlinear problem with constraints on the densities of plans

Jh(ϱ) =

∫
h(x, ϱ(x, · )) dx→ inf,

ϱ(x, y) ⩽ 4 ∀x, y,
∫ 1

0

ϱ(x, y) dy = 1 ∀x,
∫ 1

0

ϱ(x, y) dx = 1 ∀ y,

has no minimum. Let {qn} be the set of rational numbers in [0, 1]. Set

h(x, ϱ) = min(h1(x, ϱ), h2(x, ϱ)),

where

hi(x, p) =

∞∑
n=1

min

(∣∣∣∣∫ qn

0

(p(y)− ϱi(x, y)) dy

∣∣∣∣, 1) 2−n, i ∈ {1, 2},

ϱ1(x, y) = 2I[0,(1+x)/4]∪[(3+x)/4,1](y) and ϱ2(x, y) = 2I[(1+x)/4,(3+x)/4](y).
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The continuity of the function h follows from the continuity of the functions

p 7→
∫ qn

0

p(y) dy and x 7→
∫ qn

0

ϱi(x, y) dy.

It was verified in [37] that there exists no biprobability density ϱ(x, y) with the
property ∫ 1

0

h(x, ϱ(x, · )) dx = 0,

but the infimum in this problem is zero.

6. Multimarginal and multistochastic problems

Transport problems with many marginals differ from the classical ones in that
transport plans are given on a product of more than two (possibly, infinitely
many) spaces the projections onto which are fixed. Multimarginal problems were
studied by many authors; see the recent papers [19], [22], [51], [62], [67], [71],
[74], [77], [81], [110], and [113]–[115], where the reader can find additional refer-
ences. All the new problems mentioned above can be also set in this situation.
However, in the last years so-called multistochastic transport problems have gained
popularity, in which plans are given on products of many factors, but there are
additional constraints that not only the projections onto separate factors are fixed,
but also the ones onto the finite products of some of the factors. For example, for
measures on three-dimensional space we are given not only the projections onto
coordinate axes, but also the projections onto two-dimensional coordinate sub-
spaces. Of course, in this case the set of admissible plans can be empty, so that the
question about conditions ensuring that this set is non-empty arises.

Assume that we are given n completely regular spaces X1, . . . , Xn and a natural
number k < n. Let p and q be non-negative integers such that q ⩽ p. Denote by Ipq
the family of all subsets of the set {1, 2, . . . , p} of size q, and let Ip =

⋃p
q=0 Ipq

denote the family of all subsets of the collection {1, 2, . . . , p}.
For any α ∈ In set Xα =

∏
i∈αXi. Let X =

∏n
i=1Xi. For every α ∈ In we

denote the projection map onto Xα by Prα. Assume that for every α ∈ Ink we have
a Radon probability measure µα on Xα. Denote by Π({µα}) the (possibly empty)
set of Radon probability measures with the property µ ◦ Pr−1

α = µα for all α ∈
Ink. Measures in Π({µα}) are called joining. The direct (n, k)-Monge–Kantorovich
problem is stated as follows.

Definition 6.1. Fix a Borel cost function h : X → R, Then the (n, k)-Monge–
Kantorovich problem consists in finding the quantity

inf
π∈Π({µα})

∫
X

h dπ.

This (n, k)-Monge–Kantorovich problem (also called the multistochastic trans-
port problem) was studied in [75] and [76]. The interest in it is motivated by the
following particular case, which turns out to be rather typical for this problem.
Recall that bitwise addition of two numbers x, y ∈ [0, 1] is the following operation:
if

x = 0. x1x2 . . . and y = 0. y1y2 . . .
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are their binary representations, then the number z = x⊕ y has the form

z = 0. z1z2 . . . , where zi = xi + yi ∈ Z2.

The set
S = {(x, y, z) : x⊕ y ⊕ z = 0}

is a self-similar fractal of dimension 2, known as the Sierpinski tetrahedron.

Theorem 6.2. Let n = 3, k = 2, and Xi = [0, 1], i = 1, 2, 3, let µxy = λxy , µxz =
λxz , and µyz = λyz be copies of two-dimensional Lebesgue measure on [0, 1]2 , and let
h(x, y, z) = xyz . Let the space Π({µα}) consist of the probability measures on [0, 1]3

whose projections onto the coordinate hyperplanes are Lebesgue measures on [0, 1]2 .
Then there exists a unique solution of the (3, 2)-problem

inf
π∈Π({µα})

∫
[0,1]3

xyz π(dx dy dz).

It is concentrated on the Sierpinski tetrahedron S .

The idea of the proof of the fact that a measure on S is a solution indeed comes
from the following observation. Let T1(x, y, z) = (1− x, y, z). We define T2 and T3
similarly. For every measure π ∈ Π(λxy, λxz, λyz) we have the equality

K(π ◦ T−1
1 ) =

∫
R3

xyz π ◦ T−1
1 (dx dy dz) =

∫
R3

(1− x)yz π(dx dy dz)

=

∫
R2

yz dλyz −
∫
R3

xyz π(dx dy dz) =
1

4
−K(π).

Therefore, the maps T1 ◦ T2, T1 ◦ T3, and T2 ◦ T3 preserve the value of the func-
tional K(π). Since they preserve the set Π(λxy, λxz, λyz), there exists a solution π
that is invariant with respect to the maps T1 ◦T2, T1 ◦T3, and T1 ◦T3. We partition
[0, 1]3 into two sets S1 and S2, where

S1 =

[
0,

1

2

]3
∪
[
1

2
, 1

]2
×
[
0,

1

2

]
∪
[
0,

1

2

]
×
[
1

2
, 1

]2
∪
[
1

2
, 1

]
×

[
0,

1

2

]
×

[
1

2
, 1

]
and

S2 = [0, 1]3 \ S1.

Observe that S1 and S2 are invariant with respect to the operators T1 ◦T2, T1 ◦T3,
and T2 ◦ T3, and the equality S2 = T1(S1) = T2(S1) = T3(S1) is fulfilled. Next,
consider the measures π̂ = π

∣∣
S2

and π̃ = π̂ ◦ T−1
1 . It follows from the symmetry

of π that these measures have equal projections onto the coordinate planes Oxy, Oxz

and Oyz. Now it is readily proved that∫
S2

xyz π̂(dx dy dz) ⩾
∫
S1

xyz π̃(dx dy dz).

This yields that the support of π is contained in S1 (otherwise the functional K
would attain a smaller value at the measure π − π̂ + π̃). Applying this reasoning
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to every cube of the four constituting S1, we obtain that there exists a solution
with support in the set S(k) (where S(1) = S1) that is the union of 4k cubes of
volume 1/8k. Passing to the limit as k → ∞ we obtain that there exists a solution
with support S =

⋂∞
k=1 S(k). The set S is exactly the Sierpinski tetrahedron.

Modifying the above reasoning we can prove the uniqueness of a solution.
The following duality theorem was proved in [75] (see a more general result

in [76]).

Theorem 6.3. Let X1, . . . , Xn be compact metric spaces, and let h ⩾ 0 be a con-
tinuous cost function on X . Assume that the set Π({µα}) is not empty. Then

min
π∈Π({µα})

∫
h dπ = sup

f⩽h

∑
α∈Ink

∫
Xα

fα dµα,

where the supremum is taken over all functions fα ∈ L1(µα) and

f(x) =
∑

α∈Ink

fα(xα).

A solution to the problem dual to the problem in Theorem 6.2 is described in
the next theorem. The uniqueness of this solution is an open question.

Theorem 6.4. Let µxy = λxy , µxz = λxz , and µyz = λyz be copies of two-
dimensional Lebesgue measure on [0, 1]2 and let h(x, y, z) = xyz . Then the triple
of functions f(x, y), f(x, z), f(y, z), where

f(x, y) =

∫ x

0

∫ y

0

t⊕ s dt ds− 1

4

∫ x

0

∫ x

0

t⊕ s dt ds− 1

4

∫ y

0

∫ y

0

t⊕ s dt ds,

is a solution of the dual problem.

The solution of the dual problem given in Theorem 6.4 is connected with the
solution π of the linear problem in the following way: the measure π is concentrated
on the graph of the map (x, y) 7→ fxy(x, y), that is, π-almost everywhere

z = fxy(x, y); (6.1)

moreover, f possesses a non-negative mixed derivative fxy almost everywhere, but
the derivatives fxx and fyy do not exist (in the classical sense).

Note that in the multistochastic problem the question of whether the set Π({µα})
is non-empty is non-trivial. It is clear that for this the system of measures µα must
have the obvious consistency property: for all α, β ∈ Ink the equality

µα ◦ Pr−1
α∩β = µβ ◦ Pr−1

α∩β

must be valid. This property is not sufficient for Π({µα}) to be non-empty, but it is
sufficient for the existence of a signed measure P with the property P ◦Pr−1

α = µα.
There are ‘dual’ sufficient conditions for the non-emptiness of this set, which are
difficult to verify explicitly. One constructive sufficient condition is given in the
following theorem.
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Theorem 6.5. Let νi ∈ P(Xi), 1 ⩽ i ⩽ n. For any α ∈ Ink set να =
∏

i∈α νi . Let
µα be a consistent collection of probability measures on the spaces Xα . Assume that
the measure µα is absolutely continuous with respect to να for all α ∈ Ink . Let pα
be the density of µα with respect to να . Assume that there exist positive constants m
and M ⩾ m such that m ⩽ pα ⩽ M να-almost everywhere for all α ∈ Ink . Then
there exists a constant λnk > 1 such that if M/m ⩽ λnk , then the set Π({µα}) is
not empty.

Example 6.6. Let νx, νy, and νz be some probability measures on the one-
dimensional axes Ox, Oy, and Oz and let

νxy = νx ⊗ νy, νxz = νx ⊗ νz, and νyz = νy ⊗ νz.

Assume that the measures µxy, µxz, and µyz satisfy the consistency condition, the
conditions

µxy = pxyνxy, µxz = pxzνxz, and µyz = pyzνyz

and the condition
1 ⩽ pxy, pxz, pyz ⩽ c.

Then the set Π(µxy, µyz, µxz) is not empty. In particular, if c = 3/2, then it contains
the measure

µ =
4

M2
µx ⊗ µy ⊗ µz −

2

M
(νx ⊗ µy ⊗ µz + µx ⊗ νy ⊗ µz + µx ⊗ µy ⊗ νz)

+ 2(µxy ⊗ νz + µxz ⊗ νy + µyz ⊗ νx)

− 1

M
(µxy ⊗ µz + µxz ⊗ µy + µyz ⊗ µx),

where
M = µxy(X × Y ) = µxz(X × Z) = µyz(Y × Z).

For c > 2 the set Π(µxy, µyz, µxz) can be empty.

Definition 6.7. A consistent collection of probability measures µα, α ∈ Ink, is
called decomposable if there exists a collection of probability measures νi on the
spaces Xi and a joining measure µ ∈ Π({µα}) given by a bounded and separated
from zero density with respect to the measure ν1 ⊗ ν2 ⊗ · · · ⊗ νn.

Let us give simple sufficient conditions for the existence of a dual solution.

Theorem 6.8. Let Xi be compact metric spaces and h ⩾ 0 be a continuous cost
function on X . Let {µα} be a decomposable collection of probability measures on
the spaces Xα , α ∈ Ink . Then

min
π∈Π({µα})

∫
X

h dπ = max
∑

α∈Ink

∫
Xα

fα dµα,

where the maximum is taken over all the systems of functions fα ∈ L1(µα) with
values in the set [−∞,+∞) for which

∑
α∈Ink

fα(xα) ⩽ h(x) for all x ∈ X .
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Note that without the condition of decomposability the dual problem can fail to
have a solution even in the discrete case.

Finally, for a bounded cost function, in some situations it becomes possible to
prove that solutions are bounded.

Theorem 6.9. Let X = Y = Z = N and let µx , µy , and µz be probability measures
on X , Y , and Z , respectively. Consider the (3, 2)-problem for

µxy = µx ⊗ µy, µxz = µx ⊗ µz, µyz = µy ⊗ µz,

and a cost function h with values in [0, 1]. Assume that the function

F (x, y, z) = f(x, y) + g(x, z) + h(y, z)

is a solution of the dual problem. Then F ⩾ −12.

7. Optimal transportation with parameters

It is of interest to consider transport problems with a parameter on which the
marginals and cost function, as well as other data in the problem, can depend.
Such problems were studied in [63], [129], [134], [96], and [34]–[36]. The first ques-
tions arising here are the measurability and continuity of solutions and minima
with respect to the parameter. Measurability holds under very general conditions.
For a simplification of technical details we consider the case where X and Y are
completely regular Souslin spaces, for example, complete separable metric spaces.

In problems without constraints on the densities of plans the spaces of measures
are equipped with their weak topologies and the corresponding Borel σ-algebras
B(P(X)), B(P(Y )), and B(P(X × Y )). In the case of density constraints it is
natural, as mentioned above, to use topologies connected with the space L1.

Assume that (T, T ) is a measurable space, the map t 7→ µt, T → P(X), is
(T ,B(P(X)))-measurable, and the map t 7→ νt, T → P(Y ), is (T ,B(P(Y )))-mea-
surable. In our situation such measurability reduces to the T -measurability of real
functions

t 7→ µt(A), t 7→ νt(B)

for all Borel sets A ⊂ X, B ⊂ Y .
In most important examples (T, T ) is a metric space with its Borel σ-algebra,

so we are speaking of the Borel measurability of the indicated maps.
The cost function h ⩾ 0 on T ×X×Y is assumed to be measurable with respect

to B(T )⊗ B(X)⊗ B(Y ).
First we consider the case where X and Y are complete separable metric spaces,

but (T, T ) is a general measurable space.

Theorem 7.1. Assume that X and Y are complete separable metric spaces, the
cost functions ht : (x, y) 7→ h(t, x, y) are continuous for all t ∈ T , and the quantities
K(t) := Kht

(µt, νt) are finite. Then the function K is T -measurable.
In addition, there exist optimal measures σt ∈ Π(µt, νt) for ht such that the map

t 7→ σt is measurable with respect to T and B(P(X × Y )).
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Note that the formulation of Theorem 4.2 in [4], where this result was proved,
contains a typo, which only concerns the last assertion of the theorem: in place
of the T -measurability of K its (T ,B(P(X × Y )))-measurability the is mentioned.
Note also that, in view of continuity in (x, y) in this theorem, joint measurability
in all variables follows from measurability in t for all fixed x and y.

In the next theorem the assumption of continuity of the cost function is relaxed,
but T must be a Souslin space.

Theorem 7.2. Assume that X and Y are complete separable metric spaces, T is
a Souslin space, t 7→ µt and t 7→ νt are Borel maps with values in the spaces P(X)
and P(Y ), respectively, the function h ⩾ 0 is B(T )⊗B(X)⊗B(Y )-measurable, the
functions ht are lower semicontinuous, and the corresponding values Kht

(µt, νt)
are finite. Then the function t 7→ Kht(µt, νt) is Borel measurable and there exist
optimal measures σt ∈ Π(µt, νt) for ht such that the map t 7→ σt is measurable with
respect to B(T ) and B(P(X × Y )).

Theorem 7.3. Assume that X and Y are completely regular Souslin spaces, T is
a Souslin space, and h : T × X × Y → [0,+∞) is a Borel function such that the
function ht is continuous for every t. Let t 7→ µt and t 7→ νt be Borel maps with
values in P(X) and P(Y ), respectively, such that Kht

(µt, νt) < ∞ for all t. Then
the function t 7→ K(t) is Borel, and there exist optimal measures σt ∈ Π(µt, νt)
for ht such that the map t 7→ σt is Borel measurable.

Moreover, there exists a sequence of Borel maps Φn : T → P(X × Y ) such that
for every t ∈ T the sequence {Φn(t)} is dense in the convex compact set Mt of all
ht-optimal measures in the set Π(µt, νt).

Although these theorems cover the spaces necessary for applications, it would
be interesting to know whether or not Theorem 7.1 is true for Souslin spaces X
and Y and lower semicontinuous cost functions (such a result would imply all the
three theorems as particular cases). In [34], in the case of Souslin spaces and
lower semicontinuous cost functions some results were obtained about the weaker
measurability with respect to the σ-algebra generated by Souslin sets. the

The next theorems about the dependence of solutions of the nonlinear problem on
a parameter were proved in [35]. Recall that Luzin spaces are the images of complete
separable metric spaces under continuous injective maps (they form a subclass of
Souslin spaces).

Theorem 7.4. Let X and Y be Luzin completely regular spaces (for example, com-
plete separable metric spaces). Assume that Borel maps

t 7→ µt, T → P(X),

and

t 7→ νt, T → P(Y ),

and a Borel function

h : T ×X × Y × P(X × Y ) → [0,+∞)
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are given such that for every t ∈ T the function

ht : (x, y, σ) 7→ h(t, x, y, σ)

is lower semicontinuous on all sets of the form K ×Π(µt, νt), where K ⊂ X ×Y is
compact, and the quantities Kht

(µt, νt) are finite for all t ∈ T . Then the function
t 7→ Kht

(µt, νt) is Borel and there exists a Borel map t 7→ σt from T to P(X × Y )
such that the measure σt is optimal for the triple (µt, νt, ht) for every t.

Moreover, there exists a sequence of Borel maps ξn from T to P(X × Y ) such
that for every t the sequence of measures ξn(t) is everywhere dense in the set of
optimal plans for the triple (µt, νt, ht).

Theorem 7.5. Assume that in the previous theorem the cost function h has the
form

h(t, x, y, σ) = H(t, x, σx),

where the function H is defined on T ×X × P(Y ), the functions

Ht : (x, p) 7→ H(t, x, p)

are lower semicontinuous, and the functions p 7→ H(t, x, p) are convex for all t
and x. Then the conclusion of the previous theorem remains valid.

Finally, a parametric version of the transport problem with constraints on the
densities of plans was considered in [30], where the following result was obtained.

Given a sequence of measurable spaces (Xn,Bn) and a probability measure λ
on the product X =

∏∞
n=1Xn equipped with the product B of the σ-algebras Bn,

denote the projection of λ onto Xn by λn. Assume that the measure λ is separable,
that is, the space L1(λ) is separable. Then the measures λn are also separable. For
every n fix a sequence of bounded Bn-measurable functions φn,j that is everywhere
dense in L1(λn). In addition, fix a countable system of sets Aj ∈ B with the
following property: for any ε > 0 any set in B coincides with some Aj up to a set
of λ-measure less that ε. Such a system exists because λ is separable.

Assume that (T, T ) is a measurable space and for every t ∈ T we are given
probability measures µn,t on Bn which are absolutely continuous with respect to λn,
a non-negative B-measurable function ht on X, and a non-negative λ-integrable
function Φt on X such that the functions

(x, t) 7→ ht(x) and (x, t) 7→ Φt(x)

are B⊗T -measurable and the maps t 7→ µn,t are measurable in the following sense:
the functions

t 7→
∫
Xn

φn,j(x)µn,t(dx)

are T -measurable for all n and j. If Xn and T are separable metric spaces and T =
B(T ), then it suffices to assume that the measure µn,t depends Borel measurably
on t, that is, the functions t 7→ µn,t(B) are Borel for Borel sets B.

The Radon–Nikodym density of the measure µn,t with respect to the measure λn
is denoted by ϱn,t, so that

µn,t = ϱn,t · λn.
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For any fixed t ∈ T we denote by Lt the set of probability densities ψ ∈ L1(λ) such
that ψ ⩽ Φt almost everywhere with respect to λ and the projection of the measure
ψ · λ onto Xn equals µn,t for all n. This condition on projections can be expressed
as

ϱn,t = E(ψ | Bn),

where E(ψ | Bn) is the conditional expectation of the function ψ with respect to
the measure λ and the σ-algebra Bn, that is, a Bn-measurable function that is
integrable with respect to λ and such that∫

E×Yn

ψ dλ =

∫
E×Yn

E(ψ | Bn) dλ

for all E ∈ Bn, where Yn =
∏
i ̸=n

Xi. Under our assumptions this is equivalent to the

equalities ∫
X

φn,jψ dλ =

∫
X

φn,jϱn,t dλ ∀ j, n ∈ N. (7.1)

The estimate ψ ⩽ Φt in L1(λ) is equivalent to the countable system of scalar
inequalities ∫

Aj

ψ dλ ⩽
∫
Aj

Φt dλ ∀ j ∈ N. (7.2)

Thus, we are concerned with the existence of probability densities ft satisfying
the countable system of linear constraints (7.1) and (7.2) and minimizing the inte-
grals of the functions ftht against the measure λ for every t; moreover, the joint
measurability of ft(x) on X × T is also required.

Each set Lt is compact in the weak topology since it is obviously weakly closed
and lies in the set of non-negative functions not exceeding Φt, while the latter is
weakly compact because of uniform integrability (see [25], § 4.7(iv)).

If the densities ϱn,t are bounded by a number C, then in order that Lt be
non-empty it suffices to have the estimate Φt ⩾ C. If there are only two factors
and λ = λ1 ⊗ λ2, then it suffices to have ϱ1,t(x1)ϱ2,t(x2) ⩽ βt(x1, x2). If Lt is not
empty and there is a function vt ∈ Lt such that htvt ∈ L1(λ), then the functional

v 7→
∫
X

htv dλ

has a finite minimum M(ht,Φt) on the set

Kt = {v ∈ Lt : vht ∈ L1(λ)},

which is convex and compact in the weak topology. Hence we obtain the non-empty
convex weakly compact sets of optimal measures

Mt =

{
v ∈ Kt : M(ht,Φt) =

∫
X

vht dλ

}
.

For a σ-algebra T we denote by S(T ) the class of sets obtained from T by the
Souslin operation (see [25]), and we denote the σ-algebra generated by this class
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by σ(S(T )). Let T̂ be the class of universally measurable sets generated by T , that
is, the intersection of the completions of T with respect to all probability measures
on T . It is known (see [25], Theorem 1.10.5) that σ(S(T )) ⊂ T̂ .

Theorem 7.6. Let T be a non-empty Souslin space with Borel σ-algebra T = B(T ).
Assume that the set Kt is not empty for any t. Then there exist functions ft ∈ Kt

such that the measures ft ·λ are optimal for the functions ht , that is, ft ∈ Mt , and
the function (x, t) 7→ ft(x) is measurable with respect to B ⊗ T . Moreover, there
exists a sequence of functions fn,t with the same properties that is dense in Mt for
every t. In addition, the function

t 7→M(ht, βt) =

∫
X

htft dλ

is T -measurable.
In the case of a general measurable space (T, T ) the functions ft ∈ Mt can

be chosen so that the function (x, t) 7→ ft(x) is B ⊗ σ(S(T̂ ))-measurable and the
function t 7→M(ht, βt) is T̂ -measurable.

Results concerning continuity with respect to the parameter in optimal trans-
portation problems were obtained in [23], [72], [121], [79], and [36]. The last of
these papers contains the most general results. However, for simpler formulations
we present them in a less general form.

Let X and Y be complete separable metric spaces and let T be a metric space.
Assume that for every t ∈ T we have measures µt ∈ P(X) and νt ∈ P(Y ) such that
the maps t 7→ µt and t 7→ νt are continuous in the weak topology. In addition, let
h : T ×X × Y → [0,+∞) be a continuous function. Set

ht(x, y) := h(t, x, y).

Theorem 7.7. If the function h is bounded, then the function t 7→ Kht
(µt, νt) is

continuous on T .

Corollary 7.8. If, in the situation of the previous theorem, there is a unique opti-
mal plan σt for every t, then this plan is continuous in t.

However, without uniqueness it can be impossible to choose optimal plans depen-
ding continuously on the parameter t. Simple examples of this sort were constructed
in [36]. In particular, one can take all measures µt and νt to be equal to Lebesgue
measure on [0, 1] (so that they do not depend on t) and can take the cost function

ht(x, y) =

{
min(|x− y|, |x+ y − 1|+ t), t ⩾ 0,

min(|x− y| − t, |x+ y − 1|), t < 0.

Thus, we can say that the situation with the continuity of the optimal cost is similar
to the case of measurability, but the continuous choice of an optimal plan brings in
some difference. Some compensation is provided by the use of approximate optimal
plans. Given ε > 0, a measure σ ∈ Π(µ, ν) will be called ε-optimal for the cost
function h if ∫

X×Y

h dσ ⩽ Kh(µ, ν) + ε.
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Theorem 7.9. For every fixed ε > 0 there exist ε-optimal measures σε
t ∈ Π(µt, νt)

for the cost functions ht which depend continuously on t in the weak topology.

For Monge optimal maps one can also pose the question about measurable or
continuous dependence on a parameter. For example, the following result from [36]
claims the continuity of the Monge map with respect to the parameter in the metric
of convergence in probability.

Proposition 7.10. Let X be a metric space, let µn ∈ P(X) for n ∈ Z+ , and let
µn → µ0 in variation. Let Tn : X → X be Borel maps such that the measures σn
that are the images of the measures µn under the maps x 7→ (x, Tn(x)) converge
weakly to a measure σ0 . Then the maps Tn converge to a map T0 in measure µ0 .

Corollary 7.11. Assume that X = Y is a complete separable metric space, the
measures µn ∈ P(X) converge to a measure µ0 in variation, the measures νn ∈
P(X) converge weakly to a measure ν0 , and the continuous cost functions hn ⩾ 0
on X2 are uniformly bounded and converge uniformly on compact subsets to a func-
tion h0 . Also assume that for all n ⩾ 0 optimal Kantorovich plans for the triples
(µn, νn, hn) are unique and are generated by the unique optimal Monge maps Tn .
Then the maps Tn converge to T0 in the measure µ0 .

In [8], [61], and [105] close results were previously obtained for some special cases
connected with the investigation of conditions for the existence and uniqueness of
Monge maps.

8. Metrics and topologies of Kantorovich type

Recall (see [65]) that the topology of any completely regular topological space X
is generated by a family of pseudometrics Π (a pseudometric differs from a metric
in that it can vanish on a pair of different elements). Given a pseudometric d on X,
we denote by Lip1(d) the set of 1-Lipschitz functions with respect to d, that is, of
functions f on X such that

|f(x)− f(y)| ⩽ d(x, y) ∀x, y ∈ X.

A straightforward analogue of the Kantorovich–Rubinshtein norm is provided by
the Kantorovich–Rubinshtein seminorm on the space of Radon measures M(X)
on X, which are defined by

∥µ∥KR,d = sup

{∫
f dµ : f ∈ Lip1(d), |f | ⩽ 1

}
.

On the subspace M1
d(X) of measures µ such that for some (hence all) x0 ∈ X the

function d(x, x0) is integrable with respect to the total variation of µ we introduce
the Kantorovich seminorm

∥µ∥K,d = sup

{∫
f dµ : f ∈ Lip1(d), f(x0) = 0

}
+ |µ(X)|,

which is completely analogous to the Kantorovich norm in the case of a metric
space. The topologies generated by these families of seminorms will be called the
Kantorovich–Rubinshtein and Kantorovich topologies and denoted by τKR and τK,
respectively.



The Kantorovich problem 803

Theorem 8.1. Assume that the topology in X is generated by a family of pseudo-
metrics Π. Then the weak topology on the set of non-negative measures M+(X) is
generated by the family of seminorms ∥ · ∥KR,p , p ∈ Π.

In addition, these seminorms also generate the weak topology on every uniformly
tight set in M(X) that is bounded in variation.

Theorem 8.2. Assume that a completely regular space X is separable or possesses
a countable system of continuous functions separating points. Then the weak topol-
ogy coincides with the topology τKR on weakly compact sets in M(X).

Note a simple sufficient condition for convergence in the topology τK. Given
a family of pseudometrics Π generating the topology of the space X, we denote by
MΠ(X) the class of measures µ ∈ M(X) for which the function x 7→ p(x, x0) with
p ∈ Π is integrable with respect to |µ| for a fixed point x0 ∈ X (the choice of x0
does not influence the definition of this class).

Theorem 8.3. Assume that a net {µα} ⊂ MΠ(X) converges to a measure µ ∈
MΠ(X) in the topology τKR (for non-negative measures or measures in a bounded
uniformly tight family this is equivalent to weak convergence). If every pseudomet-
ric p from Π satisfies the condition of uniform integrability

lim
R→∞

sup
α

∫
{p⩾R}

p(x, x0) |µα|(dx) = 0,

then {µα} converges in the topology τK . In the case of probability measures this
condition is also necessary.

Finally, in the case of a countable sequence of measures, in place of convergence
in the topology τKR it suffices to have weak convergence.

In Example 8.6 below we will see that for nets of signed measures it is not enough
to have weak convergence in place of convergence in the topology τKR.

An analogous result is true for the topology τK,q with q ⩾ 1, which is introduced
on the subclass MΠ,q(X) of MΠ(X) consisting of the measures µ for which all
functions x 7→ p(x, x0)

q, where p ∈ Π, are integrable with respect to |µ|. This
topology is generated by all seminorms

Kp,q(µ) = ∥(1 + p( · , x0)q)µ∥KR,p,

where p ∈ Π and x0 is a fixed point.

Theorem 8.4. Assume that a net of measures µα ∈ MΠ,q(X), where q ⩾ 1, con-
verges to a measure µ ∈ M(X) in the topology τKR (for non-negative measures or
measures in a bounded uniformly tight family this is equivalent to weak convergence).
If the equality

lim
R→∞

sup
α

∫
{p⩾R}

p(x, x0)
q |µα|(dx) = 0

holds for every pseudometric p in Π, then µ ∈ MΠ,q(X) and {µα} converges to µ
in the topology τK,q .
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If some measures µα ∈ M1 on a locally convex space X have barycentres bα and
converge in the topology τK to a measure µ ∈ M1 with barycentre b, then we have
the convergence of barycentres bα → b. Indeed, for every continuous seminorm p
on X we have the estimate

p(bα − b) ⩽ ∥µα − µ∥K,p,

since for every continuous linear functional l on X such that l ⩽ p we have

l(bα − b) =

∫
X

l d(µα − µ) ⩽ ∥µα − µ∥K,p,

because l ∈ Lip1(p). By the Hahn–Banach theorem the supremum of l(bα − b) over
the functionals satisfying the estimate l ⩽ p is p(bα − b).

Applying to the convergence of barycentres we obtain the following.

Corollary 8.5. If a sequence of Radon measures µn on a locally convex space X
converges weakly to a Radon measure µn , each measure µn has a barycentre bn ,
the measure µ has a barycentre b, and every continuous seminorm is uniformly
integrable with respect to the sequence {µn} in the sense described in Theorem 8.3,
then bn → b.

In the case of probability measures the same is true for nets.

The next example shows that the last assertion of the corollary can fail to hold
for nets of signed measures, which, according to what we said above, also gives
a counterexample to the last assertion of Theorem 8.3 in the case of nets.

Example 8.6. In the Banach space X = l1 there exists a bounded in variation
net of signed discrete measures on the unit ball that converge weakly to the zero
measure and have barycentres of unit norm.

For the construction we fix a finite set of bounded continuous functions f1, . . . , fn
on X. Consider the following vectors in Rn:

vj = (f1(ej), . . . , fn(ej)), j = 1, . . . , n+ 1,

where {ej} is the standard basis in l1. The vectors vj are linearly dependent, hence
there exist numbers c1, . . . , cn+1 not all equal to zero such that

n+1∑
j=1

cjvj = 0;

in other words,
n+1∑
j=1

cjfi(ej) = 0, i = 1, . . . , n.

We can assume that
∑

j |cj | = 1. For every basic neighborhood of zero in the weak
topology

U = Uf1,...,fn,ε =

{
µ ∈ M(X) :

∣∣∣∣∫
X

fi dµ

∣∣∣∣ < ε, i = 1, . . . , n

}
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consider the discrete measure

µU :=

n+1∑
j=1

cjδej .

By construction µU ∈ U and this measure is concentrated on the unit sphere. The
set of basic neighborhoods is directed by reverse inclusion: a neighborhood V is
greater than a neighborhood U if V ⊂ U . By definition the net of measures µU

constructed in his way converges weakly to zero. The barycentre of a measureµU is∑
j cjej , hence ∥mµU

∥ =
∑n+1

j=1 |cj | = 1.

There are simple sufficient conditions for the compactness of sets in M(X) in
the topology τKR and sets in MΠ(X) in the topology τK.

Theorem 8.7. Assume that a set S ⊂ M(X) is bounded in variation and uni-
formly tight. Then S has a compact closure in the topology τKR .

If S ⊂ MΠ(X) and every pseudometric p in Π satisfies the condition of uniform
integrability

lim
R→∞

sup
µ∈S

∫
{p⩾R}

p(x, x0) |µ|(dx) = 0

for some x0 ∈ X , then S is contained in a compact set in the topology τK .

The next result from [3] shows that a uniformly tight set of Radon measures
on a Banach space with uniformly integrable norm remains uniformly tight with
respect to some stronger norm, which is also uniformly integrable (so that, under the
condition of boundedness in variation, this family is contained in a compact set with
respect to the Kantorovich norm). Moreover, this family is uniformly tight in some
compactly embedded separable reflexive Banach space with uniformly integrable
norm.

Theorem 8.8. Let X be a Fréchet space, and let M be a uniformly tight family of
Radon measures on X such that all seminorms pn in some sequence generating the
topology in X are uniformly integrable with respect to the measures in M, that is,

lim
m→∞

sup
µ∈M

∫
{x : pn(x)>m}

pn(x) |µ|(dx) = 0, n ∈ N.

Then there exists a linear subspace E ⊂ X with the following properties:
(i) the space E with some norm ∥ · ∥E is a separable reflexive Banach space with

closed unit ball which is compact in the original space X ;
(ii) the family M is concentrated on E and uniformly tight on E with norm ∥ · ∥E ;

moreover, this norm is uniformly integrable with respect to the measures in M.

Kantorovich and Kantorovich–Rubinshtein type metrics enable us to introduce
convenient Hausdorff distances on sets of measures.

We recall that the Hausdorff distance between two non-empty bounded closed
subsets A and B of a metric space (M,d) is defined by the formula

H(A,B) = max
(
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
)
.
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For our purposes this distance is of interest when we consider the space of prob-
ability measures on a metric space (X, d) and the set of transport plans in the
space P(X ×Y ) with Kantorovich–Rubinshtein metric dKR generated by the natu-
ral metric dX(x1, x2) + dY (y1, y2) on X × Y , where dX is a metric on X and dY is
a metric on Y . The Hausdorff distances generated by the Kantorovich–Rubinshtein
metrics on spaces of measures will be denoted by HKR. Similarly, HK will denote
the Hausdorff distances generated by the Kantorovich metrics on spaces of mea-
sures with finite first moment. From the topological point of view there is no
principal difference between two such distances, since any metric can be replaced
by a bounded metric generating the same topology. The topology on the space of
measures does not change either.

In the case of the set Pp(X × Y ) with metric Wp the Hausdorff distance Hp
K is

defined on the space of closed subsets of Pp(X × Y ).
For general completely regular spaces X and Y similar constructions arise.

The topologies in these spaces can be generated by families of pseudometrics ΨX

and ΨY . The topology in the product X × Y is generated by the pseudometrics

((x1, y1), (x2, y2)) 7→ d1 ⊕ d2((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2),

d1 ∈ ΨX , d2 ∈ ΨY .

On the spaces of probability measures on X, Y , and X × Y , in the way described
above we obtain the Kantorovich–Rubinshtein pseudometrics dKR,d1

, dKR,d2
, and

dKR,d1⊕d2
, the Kantorovich pseudometrics dK,d1

and so on. For example, for a com-
pletely regular space X with a fixed family of pseudometrics ΨX generating the
topology, the set PΨ(X) of Radon probability measures on X with respect to
which the functions x 7→ d(x, x0) are integrable for all d ∈ ΨX is equipped with
the Kantorovich pseudometrics dK,d. On the space of closed subsets of the space
of measures P(X × Y ), in the way described above we obtain the Hausdorff pseu-
dometrics of the form HK,d1⊕d2

generated by the pseudometrics d1 on X and d2
on Y .

Theorem 8.9. Let µ1, µ2 ∈ P(X) and ν1, ν2 ∈ P(Y ), and let α and β be con-
tinuous pseudometrics on X and Y , respectively. Then, for every measure σ1 ∈
Π(µ1, ν1) there exists a measure σ2 ∈ Π(µ2, ν2) such that

dK,α⊕β(σ1, σ2) ⩽ dK,α(µ1, µ2) + dK,β(ν1, ν2). (8.1)

Hence for the corresponding Kantorovich and Hausdorff pseudometrics the inequal-
ity

HK,α⊕β(Π(µ1, ν1),Π(µ2, ν2)) ⩽ dK,α(µ1, µ2) + dK,β(ν1, ν2) (8.2)

holds. The analogous assertion is valid for n marginals: if µi, νi ∈ P(Xi), i =
1, . . . , n, αi are continuous pseudometrics on the spaces Xi , then for each measure
σ ∈ Π(µ1, . . . , µn) there exists a measure π ∈ Π(ν1, . . . , νn) such that

dK,α1⊕···⊕αn
(π, σ) ⩽ dK,α1

(µ1, ν1) + · · ·+ dK,αn
(µn, νn).

Estimates connecting the Kantorovich distance with Sobolev norms were studied
in [39], [42], [43], and [40].
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In [27] some properties of sequential continuity were considered for the space of
measures M(X) with weak topology. This space is not metrizable if X is infinite,
but in the case where X is a complete separable metric space, every linear func-
tional l on M(X) that is sequentially continuous in the weak topology (so that
l(mn) → 0 if a sequence mn converges weakly to zero) is continuous in the usual
topological sense. Theorem 1 in [27] contains a more general result. However, for
nonlinear functions sequential continuity does not imply usual continuity.

Results on approximation of measures on infinite-dimensional Banach or locally
convex spaces by finite-dimensional images of these measures, that is, images under
continuous linear maps with finite-dimensional ranges, can be useful in problems of
optimal transportation. Such approximations are obviously possible in spaces with
Schauder bases, but in the general case the question is open (see the discussion
in [28]).

The smoothing of Kantorovich metrics (erroneously called ‘Wasserstein
distances’) was studied in [53].

Various problems connected with transport distances, the topological properties
of spaces of measures, and related questions in the theory of metric measure spaces
were discussed in [6], [10]–[13], [18], [24], [52], [78], [83], [89], [101], [104], [116], [122],
and [123].

9. Other directions of research

Let us mention some other lines of investigation pursued in the area of optimal
transportation in recent years.

Martingale optimal transportation has been developing actively: see [17], [21],
[47], [58], [73], [82], [95], [103], [112], and [130]. In its simplest form this problem is
stated for n Borel probability measures µ1, . . . , µn on the real line and a bounded
Borel cost function h on Rn. It deals with minimizing the integral∫

Rn

h dµ

over the Borel probability measures µ on Rn with the following restrictions: the
projection of µ onto the kth factor is µk and the coordinate functions x1, . . . , xn
form a martingale with respect to the measure µ and the σ-algebras σ1, . . . , σn,
where σk is generated by the coordinate functions x1, . . . , xk. The problem is sim-
ilarly formulated for infinitely many coordinates. In [17], [47], and [130] the reader
can find interesting recent results on the continuity of solutions to the martingale
transport problem. Questions close to martingale optimal transportation problems
were studied in [1], [14], and [97].

This modification of the Kantorovich problem fits the general framework of prob-
lems of Kantorovich type with additional linear constraints, connected, for instance,
with various symmetries of solutions, was considered in [132] and [133]. However,
it possesses a number of important special features. Let us present a precise for-
mulation of a problem with linear constraints. Given completely regular spaces Xi

with Radon probability measures µi, i = 1, . . . , n, let Π(µ1, . . . , µn) denote the set
of measures in P(X1×· · ·×Xn) with projections µi onto the factors. The function
spaces

Ci
L = {f ∈ L1(µi) ∩ C(Xi)}
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of continuous integrable functions are equipped with the standard norms from
L1(µi) (more precisely, these are seminorms if the measures µi do not have full
support), and the space

CL =

{
h ∈ C(X) : |h(x)| ⩽

n∑
i=1

fi(xi), where fi ∈ L1(µi)

}
is equipped with the seminorm

∥h∥L = sup
π∈Π(µ1,...,µn)

∫
X

|h| dπ.

Set

F =

n⊕
i=1

Ci
L ⊂ CL.

Given a linear subspace W ⊂ CL and a cost function h ∈ CL, the modification of
the Kantorovich problem under consideration consists in finding the quantity

inf
π∈ΠW

∫
X

h dπ, ΠW =

{
π ∈ Π(µ1, . . . , µn) :

∫
X

w dπ = 0 ∀w ∈W

}
.

It was shown in [132] that a minimum is attained in this problem if the set ΠW is
not empty. In addition,

inf
π∈ΠW

∫
X

h dπ = sup
f⩽h

n∑
k=1

∫
Xk

fk(xk)µk(dxk), f =

n∑
i=1

fi, fi ∈ Cb(Xi),

where Cb(Xi) is the space of bounded continuous functions on Xi.
Let us also mention the Schrödinger problem, which was posed by him in connec-

tion with some questions in statistical physics. It turned out that a particular case
of the Monge–Kantorovich problem can be obtained as the limit of a sequence of
Schrödinger problems after a suitable normalization. The works [55], [56], [70], [99],
and [98] are concerned with this line of research. In the Schrödinger problem one
considers the measure R on some space of continuous trajectories on the interval
[0, 1] (for instance, on C([0, 1],Rn)) that is the distribution of the Brownian motion
for which the distribution of the initial point is given by Lebesgue measure (R can
be an unbounded measure). The problem is to minimize the entropy

H(P | R) =
∫

log

(
dP

dR

)
dP

on the set of measures P absolutely continuous with respect to R for which the
distributions µ0 = P0 and µ1 = P1 on X at the initial and final points of the interval
are given. The corresponding Kantorovich problem has the form∫

C(ω)P (dω) → min, P0 = µ0, P1 = µ1,

where C(ω) = ∥ω̇t∥2L2/2 for absolutely continuous trajectories and C(ω) = +∞
otherwise. The recent monograph [108] is concerned with related questions.
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Transport problems connected with Gaussian measures and their nonlinear trans-
formations were studied in [48]–[50].

Optimal transportation of vector (for instance, matrix) measures was considered
in [45], [54], [57], [60], and [106]. Another kind of vector optimal transportation
was studied in [131], where for non-negative measures µ1, . . . , µd on a space X,
non-negative measures ν1, . . . , νd on a space Y , and a cost function h on X×Y the
author considered the problem of minimizing the integral∫

X×Y

h dσ

over the non-negative measures σ on X × Y satisfying the conditions∫
X×B

dµj

dµ
(x)σ(dx dy) = νj(B), j = 1, . . . , d,

for all measurable sets B ⊂ Y , where µ = 1
d

∑d
j=1 µj . Note that one can also

consider the following vector analogue of the Monge problem: given atomless Borel
probability measures µ1, . . . , µd on a Souslin space X, a Borel probability measure ν
on a Souslin space Y , and sufficiently nice cost functions h1, . . . , hd on X × Y ,
minimize the quantity

d∑
i=1

∫
X

hi(x, T (x))µi(dx)

over the Borel maps T : X → Y that take all measures µi simultaneously to the
measure ν. The existence of such maps is ensured by Lyapunov’s theorem (see [25],
Corollary 9.12.37). The indicated sum can be written in the form

∫
X

h(x, T (x))µ(dx), h(x, y) =

d∑
i=1

dµi

dµ
(x)hi(x, y).

However, the difference from the usual Monge problem is that not only the mea-
sure µ is transformed into ν, but also each measure µi. The book [131] contains
results for the ‘semidiscrete case’, where the measure ν is discrete. It would be
interesting to study the general case.

For metric barycentres generated by metrics of Kantorovich type, see [68].
Applications of the Kantorovich problem to the Plateau problem of minimal

surfaces with prescribed boundary were discussed in [46].
Connections of optimal transportation with the problem of small divisors were

considered in [94].
The regularization of transport problems was studied in [61] and [105].
Dynamical aspects of optimal transportation were considered in the papers [59]

and [107].
In the results presented above continuous or lower semicontinuous cost functions

were considered. However, in many problems, in particular, in ones connected with
duality, discontinuous cost functions are considered: see, for example, [20] and [100].
The paper [127] deals with an interesting concept of a virtually continuous function
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in the spirit of a certain refinement of the Luzin property. In a number of problems
such a property can replace the usual continuity of cost functions.

For characterizations of optimal plans, uniqueness problems, and duality, see
[109], [111], and [119].

I thank K.A. Afonin, A. V. Kolesnikov, E. D. Kosov, S.N. Popova, and A. V. Rez-
baev for useful discussions.
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topologies are equal”, Probab. Theory Related Fields 178:3-4 (2020), 1125–1172.

[13] J. Backhoff[-Veraguas], D. Bartl, M. Beiglböck, and J. Wiesel, “Estimating
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[99] C. Léonard, “A survey of the Schrödinger problem and some of its connections
with optimal transport”, Discrete Contin. Dyn. Syst. 34:4 (2014), 1533–1574.

[100] V. L. Levin and A. A. Milyutin, “The problem of mass transfer with
a discontinuous cost function and a mass statement of the duality problem
for convex extremal problems”, Uspekhi Mat. Nauk 34:3(207) (1979), 3–68;
English transl. in Russian Math. Surveys 34:3 (1979), 1–78.
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