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1. Introduction

The qualitative theory of partial differential equations has been expanding exten-
sively in the last 100 years. Two of the main tools in the analysis of solutions of
elliptic and parabolic equations are the normal derivative lemma (also known as
the Hopf–Oleinik lemma or the boundary point principle) and the strong maxi-
mum principle. They play a key role in the proofs of uniqueness theorems for
boundary-value problems, are used in investigations of the symmetry properties
of solutions and their behaviour in unbounded domains (Phragmén–Lindelöf type
theorems), and also have some other applications.

The first results in this area can be traced back to Gauss, who proved the strong
maximum principle for harmonic functions in his famous paper [1], § 21 in 1840. In
modern notation Gauss’s statement looks like this:

Let u be a non-constant harmonic function in a domain Ω ⊂ R3 , that is, ∆u = 0
in Ω. Then u cannot attain its maximum or minimum value at an interior point
of Ω.

In what follows, by the strong maximum principle for a second-order linear ellip-
tic operator L we mean the following result.

Strong maximum principle. Let u be a superelliptic function in a domain
Ω ⊂ Rn , that is,1 Lu ⩾ 0 in Ω. If u attains its minimum value at an interior point
of the domain, then u ≡ const and Lu ≡ 0.

We also recall the statement of the weak maximum principle.

Weak maximum principle. Let u be a superelliptic function in a bounded domain
Ω ⊂ Rn . If u is non-negative on the boundary of this domain, then u is also
non-negative in Ω.

The boundary version of the strong maximum principle is the normal derivative
lemma. It was originally stated in 1910 by Zaremba [2] for harmonic functions in
a (three-dimensional, bounded) domain satisfying the interior ball condition.2

Normal derivative lemma. Let u be a non-constant superelliptic function in
a domain Ω ⊂ Rn . If u attains its minimum value at a boundary point x0 ∈ ∂Ω,
then

lim inf
ε→+0

u(x0 + εn)− u(x0)
ε

> 0, (1.1)

where n is the inward normal vector to the boundary of the domain at x0 .
In particular, if u has a derivative in the direction of n at x0 , then ∂nu(x0) > 0.

It is noteworthy that, while the strong maximum principle is a property of
the operator L, the validity of the normal derivative lemma also depends on the
behaviour of ∂Ω in a neighbourhood of x0.

1We assume that the leading coefficients of L form a non-positive matrix
2Note that Zaremba used this lemma to establish the uniqueness theorem for a mixed problem

(when the boundary of the domain is divided into two parts, with Dirichlet conditions prescribed
on one part and Neumann conditions on the other part). It is now called the Zaremba prob-
lem, although Zaremba himself mentioned in [2] that this problem had been proposed to him by
Wirtinger.
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Harnack’s inequality, which can be regarded as a quantitative version of the
strong maximum principle, is close to the main topic of this survey. It was originally
proved in 1887 by Harnack3 [3], § 19, for harmonic functions on the plane. Its
classical formulation is as follows.

Harnack’s inequality. Let L be an elliptic operator in a domain Ω. If u is
a non-negative solution of the equation Lu = 0 in Ω, then the following inequality
holds in each bounded subdomain Ω′ such that Ω′ ⊂ Ω:

sup
Ω′

u ⩽ C inf
Ω′
u, (1.2)

where C is a constant independent of u.

Remark 1.1. A compactness argument makes it clear that it is sufficient to prove
(1.2) in the case when Ω and Ω′ are concentric balls. However, it is important for
applications that C does not depend on the radii of these balls (and only depends
on their ratio) or that, at least, it remains bounded as the radii tend to zero so that
their ratio stays fixed.

Some other a priori estimates for solutions, for instance, the Aleksandrov–
Bakelman maximum principle, can also be regarded as qualitative versions of the
strong maximum principle. On the other hand, it has only relatively recently
become clear that an a priori estimate for the gradient of a solution on the
boundary of the domain is dual to the normal derivative lemma.

The area in question is immense, so we focus on the elliptic case4 in the present
paper. The main body of the paper consists of three sections. In § 2 we dis-
cuss the properties of classical and strong (sub/super)solutions of equations in
non-divergence form, and in § 3 the properties of weak (sub/super)solutions of
equations in divergence form. Finally, § 4 is a mix of various generalizations and
applications. We do not aspire to present a complete exposition, and the selection
of topics reflects our personal interests.

Various aspects of the topic under consideration have been discussed in the
monographs and surveys [5]–[14]. In this work we use information from these sources
as well as from our papers [15] and [16], but we also make an attempt to go deeper
into the history of the questions under consideration.

We are profoundly indebted to Nina Nikolaevna Uraltseva, our Teacher,
who introduced us to this subject. We are also grateful to A. I. Ibragimov,
M. Kwaśnicki, V. G. Maz’ya, R. Musina, M.V. Safonov, M.D. Surnachev,
N. D. Filonov, T. N. Shilkin, and B. Sirakov for the consultations and discussions
we had with them. Special thanks are due to G.V. Rozenblum and N. S. Ustinov
for their help in selecting the material for this work.

3The mathematician Carl Gustav Axel Harnack had a twin brother Carl Gustav Adolf von
Harnack, who was a historian and theologist, and was the founding President of the Kaiser Wilhelm
Society for the Advancement of Science (now the Max Planck Society). The highest award of the
Max Planck Society carries his name.

4In addition, we limit ourselves to scalar equations. In this connection we refer to the recent
survey [4], which is devoted to the maximum principle for elliptic systems.
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The main notation.
• x = (x1, . . . , xn−1, xn) = (x′, xn) are points in Rn, n ⩾ 2.
• |x|, |x′| are the Euclidean norms in the relevant spaces.
• R+ = [0,+∞) is the closed half-axis.
• Ω is a domain (connected open set) in Rn with boundary ∂Ω; unless otherwise

stated (as in § 4.2), we assume that Ω is bounded; Ω denotes the closure of Ω, |Ω|
is the Lebesgue measure of Ω, and diam(Ω) is its diameter.
• d(x) = dist(x, ∂Ω) is the distance between x and ∂Ω.
• Bn

r (x0) = {x ∈ Rn : |x − x0| < r} is the open ball in Rn with centre x0 and
radius r; we put Bn

r = Bn
r (0); when the dimension is clear from the context, we

simply write Br(x0) and Br.
• Qr,h = Bn−1

r × (0, h).
The indices i and j range between 1 and n. We let Di denote the operator of

differentiation with respect to the variable xi. Summation over repeated indices is
implicit.

Given a function f , we put f± = max{±f, 0} and
 

Ω

f dx =
1
|Ω|

�
Ω

f dx.

We denote various positive constants by C and N (with or without indices). The
notation C(. . .) indicates that C depends only on the parameters in parentheses.
Classes of functions and domains.
• Ck(Ω) is the space of functions defined on Ω that have continuous derivatives

up to and including order k (k ⩾ 0). In place of C0 we normally write C for brevity.
• Lp(Ω), W k

p (Ω), and W̊ k
p (Ω) are the standard Lebesgue and Sobolev spaces (for

instance, see [17], § 4.2.1); ∥ · ∥p,Ω is the norm in Lp(Ω). Furthermore, f ∈ Lp,loc(Ω)
if f ∈ Lp(Ω′) for each subdomain Ω′ such that Ω′ ⊂ Ω. The notation f ∈W k

p,loc(Ω)
has similar meaning.
• Lp,q(Ω) are the Lorentz spaces (for instance, see [17], § 1.18.6).
We say that σ : [0, 1] → R+ is a function of class D if
(i) σ is continuous and increasing, and σ(0) = 0;
(ii) σ(τ)/τ is integrable and decreasing.

Remark 1.2. The assumption that σ(τ)/τ is decreasing is not restrictive. Indeed,
let σ : [0, 1] → R+ be an increasing function such that σ(0) = 0, and let σ(τ)/τ be
integrable. Then we put

σ̃(t) = t sup
τ∈[t,1]

σ(τ)
τ

, t ∈ (0, 1).

It is obvious that σ̃(t)/t is decreasing on [0, 1] and σ(t) ⩽ σ̃(t) on (0, 1]. (In view of
the last inequality, we can replace σ by σ̃ in all estimates.) Now, the set of points
at which σ(t) < σ̃(t) is an at most countable union of intervals (t1j , t2j). On each
interval σ̃ is increasing, so it is increasing on [0, 1].

Now we look at the integral
� 1

0

σ̃(τ)
τ

dτ =
�
{σ̃=σ}

σ(τ)
τ

dτ +
∑

j

� t2j

t1j

σ̃(τ)
τ

dτ.
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Note that on each interval (t1j , t2j) we have

σ̃(t)
t

≡ σ(t1j)
t1j

=
σ(t2j)
t2j

.

Since σ is monotone, from this we obtain
� 1

0

σ̃(τ)
τ

dτ =
�
{σ̃=σ}

σ(τ)
τ

dτ +
∑

j

(
σ(t2j)− σ(t1j)

)
<∞,

so that σ̃ ∈ D.

Remark 1.3. There will be no loss of generality either if we assume that σ is con-
tinuously differentiable on (0, 1]. In fact, for any σ ∈ D, we put

σ̂(r) := 2
� r

r/2

σ(τ)
τ

dτ = 2
� 1

1/2

σ(rτ)
τ

dτ, r ∈ (0, 1]. (1.3)

Then, as σ and σ(τ)/τ are monotone, we can conclude from the second equality
in (1.3) that σ̂ is also increasing, while σ̂(r)/r is decreasing on (0, 1]. Next, it is
obvious from the first equality in (1.3) that σ̂ ∈ C1(0, 1] and

σ(r) ⩽ σ̂(r) ⩽ 2σ
(
r

2

)
, r ∈ (0, 1]. (1.4)

The second inequality in (1.4) yields σ̂ ∈ D. Finally, by using the first inequality
in (1.4), we can replace σ by σ̂ in all estimates.

We say that a function ζ : Ω → R satisfies
• the Hölder condition with exponent α ∈ (0, 1] if

|ζ(x)− ζ(y)| ⩽ C|x− y|α for all x, y ∈ Ω;

• the Dini condition if

|ζ(x)− ζ(y)| ⩽ σ(|x− y|) for all x, y ∈ Ω

and σ ∈ D.
Next, Ck,α(Ω) and Ck,D(Ω), where k ⩾ 0, are the spaces of functions whose deriva-
tives of order k satisfy the Hölder condition with exponent α ∈ (0, 1] or the Dini
condition, respectively. The functions in C0,1(Ω) are said to be Lipschitz.

We say that Ω ⊂ Rn is a domain of class Ck, k ⩾ 0, if there is an r > 0 such
that for each x0 ∈ ∂Ω, the set Br(x0) ∩ ∂Ω is the graph of a function5 xn = f(x′)
in an appropriate Cartesian coordinate system, where f ∈ Ck(G) (and G is some
domain in Rn−1). We define domains of class Ck,α and Ck,D similarly.

Domains in C0,1 are said to be strictly Lipschitz.
Recall that the interior ball condition is that each point on the boundary ∂Ω can

be attained by a ball of fixed radius that lies fully in Ω.
5Moreover, the set Br(x0) ∩ Ω lies to one side of this graph.
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Similarly, let T(ϕ, h) (here h > 0 and ϕ : [0,+∞) → [0,+∞) is a convex function
such that ϕ(0) = 0) denote the following domain (body):

T(ϕ, h) = {x ∈ Rn : ϕ(|x′|) < xn < h}.

Assume that each point x0 ∈ ∂Ω can be attained by a body congruent to T(ϕ, h)
with vertex x0 that lies fully in Ω, where ϕ and h are independent of x0. Then we
say that Ω satisfies

• the interior C1,α-paraboloid condition with α ∈ (0, 1] if ϕ(s) = Cs1+α (for
α = 1, this is the same as the interior ball condition);

• the interior C1,D-paraboloid condition if ϕ′(0+) = 0 and ϕ′ satisfies the Dini
condition;

• the interior cone condition if ϕ(s) = Cs.
The exterior ball, exterior paraboloid, and exterior cone conditions are defined
similarly.

It is easy to see that a domain of class C1,1 satisfies both the interior and exterior
ball conditions. (Moreover, the combination of these conditions is equivalent to
the C1,1-regularity of the domain; for instance, see [18], Lemma 2.) Similarly,
domains of class C1,α are precisely the ones that satisfy the interior and exterior
C1,α-paraboloid conditions. Domains in C1,D are those satisfying the interior and
exterior C1,D-paraboloid conditions.6 Strictly Lipschitz domains satisfy the interior
and exterior cone conditions.7

2. Non-divergence form operators

In this section we look at operators with the following structure:

L ≡ −aij(x)DiDj + bi(x)Di. (2.1)

We put A = (aij) and b = (bi). If b ≡ 0, then we write L0 in place of L.
The matrix A of leading coefficients is symmetric and satisfies either the degen-

erate ellipticity condition

aij(x)ξiξj ⩾ 0 for all ξ ∈ Rn (2.2)

or the uniform ellipticity condition

ν|ξ|2 ⩽ aij(x)ξiξj ⩽ ν−1|ξ|2 for all ξ ∈ Rn. (2.3)

(Here ν ∈ (0, 1] is the so-called ellipticity constant.)
In §§ 2.1 and 2.2 we assume that condition (2.2) or (2.3) holds for all x ∈ Ω.

Starting from § 2.3, we assume that the entries of A are measurable functions and
(2.2) or (2.3) holds for almost all x ∈ Ω.

6These equivalences were proved in [14] without the a priori assumption that ‘the boundary
of the domain is locally the graph of a function’.

7However, contrary to an assertion in [14], we do not have equivalence here. A Lipschitz but
not strictly Lipschitz domain formed by two ‘bricks’ can serve as a counterexample.
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Remark 2.1. For operators of the more general form L + c(x), we obviously have
neither the strong maximum principle nor the normal derivative lemma in the form
presented in the Introduction. (The principal eigenfunction of the Dirichlet problem
for the Laplace operator provides a counterexample even to the weak maximum
principle.) In this case one normally imposes some condition on the sign of c(x) in
a neighbourhood of the minimum point. Here are two pairs of simple results.

1. Assume that the strong maximum principle holds for the operator L.
(a) Let c ⩾ 0 with c ̸≡ 0. If Lu + cu ⩾ 0 in Ω, then u can have no negative

minimum in Ω.
(b) Let c ⩽ 0 with c ̸≡ 0. If Lu+ cu ⩾ 0 in Ω, then u can have no non-negative

minimum in Ω unless u ≡ 0.
2. Assume that the normal derivative lemma holds for the operator L in a

domain Ω.
(a) Let Lu + cu ⩾ 0 in Ω, and let c ⩾ 0 with c ̸≡ 0. If u attains a negative

minimum value at a boundary point x0 ∈ ∂Ω, then ∂nu(x0) > 0.
(b) Let Lu+ cu ⩾ 0 in Ω, and let c ⩽ 0 with c ̸≡ 0. If u attains a non-negative

minimum value at a boundary point x0 ∈ ∂Ω, then ∂nu(x0) > 0 unless
u ≡ 0.

All four assertions follow from the fact that the inequality Lu + cu ⩾ 0 yields
Lu ⩾ 0 in a neighbourhood of a minimum point.

2.1. The classical era: from Gauss and Neumann to Hopf and Oleinik.
Recall that the strong maximum principle for harmonic functions in a three-
dimensional domain was established by Gauss [1] on the basis of his mean value
theorem.8 Since this theorem holds for harmonic functions in any space Rn,
Gauss’s proof is obviously valid in any dimension. Moreover, it can easily be
extended to superharmonic functions.

For uniformly elliptic operators of the more general form L+c(x) with C2-smooth
coefficients (of the form indicated in Remark 2.1, part 1(a)), the proof was given by

• Paraf in 1892, for c(x) > 0 in the two-dimensional case;
• Moutard in 1894, for c(x) > 0 in the multidimensional case;
• Picard in 1905, for c(x) ⩾ 0 in the two-dimensional case.

The crucial step was made by Hopf 9 [20] in 1927. Although in this paper he
only established the strong maximum principle for uniformly elliptic operators of
the form (2.1) with continuous coefficients, Hopf’s proof actually also extends word
for word to operators with bounded coefficients.

A further important observation was made in [20] for operators of the form
L+ c(x). Apart from the obvious result in part 1(а) of Remark 2.1, Hopf showed10

that if Lu + cu ⩾ 0 in Ω, then u cannot attain zero minimum value in Ω unless
u ≡ 0, even without any condition on the sign of c(x).

As mentioned in the Introduction, the normal derivative lemma was originally
established by Zaremba [2] for harmonic functions under the interior ball condition
on the boundary of a three-dimensional domain. Apart from the weak maximum

8The reader can find an extensive survey of mean value theorems for various function classes
in [19].

9A similar idea can be found in a slightly earlier paper by Picone, though he did not prove the
strong maximum principle there.

10In 1954 Aleksandrov presented another, geometric, proof of the same result.
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principle, Zaremba’s proof used only the Green’s function for the Dirichlet problem
for the Laplace’s equation in the ball, so it is valid in any dimension and also for
superharmonic functions.

It should be noted that for the Laplace operator, there is an alternative (and
equivalent) form of the normal derivative lemma:

Let G be the Green’s function for Laplace’s equation in a domain Ω. If x ∈ Ω
and x0 ∈ ∂Ω, then ∂nG(x, x0) > 0.

This result was proved by Neumann for a two-dimensional C2-smooth convex
domain as long ago as 1888. Then it was generalized

• in 1901 by Korn to a two-dimensional domain of class C2 strictly star-shaped
with respect to a point;

• in 1909 by Lichtenstein for a general two-dimensional domain of class C2;
• in 1912 by Kellog for a two-dimensional domain of class C1,α with α ∈ (0, 1);
• in 1918 by Lichtenstein for a three-dimensional domain of class11 C1,1.

For the operator −∆+bi(x)Di +c(x) with c(x) ⩾ 0 in a two-dimensional domain
of class C2,α, where α ∈ (0, 1), this result was established by Lichtenstein in 1924.
However, subsequently almost all results that we know of have been stated in the
form of the conventional normal derivative lemma.12

In 1931 Brelot was the first to note (in the case of the operator −∆ + c(x) in
a two-dimensional domain of class C2, where c(x) ⩾ 0) that the normal derivative
lemma holds, in fact, for any derivative in a strictly inward direction (making an
acute angle with the inward normal).

In 1932 Giraud [21], Chap. V, proved the normal derivative lemma13 for uni-
formly elliptic operators L + c(x) with coefficients in C0,α with α ∈ (0, 1), where
c(x) ⩾ 0, in an n-dimensional domain of class C1,1. In [22] this result was extended
to the case when the lower-order coefficients can have singularities on a set M which
is a union of a finite number of C1,α-smooth manifolds of codimension 1 and

|bi(x)|, |c(x)| ⩽ C · distγ−1(x,M), γ ∈ (0, 1).

In 1937 the condition on the boundary of the domain was significantly relaxed
for the first time: Keldysh and Lavrentiev proved the normal derivative lemma for
the Laplace operator in a (three-dimensional) domain satisfying the interior
C1,α-paraboloid condition.14

Finally, Hopf [24] and Oleinik [25] made the decisive step by proving simultane-
ously and independently the normal derivative lemma for uniformly elliptic opera-
tors with continuous coefficients under the interior ball condition on the boundary

11Lichtenstein claimed a result for domains in C1,α, α ∈ (0, 1). However, his proof was based
on the following fact: for each point x0 ∈ ∂Ω, we can find a point x ∈ Ω such that x0 is the
boundary point closest to x. This does not hold for domains of class C1,α for α < 1.

12Perhaps this is because for operators with variable leading coefficients the proof of the alter-
native statement is much more difficult, and in the general case of measurable leading coefficients
the Green’s function is not defined.

13In place of the normal n, Giraud used the conormal nL with coordinates nLi = aijnj , which
leads to an equivalent statement. It is essential that he also considered the case when u(x0) = 0
and no condition is imposed on the sign of c(x); cf. Remark 2.1, part 2(a).

14Some authors (for example, see [23] or [14]) say that this condition on the domain goes
back to Giraud. Indeed, in [21] and [22] some results were proved for domains in C1,α, but in
the normal derivative lemma it was required that α = 1.
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of the domain. Their proofs in [25] and [24] were based on the same idea and, like
in [20], they extend word for word to operators with bounded coefficients.15

Now we present the full proof of the classical results in [20] and [24], [25].

Theorem 2.1. A. Let L be an operator of the form (2.1), let aij , bi , and c be
bounded functions in Ω, assume that (2.3) holds, let u ∈ C2(Ω), and let Lu+ cu ⩾ 0
in Ω. Then:
(A1) the function u cannot attain zero minimum value in Ω unless u ≡ 0;
(A2) if c ⩾ 0, then u can attain no negative minimum in Ω unless u ≡ const and

c ≡ 0;
(A3) if c ⩽ 0, then u can attain no positive minimum in Ω unless u ≡ const and

c ≡ 0.
B. Assume that, in addition, Ω satisfies the interior ball condition, and let u ̸≡

const be a continuous function in Ω. Let x0 denote a point on ∂Ω at which u takes
its minimum value. Then inequality (1.1) holds, provided that any of the following
conditions is satisfied:16
(B1) u(x0) = 0;
(B2) u(x0) < 0 and c ⩾ 0;
(B3) u(x0) > 0 and c ⩽ 0.

Furthermore, the normal n can be replaced in (1.1) by any strictly inward direc-
tion ℓ.

Proof. 1. First consider the case when c ≡ 0. We start by establishing the weak
maximum principle for L in a domain π of sufficiently small diameter d.

Assume, on the contrary, that Lu ⩾ 0 in π and u
∣∣
∂π

⩾ 0, but u(x0) = −A < 0
for some x0 ∈ π. Consider the function

uε(x) = u(x)− ε|x− x0|2.

It is obvious that for all sufficiently small ε, we have

uε
∣∣
∂π

⩾ −εd2 > −A = uε(x0).

Hence uε attains its minimum value at a point x1 ∈ π. At the minimum point we
haveDuε(x1) = 0 and the matrixD2uε(x1) is non-negative definite, so Luε(x1) ⩽ 0.

However, since Lu ⩾ 0, we have

Luε ⩾ 2ε
(
aijδij − bi(xi − x0

i )
)

⩾ 2ε(nν − d sup |b(x)|) > 0 in π,

provided that d < d0 := nν/ sup |b(x)|. This contradiction proves the required
result.

2. Now we prove the strong maximum principle for L. Assume that, on the
contrary, Lu ⩾ 0 in Ω and u ̸≡ const, but the set

M =
{
x ∈ Ω: u(x) = inf

Ω
u
}

(2.4)

15Hopf considered operators of the form (2.1), while Oleinik considered operators L+ c(x) for
c(x) ⩾ 0 under the assumption that u(x0) ⩽ 0. In addition, in place of the normal, an arbitrary
direction making an acute angle with n was considered in [25].

16In case (B1), when no condition is imposed on the sign of c(x), this result was apparently
first identified in [26].
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is non-empty. The complement Ω \M is open, so there is a ball in it such that
its boundary contains a point in M . Let the centre of this ball be the origin and
let r denote its radius. Let x0 be a point in ∂Br ∩M , and π be the spherical shell
Br \Br/2. Without loss of generality, we can assume that r < d0/2.

In π we consider the barrier function17

vs(x) = |x|−s − r−s. (2.5)

We estimate Lvs with (2.3) taken into account:

Divs(x) = −sxi|x|−s−2; DiDjvs(x) = s(s+ 2)xixj |x|−s−4 − sδij |x|−s−2;

Lvs(x) = |x|−s−2

(
−s(s+ 2)aij xi

|x|
xj

|x|
+ saijδij − sbixi

)
⩽ s|x|−s−2

[
−(s+ 2)ν + nν−1 + r sup

Ω
|b(x)|

]
.

We take a sufficiently large s so that the expression in square brackets is negative.
Then, for any ε > 0, the function wε = u− infΩ u− εvs satisfies Lwε ⩾ 0 in π.

Now, ∂π = ∂Br ∪ ∂Br/2. It is obvious that wε
∣∣
∂Br

⩾ 0. Since Br ⊂ Ω \M by
construction, the function u− infΩ u is separated from zero on ∂Br/2, and if ε > 0
is sufficiently small, then wε

∣∣
∂Br/2

⩾ 0. Hence the weak maximum principle can be
applied to wε in π, and wε ⩾ 0 in π.

However, wε(x0) = 0, so for any vector ℓ pointing inside of π, we have
∂ℓw

ε(x0) ⩾ 0, that is,
∂ℓu(x0) ⩾ ε∂ℓvs(x0) > 0,

which is impossible because Du(x0) = 0 at the minimum point. This contradiction
proves the required result.

3. Now we prove the normal derivative lemma for L. By assumption, we can find
a ball of radius r touching ∂Ω at a point x0. Let the centre of this ball be the origin.
By the strong maximum principle, u > u(x0) in Br. Now, by repeating part 2 of
this proof word for word, we obtain inequality (1.1), where n can be replaced by ℓ.

4. Finally, we drop the condition c ≡ 0. Then assertions (A2), (A3), (B2),
and (B3) are direct consequences of Remark 2.1.

To prove (A1) and (B1) we represent u as a product u = ψv, where ψ > 0 and
v ⩾ 0 in Ω. Straightforward calculations yield

0 ⩽
Lu+ cu

ψ
= L̃v := −aijDiDjv + b̃iDiv + c̃v, (2.6)

where

b̃i = bi − 2aijDjψ

ψ
and c̃ =

Lψ + cψ

ψ
.

Now we put ψ(x) = exp{λx1}. Then

Lψ + cψ = ψ(−a11λ2 + b1λ+ c) ⩽ ψ
(
−νλ2 + sup

Ω
b1(x)λ+ sup

Ω
c(x)

)
.

17Hopf and Oleinik used other barrier functions. The function (2.5) was apparently introduced
to this end in [27] (also see [28], Chap. 1).
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We choose a sufficiently large λ so that the last expression in parentheses is negative.
Then parts 1(b) and 2(b) of Remark 2.1 are valid for the operator L̃ in (2.6). In
particular, v does not vanish in the interior of the domain, which yields (A1).
Since u(x0) = 0 implies that Du(x0) = ψ(x0)Dv(x0), it follows that part 2(b) of
Remark 2.1 for v implies (B1) for u. Theorem 2.1 is proved. 2

2.2. Extending the classical results. Refining the assumptions about the
boundary of the domain. Following the publication of the fundamental results
in [24] and [25], many authors have contributed to the development of this area in
a number of directions:

1) extending the class of differential operators, that is, relaxing the conditions
imposed on their leading and lower-order coefficients;

2) extending the class of domains, that is, relaxing the assumptions about the
boundary of the domain (in the case of the normal derivative lemma);

3) clarifying the range of applications of the relevant results by constructing
various counterexamples.

We start the description of these results with Pucci [29], who proved the normal
derivative lemma in the domain Ω = Br for a wider class of operators than the
ones in [24] and [25]. Namely, the operator can lose the property of being elliptic in
directions tangent to ∂Ω, and the lower-order coefficients must satisfy the conditions

|bi(x)| ⩽ σ(d(x))
d(x)

and 0 ⩽ c(x) ⩽
σ(d(x))
d2(x)

, σ ∈ D. (2.7)

Pucci’s proof was based on the barrier function

v(x) =
� d(x)

0

� τ

0

σ(t)
t

dt dτ + κd(x)

with a suitable choice of the constant κ. This function and various versions of it
have been used by many authors since then.

If the condition of ellipticity is even more degenerate, then the strong maximum
principle does not hold in its classical form. In the series of papers [30] Aleksandrov
provided a description of the structure of the zero set of a non-negative function u
such that Lu+ cu ⩾ 0 in Ω for such operators.18

Výborný [31], [32] proved the normal derivative lemma for the operator L+ c(x)
in a domain of class19 C1,D. The assumptions on the coefficients of the operator
were the same20 as in [29]. Unfortunately, the results in [31] and [32] have not
received the attention they deserve.

In [34], for the Laplace equation in a domain in C1,D, Widman obtained sharp
estimates for the derivatives of the Green’s function in the Dirichlet problem.21 In

18This problem was also discussed in many subsequent papers, starting with Ch. III of the
well-known monograph by Oleinik and Radkevich.

19More precisely, Výborný assumed that there is a function ρ ∈ C2(Ω) ∩ C1(Ω) such that
ρ(x) = 0 and Dρ ̸= 0 on ∂Ω, while ρ > 0 and |D2ρ(x)| ⩽ σ(ρ(x))/ρ(x) in Ω, where σ ∈ D. That
such a function does (locally) exist for a domain in C1,D was proved in [33].

20Výborný proved the assertion stated in Remark 2.1, part 2(a). In this case the upper bound
for c(x) in (2.7) is unnecessary.

21Some of these estimates had been established previously by Èidus and Solomentsev under
more restrictive assumptions on the domain.
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particular, he proved the normal derivative lemma in Neumann’s form (the normal
derivative of the Green’s function on ∂Ω is positive) and presented a counterexample
showing that the condition C1,D on the boundary of the domain cannot be relaxed
to C1. Namely, if ϕ′ fails the Dini condition at the origin, then ∂nG(x, 0) = 0 in the
paraboloid T(ϕ, h).

In the note [35], which was published simultaneously with [34], the authors
found refined asymptotic formulae for harmonic functions near non-smooth bound-
ary points. As a consequence, they showed that if u is a harmonic function
in a paraboloid T(ϕ, h) that attains its minimum value at the vertex x0 = 0,
then ∂ℓu(0) is positive for each strictly inward direction ℓ if and only if ϕ′ sat-
isfies the Dini condition at the origin (this is equivalent to the result in [34]).

The behaviour of solutions to Lu = 0 in a neighbourhood of x0 ∈ ∂Ω in the case
when the boundary of the domain satisfies only the interior/exterior cone condition
at x0, subject to the condition bi(x) = o(|x − x0|−1), was investigated by Oddson
and Miller, respectively.

A large cycle of papers generalizing the normal derivative lemma was published
by Khimchenko and Kamynin.

In [36] the normal derivative lemma for the Laplace operator was proved for
domains satisfying the interior C1,D-paraboloid condition. That paper also contains
an estimate for the normal derivative at ∂Ω of the solution of the problem

−∆u = f in Ω, u
∣∣
∂Ω

= 0,

in the case when Ω satisfies the exterior C1,D-paraboloid condition22 and f satisfies
|f(x)| ⩽ Cdγ−1(x), γ ∈ (0, 1). Finally, [36] contains examples showing that the
assumptions on the boundary cannot be improved significantly (these are in fact
quite similar to the corresponding counterexamples in [34] and [35]).

In [37] the results of [36] were extended to uniformly elliptic operators of the
form L + c(x) with bounded coefficients bi(x). The normal derivative lemma was
stated (for an arbitrary strictly inward direction) under the assumption that ‘the
maximum principle holds’ (which should perhaps mean that c(x) ⩾ 0), and an
estimate for the gradient on ∂Ω of the solution of the problem

Lu+ cu = f in Ω, u
∣∣
∂Ω

= g,

was given under the conditions

|c(x)|, |f(x)| ⩽ Cdγ−1(x), γ ∈ (0, 1); g ∈ C1,D(∂Ω).

In [23] the normal derivative lemma was extended to elliptic-parabolic operators
of the form

−aij(x, y)Dxi
Dxj

− ãkl(x, y)Dyk
Dyl

+ bi(x, y)Dxi
+ b̃k(x, y)Dyk

+ c(x, y)

with bounded coefficients under the following assumptions: the matrix A is uni-
formly elliptic, the matrix Ã is non-negative definite, c(x) ⩾ 0, and the domain Ω

22Here the reader can (perhaps for the first time in the literature) see the duality between an
estimate for the gradient of a solution on ∂Ω and the normal derivative lemma.
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satisfies the condition of the interior C1,D-paraboloid whose axis is not orthogonal
to the plane y = 0.

In [38] the results of [37] were generalized to the class of weakly degenerate
operators with leading coefficients satisfying conditions close to the ones in [29]
and [31] (the lower-order coefficients are bounded).23

Finally, in a series of papers published in 1978–1980 Kamynin and Khimchenko
presented sophisticated generalizations of the results in [30].

A rather interesting ‘weakened’ form of the normal derivative lemma was estab-
lished by Nadirashvili [40] in a domain Ω satisfying the interior cone condition.
Namely, let L be a uniformly elliptic operator of the form (2.1) and let c(x) ⩾ 0.
If u is a non-constant function such that Lu+ cu ⩾ 0 and u attains a non-positive
minimum value at a point x0 ∈ ∂Ω, then in any neighbourhood of x0 there is an
x∗ ∈ ∂Ω such that

lim inf
ε→+0

u(x∗ + εℓ)− u(x∗)
ε

> 0

for any strictly inward direction ℓ. In [41] this result was extended to a certain
class of domains with outward ‘peaks’ and weakly degenerate (in the spirit of [38])
non-divergence operators.

In [33] Lieberman introduced the important concept of regularized distance.24
In particular, he showed that in any domain Ω of class C1 there is a function
ρ ∈ C2(Rn \ ∂Ω) ∩ C1(Rn) such that the following estimates hold (in which the +
and − signs relate to points x ∈ Ω and x ∈ Rn \ Ω, respectively):

C−1d(x) ⩽ ±ρ(x) ⩽ C d(x),
|Dρ(x)−Dρ(y)| ⩽ Cσ(|x− y|),

|D2ρ(x)| ⩽ C
σ(|ρ(x)|)
|ρ(x)|

.

Here σ is the common modulus of continuity of the gradients of the functions
defining ∂Ω in local coordinates.

As a consequence, the normal derivative lemma was proved in [33] for a domain
of class C1,D when the (leading and lower-order) coefficients satisfy conditions close
to the ones in [29] and [31]. Next, in [42] estimates for the gradient on ∂Ω of
the solution of the Dirichlet problem in a domain in C1,D with boundary data
g ∈ C1,D(∂Ω) were established, and the boundary regularity of the solution was
analysed in the case when Dg ∈ C(∂Ω) fails the Dini condition.

Finally, we note the monumental paper [14], where the assumptions on the coef-
ficients ensuring the validity of the normal derivative lemma and the strong maxi-
mum principle are slightly relaxed in comparison with the work mentioned above,
although they are significantly harder to verify. That paper also contains some new
counterexamples, which show that these assumptions are sharp.

2.3. The Aleksandrov–Bakelman maximum principle. This subsection con-
cerns one of the most beautiful geometric ideas in the theory of partial differential

23This topic has been developed further, for instance, in [39].
24This construction had also appeared previously in some special cases (for instance, see [31]

and [32]).
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equations, the maximum principle of Aleksandrov and Bakelman. This is the com-
mon name for a priori maximum estimates for the solutions of non-divergence
equations, which have a great number of applications. In particular, they play a
key role in the proof of the strong maximum principle and the normal derivative
lemma for equations with unbounded lower-order coefficients belonging to Lebesgue
spaces.

The first estimates of this type were published in [43] and [44].25 An estimate
for the solution of the Dirichlet problem in the general case was obtained in [48].
In addition, it was proved in [48] that the resulting estimates are sharp.26 In 1963
Aleksandrov gave a cycle of talks in Italy, where he presented his method. These
talks were published in Rome two years later.

To prove the Aleksandrov–Bakelman estimate we introduce a few definitions.
Let u be a continuous function in a domain Ω such that u

∣∣
∂Ω

< 0. Let Ω̃ =
conv(Ω) denote the convex hull of Ω. In what follows we assume that u+ is extended
to Ω̃ \ Ω by zero.

By the convex hull of u+ we mean the smallest upper convex function that
majorizes u+ in Ω̃. We denote it by z. It is obvious that z

∣∣
∂Ω̃

= 0 and the
subgraph of z is a convex set (the convex hull of the subgraph of u+). We can also
show (see [18]) that if Ω is a domain in C1,1 and u ∈ C1,1(Ω), then27 z ∈ C1,1(Ω̃).
We also introduce the so-called contact set

Z = {x ∈ Ω: z(x) = u(x)}.

Now we define the (generally speaking, multivalued) normal (or hodograph) map
Φ: Ω̃ → Rn induced by z. To each point x0 ∈ Ω̃ it assigns all vectors p ∈ Rn such
that the graph of π(x) = p · (x−x0)+ z(x0) is a support plane of the subgraph of z
at x0. It is obvious that if z ∈ C1(Ω̃), then Φ is single valued in Ω̃ (but not in its
closure!) and can be expressed by Φ(x) = Dz(x).

First we consider an operator L0 with measurable coefficients.

Lemma 2.1. Let Ω be a domain of class C1,1 , and let u ∈ C1,1(Ω) with u
∣∣
∂Ω

< 0.
Assume that the uniform ellipticity condition (2.3) is satisfied. Then for each
non-negative function g,

�
Φ(Ω̃)

g(p) dp ⩽
1
nn

�
Z

g(Du)
(L0u)n

det(A)
dx. (2.8)

25This result has complicated history. The paper [44] was published later than the short
note [43], but it was submitted for publication slightly earlier. It is written in [45], § 28.1, that
“the first version of these maximum principles was obtained by Bakelman [46], [47] in 1959”.
However, those papers did not yet contain the estimates under consideration, although the idea
that normal images can be used to estimate solutions had been developed by both Bakelman
and Aleksandrov in their previous work. On the other hand, the importance of [44] was reflected
incorrectly in the survey [11].

26The results in [48] were subsequently re-discovered in [49] and [50]. In this connection, the
term Aleksandrov–Bakelman–Pucci (ABP) maximum principle is common in English language
literature.

27Note that this does not hold if the condition u
∣∣
∂Ω

< 0 is relaxed to u
∣∣
∂Ω

⩽ 0.
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Proof. Note that under the hypotheses of the lemma, Φ satisfies the Lipschitz con-
dition. By the formula for a change of variables under the integral sign,

�
Φ(Ω̃)

g(p) dp =
�

Ω̃

g(Dz)|det(D2z)| dx =
�

Ω̃

g(Dz) det(−D2z) dx. (2.9)

(The last equality holds because the matrix (−D2z) is non-negative definite.)
If x /∈ Z, then by Carathéodory’s theorem, (x, z(x)) is an interior point of

a simplex28 which lies entirely on the graph of z. Hence the second derivative
of z vanishes in some direction. However, as D2z(x) is sign definite, this must be
a principal direction, so that det(−D2z(x)) = 0.

On the other hand, if x ∈ Z, then the condition of tangency at x yields

Dz(x) = Du(x) and −D2z(x) ⩽ −D2u(x).

(The second relation holds in the sense of quadratic forms for almost all x.) Hence
it follows from (2.9) that

�
Φ(Ω̃)

g(p) dp ⩽
�
Z

g(Du) det(−D2u) dx.

Now, since the matrices A and −D2u are non-negative definite on Z, the eigen-
values of −A·D2u are non-negative. By the inequality between the arithmetic and
geometric means, we have (throughout, Tr denotes the trace of a matrix)

det(−D2u) =
det(−A ·D2u)

det(A)
⩽

1
nn

(Tr(−A ·D2u))n

det(A)
=

1
nn

(L0u)n

det(A)
,

which immediately yields (2.8). 2

Remark 2.2. Since u > 0 and L0u ⩾ 0 on Z, the more convenient inequality
�

Φ(Ω̃)

g(p) dp ⩽
1
nn

�
{u>0}

g(Du)
(L0u)n

+

det(A)
dx (2.10)

is often used in place of (2.8).

Theorem 2.2. Under assumption (2.2), let Tr(A) > 0 almost everywhere in Ω.
Then the following estimate holds for each function u ∈ W 2

n,loc(Ω) such that29

u
∣∣
∂Ω

⩽ 0: (
max

Ω
u+

)n
⩽

diamn(Ω)
nn|B1|

�
Z

(L0u)n

det(A)
dx. (2.11)

(Here and throughout, we put 0/0 = 0 when this uncertainty arises.)

Proof. First suppose that the matrixA, the function u, and the domain Ω satisfy the
hypotheses of Lemma 2.1. It is sufficient to look at the case when M = maxΩ u =
maxΩ̃ z > 0.

28In this case the simplex can have any dimension between 1 and n.
29This means that for each ε > 0, the inequality u− ε < 0 holds in a neighbourhood of ∂Ω.
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We put d = diam(Ω) = diam(Ω̃) and show that the set Φ(Ω̃) contains the ball
BM/d. Indeed, let p ∈ BM/d. Consider the graph of π(x) = p · x + h, which is
a plane. By selecting h appropriately, we can ensure that it is a support plane for
the subgraph of z at some point x0, so that we can write π(x) = p · (x−x0)+z(x0).

If x0 ∈ ∂Ω̃, then z(x0) = 0 and at a maximum point of z we have

M = z(x) ⩽ p · (x− x0) ⩽ |p| · d < M,

which is impossible. Hence x0 ∈ Ω̃, which shows that

p = Dz(x0) = Φ(x0) ∈ Φ(Ω̃)

and proves the required result.
Using (2.8) with g ≡ 1, we obtain

|B1| ·
(
M

d

)n

= |BM/d| ⩽ |Φ(Ω̃)| ⩽ 1
nn

�
Z

(L0u)n

det(A)
dx,

which yields (2.11) directly.
Now consider the general case. The integrand in (2.11) does not change after

multiplying the matrix A by a positive function, so we can assume without loss of
generality that Tr(A) ≡ 1. We consider the function uε = u−ε and approximate Ω
from inside by domains with smooth boundaries. Since (2.11) survives a passage to
the limit in W 2

n , we can assume that uε is a smooth function. We apply (2.11) to uε

and the uniformly elliptic operator L0−ν∆. Next we let ν → 0, and then ε→ 0. 2

Theorem 2.3. Let L be an operator of the general form (2.1) and assume that
(2.2) holds and Tr(A) > 0 almost everywhere in Ω. Let

h ≡ |b|
det1/n(A)

∈ Ln(Ω). (2.12)

Then

max
Ω

u+ ⩽ N(n, ∥h∥n,{u>0}) diam(Ω)
∥∥∥∥ (Lu)+

det1/n(A)

∥∥∥∥
n,{u>0}

(2.13)

for any function u satisfying the assumptions of Theorem 2.2.

Proof. Suppose that the matrix A, the function u, and the domain Ω satisfy the
hypotheses of Lemma 2.1. We can derive the general case from this as in the second
part of the proof of Theorem 2.2.

Let g = g(|p|). Bearing in mind that BM/d ⊂ Φ(Ω̃), from (2.10) we obtain

n|B1|
� M/d

0

g(ρ)ρn−1 dρ ⩽
1
nn

�
{u>0}

g(|Du|)
(Lu− biDiu)n

+

det(A)
dx. (2.14)

We put

F =
∥∥∥∥ (Lu)+

det1/n(A)

∥∥∥∥
n,{u>0}

+ ε, ε > 0.
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Then we can estimate the ratio on the right-hand side of (2.14) using Hölder’s
inequality:

(Lu− biDiu)n
+

det(A)
⩽ (Fn/(n−1) + |Du|n/(n−1))n−1

(
(Lu)n

+

det(A)Fn
+ hn

)
.

We put g(ρ) = (Fn + ρn)−1. Then, from (2.14) we obtain

n|B1|
� M/d

0

ρn−1

Fn + ρn
dρ

⩽
1
nn

�
{u>0}

(Fn/(n−1) + |Du|n/(n−1))n−1

Fn + |Du|n

(
(Lu)n

+

det(A)Fn
+ hn

)
dx.

Now, using the elementary inequality (x + y)n−1 ⩽ 2n−2(xn−1 + yn−1), we can
deduce that

ln
(

1 +
Mn

dnFn

)
⩽

2n−2

nn|B1|
(1 + ∥h∥n

n,{u>0})

or

M ⩽ d · F ·
(

exp
{

2n−2

nn|B1|
(
1 + ∥h∥n

n,{u>0}
)}

− 1
)1/n

.

Letting ε→ 0 in the expression for F , we arrive at (2.13). 2

Remark 2.3. If the uniform ellipticity condition (2.3) is satisfied, then taking
Remark 2.2 into account, we obtain a simpler estimate from (2.13):

max
Ω

u+ ⩽ N

(
n,
∥b∥n,{u>0}

ν

)
diam(Ω)

ν
∥(Lu)+∥n,{u>0}. (2.15)

Now we explain the difference between Theorem 2.3 and some other maximum
estimates.

Hopf’s maximum estimate is well known for uniformly elliptic operators of the
form (2.1) (for instance, see [51], Theorem 3.7):

max
Ω

u+ ⩽ C

(
diam(Ω),

∥b∥∞,{u>0}

ν

) ∥(Lu)+∥∞,{u>0}

ν
.

Here the maximum of the solution is estimated in terms of the L∞-norm of the
right-hand side, which turns out to be insufficient for applications.

On the other hand, it follows from coercive estimates in Lr (see [51], Theo-
rem 9.13) and Sobolev’s embedding theorem that

max
Ω

u+ ⩽ C∥(L0u)+∥r,Ω, r >
n

2
. (2.16)

However, here the constant C depends on the moduli of continuity of the coeffi-
cients aij . Therefore, for instance, for quasilinear equations in which the coeffi-
cients aij depend on the solution u itself and on its derivatives, the estimate (2.16)
is of little use.
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The Aleksandrov–Bakelman estimate is distinguished by the fact that it requires
neither continuous leading coefficients nor bounded lower-order coefficients and
right-hand side.

In connection with Theorem 2.3, we recall the so-called maximum principle in
the Bony form:

Let L be an operator of the form (2.1) and assume that (2.2) holds. If a function u
attains its minimum value at a point x0 ∈ Ω, then

ess lim inf
x→x0

Lu ⩽ 0.

For operators with bounded coefficients, this was proved in 1967 by Bony for
u ∈ W 2

q (Ω), q > n, and in 1983 by P.-L. Lions30 for u ∈ W 2
n(Ω). We prove

a version of this result for operators with unbounded lower-order coefficients.

Corollary 2.1. Assume that the coefficients of the operator L satisfy the hypothe-
ses of Theorem 2.3. If a function u ∈ W 2

n,loc(Ω) attains its minimum value at
a point x0 ∈ Ω, then

ess lim inf
x→x0

Lu
Tr(A)

⩽ 0. (2.17)

Proof. As in Theorem 2.2, we can assume without loss of generality that Tr(A) ≡ 1.
Let x0 be the origin.

Assume that Lu ⩾ δ > 0 almost everywhere in a neighbourhood of the origin.
In the ball Br we consider the function

wε(x) = ε

(
1− |x|2

r2

)
− u(x) + u(0).

Then wε(0) = ε and for any sufficiently small r, we have wε
∣∣
∂Br

⩽ 0. Applying
estimate (2.15) to wε in Br, we obtain

ε ⩽ N(n, ∥h∥n,Br ) · 2r ·
∥∥∥∥ (Lwε)+

det1/n(A)

∥∥∥∥
n,Br

.

Since
Lwε =

2ε
r2

(
Tr(A) + bixi

)
− Lu ⩽

2ε
r2

(1 + r|b|)− δ,

for ε < δr2/4 this yields

ε ⩽ N

∥∥∥∥ (4ε|b| − rδ)+
det1/n(A)

∥∥∥∥
n,Br

(∗)
⩽ 4εN

∥∥∥∥(
h− rδ

4ε

)
+

∥∥∥∥
n,Br

= o(ε) as ε→ 0.

(Inequality (∗) holds because det1/n(A) ⩽ Tr(A) = 1.) This contradiction
proves (2.17). 2

30Lions proved a stronger property (the second relation is treated in the sense of quadratic
forms):

ess lim inf
x→x0

|Du| = 0 and ess lim inf
x→x0

D2u ⩾ 0.

However, for operators with unbounded coefficients, this does not yield (2.17) directly.
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Aleksandrov developed and refined the results in [48] repeatedly. In [52] he
obtained pointwise estimates for the solution of the Dirichlet problem in terms
of the distance to the boundary of the domain, and in [53] these were extended
to a wider class of equations. The paper [54] was devoted to showing that the
bounds obtained are attainable, and in the short note [55] Aleksandrov proved
that in general the assumptions on the right-hand side of the equation cannot
be relaxed. Finally, in [56] pointwise estimates for the solution in terms of some
delicate characteristics of the domain Ω were obtained, and an estimate on ∂Ω for
the gradient of the solution was found on the basis of this result in some special
cases.

Krylov [57] was the first to obtain Aleksandrov-type estimates for parabolic oper-
ators in the mid 1970s. Following this, investigations of elliptic and parabolic prob-
lems proceeded almost in parallel, but the discussion of results for non-stationary
equations lies outside the scope of our survey.

Subsequently, the techniques using normal images were also applied to boundary
value problems other than the Dirichlet problem. An Aleksandrov-type local max-
imum estimate for a problem with oblique derivative (where the derivative along
the direction of a non-tangential vector field is prescribed on part of the boundary
of the domain) was established in [58] for bounded coefficients bi and in [59] in the
general case (see also [60]).

For the Venttsel problem, where an operator of the second order in the tangential
variables

L′ ≡ −αij(x)didj + βi(x)Di, di ≡ Di − ninkDk, βi(x)ni ⩽ 0,

is given on the boundary, the corresponding estimates were obtained in [61] and [62]
in two cases, the non-degenerate case, when L′ is uniformly elliptic in the tangential
variables, and the degenerate case when the second-order terms in the boundary
operator can vanish on a subset of positive measure, but the vector field (βi) is not
tangential to ∂Ω. Subsequently, these estimates were generalized to the case when
the operators L and L′ have unbounded lower-order coefficients [63], [64]. In [65]
local estimates of Aleksandrov type were established for solutions of the so-called
two-phase Venttsel problem. In all these cases such estimates were the starting
point for the derivation of a series of a priori estimates needed in the proofs of exis-
tence theorems for solutions of quasilinear or non-linear boundary-value problems.

Another direction in which Aleksandrov’s ideas have been developed involves
transferring maximum estimates to equations whose lower-order coefficients and
right-hand sides belong to other function classes. In [66], [60], and [67] various
classes of operators with ‘compound’ coefficients were considered. The paper [68]
was devoted to an Aleksandrov-type estimate in terms of the norms of the
right-hand side in weighted Lebesgue spaces. Each of these results extended
accordingly a class of non-linear equations for which one can prove the solvability
of the main boundary-value problems.

Caffarelli [69] established the Aleksandrov–Bakelman estimate for the so-called
viscosity solutions of elliptic equations. Subsequently, this idea was repeatedly
applied to various classes of non-linear equations (for instance, see Chap. 3 of [70]
and the references therein; also see a number of more recent papers).
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Yet another group of papers was devoted to relaxing the conditions on the
right-hand side of the equation for certain classes of operators L. In 1984 Fabes
and Stroock [71] obtained the estimate (2.16) for operators with measurable leading
coefficients under the assumption r > r0, where r0 < n is an exponent depending on
the ellipticity constant of the operator. In [72] and [73] this estimate was also shown
for the problem with oblique derivative. On the other hand, Pucci [74] introduced
the concept of maximal and minimal operators, and used this to find a lower bound
for those r0 for which such an estimate is possible (in this connection, see [75] and
the literature cited therein). Necessary and sufficient conditions for (2.16) to hold
have only been obtained in the two-dimensional case [76]. In some papers (see [77]
and the literature therein) the results in [71] were extended to viscosity solutions
of non-linear equations.

In [78] several estimates for the maximum of the solution in terms of the Lm-norm
of the right-hand side were established (here m ∈ (n/2, n] is an integer) under the
condition that for almost all x ∈ Ω, the matrix of leading coefficients of the equation
belongs to a certain special convex cone in the space of matrices. Among the most
recent achievements in this direction, we also refer to Trudinger’s paper [79]. All
these investigations are certainly far from being complete.

We must also mention the paper [80], which looked at the dependence of an
estimate for the maximum on the characteristics of the domain. In particular,
an estimate in terms of |Ω|1/n in place of the diameter of the domain was obtained
(note that for convex domains, this result goes back to [48]).

We also refer to a 2000 paper by Kuo and Trudinger, where they obtained a dis-
crete analogue of the Aleksandrov–Bakelman estimate for difference operators.

2.4. Results for operators with coefficients bi(x) in Lebesgue spaces.
A simple consequence of the Aleksandrov–Bakelman estimate is the weak maximum
principle for operators of the form (2.1) with coefficients bi ∈ Ln(Ω) and for u ∈
W 2

n(Ω). Moreover, it was already observed in [48] that this estimate allows one to
consider operators L+ c(x) with c(x) ‘of wrong sign’.

Corollary 2.2. Assume that the coefficients of the operator L satisfy the hypothe-
ses of Theorem 2.3. Then there is a positive constant δ which only depends on n,
diam Ω, and ∥h∥n,Ω (the function h was introduced in (2.12)) such that if

h ≡ c−

det1/n(A)
∈ Ln(Ω) and ∥h∥n,Ω < δ

(recall that we put 0/0 = 0 when this indeterminacy arises), then the weak maximum
principle holds for L+ c(x) and u ∈W 2

n,loc(Ω).

Proof. Suppose that, on the contrary, Lu + cu ⩾ 0 in Ω and u ⩾ 0 on ∂Ω, but
minΩ u = −A < 0. Consider uε = −u − ε and apply (2.13) to it. Since Luε =
−Lu ⩽ cu ⩽ Ac− on {uε > 0}, we obtain

(A− ε)+ ⩽ N(n, ∥h∥n,Ω) diam(Ω) ∥h∥n,ΩA,

which is impossible in the case when N(n, ∥h∥n,Ω) diam(Ω)∥h∥n,Ω < 1 and ε > 0 is
sufficiently small. 2
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It is easy to see that now the proof of Theorem 2.1 works without any changes
also for the so-called strong supersolutions, that is, those u ∈ W 2

n(Ω) that satisfy
Lu+ cu ⩾ 0 almost everywhere in Ω (the operator L has bounded measurable coef-
ficients). However, new ideas were needed to extend the arguments to lower-order
coefficients in Lebesgue spaces.

Note that we cannot relax the condition bi ∈ Ln(Ω) to bi ∈ Lp(Ω) for p < n: the
function u(x) = |x|2 satisfies the equation

−∆u+
nxi

|x|2
Diu = 0 in B1,

but it does not satisfy the maximum principle. Here the coefficients bi(x) = nxi/|x|2
lie in the spaces Lp(B1) for any p < n and even in the weak space Ln (the Lorentz
space Ln,∞(B1)), but not in Ln(B1).

For operators with bi ∈ Ln(Ω), the strong maximum principle was established
in [30], Part VI. We prove the simplest version of this result.31

Theorem 2.4. Let L be an operator of the form (2.1), assume that (2.3) is sat-
isfied, and let bi ∈ Ln,loc(Ω). Also assume that u ∈ W 2

n,loc(Ω) and Lu ⩾ 0 almost
everywhere in Ω. If u takes its minimum value at an interior point of the domain,
then u ≡ const and Lu ≡ 0.

Proof. Suppose that u ̸≡ const, but the set (2.4) is non-empty. As in the proof of
Theorem 2.1, there is a ball in Ω \M whose boundary contains a point x0 ∈ M .
Let r/2 be the radius of this ball and assume without loss of generality that Br ⊂ Ω.
Taking π = Br \Br/4, we consider the barrier function (2.5) in π.

Then we have

Lvs(x) ⩽ s|x|−s−2
(
−(s+ 2)ν + nν−1 + r|b(x)|

)
.

In contrast to Theorem 2.1, here we cannot show that Lvs ⩽ 0. However, taking
s = nν−2, we obtain

Lvs(x) ⩽ s|x|−s−2|b(x)| ⩽ 4s+2sr−s−1|b(x)| in π.

By construction, u(x)− u(x0) > 0 on ∂Br/4. Hence, if ε > 0 is small enough, then
wε(x) = εvs(x)− u(x) + u(x0) is non-positive on the whole boundary of π.

Applying (2.15) to wε in π, we obtain

wε(x) ⩽ C(n, ν, ∥b∥n,π)rε∥(Lvs(x))+∥n,π

⩽ C(n, ν, s, ∥b∥n,π)εr−s∥b∥n,π,

so that

u(x)− u(x0) ⩾ ε
(
|x|−s − r−s − C(n, ν, s, ∥b∥n,π)∥b∥n,πr

−s
)
. (2.18)

31In [30], Part VI, operators of the form L+c(x) were considered such that c(x) ⩽ h(x)/|x−x0|,
where x0 is a (zero-)minimum point of u and h ∈ Ln(Ω). In addition, in this paper the conditions
for the coefficients can depend on the direction.
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By Lebesgue’s theorem, for each δ > 0 we can take a sufficiently small r such that
∥b∥n,π ⩽ δ. Then inequality (2.18) at x0 yields

0 ⩾ εr−s
(
2s − 1− C(n, ν, s, δ)δ

)
,

which is impossible if δ is small enough. 2

As a consequence, the following result was proved in [30], Part VI.32

Corollary 2.3. Suppose that L and u satisfy the hypotheses of Theorem 2.4.
Assume that Ω satisfies the interior ball condition in a neighbourhood U of a point
x0 ∈ ∂Ω. Let

u
∣∣
∂Ω∩U

≡ inf
Ω
u and Du

∣∣
∂Ω∩U

≡ 0. (2.19)

Then u ≡ const in Ω.

Proof. By extending u by a constant outside Ω in a neighbourhood of x0, we make
sure that the hypotheses of Theorem 2.4 are satisfied. 2

Corollary 2.3 is easily seen to be significantly weaker than the normal derivative
lemma because conditions (2.19) must hold on a whole piece of the boundary.
However, in contrast to the case of bounded lower-order coefficients (when the
strong maximum principle and the normal derivative lemma have virtually identical
proofs), the normal derivative lemma fails under the assumptions of Theorem 2.4 !
Here is a counterexample (see [81]–[83]).

Let u(x) = xn lnα(|x|−1) in the half-ball B+
r = Br ∩ {xn > 0}. Then it is easy

to see that u ∈ W 2
n(B+

r ) for r ⩽ 1/2 and α < (n − 1)/n. Next, direct calculations
show that u solves

−∆u+ bn(x)Dnu = 0,

where

|bn| ⩽ C(α)
|x| ln(|x|−1)

∈ Ln(B+
r ).

Finally, u > 0 in B+
r and u takes its minimum value at the boundary point 0.

However, for α < 0 it is obvious that Dnu(0) = 0.

Remark 2.4. A weak form of the normal derivative lemma (see [40]) holds in this
example. We believe that this result also holds for a general uniformly elliptic
operator L such that bi ∈ Ln(Ω), but to our knowledge the question is still open.

Remark 2.5. The above counterexample also shows that the condition bi ∈ Ln(Ω)
is insufficient for the gradient estimates of the solution of the Dirichlet problem
on ∂Ω because Dnu(0) = +∞ for α > 0.

The paper [84] by Ladyzhenskaya and Uraltseva plays an important role.
(A short note was published in Doklady Akademii Nauk SSSR33 three years earlier.)
It is where the iterative method for estimating a solution in a neighbourhood of
the boundary was used for the first time. In the simplest case it is as follows.

32We also state a simplified version of this result.
33Translated as Soviet Mathematics. Doklady.
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Let u be a function in a cylinder Q1,1 such that Lu = f and u
∣∣
xn=0

= 0. Consider
the sequence of cylinders Qrk,hk

, where rk = 2−k and hk is an appropriately selected
sequence such that hk = o(rk) as k →∞. We put

Mk = sup
Qrk,hk

u(x)
hk

and apply the Aleksandrov–Bakelman estimate to the difference

u(x)−Mkhk · v
(
x′

rk
,
xn

hk

)
,

where v is a certain special barrier function.
The resulting estimate at x ∈ Qrk+1,hk+1 is a recurrence relation linking Mk+1

and Mk. Iterating it, we obtain lim supk Mk <∞, which provides an upper bound
for Dnu(0) in terms of supQ1,1

u and a certain integral norm of the right-hand side.
In [84] this approach was applied to the equation Lu = f with a uniformly elliptic

operator L under the assumptions

u ∈W 2
n(Ω), bi ∈ Lq(Ω), f+ ∈ Lq(Ω), q > n, (2.20)

when the domain belongs to one of the following two classes:
1) convex domains;
2) domains in the class34 W 2

q .
As mentioned in § 2.3, an Aleksandrov-type estimate in Ω ⊂ QR,R was estab-

lished in [66] for operators of the form (2.1) with ‘composite’ lower-order coefficients
bi = bi(1) + bi(2) under the assumptions that

bi(1) ∈ Ln(Ω) and |bi(2)(x)| ⩽ Cxγ−1
n , γ ∈ (0, 1). (2.21)

On the basis of this result, in [66] an estimate for ess sup ∂nu on ∂Ω was established
in domains of class W 2

q , q > n, under the assumptions

bi = bi(1) + bi(2), bi(1) ∈ Lq(Ω), |bi(2)(x)| ⩽ Cxγ−1
n ,

Lu = f (1) + f (2), f
(1)
+ ∈ Lq(Ω), f

(2)
+ (x) ⩽ Cxγ−1

n ,
γ ∈ (0, 1).

Safonov [85] (see also [86]) developed a new approach to this problem, based on
the boundary Harnack inequality (see § 4.3). This approach was used to prove in
a uniform way

1) the normal derivative lemma under the assumption that L0u ⩾ 0 in a domain
satisfying the interior C1,D-paraboloid condition;35

2) an upper bound for ∂nu(0) under the assumptions that L0u ⩽ 0 and
u
∣∣
∂Ω∩Br

= 0 in a domain satisfying the exterior C1,D-paraboloid condition.35

34This means that each point x0 ∈ ∂Ω has a neighbourhood U such that U ∩ Ω is mapped
onto Q1,1 by a diffeomorphism of class W 2

q so that the norms of the direct and inverse diffeomor-
phisms have uniform estimates with respect to x0. This condition ensures that conditions (2.20)
are invariant under local flattening of the boundary.

35In [85] the condition
� ε

0
τ−2ϕ(τ) dτ < ∞ on the function ϕ defining the interior or exterior

paraboloid is formally more general, but it was shown in Lemma 2.4 in [83] that the resulting
condition for the domain is, in essence, equivalent to the standard one.
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In [82] the (slightly refined) iterative method due to Ladyzhenskaya and Uralt-
seva was applied36 to deduce the normal derivative lemma in Ω = QR,R under the
following conditions:

u ∈W 2
n,loc(Ω) ∩ C(Ω), min

Ω
u = u(0);

bi ∈ Ln(Ω), bn ∈ Lq(Ω), q > n.

Thus, it turned out that, in comparison with the case when bi ∈ Ln(Ω), it is
sufficient to impose a stronger condition only on the normal component of the
vector b.

As of today, the sharpest conditions ensuring the validity of both the normal
derivative lemma and the gradient estimate for the solution of the Dirichlet problem
on the boundary of the domain are those obtained in [83]. It was also shown
explicitly that these results are dual to one another. These results were obtained
by combining the technique due to Ladyzhenskaya, Uraltseva, and Safonov with
an Aleksandrov-type estimate from [60], where the condition on bi(2) in (2.21) was
improved to |bi(2)(x)| ⩽ σ(xn)/xn, σ ∈ D.

Here is the statement of this result.

Theorem 2.5. Let L be a uniformly elliptic operator of the form (2.1) in the
domain Ω = QR,R . Let bi = bi(1) + bi(2) and assume that

bi(1) ∈ Ln(Ω), ∥bn(1)∥n,Qr,r
⩽ σ(r) for r ⩽ R,

and |bi(2)(x)| ⩽
σ(xn)
xn

, σ ∈ D.

Also let u ∈W 2
n,loc(Ω) ∩ C(Ω). Then the following assertions hold:

1. If u > 0 in QR,R , u(0) = 0, and Lu ⩾ 0, then

inf
0<xn<R

u(0, xn)
xn

> 0.

2. If u
∣∣
xn=0

⩽ 0, u(0) = 0, and Lu = f (1) + f (2) , where

∥f (1)
+ ∥n,Qr,r

⩽ σ(r) for r ⩽ R, and f
(2)
+ (x) ⩽

σ(xn)
xn

,

then
sup

0<xn<R

u(0, xn)
xn

⩽ C,

where the value of C <∞ is determined by known quantities.

It is important to note that due to the presence of bi(2) one can perform a coor-
dinate change involving the regularized distance in a neighbourhood of an insuf-
ficiently smooth boundary. In this way we can reduce to Theorem 2.5 the corre-
sponding results in domains satisfying the exterior C1,D-paraboloid condition.

36It was noted in [82] that for bi ∈ Lq(Ω) with q > n, the normal derivative lemma was in fact
already established in [84], Lemma 4.4. This had remained unnoticed for more than 20 years!
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A new counterexample was constructed in [15], which shows that the interior
C1,D-paraboloid condition is sharp for the normal derivative lemma. We formulate
it in the simplest case.

Theorem 2.6. Let Ω be a domain that is locally convex in a neighbourhood of the
origin, that is,

Ω ∩BR =
{
x ∈ Rn : F (x′) < xn <

√
R2 − |x′|2

}
for some R > 0, where F is a convex function, F ⩾ 0, and F (0) = 0.

Next, let u ∈ W 2
n,loc(Ω) ∩ C(Ω) be a solution of the equation L0u = 0 with the

uniformly elliptic operator L0 , and let u
∣∣
∂Ω∩BR

= 0.
If the function

δ(r) = sup
|x′|⩽r

F (x′)
|x′|

fails the Dini condition at zero, then

lim
ε→+0

u(εxn)
ε

= 0.

Note that if δ(r) satisfies the Dini condition at zero, then Ω satisfies the inte-
rior C1,D-paraboloid condition at the origin. Thus, in the case of a locally convex
domain the Dini condition for δ(r) at zero is necessary and sufficient for the normal
derivative lemma to hold.

We stress that in all previous counterexamples of this type (see [34], [35], [37],

and [85]) it is assumed that the function inf
|x′|⩽r

F (x′)
|x′|

fails the Dini condition.

Roughly speaking, in these counterexamples the Dini condition must fail in all
directions, whereas in Theorem 2.6 it is sufficient for it to be violated in a single
direction.

For domains of general form, a more refined counterexample was constructed
in [86]. However, it is too complicated to be described here.

2.5. Harnack’s inequality. As already mentioned in the Introduction, Harnack’s
inequality, which can be regarded as a qualitative version of the strong maximum
principle, was first proved by Harnack [3] for harmonic functions on the plane.
Since Harnack’s proof is based on Poisson’s formula, it clearly works in all dimen-
sions. Harnack’s formulation is presented in the majority of textbooks:

If u ⩾ 0 is a harmonic function in BR ⊂ Rn , then

u(0)
(R− |x|)Rn−2

(R+ |x|)n−1
⩽ u(x) ⩽ u(0)

(R+ |x|)Rn−2

(R− |x|)n−1
. (2.22)

Hence, for Ω = BR and Ω′ = BθR with θ < 1, we obtain inequality (1.2) with C =(
1 + θ

1− θ

)n

directly.

Throughout this subsection we assume that the uniform ellipticity condition (2.3)
is satisfied.
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In 1912 Lichtenstein proved inequality (1.2) for general operators L+c(x), c ⩾ 0,
with C2-smooth coefficients (also in dimension two).

In 1955 Serrin established Harnack’s inequality for n = 2 and operators L+c(x),
c ⩾ 0, with bounded coefficients. This result was also proved independently by Bers
and Nirenberg at the same time. For n ⩾ 3, Serrin also proved (1.2) under the
assumption that37 aij ∈ C0,D(Ω).

Landis [87] (see also [28], Ch. 1) made a significant improvement. Using his
‘growth lemma’, Landis proved Harnack’s inequality in any dimension for the oper-
ator L0 with bounded coefficients under the additional condition that the eigenval-
ues of the matrix A have sufficiently small dispersion.38 Namely, he assumed that
the following relations hold (after multiplying A by a suitable positive function):

Tr(A) ≡ 1 and ν >
1

n+ 2
. (2.23)

(Clearly, we always have ν ⩽ 1/n, where equality is only attained for the Laplace
operator.)

Note that all the above results were established for classical solutions u ∈ C2(Ω).
Finally, Krylov and Safonov [88], [89] made the decisive step. By combining Lan-

dis’s method with the estimates due to Aleksandrov–Bakelman (in the elliptic case)
and Krylov [57] (in the parabolic case), they were able to obtain inequality (1.2)
for strong solutions of elliptic [89] and parabolic [88] equations with operators of
the general form L + c(x), c ⩾ 0 (with bounded coefficients) without assuming
that the matrix A is continuous or that the dispersion of its eigenvalues is small.39

For operators L such that bi ∈ Ln(Ω), Harnack’s inequality was proved in [82]
(see also [59]). In [91] and [92] a unified approach to the proof of Harnack’s inequal-
ity for both divergence and non-divergence operators was presented. At the same
time, it was shown in [91]40 that Harnack’s inequality can fail even when n = 1 for
operators of mixed (divergence-non-divergence) form

−Di(aij(x)Dj)− ãij(x)DiDj

(the matrices of the leading coefficients A and Ã satisfy the uniform ellipticity
condition).

We also refer to [94], where Harnack’s inequality and the Hölder continuity of
solutions were treated in the ‘abstract’ context of metric and quasimetric spaces.

37More precisely, the leading coefficients of the operator must satisfy the Dini condition in
a neighbourhood of ∂Ω.

38Such conditions were introduced for the first time by Cordes in 1956, so Landis called (2.23)
a Cordes-type condition.

39Note that if c ≡ 0, then Harnack’s inequality yields easily an a priori estimate for the Hölder
norm of the solution. By extending this estimate (also proved in [88] and [89]) to quasilinear
equations, Ladyzhenskaya and Uraltseva showed that the Dirichlet problem for non-divergence
quasilinear equations is solvable under natural structure conditions only (see the survey [90]).
Subsequently, this result was extended to other boundary-value problems for quasilinear and fully
non-linear equations.

40See also [93] in this connection.
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3. Divergence form operators

In this section we look at operators with the structure

L ≡ −Di(aij(x)Dj) + bi(x)Di (3.1)

(if b ≡ 0, then we write L0 in place of L), and also operators of the more general
form

L̂ ≡ −Di(aij(x)Dj + di) + bi(x)Di + c(x). (3.2)

The matrix of leading coefficients A is symmetric and satisfies the ellipticity
condition

ν(x)|ξ|2 ⩽ aij(x)ξiξj ⩽ V(x)|ξ|2 for all ξ ∈ Rn (3.3)

or the uniform ellipticity condition (2.3) for almost all x ∈ Ω. The functions ν(x)
and V(x) in (3.3) are positive and finite41 almost everywhere in Ω.

Here, by a solution of the equation L̂u = 0 we mean a weak solution, that is,
a function u ∈W 1

2,loc(Ω) such that the integral identity

⟨L̂u, η⟩ :=
�

Ω

(aijDjuDiη + biDiu η + diuDiη + cuη) dx = 0

holds for each test function η ∈ C∞0 (Ω). Correspondingly, a weak supersolution
(L̂u ⩾ 0) is a function u ∈W 1

2,loc(Ω) such that
�

Ω

(aijDjuDiη + biDiu η + diuDiη + cuη) dx ⩾ 0 (3.4)

for each non-negative test function η ∈ C∞0 (Ω). In a similar way, we define a weak
subsolution (L̂u ⩽ 0).

For the operator L̂ we prove the weak maximum principle under the simplest
conditions on its coefficients.

Theorem 3.1. For n ⩾ 3, let L̂ be an operator of the form (3.2) in a domain
Ω ⊂ Rn , assume that (2.3) is satisfied,

bi, di ∈ Ln(Ω), and c ∈ Ln/2(Ω),

and let u ≡ 1 be a weak supersolution of the equation L̂u = 0 in Ω.
Let u ∈W 1

2,loc(Ω), and let L̂u ⩾ 0 in Ω and u ⩾ 0 on42 ∂Ω. Then u ⩾ 0 in Ω.

Proof. 1. To begin with, note that the bilinear form ⟨L̂u, η⟩ is continuous
on W 1

2,loc(Ω) × W̊ 1
2 (Ω′) when Ω′ ⊂ Ω. Indeed, using the Hölder and Sobolev

inequalities, we obtain

|⟨L̂u, η⟩| ⩽ ν−1∥Du∥2,Ω′∥Dη∥2,Ω′ + ∥b∥n,Ω∥Du∥2,Ω′∥η∥2∗,Ω′
+ ∥d∥n,Ω∥Dη∥2,Ω′∥u∥2∗,Ω′ + ∥c∥n/2,Ω∥u∥2∗,Ω′∥η∥2∗,Ω′

⩽ C
(
∥Du∥2,Ω′ + ∥u∥2,Ω′

)
∥Dη∥2,Ω′ .

41Note that, by contrast to non-divergence form operators, multiplication by an arbitrary
positive function does not preserve the properties of L. Hence the behaviour of ν(x) and V(x)
must be treated separately.

42Just as in footnote 29, this means that for each ε > 0, we have u+ ε > 0 in a neighbourhood
of ∂Ω.
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(Here and in what follows 2∗ = 2n/(n− 2) is the critical Sobolev exponent.) So we
can take arbitrary test functions η ∈ W̊ 1

2 (Ω) with compact support in the definition
of a weak (sub/super)solution.

2. By contrast, assume that ess infΩ u = −A < 0 (the case when A = ∞
is not ruled out). Then, for 0 < k < A, the function η = (u + k)− ∈ W̊ 1

2 (Ω) is
non-negative and has compact support in Ω, so that (3.4) holds. Since D(u+k)− =
−Du · χ{u<−k}, this yields

�
{u<−k}

aijDjuDiu dx ⩽
�
{u<−k}

(biDiu η + diuDiη + cuη) dx

=
�
{u<−k}

(bi − di)Diu η dx

+
�
{u<−k}

(diDi(uη) + c(uη)) dx.

Here the last term is non-positive because u ≡ 1 is a weak supersolution. Using
condition (2.3) on the left-hand side and the Hölder and Sobolev inequalities on
the right-hand side, we obtain

ν∥Du∥22,{u<−k} ⩽
(
∥b∥n,{u<−k} + ∥d∥n,{u<−k}

)
∥Du∥22,{u<−k}. (3.5)

If A = ∞, then the first factor on the right-hand side tends to zero as k → ∞,
which yields a contradiction.

On the other hand, if A < ∞, then Du = 0 almost everywhere on the set
{u = −A}, and we can write (3.5) as

ν ⩽ ∥b∥n,Ak
+ ∥d∥n,Ak

,

where
Ak = {x ∈ Ω: −A < u(x) < −k, Du(x) ̸= 0}.

It is obvious that |Ak| → 0 as k → A. Therefore,

∥b∥n,Ak
+ ∥d∥n,Ak

→ 0,

and we arrive at a contradiction once again. 2

Remark 3.1. Recently, the weak maximum principle was proved in [95] for functions
u ∈ W 1

2 (Ω) in a domain of John class such that L̂u ⩾ 0 in Ω and in place of the
condition u ⩾ 0 on ∂Ω we have the condition with conormal derivative (aijDju +
diu)ni ⩾ 0, that is, (3.4) holds for all non-negative functions η ∈W 1

2 (Ω).

3.1. Harnack’s inequality and the strong maximum principle. By contrast
to non-divergence operators,43 in the divergence case almost all results on the strong

43Compare the chronology of the original results as presented in the table:
Strong maximum principle Harnack’s inequality

Laplace operator 1839/40 1887
Operators with smooth
coefficients 1892 1912
Operators with discontinuous
coefficients 1927 1955
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maximum principle were obtained as consequences of the corresponding Harnack
inequalities. In this connection, we present the history of these results in parallel.

Two papers of 1959 and 1963 by Littman stand slightly apart. He considered
operators

L∗ ≡ −DiDja
ij(x)−Dib

i(x), (3.6)

which are the formal adjoints of operators of the form (2.1). By a weak supersolution
of the equation L∗u+ cu = 0 we mean a function u ∈ L1,loc(Ω) such that

⟨L∗u+ cu, η⟩ :=
�

Ω

u(Lη + cη) dx ⩾ 0

for each non-negative test function η ∈ C∞0 (Ω). In the first of these papers the oper-
ator has smooth coefficients, but in the other one the assumptions are significantly
relaxed. Here is the statement of the result.

Let L be an operator of the form (2.1), let aij , bi , and c be functions in C0,α(Ω)
with α ∈ (0, 1), assume that (2.3) holds, and let u be a weak supersolution of the
equation L∗u+ cu = 0 in Ω. Then the following conditions hold:

1. The function u can have no zero minimum in Ω unless u ≡ 0.
2. If the function u ≡ 1 is a weak supersolution of the equation L∗u + cu = 0

in Ω,44 then u can have no negative minimum in Ω unless u ≡ const (in this
case u is a weak solution).

3. If the function −u is a weak supersolution of the equation L∗u+cu = 0 in Ω,
then u can have no positive minimum in Ω unless u ≡ const (in this case u
is a weak solution).

Concerning further development of these results for operators of the form (3.6), the
reader can consult [96] and [97] (see also the literature cited therein).

We return to divergence equations. For a uniformly elliptic operator L0 with
measurable coefficients, Harnack’s inequality was first proved by Moser [98].45
Stampacchia [101] generalized this to operators of the form (3.2) under the assump-
tion that

bi ∈ Ln(Ω), di ∈ Lq(Ω), and c ∈ Lq/2(Ω), q > n. (3.7)

A similar result can be extracted from the paper [102] on quasilinear equations.
Two versions of the strong maximum principle were proved as corollaries in [101]:
1) for the operator L̂ when ess infΩ u = 0;
2) for the operator L.

We present a slightly simplified proof of the second result, which is based on an
idea due to Moser [103], but does not rely on Harnack’s inequality.

Theorem 3.2. Let L be a uniformly elliptic operator of the form (3.1) in a domain
Ω ⊂ Rn , where n ⩾ 3, and let bi ∈ Ln(Ω). Let u ∈W 1

2,loc(Ω) and Lu ⩾ 0 in Ω. If u
attains its minimum value at a point46 x0 ∈ Ω, then u ≡ const.

44Here it means that −DiDj(a
ij)−Di(b

i) + c ⩾ 0 in the sense of distributions.
45As shown in [99], (1.2) can also be derived from De Giorgi’s proof [100] of the Hölder conti-

nuity of weak solutions of the equation L0u = 0.
46In the following sense: ess lim infx→x0 u = ess infΩ u.



218 D.E. Apushkinskaya and A. I. Nazarov

Proof. 1. Similarly as in part 1 of the proof of Theorem 3.1, we can show that it
is possible to take arbitrary test functions η ∈ W̊ 1

2 (Ω) with compact support in the
definition of a weak (sub/super)solution.

2. Now let v be a weak subsolution, so that Lv ⩽ 0 in Ω. In the inequality
⟨Lv, η⟩ ⩽ 0 we take the test function η = φ′(v) · ς, where ς is a non-negative
Lipschitz function with support in B2R ⊂ Ω and φ is a convex Lipschitz function
on R that is equal to zero on the negative half-axis. This yields

�
B2R∩{u>0}

(
aijDjV Diς +

φ′′(v)
(φ′(v))2

aijDjV DiV ς + biDiV ς

)
dx ⩽ 0, (3.8)

where V = φ(v) ∈ W 1
2,loc(Ω). In particular, since the second term in (3.8) is

non-negative, V is also a weak subsolution.
In (3.8) we put47 φ(τ) = τp

+, p > 1, and ς = V ζ2, where ζ is a smooth cut-off
function in B2R. Then we obtain
�

B2R

2p− 1
p

aijDjV DiV ζ
2 dx ⩽ −

�
B2R

(2aijDjV V Diζ ζ + biDiV V ζ
2) dx. (3.9)

We estimate the left-hand side of (3.9) from below by using (2.3), and the right-hand
side from above by using the Hölder and Sobolev inequalities:

ν∥DV ζ∥22,B2R
⩽ 2ν−1∥DV ζ∥2,B2R

∥V Dζ∥2,B2R

+ ∥b∥n,B2R
∥DV ζ∥2,B2R

∥V ζ∥2∗,B2R

⩽ N(n)∥b∥n,B2R
∥DV ζ∥22,B2R

+ C∥DV ζ∥22,B2R
∥V Dζ∥22,B2R

.

By Lebesgue’s theorem, for any sufficiently small R∗,

N(n)∥b∥n,B2R∗
⩽
ν

2
.

This shows that

∥DV ζ∥2,B2R
⩽ C(n, ν, ∥b∥n,Ω)∥V Dζ∥2,B2R

(3.10)

for any R ⩽ R∗.
In (3.10) we put Rk = R(1 + 2−k), k ∈ N ∪ {0}, and take ζ = ζk such that

ζk ≡ 1 in BRk+1 , ζk ≡ 0 outside BRk
, |Dζk| ⩽

2k+2

R
.

Then we obtain

∥DV ζk∥2,BRk
⩽
C(n, ν, ∥b∥n,Ω)

R
· 2k∥V ∥2,BRk

. (3.11)

47More rigorously, we must consider φ′(v) = p(min{v+, N})p−1, N > 0, and ς = φ(v)ζ2,
followed by taking the limit as N →∞ in (3.10).
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Now, for p = pk ≡ (2∗/2)k, from Sobolev’s inequality and (3.11) we can deduce
that (  

BRk+1

v
2pk+1
+ dx

)1/(2pk+1)

⩽

(
N(n)

 
BRk

(V ζk)2
∗
dx

)1/(2∗pk)

⩽

(
4kC

 
BRk

V 2 dx

)1/(2pk)

=
(

4kC

 
BRk

v2pk
+ dx

)1/(2pk)

, (3.12)

where C depends only on n, ν, and ∥b∥n,Ω.
Iterating (3.12), we can see that the following estimate holds for any (weak)

subsolution v:

ess sup
BR

v+ ⩽ C(n, ν, ∥b∥n,Ω)
(  

B2R

v2
+ dx

)1/2

, R ⩽ R∗. (3.13)

3. Let us turn to the proof of the theorem. We can assume without loss of
generality that ess infΩ u = 0.

Suppose that the theorem does not hold. Then there is an x0 in Ω such that
ess lim infx→x0 u = 0, but for some k > 0, δ > 0, and R ⩽ R∗, we have

|{u ⩾ k} ∩BR(x0)| ⩾ δ|BR|. (3.14)

Without loss of generality, we can assume that B2R(x0) ⊂ Ω. We place the origin
at x0 and consider the function vε(x) = 1− ε− u/k, ε > 0. It is obvious that vε is
a subsolution.

Now we use (3.8) for V = φ(vε) ≡
(

ln
1

1− vε

)
+

(this is possible because

vε < 1) and ς = ζ2, where ζ is a smooth cut-off function equal to one in BR.
Since φ′′/φ′2 ≡ 1, using (2.3) and the Hölder and Sobolev inequalities, we obtain

ν∥DV ζ∥22,B2R
⩽
�

B2R

aijDjV DiV ζ
2 dx

⩽ −
�

B2R

(2aijDjV ζDiζ + biDiV ζ
2) dx

⩽ C(n, ν, ∥b∥n,Ω)∥DV ζ∥2,B2R
∥Dζ∥2,B2R

,

or
∥DV ζ∥2,B2R

⩽ C(n, ν, ∥b∥n,Ω)Rn/2−1. (3.15)

Now note that V vanishes on {u ⩾ k} ∩ BR and ζ ≡ 1 on this set. Hence it
follows from the proof of Lemma 5.1 in [104], Chap. II, that

|{u ⩾ k} ∩BR| · V (x) ζ(x) ⩽
(4R)n

n

�
B2R

|DV (y)| ζ(y)
|y − x|n−1

dy.
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We use the Hardy–Littlewood–Sobolev inequality (for instance, see [17], Theo-
rem 1.18.9/3) to estimate the right-hand side, taking (3.14) and (3.15) into account:

∥V ∥2,BR
⩽ C(n)R∥V ζ∥2∗,B2R

⩽
C(n)
δ

R∥DV ζ∥2,B2R

⩽ C(n, ν, δ, ∥b∥n,Ω)Rn/2,

or (  
BR

V 2 dx

)1/2

⩽ C(n, ν, δ, ∥b∥n,Ω).

Finally, as V is a subsolution, we can use (3.13). This yields ess supBR/2
V+ ⩽ C,

which is equivalent to
ess inf
BR/2

u ⩾ k(exp{−C} − ε).

Since the constant C is independent of ε, we arrive at a contradiction with the
assumption that ess lim infx→0 u = 0. 2

Remark 3.2. If we use the estimate
�

B2R

|biDiV V ζ
2| dx ⩽ ∥b∥Ln,∞(B2R)∥DV ζ∥2,B2R

∥V ζ∥L2∗,2(B2R)

for the last term in (3.9) (recall that the Lp,q are Lorentz spaces) and use the
strengthened Sobolev embedding theorem W̊ 1

2 (Ω) ↪→ L2∗,2(Ω), then we can relax
the condition bi ∈ Ln(Ω) to bi ∈ Ln,q(B2R) for any q < ∞. As shown by the
counterexample at the beginning of § 2.4, we cannot take q = ∞. However, if
the norm ∥b∥Ln,∞(Ω) is sufficiently small, then the proof goes through unaltered.

Harnack’s inequality holds under the same conditions (the proof of Theorem 2.5′
in [105] transfers fully to this case).

Remark 3.3. In the two-dimensional case Theorem 3.2 (and even Theorem 3.1)
fails.48 Here is a counterexample from [106].

For n = 2, we put u(x) = ln−1(|x|−1). It is obvious that for r ⩽ 1/2, the function
u ∈W 1

2 (Br) is a weak solution of the equation

−∆u+ bi(x)Diu = 0,

where
bi(x) =

2xi

|x|2 ln(|x|−1)
∈ L2(Br).

However, u takes its minimum value at 0.
Thus, for n = 2, the condition on the bi must be stronger. For example, the last

term in (3.9) can be estimated as follows (cf. [107], Theorem 3.1):
�

B2R

|biDiV V ζ
2| dx ⩽ ∥b∥LΦ1 (B2R)∥DV ζ∥2,B2R

∥V ζ∥LΦ2 (B2R),

48This is not mentioned in [101].
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where LΦ is the Orlicz space generated by the N -function Φ (for instance, see [108],
§ 10) with

Φ1(t) = t2 ln(1 + t) and Φ2(t) = exp{t2} − 1,

and the Yudovich–Pohozaev embedding theorem W̊ 1
2 (Ω) ↪→ LΦ2(Ω) (for instance,

see [108], § 10.6) can be used. This yields the strong maximum principle under the
assumption that b ln1/2(1+ |b|) ∈ L2(Ω), which was introduced in [105]. Harnack’s
inequality also holds under this assumption (see [105], Theorem 2.5′). The above
example shows that the exponent 1/2 of the logarithm cannot be reduced.

The number of publications devoted to Harnack’s inequality for divergence
equations (even linear ones) has been growing rapidly since the second half of the
1960s. We focus on three important lines of development of this subject.

I. Non-uniformly elliptic operators. Operators satisfying the ellipticity condi-
tion (3.3) under different assumptions about ν(x) and V(x) have been studied in a
number of papers.

Trudinger [109] proved Harnack’s inequality for operators L0 such that

ν−1 ∈ Lq(Ω) and ν−1V2 ∈ Lr(Ω),
1
q

+
1
r
<

2
n
.

In [110] he considered operators of the general form (3.2) under the weaker condition

ν−1 ∈ Lq(Ω) and V ∈ Lr(Ω),
1
q

+
1
r
<

2
n
, (3.16)

where the lower-order coefficients were subject to certain integrability conditions
with weight determined by the matrix A.49

Under these conditions, Harnack’s inequality was proved in [110], as was the
strong maximum principle in the following form:

Let u be a weak supersolution of the equation L̂u = 0 in Ω. If u ≡ 1 is another
supersolution, then u can attain no negative minimum in Ω unless u ≡ const (in
this case u is a weak solution).

For operators of the simplest form L0, the condition on the exponents in (3.16)

was recently relaxed in [111] to
1
q

+
1
r
<

2
n− 1

. On the other hand, a counterexam-

ple in [112] shows that if n ⩾ 4, then for
1
q

+
1
r
>

2
n− 1

, the equation L0u = 0 can

have a weak solution in BR which is unbounded in BR/2. Whether or not Harnack’s

inequality is valid in the borderline case
1
q

+
1
r

=
2

n− 1
is still an open question.

In [113] operators L0 were considered under the following conditions:50
1) there is an N ⩾ 1 such that V(x) ⩽ Nν(x) for almost all x ∈ Ω;
2) ν belongs to the Muckenhoupt class A2, that is,

sup
x∈Rn,r>0

(  
Br(x)

ν(y) dy ·
 

Br(x)

ν−1(y) dy
)
<∞. (3.17)

49For a uniformly elliptic operator, these are close to Stampacchia’s conditions (3.7).
50These go back to a 1972 paper on quasilinear equations by Edmunds and Peletier. However,

the constraints (3.16) were additionally imposed on ν(x) and V(x) in this paper.
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Under these assumptions, Harnack’s inequality and the strong maximum principle
were proved in [113]. In addition, a counterexample in [113] shows that relaxing
the condition ν ∈ A2 to ν ∈

⋃
p>2Ap does not ensure Harnack’s inequality.51

In [114] the results of [113] were generalized to operators of the general form (3.2),
with the conditions

bi

ν
∈ Lm(Ω),

di

ν
∈ Lq, and

c

ν
∈ Lq/2, q > m, (3.18)

imposed on the lower-order coefficients. (Here m, called the ‘intrinsic dimension’
in [114], is generated by the behaviour of the weight ν. For uniformly elliptic
operators, m = n and these conditions turn into (3.7).)

We also refer to [115] and [116], where Harnack’s inequality was proved for the
operator L0 with functions ν(x) and V(x) satisfying ‘abstract’ conditions, namely,
certain weighted Sobolev and Poincaré inequalities.

II. Lower-order coefficients in Kato classes. Lebesgue spaces (as well as Lorentz
and Orlicz spaces) are rearrangement invariant: the norm of a function f in such a
space depends only on the behaviour of the measure of the set {x ∈ Ω: |f(x)| > N}
as N → ∞. A more refined description of the singularities of the coefficients can
be given in terms of Kato classes.

Recall that the class Kn,β , β ∈ (0, n), consists of the functions f ∈ L1(Ω) such
that

ωβ(r) := sup
x∈Ω

�
Ω∩Br(x)

|f(y)|
|x− y|n−β

dy → 0 as r → 0. (3.19)

Correspondingly, f ∈ Kn,β,loc means that fχΩ′ ∈ Kn,β for each subdomain Ω′ such
that Ω′ ⊂ Ω.

The functionals ωβ(r) and spaces defined in terms of these were introduced by
Schechter in [117] and thoroughly investigated in [118].52 Information on further
development of this theory and references can be found in [121].

All the results in this subsection concern the case n ⩾ 3.
In [122] Harnack’s inequality was obtained for the operator −∆ + c(x) with

c ∈ Kn,2. In [123] this result was extended to uniformly elliptic operators of the
form L0 + c(x) under the same assumption.53

In [125] Harnack’s inequality was proved for uniformly elliptic operators of the
more general form L + c(x) under the assumption54

(bi)2, c ∈ Kn,2,loc. (3.20)

Finally, in [127] the two lines of research described above were combined. Namely,
Harnack’s inequality was proved for operators (3.2) such that the functions ν(x)
and V(x) in (3.3) satisfy V(x) ⩽ Nν(x) and (3.17), while (bi)2, (di)2, and c belong

51The strong maximum principle is not violated in this counterexample.
52For some particular values of β, condition (3.19) was used in [119] and [120]. In this con-

nection, the classes Kn,β are usually called the Kato or Kato–Stummel classes (which is another
manifestation of Arnold’s principle). Some generalizations of the classes Kn,β were presented in
a 2005 paper by Eridani and Gunawan.

53See also [124] in this connection.
54In the earlier paper [126] the operator −∆+bi(x)Di was considered under the more restrictive

conditions (bi)2 ∈ Kn,2,loc and bi ∈ Kn,1,loc.
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to a weighted analogue of the Kato class Kn,2 satisfying the following additional
condition:55 the counterpart of ω2 in (3.19) has an estimate O(rγ) for some γ > 0
as r → 0.

In general, condition (3.20) is very close to being optimal. Some variations are
possible under certain additional assumptions about the matrix A.

In [128] a uniformly elliptic operator of the form (3.1), where aij ∈ C0,α(Ω) with
α ∈ (0, 1), was considered. This restriction made it possible to prove Harnack’s
inequality for bi ∈ Kn,1.

Note that the Hölder condition on the leading coefficients in [128] is superfluous:
using the estimates from [129] for the Green’s function and its derivatives, one can
derive the same result for aij ∈ C0,D(Ω).

In the recent paper [130] an intermediate (in a certain sense) case was examined.
In this paper the leading coefficients of the uniformly elliptic operator L belong to
the Sarason space VMO(Ω). This means that ωij(ρ) → 0 as ρ→ 0, where

ωij(ρ) := sup
x∈Ω

sup
r⩽ρ

 
Ω∩Br(x)

∣∣∣∣aij(y)−
 

Ω∩Br(x)

aij(z) dz
∣∣∣∣ dy. (3.21)

In addition, the condition |bi|β ∈ Kn,β , β > 1, with the additional constraint

sup
x∈Ω

�
Ω∩Br(x)\Br/2(x)

|bi(y)|β

|x− y|n−β
dy ⩽ σβ(r), σ ∈ D, (3.22)

is imposed on the lower-order coefficients. The strong maximum principle for such
operators was proved in [130].56 Note that Harnack’s inequality can also be estab-
lished under such assumptions. It is still unclear if the constraint (3.22) can be
dropped or relaxed.

III. Operators with div(b) ⩽ 0. In investigations of problems in hydrodynamics
one often encounters (for instance, see [131] or [132]) operators −∆ + bi(x)Di (or,
more generally, operators of the form (3.1)) satisfying the additional structure con-
dition Di(bi) = 0 or Di(bi) ⩽ 0 in the sense of distributions. Recall that this means
that �

Ω

biDiη dx = 0 for all η ∈ C∞0 (Ω)

or �
Ω

biDiη dx ⩾ 0 for all η ∈ C∞0 (Ω), η ⩾ 0,

respectively.
Using this condition, we can significantly relax the regularity assumptions on the

coefficients bi.
In [133] Harnack’s inequality was established for the operator −∆ + bi(x)Di,

where Di(bi) = 0, under the assumption that bi ∈ BMO−1(Ω). This means that
bi = Dj(Bij) in the sense of distributions, where Bij ∈ BMO(Ω), that is, the
functions ωij(ρ) defined in (3.21) (for Bij in place of aij) are bounded.57 The

55We believe that this condition is technical, but the question is still open to our knowledge.
56In the case when n = 2, also considered in [130], condition (3.22) is slightly modified.
57It is obvious that Ln(Ω) ⊂ BMO−1(Ω) because of the embedding W 1

n(Ω) ↪→ BMO(Ω).
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equality Di(bi) = 0 is ensured by the additional condition Bij(x) = −Bji(x) for
almost all x ∈ Ω.

In [105] uniformly elliptic operators of the form (3.1) were investigated in the
case when Di(bi) ⩽ 0. Furthermore, conditions on the lower-order coefficients were
expressed in terms of Morrey spaces.

Recall that the Morrey space Mα
p (Ω), 1 ⩽ p <∞, α ∈ (0, n), consists of functions

f ∈ Lp(Ω) such that

∥f∥Mα
p (Ω) := sup

Br(x)⊂Ω

r−α∥f∥p,Br(x) <∞.

In particular, Harnack’s inequality was proved in [105] under the assumption
that58 bi ∈ Mn/q−1

q (Ω), n/2 < q < n. Filonov produced a very delicate counterex-
ample (Theorem 1.6 in [106]), which shows that not even when Di(bi) = 0 can we
take an exponent α smaller than n/q − 1.

The strong maximum principle for Lipschitz supersolutions59 was established
in [105] in the case when bi ∈ Lq(Ω), q > n/2. However, by approximation ([134],
Theorem 3.1), we can partially generalize this result as follows:

Let Ω ⊂ Rn with n ⩾ 3. Let u ∈ W 1
2,loc(Ω) be a weak solution of the equation

−∆u+ bi(x)Diu = 0 in Ω, where

Di(bi) = 0, bi ∈ Lq(Ω), q >
n

2
for n ⩾ 4, and q = 2 for n = 3.

If u attains its minimum value at a point x0 ∈ Ω, then u ≡ const.
On the other hand, the following counterexample was presented in [134].
Let n ⩾ 4 and let u(x) = ln−1(|x′|−1). Then u ∈ W 1

2 (Br) for r ⩽ 1/2. Direct
calculations show that u is a weak solution of the equation −∆u + bi(x)Diu = 0
for60

bi(x) =


(
n− 3
|x′|

+
2

|x′| ln(|x′|−1)

)
xi

|x′|
, i < n;

−
(

(n− 3)2

|x′|
+

2(n− 3)
|x′| ln(|x′|−1)

+
2

|x′| ln2(|x′|−1)

)
xn

|x′|
, i = n.

It is easy to see that Di(bi) = 0 and bi ∈ Lq(Br) for all q < (n − 1)/2. However,
there is no strong maximum principle. The recent paper [135] contains an example
of a vector field b ∈ L(n−1)/2(Br) with Di(bi) = 0 such that the equation −∆u +
bi(x)Diu = 0 has a weak solution that is unbounded in Br/2. This can also be
regarded as a violation of the strong maximum principle. The question of whether
or not the strong maximum principle holds for (n − 1)/2 < q ⩽ n/2 in the case
when Di(bi) = 0 is open.

3.2. The normal derivative lemma. The normal derivative lemma for weak
(super)solutions of the equation Lu = 0 has a fairly short history. The first result
was due to Finn and Gilbarg [136] in 1957. They considered uniformly elliptic

58It is obvious that Ln(Ω) ⊂ Mn/q−1
q (Ω) in view of Hölder’s inequality.

59For weak supersolutions, the assumptions on bi in [105] are slightly stronger.
60The formula for bn in [134] contains a typo.
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operators of the form (3.1) for aij ∈ C0,α(Ω) and bi ∈ C(Ω) and a two-dimensional
domain of class C1,α, α ∈ (0, 1).

Only in 2015 was this generalized to n dimensions by Sabina de Lis, who assumed
that the domain has a smooth boundary.61 In [137] the normal derivative lemma
was proved for all n ⩾ 3 under the same assumptions about the aij and ∂Ω as
in [136] for bi ∈ Lq(Ω), q > n.

As long ago as 1959, Gilbarg constructed a counterexample62 showing that the
assumption about the leading coefficients cannot be relaxed to aij ∈ C(Ω). Here is
an example of a more general form (see [83]).

Let Ω be a domain in Rn such that Ω ∩ {xn < h} = T(ϕ, h), where ϕ ∈ C1, but
the Dini condition at the origin fails for ϕ′. As mentioned in § 2.2, it was shown
in [35] that the normal derivative lemma does not hold for the Laplace operator in
such a domain.

Next we flatten the boundary in a neighbourhood of the origin. This produces
an operator L0 with continuous leading coefficients, for which the normal derivative
lemma does not hold in a smooth domain.

We can see from this example that the Dini condition is a natural condition on the
leading coefficients of the operator. In this connection, we refer to the paper [138]
by Kozlov and Maz’ya, who found a more elaborate condition on the coefficients
aij of the operator L0, which ensures an estimate for the gradient of the solution at
points on the (smooth) boundary ∂Ω. From the asymptotic formula for the solution
obtained in [138] one can perhaps also derive a condition for the normal derivative
lemma to hold that is sharper than the Dini condition.

To present the central idea we prove the normal derivative lemma for the simplest
operator L0 with coefficients63 aij ∈ C0,D(Ω) under certain minimal conditions on
the boundary of the domain.

Theorem 3.3. Let Ω ⊂ Rn be a domain satisfying the interior C1,D-paraboloid
condition. Assume that the coefficients of the operator L0 satisfy (2.3) and the
conditions aij ∈ C0,D(Ω). Let u ̸≡ const be a weak supersolution of the equation
L0u = 0 in Ω.

If u is a continuous function in Ω that attains its minimum at a point x0 ∈ ∂Ω,
then for any strictly inward direction ℓ,

lim inf
ε→+0

u(x0 + εℓ)− u(x0)
ε

> 0.

Proof. We can assume without loss of generality that x0 = 0 and Ω = T(ϕ, h),
where ϕ ∈ C1,D. Next, the assumptions on aij survive coordinate transformations
of class C1,D. Hence we can flatten ∂Ω in a neighbourhood of x0 and assume that
BR ∩ {xn > 0} ⊂ Ω for some R > 0.

For 0 < r < R/2, let xr = (0, . . . , 0, r) and consider the spherical shell π =
Br(xr) \Br/2(xr) ⊂ Ω.

61Presented in this work there are also examples of papers where the normal derivative lemma
for weak solutions was used incorrectly.

62In different forms it can be found in [51], Chap. 3, and [13], Chap 2.
63It is obviously sufficient that this condition should hold only in a neighbourhood of ∂Ω. One

could perhaps even manage with this condition on ∂Ω only (see [138]).
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The condition aij ∈ C0,D(Ω) yields

|aij(x)− aij(y)| ⩽ σ(|x− y|), x, y ∈ π, σ ∈ D. (3.23)

Let x∗ be a point in π. Following [136], we define a barrier function V and an
auxiliary function Ψx∗ to be the solutions of the following boundary value problems:

L0V = 0 in π,
V = 1 on ∂Br/2(xr),
V = 0 on ∂Br(xr),


Lx∗

0 Ψx∗ = 0 in π,
Ψx∗ = 1 on ∂Br/2(xr),
Ψx∗ = 0 on ∂Br(xr),

where Lx∗

0 is an operator with constant coefficients:

Lx∗

0 Ψx∗ := −Di(aij(x∗)DjΨx∗).

It is well known that Ψx∗ ∈ C∞(π). On the other hand, the existence of
a (unique) weak solution V follows from the general linear theory. Moreover,
Lemma 3.2 in [129] shows that V ∈ C1(π) and the following estimate holds for
y ∈ π:

|DV(y)| ⩽ N1(n, ν, σ)
r

. (3.24)

We put w = V−Ψx∗ and observe that w = 0 on ∂π. Hence we have a represen-
tation for w in terms of the Green’s function Gx∗ of the operator Lx∗

0 in π:

w(x) =
�

π

Gx∗(x, y)Lx∗

0 w(y) dy
(⋆)
=

�
π

Gx∗(x, y)
(
Lx∗

0 V(y)− L0V(y)
)
dy

(equality (⋆) holds because Lx∗

0 Ψx∗ = L0V = 0).
Integrating by parts, we obtain

w(x) =
�

π

Dyi
Gx∗(x, y)

(
aij(x∗)− aij(y)

)
DjV(y) dy. (3.25)

Differentiating both sides of (3.25) with respect to xk, we have

Dkw(x∗) =
�

π

Dxk
DyiGx∗(x∗, y)

(
aij(x∗)− aij(y)

)
DjV(y) dy,

k = 1, . . . , n.
(3.26)

The derivatives of the Green’s function Gx∗(x, y) have the following estimate
(for instance, see [129], Theorem 3.3):

|DxDyGx∗(x, y)| ⩽
N2(n, ν)
|x− y|n

, x, y ∈ π. (3.27)

The substitution of (3.24), (3.27), and (3.23) into (3.26) yields

|Dw(x∗)| ⩽ N1N2

r

�
B2r(x∗)

σ(|x∗ − y|)
|x∗ − y|n

dy,
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so that

|DV(x∗)−DΨx∗(x∗)| ⩽
N3(n, ν, σ)

r

� 2r

0

σ(τ)
τ

dτ, x∗ ∈ π. (3.28)

Since the normal derivative lemma holds for operators with constant coefficients,
for any strictly inward direction ℓ we have

∂ℓΨ0(0) ⩾
N4(n, ν, ℓ)

r
> 0.

In view of (3.28),

∂ℓV(0) ⩾ ∂ℓΨ0(0)− |DV(0)−DΨ0(0)| ⩾ N4

r
− N3

r

� 2r

0

σ(τ)
τ

dτ ⩾
N4

2r

for any sufficiently small r > 0. Fix such a value of r. Since u ̸≡ const, the strong
maximum principle yields u − u(0) > 0 on ∂Br/2(xr). Hence for any sufficiently
small κ > 0, we have

L0(u− u(0)− κV) ⩾ 0 in π; u− u(0)− κV ⩾ 0 on ∂π.

Now the weak maximum principle yields u− u(0) ⩾ κV in π. As equality holds at
the origin, we have

lim inf
ε→+0

u(εℓ)− u(0)
ε

⩾ κ∂ℓV(0),

and the proof is complete. 2

We present the statement of a more general result from [16]. The conditions on
the lower-order coefficients in that paper which ensure the normal derivative lemma
are currently the sharpest ones.

Theorem 3.4. Assume that a domain Ω ⊂ Rn and the leading coefficients of the
operator L satisfy the hypotheses of Theorem 3.3. Also let

sup
x∈Ω

�
Ω∩Br(x)

|b(y)|
|x− y|n−1

d(y)
d(y) + |x− y|

dy → 0 as r → 0. (3.29)

Let u ∈ W 1
2 (Ω) be a weak non-constant supersolution of the equation Lu = 0 in Ω,

and let biDiu ∈ L1(Ω). Then the result of Theorem 3.3 is valid.

Remark 3.4. In any subdomain Ω′ such that Ω′ ⊂ Ω, condition (3.29) coincides with
bi ∈ Kn,1 (cf. (3.22)). Hence it follows from (3.29), in particular, that bi ∈ Kn,1,loc.
On the other hand, it was shown in [16] that the assumptions on bi stated in
Theorem 2.5 imply (3.29).

Remark 3.5. The normal derivative lemma for divergence-type operators is directly
connected with the properties of the Green’s functions for these operators.

The Green’s function for a uniformly elliptic operator L0 with measurable coef-
ficients was first constructed in the historic paper [139]. Among the other results
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in that paper we name the bound64

C−1

|x− y|n−2
⩽ G(x, y) ⩽

C

|x− y|n−2

(here C depends only on n and ν), which holds in Rn for n ⩾ 3.
The role of [129] was no less important. Among other results, the paper contained

the following estimates for the Green’s function of a uniformly elliptic operator L0

with coefficients satisfying the Dini condition in a domain Ω ⊂ Rn with n ⩾ 3
satisfying the exterior ball condition:

G(x, y) ⩽
C

|x− y|n−2

d(x)
d(x) + |x− y|

d(y)
d(y) + |x− y|

,

|DxG(x, y)| ⩽ C

|x− y|n−1

d(y)
d(y) + |x− y|

,

|DxDyG(x, y)| ⩽ C

|x− y|n

(the constant C depends on n, ν, on the function σ in the Dini condition for the
coefficients, and on the domain Ω).

Thus, condition (3.29) means, roughly speaking, that the function |b(y)| ×
|DxG(x, y)| is uniformly integrable with respect to x.

4. Some generalizations and applications

As already mentioned in the Introduction, in this section we give a brief presen-
tation of a few topics that either generalize the main results in this survey or rely
on them directly.

4.1. The symmetry of solutions of non-linear boundary-value problems.
We start with the celebrated moving plane method. It was first applied by Alek-
sandrov [141], Part V, to the problem of characterising the sphere by the property
that its mean curvature (or some other function of the principal curvatures) is
constant.65 In 1971 Serrin re-discovered this method in his solution of the overde-
termined problem

−∆u = 1 in Ω, u
∣∣
∂Ω

= 0, ∂nu
∣∣
∂Ω

= const

in an unknown domain Ω of class C2. Serrin showed that such a problem is solvable
if and only if Ω is a ball.

The method owes its popularity to [26], where the problem

−∆u = f(u) in BR, u
∣∣
∂BR

= 0 (4.1)

and some generalizations of it were considered. Here is the core result of that paper.
64Subsequently, this bound was extended to more general operators of the form (3.1). For

recent results in this area and a historical survey, see [140].
65The statement of the problem and its history can be found in [141], Part I; see also [141],

Part III. For generalizations of this result see, for instance, [142].
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Theorem 4.1. Let f ∈ C1
loc(R+), and let u ∈ C2(BR) be a solution of problem (4.1)

that is positive in BR . Then u = u(r) (that is, u is a radially symmetric function),
and u′(r) < 0 for 0 < r < R.

Let us sketch the proof of Theorem 4.1. Clearly, it is sufficient to show that u is
an even function of xn and Dnu(x) < 0 for xn > 0.

For 0 < λ < R, the plane Πλ = {x : xn = λ} cuts a segment Σλ off the ball. For
any x ∈ Σλ, let x̂λ = (x′, 2λ− xn) denote the point symmetric to x relative to Πλ.

Consider the function vλ(x) = u(x̂λ)− u(x) in Σλ. It solves the equation

−∆vλ + c(x)vλ = 0,

where
c(x) =

f(u(x̂λ))− f(u(x))
u(x)− u(x̂λ)

∈ L∞(Σλ).

When λ is sufficiently close to one, vλ is positive in Σλ (the graph of the ‘reflected’
function lies above the original graph) and attains its zero minimum on Πλ. By
the normal derivative lemma (part (B1) of Theorem 2.1), we have ∂nvλ(x) =
2Dnu(x) < 0 on66 Πλ. Hence we can reduce λ slightly (so that Πλ moves closer to
the centre of the ball) while preserving the inequality vλ > 0 in Σλ.

Let λ0 denote the infimum of λ such that vλ > 0 in Σλ. If we assume that
λ0 > 0, then vλ0 > 0 on the ‘round’ part of ∂Σλ0 . By the strong maximum
principle (part (A1) of Theorem 2.1), we have vλ0 > 0 in Σλ0 . However, then we
can repeat the above argument and show that Πλ0 can be moved even closer to the
centre, which is impossible. Thus λ0 = 0 and v0 ≡ 0, that is, u(x′,−xn) ≡ u(x).
The proof is complete.

As mentioned in [26], for f(0) ⩾ 0 the a priori assumption that u is positive
can be replaced by the condition u ⩾ 0 with u ̸≡ 0. It is also obvious that the
condition f ∈ C1

loc(R+) can be replaced by the local Lipschitz condition. The
following example from [26] shows that a Hölder condition on f is insufficient, in
general.

Let p > 2 and let u(x) = (1− |x− x0|2)p
+. Then direct calculations show that u

is a solution of (4.1) for R > |x0|+ 1, provided that67

f(u) = 2p(n− 2 + 2p)u1−1/p − 4p(p− 1)u1−2/p ∈ C0,1−2/p
loc (R+).

The Hölder exponent can be made arbitrarily close to one by a suitable choice of p.
However, the result of the theorem fails.68

The paper [26] (and also [144], where equations of the form (4.1) were con-
sidered in the whole space) gave rise to a great number of refinements and gen-
eralizations. Among these we can point out [145] by Berestycki and Nirenberg.
Using the Aleksandrov–Bakelman maximum principle, the authors of [145] extended
the results in [26] to strong solutions of a rather wide class of uniformly elliptic

66Recall that the sign of c(x) is not important here. Note also that if f(0) < 0, then Dnu can
vanish at points x ∈ Πλ ∩ ∂BR, but it was shown in [26] that DnDnu(x) > 0 in this case. This is
sufficient for the argument that follows.

67In [26] this formula was published with a typo.
68Nonetheless, for f > 0 the Lipschitz condition on f can be relaxed (for instance, see [143]).
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non-linear equations. For applications of the moving plane method to degenerate
operators of p-Laplacian type, the reader can consult [146], [147], and the literature
cited therein.

A number of authors have used the moving sphere method, a combination of the
moving plane method with conformal transformations (for instance, see [148]).

For other applications of the strong maximum principle and the normal derivative
lemma to establishing symmetry in geometric problems, the reader can, for instance,
consult [149]–[152] (also see [6]). Applications of the Aleksandrov–Bakelman maxi-
mum principle and versions thereof to the investigation of the symmetry properties
of solutions of non-linear boundary value problems and the proofs of isoperimetric
inequalities are the subject of [153]–[155] (also see [156]).

4.2. Phragmén–Lindelöf type theorems. In its original form, the Phragmén–
Lindelöf principle [157] describes the behaviour at infinity of an analytic function
in an unbounded domain.

For solutions of general uniformly elliptic (non-divergence) equations, results of
this type were first proved by Landis [158], [159] (the short note [160] had been
published even earlier). The leading coefficients of the operator in [159] satisfy the
Dini condition, and the behaviour of the domain at infinity is described in terms of
a measure.

We obtain sharper theorems of Phragmén–Lindelöf type by describing domains
in terms of capacity. The first results of this kind were obtained in [161] and [162]
for divergence equations with measurable leading coefficients and in [162] for
non-divergence equations with leading coefficients satisfying the Hölder condition.

Finally, Landis [27] made the decisive step (see also [28], Chap. 1). Using the
concept of s-capacity introduced by himself, he proved Phragmén–Lindelöf type
theorems for non-divergence equations with measurable leading coefficients.

As an example, we present one result from [28], Chap. 1, § 6.

Theorem 4.2. Let Ω be an unbounded domain inside an infinite layer:

Ω ⊂ {x ∈ Rn : |xn| < h}.

Assume that an operator L0 satisfies (2.3), and let u ∈ C2(Ω) be a classical subso-
lution69 of the equation L0u = 0 such that u

∣∣
∂Ω

⩽ 0.
If u(x) > 0 at some point x ∈ Ω, then

lim inf
R→∞

max|x|=R u(x)
exp{(C/h)R}

> 0,

where the positive constant C depends only on n and ν .

We also refer to Maz’ya’s paper [163], where related questions were investigated
for quasilinear operators of p-Laplacian type.

In the case when the derivative in a non-tangential direction is prescribed on
a part of ∂Ω, theorems of Phragmén–Lindelöf type were proved in [164] and [165] for

69With the aid of the Aleksandrov–Bakelman maximum principle, this result can also be
transferred to strong subsolutions u ∈ W 2

n,loc(Ω).



The normal derivative lemma and surrounding issues 231

divergence equations and in [166] for non-divergence ones. Note that a ‘weakened’
form of the normal derivative lemma [40] was used in the last paper.

Landis’ conjecture is close to the results mentioned above. This is the problem
of the maximum possible rate of convergence to zero of a non-trivial solution of
a uniformly elliptic equation in Ω = Rn \BR. It was stated originally in [7] for the
equation

−∆u+ c(x)u = 0 (4.2)

with bounded coefficient c(x). (In this case the expected answer is exponential
decay: if |u(x)| = O(exp(−N |x|)) as |x| → ∞ for every N > 0, then u ≡ 0.) Not
even in the case of the simplest equation (4.2) has this problem been fully solved
yet. For recent results in this area and a historical survey, see [167] (and also [168]).

4.3. The boundary Harnack inequality. If the normal derivative lemma fails,
then the following result can play the role of a weak version of this lemma.

Boundary Harnack inequality. Let L be an elliptic operator in a domain Ω such
that 0 ∈ Ω. If u1 and u2 are positive solutions of Lu = 0 in Ω such that

u1

∣∣
∂Ω∩BR

= u2

∣∣
∂Ω∩BR

= 0,

then
C−1u1(0)

u2(0)
⩽
u1(x)
u2(x)

⩽ C
u1(0)
u2(0)

(4.3)

in Ω ∩BR/2 , where C is a constant independent of u1 and u2 .

Remark 4.1. For example, if Ω is a domain in C1,D and L is a uniformly bounded
operator of the form (2.1) with bounded coefficients, then (4.3) is an easy conse-
quence of the normal derivative lemma, an estimate for the gradient of the solution
on ∂Ω, and the standard Harnack inequality.

Remark 4.2. In the important special case of flat boundary xn = 0 and the oper-
ator L0, when we can take u2(x) = xn, the boundary Harnack inequality was
first established by Krylov [169] in order to derive boundary estimates in C2,α for
solutions of non-linear equations.

To describe the results in this subsection we need some new classes of domains:
• non-tangentially accessible domains (NTA domains);
• uniform domains (UD);
• domains satisfying John’s λ-condition with λ ⩾ 1; for λ = 1 these are simply

called John domains (JD);
• twisted Hölder domains (THD); if needed, the phrase ‘of order α ∈ (0, 1]’

(THD-α) can be added.
The precise definitions of these classes can be found in the papers listed in Table 1.
For the reader’s convenience we simply indicate the relations between these classes
(for instance, see [170]70):

C0,1 ⊂ NTA ⊂ UD ⊂ JD = THD-1;

C0,α ⊂ 1
α -JD

(△)
= THD-α.

70The relation (△) is not explicitly stated in [170], but follows from Remark 2.5 therein.
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In Table 1 we assume by default that the leading coefficients of the operators
are measurable and satisfy (2.3).

Table 1. The boundary Harnack inequality for various classes of domains

Operator C0,1 NTA UD JD C0,α THD71

−∆ [173] [174] [175]

L+ c(x) 72 [176]

L0 [177] [178] [171]

−∆ + bi(x)Di
73 [126]

L0 [179]74

L0 + c(x), c ∈ Kn,2 [124]

L̂ [114]75

L, bi ∈ L∞(Ω) [182]76

L, bi ∈ Ln(Ω) [82] [183] [170]

The recent papers [184] and [185] present a unified approach to the boundary
Harnack inequality for divergence and non-divergence operators.77

A variant of the boundary Harnack inequality for supersolutions and ‘almost
supersolutions’ of the equation Lu+ cu = 0 with bounded coefficients was obtained
in [186].78

Results of weak Harnack inequality type for the ratio u(x)/d(x) (see [188] and
the references therein) are close to the boundary Harnack inequality. Here is one
of the results from [188].

Theorem 4.3. Let u be a non-negative weak supersolution of the equation79 Lu =
f in a domain of class C1,1 . Assume that (2.3) and the following conditions hold:

aij ∈W 1
q (Ω), bi ∈ Lq(Ω) and f− ∈ Lq(Ω), q > n.

71The results have been obtained for α > 1/2. The counterexamples were constructed in [171]
for α < 1/2 and in [172] for α = 1/2.

72The coefficients satisfy the Hölder condition.
73For the conditions on the bi, see footnote 54.
74See also [180]. A slightly more general condition on the domain was considered in [181].
75The leading coefficients satisfy the conditions (3.3), V(x) ⩽ Nν(x), and (3.17), and the

lower-order ones satisfy (3.18).
76The result has been obtained for α > 1/2. A counterexample has been constructed for

α < 1/2. If ∂Ω also satisfies condition (A) due to Ladyzhenskaya and Uraltseva (for instance, see
[90]), then the result has been established for all α > 0.

77Similar ideas appeared earlier in Safonov’s work (see [91], [82], and [170]).
78In this connection, see [187], where an estimate in terms of the principal eigenfunction of the

Dirichlet Laplacian was found for a superharmonic function satisfying the homogeneous Dirichlet
boundary condition in a plane domain with corners.

79Importantly, no assumption is made on the behaviour of u on ∂Ω.
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Then (�
Ω

(
u(x)
d(x)

)s

dx

)1/s

⩽ C

(
inf
x∈Ω

u(x)
d(x)

+ ∥f−∥q,Ω

)
for each s < 1. The constant C depends on n, ν , s, q , on the norms of the aij

and bi in the corresponding spaces, on diam(Ω), and on the properties of ∂Ω.

The example of the harmonic function xn|x|−n in the half-ball B+
r = Br ∩

{xn > 0} shows that the condition s < 1 is sharp.
We can also mention some publications (for instance, see [189] and the literature

cited therein) where the boundary Harnack inequality was obtained in the ‘abstract’
context of metric spaces.

4.4. Other results for linear operators. In [190] and [191] a generalized strong
maximum principle was established for operators of the form −∆ + c(x), where
c ∈ L1(Ω). In this context the solutions are treated in the sense of measures. For
further results in this direction, see [192] and [193].

It is well known that for a second-order elliptic operator, the weak maximum
principle is equivalent to the principal eigenvalue of the corresponding Dirichlet
problem being positive. In [194] the generalized principal eigenvalue was defined
for uniformly elliptic operators L + c(x) with bounded coefficients in an arbitrary
bounded domain:80

λ1 = sup
ϕ

inf
x∈Ω

Lϕ(x) + c(x)ϕ(x)
ϕ(x)

(4.4)

(the supremum is taken over ϕ ∈ W 2
n,loc(Ω) with ϕ > 0 in Ω), and the weak

maximum principle (as well as the ‘improved’ weak maximum principle established
in this paper) for the operator L+ c(x) was shown to be equivalent to λ1 > 0.

The study of partial differential equations on complicated structures has become
very popular in recent decades. Some authors (for instance, see [196], [197], and the
references therein) studied conditions ensuring the validity of the strong maximum
principle, Harnack’s inequality, the normal derivative lemma, and the boundary
Harnack inequality for subelliptic operators, including sub-Laplacians on homoge-
neous Carnot groups.

In [198] and [199] the strong maximum principle and the normal derivative lemma
were considered for the simplest elliptic operators on stratified sets, that is, cell
complexes with certain special properties.81

4.5. Non-linear operators. Even a simple keyword search shows that during the
recent years dozens of papers treating non-linear operators were published annually
on the topic of our survey. It means that this subsection can only be very sketchy,
and it does nor even claim to be minimally comprehensive.

For quasilinear operators of divergence type, Harnack’s inequality was first
proved in [102] and then, for wider operator classes, in [200] and [201]. These are

80For operators with smooth coefficients in smooth domains, this formula does indeed produce
the principal eigenvalue. In this case we can take the supremum over positive smooth functions ϕ
in Ω. For the Laplace operator, formula (4.4) was apparently first identified in [195]. Subsequently,
it was generalized to various operator classes (see [194] and the literature cited therein).

81The simplest examples are the operators of the Venttsel problem and the two-phase Venttsel
problem.
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now regarded as classic papers. Note also [99], where Harnack’s inequality was
established for quasiminimisers in variational problems.

In [202] the normal derivative lemma from [31] and [32] was generalized to the
quasilinear case.

For operators of the type of the p-Laplacian

∆pu ≡ Di(|Du|p−2Diu), p > 1, (4.5)

the normal derivative lemma was first proved in [203]. Among recent generalizations
we can mention [204].

In [205] and [206] the authors found sharp conditions for the strong maximum
principle and the normal derivative lemma to hold for the minimisers of the func-
tional

J [u] =
�

Ω

f(Du) dx.

Vázquez [207] considered the equation

−∆pu+ f(u) = 0 in Ω ⊂ Rn, n ⩾ 2, (4.6)

and proved the following result.

Theorem 4.4. Let f ∈ C(R+) be a non-decreasing function with f(0) = 0. Then a
necessary and sufficient condition for any (non-trivial) non-negative supersolution
of equation (4.6) not to vanish in Ω is that

� δ

0

dt

(F (t))1/p
= ∞, where F (t) =

� t

0

f(s) ds. (4.7)

For a generalization of this result to wider classes of quasilinear operators, see
[208], [209], and [167]. The corresponding Harnack inequality was established (for
p = 2) in [210].

Theorem 4.5. Let f : R+ → R+ be a non-decreasing function, and let u ∈W 1
2 (B2R)

be a solution of the equation L0u + f(u) = 0, where L0 is a uniformly
elliptic (divergence) operator with measurable coefficients. Put M = supBR

u and
m = infBR

u. Then82 � M

m

dt

(F (t))1/2 + t
⩽ C,

where F is defined in (4.7) and the constant C depends only on n and ν (in par-
ticular, it is independent of f !).

The boundary Harnack inequality for operators of p-Laplacian type in domains
of class C2 was proved in [211]. Subsequently, it was also established for the wider
classes of domains discussed in § 4.3 (see [212] and the literature cited therein).
For Pucci’s maximal and minimal operators, the boundary Harnack inequality was
proved in [213].

Among the popular objects currently investigated are also p(x)-Laplacians, which
are operators of the form (4.5) in which p is a function of x. For such operators,

82Note that for f ≡ 0, we obtain the classical Harnack inequality.
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Harnack’s inequality was first proved in [214] (concerning recent generalizations,
see [215] and [216], for instance). In [217] the boundary Harnack inequality was
established in a domain of class C1,1.

4.6. Non-local operators. In recent decades interest in the study of non-local
(integro-differential) operators has increased significantly. Among these operators
we should distinguish fractional Laplacians. The simplest (and historically first)
is the fractional Laplacian of order s in Rn. It is defined in terms of the Fourier
transform:83

(−∆)su = F−1
(
|ξ|2s(Fu)(ξ)

)
, s > 0.

For s ∈ (0, 1), this operator can be defined in terms of a hypersingular integral:

(
(−∆)su

)
(x) = Cn,s · PV

�
Rn

u(x)− u(y)
|x− y|n+2s

dy, Cn,s =
s · 22sΓ(n/2 + s)
πn/2Γ(1− s)

.

It was Riesz [218] who proved a direct analogue of Harnack’s inequality (2.22)
for (−∆)s, where s ∈ (0, 1):

Let u be a non-negative function in Rn that satisfies the equation (−∆)su = 0
in BR . Then

u(0)
(R− |x|)sRn−2s

(R+ |x|)n−s
⩽ u(x) ⩽ u(0)

(R+ |x|)sRn−2s

(R− |x|)n−s

for any x ∈ BR.
By contrast to the case of the whole space, fractional Laplacians in domains

Ω ⊂ Rn depend, of course, on the boundary conditions (authors distinguish between
Dirichlet, Neumann, and other fractional Laplacians). Moreover, even when the
type of the boundary condition is fixed, there are several significantly distinct def-
initions of fractional Laplacians: restricted ones, spectral ones, and so on. Note
that in [219] and [220] the classical normal derivative lemma for weakly degener-
ate operators (see [38] and [14]) was used to compare the restricted and spectral
Dirichlet Laplacians.

For various fractional Laplacians of order s ∈ (0, 1) in Ω, the proofs of the strong
maximum principle can be found in [221]–[223]. In [224] a unified approach was
proposed for a large family of fractional Laplacians and more general non-local
operators. At the same time, it was shown in [225] that even the weak maximum
principle fails for the restricted fractional Dirichlet Laplacian with s > 1 in a domain
of general type.84

In a Lipschitz domain the boundary Harnack inequality for (−∆)s, s ∈ (0, 1),
was proved in [226]. Due to the non-locality of the operator, its formulation differs
from the standard one (see § 4.3):

Let 0 ∈ Ω. If u1 and u2 are non-negative functions in Rn that are continuous
in the ball BR and satisfy the equation (−∆)su = 0 in Ω ∩ BR and the condition

83For a rigorous definition of this and some similar operators and for the concept of
a weak (sub/super)solution, we would need to introduce the Sobolev–Slobodetsky spaces ([17],
Chaps. 2–4). However, we do not do this out of compassion for the reader.

84Note that in both Rn and the ball Ω = BR the strong maximum principle holds for each
s > 0. This was also shown in [225].
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u1

∣∣
BR\Ω

= u2|BR\Ω = 0, then inequality85 (4.3) with constant C , which only depends
on n, s, Ω, and R, holds in the subdomain Ω ∩BR/2 .

Subsequently, this result was extended to arbitrary domains Ω and a wide class
of integro-differential operators (see [227] and the references therein).

In [228] the authors constructed a barrier, which is sufficient to prove an analogue
of the normal derivative lemma in the following form:

Let Ω be a domain of class C1,1 and let s ∈ (0, 1). Let u be a weak supersolution
of (−∆)su = 0 in Ω and let u = 0 in Rn \ Ω. If u ̸≡ 0, then

inf
x∈Ω

u(x)
ds(x)

> 0. (4.8)

Further generalizations of this result can be found in [229], for instance. For
operators of fractional p-Laplacian type, a similar result was proved in [230].

For the spectral fractional Laplacian, we have infx∈Ω u(x)/d(x) > 0 in place
of (4.8) under the same assumptions (see Theorem 1.2 in [231], where more general
functions of the Laplace operator with Dirichlet conditions were also considered).
An analogue of the normal derivative lemma for the regional fractional Laplacian
with s ∈ (1/2, 1) was obtained in the recent preprint [232].

In [233] a generalization of the Aleksandrov–Bakelman maximum principle to
non-local analogues of Pucci’s maximal and minimal operators was obtained.

The reader can find applications of the moving plane method to problems involv-
ing fractional Laplacians in [234] and the references cited therein.
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of domains satisfying a uniform hour-glass condition and a sharp version of the
Hopf–Oleinik boundary point principle”, Probl. Mat. Anal., vol. 57, Tamara
Rozhkovskaya, Novosibirsk 2011, pp. 3–68; English transl. in J. Math. Sci. (N.Y.)
176:3 (2011), 281–360.

[15] D. E. Apushkinskaya and A. I. Nazarov, “A counterexample to the Hopf–Oleinik
lemma (elliptic case)”, Anal. PDE 9:2 (2016), 439–458.

[16] D. E. Apushkinskaya and A. I. Nazarov, “On the boundary point principle for
divergence-type equations”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30:4
(2019), 677–699.

[17] H. Triebel, Interpolation theory, function spaces, differential operators, VEB
Deutscher Verlag der Wissenschaften, Berlin 1978, 528 pp.; North-Holland Math.
Library, vol. 18, North-Holland Publishing Co., Amsterdam–New York 1978,
528 pp.

[18] A. I. Nazarov and N.N. Ural’tseva, “Convex-monotone hulls and an estimate of
the maximum of the solution of a parabolic equation”, Boundary value problems
in mathematical physics and related questions of function theory. 17, Zap. Nauchn.
Semin. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 147, Nauka, Leningrad
Branch, Leningrad 1985, pp. 95–109; English transl. in J. Soviet Math. 37 (1987),
851–859.

[19] N.G. Kuznetsov, “Mean value properties of harmonic functions and related topics
(a survey)”, Probl. Mat. Anal., vol. 99, Tamara Rozhkovskaya, Novosibirsk 2019,
pp. 3–21; English transl. in J. Math. Sci. (N.Y.) 242:2 (2019), 177–199.

[20] E. Hopf, “Elementare Bemerkungen über die Lösungen partieller
Differentialgleichungen zweiter Ordnung vom elliptischen Typus”, Sitzungsber.
Preuß. Akad. Wiss., Phys.-Math. Kl. 19 (1927), 147–152.
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