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Abstract. This paper is a study of trigonometric series with general mono-
tone coefficients in the class GM(p) with p ⩾ 1. Sharp estimates are proved
for the Fourier coefficients of integrable and continuous functions. Also
obtained are optimal results in terms of coefficients for various types of con-
vergence of Fourier series. For 1 < p <∞ two-sided estimates are obtained
for the Lp-moduli of smoothness of sums of series with GM(p)-coefficients,
as well as for the (quasi-)norms of such sums in Lebesgue, Lorentz, Besov,
and Sobolev spaces in terms of Fourier coefficients.
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for Centers and Units of Excellence in R&D (CEX2020-001084-M). This work was also supported
by the Ministry of Education and Science of the Republic of Kazakhstan (grants nos. AP08856479
and AP09260052).

AMS 2020 Mathematics Subject Classification. Primary 42A16, 42A32; Secondary 42A10,
42A20, 46E35.

c⃝ 2021 Russian Academy of Sciences (DoM), London Mathematical Society, IOP Publishing
Limited

https://doi.org/10.1070/RM10003


952 A. S. Belov, M. I. Dyachenko, and S.Yu. Tikhonov

3. Estimates of Fourier coefficients 974
3.1. Lemma on a local and a global majorant 974
3.2. Estimates for Fourier coefficients in the general case 975
3.3. Estimates for Fourier coefficients of type GM(p) 978
3.4. Lebesgue inequalities for Fourier coefficients 983
3.5. Approximation by partial sums of Fourier series 984
3.6. Estimates for Fourier coefficients under certain conditions involving

constant signs 985
4. Different types of convergence of series with GM-coefficients 986

4.1. Convergence almost everywhere and uniform convergence 986
4.2. Convergence in the mean 987
4.3. Continuously differentiable functions and the classes GMk(p) 990
4.4. Asymptotic behaviour of series near the origin 992
4.5. Absolute convergence 994
4.6. Convergence in Lp, 0 < p < 1 996

5. Hardy–Littlewood type inequalities 996
5.1. Inequalities for number sequences 996
5.2. Hardy–Littlewood type theorems 997

6. Order estimates for moduli of smoothness in Lp 1003
6.1. Moduli of smoothness and Fourier coefficients 1003
6.2. Applications to direct and inverse theorems 1006

7. Characterization of function spaces 1007
7.1. Lorentz spaces 1007
7.2. Besov spaces 1009
7.3. Sobolev spaces 1011

Bibliography 1012

1. Introduction

It is well known that monotonicity conditions, either on a signal spectrum or
on a signal itself, are extremely useful in various problems in analysis, in par-
ticular, in the theory of Fourier series. For example, trigonometric series with
monotonic coefficients have been well studied ([4], [99], [9]). Moreover, many of
their properties can be completely characterized in terms of Fourier coefficients.
To illustrate this point, we recall Parseval’s theorem ∥f∥2 = ∥{cn}∥l2 , which
has no analogue in the general case for Lp, p ̸= 2. However, in the case of
monotonic coefficients, the corresponding equivalence can be written as follows:
∥f∥p ≍

(∑
n |cn|pnp−2

)1/p for 1 < p < ∞. This statement has been known already
since the first half of the last century (the Hardy–Littlewood theorem). Due to
their optimality, results of this type have important applications in Fourier analy-
sis, approximation theory, and functional analysis. In particular, we mention the
Paley–Wiener theorem on integrability of the function conjugate to an odd func-
tion ([67], [98]), Boas’ conjecture on weighted integrability of the Fourier trans-
form ([10], [40], [57], [74]), certain convergence and approximation problems for
trigonometric series and transforms (see, for instance, [99], Chaps. 5 and 12, and
also [25], [48], [9], [11], [12], [15], [45], [46], [50], [54], [58]).
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At the same time, it is clear that the monotonicity condition is rather restrictive.
Fairly recently it was noted that instead of the monotonicity condition for the
coefficients one can consider regularity conditions of local variations, that is,

2n∑
k=n

|ak − ak+1| ⩽ Cβn for all n ∈ N,

where βn is a suitable majorant (see [89]). Such sequences are called general mono-
tone sequences with majorant βn, written {an} ∈ GM(βn). Let us consider some
examples of such majorants.

We note that a maximal majorant is βn = 2
∑2n+1

k=n |ak|, that is, in this case
any given sequence lies in the class GM(βn). In particular, this class contains
highly oscillating sequences such as sequences of Rudin–Shapiro type, for example.
A somewhat narrower class — we call it GM(max) — is the class GM(βn) with the
majorant βn = maxn/γ⩽k⩽γn |ak| for some γ > 1. This class still contains both
monotonic and lacunary sequences. It is too large for applications, since, for exam-
ple, a criterion for the sums of lacunary series to belong to Lp for 1 < p < ∞ is
given by ∥f∥p ≍ ∥f∥2 ≍ ∥{cn}∥l2 (see [99]). This is fundamentally different from
the case of series with monotonic coefficients.

A systematic study of suitable majorants and the corresponding function classes
was begun in 2005 (see [87] and [89]). In particular, the class GMS := GM(βn)
with βn = |an| and a larger class GM(1) := GM(βn) with βn = 1

n

∑γn
k=n/γ |ak|,

γ > 1, were considered.
In this paper we consider trigonometric series with coefficients in the following

class: for p > 1,

GM(p) =
{

a = {an}n∈N : an ∈ C,

2n−1∑
ν=n

|aν −aν+1| ⩽ C

(
1
n

γn∑
k=n/γ

|ak|p
)1/p}

(1.1)

for some C > 0 and γ > 1 depending on a sequence a. Here and further on, we
denote by C and Ci positive constants which may depend on inessential parameters.

Firstly, we note that

GMS ⊊ GM(1) ⊊ GM(p1) ⊊ GM(p2) ⊊ GM(max) ⊊
{
{an}n∈N : an ∈ C

}
for 1 < p1 < p2. The third embedding here and its optimality will be proved in § 2,
the other embeddings being known. We also note that

⋃
p GM(p) ̸= GM(max).

Secondly, we show that {an} ∈ GM(p) if and only if {an} ∈ GM(max)∩WM(p),
where

WM(p) =
{

a = {an}n∈N : an ∈ C, |an| ⩽ C

(
1
n

γn∑
k=n/γ

|ak|p
)1/p}

for some C > 0 and γ > 1.
The main goal of this paper is to study trigonometric series with coefficients in

the classes GM(p).
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1.1. Convergence problems. Let

a0 +
∞∑

n=1

an cos(nx) or
∞∑

n=1

an sin(nx) (1.2)

be the Fourier expansion of a function f . For a sequence of coefficients tending to
zero we will use the notation

a#
n = max

k⩾n
|ak| for n ⩾ 1.

Then {a#
n }∞n=1 is a monotonic null sequence and a#

n ⩾ |an| for any n ⩾ 1. As usual,
for any p ∈ [1,∞) and any function f ∈ Lp(T) we write

∥f∥p = ∥f∥Lp(T) =
(

1
2π

∫ 2π

0

|f(t)|p dt

)1/p

.

For a function f ∈ C(T) we write ∥f∥∞ = ∥f∥C(T) = maxt∈T |f(t)|.
Let us first discuss various types of convergence of the series (1.2). In this paper

we obtain the following results.
1. (Convergence almost everywhere.) Let {an} ∈ GM(p) for some p ⩾ 1 and let

∞∑
n=1

a2
n

n
< ∞.

Then the series (1.2) converge almost everywhere. Moreover, this condition is sharp
(see Theorem 4.1).

2. (Uniform convergence.) Let a ∈ GM(p) for some p > 1. Then the series
a0/2 +

∑∞
n=1 an cos(nx) converges uniformly on [0, 2π] if and only if nan = o(1)

and the series
∑

n an is convergent. The series
∑∞

n=1 an sin(nx) converges uniformly
on [0, 2π] if and only if nan = o(1).

Similar results are obtained for uniform boundedness of the partial sums of these
series if we replace o(1) with O(1) and convergence of the partial sums of

∑
n an with

their boundedness (see Theorem 4.2, and see also [81], [88], [29], [35], [37], [52], [65],
[91], [89]).

3. (Convergence in the mean and conditions for belonging to L1.) Let {an} ∈
GM(p) for some p ⩾ 1 and let

∞∑
n=1

log n

n
|an| < ∞.

Then the series of type (1.2) is the Fourier series of a function f ∈ L1 and it
converges in the mean, that is, converges in the L1-norm (see Theorem 4.4).

A criterion for convergence in the mean of Fourier series of L1-functions is given
by the condition

|an| log n = o(1) as n →∞

(see Theorem 4.3; see also [5]–[7] and [92]).
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4. (Behaviour near the origin.) In Theorem 4.9 we describe the behaviour of the
Fourier series of an integrable function f with coefficients {an}∞n=1 of type GM(p),
p ⩾ 1. The conditions

an = O(n−α) as n →∞ and f(x) = O(xα−1) as x → 0

are equivalent for 0 < α < 1 in the case of the cosine series and for 0 < α < 2 in
the case of the sine series (see also [14], [36], [38], [43], [44], [75], [76], [91], [89]).

5. (Pointwise convergence and convergence in Lp , 0 < p < 1.) Let {an} ∈
GM(p0) for some p0 ⩾ 1 and let

∑∞
n=1 |an|/n < ∞. Then {an} is a sequence of

bounded variation and the series (1.2) converge on (0, 2π) and converge uniformly
on (ε, 2π − ε). Moreover, f ∈ Lp(T), 0 < p < 1 (see Corollary 4.13).

6. (Convergence in Lp , 1 < p < ∞.) In Theorem 5.2 we obtain an analogue of
the Hardy–Littlewood theorem. Let (1.2) be the Fourier expansion of a function
f ∈ L1 and let the Fourier coefficients {an} be in GM(p0) for some p0 ⩾ 1. Then

∥f∥p
p ≍ |a0|p +

∞∑
n=1

np−2(a#
n )p ≍ |a0|p +

∞∑
n=1

np−2|an|p. (1.3)

In particular, if f ∈ Lp, then |an|n1/p′ = o(1) as n → ∞, where, as usual,
1/p + 1/p′ = 1 (see also [27], [25], [28], [31], [47], [62], [93], [3], [9], [11], [12],
[32], [33]–[35], [42], [50], [54], [73], [89], [97]). The relations (1.3) are valid for
p ⩾ 2 in the case of positive coefficients (or coefficients changing sign a uniformly
bounded number of times on dyadic intervals) {an}∞n=1 ∈ WM(p0) with p0 ⩾ 1 (see
Corollary 5.5).

7. (Absolute convergence.) It is shown in Corollary 4.11 that, for continuous
functions with coefficients {an}∞n=1 ∈ GM(p), p ⩾ 1, we get that for any θ > 0 and
any α ∈ R

∞∑
n=1

nα(n|an|)θ ⩽ C

∞∑
n=1

nαEn−1(f)θ
∞.

This estimate supplements the classical results by Bernstein and Szász [4], and
moreover it is optimal.

1.2. Estimates of Fourier coefficients and moduli of smoothness. Now
we discuss estimates of the Fourier coefficients from above. In the general case
an estimate of the Fourier coefficients in terms of the function itself has only the
trivial form |an|, |bn| ⩽ ∥f∥L1(T). We show in Theorem 3.3 that if (1.2) is the Fourier
expansion of a function f ∈ L1 and the Fourier coefficients {an}∞n=1 are in GM(p)
with p ⩾ 1, then for any positive integer n

|an| ⩽ a#
n ⩽ C

(∫ π/n

0

|f(t)| dt +
π2

n2

∫ π

π/n

|f(t)|
t2

dt

)
. (1.4)

The same estimate also holds for positive coefficients (or coefficients changing sign
a uniformly bounded number of times on dyadic intervals) {an}∞n=1 ∈ WM(p) with
p ⩾ 1 (see Theorem 3.10 and Corollary 3.11).
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Further, for any integrable function we have the Lebesgue type inequality

|an|, |bn| ⩽ CEn−1(f)1 ⩽ Cωβ

(
f,

1
n

)
1

,

where En(f)p is the best approximation of a function f by trigonometric poly-
nomials of degree at most n in the Lp(T)-norm, and ωβ(f, δ)p is the modulus of
smoothness of f of order β > 0 in the Lp(T)-norm, that is,

ωβ(f, δ)p = sup
|h|⩽δ

∥∥∥∥ ∞∑
k=0

(−1)k

(
β

k

)
f( · + (β − k)h)

∥∥∥∥
p

.

Theorem 3.4 below enables us to significantly improve this estimate for continu-
ous functions with general monotone coefficients. If (1.2) is the Fourier expansion
of a function f ∈ C(T) with Fourier coefficients {an}∞n=1 ∈ GM(p), p ⩾ 1, then the
Fourier series of f converges uniformly, and for any q > 0

n|an| ⩽ na#
n ⩽ Cn−q max

1⩽k⩽n
kqEk−1(f)∞, n ∈ N. (1.5)

The same estimate also holds for positive coefficients (or coefficients changing sign
a uniformly bounded number of times on dyadic intervals) {an}∞n=1 ∈ WM(p) with
p ⩾ 1 (see Theorem 3.10 and Corollary 3.11).

The estimate (1.5) immediately implies the following improvement of a Lebesgue
type inequality:

n|an| ⩽ Cωβ

(
f,

π

n

)
∞

for β = 1 (see [36]).
A natural question arises about estimates of Lp-moduli of smoothness in terms

of Fourier coefficients. In § 6, we show that for functions f ∈ Lp(T), p ∈ (1,∞),
with Fourier coefficients {an}∞n=1 ∈ GM(p0), p0 ⩾ 1, we get that for any δ > 0

ωβ(f, δ)p ≍
(

δpβ

[π/δ]∑
n=1

np−2+pβ(a#
n )p +

∞∑
n=1+[π/δ]

np−2(a#
n )p

)1/p

≍
(

δpβ

[π/δ]∑
n=1

np−2+pβ |an|p +
∞∑

n=1+[π/δ]

np−2|an|p
)1/p

. (1.6)

In the case of series with monotone or quasi-monotone coefficients this result is
known (see [47], [1], [2], [70], and see also [41] for some extensions). For the class
GM(1) these equivalences were proved in [28].

We note that such results play an important role in functional analysis, in partic-
ular, for describing various function spaces (see, for instance, [22] and [23]). Such
function classes are, in a way, ‘borderline’ for some smooth spaces (see [24], for
example).

If (1.2) is the Fourier expansion of a function f , then we use the notation

f#(x) = a0 +
∞∑

n=1

a#
n cos(nx) or f#(x) =

∞∑
n=1

a#
n sin(nx), (1.7)

respectively.
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Theorem 1.1. If p ∈ (1,∞) and (1.2) is the Fourier expansion of a function
f ∈ Lp(T) with coefficients {an}∞n=1 ∈ GM(p0), then ∥f∥p ≍ ∥f#∥p . Moreover,
ωβ(f, δ)p ≍ ωβ(f#, δ)p for β > 0 for any δ > 0. In addition, if f ∈ L1(T) and
γ ∈ (1 − p, 1), or γ ∈ (1 − p, 1 + p) in the case of a sine series, then the following
order relation holds: ∫ π

0

1
tγ
|f(t)|p dt ≍

∫ π

0

1
tγ
|f#(t)|p dt.

1.3. Fourier coefficients and Lorentz, Besov, and Sobolev spaces. Let
a0/2+

∑∞
n=1 an cos(nx)+bn sin(nx) be the Fourier expansion of a function f ∈ L(T)

with coefficients a = {an}∞n=1 and b = {bn}∞n=1 satisfying the GM(p0)-condition,
p0 > 1. Then the following two-sided estimates hold for the Lorentz space Lr,s(T),
the Besov space Bα

p,τ (T), and the Sobolev space W r
p (T) (see the definitions in § 7),

respectively:
(i) for any 1 < r, s < ∞

∥f∥Lr,s
≍ ∥f#∥Lr,s

≍ ∥a∥lr′,s + ∥b∥lr′,s ≍ ∥a
#∥lr′,s + ∥b#∥lr′,s ;

(ii) for any 0 < τ ⩽ ∞ and 1 < p ⩽ ∞

∥f∥Bα
p,τ
≍
∥∥f#∥Bα

p,τ
≍ ∥nα+1/p′−1/τ |an|

∥∥
lτ

+
∥∥nα+1/p′−1/τ |bn|

∥∥
lτ

≍ ∥nα+1/p′−1/τa#
n ∥lτ + ∥nα+1/p′−1/τ b#

n ∥lτ ;

(iii) for any r > 0 and 1 < p < ∞

∥f∥W r
p
≍ ∥f#∥W r

p
≍
∥∥nr+1−2/p|an|

∥∥
lp

+
∥∥nr+1−2/p|bn|

∥∥
lp

≍ ∥nr+1−2/pa#
n ∥lp + ∥nr+1−2/pb#

n ∥lp .

The corresponding results are obtained in Theorems 7.1, 7.3, and 7.7. Particular
cases of item (i) for the Lorentz space were derived in [11], [12], [24], [30], [42], [73],
and for the Besov space see [28], [3], [41], [70], [64], [65], [73].

1.4. Structure of the paper. In § 2, we present several important properties of
general monotone sequences. In particular, we completely describe the class GM(p)
as GM(max) ∩WM(p), and we show that for a sequence {an}∞n=1 ∈ GM(p0) with
some p0 ⩾ 1 (in fact, even for WM(p0)) we find that for any p, α ∈ (0,∞)

∞∑
n=1

|an|pnα−1 ≍
∞∑

n=1

(a#
n )pnα−1 ≍

∞∑
n=1

(a∗n)pnα−1,

where a∗n is the non-increasing rearrangement of the sequence {an}. As usual,
fn ≍ gn means that C1fn ⩽ gn ⩽ C2fn for some positive constants C1 and C2

which may depend on inessential parameters.
Further, in § 3 we obtain upper estimates of Fourier coefficients: the inequali-

ties (1.4) and (1.5).
In § 4, we derive sharp results on various types of convergence for the series (1.2).

Section 5 is devoted to the proof of an analogue of the Hardy–Littlewood result for
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series with general monotone coefficients (see (1.3) and Theorem 1.1). The rela-
tion (1.6) for Lp-moduli of smoothness is proved in § 6. In § 7 we give applications of
the results obtained to approximation theory and functional analysis. In particular,
we characterize Lorentz, Besov, and Sobolev spaces in terms of Fourier coefficients
(proof of the results given in § 1.3).

To conclude, we stress that GM(p) is, to a certain extent, the widest possible
class so that one can still develop a meaningful and extensive theory of Fourier
series in the sense that the results noted above can be stated in the form of criteria.
This is not the case for the class GM(max) nor for WM(p).

In this paper we do not aim to give an extensive survey of the literature on
trigonometric series with special coefficients (see [26] and [58], for example). Neither
do we investigate the properties of Fourier transforms of general monotone functions
(see [19], [18], [39]–[41], [59], [57], [63], [74]).

2. Properties of general monotone sequences

First we give the needed definitions.

2.1. Main notation. Henceforth, let ν be a natural number and D, p ∈ [1,∞).
We say that a sequence of complex numbers a = {an}∞n=1 is general monotone,
that is, of type GM with parameters ν, D, p, and we write a ∈ GM(ν, D, p), if it
satisfies the condition

2n+1∑
k=2n

|ak − ak+1| ⩽ D

(
2−n

2n+ν∑
k=2n−ν

|ak|p
)1/p

for any n ⩾ ν. (2.1)

We say that a sequence a belongs to the class GM(p) if there exist an integer ν and
a D ∈ [1,∞) such that a ∈ GM(ν, D, p). In other words,

GM(p) =
⋃

ν,D⩾1

GM(ν, D, p).

If a sequence of complex numbers {ak}∞k=1 is bounded, then we set

Mn = max
k=2n,...,2n+1

|ak| for n ⩾ 0.

A sequence of complex numbers a = {an}∞n=1 is a sequence of type WM(ν, D, p) if
the following condition holds for some integer ν and some positive D:

|aj | ⩽ D

(
1
j

j 2ν∑
k=[j 2−ν ]+1

|ak|p
)1/p

for j ⩾ 2ν . (2.2)

We also define
WM(p) =

⋃
ν,D⩾1

WM(ν, D, p).
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2.2. Examples of p-general monotone sequences. We start by recalling sev-
eral known extensions of the class M of sequences tending monotonically to zero.
There are two types of such extensions.

The first consists of various quasi-monotone sequences. In [78] and [85], the class
of classical quasi-monotone sequences was defined as follows:

QM =
{
a = {an}n∈N : an ∈ R+ and there is a τ > 0 such that n−τan↓

}
.

The more general class of O-regularly varying quasi-monotone sequences (see [81],
for example) is given by

ORVQM =
{

a = {an}n∈N : an ∈ R+ and there is a sequence

{λn}↑, λ2n ⩽ Cλn, such that
an

λn
↓
}

.

The second way to generalize monotone sequences is to define so-called rest of
bounded variation sequences:

RBVS =
{

a = {an}n∈N : an ∈ C,

∞∑
ν=n

|aν − aν+1| ⩽ C|an|
}

(2.3)

(see [52] and [71]).
The classes QM (or ORVQM) and RBVS are not comparable ([53], [89]).
In [89] one of the authors introduced the class of general monotone sequences:

GMS =
{

a = {an}n∈N : an ∈ C,

2n−1∑
ν=n

|aν − aν+1| ⩽ C|an|
}

. (2.4)

It is known [89] that {an} ∈ GMS if and only if
|ak| ⩽ C|an| for any n ⩽ k ⩽ 2n;
N∑

s=n

|∆as| ⩽ C

(
|an|+

N∑
s=n+1

|as|
s

)
for any n ⩽ N.

(2.5)

Here ∆as = as− as+1. The interrelation between the classes ORVQM, RBVS, and
GMS follows from the embeddings

M ⊊ ORVQM∪RBVS ⊊ GMS ⊊ GM(1) (2.6)

(see [89], p. 725).
We also note that the following class was introduced in [7]. For any integers

n1 ⩽ n2 and any A ⩾ 1, the notation

{an}n2
n=n1

∈ GM(A)

means that either

|an1 |+
m−1∑
k=n1

|ak − ak+1| ⩽ A|am| for any m = n1, . . . , n2
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or

|an2 |+
n2−1∑
k=m

|ak − ak+1| ⩽ A|am| for any m = n1, . . . , n2.

One can also consider sequences of complex numbers {an}∞n=1 such that there exist
a finitely lacunary sequence of positive integers {Nn}∞n=1 and an A ⩾ 1 such that
for any k = 1, 2, . . .

{an}Nk

n=Nk−1+1 ∈ GM(A).

2.3. Sum and product of p-general monotone sequences. It is clear that
the sum and product of two general monotone sequences are not necessarily general
monotone, that is, for any p0, p1, p2 ⩾ 1 there exist a = {an}∞n=1 ∈ GM(p0) and
b = {bn}∞n=1 ∈ GM(p1) such that {an + bn}∞n=1 /∈ GM(p2) or {anbn}∞n=1 /∈ GM(p2).
For example, in the first case it suffices to consider the sequences

an =


1
n

if 2k ⩽ n < 2k + 2k−1, k ∈ N,

0 otherwise

and

bn =

{
−an if n ̸= 2k, k ∈ N,

an otherwise,

while in the second case one can take the same an and

bn =


1
n
− an if n ̸= 2k, k ∈ N,

an otherwise.

However, under some additional conditions, one can assert that the sum and prod-
uct of two general monotone sequences are also general monotone. For example, if
a, b ∈ GM(p) are non-negative, then {an + bn}∞n=1 ∈ GM(p).

Property 2.1. For any p0, p1 ⩾ 1, if a = {an}∞n=1 ∈ GM(p0), b = {bn}∞n=1 ∈
GM(p1) and for some C1, C2 > 0

C1bk ⩽ bn ⩽ C2bk for any k ⩽ n ⩽ 2k, k, n ⩾ 1, (2.7)

then {anbn}∞n=1 ∈ GM(p0). In particular, {annγ}∞n=1 ∈ GM(p0) for any γ ∈ R.

Proof. Indeed, by Theorem 2.5 (see the inequality (2.10)),

2n+1∑
k=2n

|∆(akbk)| ⩽
2n+1∑
k=2n

|bk+1∆(ak)|+
2n+1∑
k=2n

|ak∆(bk)|

⩽ D

( 2n+ν0∑
k=2n−ν0

|ak|p0

k

)1/p0
( 2n+ν1∑

k=2n−ν1

|bk|p1

k

)1/p1

⩽ D|b2n |
( 2n+ν0∑

k=2n−ν0

|ak|p0

k

)1/p0

⩽ D

( 2n+ν0∑
k=2n−ν0

|akbk|p0

k

)1/p0

. □
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Remark 2.2. Note that under the condition (2.7) the class of b = {bn}∞n=1 ∈ GM(p1)
coincides with the class of b = {bn}∞n=1 ∈ GMS with the additional condition
bn ⩽ Cb2n for any n ⩾ 1. It is also clear that the condition bn ⩽ Cb2n is essential.
For example, let bn = 1 for n ⩽ N and = 0 otherwise. Then {bn} ∈ GMS ⊂ GM(1),
but the condition bn ⩽ Cb2n is not satisfied. At the same time, if {an} is given by
ak = 1/ξn for ξn ⩽ k ⩽ 2ξn and zero otherwise, with ξn increasing sufficiently fast
(for example, ξn = 22n

), then {anbn} /∈ GM(p) for any p.

In the case when bn = an, additional conditions for {anbn}∞n=1 ∈ GM(p) are not
needed.

Property 2.3. (A) Let p, γ ⩾ 1 and a = {an}∞n=1 ∈ GM(p). Then

{an|an|γ−1}∞n=1 ∈ GM(p).

(B) In particular, for a non-negative sequence a = {an}∞n=1 ∈ GM(p), p ⩾ 1, the
sequence {aγ

n}∞n=1 is in GM(p) if and only if γ ⩾ 1.

Proof. (A) Indeed, for γ ⩾ 1 we get by the mean value theorem that∣∣ak|ak|γ−1 − ak+1|ak+1|γ−1
∣∣ ⩽ γ|∆ak|(|ak|γ−1 + |ak+1|γ−1).

Then the inequality (2.10) implies that

2n+1∑
k=2n

∣∣ak|ak|γ−1 − ak+1|ak+1|γ−1
∣∣ ⩽ γ max

2n⩽k⩽2n+1+1
|ak|γ−1

2n+1∑
k=2n

|∆ak|

⩽ DD1

( 2n+ν0∑
k=2n−ν0

|ak|p

k

)1/p( 2n+ν1∑
k=2n−ν1

|ak|p

k

)(γ−1)/p

⩽ D2

( 2n+ν2∑
k=2n−ν2

aγp
k

k

)1/p

,

where we used Hölder’s inequality in the last step.
(B) From (A) we have {aγ

n}∞n=1 ∈ GM(p) for γ ⩾ 1. Let 0 < γ ⩽ 1. Let
cn = 2−2n for n = 0, 1, 2, . . . and put

ak = cn for 22n ⩽ k < 22n+1,

ak = cn 2−2n for odd k ∈ [22n+1, 22n+2),

ak = 0 for even k ∈ [22n+1, 22n+2).

Note that if ν, p ⩾ 1 are integers and γ ∈ (0, 1], then there are constants C1 =
C1(ν, p, γ) > 0 and C2 = C2(ν, p, γ) > 0 such that for any m

C1 2−mγ ⩽

(
2−m

2m+ν∑
k=2m−ν

|ak|γp

)1/p

⩽ C2 2−mγ . (2.8)

Further, we obtain
2m+1∑
k=2m

|ak − ak+1| ⩽ 2−m
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for both even and odd m. Thus, our sequence lies in the class GM(p). At the same
time, for γ ∈ (0, 1) we have

22n+2∑
k=22n+1

|aγ
k − aγ

k+1| ⩾ 22n 2−2nγ 2−2nγ = 2−2nγ 22n(1−γ)

for any n. This and (2.8) imply that {aγ
k}∞k=1 /∈ GM(p).

Finally, if γ < 0, then it is sufficient to take an = 2−n, n ∈ N. □

It is interesting that for the class GMS of general monotone sequences given
by (2.4), the result is fundamentally different. Namely,

a non-negative sequence a = {an}∞n=1 ∈ GMS satisfies the condition
{aγ

n}∞n=1 ∈ GMS if and only if γ ⩾ 0.
This follows, in particular, from the results of [94]. We give a simple proof of

this fact. For γ ⩾ 1 we use the mean value theorem. Let γ ∈ (0, 1). For simplicity
assume that an > 0. Then we note that

|∆(aγ
k)| ⩽ |∆ak|

a1−γ
k

.

For a positive integer n let s0 = n and let s1 be the first index in the interval
n < s1 ⩽ 2n − 1 such that a1−γ

n > 2a1−γ
s1

. Next, let s2 be the first index in the
interval s1 < s2 ⩽ 2n − 1 such that a1−γ

s1
> 2a1−γ

s2
, and so on, up to the index

sj ⩽ 2n− 1. We have

2n∑
k=n

|∆(aγ
k)| ⩽

j∑
i=0

si+1−1∑
k=si

|∆ak|
a1−γ

k

⩽ 2
j∑

i=0

si+1−1∑
k=si

|∆ak|
a1−γ

si

.

Further, using the definition of the class GMS, we establish that the sum on the
right-hand side of the last inequality is less than or equal to

2C

j∑
i=0

aγ
si

⩽ C1a
γ
n

j∑
i=0

2−γi/(1−γ) ⩽ C2a
γ
n.

Thus, {aγ
n}∞n=1 ∈ GMS.

Property 2.4. Let p0 ⩾ 1, α > 0, and 0 < p < q < ∞. If a sequence a =
{an}∞n=1 ∈ GM(p0) is such that

∑∞
n=1 |an|pnα−1 < ∞, then

(A) annα/p → 0,
(B)

∑∞
n=1 |an|qn

αq
p −1 < ∞,

(C) the relations

∞∑
n=1

|an|pnα−1 ≍
∞∑

n=1

(a#
n )pnα−1 ≍

∞∑
n=1

(a∗n)pnα−1 ≍
∞∑

n=1

Mp
n 2nα (2.9)

are valid.
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Note that for α = p = 1 the results in (A) and (C) extend, respectively, the
well-known Abel–Olivier and Cauchy tests for monotonic series. Item (A) with
α = p = 1 was proved in [17] for the class GM(1), while (C) was proved in [11] for
the class GMS.

In the general case without the condition of general monotonicity, one can only
claim in (B) that

∑∞
n=1 |an|qn(α−1)q/p < ∞.

Proof. Item (A) follows immediately from the fact that
∞∑

n=1

(a#
n )pnα−1 < ∞

(see Theorem 2.9). From (A) it follows that |an|qnαq/p−1 = o(|an|pnα−1) as n →∞,
which gives (B). The first two equivalences in (C) follow from Theorems 2.9 and 2.12
while the last one follows from Lemma 5.1. □

2.4. Criteria for p-general monotone sequences. The main goal of this sub-
section is to prove the representation GM(p) = GM(max) ∩WM(p).

Theorem 2.5. A sequence of complex numbers a = {an}∞n=1 is a sequence of type
GM(ν, D, p) if and only if for some D1, D2 and ν ⩾ 1

max
k=2n,...,2n+1

|ak| ⩽ D1

(
2−n

2n+ν∑
k=2n−ν

|ak|p
)1/p

for any n ⩾ ν (2.10)

and
2n+1∑
k=2n

|ak − ak+1| ⩽ D2 max
k=2n−ν ,...,2n+ν

|ak| for any n ⩾ ν. (2.11)

Note that one can easily construct examples showing that the conditions (2.10)
and (2.11) are independent.

Proof of Theorem 2.5. By the definition of the class GM(ν, D, p), the condition
(2.1) is satisfied. Let

Mn = max
k=2n,...,2n+1

|ak| for n ⩾ 0

and let qn ∈ {2n, . . . , 2n+1} be such that Mn = |aqn
|. Then for n ⩾ ν and any

j ∈ {2n, . . . , 2n+1}

|aqn
| − |aj | ⩽

2n+1∑
k=2n

|ak − ak+1| ⩽ D

(
2−n

2n+ν∑
k=2n−ν

|ak|p
)1/p

.

Hence

|aqn
| ⩽ 1

2n + 1

2n+1∑
k=2n

|ak|+ D

(
2−n

2n+ν∑
k=2n−ν

|ak|p
)1/p

⩽

(
1

2n + 1

2n+1∑
k=2n

|ak|p
)1/p

+ D

(
2−n

2n+ν∑
k=2n−ν

|ak|p
)1/p

.
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Thus, (2.10) holds with the constant D1 = D + 1 ⩾ 1.
From (2.1) we also have the estimate

2n+1∑
k=2n

|ak − ak+1| ⩽ D 2ν/p max
k=2n−ν ,...,2n+ν

|ak|,

that is, (2.11) holds with D2 = D 2ν/p ⩾ 1. In other words, if a sequence a =
{an}∞n=1 is of type GM(ν, D, p), then the conditions (2.10) and (2.11) hold, where
D1 ⩾ 1 and D2 ⩾ 1 depend only on the parameters ν, D, and p.

To prove the converse statement, suppose that the conditions (2.10) and (2.11)
hold for an integer ν and some numbers D1, D2 ∈ [1,∞). Then from (2.10) with
n ⩾ 2ν we have

max
k=2n−ν ,...,2n+ν

|ak| = max
j=n−ν,...,n+ν−1

Mj

⩽ D1 max
j=n−ν,...,n+ν−1

(
2−j

2j+ν∑
k=2j−ν

|ak|p
)1/p

⩽ D1

(
2−n+ν

2n+2ν−1∑
k=2n−2ν

|ak|p
)1/p

.

This and (2.11) give us that

2n+1∑
k=2n

|ak − ak+1| ⩽ D2D1

(
2ν 2−n

2n+2ν∑
k=2n−2ν

|ak|p
)1/p

for any n ⩾ 2ν,

that is, a ∈ GM(2ν, D∗, p), where D∗ = D1D2 2ν/p. Thus, the conditions (2.10)
and (2.11) mean that the sequence a is general monotone with parameters 2ν, D∗,
and p. □

The following analogue of Theorem 2.5 also holds.

Theorem 2.6. A sequence of complex numbers a = {an}∞n=1 is of type GM(ν, D, p)
if and only if, for some integers ν1 and ν2 and some H1, H2 ∈ [1,∞), the conditions

j |aj |p ⩽ Hp
1

j 2ν1∑
k=[j 2−ν1 ]+1

|ak|p for j ⩾ 2ν1 (2.12)

and
2j∑

k=j

|ak − ak+1| ⩽ H2 max
j 2−ν2⩽k⩽j 2ν2

|ak| for j ⩾ 2ν2 (2.13)

are valid.

Proof. Let us carefully analyze the condition (2.10). If j ⩾ 2ν , then 2n ⩽ j < 2n+1

for some n ⩾ ν. Hence, it follows from (2.10) that

|aj |p ⩽ Mp
n ⩽ Dp

1 2−n
2n+ν∑

k=2n−ν

|ak|p ⩽ 2Dp
1

1
j

j 2ν∑
k=[j 2−ν−1]+1

|ak|p.
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In particular, (2.12) holds with ν1 = ν + 1 and H1 = D1 21/p. To prove the
converse statement, assume that the condition (2.12) holds for some H1 ∈ [1,∞)
and an integer ν1. Then for n ⩾ ν1

2nMp
n ⩽ max

j=2n,...,2n+1
j|aj |p ⩽ Hp

1

2n+1+ν1∑
k=2n−ν1

|ak|p.

Hence (2.10) is satisfied for ν = ν1 + 1 and D1 = H1. Thus, the condition (2.10)
holds for some integer ν and some D1 ∈ [1,∞) if and only if (2.12) is satisfied for
some integer ν1 and some H1 ∈ [1,∞).

Let us now analyze the condition (2.11). If j ⩾ 2ν , then 2n ⩽ j < 2n+1 for some
n ⩾ ν. Hence (2.11) implies that

2j∑
k=j

|ak − ak+1| ⩽
2n+1∑
k=2n

|ak − ak+1|+
2n+2∑

k=2n+1

|ak − ak+1|

⩽ 2D2 max
k=2n−ν ,...,2n+1+ν

|ak| ⩽ 2D2 max
j 2−ν−1<k⩽j 21+ν

|ak|,

that is, (2.13) holds for ν2 = ν +1 and H2 = 2D2. To prove the converse statement,
assume that the condition (2.13) holds for some H2 ∈ [1,∞) and some integer ν2.
Then for n ⩾ ν2 and j = 2n

2n+1∑
k=2n

|ak − ak+1| ⩽ H2 max
2n−ν2⩽k⩽2n+ν2

|ak|,

that is, (2.11) is satisfied for ν = ν2 and D2 = H2. Hence, (2.11) holds for some
integer ν and some D2 ∈ [1,∞) if and only if (2.13) holds for some integer ν2 and
some H2 ∈ [1,∞).

We note that if (2.10) holds for some ν = ν1 and (2.11) holds for some ν = ν2,
then both (2.10) and (2.11) hold for ν = max{ν1, ν2}. □

Corollary 2.7. A sequence of complex numbers a = {an}∞n=1 is of type GM(ν, D, p)
if and only if, for some H4, H5 ∈ [1,∞) and some integer ν4 , the condition

2j∑
k=j

|ak − ak+1| ⩽ H4

(
1
j

j 2ν4∑
k=[j 2−ν4 ]

|ak|p
)1/p

+ H5

2ν4∑
s=1−2ν4

(|aj+s|+ |a2j+s|) (2.14)

holds for any j ⩾ 2ν4 .

Proof. If 2n ⩽ j < 2n+1 for some n ⩾ ν, then (2.1) implies that

2j∑
k=j

|ak − ak+1| ⩽ 2D

(
2−n

2n+ν+1∑
k=2n−ν

|ak|p
)1/p

⩽ 2D

(
2
j

j 2ν+1∑
k=[j 2−ν−1]

|ak|p
)1/p

,

that is, (2.14) is satisfied.
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On the other hand, by (2.14) with j ⩾ 2ν4+1 one has

2j∑
k=j

|ak − ak+1| ⩽ H4 2ν4/p max
j 2−ν4<k⩽j 2ν4

|ak|+ H5 2ν4+1 max
j−2ν4<k⩽2j+2ν4

|ak|

⩽ H4 2ν4/p max
j 2−ν4<k⩽j 2ν4

|ak|+ H5 2ν4+1 max
j/2<k⩽3j

|ak|

⩽ (H4 2ν4/p + H5 2ν4+1) max
k=[j 2−ν4 ]+1,...,j 2ν4+1

|ak| for any j ⩾ 2ν4+1.

Hence (2.13) holds for ν2 = ν4 + 1 and H2 = H4 2ν4/p + H5 2ν4+1. Therefore, the
condition (2.11) is satisfied for ν = ν4 + 1 and D2 = H4 2ν4/p + H5 2ν4+1. Since

max
k=j,...,2j

|ak| −
1

j + 1

2j∑
k=j

|ak| ⩽
2j∑

k=j

|ak − ak+1|,

for j ⩾ 2ν4 we have

max
k=j,...,2j

|ak| ⩽
(

1
j + 1

2j∑
k=j

|ak|p
)1/p

+ H4

(
1
j

j 2ν4∑
k=[j 2−ν4 ]+1

|ak|p
)1/p

+ H5

2ν4∑
s=1−2ν4

(|aj+s|+ |a2j+s|)

⩽ (1 + H4)
(

1
j

j 2ν4∑
k=[j 2−ν4 ]+1

|ak|p
)1/p

+ H5

2ν4∑
s=1−2ν4

(|aj+s|+ |a2j+s|).

Thus,

max
k=j,...,4j

|ak| ⩽ (1 + H4)
(

1
j

j 2ν4+1∑
k=[j 2−ν4 ]+1

|ak|p
)1/p

+ H5

2ν4∑
s=1−2ν4

(|aj+s|+ |a2j+s|+ |a4j+s|).

Let n ⩾ ν4 + 1 and let Mn = |aq|, with 2n ⩽ q ⩽ 2n+1. For j = 2n−1, . . . , 2n one
has j ⩽ q ⩽ 4j and

|aq| ⩽ (1+H4)
(

1
2n−1

2n+ν4+1∑
k=[2n−1−ν4 ]+1

|ak|p
)1/p

+H5

2ν4∑
s=1−2ν4

(|aj+s|+|a2j+s|+|a4j+s|).
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Therefore,

Mn ⩽ (1 + H4)
(

1
2n−1

2n+ν4+1∑
k=2n−1−ν4+1

|ak|p
)1/p

+
H5

2n−1 + 1

2ν4∑
s=1−2ν4

2n∑
j=2n−1

(|aj+s|+ |a2j+s|+ |a4j+s|)

⩽ (1 + H4)
(

2
2n

2n+ν4+1∑
k=2n−1−ν4+1

|ak|p
)1/p

+
H5 2ν4+1

(2n−1)1/p

(( 2n+2ν4∑
k=2n−1+1−2ν4

|ak|p
)1/p

+
( 2n+1+2ν4∑

k=2n+1−2ν4

|ak|p
)1/p

+
( 2n+2+2ν4∑

k=2n+1+1−2ν4

|ak|p
)1/p)

.

If n ⩾ ν4 + 2, then this implies the inequality

Mn ⩽ (1 + H4)
(

2
2n

2n+ν4+1∑
k=2n−1−ν4+1

|ak|p
)1/p

+ 3H5 2ν4+1

(
2
2n

2n+3∑
k=2n−2

|ak|p
)1/p

.

Consequently, (2.10) holds for ν = ν4 + 2 and D1 = 21/p(H4 + 1 + 3H5 2ν4+1).
Finally, (2.10) and (2.11) hold for ν = ν4 + 2, and therefore (2.1) holds for ν =
2ν4 + 4. □

2.5. Embeddings of the classes GM(p). Let us show that the parameter p0 is
essential in the definition (2.1) of general monotone sequences, that is, GM(p1) ⊊
GM(p0) for p1 < p0.

Theorem 2.8. For any 1 ⩽ p1 < p0 < ∞, every class GM(ν, D1, p1) is contained
in some class GM(ν, D, p0). Moreover, there exists a non-negative sequence a =
{an}∞n=1 of type GM(4, 4, p0) such that, for any integer ν1 and any D1 ∈ [1,∞), the
sequence a does not belong to the class GM(ν1, D1, p1).

Proof. It is clear that by Hölder’s inequality, for 1 ⩽ p1 < p0 < ∞ we have

GM(ν, D, p1) ⊂ GM(ν, D1, p0), where D1 = 2ν(1/p1−1/p0)D.

To construct a counterexample, we first present an auxiliary construction. Let n
and τ be natural numbers with τ + 1 ⩽ n. Put λ = p0/(p0 − p1). Take the largest
integer l such that l ⩽ n/2, l + 2 ⩽ n, and λlτ ⩽ n. Let M > 0, τn+k = [λkτ ], and

Mn+k = M 2(τn+k+···+τn+1)/p0 for k = 0, . . . , l. (2.15)

Then Mn = M and Mn+1 = M2[λτ ]/p0 . Taking any k = 0, . . . , l, we put aj = Mn+k

for j = 2n+k + 1, . . . , 2n+k + 2n+k−τn+k and aj = 0 for j = 2n+k as well as for
any j = 2n+k + 2n+k−τn+k + 1, . . . , 2n+k+1. Then the numbers aj are defined
for any j = 2n, . . . , 2n+l+1, and moreover Mn+k = max{aj : j = 2n+k, . . . , 2n+k+1}
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and aj = 0 for j = 2n+k with k = 0, . . . , l + 1. From (2.15) with k = 0, . . . , l− 1 we
get that (Mn+k+1/Mn+k)p0 = 2τn+k+1 , and therefore

2n+k+1Mp0
n+k =

2n+k+2∑
j=2n+k+1

ap0
j .

We set Mn+l+1 = Mn+l, aj = Mn+l for j = 2n+l+1 + 1, . . . , 2n+l+1 + 2n+l, and
aj = 0 for j = 2n+l+1+2n+l+1, . . . , 2n+l+2 as well as for any j = 2n+l+2, . . . , 22n+l.
Then

2n+lMp0
n+l+1 =

2n+l+2∑
j=2n+l+1

ap0
j

and
22n∑

j=2n

aj =
l∑

k=0

Mn+k 2n+k−τn+k + Mn+l 2n+l.

In other words,

22n∑
j=2n

aj = M

( l∑
k=0

2n+k−τn+k 2(τn+k+···+τn+1)/p0 + 2n+l 2(τn+l+···+τn+1)/p0

)
,

and a2k = 0 for k = n, . . . , 2n.
For definiteness let M be chosen so that

22n∑
j=2n

aj = 2−n,

and τ = [(n + 1)1/2]. We assume that n ⩾ 4 and Mn+k = 0 for k = l + 2, . . . , n.
Then Mn+k = max{aj : j = 2n+k, . . . , 2n+k+1} for k = 0, . . . , n,

2n+kMp0
n+k ⩽

2n+k+2∑
j=2n+k

ap0
j for k = 0, . . . , n− 1, (2.16)

and M2n = 0. We note that in this case l = ln is the largest integer such that
ln ⩽ n/2 and ln ⩽ log(n/τ)/ log λ. Then ln → +∞ as n → +∞. Therefore, the
sequence E(n) = {aj : j = 2n, . . . , 22n+1} constructed is completely determined by
the number n.

For k = 0, . . . , l − 1 we have (Mn+k+1/Mn+k)p1 = 2(p1/p0)τn+k+1 ,

τn+k − τn+k+1

(
1− p1

p0

)
< λkτ − λk+1τ

(
1− p1

p0

)
+ 1 = 1,

and

τn+k − τn+k+1

(
1− p1

p0

)
> λkτ − λk+1τ

(
1− p1

p0

)
− 1 = −1.
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Therefore,(
Mn+k+1

Mn+k

)p1

> 2τn+k+1−τn+k−1 and
(

Mn+k+1

Mn+k

)p1

< 2τn+k+1−τn+k+1.

Hence, for k = 0, . . . , ln − 1 the following inequalities hold:

2n+k+2∑
j=2n+k+1

ap1
j = 2n+1+k−τn+1+kMp1

n+k+1 > 2n+k−τn+kMp1
n+k =

2n+k+1∑
j=2n+k

ap1
j

and

2n+k+2∑
j=2n+k+1

ap1
j = 2n+1+k−τn+1+kMp1

n+k+1 < 4 · 2n+k−τn+kMp1
n+k = 4

2n+k+1∑
j=2n+k

ap1
j .

Thus,
2n+k+1∑
j=2n+k

ap1
j ⩽ 4k

2n+1∑
j=2n

ap1
j = 4k 2n−τnMp1

n = 4k 2nMp1
n 2−τ .

Moreover, if 0 ⩽ ν ⩽ ln, then

2−n
2n+ν+1∑
j=2n

ap1
j < 2 · 4ν 2−τ(n)Mp1

n , (2.17)

where τ(n) = τ > (n + 1)1/2 − 1 → +∞ as n → +∞.
After presenting the above construction, we can now build the needed sequence

a = {an}∞n=1. For this, take any sequence of integers {ns}∞s=1 such that n1 ⩾ 4 and
ns+1 ⩾ 2ns+1. For example, one can take ns = 4s. Let {aj : j = 2ns , . . . , 22ns+1} =
E(ns) for any s = 1, 2, . . . . For other j put aj = 0. This non-negative sequence
a = {an}∞n=1 has the property that

∑∞
j=1 aj < 1. In view of (2.16), it satisfies

the condition (2.10) with ν = 2, D1 = 1 and the condition (2.11) with D2 = 2.
Therefore, a ∈ GM(4, 4, p0). However, due to (2.17), for any integer ν1 and any
D1 ∈ [1,∞) the condition (2.10) with n = ns and p1 in place of p0 fails for suf-
ficiently large s. In other words, the sequence a does not belong to the class
GM(ν1, D1, p1). □

2.6. Equivalence of series with an and a#
n .

Theorem 2.9. Let a null sequence {an}∞n=1 belong to the class WM(ν, D, p0) for
some p0 ⩾ 1. If a#

n = maxl⩾n |al| for n ⩾ 1, then for p, α ∈ (0,∞)

∞∑
n=1

|an|pnα−1 ⩽
∞∑

n=1

(a#
n )

p
nα−1 ⩽ C

∞∑
n=1

|an|pnα−1 (2.18)

with some positive C = C(α, p, p0, ν,D).

First we prove the following auxiliary result.
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Lemma 2.10. Let {di}N
i=1 be a sequence of non-negative numbers such that the

following two conditions hold for some A > 0 and C ∈ (0, 1): di ⩽ A for any i

and 1
N

∑N
i=1 di ⩾ CA. Then at least [NC/2] numbers in this sequence satisfy the

condition di ⩾ AC/2.

Proof. Assume not. Then for

Ω =
{

i ∈ [1, N ] ∩ Z : di ⩾
AC

2

}
we have

N∑
i=1

di ⩽
∑
i∈Ω

di +
∑

i∈[1,N ]∩Z\Ω

di < |Ω|A +
AC

2
N = CAN,

a contradiction. □

Proof of Theorem 2.9. Without loss of generality we may assume that the sum on
the right-hand side of (2.18) is finite and ν ⩾ 2. For any integer k ⩾ 0 we define

Ak := max
2k⩽n⩽2k+1−1

|an|, Bk := max
2k−ν⩽n⩽2k+ν−1

|an|,

and
αk := max

2k⩽n⩽2k+1−1
a#

n = max
2k⩽n⩽2k+1−1

max
l⩾n

|al| = a#
2k .

We say that an integer l ⩾ 0 is dominated by an integer r ⩾ 0 if r ⩾ l + 2 and
αl = |ai|, where 2r ⩽ i ⩽ 2r+1 − 1. Here and below, in the case of equality of
several numbers with absolute values equal to αl we take ai to be the one with the
smallest index. The integers not dominated by other integers will be called basic.
The set of basic numbers is denoted by Ω. Moreover, the set of basic numbers such
that αk = Ak is denoted by Ω1 while the set of basic numbers such that αk = Ak+1

is denoted by Ω2. It is clear that

Ω = Ω1 ⊔ Ω2.

If r is a basic number and the set Qr of integers dominated by r is not empty,
then r ∈ Ω1 and Qr = [k0, r − 2] ∩ Z. We note that for any l ∈ Qr and any
n ∈ [2l, 2l+1 − 1] ∩ Z we have

a#
n = αk0 = αk0+1 = · · · = αl = · · · = αr−1 = αr.

Furthermore, for j ∈ [2r−1, 2r − 1] ∩ Z the equality a#
j = αr holds.

Hence,

∑
l∈Qr

2l+1−1∑
n=2l

(a#
n )pnα−1 = αp

r

∑
l∈Qr

2l+1−1∑
n=2l

nα−1 ⩽ αp
r

2r∑
l=1

nα−1

⩽ C(α)
2r−1∑

n=2r−1

(a#
n )

p
nα−1. (2.19)
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A number r ∈ Ω such that

Ar ⩾
Br

22(α/p+1)ν

is said to be good. Otherwise, r is said to be bad. We note that if a number
r ∈ Ω2 is good, then r + 1 ∈ Ω1 is also good.

Suppose that a good number k is in Ω1. Then

αk = Ak = |ai|, where 2k ⩽ i ⩽ 2k+1 − 1.

By assumption, {an} ∈ WM(ν, D, p0), which implies that

2−k
2k+ν∑

n=2k−ν

|an|p0 ⩾
αp0

k

Dp0
=

Ap0
k

Dp0
⩾

Bp0
k

Dp0 22(α/p+1)νp0
.

Taking into account that all the numbers in the sum on the left are less than or
equal to Bp0

k and that the number of terms in this sum is 2k+ν − 2k−ν + 1, which
with regard to order is comparable with 2k, we conclude by Lemma 2.10 that if

Sk =
{

n ∈ [2k−ν , 2k+ν ] ∩ Z : |an|p0 >
Bp0

k

2Dp0 22(α/p+1)νp0

}
,

then

|Sk| ⩾
2k

C1
,

where the positive constant C1 depends only on p, p0, α, ν, and D. But then

2k+ν∑
n=2k−ν

|an|pnα−1 ⩾
∑

n∈Sk

|an|pnα−1 ⩾
Bp

k

C2
min{2(α−1)(k−ν), 2(α−1)(k+ν)} 2k

C1

⩾ C3

2k+1−1∑
n=2k

(a#
n )pnα−1, (2.20)

where the positive constants C2 and C3 depend only on p, p0, α, ν, and D. At the
same time, if k − 1 ∈ Ω2, then

2k−1∑
n=2k−1

(a#
n )pnα−1 = αp

k

2k−1∑
n=2k−1

nα−1 ⩽ C(α)αp
k

2k+1−1∑
n=2k

nα−1

⩽ C(α, p0, ν,D)
2k+ν∑

n=2k−ν

|an|pnα−1. (2.21)

Now consider the case when a bad number l0 is in Ω1. Then

Al0 ⩽
Bl0

22(α/p+1)ν
.
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We note that Bl0 = Al1 , l1 < l0, and l1 ∈ Ω1. If l1 is a good number, then we finish
our construction. Otherwise we have

Al1 ⩽
Bl1

22(α/p+1)ν
≡ Al2

22(α/p+1)ν

and l2 < l1, l2 ∈ Ω1. Continuing this process, we arrive at a finite sequence
l0 > l1 > l2 > · · · > ljs

, where k, l1, . . . , ljs
∈ Ω1, such that ljs

is a good number
and the rest are bad. Moreover, lr − lr+1 ⩽ 2ν and

Alr ⩽
Alr+1

22(α/p+1)ν

for any r. Thus, any integer k0 ∈ Ω1 generates a finite or infinite sequence k0 <
k1 < k2 < · · · , where all the ki are in Ω1, the ki are bad numbers for i ⩾ 1, and

Aki ⩽
Aki−1

22(α/p+1)
and ki − ki+1 ⩽ 2ν,

for i ⩾ 1. But since
∑2k+1−1

n=2k−1 nα−1 ≍ 2kα, we obtain

∑
i⩾1

2ki+1−1∑
n=2ki

(a#
n )pnα−1 ⩽

∑
i⩾1

Ap
ki

2ki+1−1∑
n=2ki−1

nα−1 ⩽ C(α)Ap
k0

∑
i⩾1

2αki

22(α/p+1)νip

⩽ C(α)Ap
k0

2αk0
∑
i⩾1

22ανi

22(α/p+1)νip
⩽ C5A

p
k0

2k0+1−1∑
n=2k0

nα−1,

(2.22)

where the positive constant C5 depends only on p, α, and ν. Similarly,

∑
i⩾1: ki−1∈Ω2

2ki−1∑
n=2ki−1

(a#
n )pnα−1 ⩽

∑
i⩾1

Ap
ki

2ki+1−1∑
n=2ki−1

nα−1 ⩽ C5A
p
k0

2k0+1−1∑
n=2k0

nα−1.

(2.23)
Using the inequality (2.19), we obtain

∞∑
n=1

(a#
n )pnα−1 =

∞∑
k=0

2k+1−1∑
n=2k

(a#
n )pnα−1 ⩽ C(α)

∑
k∈Ω

2k+1−1∑
n=2k

(a#
n )pnα−1.

For simplicity, we denote by Ω1,+ the set of good numbers in Ω1. Applying (2.22)
and (2.23), we continue the estimate as follows:

⩽ C
∑

k∈Ω1,+

Ap
k

2k+1−1∑
n=2k

nα−1 + C
∑

k∈Ω2:k+1∈Ω1,+

Ap
k+1

2k+1−1∑
n=2k

nα−1

⩽ C
∑

k∈Ω1,+

2k+ν∑
n=2k−ν

|an|pnα−1,
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where the last inequality follows from (2.19)–(2.21). Finally,

∞∑
n=1

(a#
n )pnα−1 ⩽ C(p, α, p0, D, ν)

∞∑
n=1

|an|pnα−1. □

Corollary 2.11. Let {an}∞n=1 be a null sequence of type WM(p0) for some p0 ⩾ 1.
Then for any γ ∈ (−∞,∞) and p ∈ (0,∞)

∞∑
n=1

2nγMp
n ≍

∞∑
n=1

nγ−1|an|p.

Proof. Theorem 2.9 implies that

∞∑
n=1

2nMp
n ⩽ C

∞∑
n=1

2n(a#
2n)p ⩽ C

∞∑
n=1

(a#
n )p ⩽ C

∞∑
n=1

|an|p.

Since the sequence {n(γ−1)/pan}∞n=1 is of type WM(p0), application to it of the
previous estimate gives us the desired result. □

2.7. Equivalence of series with an and a∗
n.

Theorem 2.12. Let {an}∞n=1 be a null sequence of type WM(p0) for some p0 ⩾ 1.
Then

∞∑
n=1

|an|pnα−1 ≍
∞∑

n=1

(a∗n)pnα−1

for p, α ∈ (0,∞).

Remark 2.13. Using the Hardy–Littlewood inequality for rearrangements [8], for
any sequence we have

∑∞
n=1 |an|pnα−1 ⩽

∑∞
n=1 (a∗n)p

nα−1 for 0 < α ⩽ 1, and we
have the reverse inequality for α ⩾ 1.

Proof of Theorem 2.12. Let α > 1 and {an}∞n=1 ∈ GM(p0). Let λ = 2ν be as in the
definition of WM(p0). For any n ⩾ 0 we define

An = max
k∈[2n,2n+1−1]

|ak| and Bn = max
k∈[2n−ν ,2n+ν+1−1]

|ak|.

As above, an integer n is said to be good if either it is sufficiently small or Bn ⩽
C1An (here C1 does not depend on n). We proved in Theorem 2.9 that if Ω is the
set of good numbers n, then

∞∑
k=1

kα−1|ak|p =
∞∑

n=0

2n+1−1∑
k=2n

kα−1|ak|p ⩽ C2

∑
n∈Ω

2n+1−1∑
k=2n

kα−1|ak|p =: C2

∑
n∈Ω

In.

(2.24)
Note that

In ⩽ Ap
n 2(n+1)α. (2.25)

Moreover, we established that there exist C3, C4 > 0 such that for any n ∈ Ω there
is a set of integers Tn ⊂ [2n−ν , 2n+ν ] containing at least C3 2n elements and such
that |ak| > C4An for k ∈ Tn.
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It is also clear that any fixed l is contained in at most 2ν + 2 different sets Tn.
Fix some n ∈ Ω. Let l(k) be the index of the kth term of the non-increasing

rearrangement of the original sequence. Also, let rn be the cardinality of Tn. Then
since α > 1, we obtain∑

k∈Tn

l(k)α−1|ak|p ⩾ Cp
4Ap

n

∑
k∈Tn

l(k)α−1 ⩾ Cp
4Ap

n

rn∑
q=1

qα−1

⩾ C5A
p
nrα

n ⩾ C6A
p
n 2nα. (2.26)

From (2.25) and (2.26) it follows that∑
n∈Ω

In ⩽ C7

∑
n∈Ω

∑
k∈Tn

l(k)α−1|ak|p ⩽ C7(2ν + 2)
∞∑

k=1

l(k)α−1|ak|p.

This and (2.24) imply that
∑∞

n=1 |an|pnα−1 ⩽ C
∑∞

n=1 (a∗n)p
nα−1 for α > 1.

For α = 1 the required estimate is trivial, while for 0 < α < 1 it follows from
Remark 2.13.

The reverse inequality follows from Theorem 2.9 and the property a∗n ⩽ a#
n for

any n. □

3. Estimates of Fourier coefficients

3.1. Lemma on a local and a global majorant. In this subsection we prove
a lemma which we use in the next two subsections.

Lemma 3.1. Let a sequence a = {ak}∞k=1 of complex numbers be bounded and let
Mn = maxk=2n,...,2n+1 |ak| for n ⩾ 0. Let the positive sequence {βk}∞k=1 and the
positive numbers γ and K be such that the sequence {k−γβk}∞k=1 is non-increasing
while the sequence {kγβk}∞k=1 is non-decreasing. Suppose that for some positive
integer m

|ak| ⩽ Kβk for all k = 1, . . . , 2m (3.1)

and for any positive integer n ⩾ m satisfying the condition

max
k=n−m,...,n+m

Mk ⩽ 2mγMn (3.2)

the estimate
|ak| ⩽ Kβk for all k = 2n, . . . , 2n+1 (3.3)

holds. Then
|ak| ⩽ 2γKβk for all k = 1, 2, . . . . (3.4)

Proof. Let Yn = maxk=2n,...,2n+1 βk for n ⩾ 0. We show that

2−γYn ⩽ min
k=2n,...,2n+1

βk ⩽ Yn+1 ⩽ 2γYn for all n ⩾ 0. (3.5)

Indeed, if 2n ⩽ q ⩽ 2n+1, then kγβk ⩽ qγβq for k = 2n, . . . , q and k−γβk ⩽ q−γβq

for k = q, . . . , 2n+1. Therefore,

max
k=2n,...,q

βk ⩽

(
q

2n

)γ

βq and max
k=q,...,2n+1

βk ⩽

(
2n+1

q

)γ

βq.
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Thus, Yn ⩽ 2γβq, which yields the first inequality in (3.5). The second is clear
since β2n+1 ⩽ Yn+1. Replacing n by n + 1 in the first inequality in (3.5), we obtain
2−γYn+1 ⩽ β2n+1 ⩽ Yn. This completes the proof of (3.5).

Now we prove that
Mn ⩽ KYn for all n ⩾ 0. (3.6)

For n = 0, . . . ,m − 1, the estimates (3.6) hold due to (3.1). Note that according
to (3.3) the condition (3.2) implies (3.6). Suppose that (3.6) does not hold. Then
there exists a smallest positive integer n0 such that Mn0 > KYn0 . It follows from
the argument above that n0 ⩾ m and 2mγMn0 < maxk=n0−m,...,n0+m Mk. There is
a positive integer n1 such that n0−m ⩽ n1 ⩽ n0+m, Mn1= maxk=n0−m,...,n0+m Mk,
and

Mn < Mn1 for all n0 −m ⩽ n < n1. (3.7)

Since Mn1 > 2mγMn0 , we have n1 ̸= n0, and using (3.5) for all s = 1, . . . ,m, we
conclude that

Mn0−s ⩽ KYn0−s ⩽ 2sγKYn0 ⩽ 2mγKYn0 < 2mγMn0 < Mn1 .

Therefore, n1 > n0, and by (3.5)

KYn1 ⩽ 2(n1−n0)γKYn0 ⩽ 2mγKYn0 < 2mγMn0 < Mn1 .

Finally, n0 + m ⩾ n1 > n0, KYn1 < 2mγMn0 < Mn1 , and (3.7) holds.
There exists a positive integer n2 such that n1 − m ⩽ n2 ⩽ n1 + m, Mn2 =

maxk=n1−m,...,n1+m Mk, and Mn < Mn2 for all n1 −m ⩽ n < n2. The fact that
the condition (3.6) does not hold for n = n1 implies that (3.2) also does not hold,
that is, Mn2 > 2mγMn1 . In view of (3.7) we have n1 + m ⩾ n2 > n1. Therefore,
by (3.5)

KYn2 ⩽ 2(n2−n1)γKYn1 ⩽ 2mγKYn1 < 2mγMn1 < Mn2 .

Thus, the previous conditions were repeated with n1, n2 in place of n0, n1. Repeat-
ing the above construction, we obtain a sequence of positive integers {nk}∞k=0 such
that nk + m ⩾ nk+1 > nk and KYnk+1 < 2mγMnk

< Mnk+1 for all k ⩾ 0. This
leads us to a contradiction with the boundedness of {ak}∞k=1, so (3.6) is proved.

If n ⩾ m and 2n ⩽ k ⩽ 2n+1, then (3.6) together with (3.5) give us that
|ak| ⩽ Mn ⩽ KYn ⩽ K2γβk, that is, the estimate (3.4) is proved, and with it
Lemma 3.1. □

We note that the idea of the proof of Lemma 3.1 was also used in [36], though
in a slightly different form.

3.2. Estimates for Fourier coefficients in the general case. As usual, for
a function f ∈ L1(T),

ck(f) =
1
2π

∫ π

−π

f(t)e−ikt dt

are its Fourier coefficients, and

Sn(f, x) =
1
π

∫ π

−π

f(x + t)Dn(t) dt, n ⩾ 0,
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are the partial sums of its Fourier series, where Dn(t) is the Dirichlet kernel. For
all integers 0 ⩽ n1 ⩽ n2 let

Vn1,n2(f, x) =
1
π

∫ π

−π

f(x + t)Kn1,n2(t) dt =
1

n2 − n1 + 1

n2∑
n=n1

Sn(f, x)

denote the de la Vallée-Poussin sums, let

Kn1,n2(t) =
1

n2 − n1 + 1

n2∑
n=n1

Dn(t),

denote the de la Vallée-Poussin kernel, and let σn(f, x) = V0,n(f, x) denote the
Fejér means. Since

Vn1,n2(f, 0) =
n2∑

k=−n2

ck(f)−
n2∑

k=n1+1

k − n1

n2 − n1 + 1
(ck(f) + c−k(f)),

we have ∣∣∣∣ n2∑
k=−n2

ck(f)
∣∣∣∣− n2∑

k=n1+1

k − n1

n2 − n1 + 1
(
|ck(f)|+ |c−k(f)|

)
⩽ |Vn1,n2(f, 0)| ⩽ 1

π

∫ π

−π

|f(t)| |Kn1,n2(t)| dt (3.8)

and

|Vn1,n2(f, 0)| = 1
n2 − n1 + 1

|(n2 + 1)σn2(f, 0)− n1σn1−1(f, 0)|

⩽
n2 + 1

n2 − n1 + 1
|σn2(f, 0)|+ n1

n2 − n1 + 1
|σn1−1(f, 0)|. (3.9)

Note that
n2∑

k=n1+1

k − n1

n2 − n1 + 1
(
|ck(f)|+ |c−k(f)|

)
⩽ max

k=−n2,...,n2
|ck(f)| · (n2 − n1).

It is known that

|Kn1,n2(t)| ⩽
1
2

+
1

n2 − n1 + 1

n2∑
n=n1

n =
n2 + n1 + 1

2
for all t.

Since for the Fejér kernel we have

K0,n(t) =
sin2((n + 1)t/2)

2(n + 1) sin2(t/2)
⩽

1
2(n + 1) sin2(t/2)

,

we get that

|Kn1,n2(t)| =
1

n2 − n1 + 1
|(n2 + 1)K0,n2(t)− n1K0,n1−1(t)|

⩽
1

(n2 − n1 + 1) 2 sin2(t/2)

⩽
π2

(n2 − n1 + 1) 2t2
for all |t| ∈ (0, π].
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Therefore, for any function f ∈ L1(T), from (3.8) we have∣∣∣∣ n2∑
k=−n2

ck(f)
∣∣∣∣− (n2 − n1) max

k=−n2,...,n2
|ck(f)|

⩽
1
2π

∫ π

0

(
|f(t)|+ |f(−t)|

)
min

{
n2 + n1 + 1,

π2

(n2 − n1 + 1)t2

}
dt. (3.10)

Since |σn(f, 0)| ⩽ ∥f∥∞, it follows from (3.8) and (3.9) that for any f ∈ C(T)∣∣∣∣ n2∑
k=−n2

ck(f)
∣∣∣∣− (n2 − n1) max

k=−n2,...,n2
|ck(f)| ⩽ n2 + n1 + 1

n2 − n1 + 1
∥f∥∞. (3.11)

Lemma 3.2. Let m1 and m2 be positive integers with m1 < m2 and let a non-
negative integer s be such that m2 −m1 is even and 2s ⩽ m2 −m1 − 2. Then:

(a) for any f ∈ L1(T)∣∣∣∣ m2∑
k=m1

ck(f)
∣∣∣∣− s max

k=m1,...,m2
|ck(f)|

⩽
1
2π

∫ π

0

(
|f(t)|+ |f(−t)|

)
min

{
m2 −m1 + 1− s,

π2

(s + 1)t2

}
dt; (3.12)

(b) for any f ∈ C(T)∣∣∣∣ m2∑
k=m1

ck(f)
∣∣∣∣− s max

k=m1,...,m2
|ck(f)| ⩽ m2 −m1 + 1− s

s + 1
Em1−1(f)∞. (3.13)

Proof. Let n1 = (m2 − m1 − 2s)/2, n2 = (m2 − m1)/2, and q = (m2 + m1)/2.
Applying (3.10) and (3.11) to the function f(t)e−iqt, we get that∣∣∣∣ n2∑

k=−n2

ck+q(f)
∣∣∣∣− s max

k=−n2,...,n2
|ck+q(f)|

⩽
1
2π

∫ π

0

(
|f(t)|+ |f(−t)|

)
min

{
m2 −m1 − s + 1,

π2

(s + 1)t2

}
dt,

so that (3.12) is proved. Similarly, the inequality (3.11) implies that∣∣∣∣ m2∑
k=m1

ck(f)
∣∣∣∣− s max

k=m1,...,m2
|ck(f)| ⩽ n2 + n1 + 1

n2 − n1 + 1
∥f∥∞ =

m2 −m1 + 1− s

s + 1
∥f∥∞.

The last inequality contains an arbitrary f ∈ C(T), while its left-hand side involves
only the coefficients {ck(f)}m2

k=m1
. Let us change the coefficients {ck(f)}m1−1

k=−(m1−1)

of f in such a way that ∥f∥∞ = Em1−1(f)∞. Then we get (3.13). □.
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3.3. Estimates for Fourier coefficients of type GM(p). The following two
theorems are the main results of this subsection.

Theorem 3.3. The following estimate holds for a function f ∈ L1(T) with Fourier
series of the form (1.2) and with coefficients {an}∞n=1 of type GM(ν, D, p0):

|an| ⩽ a#
n ⩽ C1

(∫ π/n

0

|f(t)| dt +
π2

n2

∫ π

π/n

|f(t)|
t2

dt

)
(3.14)

for all n ⩾ 1, where C1 > 0 depends only on ν , D , and p0 .

Theorem 3.4. For any q > 0 there exists a positive constant C2 depending only
on q and the parameters ν , D , p0 , such that the following condition holds. If a func-
tion f ∈ C(T) has a Fourier series expansion of the form (1.2) with coefficients
{an}∞n=1 of type GM(ν, D, p0), then the Fourier series of f converges uniformly,
and for any positive integer n

n|an| ⩽ na#
n ⩽ C2n

−q max
1⩽k⩽n

kqEk−1(f)∞, (3.15)

where Ek−1(f)∞ is the best approximation of f by trigonometric polynomials of
degree less than k in the space C(T).

Proof of Theorem 3.3. The complex sequence a = {an}∞n=1 is of type GM(ν, D, p0),
so Theorem 2.5 implies the conditions (2.10) and (2.11).

Let m = 2ν. Suppose that the condition (3.2) is satisfied for some n ⩾ m and
some γ > 0, that is,

2mγMn ⩾ max
k=n−m,...,n+m

Mk = max
k=2n−m,...,2n+m+1

|ak|. (3.16)

First assume that Mn > 0. Note that

( 2n+ν∑
k=2n−ν

|ak|p0

)1/p0

⩽

( 2n+ν∑
k=2n−ν

(|Re ak|+ | Im ak|)p0

)1/p0

⩽

( 2n+ν∑
k=2n−ν

|Re ak|p0

)1/p0

+
( 2n+ν∑

k=2n−ν

| Im ak|p0

)1/p0

.

Denote by {bk}2
n+ν

k=2n−ν any of the sequences {Re ak}2
n+ν

k=2n−ν or {Im ak}2
n+ν

k=2n−ν for
which ( 2n+ν∑

k=2n−ν

|ak|p0

)1/p0

⩽ 2
( 2n+ν∑

k=2n−ν

|bk|p0

)1/p0

.

Further, we assume that the first non-zero term of the sequence {bk}2
n+ν

k=2n−ν is
positive, otherwise we can replace bk by −bk for all k. Let

ε =
1

2D1
2−(ν+1)/p0 (3.17)
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and note that ε > 0 depends only on ν, D1, p0 and that ε ⩽ 1/2. Let

En = {k ∈ {2n−ν , . . . , 2n+ν} : |bk| ⩾ εMn},

and as usual, let |En| denote the cardinality of the set En. Then from (2.10),
(3.16), and (3.17) we get that

2n

(
Mn

D1

)p0

⩽ 2p0

2n+ν∑
k=2n−ν

|bk|p0 ⩽ 2p0
∑

k∈En

|ak|p0 + 2n+ν(2εMn)p0

⩽ (2 · 2mγMn)p0 |En|+
1
2

2n

(
Mn

D1

)p0

.

Thus,
|En| ⩾ 4D3 2n, (3.18)

where D3 = (2D1 2mγ)−p0/8 is a positive constant depending only on ν, D1, p0,
and γ. We consider a partition

2n−ν = j0 < j1 < · · · < jτn
= 2n+ν + 1

such that if Il = {jl−1, . . . , jl − 1}, then for k ∈ Il we have (−1)l−1bk ⩾ 0 and

max
k∈Il

|bk| > 0 for all l = 1, . . . , τn.

Let
Ln =

{
l = 1, . . . , τn : max

k∈Il

|bk| ⩾ εMn

}
,

and let |Ln| denote the cardinality of Ln, as usual. For each l ∈ {1, . . . , τn} we
find a number k(l) ∈ Il such that |bk(l)| = maxk∈Il

|bk|. Consider two successive
elements l1 < l2 of the set Ln arranged in increasing order. If l2 − l1 is odd, then
bk(l1) and bk(l2) have opposite signs and

|ak(l1) − ak(l2)| ⩾ |bk(l1) − bk(l2)| = |bk(l1)|+ |bk(l2)| ⩾ 2εMn.

Otherwise, if l2 − l1 is even, then we call the integer k(l1 + 1) additional. Thus,

|ak(l1) − ak(l1+1)| ⩾ |bk(l1) − bk(l1+1)| = |bk(l1)|+ |bk(l1+1)| > εMn

and
|ak(l1+1) − ak(l2)| ⩾ |bk(l1+1) − bk(l2)| = |bk(l1+1)|+ |bk(l2)| > εMn.

We apply a similar procedure to all pairs of successive elements in Ln. Further, we
consider all the numbers {k(l) : l ∈ Ln} together with the additional numbers and
enumerate them in increasing order as k1, . . . , kτ . Then

τ ⩾ |Ln|, 2n−ν ⩽ k1 < · · · < kτ ⩽ 2n+ν , (3.19)

the signs of non-zero terms bk1 , . . . , bkτ
alternate, and

|akj
− akj+1 | ⩾ |bkj

− bkj+1 | > εMn for all j = 1, . . . , τ − 1. (3.20)
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At this point we use the condition (2.11) or, as in the next subsection, a certain
modification of (2.11). Since n ⩾ m = 2ν, we deduce from (2.11), (3.19), (3.20),
and (3.16) that

(τ − 1)εMn ⩽
τ−1∑
j=1

|akj
− akj+1 | ⩽

ν∑
j=1−ν

2n−j+1∑
k=2n−j

|ak − ak+1|

⩽ 2νD2 max
k=2n−2ν ,...,2n+2ν

|ak| ⩽ D2m 2mγMn, (3.21)

and hence
τ ⩽ G, (3.22)

where the constant G = 1 + D2m2mγ/ε ⩾ 2 depends only on ν, D1, p0, D2, and γ,
but, importantly, not on n. Let N be the smallest positive integer such that

N ⩾ m = 2ν and 2N ⩾
6G

D3
. (3.23)

Note that N depends only on ν, D1, p0, G, and γ. Assume that

n ⩾ N. (3.24)

Then
n ⩾ m = 2ν and 2n ⩾

6G

D3
. (3.25)

Since |En| =
∑

l∈Ln
|En ∩ Il|, we can find an l ∈ Ln such that in view of (3.19),

(3.22), (3.18), and (3.25) we have

|En ∩ Il| ⩾
|En|
|Ln|

⩾
|En|
τ

⩾
|En|
G

⩾
4D3

G
2n ⩾ 24. (3.26)

From now on we fix such an l ∈ Ln. If jl − 1− jl−1 is an even integer, then we set
m1 = jl−1 and m2 = jl − 1. Otherwise, if jl − 1 − jl−1 is odd, then for jl−1 /∈ En

we set m1 = jl−1 + 1 and m2 = jl − 1, and for jl − 1 /∈ En we set m1 = jl−1

and m2 = jl − 2. Thus, m2 −m1 is even, and by (3.26)

|En ∩ {m1, . . . ,m2}| = |En ∩ Il| ⩾ 24.

If jl−1−jl−1 is an odd integer and jl−1 ∈ En, jl−1 ∈ En, then we set m1 = jl−1+1
and m2 = jl − 1. In this case

|En ∩ {m1, . . . ,m2}| = |En ∩ Il| − 1 ⩾ 23.

Thus, we have found numbers

2n−ν ⩽ jl−1 ⩽ m1 < m2 ⩽ jl − 1 ⩽ 2n+ν

such that m2 −m1 is even,

m2 −m1 + 1 ⩾ |En ∩ {m1, . . . ,m2}| ⩾ 23,
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and by (3.26) and (3.25)

m2 −m1 + 1 ⩾ |En ∩ {m1, . . . ,m2}| ⩾ |En ∩ Il| − 1 ⩾
4D3

G
2n − 1 ⩾

23D3

6G
2n.

In particular,

m2 −m1 − 2 ⩾
20
23

(m2 −m1 + 1) ⩾
20D3

6G
2n.

Since (−1)l−1bk ⩾ 0 for k = m1, . . . ,m2, it follows that∣∣∣∣ m2∑
k=m1

ak

∣∣∣∣ ⩾ ∣∣∣∣ m2∑
k=m1

bk

∣∣∣∣ = m2∑
k=m1

|bk| ⩾ |En ∩ {m1, . . . ,m2}|εMn ⩾
23D3

6G
2nεMn.

Let
s =

[
εD3 2n

G 2mγ

]
. (3.27)

Next, by (3.16)∣∣∣∣ m2∑
k=m1

ak

∣∣∣∣− s max
k=m1,...,m2

|ak| ⩾
23εD3

6G
2nMn − s 2mγMn ⩾

17εD3

6G
2nMn

and by (3.27)

2s ⩽
2εD3 2n

G 2mγ
⩽

D3 2n

G
< m2 −m1 − 2.

Note that we have |ck(f)| = |ak|/2 for all k ⩾ 1 in view of (1.2). Therefore,∣∣∣∣ m2∑
k=m1

ck(f)
∣∣∣∣− s max

k=m1,...,m2
|ck(f)| ⩾ 17εD3

12G
2nMn.

Thus, all the conditions of Lemma 3.2 are satisfied. Note that by (3.27)

s + 1 >
εD3 2n

G 2mγ

and
m2 −m1 + 1 ⩽ 2n+ν − 2n−ν + 1 ⩽ 2n+ν .

Therefore, from (3.12) we have

17εD3

12G
2nMn ⩽

1
π

∫ π

0

|f(t)|min
{

2n+ν ,
G 2mγπ2

εD3 2nt2

}
dt,

that is,

Mn ⩽ D4
2
π

∫ π

0

|f(t)|min
{

1,
π2

22nt2

}
dt, (3.28)

where the positive constant

D4 =
6G

17εD3
max

{
2ν ,

G 2mγ

εD3

}
depends only on ν, D1, p0, G, and γ.



982 A. S. Belov, M. I. Dyachenko, and S.Yu. Tikhonov

If f ∈ C(T), then we get from (3.13) that

17εD3

12G
2nMn ⩽

2νG 2mγ

εD3
E2n−ν−1(f)∞,

so that
2nMn ⩽ D5E2n−ν−1(f)∞, (3.29)

where the positive constant

D5 =
12G

17εD3

2νG 2mγ

εD3

depends only on ν, D1, p0, G, and γ.
We point out that the estimates (3.28) and (3.29) are valid when the conditions

(3.16) and (3.22)–(3.24) hold, and they are clearly valid if Mn = 0.
Up to this point, the proofs of Theorems 3.3 and 3.4 are the same. Now we focus

specifically on the proof of Theorem 3.3.
Let (1.2) be the Fourier series of a function f ∈ L1(T), ∥f∥1 > 0, and let

βk =
2
π

(∫ π/k

0

|f(t)| dt+
π2

k2

∫ π

π/k

|f(t)|
t2

dt

)
=

2
π

∫ π

0

|f(t)|min
{

1,
π2

k2t2

}
dt (3.30)

for positive integers k. Then βk > 0, βk+1 ⩽ βk, and (k + 1)2βk+1 ⩾ k2βk for all
k = 1, 2, . . . . Assume that γ = 2 in (3.16) and further on. It follows from (3.14)
that

|ak| ⩽
1
π

∫ π

−π

|f(t)| dt =
2
π

∫ π

0

|f(t)| dt ⩽ k2βk for all k = 1, 2, . . . . (3.31)

In particular,
|ak| ⩽ 22Nβk for all k = 1, 2, . . . , 2N . (3.32)

If n ⩾ N , in other words, if (3.24) holds, then under the condition (3.16) we
have (3.28), that is, Mn ⩽ D4β2n . Hence, for k = 2n, . . . , 2n+1 we have

|ak| ⩽ Mn ⩽ D4β2n ⩽ D4(k2 2−2n)βk ⩽ 4D4βk.

Thus,
|ak| ⩽ 4D4βk for all k ⩾ 2N . (3.33)

Let K = max{22N , 4D4}. Then (3.32) and (3.33) imply (3.1), and under the
condition (3.2) the condition (3.3) also holds. By Lemma 3.1 the estimate (3.4) is
valid, and hence in light of (3.30) also the estimate (3.14) with C1 = 8K/π. The
proof of Theorem 3.3 is complete. □

Proof of Theorem 3.4. Let (1.2) be the Fourier series of a non-constant function
f ∈ C(T) and let

βk = k−q−1 max
1⩽j⩽k

jqEj−1(f)∞ (3.34)

for positive integers k. Then

βk > 0, kβk ⩾ Ek−1(f)∞ ⩾ Ek(f)∞, (k + 1)q+1βk+1 ⩾ kq+1βk,
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and

(k + 1)βk+1 = max
1⩽j⩽k+1

(
j

k + 1

)q

Ej−1(f)∞ ⩽ max{kβk, Ek(f)∞} ⩽ kβk

for all k = 1, 2, . . . . Assume that γ = q + 1 in the relations (3.16) to (3.29). It
follows from (1.2) that

|ak| ⩽ 2Ek−1(f)∞ ⩽ 2kβk for all k = 1, 2, . . . . (3.35)

In particular,
|ak| ⩽ 2N+1βk for all k = 1, 2, . . . , 2N . (3.36)

If n ⩾ N , that is, the condition (3.24) holds, then under the condition (3.16) we have
(3.29), that is, 2n(q+1)Mn ⩽ D5 2νq 2(n−ν)qE2n−ν−1(f)∞. Hence, Mn ⩽ D5 2νqβ2n .
Thus, for k = 2n, . . . , 2n+1 we have

|ak| ⩽ Mn ⩽ D5 2νqβ2n ⩽ D5 2νq(kq+1 2−(q+1)n)βk ⩽ D5 2νq 2q+1βk.

Therefore,
|ak| ⩽ D5 2νq+q+1βk for all k ⩾ 2N . (3.37)

Let K = max{2N+1, 2νq+q+1D5}. Then (3.36) and (3.37) imply the inequality (3.1),
and in light of the condition (3.2), (3.3) holds as well. By Lemma 3.1, (3.4) is
valid, which by (3.34) yields (3.15) with C2 = 2q+1K. It follows from (3.15) that
|an| = o(n−1). Therefore, the Fourier series of a continuous function f converges
uniformly. In particular, it is convergent at x = 0. □

3.4. Lebesgue inequalities for Fourier coefficients.

Corollary 3.5. If (1.2) is the Fourier expansion of a function f ∈ C(T) with
coefficients {an}∞n=1 of type GM(p), p ⩾ 1, then for all positive integers n

n|an| ⩽ na#
n ⩽ Cωβ

(
f,

π

n

)
∞

. (3.38)

The estimate (3.38) is a Lebesgue type inequality (for β = 1, see [36]).

Proof. By Jackson’s inequality we have

En−1(f)∞ ⩽ Cβωβ

(
f,

π

n

)
.

Therefore, we deduce from (3.15) that for q = β and any positive integer n

n|an| ⩽ Cβn−β max
1⩽k⩽n

kβωβ

(
f,

π

k

)
⩽ Cβωβ

(
f,

π

n

)
,

so that the estimate (3.38) is valid. □
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3.5. Approximation by partial sums of Fourier series. In [51] (see also [99],
Chap. II, § 10) Lebesgue proved that for a function h in the Lipschitz class

Lip α =
{
f ∈ C(T) : ω(f, δ)C = O(δα)

}
one has

∥h− Sn(h)∥C(T) = O
( log n

nα

)
. (3.39)

Here ω(f, δ)C = sup|h|⩽δ ∥f( ·+h)− f( · )∥C is the modulus of continuity of a func-
tion f in C. Salem and Zygmund [77] showed that the logarithm cannot be sup-
pressed, even if in addition to the condition h ∈ Lip α we assume that h is of
bounded variation. However, they showed that if h ∈ Lip α is of monotone type,
then the logarithmic factor in (3.39) can be omitted.

Theorem 3.6 (see [77]). Let h be a continuous function of monotone type, that
is, there exists a real number K such that the function h(x) + Kx is either non-
increasing or non-decreasing on (−∞,∞). Let h ∈ Lip α, where 0 < α < 1. Then

∥h− Sn(h)∥C(T) = O

(
1

nα

)
. (3.40)

We show that this estimate still holds for functions in Lip α with coefficients
{an}∞n=1 of type GM(ν, D, p0).

Corollary 3.7. If (1.2) is the Fourier expansion of a function f ∈ C(T) with coef-
ficients {an}∞n=1 of type GM(p), p ⩾ 1, then the following conditions are equivalent
for α > 0 :

(i) |an| = O

(
1

nα+1

)
;

(ii) ∥f − Sn(f)∥C = O

(
1

nα

)
;

(iii) En(f)C = O

(
1

nα

)
;

(iv) f ∈ Lip α, where α < 1 in the case of a sine series and α ⩽ 1 in the case of
a cosine series.

Proof. Note that the inequality (3.15) implies that

n|an| ⩽ CEn−1(f)C ⩽ C∥f − Sn−1(f)∥C ⩽ C

∞∑
k=n

|ak|.

Therefore, for any positive α, we have (i) ⇔ (ii) ⇔ (iii). By Jackson’s inequality,
(iv) ⇒ (iii). The relation (i) ⇒ (iv) follows in the same way as the estimates in
Theorem 2.2 of [36]. □

Remark 3.8. 1. For the series

f(x) =
∑

k

k−2 sin(kx),

one has
n|an| ⩽ CEn(f)C ⩽ ∥f − Sn(f)∥C = O(n−1)

but f /∈ Lip 1. This shows the sharpness of the conditions of Corollary 3.7.
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2. For monotone coefficients, see [9] and [60]. The result presented gives a sig-
nificant improvement of results in the paper [29].

3. One can obtain similar results for moduli of smoothness of higher order
(see [36]) and for the spaces

Lip α =
{
f ∈ C(T) : ω(f, δ)C = o(δα)

}
.

3.6. Estimates for Fourier coefficients under certain conditions involving
constant signs. Let b = {bn}∞n=1 be a sequence of real numbers and let n1 ⩽ n2 be
positive integers. We discard all the zeros from {bn}n2

n=n1
and then group together

all successive numbers with the same sign. We define the number of groups obtained
by SC(n1, n2). Thus, SC(n1, n2)− 1 is the number of sign changes in the sequence
{bn}n2

n=n1
.

Definition 3.9. For a positive integer ξ, we say that a sequence b is of type SCξ

(written b ∈ SCξ) if
SC(2n, 2n+1) ⩽ ξ for all n ⩾ 0. (3.41)

A sequence a = {an}∞n=1 of complex numbers is said to be of type SCξ if the
sequences {Re an}∞n=1 and {Im an}∞n=1 are of type SCξ.

Comparing the conditions of type GM and those of type SCξ, we can see that
in the first case we estimate the variation of the sequence {an} on the intervals
(2n, 2n+1), and in the second case the variation of the sequence of signs {sgn(an)}.

The following theorem is a modification of Theorems 3.3 and 3.4.

Theorem 3.10. Assume that (1.2) is the Fourier expansion of a function f ∈ L(T)
with coefficients {an}∞n=1 of type SCξ for some ξ ∈ N and that (2.10) is satisfied.
Then the following assertions hold.

(A) For all positive integers n

|an| ⩽ a#
n ⩽ C ′1

(∫ π/n

0

|f(t)| dt +
π2

n2

∫ π

π/n

|f(t)|
t2

dt

)
, (3.42)

where the constant C ′1 > 0 depends only on ν , D1 , p0 , and ξ .
(B) There exists a constant C ′2 > 0 depending only on a positive number q and on

the parameters ν , D1 , p0 , ξ such that if f ∈ C(T), then its Fourier series converges
uniformly, and for any positive integer n

n|an| ⩽ na#
n ⩽ C ′2n

−q max
1⩽k⩽n

kqEk−1(f)∞. (3.43)

Proof. We repeat the part of the proof of Theorem 3.3 from (3.16) up to (3.20).
Since 2n−ν ⩽ k1 < · · · < kτ ⩽ 2n+ν and the signs of the non-zero terms bk1 , . . . , bkτ

alternate, we have in light of (3.41) that τ ⩽ SC(2n−ν , 2n+ν) ⩽ 2νξ. Thus, if
G = 2νξ, then the condition (3.22) is satisfied. After that we repeat the proofs of
Theorems 3.3 and 3.4. Finally, we arrive at (3.42) and (3.43) with C ′1 = 8K/π and
C ′2 = 2q+1K. □

Corollary 3.11. If (1.2) is the Fourier expansion of a function f ∈ L(T) with
positive coefficients {an}∞n=1 ∈ WM(p), p ⩾ 1, then (3.42) holds. If, in addition,
f ∈ C(T), then (3.43) holds.
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4. Different types of convergence of series with GM-coefficients

4.1. Convergence almost everywhere and uniform convergence.

Theorem 4.1. (A) Let {an} ∈ GM(p) for some p ⩾ 1 and let
∞∑

n=1

a2
n

n
< ∞. (4.1)

Then the series (1.2) converge almost everywhere.
(B) For any decreasing sequence {γn} satisfying the condition

∞∑
n=1

γ2
n

n
= ∞ (4.2)

there exists a sequence {an} ∈ GM(p) such that |an| ⩽ Cγn and the series (1.2)
diverge almost everywhere.

Proof. (A) We provide arguments for cosine series. Using the Abel transformation,
we have (for a0 = 0)

SN (x) =
N∑

n=0

an cos(nx) =
1

2 sin(x/2)

(
sin
(

x

2

)N−1∑
n=0

∆an cos(nx)

+ cos
(

x

2

)N−1∑
n=0

∆an sin(nx) + aN sin
((

N +
1
2

)
x

))
. (4.3)

Note that
2k−1∑

n=2k−1

|∆an|2 ⩽ 2 max
2k−1⩽n⩽2k

|an|
2k−1∑

n=2k−1

|∆an|

⩽ C max
2k−1⩽n⩽2k

|an|
( [2kν]∑

n=[(2k−1)/ν]

|an|p

n

)1/p

⩽ C max
2k−ν⩽n⩽2k+ν

|an|2.

Since (4.1) implies that
∑∞

n=1 max2k⩽n⩽2k+1 |an|2 < ∞ (see Corollary 2.11), we get
that

∞∑
n=0

|∆an|2 < ∞. (4.4)

The representation (4.3) along with Carleson’s theorem and the condition (4.4)
ensure that the series

∑∞
n=0 an cos(nx) converges almost everywhere.

(B) For any decreasing null sequence {γn} we construct the sequence

an =

{
γn, n ̸= 2k,

0, n = 2k.

Then we have
2m∑

n=m

|∆an| ⩽ C(am + am+1) ⩽ C

( [mν]∑
n=[m/ν]

|an|p

n

)1/p

.
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Moreover,
∞∑

n=1

an cos(nx) =
∞∑

n=1

γn cos(nx)−
∞∑

k=1

γ2k cos(2kx),

where the first series converges everywhere on (0, 2π), while the second is almost
everywhere divergent due to the fact that

∑∞
k=1 γ2

2k ≍
∑∞

n=1
γ2

n

n = ∞ (see [99]). □

Now we give necessary and sufficient conditions for uniform convergence of series
of the form (1.2) with GM(p)-coefficients.

Theorem 4.2. Let a ∈ GM(p) for some p > 1.
(A) The series a0/2+

∑∞
n=1 an cos(nx) converges uniformly on [0, 2π] if and only

if nan = o(1) and
∑

n an converges.
(A′) The sequence of partial sums of the series a0/2 +

∑∞
n=1 an cos(nx) is uni-

formly bounded on [0, 2π] if and only if nan = O(1) and the sequence of partial
sums of the series

∑
n an is bounded.

(B) The series
∑∞

n=1 an sin(nx) converges uniformly on [0, 2π] if and only if
nan = o(1).

(B′) The sequence of partial sums of
∑∞

n=1 an sin(nx) is uniformly bounded on
[0, 2π] if and only if nan = O(1).

The proof follows from results in [29], [34], [88].

4.2. Convergence in the mean. Let f be a 2π-periodic L1-integrable function
and let (1.2) be its Fourier series. As usual, we define the partial sums of the
series (1.2) by Sn(f, x) = a0/2 +

∑n
k=1 ak cos(kx) or Sn(f, x) =

∑n
k=1 ak sin(kx),

respectively. We say that the series (1.2) converge in the mean, that is, in the
L1-norm, if ∥f(x)− Sn(f, x)∥1 = o(1) as n →∞.

Theorem 4.3. A series

a0 +
∞∑

n=1

an cos(nx) or
∞∑

n=1

an sin(nx) (4.5)

with coefficients {an} ∈ GM(p) for some p ⩾ 1 converges in the mean if and only
if it is the Fourier series of some f ∈ L1(T) and

|an| log n → 0 as n →∞. (4.6)

Proof. Sufficiency. For a series of the form (4.5), assume that (4.6) holds. Let
Sn(x) be the partial sums of (4.5) and let Dn(x) be the Dirichlet kernel (or the
conjugate Dirichlet kernel). Then

2n−1∑
k=n

|ak − ak+1| = o

(
1

log n

)
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and for 1 < n ⩽ m ⩽ 2n we have

∥Sm(x)− Sn−1(x)∥1 =
∥∥∥∥ m∑

k=n

ak(Dk(x)−Dk−1(x))
∥∥∥∥

1

=
∥∥∥∥m−1∑

k=n

∆ak(Dk(x)−Dn−1(x)) + am(Dm(x)−Dn−1(x))
∥∥∥∥

1

⩽
m−1∑
k=n

|∆ak|
∥∥Dk(x)−Dn−1(x)

∥∥
1

+ |am|
∥∥Dm(x)−Dn−1(x)

∥∥
1

⩽ 2 max
k⩽2n

∥Dk∥1
(m−1∑

k=n

|∆ak|+ |am|
)

⩽ 2 max
k⩽2n

∥Dk∥1
( 2n−1∑

k=n

|∆ak|+ max
n⩽m⩽2n

|am|
)

⩽ C log n · o
(

1
log n

)
= o(1).

Hence,
max

1⩽n⩽m⩽2n
∥Sm − Sn−1∥1 = o(1),

and the Fourier series (4.5) converges in the mean (see [5], [7]).

Necessity. Assume that the series (4.5) converges in the mean. Then it is a Fourier
series and

n∑
k=1

|ak| = o

(
n

1 + log n

)
(see [5]). For n ⩾ 1 let

vn =
( n∑

k=1

|ak|
)

(1 + log n)

and
wn = max

k⩽n
vk.

We have wn = o(n) and wn ⩽ wn+1. For n ⩾ 1 let

εn = max
k⩾n

wk

k
.

Then εn = o(1), εn ⩾ εn+1, and nεn ⩾ wn ⩾ vn. Thus, (n + 1)εn+1 ⩾ wn+1 ⩾ wn,
and therefore

εn = max
{

εn+1,
wn

n

}
⩽ max

{
εn+1,

(n + 1)εn+1

n

}
⩽

(n + 1)εn+1

n
.

Hence, nεn ⩽ (n + 1)εn+1. Let

βn = εn
1

1 + log n
.
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Note that βn ⩾ βn+1 and

n(1 + log n)βn ⩽ (n + 1)(1 + log (n + 1))βn+1.

Since (1 + log(n + 1)) ⩽ (1 + 1/n)(1 + log n),

n2βn ⩽ (n + 1)2βn+1.

For any positive integer n ⩾ ν such that

22νMn ⩾ max
k=n−ν,...,n+ν

Mk (4.7)

we have

2nMp0
n ⩽ (D + 1)p0

2n+ν∑
k=2n−ν

|ak|p0 ⩽
(

max
k=n−ν,...,n+ν

Mk

)p0−1 2n+ν∑
k=2n−ν

|ak|

⩽ (22νMn)p0−1w2n+ν

1
1 + (n + ν) log 2

(see (2.10)). Thus,

2nMn ⩽ (22ν)p0−1w2n+ν

1
1 + (n + ν) log 2

⩽ (22ν)p0−1ε2n+ν

2n+ν

1 + (n + ν) log 2
⩽ (22ν)p0−1ε2n+1

2n+ν

1 + (n + ν) log 2
.

We then conclude that

Mn ⩽ (22ν)p0−1ε2n+1
2ν

1 + log 2n+1
,

which implies that |ak| ⩽ K1βk for all k = 2n, . . . , 2n+1, where K1 = 22ν(p0−1) 2ν .
Let

K2 = max
k=1,...,2m

|ak|
βk

and K = max{K1, K2}. Then for m = ν and γ = 2 all the conditions in Lemma 3.1
are satisfied and

|ak| ⩽ 4Kβk for all k = 1, 2, . . . .

Hence,
(1 + log k)|ak| ⩽ 4Kεk for all k = 1, 2, . . .

and εk = o(1). □

Further, we obtain sufficient conditions for (4.5) to be the Fourier series of an
integrable function and to converge in the mean.

Theorem 4.4. If
∞∑

n=1

log n

n
|an| < ∞,

then a series of the form (4.5) with coefficients {an} ∈ GM(p) for some p ⩾ 1 is
the Fourier series of some f ∈ L1 and converges in the mean.
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Proof. First, we show that

∞∑
n=1

nMn ⩽ C

∞∑
n=1

log n

n
|an| < ∞. (4.8)

Indeed, Corollary 2.11 implies that

∞∑
n=1

Mn ⩽ C
∞∑

n=1

n−1|an|.

Applying this inequality to the sequence {(1 + log n)an}∞n=1 ∈ GM(p), we
obtain (4.8).

Then nMn → 0 as n →∞. Hence, the condition (4.6) holds, and

∞∑
n=1

log(n)|∆an| ⩽ C

∞∑
n=1

nMn + C

∞∑
n=m

m∑
k=−m

(n + k)Mn+k ⩽ C

∞∑
n=1

nMn

⩽ C

∞∑
n=1

1 + log n

n
|an| < ∞.

Thus, the series (4.5) is the Fourier series of some f ∈ L1 (see [4]) and converges in
the mean according to Theorem (4.3). □

4.3. Continuously differentiable functions and the classes GMk(p). In
order to study the derivatives of the sums of series with coefficients of special type
we consider subclasses of GM(p).

Definition 4.5. Let k be a positive integer, let p ∈ [1,∞), and let a = {an}∞n=0

be a sequence such that an → 0 as n →∞. We say that a ∈ GMk(p) if there exist
a C > 0 and a ν ⩾ 2 such that for all m

2m∑
n=m

nk−1|∆kan| ⩽ C

( [mν]∑
n=[m/ν]

|an|p

n

)1/p

,

where ∆1an = an − an+1 and ∆k+1an = ∆kan −∆kan+1 for k ⩾ 2.

Lemma 4.6. Let k ⩾ 2, p ∈ [1,∞), and a ∈ GMk(p). Then a ∈ GMk−1(p).

Proof. Assume that m is large enough that all the integer intervals below are
non-degenerate. Let

Am = max
m⩽n⩽2m

|∆k−1an| ≡ |∆k−1an1 |

and let

Bm = min
m⩽n⩽2m

∆k−1an ≡ ∆k−1an2 if ∆k−1an1 ⩾ 0,

Bm = max
m⩽n⩽2m

∆k−1an ≡ ∆k−1an2 otherwise.
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Since the cases are symmetric, we assume for definiteness that ∆k−1an1 > 0 and
n1 < n2. If Bm ⩽ Am/2, then

2m∑
n=m

|∆kan| ⩾
n2−1∑
n=n1

|∆kan| ⩾
∣∣∆k−1an1 −∆k−1an2

∣∣ ⩾ Am

2
.

Therefore,

2m∑
n=m

nk−2|∆k−1an| ⩽ 2m(2m)k−2
Am ⩽ 2kmk−1

2m∑
n=m

|∆kan|

⩽ 2k
2m∑

n=m

nk−1|∆kan| ⩽ C1(k)
( [mν]∑

n=[m/ν]

|an|p

n

)1/p

.

Now assume that Bm > Am/2. Suppose that ∆k−2am > mAm/4. Then for
n ∈ [m, m + [m/8]]

∆k−2an >
mAm

4
−Am

m

8
>

mAm

8
.

But if ∆k−2am < mAm/4, then for n ∈ [2m− [m/8], 2m]

∆k−2an = ∆k−2am −
n−1∑
r=m

∆k−1ar <
mAm

4
−Bm(n−m)

<
mAm

4
−Bm

7m

8
<

mAm

4
− 7mAm

16
< −mAm

8
.

Thus, there is an integer interval in [m, 2m] of length at least m/8 on which all
|∆k−2an| are > mAm/8 and all these differences have the same sign.

Suppose that for some integer j ∈ [1, k−2] we have already proved the existence
of an integer interval [n1, n2] ⊂ [m, 2m] of length at least m/rj such that |∆jan| >
mk−j−1Am/qj for n ∈ [n1, n2] and all these differences have the same sign. Assume
for definiteness that they are all positive. Moreover, increasing rj if necessary, we
can make n2 − n1 divisible by 4. Let ∆j−1a(n1+n2)/2 ⩾ 0 (the negative case is
similar). Then for n ∈ [(n1 + 3n2)/4, n2]

∆j−1an < −mk−jAm

4qjrj
,

that is, taking rj−1 = 4rj and qj−1 = 4qjrj , we see that there is an integer interval
of length at least m/rj−1 in [m, 2m] on which all |∆j−1an| are > mk−jAm/qj−1

and all these differences have the same sign.
Repeating the same argument k − 1 times, we establish that there exists an

integer interval J in [m, 2m] of length at least m/r0 on which all the numbers |an|
are > mk−1Am/q0. Furthermore, one can see from the proof that r0 and q0 depend
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only on k. But then( [mν]∑
n=[m/ν]

|an|p

n

)1/p

>

(∑
n∈J

|an|p

n

)1/p

⩾ C(k, p)mk−1Am

⩾ C1(k, p)
2m∑

n=m

nk−2|∆k−1an|. □

For a function f(x) ∼ a0/2 +
∑∞

n=1 an cos(nx) it is well known that in order to
have f, f ′, . . . , f (k−1) ∈ C(T) it is sufficient that

∑∞
n=1 nk−1|an| < ∞. We show

that for GMk(p)-coefficients this condition can be relaxed significantly.

Theorem 4.7. Let k ⩾ 2 be an integer, let p ∈ [1,∞), and let a ∈ GMk(p), with

∞∑
n=1

|an|
n

< ∞. (4.9)

Then the series a0/2 +
∑∞

n=1 an cos(nt) converges on (0, 2π), and its sum f(t) is
(k − 1) times continuously differentiable on this interval.

Proof. By Lemma 4.6, for 1 ⩽ s ⩽ k

∞∑
n=1

ns−1|∆san| ⩽ C

∞∑
m=1

1
m

2m∑
n=m

ns−1|∆san| ⩽ C

∞∑
m=1

1
m

( mν∑
n=[m/ν]

|an|p

n

)1/p

⩽ C(ν, p)
∞∑

m=1

1
m

( 2m∑
n=m

|an|p

n

)1/p

< ∞.

In view of Corollary 2.11 the conditions

∞∑
m=1

1
m

( 2m∑
n=m

|an|p

n

)1/p

< ∞,

∞∑
m=1

maxm⩽n⩽2m |an|
m

< ∞

and (4.9) are equivalent. Finally, the assertion of the theorem follows from
[66] and [96]. □

Remark 4.8. The condition a ∈ GMk(p) without (4.9) does not ensure even the
convergence of the series

∑∞
n=1 an cos(nx). Namely, for any p ⩾ 1 and any integer

k ⩾ 2, there exists a sequence a ∈ GMk(p) such that the series
∑∞

n=1 an cos(nx)
diverges almost everywhere. Indeed, we can consider the function in part (B) of
Theorem 4.1 for sufficiently convex γn.

4.4. Asymptotic behaviour of series near the origin. First we formulate
several basic results on the asymptotic behaviour of trigonometric series. Salem
([4], [75], [76]) proved the following result on trigonometric series with convex coef-
ficients:

g(x) =
∞∑

n=1

a(n) sin(nx) ≍ a(1/x)
x

as x → 0+
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if a(t) is convex, a(t) → 0 as t → ∞, and ta(t) is increasing (see also [69] and the
references therein). Here and below, ξn ≍ νn if C1ξn ⩽ νn ⩽ C2ξn and ξn ∼ νn if
ξn/νn → 1 as n →∞.

Hardy (see [43] and [99], Vol. 1, Chap. V, § 2) proved the following result: if
0 < α < 1, an ⩾ an+1 ⩾ · · · and an → 0, then

nαan → A > 0 as n →∞

if and only if

f(x) =
∞∑

n=1

an cos(nx) ∼ A sin
(

πα

2

)
Γ(1− α)xα−1 as x → 0+ (4.10)

or

g(x) =
∞∑

n=1

an sin(nx) ∼ A cos
(

πα

2

)
Γ(1− α)xα−1 as x → 0+. (4.11)

Later, Heywood [44] extended the last statement to 1 ⩽ α < 2 in the case of sine
series. Boas noted (see [9], p. 5, Theorem 8) that if 0 < α < 1, an ⩾ an+1 ⩾ · · · ,
and an → 0, then

an = O(n−α) ⇐⇒ f(x) = O(xα−1) ⇐⇒ g(x) = O(xα−1).

These results were extended to more general majorants and classes of sequences
in [14] and [91], Theorem 5.4 (see also [38] for similar results for sine series). In [36]
these results were obtained for the class GM(1). The goal of this subsection is to
prove analogues of these results for trigonometric series with GM(p)-coefficients,
p ⩾ 1, that are not necessarily non-negative.

Let β > 0 and let φ be a majorant in the class Φ, that is, φ is a non-negative
non-decreasing function on [0, 1] such that φ(0) = 0. We define the Bari–Stechkin
conditions for the majorant φ:∫ u

0

φ(t)
dt

t
= O(φ(u)) as u → 0, (B)

uβ

∫ 1

u

φ(t)
tβ

dt

t
= O(φ(u)) as u → 0. (Bβ)

Theorem 4.9. Let (1.2) be the Fourier series of an f ∈ L1(T) with coefficients
{an}∞n=1 of type GM(p), p ⩾ 1.

(A) If φ ∈ Φ ∩B ∩B1 , then the conditions

an = O

(
φ

(
1
n

))
as n →∞ (4.12)

and

f(x) =
∞∑

n=1

an cos(nx) = O

(
φ(x)

x

)
as x → 0 (4.13)

are equivalent.
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(B) If φ ∈ Φ ∩ B ∩ B2 , then the condition (4.12) and the condition

f(x) =
∞∑

n=1

an sin(nx) = O

(
φ(x)

x

)
as x → 0 (4.14)

are equivalent.

Remark 4.10. The examples

f(x) =
∞∑

n=1

cos(nx)
n

∼ log
1
x

and g(x) =
∞∑

n=1

sin(nx)
n2

∼ x log
1
x

show that the conditions φ ∈ B1 and φ ∈ B2 are optimal.
We point out that estimates of the form (4.10) and (4.11) do not hold even for

series with GMS-coefficients [89].

Proof of Theorem 4.9. Take ξ := 1 in the case of sine series, and ξ := 0 in the
case of cosine series. Using the Abel transformation (see (5.8)) and (2.13), for
x ∈ [π 2−n−1, π 2−n] we have

|f(x)| ⩽ C

(
|a0|+ 2−nξ

2n−1∑
k=1

kξ|ak|+
1
x

∞∑
k=2n

|ak − ak+1|
)

⩽ C

(
2−nξ

2n−1∑
k=0

(k + 1)ξφ

(
1
k

)
+

1
x

∞∑
k=2n

φ(1/k)
k

)
⩽ C

φ(x)
x

,

where in the last inequality we have used the conditions on φ.
Conversely, for any φ ∈ Φ ∩ B ∩ B2, Theorem 3.3 implies that

|an| ⩽ C

(∫ π/n

0

φ(t)
dt

t
+

1
n2

∫ π

π/n

φ(t)
dt

t3

)
⩽ Cφ

(
1
n

)
. □

4.5. Absolute convergence. Theorems 3.4 and 3.10 provide sufficient conditions
for estimates of type (3.15) to hold. Thus, it is of interest to obtain some corollaries
of this estimate.

Corollary 4.11. If (1.2) is the Fourier series of a function f ∈ C(T) with coef-
ficients {an}∞n=1 of type GM(ν, D, p0), p0 ⩾ 1, then for any θ > 0 and any α ∈ R
there exists a positive constant Cθ,α,ν,D,p0 such that

∞∑
n=1

nα(n|an|)θ ⩽ Cθ,α,p0

∞∑
n=1

nαEn−1(f)θ
∞. (4.15)

Moreover, if α > −1, then the inequality above is sharp, that is,

∞∑
n=1

nαEn−1(f)θ
∞ ≍

∞∑
n=1

nα+θ(a#
n )θ ≍

∞∑
n=1

nα+θ|an|θ, (4.16)

where the constants depend only on ν , D , p0 , θ , and α.
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Remark 4.12. (i) In particular, (4.15) implies that
∞∑

n=1

|an|θ ⩽ Cθ

∞∑
n=1

(
En−1(f)∞

n

)θ

and
∞∑

n=1

|an| ⩽ C

∞∑
n=1

En−1(f)∞
n

.

Note that the last two inequalities complement the classical results of Bernstein
and Szász [4] that establish the following estimate in the general case:

∞∑
n=1

|an|θ ⩽ Cθ

∞∑
n=1

En−1(f)θ
2

nθ/2
, (4.17)

which holds only for 0 < θ ⩽ 2.
(ii) We point out that (4.15) holds for any function f ∈ C(T) with Fourier series

of the form (1.2). Moreover, for any positive q there exists a positive constant Cq

such that for any positive integer n

n|an| ⩽ Cqn
−q max

1⩽k⩽n
kqEk−1(f)∞. (4.18)

Proof of Corollary 4.11. By Theorem 3.4, the estimate (3.15) holds. Let q =
max{(α + 2)/θ, 1}. Then q ⩾ 1 and θq ⩾ α + 2. It follows from (3.15) that
for N ⩾ 0 and 2N ⩽ n ⩽ 2N+1 we have

2N(q+1)|an| ⩽ nq+1|an| ⩽ Cq max
0⩽j⩽N

max
2j⩽n⩽2j+1

kq Ek−1(f)∞

⩽ Cq max
0⩽j⩽N

2(j+1)qE2j−1(f)∞.

Thus, for all N ⩾ 0

(2N(q+1)MN )θ ⩽ Cθ
q max

0⩽j⩽N
(2(j+1)qE2j−1(f)∞)θ ⩽ Cθ

q

N∑
j=0

2(j+1)qθEθ
2j−1(f)∞.

Hence, using the fact that θq − α ⩾ 2, we get that

∞∑
n=1

nα(n|an|)θ =
∞∑

N=0

2N+1−1∑
n=2N

nα−θq(nq+1|an|)θ

⩽
∞∑

N=0

2N 2N(α−θq)(2(N+1)(q+1)MN )θ

⩽ Cθ
q

∞∑
j=0

2(q+1)θ 2(j+1)qθEθ
2j−1(f)∞

∞∑
N=j

2N(α−θq+1)

⩽ 2Cθ
q 2(2q+1)θ

(
Eθ

0(f)∞ + 2qθ
∞∑

j=1

2j−1∑
n=2j−1

nqθEθ
n−1(f)∞ 2nα−θq

)

⩽ 4Cθ
q 2(3q+1)θ

∞∑
n=1

nαEθ
n−1(f)∞,

that is, we have (4.15) with Cθ,α = 4Cθ
q 2(3q+1)θ.
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To prove (4.16) we note that the estimate En−1(f)∞ ⩽
∑∞

k=n |ak| for all n ⩾ 1
(we can assume that a0 = 0) implies that

∞∑
n=1

nα+θ|an|θ ⩽ C

∞∑
n=1

nαEθ
n−1(f)∞ ⩽ C

∞∑
n=0

2n(α+1)

( ∞∑
m=n

2m+1+1∑
k=2m

|ak|
)θ

⩽ C

∞∑
n=0

2n(α+1)

( ∞∑
m=n

2mMm

)θ

⩽ C

∞∑
n=0

2n(α+θ+1)Mθ
n,

where in the last estimate we have used Hardy’s inequality with θ > 0. From
Lemma 5.1 and Theorem 2.9 we obtain (4.16). □

4.6. Convergence in Lp, 0 < p < 1. Note that for {an} ∈ GM(p0), p0 ⩾ 1,
the conditions

∞∑
n=1

|an|
n

< ∞ and
∞∑

m=1

1
m

( 2m∑
n=m

|an|p0

n

)1/p0

< ∞ (4.19)

are equivalent (by Corollary 2.11) and they ensure that the sequence {an} is of
bounded variation. In particular, we have the following result.

Corollary 4.13. If {an}∞n=1 ∈ GM(p0), p0 ⩾ 1, and
∑∞

n=1 |an|/n < ∞, then
f ∈ Lp(T), p ∈ (0, 1), and

∥f − Sn(f)∥p
p ⩽ C

∞∑
m=n/γ

1
m

( 2m∑
k=m

|ak|p0

k

)1/p0

.

This result follows from [4], Chap. X, § 5.

5. Hardy–Littlewood type inequalities

5.1. Inequalities for number sequences.

Lemma 5.1. If a sequence of complex numbers {an}∞n=1 tends to zero, then for all
α > 0 and p ∈ (0,∞) the estimates

∞∑
n=0

2nαMp
n ⩽

∞∑
n=0

2nα(a#
2n)p ⩽ 21+α

∞∑
n=1

nα−1(a#
n )p (5.1)

and
∞∑

n=1

nα−1(a#
n )p ⩽ 2α

∞∑
n=0

2nα(a#
2n)p ⩽ Cp,α

∞∑
n=0

2nαMp
n (5.2)

hold, where the positive constant Cp,α depends only on p and α.

Proof. Since Mn ⩽ a#
2n , the first inequality in (5.1) is obvious. The inequalities

∞∑
n=0

2nα(a#
2n)p ⩽ (a#

1 )p +
∞∑

n=0

2nα+1
2n∑

k=2n−1+1

(a#
k )p

k

⩽ (a#
1 )p + 2α+1

∞∑
n=0

2n∑
k=2n−1+1

kα (a#
k )p

k
⩽ 2α+1

∞∑
k=1

kα−1(a#
k )p
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imply the second inequality in (5.1). Conversely, (5.2) follows from the inequalities

∞∑
k=1

kα−1 (a#
k )p ⩽

∞∑
n=0

2(n+1)α
2n+1−1∑
k=2n

2−n(a#
2n)p ⩽ 2α

∞∑
n=0

2nα(a#
2n)p

and
∞∑

n=0

2nα(a#
2n)p ⩽

∞∑
n=0

2nα

( ∞∑
k=n

Mk

)p

⩽ Cp,α

∞∑
n=0

2nαMp
n,

where the last estimate is a corollary of Hardy’s inequality. □

5.2. Hardy–Littlewood type theorems. Theorems 3.4 and 3.10 provide suffi-
cient conditions for an estimate of the form (3.14). Therefore, it is of interest to
obtain some corollaries of this result.

Theorem 5.2. Suppose that a sequence of complex numbers {an}∞n=1 is of type
GM(ν, D, p0), tends to zero, and for some p ∈ (1,∞) and γ ∈ (1− p, 1) satisfies the
condition

∞∑
n=1

np−2+γ |an|p < ∞. (5.3)

Then the cosine series in (1.2) is the Fourier series of its sum f ∈ L1(T), which is
such that ∫ π

0

1
tγ
|f(t)|p dt < ∞, (5.4)

and the order estimate∫ π

0

1
tγ
|f(t)|p dt ≍ |a0|p +

∞∑
n=1

np−2+γ(a#
n )p ≍ |a0|p +

∞∑
n=1

np−2+γ |an|p (5.5)

holds, where the corresponding positive constants depend only on p, γ , and the
parameters ν , D , and p0 .

Proof. From (2.11) we obtain

2n+1∑
k=2n

|ak − ak+1| ⩽ D2a
#
2n−ν

for all n ⩾ ν. Hence,
∞∑

k=2n

|ak − ak+1| ⩽ D2

∞∑
j=n−ν

a#
2j ,

and by Hardy’s inequality
∞∑

n=ν

2n(p−1+γ)

( ∞∑
k=2n

|ak − ak+1|
)p

⩽ Dp
2

∞∑
n=ν

2n(p−1+γ)

( ∞∑
j=n−ν

a#
2j

)p

⩽ Cp,ν,γ

∞∑
n=0

2n(p−1+γ)(a#
2n)p.
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Applying Lemma 5.1 to the last sum, we arrive at the estimate

∞∑
n=ν

2n(p−1+γ)

( ∞∑
k=2n

|ak − ak+1|
)p

⩽ C

∞∑
n=1

np−2+γ(a#
n )p, (5.6)

where, here and below, a positive constant C depends only on p, γ, and on the
parameters ν, D, and p0. Since the series (5.3) converges,

∞∑
n=1

|an − an+1| < ∞. (5.7)

Therefore, the series (1.2) converge everywhere on (0, 2π) to a function f(x). It is
well known that if x ∈ [π2−n−1, π2−n], n ⩾ 0, then

|f(x)| ⩽ |a0|+
2n−1∑
k=1

|ak|+
π

x

∞∑
k=2n

|ak − ak+1| (5.8)

and

|f(x)|p ⩽ 3p−1

(
|a0|p +

( n−1∑
k=0

2kMk

)p

+
πp

xp

( ∞∑
k=2n

|ak − ak+1|
)p)

.

Hence, it follows that

∫ π

0

1
tγ
|f(t)|p dt ⩽ 3p−1

∞∑
n=0

∫ π 2−n

π 2−n−1

tp−1

tγ+p−1

(
|a0|p +

( n−1∑
k=0

2kMk

)p

+
πp

tp

( ∞∑
k=2n

|ak − ak+1|
)p)

dt

⩽ 3p−1
∞∑

n=0

π 2−n−1 2γ+p−1π−γ 2nγ

(
|a0|p +

( n−1∑
k=0

2kMk

)p

+ 2np+p

( ∞∑
k=2n

|ak − ak+1|
)p)

⩽ Cp,γ

∞∑
n=0

2n(γ−1)

(
|a0|p +

( n∑
k=0

2kMk

)p)

+ Cp,γ

∞∑
n=0

2n(γ+p−1)

( ∞∑
k=2n

|ak − ak+1|
)p

.

From Hardy’s inequality and Lemma 5.1 we get the estimates

∞∑
n=0

2n(γ−1)

( n∑
k=0

2kMk

)p

⩽ Cp,γ

∞∑
n=0

2n(p+γ−1)Mp
n ⩽ Cp,γ

∞∑
n=1

np−2+γ(a#
n )p
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and

ν−1∑
n=0

2n(p+γ−1)

( ∞∑
k=2n

|ak − ak+1|
)p

⩽ 2p−1
ν−1∑
n=0

2n(p+γ−1)

( 2ν−1∑
k=2n

(|ak|+ |ak+1|)
)p

+ 2p−1
ν−1∑
n=0

2n(γ+p−1)

( ∞∑
k=2ν

|ak − ak+1|
)p

⩽ Cp,γ,ν(a#
1 )p + Cp,γ,ν

( ∞∑
k=2ν

|ak − ak+1|
)p

.

This and (5.6) imply that

∞∑
n=0

2n(γ+p−1)

( ∞∑
k=2n

|ak − ak+1|
)p

⩽ C

∞∑
n=1

np−2+γ(a#
n )p.

Then ∫ π

0

1
tγ
|f(t)|p dt ⩽ C

(
|a0|p +

∞∑
n=1

np−2+γ(a#
n )p

)
. (5.9)

We now prove a lower bound for the weighted Lp-norm of f . First, we note that it
follows from ∫ π

0

|f(t)| dt ⩽ C(γ, p)
(∫ π

0

1
tγ
|f(t)|p dt

)1/p

< ∞

that f ∈ L1(T), and the series (1.2) is the Fourier series of its sum f . Since

|a0| ⩽
2
π

∫ π

0

|f(t)| dt,

we have
|a0|p ⩽ Cp,γ

∫ π

0

1
tγ
|f(t)|p dt.

Further, we show that if (1.2) is the Fourier series of a function f ∈ L1(T)
with coefficients {an}∞n=1 of type GM(ν, D, p0), then for any p ∈ (1,∞) and γ ∈
(1− p, 1 + p)

∞∑
n=1

np−2+γ |an|p ⩽
∞∑

n=1

np−2+γ(a#
n )p ⩽ C

∫ π

0

|f(t)|p

tγ
dt, (5.10)

where the positive constant C does not depend on f .
Let

βn =
∫ π/n

0

|f(t)| dt +
π2

n2

∫ π

π/n

|f(t)|
t2

dt =
∫ π

0

|f(t)| min
{

1,
π2

n2t2

}
dt

for positive integers n. Then βn+1 ⩽ βn and (n + 1)2βn+1 ⩾ n2βn for all
positive integers k. In light of (3.14), we have |an| ⩽ C1βn, and therefore
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a#
n = maxk⩾n |ak| ⩽ C1βn for all n ⩾ 1. For any positive integer n, if

v ∈ [π/(n + 1), π/n], then

n(p+γ)/pβn ⩽
∫ π

0

|f(t)|min
{

n(p+γ)/p, n(p+γ)/p 4π2

(n + 1)2t2

}
dt

⩽
∫ π

0

|f(t)|min
{

π(p+γ)/p

v(p+γ)/p
,
4v2

t2
π(p+γ)/p

v(p+γ)/p

}
dt.

From this,

np+γβp
n

π

n(n + 1)
⩽
∫ π/n

π/(n+1)

(
π(p+γ)/p

v(p+γ)/p

∫ v

0

|f(t)| dt

+
∫ π

v

|f(t)| 4v

t2
π(p+γ)/p

vγ/p
dt

)p

dv.

Consequently,

∞∑
n=1

np+γβp
n

π

2n2
⩽
∫ π

0

(
π(p+γ)/p

v(p+γ)/p

∫ v

0

|f(t)| dt +
∫ π

v

|f(t)| 4πv

t2
πγ/p

vγ/p
dt

)p

dv

⩽ 2p−1

∫ π

0

((
π(p+γ)/p

v(p+γ)/p

∫ v

0

|f(t)| dt

)p

+
(∫ π

v

|f(t)| 4πv

t2
πγ/p

vγ/p
dt

)p)
dv.

Then

π

2p

∞∑
n=1

np−2+γβp
n ⩽ π(p+γ)

∫ π

0

1
vγ

(
1
v

∫ v

0

|f(t)| dt

)p

dv

+ 4pπp+γ

∫ π

0

1
vγ

(∫ π

v

v|f(t)|
t2

dt

)p

dv.

But by virtue of Hardy’s inequalities∫ π

0

1
vγ

(
1
v

∫ v

0

|f(t)| dt

)p

dv ⩽

(
p

γ + p− 1

)p ∫ π

0

1
vγ
|f(v)|p dv

and ∫ π

0

1
vγ

(∫ π

v

v|f(t)|
t2

dt

)p

dv ⩽

(
p

1 + p− γ

)p ∫ π

0

1
vγ
|f(v)|p dv.

This immediately gives us the inequality (5.10), because

∞∑
n=1

np−2+γ(a#
n )p ⩽ (C1)p

∞∑
n=1

np−2+γβp
n ⩽ (C1)pCp,γ

∫ 2π

0

|f(t)|p

tγ
dt.

The order estimate (5.5) follows from (5.9) and (5.10), and Theorem 5.2 is proved. □
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For odd functions the Hardy–Littlewood theorem holds for a wider class of
weights.

Theorem 5.3. Suppose that a sequence of complex numbers {an}∞n=1 is of type
GM(ν, D, p0), tends to zero, and for some p ∈ (1,∞) and γ ∈ (1− p, 1 + p) satisfies
the condition (5.3). Then the sine series in (1.2) is the Fourier series of its sum
f ∈ L1(T), which is such that (5.4) is valid, and the order estimate∫ π

0

1
tγ
|f(t)|p dt ≍

∞∑
n=1

np−2+γ |an|p ≍
∞∑

n=1

np−2+γ(a#
n )p (5.11)

holds, where the corresponding positive constants depend only on p, γ , and the
parameters ν , D, and p0 .

Proof. Using for x ∈ [π2−n−1, π2−n], n ⩾ 0, the estimate

|f(x)| ⩽ π 2−n
2n−1∑
k=1

k|ak|+
π

x

∞∑
k=2n

|ak − ak+1|

in place of (5.8), we repeat the proof of Theorem 5.2. In this case we have

|f(x)|p ⩽ 2p−1

((
2π 2−n

n−1∑
k=0

22kMk

)p

+
πp

xp

( ∞∑
k=2n

|ak − ak+1|
)p)

.

Therefore, ∫ π

0

1
tγ
|f(t)|p dt ⩽ 2p−1

∞∑
n=0

π 2−n−1 2γ+p−1π−γ 2nγ

×
((

2π 2−n
n−1∑
k=0

22kMk

)p

+ 2np+p

( ∞∑
k=2n

|ak − ak+1|
)p)

⩽ Cp,γ

∞∑
n=0

2n(γ−1)

(
2−n

n∑
k=0

22kMk

)p

+ Cp,γ

∞∑
n=0

2n(γ+p−1)

( ∞∑
k=2n

|ak − ak+1|
)p

.

We note that the condition (5.7) holds. Hardy’s inequality and Lemma 5.1 imply
that

∞∑
n=0

2n(γ−1−p)

( n∑
k=0

22kMk

)p

⩽ Cp,γ

∞∑
n=0

2n(p+γ−1)Mp
n ⩽ Cp,γ

∞∑
n=1

np−2+γ(a#
n )p.

Hence, ∫ π

0

1
tγ
|f(t)|p dt ⩽ C

∞∑
n=1

np−2+γ(a#
n )p.

The rest of the proof of Theorem 5.3 is similar to that of Theorem 5.2. □
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From Lemma 5.1 and Theorems 5.2 and 5.3 for γ = 0 we obtain the following
result.

Corollary 5.4. Suppose that a sequence of complex numbers {an}∞n=1 is of type
GM(ν, D, p0), tends to zero, and for some p ∈ (1,∞) satisfies the condition

∞∑
n=1

np−2|an|p < ∞. (5.12)

Then (5.7) holds, and the series (1.2) is the Fourier series of its sum f ∈ Lp(T).
Moreover, the order estimate

∥f∥p
p ≍ |a0|p +

∞∑
n=1

np−2|an|p ≍ |a0|p +
∞∑

n=1

np−2(a#
n )p ≍ |a0|p +

∞∑
n=0

2n(p−1)Mp
n

holds, where the positive constants depend only on p and the parameters ν , D ,
and p0 .

Proof. It is sufficient to put α = p − 1 in Lemma 5.1 and to apply Theorems 5.2
and 5.3 with γ = 0 and Theorem 2.9 with α = 0. □

Interestingly, for sequences with rare sign changes the Hardy–Littlewood theorem
for p ⩾ 2 is also valid under the condition of weak monotonicity.

Corollary 5.5. Let {an}∞n=1 be a null sequence of type SCξ for some ξ ∈ N (see
Definition 3.9) and such that the condition (2.10) with p0 ⩾ 1 and the condition

∞∑
n=1

np−2 |an|p < ∞ with p ∈ [2,∞)

hold. Then the series (1.2) is the Fourier series of its sum f ∈ Lp(T) and

∥f∥p
p ≍ |a0|p +

∞∑
n=1

np−2|an|p.

In particular, this relation is valid for p ⩾ 2, for positive sequences {an}∞n=1 ∈
WM(p0), p0 ⩾ 1.

Proof. An upper bound follows from the Hardy–Littlewood inequality in the gen-
eral case without additional conditions on {an}. To get a lower bound, we use
the inequality (3.42) in Theorem 3.10 and follow the method used in the proof of
Theorem 5.2 with α = 0. □

We remark that Corollary 5.5 was proved in [62] under more restrictive assump-
tions than WM(p0), p0 ⩾ 1, but without the condition SCξ. As the following
result shows, for p > 2 the condition of positivity or the more general condition
{an} ∈ SCξ is fundamental in the previous corollary.

Remark 5.6. There exists a continuous function f(x) =
∑∞

n=1 an sin(nx) such that
{an}∞n=1 ∈ WM(p0) for any p0 ⩾ 1. Then for any p > 2

∞∑
n=1

np−2|an|p = ∞.
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Indeed, it is sufficient to consider the series

f(x) =
∞∑

n=1

2−n/2n−2
2n−1∑

k=2n−1

εkeikt, (5.13)

where {εk}∞k=0, εk = ±1, k ⩾ 0, is a Rudin–Shapiro sequence (see [72], Theorem 1,
and [79]).

Using the well-known estimate
∣∣∑N

k=0 εkeikt
∣∣ < 5

√
N + 1 for all t ∈ [0, 2π] and

N = 0, 1, . . . , we get that

∞∑
n=1

∣∣∣∣2−n/2n−2
2n−1∑

k=2n−1

εkeikt

∣∣∣∣ ⩽ C

∞∑
n=1

n−2 < ∞.

It is clear that for ak = 2−n/2n−2εk the sequence {|ak|} is non-increasing with
respect to k. Therefore, {ak}∞n=1 ∈ WM(p0) for any p0 ⩾ 1. On the other hand,

∞∑
n=1

np−2|an|p =
∞∑

n=1

2−np/2n−2p
2n−1∑

k=2n−1

kp−2 ≍
∞∑

n=1

2n(p/2−1)n−2p = ∞.

6. Order estimates for moduli of smoothness in Lp

6.1. Moduli of smoothness and Fourier coefficients. The next lemma is
a well-known result on realization of the K-functional [80], [21]. For completeness
we present a simple proof of this result.

Lemma 6.1. Assume that (1.2) is the Fourier expansion of a function f ∈ Lp(T),
p ∈ (1,∞). Then for any positive integer β and any δ ⩾ 0

ωβ(f, δ)p
p ≍

∫ 2π

0

∣∣∣∣ ∞∑
n=1

min{(nδ)β , πβ}an cos(nx)
∣∣∣∣p dx, (6.1)

where the corresponding constants depend only on p and β .

Proof. Let δ > 0 and N = [π/δ], and define

SN (x) = a0 +
N∑

n=1

an cos(nx), fN (x) = f(x)− SN (x),

φδ(x) =
∞∑

n=1

an min{(nδ)β , πβ} cos(nx),

gN (x) =
N∑

n=1

an

(
2 sin

nh

2

)β

cos
(

nx +
πβ

2

)
,

∆β
hf(x) =

β∑
k=0

(−1)k

(
β
k

)
f(x + (β − k)h) = gN

(
x +

βh

2

)
+ ∆β

hfN (x).
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Since the Lp(T)-norms of all the partial sums of the function gN do not exceed
Cp∥gN∥p and the function sin(nh/2)/(nh/2) is non-increasing for n = 1, . . . , N and
lies in the interval [2/π, 1], applying the Abel transformation gives us that

Cp,β∥S(β)
N ∥p|h|β ⩽ ∥gN∥p ⩽ Cp∥S(β)

N ∥p|h|β ,

where

S
(β)
N (x) =

N∑
n=1

annβ cos
(

nx +
πβ

2

)
.

It is also well known that ∥fN∥p ⩽ Cp,βωβ(f, δ)p. Thus,

∥∆β
hf∥p ⩽ ∥gN∥p + 2β∥fN∥p ⩽ Cp∥S(β)

N ∥pδ
β + 2β∥fN∥p ⩽ Cp,β∥φδ∥p.

Similarly,
∥gN∥p ⩽ ∥∆β

hf∥p + 2β∥fN∥p ⩽ Cp,βωβ(f, δ)p.

This implies that
∥S(β)

N ∥p|h|β + ∥fN∥p ⩽ Cp,βωβ(f, δ)p.

Taking h = δ, we arrive at the estimate

∥φδ∥p ⩽ ∥S(β)
N ∥pδ

β + πβ∥fN∥p ⩽ Cp,βωβ(f, δ)p.

These inequalities immediately imply (6.1). □

Corollary 5.4 implies the following result for the transformed series.

Theorem 6.2. Assume that a sequence of complex numbers {an}∞n=1 is of type
GM(ν, D, p0), tends to zero, and for some p ∈ (1,∞) satisfies the condition (5.12).
If a sequence of complex numbers {γn}∞n=1 satisfies the condition GMS and

|γn| ⩽ K|γ2n| for all n ⩾ 1, (6.2)

then the series

a0 +
∞∑

n=1

γnan cos(nx) or
∞∑

n=1

γnan sin(nx) (6.3)

is the Fourier series of its sum fγ ∈ Lp(T), and

∥fγ∥p
p ≍ |a0|p +

∞∑
n=1

np−2|γnan|p ≍ |a0|p +
∞∑

n=0

2n(p−1)(|γ2n |Mn)p, (6.4)

where the positive constants depend only on p, K , and the parameters ν , D , and p0 .
Moreover, if

∑n
k=1 2k(p−1)|γ2k |p ⩽ C 2n(p−1)|γ2n |p , then

∥fγ∥p
p ≍ |a0|p +

∞∑
n=1

np−2|γn|p(a#
n )p. (6.5)
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Remark 6.3. Note that {γn}∞n=1 can be taken as a positive non-decreasing sequence
satisfying the condition

γ2n ⩽ Kγn for all n ⩾ 1. (6.6)

In this case, the relations (6.4) and (6.5) hold.

Proof of Theorem 6.2. Taking into account Property 2.1, we see that the sequence
{γnan}∞n=1 is of type GM(ν, Dγ , p0). We note that if {γn}∞n=1 satisfies the conditions
GMS and (6.2), then γn ≍ γk for all n and k with k ⩽ n ⩽ 2k. Hence, by
Theorem 5.2,

∥fγ∥p
p ≍ |a0|p +

∞∑
n=1

np−2|γnan|p ≍ |a0|p +
∞∑

n=1

np−2 max
n⩽k<∞

|γkak|p.

By Lemma 5.1 we have

∥fγ∥p
p ≍ |a0|p +

∞∑
n=0

2n(p−1) max
2n⩽k<2n+1

|γkak|p ≍ |a0|p +
∞∑

n=0

2n(p−1)(|γ2n |Mn)p.

An upper bound in (6.5) follows from (6.4). Conversely,

∞∑
n=1

np−2|γn|p(a#
n )p ≍

∞∑
n=0

2n(p−1)|γ2n |p(a#
2n)p ⩽

∞∑
n=0

2n(p−1)|γ2n |p
∞∑

k=n

Mp
k .

Using the conditions on γn, we see that the right-hand side sum does not exceed

C

∞∑
n=0

2n(p−1)|γ2n |pMp
k ≍ ∥fγ∥p

p. □

Theorem 6.4. Assume that p ∈ (1,∞) and (1.2) is the Fourier expansion of
a function f ∈ Lp(T) with coefficients {an}∞n=1 of type GM(ν, D, p0). Then for
any positive integer β and any δ > 0

ωβ(f, δ)p ≍
(

δpβ

[π/δ]∑
n=1

np−2+pβ(a#
n )p +

∞∑
n=1+[π/δ]

np−2(a#
n )p

)1/p

(6.7)

≍
(

δpβ

[π/δ]∑
n=1

np−2+pβ |an|p +
∞∑

n=1+[π/δ]

np−2|an|p
)1/p

, (6.8)

where the corresponding constants depend only on p, β , ν , D , and p0 .

Proof. Let δ > 0 and N = [π/δ]. For n ⩾ 1 we put

γn = min{(nδ)β , πβ}.

Then
γ2n = min{(2nδ)β , πβ} ⩽ 2βγ2n−1 for all n ⩾ 1,
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that is, the condition (6.6) holds for K = 2β . Therefore, from Remark 6.3 we
get that∫ 2π

0

∣∣∣∣ ∞∑
n=1

an min{(nδ)β , πβ} cos(nx)
∣∣∣∣p dx ≍

∞∑
n=1

np−2(γna#
n )p ≍

∞∑
n=1

np−2γp
n|an|p,

that is, by (6.1) the relations (6.7) and (6.8) hold. □

Proof of Theorem 1.1. A non-increasing sequence of non-negative numbers is
a sequence of type GM(1, 21/p0 , p0). Therefore, we also have the relations (5.5),
(5.11), and (6.7), where instead of f one can take f#, and the right-hand sides of
these relations remain the same. This immediately implies Theorem 1.1. □

6.2. Applications to direct and inverse theorems. The following direct and
inverse theorems are well known in approximation theory (see [20], p. 210):

1
nl

( n∑
ν=0

(ν + 1)τl−1Eτ
ν (f)p

)1/τ

≲ ωl

(
f,

1
n

)
p

≲
1
nl

( n∑
ν=0

(ν + 1)ql−1Eq
ν(f)p

)1/q

,

(6.9)

where f ∈ Lp(T), 1 < p < ∞, l, n ∈ N, q = min{2, p}, τ = max{2, p}, and En(f)p is
the best approximation of f in Lp by trigonometric polynomials of degree n. Note
that the inequalities (6.9) are equivalent (see [16]) to the relations

tl
(∫ 1

t

u−τl−1ωτ
l+1(f, u)p du

)1/τ

≲ ωl(f, t)p

≲ tl
(∫ 1

t

u−ql−1ωq
l+1(f, u)p du

)1/q

.

The next theorem gives a more precise connection between the moduli of smooth-
ness ωl(f, t)p and ωl+1(f, t)p, as well as the relationship between the modulus of
smoothness ωl(f, t)p and the best approximation Ek(f)p for a function f with gen-
eral monotone Fourier coefficients.

Theorem 6.5. Let 1 < p < ∞. Assume that (1.2) is the Fourier expansion of
a function f ∈ L1(T) with coefficients {an}∞n=1 of type GM(ν, D, p0) with p0 > 1.
Then

ωl(f, t)p ≍ tl
(∫ 1

t

u−lpωp
l+1(f, u)p

du

u

)1/p

≍ tl
( [1/t]∑

k=0

(k + 1)lp−1Ep
k(f)p

)1/p

, 0 < t <
1
2

.

Theorem 6.5 follows immediately from the relations ωβ(f, δ)p ≍ ωβ(f#, δ)p and
the corresponding results for series with monotone coefficients (see [41]).
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7. Characterization of function spaces

7.1. Lorentz spaces. For a measurable function f on [0, 2π] we define its non-
increasing rearrangement f∗ by

f∗(t) = inf{σ : µ{x ∈ [0, 2π] : |f(x)| > σ} ⩽ t},

where µ is the Lebesgue measure on [0, 2π]. For 0 < r, s ⩽ ∞ we define the Lorentz
space Lr,s(T) as the set of measurable functions for which the functional

∥f∥Lr,s
:=


(∫ 2π

0

(
t1/r−1/sf∗(t)

)s
dt

)1/s

for 0 < r < ∞, 0 < s < ∞,

sup
t∈[0,2π]

t1/rf∗(t) for 0 < r ⩽ ∞, s = ∞,

is finite.
We define the weighted Lebesgue space Ls

w(r,s)(T) with weight w(r, s)(t) ≡
t1/r−1/s as the set of measurable functions f for which the functional

∥f∥Ls
w(r,s)

:=


(∫ 2π

0

∣∣t1/r−1/sf(t)
∣∣s dt

)1/s

for 0 < r < ∞, 0 < s < ∞,

ess sup
t∈[0,2π]

t1/r|f(t)| for 0 < r ⩽ ∞, s = ∞,

is finite.
Let {a∗n}∞n=1 be the non-increasing rearrangement of a sequence {|an|}∞n=1. For

0 < r, s ⩽ ∞ we define the discrete Lorentz space as follows: a ∈ lr,s if ∥a∥lr,s < ∞,
where

∥a∥lr,s =


( ∞∑

n=0

(n1/r−1/sa∗n)s

)1/s

, 0 < r, s < ∞,

sup
n∈N

n1/ra∗n, s = ∞.

The discrete spaces lsw(r,s) are defined similarly with a∗n in place of |an|.
Note that ∥f∥Lr,r = ∥f∥Lr

w(r,r)
= ∥f∥Lr

. Moreover, Hardy’s inequality for rear-
rangements ∫ 2π

0

|f(x)g(x)| dx ⩽
∫ 2π

0

f∗(t)g∗(t) dt (7.1)

(see [8], p. 44) implies that

∥f∥Lr,s
⩾ ∥f∥Ls

w(r,s)
for s ⩽ r

and

∥f∥Lr,s ⩽ ∥f∥Ls
w(r,s)

for s ⩾ r.

For an integrable function f with Fourier series

a0

2
+

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
(7.2)
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the following fundamental results of Pitt and Hardy–Littlewood–Paley are well
known (see [68] and [82]):

∥a∥lr′,s + ∥b∥lr′,s ≲ ∥f∥Lr,s(T) (7.3)

and
∥a∥ls

w(r′,s)
+ ∥b∥ls

w(r′,s)
≲ ∥f∥Ls

w(r,s)(T) (7.4)

for
1 < r ⩽ s ⩽ r′.

The main result of this subsection is the following Hardy–Littlewood–Sagher
type theorem for functions with general monotone coefficients.

Theorem 7.1. Assume that (7.2) is the Fourier expansion of a function f ∈ L(T)
with coefficients {an}∞n=1 and {bn}∞n=1 of type GM(ν, D, p0) with p0 > 1. Then for
arbitrary 1 < r, s < ∞

∥f∥Lr,s
≍ ∥a∥lr′,s + ∥b∥lr′,s ≍ ∥a

#∥lr′,s + ∥b#∥lr′,s , (7.5)

∥f∥Ls
w(r,s)

≍ ∥a∥ls
w(r′,s)

+ ∥b∥ls
w(r′,s)

≍ ∥a#∥ls
w(r′,s)

+ ∥b#∥ls
w(r′,s)

, (7.6)

∥f∥Ls
w(r,s)

≍ ∥f#∥Ls
w(r,s)

≍ ∥f∥Lr,s ≍ ∥f#∥Lr,s , (7.7)

where, as in (1.7), f#(x) = a0 +
∑∞

n=1

(
a#

n cos(nx) + b#
n sin(nx)

)
.

Proof. It suffices to consider the case of a cosine series, that is, when bn = 0. The
equivalence ∥f∥Ls

w(r,s)
≍ ∥a∥ls

w(r′,s)
≍ ∥a#∥ls

w(r′,s)
in (7.6) follows from Theorem 5.3

with s = p and γ = 1−s/r. Further, for the same s and γ we note that the relation
∥f∥Ls

w(r,s)
≍ ∥f#∥Ls

w(r,s)
follows from Theorem 1.1. The equivalences

∥a#∥lr′,s ≍ ∥a
#∥ls

w(r′,s)
≍ ∥f#∥Ls

w(r,s)
≍ ∥f#∥Lr,s

can be obtained from Sagher’s well-known results for functions with monotone
coefficients [73].

Furthermore, Theorem 2.12 implies that ∥a∥lr′,s ≍ ∥a∥ls
w(r′,s)

.
To complete the proof it is sufficient to show that

∥f∥Lr,s
≍ ∥a#∥ls

w(r′,s)
.

By Theorem 3.3,

|an| ⩽ a#
n ⩽ C

∫ π

0

(
min

{
1,

π

nt

})2

|f(t)| dt, (7.8)

which, by (7.1), implies that

|an| ⩽ a#
n ⩽ C

∫ π

0

(
min

{
1,

π

nt

})2

f∗(t) dt. (7.9)

Then the lower bound C∥f∥Lr,s
⩾ ∥a#∥ls

w(r′,s)
can be obtained as in the proof of

(5.10) with the help of Hardy’s inequalities for averages.
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The reverse estimate is obtained as follows. We have

∥f∥Lr,s
⩽ C

( ∞∑
n=0

2−ns/r

∫ π 2−n

π 2−n−1
(f∗(t))s dt

t

)1/s

⩽ C

( ∞∑
n=0

2−ns/r

(
|a0|s +

( n−1∑
k=0

2kMk

)s

+ 2ns

( ∞∑
k=2n

|ak − ak+1|
)s))1/s

,

where we have applied the estimate (5.8). Further, the proof of the estimate
∥f∥Lr,s ⩽ C∥a#∥ls

w(r′,s)
actually repeats the proof of (5.9). □

7.2. Besov spaces.

Definition 7.2. Let 1 ⩽ p ⩽ ∞ and τ, α > 0. The Besov space Bα
p,τ (T) is the set

of functions f ∈ Lp(T) such that

∥f∥Bα
p,τ

:= ∥f∥Lp
+ |f |Bα

p,τ
:= ∥f∥Lp

+
(∫ 1

0

(
ωl(f, t)p

tα

)τ
dt

t

)1/τ

< ∞,

where l > α.

It is well known that the space Bα
p,τ (T) does not depend on the choice of l. By

Lip(α, p) we denote the Lipschitz class

Lip(α, p) :=
{
f ∈ Lp(T) : ωl(f, δ)p = O(δα)

}
, 0 < α < l.

Note that Lip(α, p) = Br
p,∞.

Theorem 7.3. Let 0 < τ ⩽ ∞, α > 0, and 1 < p ⩽ ∞. Assume that (7.2) is the
Fourier expansion of a function f ∈ L1(T) with coefficients {an}∞n=1 and {bn}∞n=1

of type GM(ν, D, p0) with p0 > 1. Then the following conditions are equivalent:
(i) f ∈ Bα

p,τ (T);
(ii) f# ∈ Bα

p,τ (T);

(iii)
∞∑

n=1

nατ+τ−τ/p−1(a#
n + b#

n )τ < ∞ if 0 < τ < ∞,

sup
n

nα+1−1/p(a#
n + b#

n ) < ∞ if τ = ∞;

(iv)
∞∑

n=1

nατ+τ−τ/p−1(|an|+ |bn|)τ < ∞ if 0 < τ < ∞,

sup
n

nα+1−1/p(|an|+ |bn|) < ∞ if τ = ∞.

Remark 7.4. (i) In the case 1 < p < ∞ Theorem 7.3 is well known for series with
monotone coefficients (see [3], [70], [73] and, for some generalizations, see [41],
Theorem 7.3, [28], [55], [56], [83]). For series with quasi-monotone coefficients,
see [64] and [65]. In the case of continuous functions (p = ∞), see [36], [60], [91], [90].

(ii) The relation (i) ⇔ (iv) is closely related to the following well-known result
for general trigonometric series (see [4], [48], [65]):( ∞∑

n=1

nατ+τ−τ/p−1(|an|+ |bn|)τ

)1/τ

⩽ C|f |Bα
p,τ

, (7.10)
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where 1 ⩽ p ⩽ 2, 0 < τ ⩽ p′, and α > 0 (see also (4.17)). From Theorem 7.3 it
is clear that for series with p-general monotone coefficients, firstly, the inequality
(7.10) is valid for all values of the parameters, and secondly, the reverse inequality is
also true.

Proof of Theorem 7.3. Assume first that τ < ∞. In the case 1 < p < ∞ the
relations (i) ⇔ (ii) ⇔ (iii) follow from the equivalence ωβ(f, δ)p ≍ ωβ(f#, δ)p

and (6.7). Theorem 2.9 implies that (iv) ⇔ (iii).
Consider the case p = ∞. By the well-known characterization of Besov spaces

in terms of best approximations [61] and the relation (4.16), Corollary 4.11 implies
(α, τ > 0) that

∥f∥Bα
∞,τ

≍ ∥f∥L∞ +
( ∞∑

n=1

nατ−1En−1(f)τ
∞

)1/τ

≍
( ∞∑

n=1

nατ+τ−1(a#
n + b#

n )τ

)1/τ

≍
( ∞∑

n=1

nατ+τ−1(|an|+ |bn|)τ

)1/τ

,

that is, (i) ⇔ (iii) ⇔ (iv).
Now let τ = ∞. For 1 < p < ∞ it is clear that the condition |an| + |bn| ⩽

Cn−α−1+1/p implies that

ωl

(
f,

1
n

)
p

≍
( ∞∑

ν=1

νp−2

(
min

{
1,

ν

n

})lp

(|aν |+ |bν |)p

)1/p

⩽ Cn−α,

that is, f ∈ Bα
p,∞. To prove the converse result, we use the relation (6.7) and the

monotonicity of a#
n and b#

n .
For p = ∞, we use the estimate (3.38) with q = α (see Corollary 3.5) and get

that

|an|+ |bn| ⩽ Cn−α−1 max
1/n⩽u⩽1

ω[q]+1(f, u)∞
uα

≍ n−α−1 max
1/n⩽u⩽1

ωl(f, u)∞
uα

⩽ Cn−α−1.

If |an|+|bn| ⩽ Cn−α−1, then using the inverse inequalities in approximation theory,
we deduce that

ωl

(
f,

1
n

)
∞

⩽ Cn−l
n∑

ν=1

ν l−1Eν−1(f)∞ ⩽ Cn−l
n∑

ν=1

ν l−1∥f − Sν(f)∥∞

⩽ Cn−l
n∑

ν=1

ν l−1
∞∑

n=ν

(|an|+ |bn|) ⩽ Cn−α. □

Theorems 7.1 and 7.3 immediately yield the following result.

Corollary 7.5. Under the conditions of Theorem 7.1, if 1 < p < r , then

Bθ
p,s(T) = Lr,s(T), θ =

1
p
− 1

r
, 1 < s < ∞. (7.11)

In particular, Bθ
p,s(T) = Ls(T), θ = 1/p− 1/s > 0.
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Note that these embeddings do not only show the sharpness of the known embed-
dings [95]

B1/p−1/r
p,s (T) ↪→ Lr,s(T), p < r, and B1/p−1/s

p,s (T) ↪→ Ls(T), p < s,

but they also describe a class of functions where the corresponding spaces coincide.
Such classes of ‘boundary’ functions are extremely useful in functional analysis (see,
for example, [22]–[24]).

Moreover, a comparison of Theorem 7.3, (iv), with Theorems 5.2 and 5.3, enables
one to obtain a criterion for a function to belong to a Besov space with low smooth-
ness in terms of the integrability of this function with a weight.

Corollary 7.6. If {an}∞n=1 ∈ GM(ν, D, p0), p0 ⩾ 1, and p ∈ (1,∞), then

f ∈ Bα
p,p(T) ⇐⇒

∫ π

0

|f(t)|p

tαp
dt < ∞

for α < 1/p in the case of even functions and for α < 1 + 1/p in the case of odd
functions.

Note also that Theorem 5.2 enables us to obtain an analogue of Theorem 7.3 for
Calderón spaces [13]:

Λl(Lp; E) =
{
f ∈ Lp : ∥f∥p + ∥ωl(f ; · )p∥E < ∞

}
.

For example, we define the Besov–Nikolskii class BNα,β
p,τ (φ) as follows:

BNα,β
p,τ (φ) =

{
f ∈ Lp :

(∫ δ

0

(
ωl(f, t)p

tα

)τ
dt

t

+ δβτ

∫ 1

δ

(
ωl(f, t)p

tα+β

)τ
dt

t

)1/τ

⩽ Cφ(δ)
}

,

where 0 < θ, α, β < ∞, α < l, and φ is a continuous almost increasing function on
(0, 1) satisfying the condition φ(2δ) ⩽ Cφ(δ). This is a more general space than
a Besov space [86]. Under the conditions of Theorem 7.3 we get that f ∈ BNα,β

p,θ (φ)
if and only if( ∞∑

ν=1

ν(α+1/p′)τ−1

(
min

{
1,

ν

n

})βτ

(|a#
ν |+ |b#

ν |)τ

)1/τ

⩽ Cφ

(
1
n

)
.

In particular, this extends results in [49], [55], [56], [84], [86].
One can also obtain necessary and sufficient conditions for a function to belong

to Besov spaces with logarithmic smoothness Bθ,d
p,s (T) (see [23]) or to the Lipschitz

space Lip(α,−b)
p,q (T) (see [22]).

7.3. Sobolev spaces. As usual, we define the Sobolev space W r
p (T) as follows:

∥f∥W r
p (T) := ∥f∥Lp(T) + ∥f (r)∥Lp(T) < ∞.

It is easy to extend this definition to the case of positive smoothness r > 0. Prop-
erty 2.1 and Remark 6.3 immediately yield the following result.
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Theorem 7.7. Let r > 0 and 1 < p < ∞. Assume that (7.2) is the Fourier
expansion of a function f ∈ L1(T) with coefficients {an}∞n=1 and {bn}∞n=1 of type
GM(ν, D, p0) with p0 > 1. Then

∥f∥W r
p (T) ≍ ∥f#∥W r

p (T) ≍
( ∞∑

n=1

nrp+p−2(|an|+ |bn|)p

)1/p

.

By Theorems 7.7 and 7.3, we see that for r > 0

Br
p,p(T) = W r

p (T), 1 < p < ∞.

As in the case of the embedding (7.11), this result sharpens the known embeddings

Br
p,min{2,p}(T) ↪→ W r

p (T) ↪→ Br
p,max{2,p}(T), 1 < p < ∞

(see [95], for instance).
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