

Л. В. Ильичёв, П. Л. Чаповский, Оптическое управление межатомным взаимодействием в бозе-конденсате, *Квантовая электроника*, 2017, том 47, номер 5, 463–466

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 18.191.205.99 10 октября 2024 г., 11:14:28

Оптическое управление межатомным взаимодействием в бозе-конденсате

Л.В.Ильичёв, П.Л.Чаповский

Для контроля межатомного взаимодействия в бозе-конденсате предложено использовать оптические пучки, формирующие атомарную ловушку. В модели бозе-конденсата в двухъямном оптическом потенциале показано, что нерезонансное квантованное излучение имитирует изменение межатомного взаимодействия в яме. Величиной и знаком этого изменения можно эффективно управлять, варьируя частоту источника излучения, формирующего ловушку.

Ключевые слова: межатомное взаимодействие, бозе-конденсат, атомарная ловушка, атомарная мода, фотонная мода.

1. Введение

Применение атомарного бозе-конденсата в перспективных квантовых технологиях предполагает использование двух его важнейших свойств - макроскопической квантовой когерентности конденсата и наличия существенного межатомного взаимодействия [1]. Расширение арсенала средств контроля межатомного взаимодействия весьма актуально. В настоящее время используются два способа такого контроля. В основе первого лежит перестройка формы потенциала ловушки, меняющая плотность конденсата и, следовательно, среднее расстояние между атомами. Вторым распространенным и универсальным средством контроля межатомного взаимодействия служит резонанс Фешбаха [2]. Этот эффект позволяет изменять с помощью постоянного магнитного поля знак и длину рассеяния, определяющие межатомное взаимодействие в конденсате.

В настоящей работе предлагается использовать для контроля межатомного взаимодействия в конденсате оптические пучки, формирующие атомарную ловушку. Для примера используется конденсат в двухъямном потенциале. Двухмодовая модель атомарного конденсата, отвечающая такой форме потенциала, интенсивно изучается экспериментально и теоретически [3–7]. Нами показано, что помещение одной из ям в поле оптической моды резонатора способно модифицировать параметр, отвечающий за межатомное взаимодействие в данной яме. При этом контроль межатомного взаимодействия не связан с упомянутым выше простым изменением формы потенциала и, как следствие, плотности атомов. Наиболее близким аналогом нового явления служит известный эффект «оптической пружины» [8, 9].

Л.В.Ильичёв, П.Л.Чаповский. Институт автоматики и электрометрии СО РАН, Россия, 630090 Новосибирск, просп. Акад. Коптюга, 1; Новосибирский государственный университет, Россия, 630090 Новосибирск, ул. Пирогова, 2;

e-mail: leonid@iae.nsk.su, e-mail: chapovsky@iae.nsk.su

Поступила в редакцию 9 марта 2017 г.

2. Модель

Квантовое кинетическое уравнение для статистического оператора двухмодового атомарного конденсата и фотонной моды, возбуждаемой внешним гармоническим источником (см. рис.1), можно записать в общем виде:

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho} = -\mathrm{i}[\hat{H}_{\mathrm{at}}^{(0)},\hat{\rho}] + \Lambda_{\mathrm{ph}}[\hat{\rho}],\tag{1}$$

где введены атомный гамильтониан \hat{H}_{at} и фотонный лиувиллиан $\Lambda_{ph}^{(1)}$, включающий в себя как динамические, так и диссипативные слагаемые. Как показано на рисунке, первая из двух атомарных мод формируется в перетяжке обычного светового пучка бегущей волны, а вторая – в перетяжке пучка резонаторной моды. Гамильтониан

$$\hat{H}_{at}^{(0)} = \omega_1 \hat{n}_1 + (\omega_2 - g\pi_{ph}) \hat{n}_2 + \xi_1 \hat{n}_1 (\hat{n}_1 - 1) + \xi_2 \hat{n}_2 (\hat{n}_2 - 1) + \gamma (\hat{b}_1^{\dagger} \hat{b}_2 + \hat{b}_1^{\dagger} \hat{b}_1)$$
(2)

Рис.1. Схема наблюдения оптического управления межатомным взаимодействием в бозе-конденсате (ВЕС). Две части бозеконденсата находятся в перетяжках фотонной моды резонатора и свободной волны примерно такой же интенсивности и конфигурации. Изогнутые стрелки символизируют туннелирование между двумя частями бозе-конденсата.

для двух бозонных мод $\hat{b}_1(\hat{b}_1^*)$ и $\hat{b}_2(\hat{b}_2^*)$ – атомов в ямах 1 и 2 – содержит слагаемые, линейные по операторам чисел атомов $\hat{n}_k = \hat{b}_k^\dagger \hat{b}_k$ (k = 1, 2) в ямах (ω_k – глубины ям), и квадратичные слагаемые, пропорциональные ξ_k , отвечающие за межатомные взаимодействия в ямах; параметр χ задает скорость туннелирования между ямами. Взаимодействием между атомами из разных ям мы пренебрегаем.

Существенным моментом является пространственная конфигурация второй атомарной моды. Определяемый этой конфигурацией параметр межатомного взаимодействия во второй яме ξ_2 и положение нижнего колебательного уровня ω_2 рассчитаны для некоторого среднего числа фотонов \overline{n}_{ph} в резонаторной моде. Для среднего числа фотонов ниже будет получено уравнение. Для последующего рассмотрения оказывается удобным явным образом ввести в гамильтониан произведение \overline{n}_{ph} на параметр g, задающий эффективность взаимодействия атомарной и фотонной мод. Этот параметр, с одной стороны, определяет вклад единичного фотона в потенциал ловушки для моды 2, а с другой – сдвиг собственной частоты фотонной моды $\hat{a}(\hat{a}^{\dagger})$, вносимый одним атомом. Последнее обстоятельство отражено в структуре фотонного лиувиллиана

$$\begin{split} \Lambda_{\rm ph}[\hat{\rho}] &= -\mathrm{i}\Delta[\hat{a}^{\dagger}\hat{a},\hat{\rho}] - \mathrm{i}g[\hat{a}^{\dagger}\hat{a}\hat{n}_{2},\hat{\rho}] + \Omega[\hat{a}^{\dagger} - \hat{a},\hat{\rho}] \\ &+ \gamma(2\hat{a}\hat{\rho}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a}\hat{\rho} - \hat{\rho}\hat{a}^{\dagger}\hat{a}). \end{split}$$
(3)

Здесь уже исключена явная гармоническая зависимость от времени поля классического внешнего источника с амплитудой Ω , возбуждающего моду; Δ – расстройка частоты моды и частоты внешнего источника; второе слагаемое описывает упомянутый сдвиг частоты моды из-за нерезонансного взаимодействия с атомами из ямы 2; последние три слагаемых отвечают за необратимый уход фотонов из резонатора (γ – скорость ухода). Следует отметить, что слагаемое ($\omega_2 - g\pi_{\rm ph}$) \hat{n}_2 в гамильтониане $\hat{H}_{\rm at}^{(0)}$ в комбинации со вторым слагаемым из лиувиллиана обеспечивает однократность учета взаимодействия атомов и поля, а также возможность исследования эффектов квантовых флуктуаций фотонной моды.

Взаимодействие между атомами и излучением порождает корреляции (квантовую запутанность) между состоянием фотонной подсистемы и состоянием системы атомов. Поскольку взаимодействие пропорционально числу атомов в яме 2, в базисе Фока { $|n_2\rangle$ }[∞]_{n2=0} для данной моды статистический оператор всей системы имеет вид

$$\hat{\rho} = \sum_{n_2, n_2'} \hat{\rho}_1(n_2, n_2') \otimes |n_2\rangle \langle n_2' | \otimes \hat{\rho}_{\rm ph}(n_2, n_2').$$
(4)

Здесь фигурируют операторы $\hat{\rho}_{\rm ph}(n_2,n_2')$ фотонной подсистемы, в явном виде отражающие наличие упомянутых корреляций. Оператор $\hat{\rho}_1(n_2,n_2')$ действует в пространстве состояний моды 1 конденсата.

Будем считать, что фотонная подсистема является быстрой и ее эволюция адиабатически подчинена эволюции более медленной подсистемы атомарного конденсата. Это значит, что быстрый этап эволюции описывается лиувиллианом $\Lambda_{\rm ph}^{(1)}$ и завершается формированием «подчиненного» фотонного состояния. Для установления его вида рассмотрим действие лиувиллиана. Поскольку он затрагивает только фотонную и вторую атомную моды, достаточно применить его к фрагментам слагаемых из суммы (4):

$$\begin{split} \Lambda_{\rm ph}[|n_2\rangle\langle n'_2|\otimes\hat{\rho}_{\rm ph}(n_2,n'_2)] \\ &= |n_2\rangle\langle n'_2|\otimes\Lambda_{\rm ph}(n_2,n'_2)[\hat{\rho}_{\rm ph}(n_2,n'_2)]. \end{split}$$
(5)

Действие введенного в (5) супероператора $\Lambda_{ph}(n_2, n'_2)$, который относится уже только к фотонной подсистеме, очевидным образом следует из структуры (3). При определенном числе атомов $n_2 = n'_2$ эволюция завершается глауберовским когерентным состоянием:

$$\Lambda_{\rm ph}(n_2, n_2)[|\alpha(n_2)\rangle\langle\alpha(n_2)|] = 0.$$
(6)

Здесь

$$\alpha(n) = \frac{\Omega}{i(\Delta + gn) + \gamma}.$$
(7)

Поскольку это чистое квантовое состояние, отмеченная выше запутанность между атомной и фотонной подсистемами делает естественным рассмотрение действия $\Lambda_{\rm ph}(n_2,n_2')$ при $n_2 \neq n_2'$ на фотонные операторы $|\alpha(n_2)\rangle\langle\alpha(n_2')|$, претендующие на место

$$\hat{\rho}_{\rm ph}(n_2, n_2') = |\alpha(n_2)\rangle \langle \alpha(n_2')|$$

в (4). Они оказываются собственными для $\Lambda_{\rm ph}(n_2,n_2')$:

$$A_{\rm ph}(n_2, n'_2) [| \alpha(n_2) \rangle \langle \alpha(n'_2) |] = \frac{-i\Omega^2 g(n_2 - n'_2)}{[\gamma + i(\Delta + gn_2)][\gamma - i(\Delta + gn'_2)]} |\alpha(n_2) \rangle \langle \alpha(n'_2) |. (8)$$

Собственное значение оказывается функцией чисел n_2 и n'_2 и зануляется, как и следовало ожидать, при $n_2 = n'_2$.

В пределе $gn_2, gn'_2 \ll |\gamma + i\Delta|$ имеем

$$\frac{-i\Omega^{2}g(n_{2}-n_{2}')}{[\gamma+i(\Delta+gn_{2})][\gamma-i(\Delta+gn_{2}')]} \approx \frac{-i\Omega^{2}g(n_{2}-n_{2}')}{\Delta^{2}+\gamma^{2}} \left[1 - \frac{g\Delta(n_{2}+n_{2}')}{\Delta^{2}+\gamma^{2}} - \frac{ig\gamma(n_{2}-n_{2}')}{\Delta^{2}+\gamma^{2}}\right].$$
 (9)

Преобразуя слагаемые из правой части к операторной форме, получаем следующее квантовое кинетическое уравнение для состояния атомарной подсистемы:

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}_{\mathrm{at}} = -\mathrm{i}[\hat{H}_{\mathrm{at}},\hat{\rho}_{\mathrm{at}}] + 2\nu\hat{n}_{2}\hat{\rho}_{\mathrm{at}}\hat{n}_{2} - \nu\hat{n}_{2}^{2}\hat{\rho}_{\mathrm{at}} - \nu\hat{\rho}_{\mathrm{at}}\hat{n}_{2}^{2}.$$
 (10)

Здесь введен статистический оператор атомов

$$\hat{\rho}_{\mathrm{at}} = Tr_{\mathrm{ph}}\hat{\rho} = \sum_{n_2,n_2'}\hat{\rho}_1(n_2,n_2') \langle \alpha(n_2') | \alpha(n_2) \rangle \otimes | n_2 \rangle \langle n_2' |;$$

 \hat{H}_{at} – гамильтониан, описывающий изменение глубины ямы 2 и содержащий параметр взаимодействия атомов в этой яме:

$$\hat{H}_{at} = \hat{H}_{at}^{(0)} + \left(\frac{\Omega^2 g}{\Delta^2 + \gamma^2} + \delta\xi_2\right) \hat{n}_2 + \delta\xi_2 \hat{n}_2 (\hat{n}_2 - 1), \quad (11)$$

где

$$\delta\xi_2 = -\Omega^2 g^2 \Delta / (\Delta^2 + \gamma^2)^2$$

Возникающая поправка к межатомному взаимодействию в яме 2 меняет знак вместе с отстройкой Δ частоты фотонной моды и частоты внешнего источника. Трехчленная структура Линдблада в (10) описывает разрушение когерентности между состояниями с разными числами атомов в яме 2 и, следовательно, фазовых соотношений между атомарными модами 1 и 2. Причиной является квантовая запутанность между атомами и фотонами. Поскольку фотонная подсистема обменивается информацией с окружением через канал необратимой потери квантов, существует потенциальная возможность спектральных измерений испущенного излучения. Спектральный сдвиг зависит от числа атомов в пучке, поэтому имеет место естественный процесс измерения числа атомов в яме 2, получивший отражение в (10) в виде дефазировки. Скорость дефазировки

$$v = \Omega^2 g^2 \gamma / (\Delta^2 + \gamma^2)^2.$$

Эффект дефазировки сопровождает любой сценарий оптического зондирования атомарных ансамблей в отдельных минимумах потенциала ловушки [10].

Наличие необратимого процесса приводит к существованию стационарного решения $\hat{\rho}_{at}^{(st)}$ уравнения (10). Этому стационарному решению соответствует следующее среднее число фотонов:

$$\overline{n}_{\rm ph} = \sum_{n_2, n_2'} \langle n_2 | Tr_1 \hat{\rho}_{\rm at}^{\rm (st)} | n_2' \rangle \, \alpha(n_2')^* \alpha(n_2).$$
(12)

Поскольку от выбора $\overline{n}_{\rm ph}$ неявно зависят параметры уравнения (10) и конфигурация второй атомарной моды, уравнение (12) в действительности представляет собой сложное уравнение на среднее число фотонов. При небольших отклонениях $\hat{\rho}_{\rm at}$ от $\hat{\rho}_{\rm at}^{\rm (st)}$ решение уравнения (12) можно использовать как исходный параметр в кинетическом уравнении.

3. Обсуждение

Предложенный механизм локальной оптической модификации параметра, ответственного за межатомное взаимодействие, не изменяет длины рассеяния атомов. По этой причине естественно говорить об имитации контроля этого взаимодействия. Сопутствующим явлением и неизбежной платой оказывается появление процесса, разрушающего фазовые корреляции между атомарными модами. Он модифицирует эффект межъямного туннелирования и может в ряде случаев оказаться нежелательным явлением. Поэтому предложенный механизм контроля межатомного взаимодействия не следует считать универсальным.

Докажем прямое родство эффективного изменения межатомного взаимодействия и явления «оптической пружины» в оптомеханике [8]. Как известно, базовая оптомеханическая модель исследует взаимодействие колебаний подвижного зеркала резонатора и фотонной моды через зависимость основной частоты моды от изменяющейся длины резонатора. В случае относительно небольшого изменения длины резонатора при движении зеркала соответствующее слагаемое в гамильтониане имеет вид $G\hat{Q}\hat{a}^{\dagger}\hat{a}$. Здесь G – константа с размерностью см⁻¹ · c⁻¹, а \hat{Q} – оператор координаты зеркала. Этот оператор фигурирует вместо числа атомов в яме 2 в нашей модели. Поправка в уравнение для координатной матрицы плотности $\langle Q | \hat{\rho}_{\rm m} | Q' \rangle$ подвижного зеркала (в пределе адиабатического подчинения быстрой фотонной эволюции медленной механической системе) приобретает по аналогии со вторым членом из круглых скобок (9) слагаемое, пропорциональное $\Delta(Q^2 - Q'^2)$. Это эквивалентно эффективному изменению жесткости подвески подвижного зеркала - «оптической пружине». В действительности не происходит каких-либо изменений упругих свойств подвески. В равной мере предложенный в настоящей работе эффект не связан с реальным изменением природы межатомного взаимодействия.

Оценим изменение энергии межатомного взаимодействия атомов ⁸⁷Rb, вызванное изменением ξ_2 (уравнение (11)). Пусть оптические ловушки созданы излучением с λ = 0.96 мкм и имеют радиусы перетяжек, равные 10 мкм. Кольцевой резонатор (периметр 10 см) образован входным зеркалом с пропусканием τ = 0.01 (по интенсивности) и двумя плотными зеркалами. Скорость ухода фотонов из такого резонатора $\gamma = 3 \times 10^7 \text{ c}^{-1}$, а оптический потенциал атома при одном фотоне в резонаторе g =-0.1 с⁻¹. Параметр Ω удобно выразить через число фотонов в резонаторе $N_{\rm ph}$:

$$\Omega^2 = N_{\rm ph}(\Delta^2 + \gamma^2). \tag{13}$$

Пусть интенсивность входного излучения подобрана так, что количество фотонов в резонаторе $N_{\rm ph} = 10^8$. Атомы ⁸⁷Rb в поле такой оптической ловушки имеют радиальную и аксиальную частоты колебаний: 2.6 кГц и 47 Гц соответственно. Если бозе-конденсат содержит 10⁶ атомов ⁸⁷Rb, то энергия межатомного взаимодействия без учета эффектов «оптической пружины» составляет $8 \times 10^4 \, {\rm c}^{-1}$ на один атом, согласно модели Томаса–Ферми. Учет эффектов «оптической пружины» изменяет ξ_2 согласно уравнению (11). При оптимальной отстройке частоты излучения от частоты резонатора, $\Delta = +\gamma(-\gamma)$, эффект «оптической пружины» уменьшает (увеличивает) энергию межатомного взаимодействия примерно на 20%. Скорость дефазировки конденсата при этих параметрах $\gamma \approx 0.02 \, {\rm c}^{-1}$.

4. Заключение

Результаты работы можно резюмировать следующим образом. Во-первых, показано возникновение квантовых корреляций (запутанности) между модой кольцевого резонатора, формирующего ловушку, и локализованным в этой ловушке атомарным конденсатом. Для этого потребовалось в явном виде ввести в рассматриваемую модель источник фотонов моды и механизм необратимого ухода фотонов из резонатора. Во-вторых, возникающие корреляции позволяют эффективно имитировать межатомное взаимодействие в локализованном конденсате и управлять его знаком и величиной, изменяя частоту внешнего источника излучения. Это явление в своей основе обнаруживает сходство с «оптической пружиной». Приведенные оценки показывают заметный вклад эффективного межатомного взаимодействия на фоне реального. При этом неизбежная дефазировка, сопровождающая появление эффективного взаимодействия, достаточно мала в масштабе длительности типичного эксперимента с конденсатом. Существует возможность адресного изменения эффективного взаимодействия в одной из ям потенциала ловушки сложной конфигурации (как, например, на рисунке).

Работа выполнена при финансовой поддержке РФФИ (грант № 15-02-05754) и гранта Президента РФ государственной поддержки ведущих научных школ РФ № НШ-6898.2016.2.

1. Martellucci S., Chester A.N., Aspect A. *Bose-Einstein Condensates* and Atom Lasers (New York: Kluwer Acad. Publ., 2002).

- Chin C., Grimm R., Julienne P., Tiesinga E. Rev. Mod. Phys., 82, 1225 (2010).
- 3. Anglin J. Phys. Rev. Lett., 79, 6 (1997).
- 4. Smerzi A., Fantoni S., Giovanazzi S., Shenoy S.R. *Phys. Rev. Lett.*, **79**, 4950 (1997.
- Albiez M., Gati R., Fölling J., Hunsmann S., Cristiani M., Oberthaler M.K. *Phys. Rev. Lett.*, 95, 010402 (2005).
- Nesterenko V.O., Novikov A.N., Cherny A.Yu., de Souza Cruz F.F., Suraud E. J. Phys. B, 42, 235303 (2009); Nesterenko V.O., Novikov A.N., Suraud E. J. Phys. B, 45, 225303 (2012).
- Berrada T. Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential. Springer Theses (Vienna: Springer Intern. Publ., 2016).
- Брагинский В. Б., Манукин А. Б. ЖЭТФ, 52, 986 (1967) (Sov. Phys. JETP, 25, 653 (1967).
- Aspelmeyer M., Kippenberg T. J., Marquardt F. *Rev. Mod. Phys.*, 86, 1391 (2014).
- Ильичев Л. В., Чаповский П. Л. Письма в ЖЭТФ, 102 (1), 18 (2015).