

А. С. Золотько, М. П. Смаев, С. А. Швецов, Н. И. Бойко, М. И. Барник, Светоиндуцированные ориентационные переходы первого рода в нематическом жидком кристалле в присутствии обыкновенной волны, *Квантовая электроника*, 2012, том 42, номер 4, 327–331

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 3.137.159.163 7 января 2025 г., 03:02:22

Светоиндуцированные ориентационные переходы первого рода в нематическом жидком кристалле в присутствии обыкновенной волны

А.С.Золотько, М.П.Смаев, С.А.Швецов, Н.И.Бойко, М.И.Барник

Экспериментально исследованы эффекты светоиндуцированной переориентации директора нематического жидкого кристалла с примесью дендримера. Изучено влияние поляризации света на ориентационный переход первого рода, происходящий при изменении мощности светового пучка. Обнаружен и исследован необратимый ориентационный переход первого рода при изменении поляризации света. Дано теоретическое описание наблюдавшихся эффектов.

Ключевые слова: нематические жидкие кристаллы, дендримеры, светоиндуцированная переориентация, ориентационные переходы, оптическая бистабильность.

1. Введение

Нематические жидкие кристаллы (НЖК) состоят из палочкообразных молекул, преимущественно ориентированных в некотором направлении, определяется единичным вектором – директором *п*. Директор НЖК весьма чувствителен к внешним полям [1, 2]; его переориентация (переход Фредерикса) лежит в основе многочисленных применений жидких кристаллов.

Если невозмущенный директор n_0 перпендикулярен полю (в случае положительного значения анизотропии $\Delta \varepsilon$ или $\Delta \mu$) или параллелен ему (при отрицательной анизотропии), то переориентация директора носит пороговый характер. Для магнитного и низкочастотного электрического полей переход Фредерикса является ориентационным переходом второго рода, т. е. угол ψ поворота директора представляет собой непрерывную функцию внешнего поля. Исключением является случай, когда электрическое поле параллельно жидкокристаллическому слою: в такой ситуации переход Фредерикса может быть переходом первого рода (угол ψ меняется скачком) [3, 4].

Светоиндуцированный переход Фредерикса в прозрачном НЖК [5–7] под действием линейно поляризованного света также является переходом второго рода. Так как на оптических частотах $\Delta \varepsilon > 0$, то пороговый переход проис-

Н.И.Бойко. Московский государственный университет им. М.В.Ломоносова, химический факультет, Россия, 119991 Москва, Воробьевы горы

М.И.Барник. Институт кристаллографии им. А.В.Шубникова РАН, Россия, 119333 Москва, Ленинский просп., 59

Поступила в редакцию 21 ноября 2011 г., после доработки – 15 февраля 2012 г.

ходит при взаимно перпендикулярной ориентации светового поля E и невозмущенного директора n_0 , что соответствует нормальному падению света на гомеотропно ориентированный НЖК.

Физический механизм оптической ориентации в прозрачных НЖК связан с воздействием света на индуцированные диполи; приложенный к единичному объему НЖК вращающий момент

$$\Gamma_{\rm tr} = \frac{\Delta \varepsilon}{4\pi} (\mathbf{n} E) [\mathbf{n} \times E]. \tag{1}$$

В поглощающих НЖК (обычно смесь прозрачной нематической матрицы и красителя) проявляется также другой механизм оптической ориентации, связанный с изменением межмолекулярных сил при возбуждении молекул [8]. Вращающий момент при этом определяется соотношением

$$\Gamma_{\rm abs} = \eta \Gamma_{\rm tr},\tag{2}$$

где η – фактор усиления ориентирующего действия света (η достигает значений ~10² при коэффициенте поглощения НЖК ~10² см⁻¹).

Оптическая ориентация, обусловленная изменением межмолекулярных сил, наблюдалась в жидкокристаллических системах с примесью красителей различной химической структуры [9–12]. При этом фактор усиления может быть как положительным (директор n поворачивается параллельно световому полю E, как и в случае прозрачных НЖК), так и отрицательным (n поворачивается перпендикулярно E).

Наиболее сильный ориентационный эффект наблюдался для НЖК с примесью высокомолекулярных азосоединений (т.е. соединений, содержащих азомостик N=N) [12]. Азосоединения характеризуются высокой ориентационной восприимчивостью к свету, проявляющейся в самых разнообразных средах – жидкостях [13, 14], полимерах [15–17] и пленках Лэнгмюра–Блоджетт [18]. Важной особенностью азомолекулы (азофрагмента) является наличие двух (транс- и цис-) изомеров, причем при поглощении света конформационное состояние молеку-

А.С.Золотько, М.П.Смаев. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; e-mail: zolotko@lebedev.ru

С.А.Швецов. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; Московский физико-технический институт (национальный исследовательский университет), Россия, Московская обл., 141700 Долгопрудный, Институтский пер., 9

лы может изменяться. Соотношение концентраций изомеров в нематической матрице в поле необыкновенной волны будет зависеть от угла Ψ между световым полем Eи директором n. Это связано с тем, что вследствие более вытянутой формы транс-изомер имеет больший параметр порядка (степень упорядоченности молекул относительно директора). Поэтому вероятность его возбуждения сильнее зависит от угла Ψ , чем вероятность возбуждения цис-изомера. В результате доля цис-изомеров при увеличении Ψ будет уменьшаться. Поскольку изомеры индуцируют в нематической матрице вращающие моменты разного знака (транс-изомеры обуславливают поворот директора n перпендикулярно полю E, а цис-изомеры – параллельно E), то фактор усиления η также зависит от угла Ψ (и может даже менять знак) [19–21].

Зависимость $\eta(\Psi)$ позволила реализовать ориентационный переход первого рода в НЖК под действием необыкновенной световой волны [22–24]. Такой переход, сопровождавшийся бистабильностью поля директора, наблюдался в НЖК с примесью карбосилановых дендримеров, содержащих терминальные азофрагменты, при нормальном падении света на планарно ориентированный НЖК (n_0 параллелен стенкам ячейки). Фактор усиления η был отрицательным и возрастал по модулю с увеличением угла Ψ (совпадает в данной геометрии с ψ), что обеспечивало дополнительную положительную обратную связь между поворотом директора и величиной вращающего момента.

В [20, 21, 25] было установлено, что фактор усиления η для НЖК с примесью азосоединений зависит от поляризации света. В настоящей работе экспериментально и теоретически исследованы ориентационные переходы в НЖК с примесью дендримера при освещении световым пучком различной поляризации.

2. Условия эксперимента

Исследования проводились при комнатной температуре с нематическим жидким кристаллом ЖКМ-1277 (НИОПИК). Использовалась планарно ориентированная ячейка толщиной L = 100 мкм. Внутренние стенки стеклянных подложек жидкокристаллической ячейки были покрыты электропроводящим слоем ITO.

Молекулярная структура карбосиланового азодендримера второй генерации (G2) показана на рис.1. Весовая концентрация дендримера в нематической матрице составляла 0.15%. Измеренные поляризационные спектры поглощения ячейки показали, что исследуемый образец обладает существенным дихроизмом. Коэффициенты поглощения необыкновенной и обыкновенной волн таковы: $\alpha_e = 20 \text{ см}^{-1}$, $\alpha_o = 10 \text{ см}^{-1}$ ($\lambda = 473 \text{ нм}$).

Светоиндуцированные ориентационные переходы в НЖК изучались методом аберрационного самовоздействия светового пучка [26, 27]. Ориентирующее действие светового пучка приводит к деформации поля директора и к изменению показателя преломления необыкновенной волны. Фронт световой волны, прошедшей через жидкокристаллический слой, искажается, и в результате дифракции в дальней зоне наблюдается система концентрических колец. Число аберрационных колец N связано с изменением показателя преломления Δn соотношением

$$|\Delta n| = \lambda N/L, \tag{3}$$

Рис.1. Химическая формула карбосиланового дендримера второй генерации (G2) со статистически распределенными азобензольными (R₁) и алифатическими (R₂) терминальными фрагментами.

где λ – длина световой волны. Знак самовоздействия (самофокусировка или самодефокусировка) определялся по трансформации аберрационной картины при быстром сдвиге ячейки перпендикулярно оси светового пучка [21].

На рис.2,*а* представлена схема экспериментальной установки. Линейно поляризованный световой пучок от твердотельного лазера *I* (LCS-DTL-364, Laser Export) с $\lambda = 473$ нм фокусировался линзой *3* с фокусным расстоянием f = 18 см и падал нормально на НЖК *4*. Жидкокристаллический слой располагался вертикально (в плоскости *XZ*), невозмущенный директор \mathbf{n}_0 лежал в горизонтальной плоскости (параллельно оси *X*). Под действием света директор поворачивался в плоскости *XY* на угол ψ (рис.2, δ). Плоскость поляризации светового пучка поворачивалась на угол φ при помощи двойного ромба Френеля 2. При этом в НЖК возбуждались обыкновенная и необыкновенная волны ($\varphi = 0$ соответствует нео-

Рис.2. Схема экспериментальной установки (1 – твердотельный лазер (λ = 473 нм); 2 – двойной ромб Френеля; 3 – линза; 4 – ячейка с НЖК; 5 – экран) (a) и переориентация директора n под действием светового поля (n_0 – невозмущенный директор; E_e – поле необыкновенной волны; ψ – угол поворота директора; линии AA' и BB' обозначают условные границы светового пучка) (δ).

быкновенной волне (горизонтальной поляризации), а *φ* = 90° – обыкновенной волне (вертикальной поляризации)). Аберрационная картина наблюдалась на экране 5.

3. Результаты эксперимента

Во всех проведенных экспериментах независимо от поляризации света наблюдалась самодефокусировка, т.е. директор поворачивался от направления светового поля. На рис.3 приведены зависимости числа аберрационных колец N и модуля среднего светоиндуцированного показателя преломления |Дп| от мощности необыкновенной волны $P_e = P_0 \cos^2 \varphi (P_0 - \text{мощность пучка, падающего на})$ жидкокристаллическую ячейку), индуцирующей переориентацию (см. разд. 4), при различных углах поворота плоскости поляризации φ . Видно, что при $\varphi = 0, 20^{\circ}$ и 40° наблюдаются ориентационные переходы первого рода, сопровождающиеся бистабильностью при увеличении и уменьшении мощности $P_{\rm e}$. Например, при $\varphi = 0$ в интервале от $P_2 = 18$ мВт до $P_1 = 27$ мВт существуют два устойчивых положения директора. При $\varphi = 60^\circ$ переход первого рода превращается в переход второго рода. Из рис.3 также следует, что с ростом угла φ порог переориентации уменьшается, т.е. величина фактора усиления η возрастает. При этом область бистабильности сужается и исчезает.

При фиксированном значении световой мощности из интервала $P_2 < P < P_1$ (рис.3) и изменении угла φ были обнаружены переходы первого рода, сопровождавшиеся бистабильностью поля директора (рис.4). Так, при P =18.5 мВт и повороте плоскости поляризации от направления необыкновенной волны ($\varphi = 0$) до $\varphi_1 = 35^\circ$ аберрационная картина не наблюдалась (поле директора не деформировалось). При $\varphi = \varphi_1$ формировалось 25 колец. Дальнейшее увеличение φ приводило к монотонному уменьшению N (подавлению переориентации). С уменьшением угла φ от φ_1 до нуля число колец возрастало до 35, т.е. обратный переход отсутствовал. Таким образом, в интервале 0 < φ < 35° существуют два устойчивых состояния поля директора. Увеличение мощности светового пучка приводило к уменьшению области бистабильности поля директора (уменьшению φ_1) и к увеличению числа аберрационных колец, возникающих при переходе.

Рис.3. Зависимости числа аберрационных колец *N* и модуля светоиндуцированного показателя преломления $|\Delta n|$, усредненного по толщине образца, от мощности необыкновенной волны $P_e = P_0 \times \cos^2 \varphi$ ($\lambda = 473$ нм), прошедшей через планарно ориентированный ЖКМ-1277 + 0.15% G2 при нормальном падении и углах поворота плоскости поляризации $\varphi = 0$ (*I*), 20° (*2*), 40° (*3*) и 60° (*4*). Черные точки соответствуют увеличению мощности P_e , светлые – ее уменьшению.

Рис.4. Зависимости числа аберрационных колец *N* и модуля светоиндуцированного показателя преломления $|\Delta n|$, усредненного по толщине образца, от угла поворота плоскости поляризации φ при мощностях светового ($\lambda = 473$ нм) пучка P = 18.5 (*I*), 20 (*2*) и 23 мВт (*3*), падающего на планарно ориентированный ЖКМ-1277+0.15% G2. Черные точки соответствуют увеличению угла φ , светлые – уменьшению.

4. Обсуждение

Рассмотрим ориентирующее воздействие суперпозиции полей необыкновенной (E_e) и обыкновенной (E_o) воли на планарно ориентированный НЖК. Напряженности полей этих воли можно записать в виде

$$\boldsymbol{E}_{e} = \boldsymbol{i}\boldsymbol{A}_{e}\exp[\mathbf{i}(\boldsymbol{k}_{e}\boldsymbol{r} - \boldsymbol{\omega}t)] + \text{компл. conp.}, \tag{4}$$

$$E_{o} = kA_{o} \exp[i(k_{o}r - \omega t)] + \text{компл. сопр.},$$
(5)

где A_e , A_o , k_e , k_o – амплитуды и волновые векторы необыкновенной и обыкновенной волн; ω – частота светового поля. Используя (1) и (2), учитывая взаимную перпендикулярность директора $n = i\cos\psi + j\sin\psi$ и поля E_o , а также пренебрегая быстроосциллирующими во времени членами, получаем выражение для суммарного вращающего момента:

$$\Gamma_{\rm opt} = \frac{\Delta \tilde{\varepsilon}}{8\pi} \boldsymbol{k} A_{\rm e}^{2} \sin \psi \cos \psi + \frac{\Delta \tilde{\varepsilon}}{8\pi} (\boldsymbol{i} \sin \psi - \boldsymbol{j} \cos \psi) A_{\rm e} A_{\rm o} \cos \psi \cos[(\boldsymbol{k}_{\rm e} - \boldsymbol{k}_{\rm o})\boldsymbol{r}], \quad (6)$$

где $\Delta \tilde{\varepsilon} = \Delta \varepsilon + \Delta \varepsilon_{\rm eff}$; $\Delta \varepsilon_{\rm eff} = \eta \Delta \varepsilon$ – эффективная анизотропия (величина, характеризующая момент межмолекулярных сил в поглощающих НЖК). Второе слагаемое в правой части (6) изменяется вдоль оси *Y* с характерным периодом $l = \lambda / (n_{\rm e} - n_{\rm o}) \approx 2.5$ мкм, где $n_{\rm e}$ и $n_{\rm o}$ – показатели преломления необыкновенной и обыкновенной волн. Поскольку упругая энергия НЖК пропорциональна квадрату пространственной производной поля директора (т.е., обратно пропорциональна квадрату характерного периода деформации) [1], а $l \ll L$, то это слагаемое не должно привести к заметному повороту директора. Поэтому будем считать, что переориентация директора происходит за счет вращающего момента, создаваемого необыкновенной волной.

В [23] для описания ориентационных переходов в поле необыкновенной волны в НЖК с примесью дендримеров

было предложено использовать для эффективной анизотропии следующее приближение:

$$\Delta \varepsilon_{\rm eff} = -\Delta \varepsilon_{\rm eff}^{(0)} - \Delta \varepsilon_{\rm eff}^{(1)} \sin^2 \Psi, \tag{7}$$

где $\Delta \varepsilon_{\text{eff}}^{(0)}, \Delta \varepsilon_{\text{eff}}^{(1)}$ – положительные параметры.

При распространении в НЖК необыкновенной и обыкновенной волн из-за возникновения фазового набега между ними поляризация излучения будет эллиптической и будет зависеть от продольной и поперечных координат. Однако это изменение поляризации не повлияет на поглощение света ансамблем молекул красителя (а следовательно, на $\Delta \varepsilon_{eff}$), т. к. последнее зависит только от направления оптической оси (директора *n*) и от соотношения интенсивностей необыкновенной и обыкновенной волн. Поэтому для обобщения соотношения (7) на изучаемый нами случай достаточно выразить угол между линейно поляризованным полем *E* при входе в кристалл и директором *n* через угол переориентации директора ψ и угол поворота плоскости поляризации φ . В результате получим

$$\Delta \tilde{\varepsilon} = \Delta \varepsilon^{(0)} (1 + m \sin^2 \psi + m \sin^2 \varphi \cos^2 \psi), \tag{8}$$

где $\Delta \varepsilon^{(0)} = \Delta \varepsilon - \Delta \varepsilon^{(0)}_{\text{eff}}$; $m = -\Delta \varepsilon^{(1)}_{\text{eff}} / \Delta \varepsilon^{(0)}$ – параметр, характеризующий дополнительную обратную связь между углом Ψ и оптическим вращающим моментом.

Уравнение для временного изменения поля директора n(r, t) можно получить из условия равновесия моментов [1]. На директор НЖК действуют момент вязких сил $\Gamma_{\text{visc}} = -k\gamma_1 \partial \psi / \partial t (\gamma_1 - коэффициент вязкости), момент упругих сил <math>\Gamma_{\text{elast}} = kK\partial^2 \psi / \partial y^2 (K - упругая постоянная Франка) и оптический момент <math>\Gamma_{\text{opt}} = [\Delta \tilde{\epsilon} / (8\pi)] k A_e^2 \sin \psi \cos \psi$. Приравняв нулю их сумму, получим

$$\frac{\partial \psi}{\partial \tau} = \frac{\partial^2 \psi}{\partial \zeta^2} + \delta_{\rm e} (1 + m \sin^2 \psi + m \sin^2 \varphi \cos^2 \psi) \sin \psi \cos \psi, \quad (9)$$

где $\zeta = \pi y/L$ – безразмерная координата; $\tau = t/\tau_0$ – безразмерное время; $\tau_0 = \gamma_1 L^2/(\pi^2 K)$; $\delta_e = |\Delta \epsilon^{(0)}||A_e|^2 L^2/(8\pi^3 K)$ – безразмерная интенсивность необыкновенной волны.

Аппроксимируем распределение поля директора по толщине кристалла первой гармоникой

$$\psi(\zeta,\tau) = \psi_{\rm m}(\tau) \sin\zeta, \tag{10}$$

где $\psi_{\rm m}$ – угол поворота директора в середине кристалла (y = L/2). Подставив (10) в (9), домножив на sin ζ и проинтегрировав в пределах $0 \leq \zeta \leq \pi$, получим

$$\frac{\mathrm{d}\psi_{\mathrm{m}}}{\mathrm{d}\tau} = -\psi_{\mathrm{m}} + \delta_{\mathrm{e}} \left(A + B \sin^2 \varphi \right), \tag{11}$$

где $A = J_1(2\psi_m) + \frac{1}{2}mJ_1(2\psi_m) - \frac{1}{4}mJ_1(4\psi_m)$ и $B = \frac{1}{2}mJ_1(2\psi_m) + \frac{1}{4}mJ_1(4\psi_m).$

Тривиальное решение $\psi_{\rm m}$ =0 уравнения (11) является устойчивым при $\delta_{\rm e} < \delta_{\rm e,1}$, где

$$\delta_{e,1} = (1 + m \sin^2 \varphi)^{-1}.$$
 (12)

Величина $\delta_{e,1}$ соответствует порогу прямого перехода (например, при $\varphi = 0$ – мощности P_1 , см. рис.3). Нетривиальные стационарные решения уравнения (11) при раз-

Рис.5. Теоретические зависимости угла поворота директора $\psi_{\rm m}$ от безразмерной интенсивности необыкновенной волны $\delta_{\rm e}$ при углах поворота плоскости поляризации $\varphi = 0$ (1), 20° (2), 40° (3), 60° (4). Сплошными кривыми показаны устойчивые решения, штриховыми – неустойчивые.

личных значениях угла φ представлены на рис.5. Эти решения устойчивы при $\partial \delta_{\rm e}(\psi_{\rm m})/\partial \psi_{\rm m} > 0$ и неустойчивы при $\partial \delta_{\rm e}(\psi_{\rm m})/\partial \psi_{\rm m} < 0$.

При $\varphi = 0$ (рис.5, кривая *1*) имеет место скачкообразный обратный переход при $\delta_{e,2} < \delta_{e,1}$ (в точке А). Таким образом, в области $\delta_{e,2} < \delta < \delta_{e,1}$ существует бистабильность поля директора. Использованное в расчетах значение параметра m = 3.2 соответствует экспериментальному значению относительной ширины области бистабильности $\Delta = (P_1 - P_2)/P_1 = 0.38$ (рис.3, кривая *1*).

Как видно из рис.5, увеличение угла φ приводит к снижению порогов, уменьшению области бистабильности (кривые *1*-3) и изменению рода перехода: при $\varphi = 60^{\circ}$ (кривая 4) имеет место переход второго рода. Таким образом, приведенные теоретические зависимости качественно согласуются с экспериментальными (см. рис.3).

Рассмотрим теперь ориентационные переходы, происходящие при фиксированной мощности светового пучка и вращении плоскости поляризации. Из уравнения (11) в стационарном режиме получим

$$\varphi_{\pm} = \frac{1}{2} \arccos\left(\frac{A \pm \sqrt{(A+B)^2 - 4B\psi_{\rm m}/\delta}}{B}\right),\tag{13}$$

где $\delta = \delta_e/\cos^2 \varphi$ – безразмерная интенсивность световой волны. Решение φ_- устойчиво при $\partial \varphi_- / \partial \psi_m < 0$ и неустойчиво при $\partial \varphi_- / \partial \psi_m > 0$. Решение φ_+ , для которого $\partial \varphi_+ / \partial \psi_m < 0$ в интервале $0 < \psi_m < \pi/2$, всегда неустойчиво.

Решения $\psi_m(\xi)$ ($\xi = \sin^2 \varphi$) уравнения (13) при различных значениях безразмерной интенсивности из интервала 0.63 < δ < 1, в котором существует бистабильность при $\varphi = 0$ (рис.5, кривая *I*), представлены на рис.6. Видно, что в зависимости от величины δ возможны различные режимы светоиндуцированной переориентации.

При 0.75 $\leq \delta < 1$ (рис.6, кривые *1–3*) увеличение ξ приводит к ориентационному переходу первого рода в возмущенное состояние (в интервале $\xi_1 < \xi < \xi_2$ тривиальное решение неустойчиво, поэтому угол переориентации ψ_m меняется скачком при $\xi = \xi_1$). С дальнейшим увеличением ξ деформация поля директора подавляется вследствие уменьшения необыкновенной компоненты светового поля. При последующем уменьшении ξ угол ψ_m монотонно увеличивается; переход в невозмущенное состояние не происходит. Таким образом, теоретическая модель

Рис.6. Теоретические зависимости угла поворота директора $\psi_{\rm m}$ от параметра $\xi = \sin^2 \varphi$ при безразмерной интенсивности $\delta = 0.95~(1)$, 0.85 (2), 0.75 (3), 0.72 (4) и 0.65 (5). Сплошными кривыми показаны устойчивые решения $\sin^2 \varphi_-$, штриховыми – неустойчивые решения $\sin^2 \varphi_+$.

согласуется с результатами эксперимента (см. рис.4). В узкой области (0.73 < δ < 0.75) переход в невозмущенное состояние при увеличении ξ и соответствующий обратный переход становятся скачкообразными и происходят при различных значениях ξ . Возможность наблюдения такого режима требует отдельного исследования.

В интервале $0.63 < \delta < 0.73$ нулевое решение устойчиво при любых ξ . При этом также существует устойчивое нетривиальное решение (рис.6, кривые 4–5). Перейти в это состояние можно, например, дополнительно воздействовав на НЖК дестабилизирующим низкочастотным полем, что было проверено экспериментально.

Результаты, полученные в настоящей работе, свидетельствуют о возможности управления состоянием НЖК и параметрами оптической бистабильности путем изменения концентраций изомеров молекулы красителя при добавлении излучения обыкновенной поляризации. Это излучение, в принципе, может отличаться от излучения необыкновенной поляризации, поворачивающего директор НЖК, длиной волны и направлением распространения, что может быть полезно для реализации схем оптического переключения и оптических модуляторов.

5. Заключение

Экспериментально и теоретически исследованы ориентационные переходы в НЖК с примесью азодендримера. Установлено, что поворот плоскости поляризации света трансформирует переход первого рода, происходящий при изменении интенсивности световой волны и сопровождающийся бистабильностью поля директора НЖК, в переход второго рода. Обнаружен и исследован необратимый ориентационный переход первого рода при изменении угла поворота плоскости поляризации и постоянной мощности светового пучка. Построена теоретическая модель взаимодействия НЖК с суперпозицией необыкновенной и обыкновенной волн.

Полученные результаты свидетельствуют о возможности управления типом ориентационного перехода и оптической бистабильностью НЖК с помощью обыкновенной волны.

Авторы благодарны В.Н.Очкину и В.П.Шибаеву за полезные обсуждения. Работа выполнена при поддержке РФФИ (грант №11-02-01315), УНК ФИАН, и ФЦП «Научные и научно-педагогические кадры инновационной России» (госконтракт №02.740.11.0447).

- 1. Блинов Л.М. Электро- и магнитооптика жидких кристаллов (М.: Наука, 1978).
- 2. Khoo I.C. Phys. Rep., 471, 221 (2009).
- Аракелян С.М., Караян А.С., Чилингарян Ю.С. ДАН СССР, 275, 52 (1984).
- 4. Frisken B.J., Palffy-Muhoray P. Phys. Rev. A, 40, 6099 (1989).
- Золотько А.С., Китаева В.Ф., Кроо Н., Соболев Н.Н., Чиллаг Л. Письма в ЖЭТФ, 32, 170 (1980).
- Durbin S.D., Arakelyan S.M., Shen Y.R. Phys. Rev. Lett., 47, 1411 (1981).
- Золотько А.С., Китаева В.Ф., Куюмчян В.А., Соболев Н.Н., Сухоруков А.П. *Письма в ЖЭТФ*, 36, 66 (1982).
- 8. Janossy I., Csillag L., Lloyd A.D. Phys. Rev. A, 44, 8410 (1991).
- 9. Janossy I., Kosa T. Opt. Lett., 17, 1183 (1992).
- Marrucci L., Paparo D., Maddalena P., Massera E., Prudnikova E., Santamato E. J. Chem. Phys., 107, 9783 (1997).
- Kosa T., Palffy-Muhoray P., Zhang H., Ikeda T. Mol. Cryst. Liq. Cryst., 421, 107 (2004).
- Будаговский И.А., Золотько А.С., Очкин В.Н., Смаев М.П., Бобровский А.Ю., Шибаев В.П., Барник М.И. ЖЭТФ, 133, 204 (2008).
- Макушенко А.М., Непорент Б.С., Столбова О.В. Оптика и спектроскопия, 31, 741 (1971).
- 14. Janossy I., Benkler E. Europhys. Lett., 62, 698 (2003).
- Anderle K., Birenheide R., Werner M.J.A., Wendorff J.H. Liq. Cryst., 9, 691 (1991).
- Пономарев Ю.В., Иванов С.А., Румянцев Ю.А., Громченко А.А. Квантовая электроника, 39, 46 (2009).
- 17. Шибаев В.П. Высокомолекулярные соединения, 51, 1863 (2009).
- Palto S.P., Yudin S.G., Germain C., Durand G. J. Physique II, 5, 133 (1995).
- 19. Барник М.И., Золотько А.С., Румянцев В.Г., Терсков Д.Б. Кристаллография, **40**, 746 (1995).
- 20. Janossy I., Szabados L. Phys. Rev. E, 58, 4598 (1998).
- 21. Kitaeva V.F., Zolot'ko A.S., Barnik M.I. Mol. Materials, 12, 271 (2000).
- Бабаян Э.А., Будаговский И.А., Золотько А.С., Смаев М.П., Швецов С.А., Бойко Н.И., Барник М.И. Кр. сообщ. физ. ФИАН, № 8, 46 (2010).
- Babayan E.A., Budagovsky I.A., Shvetsov S.A., Smayev M.P., Zolot'ko A.S., Boiko N.I., Barnik M.I. *Phys. Rev. E*, 82, 061705 (2010).
- Budagovsky I.A., Ochkin V.N., Shvetsov S.A., Smayev M.P., Zolot'ko A.S., Brazhnikov D.A., Boiko N.I., Barnik M.I. *Mol. Cryst. Liq. Cryst.*, 544, 112 (2011).
- Benkler E., Janossy I., Kreuzer M. Mol. Cryst. Liq. Cryst., 375, 701 (2002).
- Золотько А.С., Китаева В.Ф., Соболев Н.Н., Сухоруков А.П. ЖЭТФ, 81, 933 (1981).
- 27. Durbin S.D., Arakelian S.M., Shen Y.R. Opt. Lett., 6, 411 (1981).