

Waqar Khan, Faisal Yousafzai, Asad Khan, Об упорядоченных группоидах Абеля– Γ рассмана, $\Pi \Phi \Pi$, 2015, выпуск 2, 40–47

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 18.216.149.49 17 ноября 2024 г., 00:06:10

$-$ **МАТЕМАТИКА**

УДК 512.542

ОБ УПОРЯДОЧЕННЫХ ГРУППОИДАХ АБЕЛЯ-ГРАССМАНА

Вагар Хан1,2**, Фейсал Ясaфзай**¹ **, Асад Хан**¹

1 *Университет науки ^и технологии Китая*, *Хефей*, *Китай* ² *Институт информационных технологий COMSATS*, *Абботабад*, *Пакистан*

ON ORDERED ABEL-GRASSMANN'S GROUPOIDS

Waqar Khan1,2**, Faisal Yousafzai**¹ **, Asad Khan**¹

¹ University of Science and Technology of China, Hefei, China²COMSATS Institute of Information Technology Abbettabed, Baki *COMSATS Institute of Information Technology*, *Abbottabad*, *Pakistan*

Введено понятие (*m*, *n*) -идеалов упорядоченных AG -группоидов и получены характеризации (0,2) -идеалов и (1,2) -идеалов упорядоченного AG -группоида в терминах левых идеалов. Показано, что упорядоченный AG -группоид *S* является 0 - (0,2) - бипростым в том и только в том случае, когда *S* является правым 0 -простым. Результаты данной работы позволяют расширить концепцию AG -группоида без введенного порядка. Получены характеризации внутреннерегулярного упорядоченного AG -группоида в терминах левых и правых идеалов.

Ключевые слова: упорядоченные AG -*группоиды*, *обратимое слева тождество*, *левая единица*, () *m n*, -*идеал*.

The concept of (m, n) -ideals in ordered AG -groupoids is introduced and the $(0, 2)$ -ideals and $(1, 2)$ -ideals of an ordered AG -groupoid in terms of left ideals are characterised. It is shown that an ordered AG -groupoid *S* is 0 – (0,2) -bisimple if and only if *S* is right 0 -simple. The results of this paper extend the concept of an AG -groupoid without order. Finally, we characterize an intra-regular ordered AG -groupoid in terms of left and right ideals.

Keywords: ordered AG -groupoids, left invertive law, left identity, (m, n) *-ideals.*

Mathematics Subject Classification (2010): 20D10, 20D20

Introduction

The concept of a left almost semigroup (*LA*-semigroup) [3] was first introduced by M.A. Kazim and M. Naseeruddin in 1972. In [1], the same structure is called a left invertive groupoid. P.V. Protić and N. Stevanović called it an Abel-Grassmann's groupoid (AG -groupoid) [10].

An AG -groupoid is a groupoid *S* satisfying the left invertive law $(ab)c = (cb)a$ for all $a, b, c \in S$. This left invertive law has been obtained by introducing braces on the left of ternary commutative law $abc = cba$. An AG -groupoid satisfies the medial law $(ab)(cd) = (ac)(bd)$ for all $a, b, c, d \in S$. Since AG -groupoids satisfy medial law, they belong to the class of entropic groupoids which are also called abelian quasigroups [12]. If an AG -groupoid *S* contains a left identity, then it satisfies the paramedial law $(ab)(cd) = (dc)(ba)$ and the identity $a(bc) = b(ac)$ for all $a, b, c, d \in S$ [5].

An AG -groupoid is a useful algebraic structure, midway between a groupoid and a commutative semigroup. An AG -groupoid is non-associative and non-commutative in general, however, there is a close relationship with semigroup as well as with

© Waqar Khan, Faisal Yousafzai, Asad Khan, *2015* 40

commutative structures. It has been investigated in [5] that if an AG -groupoid contains a right identity, then it becomes a commutative semigroup. The connection of a commutative inverse semigroup with an AG -groupoid has been given by Yousafzai et al. in [14] as, a commutative inverse semigroup (S, \cdot) becomes an AG -groupoid $(S, *)$ under $a * b = ba^{-1}r^{-1}$ for all $a, b, r \in S$. The \mathcal{AG} -groupoid *S* with left identity becomes a semigroup under the binary operation " \circ_e " defined as, $x \circ_e y = (xe)y$ for all *x*, $y \in S$ [15]. The AG -groupoid is the generalization of a semigroup theory [5] and has vast applications in collaboration with semigroups like other branches of mathematics. Many interesting results on AG -groupoids have been investigated in [7], [8], [9].

If *S* is an AG -groupoid with product $\cdot : S \times S \rightarrow S$, then $ab \cdot c$ and $(ab)c$ both denote the product $(a \cdot b) \cdot c$.

Definition 0.1 [16]. *An* AG *-groupoid* (S, \cdot) *together with a partial order* \leq *on S that is compatible with an* AG *-groupoid operation, meaning that for* $x, y, z \in S$,

 $x \le y \implies zx \le zy$ and $xz \le yz$,

is called an ordered AG *-groupoid.*

Let (S, \cdot, \leq) be an ordered \mathcal{AG} -groupoid. If *A* and *B* are nonempty subsets of *S*, we let $AB = \{xy \in S \mid x \in A, y \in B\},\$

and $(A] = \{x \in S \mid x \le a$ for some $a \in A\}$.

Definition 0.2 [16]. *Let* (S, \cdot, \leq) *be an ordered* AG *-groupoid. A nonempty subset A of S is called a left* (*resp. right*) *ideal of S if the followings hold:*

 (i) *SA* \subseteq *A* (*resp. AS* \subseteq *A*);

(ii) for
$$
x \in A
$$
 and $y \in S$, $y \le x$ implies $y \in A$.

Equivalently $(SA) \subseteq A$ (resp. $(AS) \subseteq A$).

If A is both a left and a right ideal of S, *then A is called a two-sided ideal or an ideal of S.*

A nonempty subset *A* of an ordered AG -groupoid (S, \cdot, \leq) is called \mathcal{AG} -subgroupoid of *S* if $xy \in A$ for all $x, y \in A$.

It is clear to see that every left and right ideals of an ordered AG -groupoid is an AG -subgroupoid.

Let (S, \cdot, \leq) be an ordered \mathcal{AG} -groupoid and let *A* and *B* be nonempty subsets of *S*, then the following was proved in [13]:

$$
(i) A \subseteq (A];
$$

(ii) If
$$
A \subseteq B
$$
, then $(A] \subseteq (B]$;

$$
(iii) \ \ (A)[B] \subseteq (AB];
$$

- (iv) $(A] = ((A])$;
- (vi) $((A)(B)] = (AB).$

Also for every left (resp. right) ideal *T* of *S*, $(T = T)$.

The concept of (m, n) -ideals in ordered semigroups were given by J. Sanborisoot and T. Changphas in [11]. It's natural to ask whether the concept of (m, n) -ideals in ordered AG -groupoids is valid or not? The aim of this paper is to deal with (m, n) -ideals in ordered AG -groupoids. We introduce the concept of (m,n) -ideals in ordered AG -groupoids as follows:

Definition 0.3. *Let* (S, \cdot, \leq) *be an ordered* AG-groupoid and let m,n be non-negative inte*gers. An* AG *-subgroupoid A of S is called an* (m, n) -ideal of S if the followings hold:

 (i) $A^m S \cdot A^n \subset A$:

(ii) for
$$
x \in A
$$
 and $y \in S$, $y \le x$ implies $y \in A$.

Here, A^0 *is defined as* $A^0 S \cdot A^n = SA^n$ *and* $A^m S \cdot A^0 = A^m S$.

Equivalently an AG *-subgroupoid A of S is called an* (m, n) *-ideal of S if*

$$
(A^m S \cdot A^n] \subseteq A.
$$

If $m = n = 1$, then an (m, n) -ideal *A* of an ordered \mathcal{AG} -groupoid (S, \cdot, \leq) is called a bi-ideal of *S*.

Problems of Physics, Mathematics and Technics, *№ 2 (23)*, *2015* 41

1 0 *-minimal* (0,2) *-bi-ideals in ordered* AG *-groupoid*

In this section, we study and generalize the work of W. Jantanan and T. Changphas [2] by converting it from an associative ordered structure in to a non-associative ordered structure. We use the concept of (m, n) -ideals and investigate $(0, 2)$ -ideals, $(1, 2)$ -ideals and 0-minimal $(0, 2)$ -ideals in ordered AG -groupoids. All the results of this section can be obtain for an AG -groupoid without order.

Defintion **1.1.** *If there is an element* 0 *of an ordered AG -groupoid* (S, \cdot, \leq) *such that* $x \cdot 0 = 0 \cdot x = x$ *for all* $x \in S$ *, we call* 0 *a zero element of* S.

Example 1.1. Let $S = \{a, b, c, d, e\}$ with a left identity *d*. Then the following multiplication table and order shows that (S, \cdot, \leq) is a unitary ordered AG -groupoid with a zero element *a*.

$$
\begin{array}{c|cccc}\n\cdot & a & b & c & d & e \\
\hline\na & a & a & a & a \\
b & a & e & e & c \\
c & a & e & e & b \\
d & a & b & c & d \\
e & a & e & e & e\n\end{array}
$$

 \leq := { (a, a) , (a, b) , (c, c) , (a, c) , (d, d) , (a, e) , (e, e) , (b, b) }.

If *S* is a unitary ordered AG -groupoid, then it is easy to see that $(S^2) = S$, $(SA^2) = (A^2S)$ and $A \subseteq (SA]$ $\forall A \subseteq S$. Note that every right ideal of a unitary ordered AG -groupoid *S* is a left ideal of *S* but the converse is not true in general. Example 1.1 shows that there exists a subset $\{a, b, e\}$ of *S* which is a left ideal of *S* but not a right ideal of *S*. It is easy to see that (SA) and (SA^2) are the left and right ideals of a unitary ordered AG -groupoid *S*. Thus (SA^2) is an ideal of a unitary ordered AG -groupoid *S*.

We characterize of $(0, 2)$ -ideals of an ordered AG -groupoid in terms of left ideals as follows:

Lemma 1.1. *Let* (S, \cdot, \leq) *be a unitary ordered* AG *-groupoid. Then A is a* $(0, 2)$ *-ideal of S if and only if A is an ideal of some left ideal of S*.

Proof. Let A be a $(0, 2)$ -ideal of S , then

 $((SA) \cdot A) = (SA \cdot A) = (AA \cdot S) = (SA^2) \subset A$

and $(A \cdot (SA)] = (A \cdot SA) = (S \cdot AA) = (SA^2] \subseteq A$.

Hence A is an ideal of a left ideal (SA) of S . Conversely, assume that *A* is a left ideal of

some left ideal *L* of *S*, then $(SA^2] = (AA \cdot S) = (SA \cdot A) \subseteq$

 $\subseteq (SL \cdot A] \subseteq ((SL] \cdot A] \subseteq (LA] \subseteq A$,

and clearly *A* is an AG -subgroupoid of *S*, therefore *A* is a (0,2)-ideal of *S*.

Corollary 1.1. *Let* (S, \cdot, \leq) *be a unitary ordered AG -groupoid. Then A is a* (0,2) *-ideal of S if and only if A is a left ideal of some left ideal of S.*

Now we characterize the $(0, 2)$ -bi-ideals of an ordered AG -groupoid in terms of right ideals as follows:

Lemma 1.2. *Let* (S, \cdot, \leq) *be a unitary ordered* AG -groupoid. Then A is a $(0, 2)$ -bi-ideal of S if *and only if A is an ideal of some right ideal of S*. *Proof.* Let A be a $(0, 2)$ -bi-ideal of S , then

$$
((SA2] \cdot A] = (SA2 \cdot A] = (A2S \cdot A] =
$$

$$
= (AS \cdot A2] \subseteq (SA2] \subseteq A,
$$

and
\n
$$
(A \cdot (SA^2)] = (A \cdot SA^2] =
$$
\n
$$
= (A \cdot (S^2)A^2] \subseteq ((A) \cdot (S^2)(A^2)] \subseteq ((A \cdot S^2 A^2)] =
$$
\n
$$
= (A \cdot S^2 A^2] = (SS \cdot AA^2) =
$$
\n
$$
= (A^2 A \cdot SS] = (SA \cdot A^2) \subseteq (SA^2) \subseteq A.
$$

Hence *A* is an ideal of some right ideal $(SA²]$ of *S*.

Conversely, assume that *A* is an ideal of some right ideal *R* of *S*, then

$$
(SA2] = (A \cdot SA] \subseteq ((A) \cdot (S2](A)] \subseteq
$$

\n
$$
\subseteq ((A \cdot S2 A)] = (A \cdot S2 A] =
$$

\n
$$
= (A \cdot (AS)S] \subseteq (A \cdot (RS)R] \subseteq (A \cdot ((RS))R]
$$

\n
$$
\subseteq (A \cdot (RS)] \subseteq (AR) \subseteq A,
$$

and $(AS \cdot A] \subseteq ((RS] \cdot A] \subseteq (RA] \subseteq A$, which shows that A is a $(0, 2)$ -ideal of S .

The following result gives some characterizations of $(1, 2)$ -ideals of an ordered \mathcal{AG} -groupoid.

Theorem 1.1. *Let* (S, \cdot, \leq) *be a unitary ordered* AG *-groupoid. Then the following statements are equivalent.*

(*i*) Λ *is a* (1,2) -*ideal of* S ;

- (*ii*) Λ *is a left ideal of some bi-ideal of S*;
- (*iii*) Λ *is a bi-ideal of some ideal of S*;
- (*iv*) *A* is a $(0, 2)$ -ideal of some right ideal of S;

(v) A is a left ideal of some
$$
(0,2)
$$
-ideal of S.

Proof. (*i*) \Rightarrow (*ii*): It is easy to see that $(SA^2 \cdot S)$

is a bi-ideal of *S*. Let *A* be a $(1, 2)$ -ideal of *S*, then

$$
(((SA2 · S))A] \subseteq ((SA2 · SS)A] =
$$

= ((SS · A²S)A] ⊆ (((S² · A²S)A] =
= ((S · A²S)A] = ((A² · SS)A] ⊆ (A²S · A] =
= (AS · A²] ⊆ A,

which shows that *A* is a left ideal of some bi-ideal $(SA^2 \cdot S)$ of *S*.

 $(ii) \Rightarrow (iii)$: Let *A* be a left ideal of some bi-

ideal *B* of *S* and *e* be a left identity of *S*, then $((A \cdot (SA^2))A] \subseteq ((A \cdot SA^2)A] = ((S \cdot AA^2)A)$

$$
= e((S \cdot AA^2)A] \subseteq (S)((S \cdot AA^2)A] \subseteq
$$

\n
$$
\subseteq ((S(SA \cdot AA))A] =
$$

\n
$$
= ((S(AA \cdot AS))A] = ((AA \cdot S(AS))A] =
$$

\n
$$
= (((S(AS) \cdot A)A)A] = (((A(SS) \cdot A)A)A] \subseteq
$$

\n
$$
\subseteq (((AS \cdot A)A)A] \subseteq (((BS \cdot B)A)A] \subseteq
$$

\n
$$
\subseteq (BA \cdot A] \subseteq A,
$$

which shows that *A* is a bi-ideal of an ideal (SA^2) of *S*.

 $(iii) \Rightarrow (iv)$: Let *A* be a bi-ideal of some ideal *I* of *S*, then

$$
((SA2] \cdot A2] = (SA2 \cdot A2] = ((A2 \cdot AA)S] =
$$

$$
= ((A \cdot A2 A)S] \subseteq ((A \cdot ((AI)A])S] \subseteq (AA \cdot S) =
$$

$$
= (SA \cdot A] \subseteq ((SI] \cdot S) \subseteq I,
$$

which shows that A is a $(0, 2)$ -ideal of a right ideal $(SA²$ of *S*.

 $(iv) \Rightarrow (v)$: It is easy to see that $(SA³]$ is a $(0, 2)$ -ideal of *S*. Let *A* be a $(0, 2)$ -ideal of a right ideal R of S , then

$$
(A \cdot (SA3)] \subseteq (A(SS \cdot A2 A)] \subseteq
$$

\n
$$
\subseteq (A(AA2 \cdot S)] \subseteq (A((SA \cdot AA)S)]
$$

\n
$$
= (A((AA \cdot AS)S)] = ((AA)((A \cdot AS)S)]
$$

\n
$$
= ((S \cdot A(AS))A2] = ((A \cdot S(AS))A2]
$$

\n
$$
\subseteq ((RS) \cdot A2] \subseteq (RA2) \subseteq A,
$$

which shows that *A* is a left ideal of a $(0, 2)$ -ideal $(SA³$ of *S*.

 $(v) \Rightarrow (i)$: Let *A* be a left ideal of a $(0, 2)$. ideal *O* of *S*, then

$$
(AS \cdot A^2] \subseteq ((AA \cdot SS)A] \subseteq (SA^2 \cdot A] \subseteq
$$

$$
\subseteq ((SO^2] \cdot A] \subseteq (OA) \subseteq A,
$$

which shows that *A* is a $(1, 2)$ -ideal of *S*.

The following characterizes $(1, 2)$ -ideals in terms of left and right ideals of an ordered AG -groupoid.

Lemma 1.3. *Let* (S, \cdot, \leq) *be a unitary ordered* AG *-groupoid and A be an idempotent subset of S . Then A is a (1,2) -ideal of S if and only if there exist a left ideal L and a right ideal R of S such that* $(RL] \subseteq A \subseteq R \cap L$.

Proof. Assume that *A* is a $(1, 2)$ -ideal of *S* such that *A* is idempotent.

Setting L=(SA] and R=(SA²], then
\n
$$
(RL] = ((SA2):(SA)] \subseteq (A2S \cdot SA] \subseteq (A2S2 \cdot SA] =
$$
\n
$$
= ((SA \cdot SS)A2] =
$$
\n
$$
= ((SS \cdot AS)A2] \subseteq ((S(AA \cdot SS))A2] =
$$
\n
$$
= ((S(SS \cdot AA))A2] =
$$
\n
$$
= ((S(AS S \cdot A)))A2] \subseteq ((A(S \cdot SA))A2] \subseteq
$$
\n
$$
\subseteq (AS \cdot A2) \subseteq A.
$$

⁴² *Проблемы физики, математики и техники*, *№ 2 (23)*, *2015*

It is clear that $A \subset R \cap L$.

Conversely, let *R* be a right ideal and *L* be a left ideal of *S* such that $(RL] \subseteq A \subseteq R \cap L$, then

 $(AS \cdot A^2] = (AS \cdot AA] \subseteq ((RS] \cdot (SL)] \subseteq (RL] \subseteq A.$

Definition **1.2.** *A* (0,2)*-ideal A of an ordered* AG -groupoid (S, \cdot, \leq) with zero is said to be 0-mi*nimal if* $A \neq \{0\}$ *and* $\{0\}$ *is the only* $(0, 2)$ *-ideal of S properly contained in A.*

Remark 1.1. *Assume that* (S, \cdot, \leq) *is a unitary ordered* AG *-groupoid with zero. Then it is easy to see that every left (right) ideal of S is a (0,2)* -*ideal of S. Hence if O is a 0 -minimal (0.2) -ideal of S and A is a left* (*right*) *ideal of S contained in O*, *then either* $A = \{0\}$ *or* $A = O$.

Lemma 1.4. *Let* (S, \cdot, \leq) *be a unitary ordered* AG *-groupoid with zero. Assume that A is a* 0*-minimal ideal of S and O is an* AG *-subgroupoid of A*. *Then O is a* $(0, 2)$ -*ideal of S contained in A if and only if* $Q^2 = \{0\}$ *or* $Q = A$.

Proof. Let O be a $(0, 2)$ -ideal of S contained in a 0 -minimal ideal *A* of *S*. Then $(SO^2 | \subset O \subset A$. Since (SO^2) is an ideal of *S*, therefore by minimality of *A*, $(SO^2) = \{0\}$ or $(SO^2) = A$. If $(SO^2) = A$, then $A = (SO^2) \subseteq O$ and therefore $O = A$. Let $(SO^2] = \{0\}$, then

 $(Q²S] \subset (Q²S²] = (S²Q²] \subset (SO²] = \{0\} \subset Q²$ which shows that Q^2 is a right ideal of *S*, and hence an ideal of *S* contained in *A*, therefore by minimality of *A*, we have $O^2 = \{0\}$ or $O^2 = A$.

Now if $Q^2 = A$, then $Q = A$.

Conversely, let $O^2 = \{0\}$, then

$$
(SO2] \subseteq (O2S] = (\{0\}S] = \{0\} = (O).
$$

Now if $Q = A$, then

 $(SO²] \subseteq (SS \cdot OO) \subseteq ((SA] \cdot (SA)] \subseteq A = O,$

which shows that O is a $(0, 2)$ -ideal of S contained in *A*.

Corollary 1.2. *Let* (S, \cdot, \leq) *be a unitary ordered* AG *-groupoid with zero. Assume that A is a* 0 *-minimal left ideal of S and O is an* AG *-sub*groupoid of A. Then O is a $(0,2)$ -ideal of S con*tained in A if and only if* $O^2 = \{0\}$ *or* $O = A$ *.*

Lemma 1.5. *Let* (S, \cdot, \leq) *be a unitary ordered* AG *-groupoid with zero and O be a* 0 *-minimal* $(0, 2)$ *-ideal of S. Then* $O^2 = \{0\}$ *or O is a 0 -minimal right* (*left*) *ideal of S*.

Proof. Let O be a 0-minimal $(0, 2)$ -ideal of *S*, then

$$
(S(O2)2] \subseteq (SS \cdot O2 O2] \subseteq (O2 O2 \cdot S] = (SO2 \cdot O2]\subseteq ((SO2] \cdot O2] \subseteq (OO2] \subseteq O2,
$$

which shows that O^2 is a (0,2) -ideal of *S* contained in *O*, therefore by minimality of *O*, $O^2 = \{0\}$ or $Q^2 = Q$. Suppose that $Q^2 = Q$, then

 $[OS] \subseteq (OO \cdot SS] \subseteq (SO^2] \subseteq O$,

which shows that *O* is a right ideal of *S*. Let *R* be a right ideal of *S* contained in *O*, then

 $(R^2 S] = (RR \cdot S] \subseteq ((RS] \cdot S] \subseteq R$.

Thus *R* is a $(0, 2)$ -ideal of *S* contained in *O*, and again by minimality of *O*, $R = \{0\}$ or $R = O$.

The following Corollary follows from Lemma 1.2 and Corollary 1.2.

Corollary 1.3. *Let* (S, \cdot, \leq) *be a unitary ordered* AG *-groupoid. Then O is a minimal* $(0, 2)$ *-ideal of S if and only if O is a minimal left ideal of S.*

Theorem 1.2. *Let* (S, \cdot, \leq) *be a unitary ordered* AG -groupoid. Then A is a minimal $(2,1)$ -ideal of *S if and only if A is a minimal bi-ideal of S.*

Proof. Let *A* be a minimal (2.1) -ideal of *S*. Then $(11.42 \text{ g}) \times 11.2 \text{ g} \times (1.42 \text{ g})$

$$
(((A2S \cdot A])2S)((A2S \cdot A)]) \subseteq
$$

\n
$$
\subseteq (((A2S \cdot A)2S)(A2S \cdot A)] =
$$

\n
$$
= (((A2S \cdot A)(A2S \cdot A))S)(A2S \cdot A)] \subseteq
$$

\n
$$
\subseteq ((((AS \cdot A)(AS \cdot A))S)(AS \cdot A)] =
$$

\n
$$
= ((((AS \cdot AS)(AA))S)(AS \cdot A)] \subseteq
$$

\n
$$
\subseteq (((A2S \cdot AA)S)(AS \cdot A)] \subseteq
$$

\n
$$
\subseteq (((A2S \cdot S)(AS \cdot A)] \subseteq
$$

\n
$$
\subseteq ((A2S \cdot S)(AS \cdot A)] \subseteq
$$

\n
$$
\subseteq ((A2S \cdot S)(AS \cdot A)] = ((AS \cdot AS)(SA)] \subseteq
$$

\n
$$
\subseteq (A2S \cdot SA] = (AS \cdot SA2] = ((SA2 \cdot S)A]
$$

\n
$$
\subseteq ((A2S \cdot SA)] = ((SS \cdot AA)A] = (A2S \cdot A),
$$

and similarly we can show that $(A^2 S \cdot A)^2 \subseteq$ $\subset (A^2S \cdot A)$. Thus $(A^2S \cdot A)$ is a (2,1)-ideal of *S* contained in *A*, therefore by minimality of *A*, $(A^2 S \cdot A) = A$. Now

$$
(AS \cdot A) = ((AS)(A^{2}S \cdot A)] =
$$

= (((A^{2}S \cdot A)S)A] = ((SA \cdot A^{2}S)A] =
= ((A^{2}(SA \cdot S))A] \subseteq (A^{2}S \cdot A) = A,

It follows that *A* is a bi-ideal of *S*. Suppose that there exists a bi-ideal *B* of *S* contained in *A*, then $(B^2S \cdot B] \subseteq (BS \cdot B] \subseteq B$, so *B* is a (2,1)-ideal of *S* contained in *A*, therefore $B = A$.

Conversely, assume that *A* is a minimal biideal of *S*, then it is easy to see that *A* is a $(2,1)$ -ideal of *S*. Let *C* be a $(2,1)$ -ideal of *S* contained in *A*, then

Problems of Physics, Mathematics and Technics, *№ 2 (23)*, *2015* 43

$$
((((C2S \cdot C))S)((C2S \cdot C)]) \subseteq
$$

\n
$$
\subseteq (((C2S \cdot C)S)(C2S \cdot C)] =
$$

\n
$$
= ((SC \cdot C2S)(C2S \cdot C)] =
$$

\n
$$
= ((SC2 \cdot CS)(C2S \cdot C)] =
$$

\n
$$
= ((C(SC2 \cdot S))(C2S \cdot C)] =
$$

\n
$$
= (((C2S \cdot C)(SC2 \cdot SS))C] \subseteq
$$

\n
$$
\subseteq (((C2S \cdot C)(C2S))C] \subseteq
$$

\n
$$
= ((C2(C2S \cdot C)S))C] \subseteq (C2S \cdot C].
$$

This shows that $(C^2 S \cdot C)$ is a bi-ideal of *S*, and by minimality of *A*, $(C^2S \cdot C) = A$. Thus

$$
A = (C^2 S \cdot C] \subseteq C,
$$

and therefore A is a minimal $(2,1)$ -ideal of S .

Theorem 1.3. Let A be 0-minimal $(0, 2)$ -bi*ideal of a unitary ordered* AG *-groupoid* (S, \cdot, \leq) with *zero. Then exactly one of the following cases occurs:*

(*i*) $A = (\{0, a\}], a^2 = 0;$

(*ii*) for all $a \in A \setminus \{0\}$, $(Sa^2) = A$.

Proof. Assume that *A* is a 0-minimal $(0, 2)$ -biideal of *S*. Let $a \in A \setminus \{0\}$, then $(Sa^2) \subseteq A$. Also $(Sa^2$ is a (0,2) -bi-ideal of *S*, therefore $(Sa^2) = \{0\}$ or $(Sa^2] = A$.

Let $(Sa^2] = \{0\}$. Since $a^2 \in A$, we have either $a^{2} = a$ or $a^{2} = 0$ or $a^{2} \in A\{0, a\}$. If $a^{2} = a$, then $a^3 = a^2 a = a$, which is impossible because $a^{3} \in (a^{2}S] \subset (Sa^{2}] = \{0\}$. Let $a^{2} \in A\{0, a\}$, we have

> $(S \cdot (\{0, a^2\} \{0, a^2\})] \subseteq (SS \cdot a^2 a^2] =$ $= (Sa^2 \cdot Sa^2) = \{0\} \subseteq (\{0, a^2\}],$

and
 $(((\{0, a^2\}]S)(\{0, a^2\}] \subseteq (\{0, a^2S\} \{0, a^2\}] =$ $a^2S \cdot a^2 \subseteq (Sa^2] = \{0\} \subseteq (\{0, a^2\}).$

Therefore $({0, a²})$ is a $(0, 2)$ -bi-ideal of *S* contained in *A*. We observe that $({0, a²}) \neq {0}$ and $({0, a²}) \neq A$. This is a contradiction to the fact that *A* is a 0-minimal $(0, 2)$ -bi-ideal of *S*. Therefore $a^{2} = 0$ and $A = (\{0, a\})$. If $(Sa^{2}) \neq \{0\}$, then $(Sa^{2}) = A.$

Corollary **1.4.** *Let A be* 0 *-minimal* (0 2) , *-biideal of a unitary ordered* \mathcal{AG} *-groupoid* (S, \cdot, \leq) *with zero such that* $(A^2 \neq 0$ *. Then* $A = (Sa^2)$ *for every* $a \in A \setminus \{0\}$.

Lemma 1.6. *Let* (S, \cdot, \leq) *be a unitary ordered* AG *-groupoid. Then every right ideal of S is a* $(0, 2)$ -bi-ideal of S.

Proof. Assume that *A* is a right ideal of *S*, then $(SA^2] \subseteq (AA \cdot SS) \subseteq ((AS) \cdot (AS))$

$$
(SA2] \subseteq (AA \cdot SS] \subseteq ((AS) \cdot (AS)] \subseteq
$$

$$
\subseteq (AA] \subseteq (AS) \subseteq A, (AS \cdot A] \subseteq A,
$$

and clearly $A^2 \subset A$, therefore *A* is a (0,2)-bi-ideal of *S*. The converse of Lemma 1.2 is not true in general. Example 2.1 shows that there exists a $(0, 2)$ -bi-

ideal $A = \{a, c, e\}$ of *S* which is not a right ideal of *S*.

Definition **1.3.** *An ordered* AG *-groupoid* (S, \cdot, \leq) with zero is said to be $0 - (0, 2)$ *-bisimple if* $(S^2 \neq \{0\}$ *and* $\{0\}$ *is the only proper* $(0, 2)$ *-biideal of S*.

Theorem 1.4. *Let* (S, \cdot, \leq) *be a unitary ordered* AG -groupoid with zero. Then $(Sa^2) = S$ for all $a \in S \setminus \{0\}$ *if and only if S is* $0 - (0, 2)$ *-bisimple if and only if S is right* 0 *-simple.*

Proof. Assume that $(Sa^2) = S$ for every $a \in S \setminus \{0\}$. Let *A* be a (0,2) -bi-ideal of *S* such that $A \neq \{0\}$. Let $a \in A \setminus \{0\}$, then

$$
S = (Sa^2] \subseteq (SA^2] \subseteq A.
$$

Therefore $S = A$. Since $S = (Sa^2) \subseteq (S^2)$, we have $(S²$ ₁ = $S \neq \{0\}$. Thus *S* is 0 - (0, 2) -bisimple. The converse statement follows from Corollary 1.2.

Let *R* be a right ideal of $0 - (0, 2)$ -bisimple *S*. Then by Lemma 1.2, R is a $(0, 2)$ -bi-ideal of S and so $R = \{0\}$ or $R = S$. Conversely, assume that *S* is right 0-simple. Let $a \in S \setminus \{0\}$, then $(Sa²] = S$. Hence *S* is 0 - (0,2) -bisimple.

Theorem 1.5. Let A be a 0-minimal $(0, 2)$ -bi*ideal of a unitary ordered AG -groupoid* (S, \cdot, \leq) *with zero.* Then either $(A^2) = \{0\}$ *or A is right* 0 *-simple.*

Proof. Assume that *A* is 0-minimal $(0, 2)$ -biideal of *S* such that $(A^2] \neq \{0\}$. Then by using Corollary 1.2, $(Sa^2) = A$ for every $a \in A \setminus \{0\}$. Since $a^2 \in A\setminus\{0\}$ for every $a \in A\setminus\{0\}$, we have $a^4 = (a^2)^2 \in A\backslash\{0\}$ for every $a \in A\backslash\{0\}$. Let $a \in A \setminus \{0\}$, then

> $((Aa² [S \cdot (Aa²)]) = (a² A \cdot S(Aa²))] =$ $=(((S \cdot Aa^2)A)a^2] \subseteq (((S \cdot A)A)a^2]$ $\subseteq ((AA \cdot SS)a^2] \subseteq ((SA^2] \cdot a^2] \subseteq (Aa^2],$

and $(S(Aa^2)^2] = (S((Aa^2) \cdot (Aa^2))] =$ $=[S((a^2A)\cdot(a^2A))] = [S(a^2(a^2A\cdot A))] =$ $= ((aa)(S(a^2A \cdot A))] = (((a^2A \cdot A)S)a^2] \subseteq$ $\subseteq ((AA \cdot SS)a^2] \subseteq ((SA^2] \cdot a^2] \subseteq (Aa^2],$

⁴⁴ *Проблемы физики, математики и техники*, *№ 2 (23)*, *2015*

which shows that (Aa^2) is a (0,2)-bi-ideal of *S* contained in *A*. Hence $(Aa^2] = \{0\}$ or $(Aa^2] = A$. Since $a^4 \in (Aa^2]$ and $a^4 \in A\setminus\{0\}$, we get $(Aa^2) = A$. Thus by using Theorem 1.2, *A* is right 0 -simple.

2 Ideals in intra-regular ordered AG *-groupoid*

Ideal theory plays a very important role in studying and exploring the structural properties of different algebraic structures. Here we study left (right) ideals which usually allow us to characterize an ordered AG -groupoid and play the role in an ordered AG -groupoid which is played by normal subgroups in ordered group theory and by ideals in ordered ring theory.

Definition **2.1.** *An element a of an ordered* AG *-groupoid* (S, \cdot, \leq) *is called an intra-regular element of S if there exist some* $x, y \in S$ *such that* $a \leq xa^2 \cdot y$ and S is called intra-regular if every *element of S is intra-regular or equivalently,* $A \subseteq (SA^2 \cdot S)$ for all $A \subseteq S$ and $a \in (Sa^2 \cdot S)$ for *all* $a \in S$.

Example 2.1. Let $S = \{a, b, c, d, e\}$ be an ordered AG -groupoid with the following multiplication table and order below.

$$
\begin{array}{c|cccc}\n\cdot & a & b & c & d & e \\
\hline\na & a & a & a & a \\
b & a & b & b & b \\
c & a & b & d & e \\
d & a & b & c & d \\
e & a & b & e & c \\
d & b & e & c & d\n\end{array}
$$

 \leq := { (a, a) , (a, b) , (c, c) , (d, d) , (e, e) , (b, b) }.

By routine calculation, it is easy to verify that *S* is intra-regular.

Definition **2.2.** *An ordered* AG *-groupoid* () *S*,⋅,≤ *is called left* (*resp. right*) *simple if it has no proper left* (*resp. right*) *ideal and is called simple if it has no proper ideal.*

Theorem **2.1.** *The following conditions are equivalent for a unitary ordered* \mathcal{AG} *-groupoid* (S, \cdot, \leq) :

- (i) $(aS) = S$, for some $a \in S$;
- (ii) $(Sa) = S$ *, for some a* $\in S$;
- (*iii*) *S* is simple;

 (iv) $(AS = S = (SA)$, where A is any two*sided ideal of S*;

() *v S is intra-regular.*

Proof. (*i*) \Rightarrow (*ii*): Let *S* be a unitary ordered AG -groupoid and assume that $(aS) = S$ holds for some $a \in S$. Since (aS) and (Sa) are the left ideals of *S*, then $(aS) = aS$ and $(Sa) = Sa$. Therefore

 $S = (SS) = ((aS) \cdot S) = (aS \cdot S) = (SS \cdot a) = (Sa).$

 $(ii) \implies (iii)$: Let *S* be a unitary ordered *AG*-groupoid such that $(aS) = S$ holds for some $a \in S$. Suppose that *S* is not left simple and let *L* be a proper left ideal of *S*, then

$$
(SL] \subseteq L \subseteq S =
$$

= $(SS] \subseteq (Sa \cdot S] \subseteq ((SS \cdot ea)S] =$
= $((ae \cdot SS)S] \subseteq ((ae \cdot S)(SS)] =$
= $((Se \cdot a)(SS)] = ((SS)(a \cdot Se)] =$
= $(a(SS \cdot Se)] \subseteq (aS),$

implies that $sl \leq at$ for some $a, s, t \in S$ and $l \in L$. Since $s \in L$, therefore $at \in L$, but $at \in (aS)$. Thus $(aS) \subset L$ and therefore we have $S = (aS) \subset L$, which implies that $S = L$, which contradicts the given assumption. Thus *S* is left simple and similarly we can show that *S* is right simple, which shows that *S* is simple.

 $(iii) \Rightarrow (iv)$: Let *S* be a simple unitary ordered AG -groupoid and let *A* be any two-sided ideal of *S*, then $A = S$. Therefore, we have $(AS = (SS) = (SA).$

 $(iv) \Rightarrow (v)$: Let *S* be a unitary ordered AG -groupoid such that $(AS) = S = (SA)$ holds for any twosided ideal *A* of *S*. Since (a^2S) is two-sided ideal of *S* such that $(a^2 S \cdot S) = S = (S \cdot a^2 S)$. Let $a \in S$, then $z = S_1 (z^2)$

$$
a \in S = (a^2 S \cdot S] \subseteq ((aa \cdot SS)S) =
$$

$$
= ((SS \cdot aa)S] \subseteq (Sa^2 \cdot S),
$$

that is $a \leq (xa^2)y$ for some $x, y \in S$. Thus *S* is intra-regular

 $(v) \Rightarrow (i)$: Let *S* be a unitary intra-regular ordered \mathcal{AG} -groupoid. Let $a \in S$, then there exist $x, y \in S$ such that $a \leq (xa^2)y$. Thus

 $a \leq (xa^2)y = (ex \cdot aa)y = (aa \cdot ex)y$

$$
= (y \cdot ex)(aa) = a((y \cdot ex)a) \in aS,
$$

which shows that $S \subseteq (Sa]$ and $(Sa] \subseteq S$ is obvious. Thus $(Sa) = S$ holds for some $a \in S$.

Corollary **2.1.** *The following conditions are equivalent for any unitary ordered* AG *-groupoid* (S, \cdot, \leq) :

 (i) $(aS] = S$ *, for some* $a \in S$;

(*ii*) $(Sa] = S$ *, for some* $a \in S$ *;*

(*iii*) *S* is right simple;

 (iv) $(AS = S = (SA)$, where A is any right *ideal of S*;

 (v) *S is fully regular.*

Corollary 2.2. If (S, \cdot, \leq) *is a unitary ordered* AG *-groupoid*, *then the following conditions are equivalent:*

Problems of Physics, Mathematics and Technics, *№ 2 (23)*, *2015* 45

- (*i*) $(Sa) = S$ *, for some* $a \in S$ *;*
- (ii) $(aS) = S$ *, for some* $a \in S$ *.*

Corollary 2.3. If (S, \cdot, \leq) *is a unitary ordered* AG -groupoid, then $(eS) = S = (Se)$ holds for $e \in S$ *, where e is a left identity of S.*

Corollary **2.4.** *The following conditions are equivalent for any unitary ordered AG -groupoid* $(S, \cdot, ≤)$:

()*i S is intra-regular;*

(*ii*) $(Sa) = S = (aS)$ *for some* $a \in S$.

Definition **2.3.** *A left* (*resp. right*) *ideal A of an ordered AG -groupoid* (S, \cdot, \leq) *is called semiprime if* $a \in A$ *implies* $a^2 \in A$.

Lemma **2.1.** *The following conditions are equivalent for a unitary ordered* AG *-groupoid* (S, \cdot, \leq) :

 (i) *S is intra-regular*;

(*ii*) *Every right ideal of S is semiprime.*

Proof. (*i*) \Rightarrow (*ii*): Let *T* be a right ideal of a unitary intra-regular ordered AG -groupoid *S*. For $a \in S$ there exist $x, y \in S$ such that $a \leq xa^2 \cdot y$. Let $a^2 \in T$, then

$$
a \leq (ex \cdot a^2)y = (a^2 \cdot xe)y = (y \cdot xe)a^2 =
$$

 $= a^2 (xe \cdot y) \in TS \subseteq (TS] \subseteq T$,

which implies that *T* is semiprime.

Now $(ii) \Rightarrow (i)$: Since (a^2S) is a right ideal of a unitary ordered AG -groupoid *S* containing a^2 so $a \in (a^2S)$. Thus

$$
a \in (a^2S] \subseteq (a^2 \cdot SS) = (S \cdot a^2S] \subseteq (SS \cdot a^2S) =
$$

$$
= (Sa^2 \cdot SS] \subseteq (Sa^2 \cdot S).
$$

Hence *S* is intra-regular.

Corollary **2.5.** *The following conditions are equivalent for any unitary ordered* AG *-groupoid* (S, \cdot, \leq) :

()*i S is intra-regular;*

 (ii) *every ideal of S is semiprime.*

Theorem **2.2.** *The following conditions are equivalent for a unitary ordered* AG *-groupoid* (S, \cdot, \leq) :

 (i) *S is intra-regular*;

(*ii*) $L \cap R \subset (LR)$ *for every semiprime right ideal R and every left ideal L of S*;

 (iii) $L \cap R \subseteq (LR \cdot L)$ for every semiprime *right ideal R and every left ideal L of S*.

Proof. (*i*) \Rightarrow (*iii*): Let *S* be a unitary intraregular ordered AG -groupoid and L , R be any left and right ideals of *S* respectively such that $k \in L \cap R$. Then there exist $x, y \in S$ such that $k \leq x k^2 \cdot y$. Thus

$$
k \le (x \cdot kk) y = (k \cdot xk) y =
$$

$$
= (y \cdot xk) k \le (y (x (xk2 \cdot y))) k =
$$

$$
= (y (xk2 \cdot xy)) k = (xk2 \cdot y (xy)) k =
$$

$$
= (x (kk) \cdot y (xy)) k =
$$

$$
= (k (xk) \cdot y (xy)) k \in ((R \cdot SL)S) L \subseteq (RL \cdot S) L =
$$

$$
= LS \cdot RL = LR \cdot SL \subseteq LR \cdot L,
$$

which implies that $L \cap R \subseteq (LR \cdot L]$. Also by Lemma 1.3, *R* is semiprime.

 $(iii) \Rightarrow (ii)$: Let *R* and *L* be the left and right ideals of *S* respectively and *R* be semiprime, then

 $=[(L(SS \cdot R))] = (L(RS \cdot S)] \subseteq (L \cdot (RS)] \subseteq (LR).$ $L \cap R = R \cap L \subseteq (RL \cdot R] \subseteq$ $\subseteq (RL \cdot S] \subseteq (RL \cdot SS] = (SS \cdot LR)$

 $(ii) \Rightarrow (i)$: Since $a \in (Sa]$, which is a left ideal of *S*, and $a^2 \in (a^2S)$, which is a semiprime right ideal of *S*, therefore by given assumption $a \in (a^2S]$. Thus

$$
a \in (Sa] \cap (a^2S] \subseteq ((Sa] \cdot (a^2S)] \subseteq (Sa \cdot a^2S] \subseteq
$$

$$
\subseteq (SS \cdot a^2S] = (Sa^2 \cdot SS] \subseteq (Sa^2 \cdot S).
$$

Hence *S* is intra-regular.

Lemma **2.2.** *The following conditions are equivalent for a unitary ordered* AG *-groupoid* (S, \cdot, \leq) :

(*i*) *S is intra-regular*;

(*ii*) *every left ideal of S is idempotent*.

Proof. It is simple. We omit the proof.

Theorem **2.3.** *The following conditions are equivalent for a unitary ordered* \mathcal{AG} *-groupoid* (S, \cdot, \leq) :

()*i S is intra-regular*;

(*ii*) $A = ((SA)^2$, *where A is any left ideal of S.*

Proof. (*i*) \Rightarrow (*ii*): Let *A* be a left ideal of a unitary intra-regular ordered AG -groupoid, then $(SA) \subseteq A$ and by Lemma 1.3, $((SA)^2) = (SA) \subseteq A$. Now $A = (AA) \subseteq (SA) = ((SA)^2)$, which implies that $A = ((SA)^2$].

 $(ii) \Rightarrow (i)$: Let *A* be a left ideal of *S*, then $A = ((\Sigma A)^2] \subset (A^2)$, which implies that *A* is idempotent and by using Lemma 1.3, *S* is intra-regular.

REFERENCES

1. *Holgate*, *P*. Groupoids satisfying a simple invertive law / P. Holgate // Math. Student. – 1992. – Vol. $61. - N_2$ 1–4. – P. 101–106.

 $2. *Jantanan*, *W*. On 0 -minimal $(0, 2)$ -bi-ideals$ in ordered semigroups / W. Jantanan, T. Changphas // Quasigroups and related Systems. – 2013. – Vol. 21. – P. 83– 90.

⁴⁶ *Проблемы физики, математики и техники*, *№ 2 (23)*, *2015*

3. *Kazim*, *M.A*. On almost semigroups / M.A. Kazim, M. Naseeruddin // Aligarh Bull. Math. – 1972. $-Vol. 2. - P. 1-7.$

4. *Lajos*, *S*. Generalized ideals in semigroups / S. Lajos // Acta Sci. Math. – 1961. – Vol. 22. – P. 217–222.

5. *Mushtaq*, *Q*. On LA-semigroups / Q. Mushtaq, S.M. Yusuf // Aligarh Bull. Math. – 1978. – Vol. 8. – P. 65–70.

6. *Mushtaq*, *Q*. On locally associative LA-semigroups / Q. Mushtaq, S.M. Yusuf // J. Nat. Sci. Math. – 1979. – Vol. 19. – P. 57–62.

7. *Mushtaq*, *Q*. On LA-semigroup defined by a commutative inverse semigroup / Q. Mushtaq, S.M. Yusuf // Mat. Vesnik. – 1988. – Vol. 40. – P. 59–62.

8. *Mushtaq*, *Q*. *n* LA-semigroups with weak associative law / Q. Mushtaq, M.S. Kamran // Scientific Khyber. – 1989. – Vol. 1. – P. 69–71.

9. *Mushtaq*, *Q*. Ideals in left almost semigroups / Q. Mushtaq, M. Khan // Proceedings of 4th International Pure Mathematics Conference. – 2003. – P. 65–77.

10. *Protić*, *P.V*. AG-test and some general properties of Abel-Grassmann's groupoids / P.V. Protić, N. Stevanović // Pure Mathematics and Applications. – 1995. – Vol. 6. – P. 371–383.

11. *Sanborisoot*, *J*. On Characterizations of (m, n) -regular ordered semigroups / J. Sanborisoot, T. Changphas // Far East J. Math. Sci. – 2012. – Vol. 65. – P. 75–86.

12. *Stevanović*, *N*. Composition of Abel-Grassmann's 3-bands / N. Stevanović, P. V. Protić // Novi Sad, J. Math. – 2004. – Vol. 34. – P. 175–182.

13. *Xie*, *X.Y*. Fuzzy radicals and prime fuzzy ideals of ordered semigroups / X.Y. Xie, J. Tang // Inform. Sci. – 2008. – Vol. 178. – P. 4357–4374.

14. *Yousafzai*, *F*. Left regular AG -groupoids in terms of fuzzy interior ideals / F. Yousafzai, N. Yaqoob, A. Ghareeb // Afrika Mathematika. – 2013. – Vol. 24. – P. 577–587.

15. *Yousafzai*, *F*. On fully regular AG -groupoids / F. Yousafzai, A. Khan, B. Davvaz // Afrika Mathematika. – 2014. – Vol. 25. – P. 449–459.

16. *Yousafzai*, *F*. On fuzzy fully regular ordered AG -groupoids / F. Yousafzai, A. Khan, V. Amjad, A. Zeb // Journal of Intelligent & Fuzzy Systems. – 2014. – Vol. 26. – P. 2973–2982.

Research of the first author is supported by the NNSF of China (#11371335).

Поступила в редакцию 31.10.14.