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BBezeHo nowsitHe (m, n) -UACAIOB YIOpsiioYeHHbIX AG -rpymmonnoB u noiay4deHs! xapakrepusamuu (0,2) -uneanos u (1,2) -uzea-

10B ynopsigoueHHoro AG -rpynmnonja B TEpMHHAX JIEBBIX HJealoB. [1oka3aHo, 4To ynopsigodeHHsliit AG -rpymmouns S sBis-

ercs 0—(0,2) -OUIpocTsIM B TOM U TOJBKO B TOM ciydae, koraa S sBisiercs npaBbiM 0 -npocTeiM. PesynbraThl 1aHHON pado-

THI [O3BOJIAIOT PacIMPUTh KoHuenuuio AG -rpynmnounna 6e3 BBefeHHOro mopsiaka. [lomydeHsl XapakTepusalun BHYTpPEHHE-

PeryisipHOro ynopsiioueHHoro AG -rpymnnonaa B TepPMUHAX JICBBIX U [IPABBIX H/ICAJIOB.

Knrouegvie cnosa: ynopsoouennvie AG -epynnoudst, o6pamumoe ciesa moxicoecmeo, iesas eounuya, (m,n) -udea.

The concept of (m,n) -ideals in ordered AG -groupoids is introduced and the (0,2) -ideals and (1,2) -ideals of an ordered

AG -groupoid in terms of left ideals are characterised. It is shown that an ordered AG -groupoid S is 0—(0,2) -bisimple if

and only if S is right 0 -simple. The results of this paper extend the concept of an AG -groupoid without order. Finally, we

characterize an intra-regular ordered AG -groupoid in terms of left and right ideals.
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Introduction

The concept of a left almost semigroup (LA-se-
migroup) [3] was first introduced by M.A. Kazim
and M. Naseeruddin in 1972. In [1], the same struc-
ture is called a left invertive groupoid. P.V. Proti¢
and N. Stevanovi¢ called it an Abel-Grassmann’s
groupoid (\AG -groupoid) [10].

An AG -groupoid is a groupoid S satisfying
the left invertive law (ab)c=(chb)a for all
a,b,c € S. This left invertive law has been obtained
by introducing braces on the left of ternary commu-
tative law abc = cba. An AG -groupoid satisfies the
medial law (ab)(cd) = (ac)(bd) for all a,b,c,d € S.

Since AG -groupoids satisfy medial law, they belong
to the class of entropic groupoids which are also
called abelian quasigroups [12]. If an AG -groupoid
S contains a left identity, then it satisfies the para-
medial law (ab)(cd)=(dc)(ba) and the identity
a(bc) =b(ac) forall a,b,c,d €S [5].

An AG -groupoid is a useful algebraic struc-
ture, midway between a groupoid and a commuta-
tive semigroup. An .AG -groupoid is non-associative

and non-commutative in general, however, there is a
close relationship with semigroup as well as with
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commutative structures. It has been investigated in
[5] that if an .AG -groupoid contains a right identity,
then it becomes a commutative semigroup. The con-
nection of a commutative inverse semigroup with an
AG -groupoid has been given by Yousafzai et al. in
[14] as, a commutative inverse semigroup (S, .) be-
comes an AG -groupoid (S, *) under a*b=ba'r"
for all a,b,r €S. The AG-groupoid S with left
identity becomes a semigroup under the binary op-
eration “o,” defined as, xo, y=(xe)y for all x,
yeS [15]. The AG -groupoid is the generalization
of a semigroup theory [5] and has vast applications
in collaboration with semigroups like other branches
of mathematics. Many interesting results on AG -grou-
poids have been investigated in [7], [8], [9].

If § is an AG-groupoid with product
-:S%x8— S, then ab-c¢ and (ab)c both denote the
product (a-b)-c.

Definition 0.1 [16]. An AG -groupoid (S,-)
together with a partial order < on S that is com-
patible with an AG -groupoid operation, meaning
that for x,y,z €S,

x<y=zx<zy and xz<yz,
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is called an ordered AG -groupoid.
Let (S,-,<) be an ordered AG -groupoid. If 4
and B are nonempty subsets of S, we let
AB={xyeS|xe A yeBy}
and (A]={xeS|x<a for some ac 4}.
Definition 0.2 [16]. Let (S,-,<) be an ordered
AG -groupoid. A nonempty subset A of S is called
a left (resp. right) ideal of S if the followings hold:
(i) SAc A (resp. AS < A);
(ii) for xe A and y e S, y<x implies y € A.
Equivalently (SAl< A (vesp. (AS]1< A).
If A is both a left and a right ideal of S, then A

is called a two-sided ideal or an ideal of 'S.
A nonempty subset 4 of an ordered AG -grou-

poid (S,-,<) is called AG -subgroupoid of S if
xye A forall x,ye A.

It is clear to see that every left and right ideals
of an ordered .AG -groupoid is an .AG -subgroupoid.

Let (S,-,<) be an ordered .AG -groupoid and
let A and B be nonempty subsets of S, then the fol-

lowing was proved in [13]:

(i) Ac(4];

(i) If Ac B, then (4] < (B];

(iit) (A4](B] < (4B];

@) (4] =((4];

(i) ((4)(B]]=(4B].

Also for every left (resp. right) ideal T of S,
(T ] =T.

The concept of (m,n) -ideals in ordered semi-
groups were given by J. Sanborisoot and T. Chang-
phas in [11]. It’s natural to ask whether the concept
of (m,n) -ideals in ordered AG -groupoids is valid or
not? The aim of this paper is to deal with (m, ) -ideals
in ordered .AG -groupoids. We introduce the concept
of (m,n)-ideals in ordered .AG -groupoids as follows:

Definition 0.3. Let (S,-,<) be an ordered
AG -groupoid and let m,n be non-negative inte-
gers. An AG -subgroupoid A of S is called an
(m,n) -ideal of S if the followings hold:

(@) A4"S-A" c 4

(ii) for xe A and ye S, y<x implies y € A.

Here, A’ is defined as A°S-A" =SA" and
A"S- A’ = A4"S.

Equivalently an AG -subgroupoid A of S is
called an (m,n) -ideal of S if

(A"S- A" c A.

If m=n=1, then an (m,n) -ideal 4 of an or-

dered AG -groupoid (S,-,<) is called a bi-ideal of S.
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1 0-minimal (0,2)-bi-ideals in ordered
AG -groupoid

In this section, we study and generalize the
work of W. Jantanan and T. Changphas [2] by con-
verting it from an associative ordered structure in to
a non-associative ordered structure. We use the con-
cept of (m,n)-ideals and investigate (0,2) -ideals,

(1,2) -ideals and 0 -minimal (0,2) -ideals in ordered
AG -groupoids. All the results of this section can be
obtain for an AG -groupoid without order.

Defintion 1.1. If there is an element 0 of an or-
dered AG -groupoid (S,-,<) such that x-0=0-x=x
forall xe S, wecall 0 azeroelementof S.

Example 1.1. Let S ={a,b,c,d,e} with a left
identity d. Then the following multiplication table
and order shows that (S,-,<) is a unitary ordered

AG -groupoid with a zero element a.
labcde

alaaaaa
blaeece
claeebe
dlabcde
elaeecee

<={(a,a),(a,b),(c,c),(a,c),(d,d),(a,e),(e,e),(b,b)}.
If S is a unitary ordered .AG -groupoid, then it
is easy to see that (S°]=S, (S4°]=(4’S] and
Ac (S4A] VA< S. Note that every right ideal of a
unitary ordered .AG -groupoid S is a left ideal of §

but the converse is not true in general. Example 1.1
shows that there exists a subset {a,b,e} of S which

is a left ideal of S but not a right ideal of S. It is
easy to see that (S4] and (S4°] are the left and
right ideals of a unitary ordered AG -groupoid S.
Thus (S4°] is an ideal of a unitary ordered AG -grou-
poid S.

We characterize of (0,2)-ideals of an ordered
AG -groupoid in terms of left ideals as follows:

Lemma 1.1. Let (S,-,<) be a unitary ordered
AG -groupoid. Then A is a (0,2) -ideal of S if and
only if A is an ideal of some left ideal of S.

Proof. Let A bea (0,2) -ideal of S, then

((S4]- A]= (S4- 4] = (44-S]= (SA*] 4,
and

(A-(SA]]=(A-SA]=(S-AA4] = (SA’] c A.
Hence A is an ideal of a left ideal (SA] of S.

Conversely, assume that 4 is a left ideal of
some left ideal L of S, then

(SA°]=(A44-S1=(S4- Al c
c (SL-A]c ((SL]-A] < (LA] c 4,
and clearly 4 is an AG -subgroupoid of S, there-
fore 4 is a (0,2)-ideal of S.
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Corollary 1.1. Let (S,,<) be a unitary or-
dered AG -groupoid. Then A is a (0,2) -ideal of S

if and only if A is a left ideal of some left ideal of S.
Now we characterize the (0,2) -bi-ideals of an

ordered AG -groupoid in terms of right ideals as
follows:
Lemma 1.2. Let (S,-,<) be a unitary ordered

AG -groupoid. Then A is a (0,2)-bi-ideal of S if
and only if A is an ideal of some right ideal of S.
Proof- Let A bea (0,2) -bi-ideal of S, then
((SA*]- A]=(S4% - A] = (A*S - 4] =
= (US- A1 (4] c 4,
and
(A-(SA2T) = (4-54°] =
=(4-(S 1471 (A1 (S AL NN ((4-§* 4°]) =
=(A-S*A*]=(S8S- A4’ ] =
=(A’A-85]1=(S4- A1 (SA* ] c A.
Hence 4 is an ideal of some right ideal (S4°] of S.

Conversely, assume that A is an ideal of some
right ideal R of S, then

(847]=(4-S4] < ((4]-(S*)(A]] <
c((4-SA1]=(4-5’4]=
= (4-(4S)S]< (4-(RS)R] < (4-(RSDR]
c (4-(RS]]< (4R] c 4,
and (AS-A]c ((RS]-A]< (RA] < A, which shows
that 4 isa (0,2) -ideal of S.

The following result gives some characteriza-
tions of (1,2) -ideals of an ordered .AG -groupoid.

Theorem 1.1. Let (S,-,<) be a unitary ordered

AG -groupoid. Then the following statements are
equivalent.

(@) A isa (1,2)-ideal of S,
(ii) A is a left ideal of some bi-ideal of S,
(iii) A is a bi-ideal of some ideal of S,
(iv) A is a (0,2) -ideal of some right ideal of 'S,
(v) A is a left ideal of some (0,2) -ideal of S.
Proof. (i)=> (ii): Itis easy to see that (S4°-S]
is a bi-ideal of S. Let 4 be a (1,2)-ideal of S, then
(47 - S])A] < ((S4° - SS) A] =
= ((SS-A*S)4] < (((§?]- 4°S) 4] =
=((S-A’8)A]= ((4*-SS)A] < (A’S - 4] =
=(4S-4']c 4,
which shows that A is a left ideal of some bi-ideal
(S4%-S] of S.
(i) = (iii) : Let A be a left ideal of some bi-
ideal B of S and e be a left identity of S, then
(A-(SANA] S (4-SA4") 4] = ((S - 447) 4] =
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=e((S-44%)A] < (S1(S-44*) 4]
< ((S(S4- AA) A] =
=((S(44- AS))A]=((AA-S(AS))A4] =
=(((S(4S)- A)A) 4] = (A(SS)- ) D) A] <
< ((AS- A Al < ((BS-B)A) 4] <
c(B4-A]c 4,
which shows that 4 is a bi-ideal of an ideal (SA°] of S.
(iiif) = (iv) : Let A be a bi-ideal of some ideal
I of S, then
((SA*)- A7) = (SA> - A2 ] = (A - A4)S] =
=((4- A2 A)ST< ((4-((AD ADS] < (44-S]=
=(84-4]c ((ST]-S1< 1,
which shows that 4 is a (0,2) -ideal of a right ideal
(SA’] of S.

(iv)= (v): It is easy to see that (S4’] is a
(0,2) -ideal of S. Let 4 be a (0,2) -ideal of a right
ideal R of S, then

(A-(SA N < (ASS- £ )]
< (A(AL* - S)] < (A(SA- A4)S)]
=(A((44- 45)S)] = ((44)(4- 45)S)]
=((S- A(AS) A*] = ((4-S(AS)) 4]
C (RS]- A1 (RA’ ] 4,
which shows that 4 is a left ideal of a (0,2) -ideal
(SA4°] of S.
(v)=(i): Let A be a left ideal of a (0,2)-
ideal O of S, then
(AS- A1 < ((44-SS)A] < (SA4* - A]
c ((S0°]-A]c (04] c 4,
which shows that 4 is a (1,2)-ideal of S.

The following characterizes (1,2) -ideals in terms
of left and right ideals of an ordered .AG -groupoid.

Lemma 1.3. Let (S,-,<) be a unitary ordered

AG -groupoid and A be an idempotent subset of
S.Then A isa (1,2)-ideal of S if and only if there
exist a left ideal L and a right ideal R of S such
that (RLlc Ac RN L.

Proof. Assume that A4 is a (1,2)-ideal of §
such that 4 is idempotent.

Setting L=(SA] and R=(SA *], then
(RL]=((SA*]-(SA]]  (A*S - SA]  (A°S? - SA] =
=((S4-885)4*] =
=((SS-A4S) 4’1 < ((S(A44-88)) 4’| =
= ((S(SS - Ad) 4*]=
= ((S(A(SS - ) A*] < ((A(S - S4)4*]

c (4S- A*]c A.

Ipo6remvr uzuxu, mamemamuru u mexuuxu, Ne 2 (23), 2015
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Itis clear that A< RN L.
Conversely, let R be a right ideal and L be a left
ideal of S such that (RL]< A < RN L, then

(AS-A2]= (A4S AA] < (RS)-(SLI] < (RL] < 4.
Definition 1.2. A (0,2)-ideal A of an ordered
AG -groupoid (S,-,<) with zero is said to be 0 -mi-
nimal if A# {0} and {0} is the only (0,2)-ideal of
S properly contained in A.
Remark 1.1. Assume that (S,-,<) is a unitary

ordered AG -groupoid with zero. Then it is easy to
see that every left (right) ideal of S is a (0,2) -ideal
of S. Hence if O is a 0-minimal (0,2) -ideal of S
and A is a left (right) ideal of S contained in O, then
either A={0} or A=0.

Lemma 1.4. Let (S,-,<) be a unitary ordered
AG -groupoid with zero. Assume that A is a 0-mini-
mal ideal of S and O is an AG -subgroupoid of A.
Then O is a (0,2)-ideal of S contained in A if
and only if 0> = {0} or O = A.

Proof. Let O be a (0,2) -ideal of S contained in
a 0-minimal ideal 4 of S. Then (SOz]gOgA.
Since (SO?] is an ideal of S, therefore by minima-
lity of 4, (SO*]1={0} or (SO*]=A. If (SO*]= 4,
then A=(SO’]c O and therefore O=A. Let
(SO*1= {0}, then

(0’S]c (0°S*]1= (8’01 (S0’ ]= {0} c O,

which shows that O’ is a right ideal of S, and
hence an ideal of S contained in A, therefore by
minimality of 4, we have O’ ={0} or O’ = 4.
Now if O = 4, then O = A.

Conversely, let O* = {0}, then

(SO’ (0°S]=({0}S]= {0} = (O]

Now if O = 4, then

(SO*] < (SS-00]  ((S4]-(SAllc 4= 0,
which shows that O is a (0,2)-ideal of § con-

tained in A4.
Corollary 1.2. Let (S,,<) be a unitary or-

dered AG -groupoid with zero. Assume that A is a
0 -minimal left ideal of S and O is an AG -sub-
groupoid of A. Then O is a (0,2)-ideal of S con-
tained in A if and only if O* = {0} or O = A.

Lemma 1.5. Let (S,-,<) be a unitary ordered
AG -groupoid with zero and O be a 0-minimal
(0,2) -ideal of S. Then O* ={0} or O is a 0-mi-
nimal right (left) ideal of S.

Proof- Let O be a 0-minimal (0,2)-ideal of
S, then

Problems of Physics, Mathematics and Technics, Ne 2 (23), 2015

(S(0*)’1<(SS-0°0* 1 c (0°0* -§]=(S0* - 0]
c ((50’1-0*1c (00*]c 07,
which shows that O* is a (0,2) -ideal of S contained
in O, therefore by minimality of O, O’ ={0} or
O’ = 0. Suppose that O* = O, then
(0S]1< (00-SS]1< (SO*]1c O,

which shows that O is a right ideal of S. Let R be
aright ideal of S contained in O, then

(R*S]=(RR-S1< ((RS]-S]c R.
Thus R is a (0,2)-ideal of S contained in O, and
again by minimality of O, R={0} or R=0.

The following Corollary follows from Lemma
1.2 and Corollary 1.2.
Corollary 1.3. Let (S,-,<) be a unitary ordered

AG -groupoid. Then O is a minimal (0,2) -ideal of S
if and only if O is a minimal left ideal of S.
Theorem 1.2. Let (S,-,<) be a unitary ordered

AG -groupoid. Then A is a minimal (2,1)-ideal of
S'if and only if A is a minimal bi-ideal of S.
Proof. Let A be a minimal (2,1)-ideal of S.
Then
(((A*S - AD*S)(A*S - AD] =
(A4S A)’ S)(A*S - A)] =
= (((A’S - A)(A’S - ANSHA*S - )] <
< (A4S - A)(AS - A)SNAS - D] =
= ((((4S - AS)(AA)S)(AS - A)] <
< (((A*S- AA)S)(AS - A)] <
C (((4S-A8)S)(AS - A)]
S (A7S-S)(AS- A<
c ((4S-S)(AS - A)] = ((4S - AS)(SA)] <
 (AS-SA]=(AS-SA*]=((S4*-S)A]
C((A*S-S)A] = ((SS- AA)A] = (A°S - 4],
and similarly we can show that (A°S-AJ
c(A°S-A]. Thus (A°S-A4] is a (2,1)-ideal of S
contained in A, therefore by minimality of A4,
(4’S-A]= A. Now
(4S- 4] = ((AS)(A’S - A)] =
=(((A*S- A)S)A]=((S4- A’S)A] =
=((4°(S4-8) Al (A*S - 4] = 4,

It follows that A4 is a bi-ideal of S. Suppose that there
exists a bi-ideal B of S contained in A4, then

(B’S-B]c(BS-B]lc B, so B is a (2,1)-ideal of
S contained in A4, therefore B = A.

Conversely, assume that 4 is a minimal bi-
ideal of S, then it is easy to see that 4 is a (2,1) -ide-

al of S. Let C be a (2,1)-ideal of S contained in
A, then
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(es-epsyes-cnlc
c(((C?S-C)S)C*S-O)] =
=((SC-C*S)(C*S-O)] =
=((SC*-CS)(C*S-O)] =
=((C(SC*-$)(C*S-O)] =
=((C*S-C)(SC*-8S)Cl
c (((C*S-C)(S-C*S)C <
c (((C*S-O)C*S)Cc
=((C*((C*S-0)8)Cl < (C*S - C1.

This shows that (C>S-C] is a bi-ideal of S, and by

minimality of 4, (C*>S-C]= A. Thus
A=(C*S-ClcC,
and therefore A4 is a minimal (2,1) -ideal of §.

Theorem 1.3. Let A be 0-minimal (0,2) -bi-
ideal of a unitary ordered AG -groupoid (S,-,<) with
zero. Then exactly one of the following cases occurs:

(i) A=({0,a}], a’ =0;

(i) for all a e A\{0}, (Sa’]=A.

Proof. Assume that 4 is a 0-minimal (0, 2) -bi-
ideal of S. Let ae A1{0}, then (Sa’]c A. Also
(Sa*] is a (0,2) -bi-ideal of S, therefore (Sa’]= {0}
or (Sa*]=A.

Let (Sa’]={0}. Since a’ € A, we have either
a*=a or a> =0 or a’ € A\{0,a}. If a’ =a, then
@’ =a’a=a, which is impossible because
a’ €(a’S]c (Sa*]1={0}. Let a® € A\{0,a}, we have

(S-({0,a’}{0,a’}]] c (8S-a’a’] =
=(Sa”-Sa’]= {0}  ({0,a’}],
and

((({0,a*}19)({0,a*} 11 < ({0,a’S} {0,a”} ] =

=(a’S-a’]c(Sa’]= {0} < ({0,a"}]
Therefore ({0,a’}] is a (0,2)-bi-ideal of S con-
tained in 4. We observe that ({0,a’}]# {0} and
({0,a’}]1# A. This is a contradiction to the fact that
A is a 0-minimal (0,2)-bi-ideal of S. Therefore
a’>=0 and A=({0,a}]. If (Sa’]#{0}, then
(Sa*]= 4.

Corollary 1.4. Let A be 0 -minimal (0,2) -bi-
ideal of a unitary ordered AG -groupoid (S,-,<)
with zero such that (A*]#0. Then A= (Sa’] for
every a € A\{0}.

Lemma 1.6. Let (S,-,<) be a unitary ordered

AG -groupoid. Then every right ideal of S is a
(0,2) -bi-ideal of S.

44

Proof. Assume that A4 is a right ideal of S,
then
(S4*] < (44-8S]c ((AS]-(4S]] <
c (44] < (AS]c 4,(4S - A] c 4,
and clearly A4* < 4, therefore 4 is a (0,2)-bi-ideal of S.

The converse of Lemma 1.2 is not true in gen-
eral. Example 2.1 shows that there exists a (0,2) -bi-

ideal 4 ={a,c,e} of S which is not a right ideal of S.
Definition 1.3. An ordered AG -groupoid
(S,-,2) with zero is said to be 0-(0,2) -bisimple if
(S*1#1{0} and {0} is the only proper (0,2)-bi-
ideal of S.
Theorem 1.4. Let (S,-,<) be a unitary ordered

AG -groupoid with zero. Then (Sa*]=S for all
a e S\{0} if and only if S is 0-(0,2)-bisimple if
and only if S is right 0 -simple.

Proof. Assume that (Sa’]=S for every
aeS\{0}. Let 4 be a (0,2)-bi-ideal of S such
that 4 #{0}. Let a € 41{0}, then

S=(Sa’]c (SA4*]c A.
Therefore S = A. Since S =(Sa’]<(S*], we have
(S’]1=85#{0}.. Thus S is 0-(0,2)-bisimple. The

converse statement follows from Corollary 1.2.
Let R be aright ideal of 0 -(0,2) -bisimple S.

Then by Lemma 1.2, R is a (0,2)-bi-ideal of S
and so R={0} or R=S. Conversely, assume that
S is right O-simple. Let aeS1{0} , then
(Sa’1=S. Hence S is 0-(0,2) -bisimple.

Theorem 1.5. Let A be a 0 -minimal (0,2) -bi-
ideal of a unitary ordered AG -groupoid (S,-,<)
with zero. Then either (A°]=1{0} or A is right
0 -simple.

Proof. Assume that 4 is 0 -minimal (0,2) -bi-
ideal of S such that (4°]# {0}. Then by using Cor-
ollary 1.2, (Sa’]=A for every ae A\{0}. Since
a’ e A\{0} for every aecA\{0}, we have
a*=(a’) € A\{0} for every aeA\{0}. Let
a € A\{0}, then

((4a’1S-(4a’]]=(a’4-S(4a*)] =
=(((S-4a*))a* 1 < (S~ A)A)a’]
c ((44-8S)a* 1< ((S4°])-a’] < (4a’]),
and
(S(4a’1=(S(4a’]-(4a’])] =
=(S((a*4]-(a* AD] = (S(a’ (¢’ 4- A))] =
= ((aa)(S(a’4- )] = ((a*4- A)S)a’ ] <
c ((44-8S)a* 1 ((SA°]-a’]1 < (4a’],
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which shows that (4a’] is a (0,2) -bi-ideal of §
contained in 4. Hence (Aa’]={0} or (4a’]= A.
Since a'e(4a’] and a'eA41{0}, we get
(4a’]= A. Thus by using Theorem 1.2, 4 is right
0 -simple.

2 Ideals in intra-regular ordered AG -groupoid

Ideal theory plays a very important role in
studying and exploring the structural properties of
different algebraic structures. Here we study left
(right) ideals which usually allow us to characterize
an ordered AG -groupoid and play the role in an
ordered AG -groupoid which is played by normal
subgroups in ordered group theory and by ideals in
ordered ring theory.

Definition 2.1. An element a of an ordered
AG -groupoid (S,-,<) is called an intra-regular
element of S if there exist some x,y €S such that
a<xa’-y and S is called intra-regular if every
element of S is intra-regular or equivalently,
Ac (S47-S] for all AcS and ae(Sa*-S] for
all aeS.

Example 2.1. Let S ={a,b,c,d,e} be an or-
dered .AG -groupoid with the following multiplica-
tion table and order below.

<i={(a,a),(a,b),(c,c),(d,d),(e,e),(b,b)}.
By routine calculation, it is easy to verify that S is
intra-regular.

Definition 2.2. An ordered AG -groupoid
(S,-,2) is called left (resp. right) simple if it has no
proper left (resp. right) ideal and is called simple if
it has no proper ideal.

Theorem 2.1. The following conditions are equiva-
lent for a unitary ordered AG -groupoid (S,-,<):

(@) (aS]=S, for some aeS;

(i1) (Sa]=S, for some a € S,

(@ii) S is simple;

(iv) (AS]1=S=(S4], where A is any two-
sided ideal of S;

(v) S is intra-regular.

Proof. (i)= (ii): Let S be a unitary ordered
AG -groupoid and assume that (aS]=S holds for
some a € S. Since (aS] and (Sa] are the left ideals
of S, then (aS]=aS and (Sa]= Sa. Therefore

S =(SS]1=((aS]-S]1=(aS-S]=(SS-a]=(Sa].
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(@)=iii): Let S be a unitary ordered AG -grou-
poid such that (aS]1=S holds for some a € S. Sup-

pose that S is not left simple and let L be a proper
left ideal of S, then

(SLlcLcS=

=(SS]< (Sa-S]< ((SS-ea)S] =

= ((ae-SS)S] < ((ae-S)(SS)] =

= ((Se-a)(SS)] = ((SS)(a-Se)] =

= (a(SS-Se)] < (aS],

implies that s/ <at for some a,s,t€S and /e L.
Since s/ € L, therefore at € L, but at € (aS]. Thus
(aS1c L and therefore we have S=(aS]cL,
which implies that S =L, which contradicts the
given assumption. Thus S is left simple and simi-
larly we can show that S is right simple, which
shows that S is simple.

(iii)= (iv): Let S be a simple unitary or-
dered AG -groupoid and let 4 be any two-sided
ideal of S, then A=S. Therefore, we have
(AS1=(SS]=(84].

(iv) = (v) : Let S be a unitary ordered AG -grou-
poid such that (4S]=S =(S4] holds for any two-
sided ideal 4 of S. Since (a’S] is two-sided ideal
of S such that (a’S-S]=S=(S-a’S]. Let aeS,
then

aeS=(a’S-S]c((aa-SS)S]=
= ((SS-aa)S]c (Sa* - S],
that is @ <(xa’)y for some x,yeS. Thus S is
intra-regular

(v)=(i): Let S be a unitary intra-regular or-
dered AG -groupoid. Let a €S, then there exist
x,y €S suchthat a <(xa*)y. Thus

a<(xa’)y=(ex-aa)y = (aa-ex)y
=(y-ex)(aa) =a((y-ex)a) € aS,
which shows that S < (Sa] and (Sa]lc S is obvi-
ous. Thus (Sa]=S holds for some a € S.

Corollary 2.1. The following conditions are
equivalent for any unitary ordered AG -groupoid

(S,,9):

(@) (aS]1=S, for some a€S;

@ii) (Sa]=S, for some a € S;

(iii) S is right simple;

(iv) (AS]=S=(S4], where A is any right
ideal of S,

) S is fully regular.

Corollary 2.2. If (S,-,<) is a unitary ordered

AG -groupoid, then the following conditions are
equivalent:
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@) (Sal=S, for some a€S;

(i1) (aS]1=S, for some a€S.

Corollary 2.3. If (S,-,<) is a unitary ordered
AG -groupoid, then (eS]=S=(Se] holds for
ec S, where e is a left identity of S.

Corollary 2.4. The following conditions are equi-
valent for any unitary ordered AG -groupoid (S,-,<):

(i) S isintra-regular;

(i1) (Sal=S = (aS] for some a €8S.

Definition 2.3. A left (resp. right) ideal A of
an ordered AG -groupoid (S,-,<) is called semi-

prime if a € A implies a* € A.
Lemma 2.1. The following conditions are equiva-
lent for a unitary ordered AG -groupoid (S,-,<):

(i) S is intra-regular;

(ii) Every right ideal of S is semiprime.

Proof. (i)=(ii): Let T be a right ideal of a
unitary intra-regular ordered .AG -groupoid S. For
ae S there exist x,y €S such that a < xa”-y. Let
a* T, then

a<(ex-a’)y=(a’*-xe)y=(y-xe)a’ =
=a’(xe-y)eTS (TS| T,

which implies that 7' is semiprime.

Now (ii)=>(i): Since(a’S] is a right ideal of
a unitary ordered .AG -groupoid S containing a’ so
a € (a’*S]. Thus

ae(a’S]c(a’-SS1=(S-a’S1c (SS-a’S]=
=(Sa*-55]c (Sa* - S].

Hence § is intra-regular.

Corollary 2.5. The following conditions are equi-
valent for any unitary ordered AG -groupoid (S,-,<):

(i) S is intra-regular;
(ii) every ideal of S is semiprime.

Theorem 2.2. The following conditions are
equivalent for a unitary ordered AG -groupoid

(S,,9):

(i) S is intra-regular;

(if) LNR < (LR] for every semiprime right
ideal R and every left ideal L of S,

(iii) LNRc(LR-L] for every semiprime
right ideal R and every left ideal L of S.

Proof. (i)= (iii): Let S be a unitary intra-
regular ordered AG -groupoid and L, R be any left

and right ideals of S respectively such that
keLNR. Then there exist x,yeS such that

k < xk*-y. Thus
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k< (x~kk)y:(k-xk)y =
= (k) < (- )) )k =
= (y(xk2 -xy))k = (xk2 -y(xy))k =
= (x(kk)- ¥ ())k =
= (k(xk)-y(xy))k e((R-SL)S)L = (RL-S)L =
=LS-RL=LR-SLcC LR L,

which implies that LNRc (LR-L]. Also by

Lemma 1.3, R is semiprime.
(iti)= (ii): Let R and L be the left and right

ideals of S respectively and R be semiprime, then
LNAR=RNLc(RL-R]c
c(RL-S1< (RL-SS1=(SS-LR]
=(L(SS-R)]=(L(RS-S)l< (L-(RS]1< (LR].

(if)= (i): Since ae(Sa], which is a left
ideal of S, and a’ €(a’S], which is a semiprime
right ideal of S, therefore by given assumption
a e (a’S]. Thus

a e (Sa]n(a’S1c ((Sal-(a*S1l< (Sa-a’S]c
c (SS-a*S]=(Sa*-SS]< (Sa’ - S].
Hence S is intra-regular.

Lemma 2.2. The following conditions are
equivalent for a unitary ordered AG -groupoid
(S,,5):

(i) S is intra-regular;

(ii) every left ideal of S is idempotent.

Proof. It is simple. We omit the proof.
Theorem 2.3. The following conditions are equi-
valent for a unitary ordered AG -groupoid (S,-,<):

(i) S is intra-regular;

(ii) A= ((SA)’), where A is any left ideal of S.

Proof. (i) = (ii): Let A be a left ideal of a
unitary intra-regular ordered .AG -groupoid, then
(SA]c 4 and by Lemma 1.3, ((S4)’]=(S4]c 4.
Now A= (A44] < (S4]=((S4)*], which implies that
A=((547)

(ii) = (i): Let 4 be a left ideal of S, then
A=((SA)’ 1< (A4°], which implies that 4 is idem-
potent and by using Lemma 1.3, S is intra-regular.
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