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Nonconservative Cascades in a Shell Model
of Turbulence

P.Frick, A. Shestakov

Developed turbulent flows in which the intervention of external forces is fundamentally
important at scales where the inertial range should exist are quite common. Then the cascade
processes are not conservative any more and, therefore, it is necessary to adequately describe
the external forces acting in the whole range of scales. If the work of these forces has a power
law scaling, then one can assume that the integral of motion changes and the preserving value
becomes a quadratic quantity, which includes the dependence on the scale. We develop this idea
within the framework of shell models of turbulence. We show that, in terms of nonconservative
cascades, one can describe various situations, including (as a particular case) the Obukhov –
Bolgiano scaling proposed for turbulence in a stratified medium and for helical turbulence with
a helicity injection distributed along the spectrum.
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1. Introduction

According to the fundamental hypothesis of A.N.Kolmogorov for turbulent flows of an
incompressible fluid at very high Reynolds numbers, an extended range of scales, called the
inertial range, exists. Neither external nor viscous forces affect the flow in the inertial range and
all dynamics (statistical properties) of turbulence are determined by the spectral energy flux,
which is equal to the dissipation rate of the kinetic energy [1]. The energy cascade in the inertial
range is conservative by definition — the absence of energy sources and sinks at these scales is
the basis of the ideas about small-scale turbulence, and Kolmogorov’s hypotheses, in fact, exhibit
the law of energy conservation in the Fourier space.
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The development of the theory of turbulence of an incompressible fluid (we will have in
mind only an incompressible fluid) has shown the exceptional role of conservation laws in the
behavior of developed turbulent flows [2, 3]. The second positively defined integral of motion, the
enstrophy, inherent in two-dimensional Euler equations, fundamentally changes the dynamics of
small-scale turbulence, leading to two inertial ranges, the inertial range of an inverse energy cas-
cade and the inertial range of a direct enstrophy cascade. It is interesting that, soon after finding
out the role of the second integral of motion in the dynamics of two-dimensional turbulence, the
second integral of motion, the helicity, was found for the “classical” three-dimensional turbulence
of incompressible fluid [4]. It turned out that ignoring this second integral of motion did not
prevent successful progress in understanding the dynamics of small-scale turbulence. This can
be explained by the fact that helicity is a quantity having an arbitrary sign and, in most real
flows, its average value is close to zero. However, the dynamics of essentially helical turbulence
remains a subject of research and discussion up to the present time [5, 6].

In more complex turbulent systems, additional integrals of motion enter the process. For
example, in the turbulent flow of conducting fluids, along with the total energy (kinetic energy
plus magnetic energy), the magnetic helicity and cross – helicity are the integrals of motion which
can significantly affect the cascade processes in the inertial range of scales [7].

In nature, there are developed turbulent flows in which the external forces act over a large
range of scales where the inertial range should exist. Then they produce an energy injection
distributed along the spectrum. The forces may be of different origin. In particular, the Coriolis
force (turbulence in a rotating medium) does not inject energy into the flow, but redistributes the
energy of pulsations, violating the isotropy of small-scale turbulence and changing the spectral
laws. An important and widely discussed example of turbulence with an impact on the flow in
a wide range of scales is the turbulence in a medium of inhomogeneous density, in which the
buoyancy force becomes important. The features of turbulence in a stably stratified medium,
in which the outflow of kinetic energy into potential energy can occur, were first considered in
the papers of A.M.Obukhov [8] and R.Bolgiano [9]. The suggested spectral laws are known as
the Obukhov –Bolgiano scaling; the question of the feasibility of this scaling still needs to be
answered [10, 11]. Many works have been devoted to the modeling of the Obukhov –Bolgiano
scaling, in which the key issue is an adequate description of the Archimedean forces at different
scales. More precisely, since statistical characteristics are of interest, the problem concerns the
correlation of velocity pulsations and temperature pulsations, because uncorrelated perturbations
perform no work on average [12].

Here, we restrict ourselves to considering cascade processes within the framework of shell
models, which are based on the conservation laws. The shell model approach (for a review, see,
e. g., [13]) uses the idea of sampling the spectral density E(k) by a series of variables Un, which
represent the kinetic energy in the vicinity of the corresponding wavenumbers kn = λn,

U2
n

2
=

kn+1∫
kn

E(k) dk, (1.1)

where λ is the shell thickness in the logarithmic scale. The shell model equations can be written as

U̇n =Wn(U, U)− νk2nUn + fn, (1.2)

where Wn is the nonlinear term, ν is the viscosity, and the last term fn describes any external
force. The main thing in constructing a particular model is the choice of the form of nonlinear
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terms which are responsible for the dynamics of the inertial range and, therefore, should provide
the conservation laws. The necessity of subjecting the structure of the nonlinear terms to the
requirements of the conservation laws was not questioned, because the cascade equations should
mimic in some way the initial Navier – Stokes equations. Modeling of any other forces (Coriolis,
Archimedes, Lorentz, etc.) was carried out by writing the corresponding forces fn on the right-
hand side of the equation.

In this paper, we propose to look at the problem from a slightly different point of view. If
the forces at some scale range affect the turbulent vortices, then this range is no longer inertial. If
the work of forces can be described by a power law (on scales), then we assume that the integral
of motion changes and the preserving value becomes a quadratic quantity, which includes the
dependence on the scale.

The scaling properties of a class of shell models, which preserved energy but had the second
integral of motion dependent continuously on a free parameter, were considered in [14]. That
second integral could be either like the generalized enstrophy (a positively determined quantity)
or like the generalized helicity (a quantity of arbitrary sign), and at certain parameter values
it corresponds to the ordinary enstrophy (a two-dimensional turbulence model) or the ordinary
helicity (a three-dimensional turbulence model), and in all other cases it is only of academic
interest.

In a certain sense, we follow a similar line of behavior, but consider a system that has only
one positively defined integral of motion, and a variation of the governing parameter leads to
the result that energy is not conserved. That is why we talk about nonconservative cascades.
We show that such a model can describe various situations, including (as a particular case) the
Obukhov –Bolgiano scaling, proposed for turbulence in a stratified medium. Next, we consider
a more complex system in which a second, sign-variable, integral of motion appears. Fixing the
first integral (i. e., accepting again the energy conservation), we address the inertial range, which
lost the conservatism for the second integral of motion of homogeneous isotropic turbulence, the
helicity. Using the proposed approach, we can describe the systems with a helicity injection
distributed along the spectrum, in which helicity effects become significant.

2. The Novikov – Desnianskii shell model and its generalizations

The Novikov –Desnianskii shell model was introduced for real variables Un and shell thick-
ness λ = 2 [15]. The corresponding nonlinear form in (1.2) reads

Wn(U, U) = kn(Un−1Un−1 − bUnUn+1) (2.1)

and includes one parameter b, which controls the conservation law, satisfied by the nonlinear term.
The requirement of conservation of the total energy of all shells E =

∑
n

U2
n
2 at all interactions

leads to the only possible value b = λ (we will not restrict ourselves to the value λ = 2). If
the enstrophy transfer (a quadratic quantity conserved in a two-dimensional flow) is modeled,
the requirement of enstrophy conservation Ω =

∑
n

k2nU
2
n

2 yields b = λ3. In the latter case, the

energy of the system is not conserved any more. Each value of b provides a power solution of
the form Un = U0k

α
n with α = − logλ b

3 . If the energy is conserved, this solution corresponds to
the Kolmogorov inertial range, i. e., E(k) ∼ k−5/3 and Un = U0k

−1/3
n , while, if the enstrophy

is conserved, the solution corresponds to the inertial range of enstrophy transfer, known in
2D turbulence, in which E(k) ∼ k−3 and Un = U0k

−1
n .
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Among the proposed generalizations of the Novikov –Desnianskii model, two are funda-
mental. First, an additional pair of terms, symmetric with respect to the shell number n, has
been introduced in (2.1) to allow the inverse spectral flux [16]. Second, complex variables Un
were considered [17], which double the number of degrees of freedom and result in an addi-
tional integral of motion, which at b = λ is H = i

∑
n
kn

(U∗
n)

2−U2
n

4 and has the dimensionality

of helicity (m/s2). This “helical” model has been successfully used subsequently to model the
helical turbulence [18, 19]. We write the nonlinear term (2.1) for complex variables in the general
form [18]

Wn(U, U) = ikn

[
U2
n−1 +

(
U∗
n−1

)2
+ λU∗

n

(
Un+1 − U∗

n+1

)
− λ2Un

(
Un+1 + U∗

n+1

)]
−

− gikn

[
Un

(
Un−1 + U∗

n−1

)
+ λU∗

n

(
U∗
n−1 − Un−1

)
− λ2

(
U2
n+1 +

(
U∗
n+1

)2)]
, (2.2)

where g is a free parameter responsible for the contribution of the inverse cascade. The parameter
does not affect the integrals of motion and we will restrict ourselves to the popular choice g =
= λ−5/2 [20].

3. Nonconservative energy cascade

Let us consider the simplest nonlinear form (2.1) for the real variables Un and introduce
a quadratic quantity with a free parameter β

Q =
∑
n

kβn
U2
n

2
, (3.1)

for which we write the condition of its conservation at zero viscosity and absence of external
forces:

Q̇ =
∑
n

kβnUnWn(U, U) = 0. (3.2)

Substituting (2.1) into (3.2) yields that Q is a conserved quantity if

b = λβ+1, i. e. β = logλ b− 1. (3.3)

Then the exponent in the solution Un = U0k
α
n is related to the exponent in Q as α = −β+1

3 .
The value β = 0

(
b = λ , α = −1

3

)
provides the energy conservation (Q = E) and gives the

Kolmogorov spectrum, while β = 2 (b = λ3, α = −1) leads to enstrophy conservation (Q = Ω)
and the spectrum corresponding to the inertial range of enstrophy transfer.

The spectral flux of Q is defined as

ΠQn =

n∑
m=0

kβmUmU̇m = U3
0λ

−2α. (3.4)

If β �= 0 the spectral flux of energy depends on the wavenumber and is

ΠEn =
n∑

m=0

UmU̇m = U3
0 k

1+3α
n λ−2α. (3.5)
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The value β = −1 (b = 1, α = 0) corresponds to the energy equipartition over the shells(
E(k) ∼ k−1

)
, which can be maintained only by the energy flux increasing with wavenum-

ber (ΠE ∼ k). Note that β > 0 corresponds to the energy sink increasing with the wavenumber,
and β < 0 corresponds to the energy input increasing with the wavenumber. Numerical simu-
lations of Eqs. (1.2) and (2.1) show that the solution Un = U0k

α
n is stable for any positive U0

and β � −1.
Returning to the Obukhov –Bolgiano problem, we recall that the Obukhov –Bolgiano scal-

ing E(k) ∼ k−11/5, ET (k) ∼ k−7/5 is suggested for the turbulence in stably stratified media
and arises under two hypotheses: the hypothesis of a stable energy outflow due to buoyancy
forces (in the language of conservative models this means a strict anticorrelation of velocity and
temperature fluctuations) and the hypothesis of a constant spectral flux of energy of tempera-
ture fluctuations. The last hypothesis implies that, within the framework of shell models, the
equation for the variables Tn characterizing temperature fluctuations at the corresponding scales
must be written in such a way as to ensure that the quantity ET =

∑
n

T 2
n
2 is conserved in the

absence of diffusivity. In our approach, we no longer need the first hypothesis, but we accept the
second and write the shell equation for temperature fluctuations as

Ṫn =Wn(U, T )− χk2nTn, (3.6)

where χ is the thermal diffusivity and W has the form of (2.1) with b = λ, which provides the
conservation of ET .

The Obukhov –Bolgiano scaling presumes that the shell energy scales as EVn ∼ k
−6/5
n

and ETn ∼ k
−2/5
n . Then Un ∼ k

−3/5
n , Tn ∼ k

−1/5
n and the work done by the buoyancy forces

decreases with scale as UnTn ∼ k
−4/5
n and at some scale kB , called the Bolgiano scale, becomes

smaller than Kolmogorov’s spectral flux, provided by the energy dissipation rate. In the frame-
work of the approach considered, the Bolgiano scale, where the Obukhov –Bolgiano scaling is
replaced by the Kolmogorov law E(k) ∼ ET (k) ∼ k−5/3, corresponds to a change in the integral
of motion, that is, at scale kB , the β = 4

5

(
b = λ9/5

)
should be replaced by β = 0 (b = λ). An

example of the solution of the system (1.2), (3.6) with such a distribution of the parameter b is
shown in Fig. 1.

This numerical solution confirms the existence of a stable power-law solution Un ∼ kαn
in both ranges of scales

(
α = −3

5 at k < kB and α = −1
3 at k > kB

)
. The distribution of

temperature variables Tn strictly follows the Kolmogorow law at k > kB , but has some sawtooth
perturbation in the Obukhov –Bolgiano part of the spectrum.

4. Complex variables. Nonconservative helicity cascade

Let us turn to the general form of the Novikov –Desnyanskii model for complex vari-
ables Un = An + iBn and write the nonlinear form (2.2) with unspecified coefficients b and c

Wn(U, U) = ikn

{[
U2
n−1 +

(
U∗
n−1

)2
+ bU∗

n

(
Un+1 − U∗

n+1

)
− cUn

(
Un+1 + U∗

n+1

)]
−

−g
[
Un

(
Un−1 + U∗

n−1

)
+ b1U

∗
n

(
U∗
n−1 − Un−1

)
− c1

(
U2
n+1 +

(
U∗
n+1

)2)]}
. (4.1)

Note that the model (4.1), like the original model (2.1), belongs (according to the classifica-
tion of review [13]) to the L1 (local, first-neighbor) models, which means that only combinations
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Fig. 1. Shell energy EV
n and ET

n , compensated by the Kolmogorov scaling (Kolmogorov’s law meets
a horizontal line), for the buoyancy affected turbulence with a change of the conservation law at scale kB =
= 30. The Obukhov – Bolgiano scaling is traced by the dashed (velocity) and dashed-dot (temperature)
lines

of two neighboring variables (n− 1 and n, or n and n+ 1) are used in the nonlinear form. This
imposes severe restrictions on the possible pair of integrals of motion that can be considered
within the model. In the model (4.1) two conserved quantities are allowed: one is a quadratic
quantity of the form (3.1), and the other (let us call it a generalized helicity) is

S = i
∑
n

kγn
(U∗

n)
2 − U2

n

4
=

∑
n

kγnAnBn, (4.2)

which characterizes the coherence (correlation in stochastic modes) of the real and imaginary
parts of the shell variables and includes a free parameter γ. It is important to note that such
a model cannot require simultaneous conservation of energy and enstrophy (no model for two-
dimensional turbulence can be constructed), as it can be done in L2-type (local and two-first-
neighbor) models, in which the interactions of three neighboring variables (n − 1, n and n+ 1)
are considered [14, 21].

The choice of power indices β and γ in integrals (3.1) and (4.2) determines the values of
parameters b, b1, c and c1

b = λβ+1, b1 = λγ−β, c = c1 = λγ+1. (4.3)

The expression for b, as one would expect, coincides with (3.3), and the expression for c at γ =
= 1 gives the dimensionality of the hydrodynamic helicity and leads the nonlinear term to the
form (2.2).

Finally, in terms of the real and imaginary parts of the variables, the shell equations read

Ȧn = 2kn

[
λγ+1BnAn+1 − λβ+1AnBn+1 + g

(
An−1Bn − λγ−βBn−1An

)]
, (4.4)

Ḃn = 2kn

[(
A2
n−1 −B2

n−1

)
+ λβ+1BnBn+1 − λγ+1AnAn+1+

+g
(
−An−1An + λγ−βBn−1Bn + λγ+1

(
A2
n+1 −B2

n+1

))]
. (4.5)
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Fig. 2. Simulated energy spectra for the complex shell model for Re = 106 and different values of the
parameter β

The spectral fluxes of quadratic quantities Q and S are

ΠQ = 2kβ+1
n

[(
A2
n−1 −B2

n−1

)
Bn + gb1

(
B2
n −A2

n

)
Bn−1

]
, (4.6)

ΠS = 2kγ+1
n

[
An

(
A2
n−1 −B2

n−1

)
+ gAn−1

(
B2
n −A2

n

)]
. (4.7)

Already the first numerical simulations based on the models like (2.2) showed that changing
to complex variables leads to the chaotization of numerical solutions [20]. Our simulations of
Eqs. (4.4) – (4.5) confirmed that no stable solution exists for any of the parameters considered.
Scaling laws for the statistical moments of different orders can be determined by averaging over
long numerical realizations. Thus, the power law for the kinetic energy distribution has the
form

〈
|Un|2

〉
∼ kζn, and the relation 2α = ζ is satisfied only approximately (the scaling laws for

statistical moments of different orders were studied in detail for a class of shell models in [14]).
Note also that the same power laws |An|, |Bn| ∼ kαn are observed for the real and imaginary
components of Un under all modes considered.

First, we have fixed γ = 1 and analyzed the numerical solutions of (4.4) – (4.5) for different
values of the parameter β. Then the second integral S corresponds to the helicity, S = H =
=

∑
n
knAnBn, and the value of the first one depends on β. For all β considered, the numerical

solutions are statistically stable, displaying the pronounced power laws if the averaging time was
long enough (the typical time of averaging was above 1000 dimensionless units). An example of
the averaged spectra for some β is given in Fig. 2. The spectra in the figure are compensated
by the Kolmogorov law

(
En ∼ k

−2/3
n

)
, and thus the horizontal part of the spectrum, revealed

for β = 0, corresponds to the classical inertial range of energy cascade. At β = 4
5 , the Obukhov –

Bolgiano scaling is established in the whole range of scales up to the dissipation scales, because
no Bolgiano scale is introduced. The third example is shown for β = 2 that corresponds to
enstrophy conservation and provides the spectrum En ∼ k−2

n (in terms of the spectral power
density, it means E(k) ∼ k−3). We note that β > 0 implies that the output of energy increases
with k.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2023, 19(3), 321–331



328 P. Frick, A. Shestakov

Secondly, we have fixed β = 0 and analyzed the numerical solutions of (4.4) – (4.5) at
different values of the parameter γ. Thus, we restore the energy conservation and analyze the
cascades under a power – law input of helicity.

The weak influence of helicity on the cascade processes in the inertial range is explained by
the fact that the spectral helicity density is related to the spectral energy density as |H(k)| �
� kE(k). This means that any energy transfer to larger wavenumbers (smaller scales) is ac-
companied by a decrease in the relative level of helicity H(k)

2kE(k) , which determines the fraction of
energy attributable to helical motions. That is why a “fully helical cascade” is possible only if
the helicity is injected into the inertial range with an injection rate linearly growing with k [19].

Figure 3 presents the results of simulations with a moderate helicity injection, namely,
with γ = 0.5 (the injection rate increases with wavenumber as

√
k). Then the kinetic energy

follows the Kolmogorov law, but the helicity deviates from it, decreasing with wave numbers
like Hn ∼ k

−1/3
n . The relative helicity, shown in the right panel of the same figure, decreases fast

enough at the large-scales part of the spectrum.

Fig. 3. Simulated energy and helicity spectra by the complex shell model for Re = 105, β = 0, γ = 0.5.
Energy and helicity spectra (left) and relative helicity (right)

The “fully helical cascade” corresponds in our model to γ = 0, which directly implies the
conservation of relative helicity along the spectrum (because S =

∑
AnBn). We have tried to

implement this scenario in our model, but we have seen that the numerical solution blows up
at γ = 0. However, a small γ is possible and then the spectrum approaches the spectrum obtained
under increasing helicity input [19]. Figure 4 gives the results of the numerical solution for β = 0,
γ = 0.015 which provides the distributions close to En ∼ k

−2/3
n , Hn ∼ k

1/3
n . This means that

the energy follows the Kolmogorov law E(k) ∼ k−5/3, while the helicity H(k) ∼ k−2/3, and the
relative helicity really remains constant along the spectrum (the right panel of Fig. 4).

A constant level of relative helicity along the spectrum can be realized in another way. One
can consider the combination β = 1, γ = 1, which implies the conservation of helicity, but the
output of energy increases with wavenumber. The results of simulations for this combination
of parameters is shown in Fig. 5. It is seen that the shell energy En and the normalized he-
licity Hn

kn
indeed follow the same law, but the decrease of shell energy with the shell number is

faster En ∼ Hn
kn

∼ k
−4/3
n . These distributions correspond to the spectral densities E(k) ∼ k−7/3,

H(k) ∼ k−4/3, which were suggested for the helical turbulence under the assumption of a direct
cascade of helicity and an inverse cascade of energy [22].
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Fig. 4. Results of numerical simulations by the complex shell model for Re = 106, β = 0, γ = 0.015.
Energy and helicity spectra (left) and relative helicity (right)

Fig. 5. Simulated energy and helicity spectra by the complex shell model for Re = 105, β = 1.0, γ = 1.0.
Energy and helicity spectra (left) and relative helicity (right)

5. Conclusions

We have considered a class of nonconservative shell models of fully developed turbulence in
which the conserved quantities are the generalized energy and helicity

Q =

∫
kβE(k) dk, S =

∫
kγ−1H(k) dk,

where E(k) and H(k) are the spectral densities of energy and helicity. The cascade process
described by such a model at β �= 0 and γ �= 1 ceases to be conservative with respect to the known
integrals of motion, energy E =

∫
E(k) dk and helicity H =

∫
H(k) dk. This approach makes

sense when describing cascade processes in turbulence with distributed (along the spectrum)
injection of the corresponding quantity. In terms of the model, this means that it is not necessary
to describe the source of the corresponding quantity as a separate term, since it is actually
included in the nonlinear interactions.

The proposed model allows considering any power law for distributed energy injection, in
particular, it reproduces the Obukhov –Bolgiano scaling [8, 9] widely discussed in the context
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of turbulence in stratified media. Under energy conservation, the spectral distributed helicity
injection provides the entire set of solutions predicted for helicity-governed cascades [19].

In general, the proposed approach allows us to consider in a new way the modeling of
turbulent flows accompanied by the injection of various quadratic (usually conserved) quantities
over a wide range of scales. So, we note that a wide set of problems of nonconservative cascades
is provided by the MHD turbulence, which is characterized by the presence of three conservation
laws (total energy, cross-helicity and magnetic helicity). However, a simple enumeration of
possible cases does not seem to be productive and first a physically interesting situation should
be found which can be studied using this approach.
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