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Nonlinear Control of Tether Retrieval in an Elliptical
Orbit

A. S. Ledkov, R. S. Pikalov

Tether retrieval is an important stage in many projects using space tether systems. It is
known that uniform retrieval is an unstable process that leads to the winding of the tether on
a satellite at the final stage of retraction. This is a serious obstacle to the practical application
of space tethers in the tasks of climbing payloads to a satellite and docking the spacecraft with
a tethered satellite after its capture. The paper investigates the plane motion of a space tether
system with a massless tether of variable length in an elliptical orbit. A new control law that
ensures the retrieval of the tether without increasing the amplitude of oscillations at the final
stage is proposed. The asymptotic stability of the space tether system’s controlled motion in an
elliptical orbit is proved. A numerical analysis of tether retrieval is carried out. The influence of
the eccentricity of the orbit on the retrieval process is investigated. The results of the work can
be useful in preparing missions of the active space debris removal and in performing operations
involving tether retrieval.

Keywords: space tether system, retrieval, nonlinear, control law, tether

1. Introduction

Space tether systems can be used to solve a wide class of problems of modern and future
astronautics. They are able to take astronautics to a new level by solving a number of important
practical tasks: reentry payloads from space station, creation of artificial gravitation, control of
the joint motion of connected objects, changing orbits and implementation of transport oper-
ations, capture and removal of space debris objects, extractions of minerals and exploration of
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asteroids, planetoids and satellites [1, 2]. Many projects of tethered space systems involve the
use of a variable length tether. In particular, the task of reentry payloads from a space station
assumes that there is a space tether system in orbit [3, 4]. The payload is docked to the lower
tip of the tether, after that the tether is retrieved into the satellite. This scheme of transporta-
tion saves fuel [5]. The space debris removal is another important task, where a variable-length
tether can be used. One of the possible schemes involves the tether capture of space debris, after
which the tether is retracted and provides a safe docking of the spacecraft with the space debris
object [6]. After docking, the spacecraft and space debris move as a single unit. The tethered
capture can be carried out using a probe-cone device [7], telescopic robotic arm [8], harpoon [9]
or space net [10].

Instability of tether oscillations is the main difficulty in implementing the tether retrieval
process. When the tether is retracted at a constant speed, the tether is wound onto the satellite,
which can lead to satellite breakdown, tether rupture and collision of the satellite with a sub-
satellite attached to the tether. The issue of developing tether control laws and methods for safe
and efficient retraction is an urgent task that requires a detailed study and solution. A large
number of studies are concerned with this problem. Ref. [3] provides an overview of existing
research devoted to modeling and analyzing the dynamics of space tether systems in the deploy-
ment and retrieval mode, as well as various laws and methods of controlling the space tether
system in these motion modes. A detailed overview of control laws for tethered systems is also
given in [4]. The use of additional engines on a tethered subsatellite greatly simplifies the task.
Combined control schemes based on the control of the tether retrieval velocity and the engines
thrust are proposed in [11–13]. Special attention is given in the literature to retrieving the tether
by controlling the tension force, retraction velocity, or length of the tether.

In [14] and [15], a law of tether retrieval based on the calculation of the “mission function”
is proposed. The application of linear laws of tension force control is considered in [16] and [17].
In [18], a family of tether length control laws is considered, for which analytical solutions are
obtained for the angles of deviation of the tether from the local vertical and from the plane of
the orbit. The results of the study are developed in [19]. The fractional order control theory was
used in [20] to develop a fast and stable law of tether retraction.

In [21], the relay law of tether retraction is considered, when the folding mechanism can
provide either zero or constant tether retraction velocity. In [22], a three-parameter law for
controlling the tension force of the tether is developed. This control law ensures the retrac-
tion of the tether without rotating the system at the final stage. It is shown that, in contrast
to deployment, where stable motion can be provided by a two-parameter control law (for ex-
ample, [23]), a three-parameter control law of the tether tension force is necessary for stable
retraction. A trigonometric law in the form of a power series satisfying boundary conditions
for controlling the length of the tether is considered in [24]. Ref. [25] discusses the use of the
feedback control law of the tether tension force. The control law is used for simulating the
processes of tether deployment and retraction in the case of a circular orbit using a hinge-rod
model of the tether, taking into account the influence of the atmosphere. An alternative law
of the tether tension force is proposed in [26], where the retrieving process is divided into two
stages. In [27], an original control scheme based on the calculation of the energy of the tether
system is proposed, which provides stabilization of the angular oscillations of the tether during
retrieval. The asymptotic stability of the control law is proved using the Lyapunov function and
LaSalle’s invariance principle. In [28], the tether tension control law is proposed. The asymptotic
stability is proved using the Lyapunov theory. An alternative law for the case of spatial motion is
proposed in [29]. In [30], a law of tether deployment and retrieval based on the full-order sliding
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mode tension control scheme is developed, taking into account the requirement of positivity for
the tether tension force. The control law for the deployment and retraction of the tether based
on the calculation of the energy of the system is proposed in [31].

Many researchers have tried to develop optimal control laws for tether retrieval using various
approaches and optimality criteria. In [32–36], optimal trajectories of motion of the subsatellite
during tether retrieval processes are constructed while solving various tasks: minimum tension
force [33], performance [34, 35] or damping of tether oscillations in the plane of a circular or-
bit [36]. Nonlinear receding horizon control was developed in [37] for the case of deploying and
retracting a tether system. The proposed algorithm overcomes numerical difficulties associated
with the tendency to infinity of the penalty function.

All the results described above were obtained for the partial case of a circular orbit, which is
quite rare in practice. The behavior of a space tether system in an elliptical orbit is much more
complex. There is a possibility of occurrence of resonances and chaotic modes of motion [41].
The dynamics of the controlled motion of a space tether system in a Keplerian orbit is studied
in [42]. Ref. [40] is devoted to the study of the dynamics of a space tether system of variable
length in an elliptical orbit, where the exponential law of change in the tether length is used
and an analysis of the topology of the phase space of the dumbbell tether model is carried out.
Sliding mode control is used in [43] to perform tether deployment in low-eccentricity orbits. The
optimal trajectories for the deployment and retrieval of a space tether system in an elliptical
orbit are obtained in [38]. The study [39] analyzes the impact of perturbing factors of the space
environment for a variable length tether mission.

An analysis of the literature has shown that the issue of developing control laws for tether
retrieval is quite well developed for the case of a circular orbit, but for an elliptical orbit it is
poorly studied. The aim of this study is to develop a control law that ensures the retrieval of the
space tether system without increasing the angle of the tether deviation from the local vertical
at the final stage of the tether retraction process in the case of the system motion in an elliptical
orbit.

2. Mathematical model

2.1. Equations of motion

Consider a mechanical system shown in Fig. 1. In this study it is assumed that the tether is
an elastic and weightless rod. The satellite and the subsatellite are considered as material points
connected by a tether. It is assumed that the tether system oscillates in the plane of the orbit.

Fig. 1. Scheme of the system and generalized coordinates
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The motion of the system can be described by the following generalized coordinates: θ is the
angle of declination of a tether from the tangent to the orbit of the center of mass of a tethered
system, and the relative tether length Λ = l

l0
, where l is the tether length and l0 is the initial

tether length. A detailed description of how the equations are obtained is given in [38]. Let
us use Eqs. (27) and (29) from [38] under the following assumptions: the tether’s out-of-plane
deflection angle is zero (ϕ ≡ 0), the mass of the tether is negligible compared to the mass of the
bodies connected by it (mt = 0), and motion occurs only under the influence of gravitational
forces (Θθ = 0). In this case the equation of motion can be written as

θ′′ = 2(θ′ + 1)

[
e sin ν

κ
− Λ′

Λ

]
− 3

κ
sin θ cos θ, (2.1)

Λ′′ =
2e sin ν

κ
Λ′ + Λ

[
(θ′ + 1)2 +

1

κ

(
3 cos2 θ − 1

)]− Tmp3

m1m2l0μκ
4
. (2.2)

where κ = 1 + e cos ν, Lr is the length of the unreformed tether, T is the tether tension force,
ν is the orbit true anomaly, μ is the gravitational parameter of the Earth, p is the semi-latus
rectum, e is the orbit eccentricity, and ()′ = d

dν .

2.2. The law of control

To find the control law for the tether length, which ensures the tether retraction at a constant
angle θ, let us introduce the control parameter

u =
Λ′

Λ
(2.3)

and substitute it, as well as the expression θ′ = 0, θ′′ = 0, into Eq. (2.1)

0 = 2

[
e sin ν

κ
− u

]
− 3

κ
sin θ cos θ.

Expressing u gives

u =
e sin ν

1 + e cos v
− 3 sin 2θ

4(1 + e cos v)
. (2.4)

Substituting (2.4) into (2.3) allows us to write the control law for tether retraction velocity,
which provides a constant angle θ

Λ′ =
1

1 + e cos v

(
e sin ν − 3

4
sin 2θ

)
Λ. (2.5)

Obviously, the minimum negative value of Λ′ , corresponding to the fastest retraction of the
tether, is reached when θ∗ =

π
4 .

In order to transfer the tether system from the initial position θ0, θ
′
0 to the angular posi-

tion θ∗ =
π
4 , θ′∗ = 0 corresponding to the fastest retraction, the feedback control terms are added

in (2.4)

u =
e sin ν

1 + e cos v
− 3 sin 2θ

4(1 + e cos v)
+
k1θ

′

2
+
k2
2
(θ − θ∗) +

3θ′

4(1 + e cos v)
, (2.6)

where k1 and k2 are the control coefficients. As the angular position θ∗ =
π
4 , θ′∗ = 0 is reached, the

influence of the third and fourth terms in expression (2.6) decreases, and the retrieval proceeds
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according to a law close to (2.5). The addition term 3θ′
4(1+e cos v) is also added to the control law.

The presence of this term greatly simplifies the subsequent analysis of the stability of the system
motion.

Substituting (2.6) into (2.1) taking into account (2.3) gives a system of equations describing
the controlled motion of the considered tethered system

θ′′ = 2(θ′ + 1)

[
3 sin 2θ

4(1 + e cos v)
−
(
k1
2

+
3

4(1 + e cos v)

)
θ′ − k2

2
(θ − θ∗)

]
− 3 sin θ cos θ

1 + e cos v
, (2.7)

Λ′ =
(

e sin ν

1 + e cos v
− 3

4(1 + e cos v)
sin 2θ +

(
k1
2

+
3

4(1 + e cos v)

)
θ′ +

k2
2
(θ − θ∗)

)
Λ. (2.8)

This system of equations (2.7), (2.8) belongs to the class of nonlinear systems of differential
equations with periodic coefficients. In the next section it will be proved that the equilibrium
position θ = θ∗ =

π
4 , θ′ = 0, Λ = 0 is asymptotically stable.

The system obtained describes the motion of two material points connected by an elastic
massless rod. This means that a situation is possible where the tension force in the rod becomes
negative as a result of using the control (2.6). In the case of a tether system, this will be expressed
in slacking of the tether, and Eqs. (2.7) and (2.8) will no longer correctly describe the motion of
the tether system. To control this situation, it is necessary to monitor the value of the tension
force, which can be expressed from Eq. (2.2)

T =

(
2e sin ν

κ
Λ′ + Λ

[
(θ′ + 1)2 +

1

κ

(
3 cos2 θ − 1

)]− Λ′′
)
m1m2l0μκ

4

mp3
. (2.9)

The second derivative Λ′′ included in this expression can be found by differentiating expres-
sion (2.8)

Λ′′ =
(

1

1 + e cos v

(
e sin ν − 3

4
sin 2θ

)
+

(
k1
2

+
3

4(1 + e cos v)

)
θ′ +

k2
2
(θ − θ∗)

)
Λ′+

+

[
1

1 + e cos v

(
e cos ν − 3

2
cos(2θ)θ′

)
+

1

(1 + e cos v)2

(
e2 sin2 ν − 3

4
e sin ν sin 2θ +

3

4
eθ′ sin ν

)
+

+

(
k1
2

+
3

4(1 + e cos ν)

)
θ′′ +

k2
2
θ′
]
Λ. (2.10)

Substituting (2.8) and (2.10) into (2.9) allows us to define the value of the tether tension
force T .

2.3. Study of the stability of controlled motion

To study the stability of periodic motions of a nonlinear system of equations with periodic
coefficients, one can use Lyapunov’s theorem on stability in the first approximation [44]. The
change of variables

x1 = Λ, x2 = θ − π

4
, x3 = θ′ (2.11)

allows us to rewrite the system (2.7)–(2.8) in the form

x′1 =
ex1 sin v

1 + e cos v
− 3x1 cos(2x2)

4(1 + e cos v)
+

(
k1
2

+
3

4(1 + e cos v)

)
x1x3 +

k2x1x2
2

,

x′2 = x3,

x′3 =
3x3(cos 2x2 − x3 − 1)

2(1 + e cos v)
− (x3 + 1)[k1x3 + k2x2].

(2.12)
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The right-hand side of the system of equations (2.12) can be expanded as the Maclaurin
series

x′1 =
(

4e sin v − 3

4(1 + e cos v)

)
x1 +X1(v, x1, x2, x3),

x′2 = x3,

x′3 = −k2x2 − k1x3 +X3(v, x1, x2, x3),

(2.13)

where the nonlinear part X1, X3 has the form

X1(v, x1, x2, x3)=

(
k1
2

+
3

4(1 + e cos v)

)
x1x3 +

k2x1x2
2

+
3x3

2(1 + e cos v)

∞∑
j=2

(−1)j−1(2x2)
2j−2

(2j − 2)!
,

X3(v, x1, x2, x3) =
3x3

2(1 + e cos v)

∞∑
j=2

(−1)j−1(2x2)
2j−2

(2j − 2)!
−
(
k1
2

+
3

4(1 + e cos v)

)
x23 − k2x2x3.

The presence of the last term in the control law (2.6) leads to the absence of the
term 3x3

2+2e cos v in the linear part of the equation x′3. The equations of the first approximation
have the form

x′1 =
(

4e sin v − 3

4(1 + e cos v)

)
x1,

x′2 = x3,

x′3 = −k2x2 − k1x3.

(2.14)

According to Lyapunov’s first approximation stability theorem for a system of nonlinear
equations with periodic coefficients, if all the roots of the characteristic equation of the first
approximation (2.14) have absolute values smaller than one, then the undisturbed motion is
asymptotically stable, and if there is at least one root with an absolute value greater than
one, then the undisturbed motion is unstable [44]. To apply this theorem, the existence of
a domain v > v0, |xi| < H, in which inequalities are satisfied |Xi(v, x1, x2, x3)| � A(|x1| +
+ |x2|+ |x3|) is necessary. If this condition is not met, the behavior of systems (2.15) and (2.14)
in the vicinity of the equilibrium position may differ qualitatively. For the considered system

of equations, taking into account that x1 < 1 and
∞∑
j=2

(−1)j−1(2x2)
2j−2

(2j−2)! = cos(2x2) − 1, it can be

written

|X1(v, x1, x2, x3)| �
(
k1
2

+
3

4(1 − e)

)
H2 +

k2H
2

2
= A1 = const,

|X3(v, x1, x2, x3)| �
3H

(1− e)
+

(
k1
2

+
3

4(1 − e)

)
H2 + k2H

2 = A2 = const.

(2.15)

These estimates are valid for the parameters k1 � 0, k2 � 0.
A fundamental system of solutions for Eqs. (2.14) is required to obtain the characteristic

equation. The system (2.14) can be integrated analytically:

x1 = −C1κ
−1 exp

(
3

2
√
κ
arctan

(
1− e√
1− e2

tan
v

2

))
, (2.16)

x2 = C2 exp(p1v) + C3 exp(p2v), (2.17)

x3 = C2p1 exp(p1v) + C3p2 exp(p2v), (2.18)
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where p1 =
−k1+

√
k21−4k2
2 , p2 =

−k1−
√

k21−4k2
2 . The solution has a gap at points v = 2πj + π,

where j ∈ Z. At these points, the tangent tends to infinity, and when v → (2πj + π) − 0 we
have tan v

2 → +∞ and arctan(∞) = π
2 , and when v → (2πj + π) + 0 we have tan v

2 → −∞
and arctan(−∞) = −π

2 . To get rid of the gap, let us multiply the solution (2.16) by the
coefficient f(v) and make it so that x1((2πj + π) − 0) = x2((2πj + π) + 0)f(v). This equality
holds if f(v) = exp

(
− 3π

2
√
1−e2

floor
(
v+π
2π

))
. Thus, the solution for x1 takes the form

x1 = −C1κ
−1 exp

(
− 3

2
√
κ

(
arctan

(
1− e√
1− e2

tan
v

2

)
+ π floor

(
v + π

2π

)))
. (2.19)

Taking into account (2.17)–(2.19), the matrix of the fundamental system of solutions can
be written in the form

Φ =

⎡
⎢⎢⎣
κ−1 exp

(
−3
2
√
κ

(
arctan

(
1−e√
1−e2

tan v
2

)
+ π floor

(
v+π
2π

)))
0 0

0 exp(p1v) exp(p2v)

0 p1 exp(p1v) p2 exp(p2v)

⎤
⎥⎥⎦.

(2.20)
Each column of this matrix Xi(v) represents a linearly independent solution of the system (2.14).
Since the coefficients on the right-hand sides of the system of equations are 2π-periodic functions,
it is possible to write the matrix equation Φ(v + 2π) = AΦ(v), which allows us to find the
matrix A = Φ(v+2π)Φ(v)−1. Then the characteristic equation corresponding to the period 2π
for a system of linear equations with periodic coefficients has the form [44]

D(ρ) = det(A− ρE) = 0, (2.21)

where E is the unit matrix and ρ is the root of the characteristic equation.
For the considered system of the first approximation, Eq. (2.21) gives the following roots of

the characteristic equation:

ρ1 = exp

(
−3

√
1− e2

2(1− e2)

)
, ρ2 = exp(2πp1), ρ3 = exp(2πp2). (2.22)

The root ρ1 < 1 for any of e < 1. Consider the remaining roots. In the case k2 � k21
4 , the

variables p1 and p2 are real numbers, and for the absolute values of the second and third roots
of the characteristic equation to be less than one, the following inequalities must be satisfied:

p1 =
−k1 +

√
k21 − 4k2
2

< 0, p2 =
−k1 −

√
k21 − 4k2
2

< 0. (2.23)

The first inequality holds in the area (k1 > 0, k2 > 0), and the second in the area
(
k1 > 0,

k2 �
k21
4

)
∪ (k1 � 0, k2 < 0). The intersection of these areas is

(
k1 > 0, 0 < k2 �

k21
4

)
.

In the case k2 >
k21
4 , the variables p1 and p2 are complex numbers, and p1,2 =

−k1
2 ±i

√
4k2−k21
2 .

In this case, the roots of the characteristic equation can be rewritten using Euler ’s formula:

ρ2,3 = exp(−πk1) exp
(
±iπ
√

4k2 − k21

)
=

= exp(−πk1)
(
cos

(
π
√

4k2 − k21

)
± i sin

(
π
√

4k2 − k21

))
,

the absolute value of these roots is |ρ2,3| = exp(−πk1). It is less than one when k1 > 0.
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Combining the case of complex and real roots, we find that |ρ2| < 1 and |ρ3| < 1 when k1 > 0,
k2 > 0. In this case, the controlled motion in an elliptical orbit is asymptotically stable.

3. Results of numerical simulations

To confirm the effectiveness of the proposed control law (2.6), let us conduct a series of
numerical simulations using the system of equations (2.7), (2.8). The parameters of the mechan-
ical system considered are specified in Table 1. At the initial time ν0 = 0 the system has the
following initial conditions:

θ0 = 0, θ′0 = 0, Λ0 = 1.

According to (2.3), these initial conditions correspond to the initial value of the relative tether
length derivative

Λ′
0 =

e sin ν0
1 + e cos v0

− k2θ∗
2
, (3.1)

and the initial velocity of the tether retraction can be calculated as

V0 =

√
μ

p3
(1 + e cos v0)

2Λ′
0L0. (3.2)

The value V0 = −0.5 m/s is taken as the initial velocity for a circular orbit case. The value of
the control coefficient k2 = 1.14861 corresponding to this initial velocity can be calculated using
expressions (3.1) and (3.2). It follows from (3.2) that the absolute value V0 grows with increasing
eccentricity at a fixed value of k2.

Table 1. Parameters of the system
Parameter Value

L0 — initial tether length 1000 m
m1 — mass of the satellite 800 kg
m2 — mass of the subsatellite 2000 kg
p — semi-latus rectum 687,100 m

To study the influence of the parameter k1 on the dynamics of the system, a series of
simulations using the system of equations (2.7)–(2.8) and the control law (2.6) for various k1
and eccentricities were carried out. Since the proposed control law provides asymptotic stability,
the target position L = 0 is achieved at infinite time. Numerical integration of systems of
equations (2.7)–(2.8) stopped when the tether reached a finite length Lk = 0.1 m. The angle
of the true anomaly corresponding to the completion of the calculation is denoted as νend. The
results of numerical calculations are presented in Figs. 2–7. The values Tmax and Tmin determine
the maximum and minimum value of the tether tension force during tether retrieval, respectively.
The values Vmax and Vmin determine the maximum and minimum value of the tether retraction
velocity. The values Λmax determine the maximum tether length.

Figure 2 shows that, at a small eccentricity, up to e = 0.3, the length of the tether does not
exceed the initial length Λ0 = 1. For orbits with a large eccentricity, the use of the control law
leads to the need for additional tether release (Fig. 14). The greater the eccentricity, the longer
the tether length is required to implement the control law.
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Fig. 2. Changing a parameter Λmax

Figures 3 and 4 demonstrate the maximum and minimum tension force of the tether, which
is observed during the tether retrieval operation. The formula (2.9) is used to calculate the
tension force. It can be seen from Fig. 3 that an increase in eccentricity leads to an increase in
the maximum tension force of the tether, but in all cases the force is quite small and will not
lead to tether rupture. An increase in the parameter k1 of the control law leads to a decrease
in the maximum tension force of the tether. According to Fig. 4, for all the considered cases of
eccentricities, the minimum tension force for some k1 may take negative values. These modes
of motion are physically unrealizable, since the negative tension force indicates that the tether
should push the subsatellite, working as a rod. In fact, when implementing such a control
law, the tether slacks. With the growth of k1 the “slacking” disappears for the case of orbits
with a small eccentricity. For eccentricities close to 1, for example, e = 0.9 in Fig. 5, slacking
cannot be avoided for the considered range of k1 values. Slacking is typical for the initial states
of controlled motion, when the tether is deployed (Fig. 14). The greater the eccentricity, the
greater the value k1 required for physically realizable control.

Fig. 3. Changing a parameter Tmax

It can be seen from Fig. 5 that, with the increase in eccentricity, the value νend decreases.
The dotted line marks the area of a physically unrealizable solution, where the tension force
takes negative values (Fig. 4). In other words, less time is required to carry out the operation of
the tether retrieval. An interesting feature can be observed: it can be seen from Fig. 8 that, with
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Fig. 4. Changing a parameter Tmin

Fig. 5. Changing a parameter νend

the increase in eccentricity, there is a tendency to reduce the final maneuver execution time. If
for eccentricity e = 0 we get νend ≈ 17 rad, then for e = 0.9 we get νend ≈ 9 rad. Changing the
same parameter k1 has little effect on νend.

Figure 6 shows that, with increasing eccentricity, the maximum tether retraction veloc-
ity Vmax also increases. The observed positive values indicate that there is a deployment of the
tether, and the tether slacking can be observed (it will be shown below for a particular calcu-
lation). Note that the tether deployment is typical for eccentricities e > 0.3. The zero value
of Vmax for eccentricities 0 � e � 0.3 indicates that, in these modes, slacking does not occur,
but there are moments when the tether is not retrieved and is not deployed. Increasing the
parameter k1 leads to a decrease in the maximum velocity Vmax.

Figure 7 shows that changing the parameter k1 does not have any effect on the value Vmin.
With the increase in eccentricity, there is an increase in the minimum tether retractive veloc-
ity Vmin. This confirms the results shown in Fig. 5, which demonstrate a tendency to a decrease
in the maneuver time with an increase in e. The large negative velocity of retraction allows the
maneuver to be implemented faster.

Let us investigate how the change in the coefficient k2 affects the motion of the space tether
system. To do this, a similar series of calculations were performed by varying the coefficient k2,
at a fixed value of k1 = 0.8. The results are presented in Figs. 8–13. Figure 8 shows that an
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Fig. 6. Changing a parameter Vmax

Fig. 7. Changing a parameter Vmin

Fig. 8. Changing a parameter Λmax

increase in the parameter k2 leads to a decrease in the maximum length of the tether. Starting
from the value k2 ≈ 1, the changes are no longer so significant, and are asymptotic in nature.
Here we see a similar trend, there is a need for additional tether deployment with the growth
of e to use the control law (2.6).
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Figures 9 and 10 demonstrate the maximum and minimum tension force of the tether.
Figure 9 shows a trend similar to that seen in Fig. 3. With an increase in eccentricity, the
maximum tension force also increases, but at the same time its values will not lead to a break
in the tether due to the small value. For example, an average steel tether with a diameter
of 2 millimeters has a breaking force near 2000 N. An increase in k2, for large eccentricities, first
leads to a decrease in Tmax; after the values of k2 ≈ 1.3, on the contrary, it increases slightly.
For small eccentricities, the picture is generally similar, but the changes are not so significant.
For Tmin, in the range of variation k2 from 0.45 to 1.65, there is a zero value corresponding to
the slacking of the tether. For eccentricity e = 0.9, when 0.1 � k2 � 0.45, negative values of the
tension force are observed, which are not physically realized. A similar pattern is observed for
all the eccentricities considered, starting from k2 ≈ 1.7, where there is a sharp departure of the
tension force into the region of negative values. This shows that after the value k2 the control
law cannot be implemented.

Fig. 9. Changing a parameter Tmax

Fig. 10. Changing a parameter Tmin

Figure 11 demonstrates a picture similar to Fig. 5. With an increase in eccentricity the
value of νend decreases. An increase in the k2 coefficient leads to a decrease in the νend value.

Figures 12 and 13 demonstrate the maximum and minimum tether retraction velocity ob-
served during the retrieval process. A similar trend for Vmax and Vmin can be noted — an
increase in eccentricity leads to an increase in these values. An increase in the coefficient k2
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Fig. 11. Changing a parameter νend

Fig. 12. Changing a parameterVmax

Fig. 13. Changing a parameterVmin

leads to an increase in the values Vmax and Vmin to. The actual increase in the velocity limits
ensures a reduction in the final maneuver time (Fig. 11).

To demonstrate the process of controlled tether retrieval, let us perform a calculation for
various eccentricities by choosing fixed control parameters k1 = 0.8 and k2 = 1.14861. The
results are presented in Figs. 14–18.

It can be seen from Figs. 14–18 that the developed tether control law (2.6) provides the
tether retrieval without winding at the final stage. According to Fig. 16, the tether eventually
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Fig. 14. Changing a parameter Λ

Fig. 15. Changing a parameter V

Fig. 16. Changing a parameter θ

Fig. 17. Changing a parameter T (blue line e = 0, red — e = 0.1, green — e = 0.3, black — e = 0.6,
purple — e = 0.9)
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Fig. 18. Phase portrait θ(θ̇) (blue line e = 0, red — e = 0.1, green — e = 0.3, black — e = 0.6, purple —
e = 0.9)

occupies an angular position θ = π
4 . The fluctuations in the angle fade by the end of the

maneuver. From Fig. 14 it can be seen that, with large eccentricities, the tether first increases
its length and deployment occurs. After a while, the tether retraction begins. The tether retrieval
operation is successfully completed. From Figure 15 we can see that the tether retrieval velocity
monotonically approaches zero as the length of the tether decreases. For large eccentricities,
there is a change in the velocity sign. The tether is firstly retracted, then there is a change in
the velocity sign, and the deployment begins, then again retraction occurs. This behavior of
the tether explains the Λmax > 1 in Figs. 2 and 8 and the difference between the Vmin curves
for e = 0.6 and e = 0.9 in Figs. 6 and 12. It should be noted that the proposed law provides the
tether retrieval for different eccentricities. It is worth noting that, with large eccentricities, the
deployment of the tether is observed at the beginning of the maneuver. This is also confirmed
by Fig. 2, where the maximum length of the tether exceeds its initial value. However, this fact
does not affect the ability of the law to carry out a given maneuver. The deploying phase of the
tether begins to be observed for values e > 0.3. For smaller values of eccentricity, the nature
of the motion of the system is close to the case of a circular orbit. Figure 17 shows that an
increase in the tension force of the tether is observed at the beginning of the maneuver; further,
the magnitude of the tension force decreases to almost zero values. For eccentricities greater
than e = 0.6, a negative value of the tension force is observed, as shown in Figs. 4 and 10. In
particular, for e = 0.6 the minimum tension force is Tmin = −0.55412 mN, and for e = 0.9
the minimum tension force is Tmin = −1.2 mN. In this situation, the tether is slacking, which
indicates the impossibility of further use of the control law. From the phase portrait (Fig. 18),
the same behavior of the system’s phase trajectories is observed.

From Figures 14–18, it can be concluded that the proposed control allows the tether to
be retrieved both in circular and elliptical orbits with a large eccentricity. For highly elliptical
orbits, it will be necessary to lay a reserve of tether length, to ensure the initial deployment of
the tether, this reserve can be estimated from the results of numerical simulations. The main
factors influencing the choice of parameters of the control law are the initial velocity of the tether
retraction and the minimum tension force in the tether.

4. Conclusion

This study considers a variable length space tether system. A novel nonlinear tether length
control law that ensures the tether retraction in an elliptical orbit without the tether winding at
the final stage of the tether retrieval maneuver is proposed. The asymptotic stability of controlled
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motion in elliptical orbits is proved using the Lyapunov theory. The influence of the parameters
of the control law and the eccentricity of the orbit on the tether length and the tension force is
investigated by a series of numerical simulations. The results of numerical simulations confirm
that the control law obtained solves the problem of the tether retrieval in elliptical orbits.

Since the developed control law provides asymptotic stability of the motion, the tether
cannot be fully drawn into the satellite in finite time. In this regard, it is advisable to equip the
satellite with robot manipulators capable of capturing a tethered subsatellite at a short distance
from it. The results of this study can be applied in preparing the tether-assisted space debris
removal missions and in performing operations involving tether retrieval.
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