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Abstract. Nonlinear bijective transformations are crucial components
in the design of many symmetric ciphers. To construct permutations
having cryptographic properties close to the optimal ones is not a trivial
problem. We propose a new construction based on the well-known Lai –
Massey structure for generating binary permutations of dimension n = 2k,
k ⩾ 2. The main cores of our constructions are: the inversion in F2k , an
arbitrary k-bit non-bijective function (which has no preimage for 0) and
any k-bit permutation. Combining these components with the finite field
multiplication, we provide new 8-bit permutations with high values of its
basic cryptographic parameters. Also, we show that our approach may be
used for constructing 8-bit involutions and 8-bit orthomorphisms that have
strong cryptographic properties.
Keywords: S-Box, permutation, involution, orthomorphism

Построение 8-битовых подстановок, 8-битовых инволюций
и 8-битовых ортоморфизмов с почти оптимальными
криптографическими параметрами
Р. А. де ла Крус Хименес
Институт криптографии, Гаванский университет, Куба
Аннотация. Нелинейные биективные преобразования являются важ-
ным структурным элементом при синтезе современных шифрсистем.
Задача построения S-боксов с близкими к оптимальным значени-
ям криптографических параметров нетривиальна. Предлагается новая
конструкция для построения двоичных нелинейных биективных преоб-
разований размерностей n = 2k, k ⩾ 2, основанная на схеме Лаи – Мес-
си. Основные узлы предлагаемой конструкции — функция обращения
элемента в конечном поле F2k , k-битовое небиективное отображение без
прообраза для нулевого элемента поля F2k и произвольная k-битовая
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подстановка. Комбинация этих компонентов с операцией умножения
в конечном поле позволяет найти 8-битовые подстановки, 8-битовые
инволюции и 8-битовые ортоморфизмы, имеющие высокие значения
основных криптографических параметров.
Ключевые слова: S-бокс, подстановка, инволютивная подстановка,
ортоморфизм

Introduction

Modern block ciphers realize iterations of several rounds. Each round
(which should depend on the key) consists of a confusion layer and a dif-
fusion layer. The confusion layers are usually formed by local nonlinear
mappings (S-Boxes) while the diffusion layers are formed by global linear
mappings mixing the output of the different S-Boxes. Block ciphers may be
built using a well-known structure such as a Feistel network and its vari-
ants (see, e.g. [1]), a Substitution-Permutation network (SPN) [1], or a Lai
– Massey structure [48]. Cryptographic properties of S-boxes deal with the
application of several logical attacks on ciphers, namely, linear attack [27],
differential attack [27], higher order differential attack [30], and algebraic
attack [10] (which is not yet efficient but represents some threat and should
be keeped in mind by designers of next generation block ciphers). For this
reason S-boxes should satisfy various criteria for providing high level of
protection against such attacks.

Besides the linear, differential and algebraic attacks, today the most
prominent attacks on the cryptographic algorithms are based on supervi-
sion of physical processes in cryptographic device. In literature, this kind
of attack has received the name of side-channel attacks (SCAs). Examples
of such attacks are: Simple Power Analysis (SPA) [28], Differential Power
Analysis (DPA) [28], Timing Analysis (TA) [29] , Correlation Power Analy-
sis (CPA) [7], Mutual Information Attack (MIA)[15]. S-boxes represent the
most vulnerable part in an implementation when considering side-channel
adversary and it is not a trivial task to construct S-boxes having good
resistive properties for classical cryptanalysis as well as for side-channel
attacks.

The known methods for constructing S-boxes may be divided into four
main classes: algebraic constructions, pseudo-random generation, heuristic
techniques and constructions from small to large S-boxes. Each approach
has its advantages and disadvantages. In this paper we propose (using the
last approach) a new construction based on the Lai – Massey structure for
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generating ordinary permutations, involutions and orthomorphisms with
strong cryptographic properties and therefore study the resilience of such
construction against side-channel attacks in terms of its masking complex-
ity.

This paper is structured as follows. In Section 1 we give the basic defi-
nitions. In Section 2, we present our design criteria. In section 3 we present
a new class of permutations which may be used for constructing ordinary
S-boxes, involutions and orthomorphisms with high values of its basic cryp-
tographic parameters. In this section, we also derive some properties of the
suggested class of permutations. In Section 4 we give some examples of
8-bit S-boxes constructed by our approach. The masking complexity of our
S-boxes is estimated in Section 5. We conclude in Section 6.

1. Basic definitions and notation
Let Vn be n-dimensional vector space over the field F2 and V ∗

n = Vn\{0}.
By S(Vn) we denote the symmetric group on Vn. The finite field of size 2n is
denoted by F2n , where F2n=F2 [ξ]/g(ξ) for some irreducible polynomial g(ξ)
of degree n. We use the notation Z/2n for the ring of integers modulo 2n.
The set of all binary bijective linear maps Vn → Vn is denoted by GLn(F2).
Given a natural number l, throughout the article we shall use the following
operations and notation:
#A - cardinality of a set A,
⌊u⌋ - integer part of a real number u,
a∥b - concatenation of vectors a, b of Vl, i. e., a vector from V2l,
0 - the null vector of Vl,
⊕ - bitwise eXclusive-OR, i. e. addition in F2l ,
⟨a, b⟩ - the scalar product of vectors a = (a0, . . . , al−1), b = (b0, . . . , bl−1)

from Vl: ⟨a, b⟩ =
⊕l−1

i=0 aibi ∈ F2 ,
⊗ - finite field multiplication,
Λ ◦Ψ - a composition of mappings, where Ψ is the first to operate,
Ψ−1 - the inverse transformation for some bijective mapping Ψ,
χ(Φ1,Φ2) - the Hamming distance between Φ1,Φ2 ∈ S(Vl),
ord(a) - the multiplicative order of the element a ∈ F2l .

There are bijective mappings between Z/2n, Vn and F2n defined by the
correspondences

a0 + . . .+ an−1 · 2n−1 ↔ (a0, . . . , an−1) ↔
[
a0 ⊕ . . .⊕ an−1 ⊗ ξn−1

]
.

Using these mapping we make no difference between vectors of Vn and
the corresponding elements in Z/2n and F2n in what follows.
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92 R.A. de la Cruz Jiménez

We define the indicator function

Ind(x, y) =

 1, if x = y,

0, if x ̸= y.

Now, we introduce some basic concepts necessary to describe and analyze
S-boxes with respect to linear, differential, and algebraic attacks. For this
purpose, we consider an n-bit S-box Φ as a vector of Boolean functions:

Φ = (f0, . . . , fn−1), fi : Vn → V1, i = 0, 1, . . . , n− 1. (1)

For any fixed i ∈ {0, 1, . . . , n−1} the Boolean function fi may be written as
a sum over V1 of distinct t-order products of its arguments, 0 ⩽ t ⩽ n− 1;
this representation is called the algebraic normal form (in brief, ANF) of fi.
The degree of the ANF of a Boolean function f with n variables is called the
algebraic degree of f , is defined as the maximum order of terms appeared
in its ANF [8], and is denoted by dalg(f).

Functions fi written in (1) are called coordinate Boolean functions of the
S-box Φ. It is well known that many the desirable cryptographic properties
of Φ may be defined in terms of their linear combinations, also called S-box
component functions (see [8, p. 112]).

Definition 1 ([8]). For a, b ∈ Vn the Walsh transform WΦ(a, b) of an n-bit
S-box Φ is defined as

WΦ(a, b) =
∑
x∈Vn

(−1)⟨b,Φ(x)⟩⊕⟨a,x⟩. (2)

Definition 2 ([8]). The nonlinearity of an n-bit S-box Φ, denoted by
NL(Φ), is defined as

NL(Φ) = 2n−1 − 1

2
· max
b ̸=0,a∈Vn

|WΦ(a, b)|. (3)

From a cryptographic point of view S-boxes with small values of Walsh
coefficients offer better resistance against linear attacks [8].

Definition 3 ([5]). The differential uniformity (also called δ-uniformity)
of an n-bit S-box Φ, denoted by δΦ, is defined as

δΦ = max
a̸=0,b∈Vn

∆Φ(a, b), (4)

where
∆Φ(a, b)=#{x∈Vn|Φ(x⊕a)⊕Φ(x)=b}=

∑
x∈Vn Ind(Φ(x⊕a)⊕Φ(x), b).
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The resistance offered by an S-box against differential attacks is related
with the highest value of δ, for this reason S-boxes must have a small value
of δ-uniformity for a sufficient level of protection against this type of attacks
(see [5, 8]).

Definition 4 ([8]). The algebraic degree of an n-bit S-box Φ, denoted
by dalg(Φ), is defined as the maximal algebraic degree of the component
functions Φ, that is

dalg(Φ) = max
a̸=0∈Vn

dalg(⟨a,Φ(x)⟩). (5)

Definition 5 ([8]). The minimum algebraic degree (often called the min-
imum degree) of an n-bit S-box Φ, denoted by dmin(Φ), is defined as the
minimum algebraic degree of all the component functions, that is

dmin(Φ) = min
a̸=0∈Vn

dalg(⟨a,Φ(x)⟩). (6)

It is well-known that dmin(Φ) ⩽ dalg(Φ) for any permutation Φ ∈ S(Vn),
and these parameters are upper bounded by n − 1 (see [8]). In general,
S-boxes should have high values of dmin(·), dalg(·) because S-boxes with low
values of these parameters are susceptible to algebraic attack, higher-order
differential, interpolation, cube attacks, etc. (see [8, 12]).

Definition 6 ([8]). The univariate polynomial representation of an n-bit
S-box Φ over F2n is defined in a unique fashion as

Φ(X) =
2n−1∑
i=0

νiX
i, νi ∈ F2n , (7)

where coefficients νi, i = 0, . . . , 2n−1, may be obtained from the n-bit S-box
Φ by applying Lagrange’s Interpolation theorem (see, for example, [8]).

Definition 7 ([34]). For i > 0 the r(i)Φ parameter of an n-bit S-box Φ is
defined as

r
(i)
Φ = dimH

(i)
Φ , (8)

where

H
(i)
Φ =

{
p ∈ F2 [z1, . . . , z2n]

∣∣∣∀x ∈ Vn, p(x,Φ(x)) = 0, 0 < dalg(p) ⩽ i
}
.

Definition 8 ([34]). The rΦ-parameter of an n-bit S-box Φ is defined as

rΦ = min
{
i
∣∣∣r(i)Φ > 0

}
. (9)
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It is well-known that there exist certain methods of analysis of block
ciphers (see [10]) exploiting the existence of polynomial relations involv-
ing the input x to the S-box Φ and its output Φ(x). In order to increase
the strength of a block cipher against these methods we have to minimize
parameters r(i)Φ , i = rΦ, . . . , n, and maximize parameters dmin(Φ) и rΦ (see
[24,35,37]).

It should be pointed that in [8,43] the parameter rΦ (defined in a slightly
different way) is called graph algebraic immunity of Φ and is denoted by
AIgr(Φ) in these references.

Definition 9 ([25]). An element x ∈ Vn is called a fixed point of an n-bit
S-box Φ if Φ(x) = x.

We denote by FixP(Φ) the set of all fixed points of Φ, i. e., FixP(Φ) =
{x ∈ Vn | Φ(x) = x}.

Definition 10 ([24]). Two n-bit S-boxes Φ1 and Φ2 are linear (respectively,
affine) equivalent if there exist linear (respectively, affine) mappings A1, A2

such that Φ2 = A2 ◦ Φ1 ◦ A1.

It is well-known (see, e.g., [8]) that the following cryptographic para-
meters: δ-uniformity, nonlinearity and (minimum) algebraic degree — re-
main invariant under linear (respectively, affine) equivalence.

2. General S-box Design Criteria
Our goal is to find 2k-bit permutations constructed from k-bit ones

that satisfy the following criteria (which in what follows are called almost
optimal).

1) Maximum value of minimum degree.

2) Maximum value of rΦ with the minimum value of r(i)Φ .

3) Minimum value of δ-uniformity limited by parameter listed above.

4) Maximum value of nonlinearity limited by parameter listed above.

For example,when n = 8 an almost optimal nonlinear bijective transfor-
mation Φ should satisfy the following
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Set of cryptographic criteria for 8-bit permutations:

• dmin(Φ) = 7,

• rΦ = 3 with r(3)Φ = 441,

• δΦ ⩽ 8,

• NL(Φ) ⩾ 100.

Our design criteria are basically the same as those included in the target
set of criteria for the Gradient descent method [24]. However, we concen-
trate on generating 8-bit S-boxes with almost optimal cryptographic param-
eters having good resistance properties both against classical cryptanalysis
as well as side-channel attacks with some given level of masking.

3. Construction of permutations, involutions and
orthomorphisms

Now, we present a special algorithmic-algebraic scheme based on the
well-known Lai – Massey structure which may be used not only for con-
structing permutations, but also involutions and orthomorphisms having
almost optimal cryptographic properties.

Let n = 2k be a natural number, where k ⩾ 2. Choose:

– finite field inversion function I(x) =
{

0, if x = 0,
x−1, if x ̸= 0,

over F2k ,

– non-bijective k-bit function ψ which has no preimage for 0,

– arbitrary permutation h ∈ S(Vk),

– arbitrary bijective linear maps Li ∈ GL2k(F2), i = 1, 2.

We construct the following class of 2k-bit permutations π from V2k to V2k
as follows.

2021, Т. 12, № 3, С. 89–124
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Construction of π̂
For the input value (l∥r) ∈ V2k we define the
corresponding output value π̂(l∥r) = (l1∥r1)

as a result of the following computations:
(l1∥r1) := L1(l∥r);

(l1∥r1) := (I(l1)⊗ ψ(l1 ⊗ r1))
∥∥h(r1 ⊗ ψ(l1 ⊗ r1));

(l1∥r1) := L2(l1∥r1).

L1

I ψ

h

L2

Fig. 1. High level structure of the
S-box π̂

Notice that the finite field multiplication ⊗ in the above construction
correspond to multiplication operation in F2k . The binary matrices L1

and L2 were inserted to break the cycle structure of π and also to eliminate
the existence of fixed points. Defining π as L−1

2 ◦ π̂◦L−1
1 we can see in Fig. 1

that π share similarities with 1-round Lai – Massey structure replacing in
the latter the XORs by finite field multiplications. The non-bijective k-bit
function ψ (which has no preimage for 0) was chosen in such a way to make
the whole structure invertible. Moreover, from the following construction:

• π−1(l1∥r1) = l∥r, where
l = h−1(l1)⊗I

(
ψ(h−1(l1)⊗I(r1))

)
, r = I

(
r1⊗I

(
ψ(h−1(l1)⊗I(r1))

))
,

we can easily derive the bijectivity of the π which is a necessary design cri-
teria for SPN ciphers and quite useful for Feistel and Lai – Massey ciphers.

In more detail, the nonlinear bijective transformation π may be written
as follows:

π(l∥r) =



0, if l = r = 0,

0
∥∥∥h(r ⊗ ψ(0)), if l = 0 and r ̸= 0,(
I(l)⊗ ψ(0)

)∥∥∥0, if l ̸= 0 and r = 0,

(I(l)⊗ ψ(l ⊗ r))
∥∥∥h(r ⊗ ψ(l ⊗ r)), if l ̸= 0 and r ̸= 0.

(10)

In what follows (and also in the remainder of this paper) we restricted
ourselves to the case when h = I and we shall write πψ instead of π.
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The next well-known result is useful when studying some properties of the
suggested class of permutations.

Lemma 1 ([3,31]). For any b ∈ V ∗
n , a ∈ Vn , the following inequality holds:∣∣∣∣∣∑

x∈Vk

(−1)⟨b,I(x)⟩⊕⟨a,x⟩

∣∣∣∣∣ ⩽ ⌊2
k
2
+1⌋. (11)

Proposition 1. For any mapping ψ : Vk → V ∗
k the following inequality

holds:
NL(π̂) ⩾ 2k − ⌊2

k
2
+1⌋ − 1. (12)

Proof. It is not difficult to see that permutations π, π̂ are linear equiva-
lent, hence NL(π̂) = NL(πψ). Let us calculate the Walsh transform of the
nonlinear bijective transformation π

Wπ(a1∥a2, b1∥b2) =
∑

l∥r∈V2k

(−1)⟨b1∥b2,π̂(l∥r)⟩⊕⟨a1∥a2,l∥r⟩

= −1 +
∑
r∈Vk

(−1)⟨b2,I(r⊗ψ(0))⟩⊕⟨a2,r⟩ +
∑
l∈Vk

(−1)⟨b1,I(l)⊗ψ(0)⟩⊕⟨a1,l⟩

+
∑
l∈V ∗

k

∑
r∈V ∗

k

(−1)⟨b1,I(l)⊗ψ(l⊗r)⟩⊕⟨b2,I(r⊗ψ(l⊗r))⟩⊕⟨a1,l⟩⊕⟨a2,r⟩.

Let us now estimate the Walsh transform |Wπ(a1∥a2, b1∥b2)|. Directly
from Lemma 1 we can derive the following inequalities:

•

∣∣∣∣∣∑
r∈Vk

(−1)⟨b2,I(r⊗ψ(0))⟩⊕⟨a2,r⟩

∣∣∣∣∣ ⩽ ⌊2
k
2
+1⌋,

•

∣∣∣∣∣∑
l∈Vk

(−1)⟨b1,I(l)⊗ψ(0)⟩⊕⟨a1,l⟩

∣∣∣∣∣ ⩽ ⌊2
k
2
+1⌋.

In addition, it is obvious that∣∣∣∣∣∣
∑
l∈V ∗

k

∑
r∈V ∗

k

(−1)⟨b1,I(l)⊗ψ(l⊗r)⟩⊕⟨b2,I(r⊗ψ(l⊗r))⟩⊕⟨a1,l⟩⊕⟨a2,r⟩

∣∣∣∣∣∣ ⩽ (2k − 1) · (2k − 1).

Hence,

|Wπ(a1∥a2, b1∥b2)| ⩽ 22k − 2k+1 + 2 · ⌊2
k
2
+1⌋+ 2. (13)

2021, Т. 12, № 3, С. 89–124
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Thus, from (13) we obtain

NL(π̂) = 22k−1 − 1

2
· max
(b1,b2)∈V ∗

2k
(a1,a2)∈V2k

|Wπ̂(a1∥a2, b1∥b2)| ⩾ 2k − ⌊2
k
2
+1⌋ − 1.

3.1. The Hamming distance between two instances of π̂

In this section we are interested in the Hamming distance between two
permutations πψ, πψ′ ∈ S(V2k) having non-bijective functions ψ, ψ′ such
that χ(ψ, ψ′) = 1. In other words, the lookup-tables of ψ and ψ′ differ only
in one position.

Proposition 2. Let ψ, ψ′ : Vk → V ∗
k be two arbitrary mappings with

χ(ψ, ψ′) = 1. Then for permutations πψ, πψ′ the following relation holds:

χ(πψ, πψ′) =

 2 · (2k − 1), if ψ(0) ̸= ψ′(0),

2k − 1, if ∃ i ̸= 0: ψ(i) ̸= ψ′(i).
(14)

Proof. Consider the following possible cases:

1) If ψ(0) ̸= ψ′(0), then πψ(l∥r) = πψ′(l∥r) for any l∥r ∈ V ∗
k × V ∗

k . If
l = 0, then the inequality πψ(0∥r) ̸= πψ′(0∥r) holds for all r ∈ V ∗

k .
Analogously, for r = 0 and any l ∈ V ∗

k the output πψ(l∥0) ̸= πψ′(l∥0).
So we have exactly 2 · (2k− 1) values at which the outputs πψ and πψ′

are different.

2) If there exist an element i ̸= 0 such that ψ(i) ̸= ψ′(i), then for each
fixed l ∈ F2k \{0} there exist a unique r ∈ F2k \{0} such that l⊗r = i,
therefore, there are exactly 2k − 1 values of the form (l∥r) ∈ V2k such
that πψ(l∥r) ̸= πψ′(l∥r).

Notice that we have exclude the case l = r = 0 because in this situation
we always have πψ(0) = πψ′(0). So, we can conclude that χ(πψ, πψ′) ∈
{2k − 1, 2 · (2k − 1)}.

3.2. Bounds on nonlinearity and δ-uniformity of two instances
of π̂

In this section, we study the nonlinearity and δ-uniformity parameters
of two permutations πψ, πψ′ ∈ S(V2k) for which χ(ψ, ψ′) = 1. Recall that
we have restricted ourselves to the case when h = I.
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Proposition 3. Let ψ, ψ′ : Vk → V ∗
k be two arbitrary mappings with

χ(ψ, ψ′) = 1. Then for permutations πψ, πψ′ the following inequalities holds:

1) |NL(πψ)−NL(πψ′)| ⩽ 2 · ⌊2 k2+1⌋, if ψ(0) ̸= ψ′(0),

2) |NL(πψ)−NL(πψ′)| ⩽ (2k − 1), if ψ(i) ̸= ψ′(i) for some i ̸= 0.

Proof. Directly by definition of nonlinearity we have

|NL(πψ)−NL(πψ′)|

=
1

2

∣∣∣∣∣∣∣ max
(a1,a2)∈V2k
(b1,b2)∈V ∗

2k

∣∣Wπψ(a1∥a2, b1∥b2)
∣∣ − max

(a1,a2)∈V2k
(b1,b2)∈V ∗

2k

∣∣∣Wπψ′ (a1∥a2, b1∥b2)
∣∣∣
∣∣∣∣∣∣∣ .
(15)

Let us prove the first item of the proposition. From relations ψ(0) ̸= ψ′(0)
and ψ(j) = ψ′(j) for j ∈ {1, . . . , 2k − 1} we obtain

Wπψ(a1∥a2, b1∥b2) =
∑

l∥r∈V2k

(−1)⟨b1∥b2,πψ(l∥r)⟩⊕⟨a1∥a2,l∥r⟩

= −1 +
∑
r∈Vk

(−1)⟨b2,I(r⊗ψ(0))⟩⊕⟨a2,r⟩ +
∑
l∈Vk

(−1)⟨b1,I(l)⊗ψ(0)⟩⊕⟨a1,l⟩

+
∑
l∈V ∗

k

∑
r∈V ∗

k

(−1)⟨b1,I(l)⊗ψ
′(l⊗r)⟩⊕⟨b2,I(r⊗ψ′(l⊗r))⟩⊕⟨a1,l⟩⊕⟨a2,r⟩.

Let T (a1∥a2, b1∥b2)=
∑
l∈V ∗

k

∑
r∈V ∗

k

(−1)⟨b1,I(l)⊗ψ
′(l⊗r)⟩⊕⟨b2,I(r⊗ψ′(l⊗r))⟩⊕⟨a1,l⟩⊕⟨a2,r⟩.

It is not difficult to see that

T (a1∥a2, b1∥b2) = Wπψ′ (a1∥a2, b1∥b2)−
∑
r∈Vk

(−1)⟨b2,I(r⊗ψ
′(0))⟩⊕⟨a2,r⟩

−
∑
l∈Vk

(−1)⟨b1,I(l)⊗ψ
′(0)⟩⊕⟨a1,l⟩ + 1.
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Hence, we can express Wπψ(a1∥a2, b1∥b2) by Wπψ′ (a1∥a2, b1∥b2) as follows

Wπψ(a1∥a2, b1∥b2)

=
(∑
r∈Vk

(−1)⟨b2,I(r⊗ψ(0))⟩⊕⟨a2,r⟩ +
∑
l∈Vk

(−1)⟨b1,I(l)⊗ψ(0)⟩⊕⟨a1,l⟩
)

−
(∑
r∈Vk

(−1)⟨b2,I(r⊗ψ
′(0))⟩⊕⟨a2,r⟩ +

∑
l∈Vk

(−1)⟨b1,I(l)⊗ψ
′(0)⟩⊕⟨a1,l⟩

)
+Wπψ′ (a1∥a2, b1∥b2).

Then by using Lemma 1 we find that∣∣Wπψ(a1∥a2, b1∥b2)
∣∣ ⩽ 4 · ⌊2 k2+1⌋+

∣∣∣Wπψ′ (a1∥a2, b1∥b2)
∣∣∣ and consequently

max
(a1,a2)∈V2k
(b1,b2)∈V ∗

2k

∣∣Wπψ(a1∥a2, b1∥b2)
∣∣ ⩽ 4 · ⌊2

k
2
+1⌋+ max

(a1,a2)∈V2k
(b1,b2)∈V ∗

2k

∣∣∣Wπψ′ (a1∥a2, b1∥b2)
∣∣∣ .

Thus, from the previous relation and (15) we conclude that
|NL(πψ)−NL(πψ′)| ⩽ 2 · ⌊2 k2+1⌋.

Now, we prove the second item of the proposition. For each element
l ∈ V ∗

k there exist a unique element r ∈ V ∗
k such that l ⊗ r = i. Then, the

Walsh transforms of permutation πψ may be expressed as follows

Wπψ(a1∥a2, b1∥b2) =
∑

l∥r∈V2k

(−1)⟨b1∥b2,πψ(l∥r)⟩⊕⟨a1∥a2,l∥r⟩

= 1 +
∑
r∈V ∗

k

(−1)⟨b2,I(r⊗ψ(0))⟩⊕⟨a2,r⟩ +
∑
l∈V ∗

k

(−1)⟨b1,I(l)⊗ψ(0)⟩⊕⟨a1,l⟩

+
∑
l∈V ∗

k

∑
r∈V ∗

k

(−1)⟨b1,I(l)⊗ψ(l⊗r)⟩⊕⟨b2,I(r⊗ψ(l⊗r))⟩⊕⟨a1,l⟩⊕⟨a2,r⟩.

Let S(a1∥a2, b1∥b2) =
∑
l∈V ∗

k

∑
r∈V ∗

k

(−1)⟨b1,I(l)⊗ψ(l⊗r)⟩⊕⟨b2,I(r⊗ψ(l⊗r))⟩⊕⟨a1,l⟩⊕⟨a2,r⟩.

Then
S(a1∥a2, b1∥b2) =

∑
l∈V ∗

k

T (a1∥a2, b1∥b2), (16)

where T (a1∥a2, b1∥b2) =
∑
r∈V ∗

k

(−1)⟨b1,I(l)⊗ψ(l⊗r)⟩⊕⟨b2,I(r⊗ψ(l⊗r))⟩⊕⟨a1,l⟩⊕⟨a2,r⟩.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ



Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms 101

For each fixed l ∈ V ∗
k , the term T (a1∥a2, b1∥b2) may be rewritten as

T (a1∥a2, b1∥b2)=
∑

r∈V ∗
k \{i⊗l−1}

(−1)⟨b1,I(l)⊗ψ(l⊗r)⟩⊕⟨b2,I(r⊗ψ(l⊗r))⟩⊕⟨a1,l⟩⊕⟨a2,r⟩

+ (−1)⟨b1,I(l)⊗ψ(i)⟩⊕⟨b2,I((i⊗l−1)⊗ψ(i))⟩⊕⟨a1,l⟩⊕⟨a2,i⊗l−1⟩.
Substituting T (a1∥a2, b1∥b2) in (16) we obtain

S(l, r) =
∑
l∈V ∗

k

∑
r∈V ∗

k \{i⊗l−1}

(−1)⟨b1,I(l)⊗ψ(l⊗r)⟩⊕⟨b2,I(r⊗ψ(l⊗r))⟩⊕⟨a1,l⟩⊕⟨a2,r⟩

+
∑
l∈V ∗

k

(−1)⟨b1,I(l)⊗ψ(i)⟩⊕⟨b2,I((i⊗l−1)⊗ψ(i))⟩⊕⟨a1,l⟩⊕⟨a2,(i⊗l−1)⟩.

Thus,

Wπψ(a1∥a2, b1∥b2) =
∑

l∥r∈V2k

(−1)⟨b1∥b2,πψ(l∥r)⟩⊕⟨a1∥a2,l∥r⟩

= 1 +
∑
r∈V ∗

k

(−1)⟨b2,I(r⊗ψ(0))⟩⊕⟨a2,r⟩ +
∑
l∈V ∗

k

(−1)⟨b1,I(l)⊗ψ(0)⟩⊕⟨a1,l⟩

+
∑
l∈V ∗

k

∑
r∈V ∗

k \{i⊗l−1}

(−1)⟨b1,I(l)⊗ψ(l⊗r)⟩⊕⟨b2,I(r⊗ψ(l⊗r))⟩⊕⟨a1,l⟩⊕⟨a2,r⟩

+
∑
l∈V ∗

k

(−1)⟨b1,I(l)⊗ψ(i)⟩⊕⟨b2,I((i⊗l−1)⊗ψ(i))⟩⊕⟨a1,l⟩⊕⟨a2,(i⊗l−1)⟩.

Now, taking into account that ψ(i) ̸= ψ′(i) for some i ∈ V ∗
k , and

ψ(j) = ψ′(j) for any j ∈ Vk \ {i}, we can link Wπψ(a1∥a2, b1∥b2) and
Wπψ′ (a1∥a2, b1∥b2) as follows

Wπψ(a1∥a2, b1∥b2) = Wπψ′ (a1∥a2, b1∥b2)∑
l∈V ∗

k

(−1)⟨b1,I(l)⊗ψ(i)⟩⊕⟨b2,I((i⊗l−1)⊗ψ(i))⟩⊕⟨a1,l⟩⊕⟨a2,(i⊗l−1)⟩

−
∑
l∈V ∗

k

(−1)⟨b1,I(l)⊗ψ
′(i)⟩⊕⟨b2,I((i⊗l−1)⊗ψ′(i))⟩⊕⟨a1,l⟩⊕⟨a2,(i⊗l−1)⟩.

Hence,
∣∣Wπψ(a1∥a2, b1∥b2)

∣∣ ⩽ ∣∣∣Wπψ′ (a1∥a2, b1∥b2)
∣∣∣ + 2 · (2k − 1) and as a

consequence

max
(a1,a2)∈V2k
(b1,b2)∈V ∗

2k

∣∣Wπψ(a1∥a2, b1∥b2)
∣∣ ⩽ max

(a1,a2)∈V2k
(b1,b2)∈V ∗

2k

∣∣∣Wπψ′ (a1∥a2, b1∥b2)
∣∣∣+2 · (2k − 1).
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Thus, from the previous inequality and (15) we conclude that
|NL(πψ)−NL(πψ′)| ⩽ (2k − 1).

Proposition 3 may be used to increase the nonlinearity of permutation
πψ, which is very useful for searching nonlinear bijective transformations
having good values of its basic cryptographic parameters.

The following proposition shows the behavior of the δ-uniformity pa-
rameter of permutations πψ, πψ′ with χ(ψ, ψ′) = 1.

Proposition 4. Let ψ, ψ′ : Vk → V ∗
k be two arbitrary mappings with

χ(ψ, ψ′) = 1. Then for permutations πψ, πψ′ the following inequalities holds:

1)
∣∣∣δπψ − δπψ′

∣∣∣ ⩽ 4(2k − 1) if ψ(0) ̸= ψ′(0),

2)
∣∣∣δπψ − δπψ′

∣∣∣ ⩽ 2(2k − 1) if ψ(i) ̸= ψ′(i) for some i ̸= 0.

Proof. To prove the proposition it is sufficient to bound the sums

∆πψ(a, b) =
∑
x∈Vn

Ind(πψ(x⊕ a)⊕ πψ(x), b),

∆πψ′ (a, b) =
∑
x∈Vn

Ind(πψ′(x⊕ a)⊕ πψ′(x), b).

1) Consider the case ψ(0) ̸= ψ′(0). According to Proposition 2 denote
by ωt, t = 1, . . . , 2 · (2k − 1), all points of V2k such that πψ(ωt) ̸= πψ′(ωt).
If Ind(πψ(x ⊕ a) ⊕ πψ(x), b) ̸= Ind(πψ′(x ⊕ a) ⊕ πψ′(x), b), then x = ωt or
x = ωt ⊕ a for some t = 1, . . . , 2(2k − 1). Therefore∣∣∣∆πψ(a, b)−∆πψ′ (a, b)

∣∣∣ ⩽ 2(2k − 1),

and ∣∣∣δπψ − δπψ′

∣∣∣ ⩽ 2(2k − 1).

2) In the case ψ(0) = ψ′(0) the proof is quite similar to the proof of the
first item.

Proposition 4 tell us that under changing only one output value of ψ the
δ-uniformity of πψ may decrease, which is quite useful when searching non-
linear bijective transformations with good values of its basic cryptographic
parameters based on the construction of πψ.
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3.3. Algorithms for finding almost optimal S-boxes

By using Propositions 3 and 4 we have conducted two search algorithms
(implemented in SAGE [45]) for finding ordinary 8-bit S-boxes πψ having
the following cryptographic parameters:

• dmin(πψ) = 7,

• rπψ = 3 with r(3)πψ = 441,

• δπψ ∈ {6, 8},

• 100 ⩽ NL(πψ) ⩽ 104.

The algorithms are slightly modified versions of algorithms for im-
plementing the spectral-linear and spectral-differential methods presented
in [34] and both of them operates with the following objects:

(a, b, c, d, e) ∈ S(V2k)× Z× Z× Z× Ξ0(Vk),

where Ξ0(Vk) denotes the set of all functions ψ : Vk → V ∗
k . On the set of

these objects we define the order relation as follows

(ã, b̃, c̃, d̃, ẽ) ⩽ (a, b, c, d, e), if
{

b̃ < b, d̃ ⩽ d or
b̃ = b, c̃ ⩽ c, d̃ ⩽ d.

(17)

To help fully understanding how our algorithms work, we introduce the
following concepts.

Definition 11 ([34]). The Difference Distribution Table (DDT) of an S-box
Φ ∈ S(Vn) is a 2n × 2n matrix, denoted by DDTΦ and defined as

DDTΦ[a, b] =
1

2n
∆Φ(a, b) =

1

2n
#{x ∈ Vn|Φ(x⊕ a)⊕ Φ(x)) = b}.

Definition 12 ([34]). The Linear Approximation Table (LAT) of an S-box
Φ ∈ S(Vn) is a 2n × 2n matrix, denoted by LATΦ and defined as

LATΦ[a, b] =
2

2n
#{x ∈ Vn| ⟨a, x⟩ = ⟨b,Φ(x)⟩} − 1.

For Φ ∈ S(Vn) and numbers p1 ∈ Pn−1 and p2 ∈ Pn−2, where

Pj =
{ i

2j
∣∣ i = 0, . . . , 2j

}
,#Pj = 2j + 1, j ∈ {n− 2, n− 1},

we define the following sets:

D(Φ, p1) = {(a, b) ∈ V ∗
n × V ∗

n |DDTΦ[a, b] = p1}

and
L(Φ, p1) = {(a, b) ∈ V ∗

n × V ∗
n

∣∣|LATΦ[a, b]| = p2}.
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Definition 13 ([34]). The differential spectrum of S-box Φ ∈ S(Vn) is
defined as

D(Φ) =
{(
p1,#D(Φ, p1)

)
|p1 ∈ Pn−1

}
, #D(Φ) = 2n−1 − 1. (18)

Definition 14 ([34]). The linear spectrum of an S-box Φ ∈ S(Vn) is defined
as

L(Φ) =
{(
p2,#L(Φ, p1)

)
|p2 ∈ Pn−2

}
, #L(Φ) = 2n−2 − 1. (19)

For a natural number n = 2k, let ℓ ⩽ 2k ·(2k−2) ∈ N be the size of some
list L. The algorithm for improving the differential properties is presented
below.

Making appropriate changes in Algorithm 1 we can obtain the algorithm
for optimizing the (non)linear properties of π, which is omitted due to space
limitations. It should be pointed that in these algorithms we always assume
that the multiplication table of F2k is given.

Let us denote by t1 the computational complexity of Algorithm 1.

Proposition 5. For n→ ∞ we have

t1 = O(n2 · 25n).

Proof. The proof is divided in two stages. In the first stage we compute
the maximum number of of step 4 iterations of the algorithm and in the
second stage we find the complexity of step 4.

1) Let πψ ∈ S(V2k). For element of a differential spectrum D(πψ) we have
#D(πψ, p1) ⩽ (2n− 1) · 1

p1
. Thus, we obtain the following expressions:

∑
p1∈Pn−1\{0}

(2n − 1) · 1

p1
= (2n − 1)

∑
p1∈Pn−1\{0}

1

p1
= (2n − 1)

2n−1∑
i=1

2n−1

i

= (2n − 1) · 2n−1

2n−1∑
1=1

1

i
⩽ 2n−1 · (2n − 1) · (ln 2n−1 + 1)

⩽ 2n−1 · (2n − 1) · (log2 2n−1 + 1) = n · 2n−1 · (2n − 1).

2) The estimate of complexity of Step 4 is the product of the following
values:

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ



Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms 105

Algorithm 1: Optimizing the differential properties of πψ

Input: Permutation I(x) = x2
k−2 over F2k , function ψ : Vk → V ∗

k and
parameter ℓ ∈ N.

1 Construct πψ = (I(l)⊗ ψ(l ⊗ r))
∥∥I(r ⊗ ψ(l ⊗ r)) ∈ S(V2k).

2 For permutation πψ ∈ S(V2k) calculate the values δπψ , D(πψ),NL(πψ) and set
ψ(−1) = ψ.

3 Initialize the list L:

L =
{(
πψ(−1) , δπ

ψ(−1)
,#D

(
πψ(−1) , δπ

ψ(−1)

)
,NL

(
πψ(−1)

)
, ψ(−1)

)
},where #L = 1.

4 Using the list

L =
{(
πψ(i) , δπ

ψ(i)
,#D

(
πψ(i) , δπ

ψ(i)

)
,NL

(
πψ(i)

)
, ψ(i)

)∣∣∣i = −1, 0, . . . ,#L− 2
}

construct the new list

L̃ =
{(
π
ψ

′(i)
j,t
, δπ

ψ
′(i)
j,t

,#D
(
π
ψ

′(i)
j,t
, δπ

ψ
′(i)
j,t

)
,NL

(
π
ψ

′(i)
j,t

)
, ψ

′(i)
j,t

)}
,

where for each i = −1, 0, . . . ,#L− 2, j = 0, . . . , 2k − 1, t = 0, . . . 2k − 3,
functions π

ψ
′(i)
j,t

∈ S(V2k) for which χ
(
πψ(i) , π

ψ
′(i)
j,t

)
∈ {2k − 1, 2 · (2k − 1)},

δπ
ψ
′(i)
j,t

⩽ δπ
ψ(i)

,NL(πψ(i)) ⩽ NL(π
ψ

′(i)
j,t

), functions ψ(i), ψ
′(i)
j,t : Vk → V ∗

k have

χ
(
ψ(i), ψ

′(i)
j,t

)
= 1 and #D

(
π
ψ

′(i)
j,t
, δπ

ψ
′(i)
j,t

)
< #D

(
πψ(i) , δπ

ψ(i)

)
if

δπ
ψ
′(i)
j,t

= δπ
ψ′(i) .

5 For the list L̃ do the following:
(I) Calculate the size #L̃.

(II) Sort the elements of L̃ in the ascending order according to relation (17).
(III) Numerate the sorted list element by indexes i = 0, . . . ,#L̃− 1.
(IV) Calculate values m1 = min{#L− 1,#L̃− 1},m2 = min{ℓ− 1,#L̃− 1}.

6 Compare the first elements of lists L and L̃:

– If
m1∑
i=0

δπ
ψ′(i) <

m1∑
i=0

δπ
ψ(i)

or

m1∑
i=0

δπ
ψ′(i) =

m1∑
i=0

δπ
ψ(i)

and
m1∑
i=0

#D
(
πψ′(i) , δπ

ψ′(i)

)
<

m1∑
i=0

#D
(
πψ(i) , δπ

ψ(i)

)
,

then
(I) Clean the list L.

(II) Copy the elements from the list L̃ with indexes i = 0, . . . ,m2 to L.
(III) Assign #L = m2 + 1.
(IV) Go to step 4.

– Otherwise, the algorithm stops.

Output: The list
L̃ =

{(
π
ψ(i) , δπ

ψ(i)
,#D

(
π
ψ(i) , δπ

ψ(i)

)
,NL

(
π
ψ(i)

)
, ψ(i)

)∣∣∣ i = −1, 0, . . . ,#L − 2
}
,

where #L̃ ⩽ ℓ.
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• the parameter ℓ,

• the estimate of the number of all functions ψ(i), ψ
′(i)
j,t : Vk → V ∗

k

having χ
(
ψ(i), ψ

′(i)
j,t

)
= 1 contained in L̃, which obviously cannot

exceed 2k · (2k − 2) = 2n − 2
n
2
+1,

• the complexity of computing NL
(
πψ(i)

)
, which is equal to c·22n ·n,

where c = const.

The computation of remaining parameters is not so difficult as just de-
scribed. Thus, the complexity of step 4 is smaller than

ℓ · 2 · (2n − 2
n
2
+1) · c · 22n · n.

In this way, the total complexity of the algorithm is upper bounded by

t1 ⩽ ℓ · c · n2 · (25n − 24n+
n
2
+1 − 24n + 23n+

n
2
+1) ⩽ ℓ · c · n2 · 25n.

As stated before, the Algorithm 1 is a slightly modified version of the
algorithm for implementing the spectral-differential method given in [34,
p. 102], the only essential difference with the latter is the last coordinate
of elements belonging to L and L̃ respectively and we have reproduced
the proof of Proposition 5 (borrowed from [34]) here only for the sake of
completeness.

Analogously, using the results given in [34, p. 106] we can find the com-
putational complexity t2 of the algorithm similar to Algorithm 1 for op-
timizing the (non)linear properties of πψ, which in this case is equal to
t2 = O(n · 26n).

Comparing the computational complexities of algorithms implementing
spectral-differential and the spectral-linear methods, which are equal to
tspect/diff = O(n2 ·26n−1) and tspect/lin = O(n ·27n−4) respectively [34], we can
see that Algorithm 1 is approximately 2n−1 times faster than the algorithm
for implementing spectral-differential method, while our algorithm for opti-
mizing the (non)linear properties is 2n−4 times faster than the algorithm for
implementing spectral-linear method. However, both algorithms developed
in [34] are universal, and to the best of our knowledge may optimize any
S-box except those based on finite field inversion and affine equivalent to
it. Algorithms presented in this section may optimize only S-boxes having
the form πψ = (I(l)⊗ψ(l⊗ r))

∥∥I(r⊗ψ(l⊗ r)) and affine equivalent to πψ.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ



Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms 107

3.4. Invariant subspaces with respect to the action of πψ

Let Φ: Vn → Vn be any nonlinear bijective transformation. For any
W ⊆ Vn we denote by Φ(W) the set containing all images of the elements
from W, that is

Φ(W) = {Φ(x) |x ∈ W}.
Definition 15. We say that W ⊆ Vn is an invariant set with respect to the
action of Φ : Vn → Vn, if Φ(W) ⊆ W or Φ(W) ⊆ Vn \W.

In this section, we study the question about the existence of subsets
W ⊆ Vn such that πψ(W) ⊆ W. When these subsets are subspaces of Vn
and πψ(W ⊕ a) = W ⊕ b for some fixed elements a, b ∈ Vn, then they are
called invariant subspaces.

Invariant subspaces are used in recent cryptanalytic approaches when
mounting structural attacks on block ciphers (for example, in the so-called
invariant subspaces attacks [32]). The existence of such structures may
significantly decrease the cryptographic security of block ciphers. In [2, 44]
were described some approaches for designing cryptographic primitives hav-
ing a structure, knowledge of which allows to find the encryption key with
a time complexity, significantly lower than the brute force method. Such
structure is called a backdoor, and the whole encryption algorithm — back-
doored encryption algorithm.

Another fundamental cryptanalytic method for block ciphers is the ho-
momorphism attack. The effectiveness of this approach is highly dependent
on how close the encryption function may be approximated by permutations
having the partition-preserving property. The authors of [42] studied the
possibility to approximate permutations by permutations from the wreath
product of symmetric groups in an imprimitive action, where the so-called
W-intersection matrix was proposed as a parameter characterizing the ap-
proximability of permutations by permutations from the wreath group. The
W-intersection matrix for a permutation Φ of S(Vn) is defined as follows

MW(Φ) =
∥∥∥cWα,β(Φ)∥∥∥

α,β∈RW

,

where cWα,β(Φ) = #
{
x ∈ W ⊕ α

∣∣∣Φ(x) ∈ W ⊕ β
}
, W < Vn, dimW = d ∈

{1, 2, . . . , n−1} and RW is the set of coset representatives for the subspace
W < Vn.

The W-intersection matrix is a very useful tool to automatically verify
the invariance of a fixed subspace W with respect to the action of given
nonlinear bijective transformation.
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Proposition 6. Let W1 = {(l∥0)|l ∈ Vk},W2 = {(0∥r)|r ∈ Vk} be two
k-dimensional subspaces of the vector space V2k . Then

cW1
0,0 (πψ) = cW2

0,0 (πψ) = 2k. (20)

Proof. The relations written in (20) are a direct consequence of the equal-
ity (10) for h = I.

Example 1. Let n = 2k = 2 · 4 and F24 = F2 [ξ]/ξ
4 ⊕ ξ ⊕ 1, the 4-bit

componentsa ψ, I be given as follows

ψ =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 12 3 12 12 9 13 13 8 2 2 11 9 15 2 3

)
,

I =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 9 14 13 11 7 6 15 2 12 5 10 4 3 8

)
.

The resulting permutation πψ(l∥r) = (I(l) ⊗ ψ(l ⊗ r))
∥∥

I(r ⊗ ψ(l ⊗ r)) ∈ S(V8) and its cryptographic parameters are com-
piled in the Table 1.
Table 1. The constructed permutation πψ ∈ S(V8)

S-box πψ
NL(πψ) = 104, δπψ = 6, dmin(πψ) = 7, rπψ = 3, r

(3)
πψ = 441.

0x0 0x6 0x3 0x2 0x8 0xf 0x1 0x7 0x4 0xc 0xe 0xd 0x9 0xb 0xa 0x5
0x70 0xca 0x37 0xc6 0xcb 0x95 0xdf 0xdb 0x8a 0x21 0x26 0xb2 0x97 0xf6 0x28 0x39
0xa0 0x8e 0x65 0xfd 0x47 0x1c 0xde 0x13 0x6c 0x67 0xf5 0xda 0xc4 0x12 0x81 0xec
0xc0 0x4a 0xa2 0x7f 0x79 0x18 0xfa 0xf3 0x86 0x9d 0x5a 0xfb 0xae 0x4e 0x4d 0x19
0x50 0x3a 0x2e 0xff 0x3b 0xea 0x68 0x42 0xe9 0x4f 0x96 0x9b 0xf7 0x3e 0x7b 0x94
0x40 0xc2 0x5d 0xeb 0x61 0xe8 0x3d 0x74 0x5e 0x9a 0xd1 0xd4 0x55 0xc8 0xdd 0x66
0x60 0x54 0xa1 0xe7 0x4c 0xb7 0x5f 0x29 0xad 0x27 0xe6 0x93 0xe5 0xd9 0x91 0x2f
0x10 0x84 0xcd 0xc7 0xaa 0x53 0xe3 0x8b 0x41 0xc1 0xe1 0xe4 0xa6 0x38 0x36 0xfe
0xb0 0x1f 0x85 0x33 0x71 0xdc 0xee 0xa5 0xed 0x87 0x24 0x77 0xd5 0x2d 0xd8 0x8f
0xe0 0x49 0xb5 0x35 0x6a 0x51 0xb3 0x43 0xbc 0xd3 0x1b 0x1a 0x9e 0x6d 0x9c 0x44
0x20 0xb9 0x32 0x89 0xbf 0xf2 0xba 0xf9 0x75 0x64 0xa8 0x73 0xf8 0xd7 0x3c 0x63
0x80 0x15 0xb1 0xa7 0xaf 0x92 0xfc 0x99 0xc9 0xb4 0xf4 0xab 0x6f 0xc3 0xe2 0x9f
0x30 0x52 0x2b 0xbd 0x59 0x7c 0x7a 0xd2 0x7e 0xb8 0x11 0xce 0xd6 0x1e 0x1d 0xf1
0xf0 0x98 0x8d 0x56 0x5b 0x25 0x6b 0x2c 0xc5 0xcf 0xa9 0x17 0x58 0x82 0x88 0x16
0x90 0x69 0x57 0x76 0x22 0x72 0x5c 0x8c 0x6e 0x48 0x45 0xb6 0x78 0x62 0xef 0x83
0xd0 0xbe 0x14 0xbb 0x3f 0x2a 0xa3 0x7d 0xac 0x31 0x4b 0xa4 0xcc 0x23 0x46 0x34

From Table 1 we can see that the nonlinear bijective transformation
πψ ∈ S(V8) exhibit high values of its basic cryptographic parameters and
it does not have polynomial relations of low degree.

aThe component ψ has been found using the algoritmhs described in Section 3.2.
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Let us now verify the existence of some invariant subspaces with re-
spect to the action of the constructed permutation πψ ∈ S(V8). The
W-intersection matrices MWi

(πψ) =
∥∥∥cWi

α,β(πψ)
∥∥∥
α,β∈RWi

given by

MW1
(πψ)=



16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 2 1 1 0 1 3 3 0 0 0 2 1
0 2 2 1 1 3 0 2 0 0 0 1 0 3 1 0
0 0 1 1 0 1 3 3 0 1 0 2 0 2 0 2
0 2 1 0 0 0 0 1 1 2 2 3 1 0 0 3
0 1 3 1 0 2 0 1 2 0 2 0 3 0 0 1
0 1 0 3 0 0 0 0 1 0 3 1 2 1 2 2
0 0 2 3 1 1 0 1 0 3 0 2 2 1 0 0
0 1 0 0 1 2 1 0 0 2 1 0 3 2 3 0
0 3 0 1 2 0 0 3 2 0 1 0 1 1 0 2
0 3 0 0 2 2 3 0 1 1 1 2 0 0 1 0
0 0 1 2 3 0 1 2 0 0 2 3 0 1 1 0
0 0 0 0 1 3 2 2 3 1 0 0 1 0 2 1
0 0 3 2 0 0 1 1 2 1 0 1 0 2 3 0
0 2 1 0 0 0 2 0 3 0 1 1 2 3 0 1
0 1 0 2 3 1 2 0 0 2 0 0 1 0 1 3



,MW2
(πψ)=



16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 3 2 0 0 0 1 1 2 0 1 3 2 0 1
0 3 0 0 1 0 3 0 2 0 1 0 1 2 1 2
0 2 0 0 3 1 0 2 1 1 2 0 1 0 0 3
0 0 1 3 2 1 1 1 0 3 0 0 0 0 2 2
0 0 0 1 1 3 2 1 0 1 0 0 2 3 2 0
0 0 3 0 1 2 1 0 0 2 2 1 0 1 3 0
0 1 0 2 1 1 0 0 2 0 2 0 3 0 3 1
0 1 2 1 0 0 0 2 3 0 1 1 0 3 2 0
0 2 0 1 3 1 2 0 0 2 0 3 0 1 1 0
0 0 1 2 0 0 2 2 1 0 1 3 0 1 0 3
0 1 0 0 0 0 1 0 1 3 3 2 2 0 1 2
0 3 1 1 0 2 0 3 0 0 0 2 1 2 0 1
0 2 2 0 0 3 1 0 3 1 1 0 2 0 0 1
0 0 1 0 2 2 3 3 2 1 0 1 0 0 1 0
0 1 2 3 2 0 0 1 0 0 3 2 1 1 0 0



, (21)

for subspaces W1 = {(l∥0)|l ∈ V4}, W2 = {(0∥r)|r ∈ V4} of the vector
space V8 were found by computer calculations using SAGE [45].

From (21) we can see that cW1
0,0 (πψ) = cW2

0,0 (πψ) = 16, which means that
πψ(Wi) = Wi. Hence the subspaces W1 and W2 are invariant under the
action of the constructed permutation πψ ∈ S(V8).

So, despite the fact that permutation πψ ∈ S(V8) exhibit a low value
of δ-uniformity, high nonlinearity and may be described by a system of
441 polynomials equations of degree 3, it has a weakness: the existence of
some structures (subspaces W1 and W2) which are invariant with respect to
the action of this nonlinear bijective transformation. If this permutation is
used as a nonlinear layer in XSL-network, then these structures should be
taken into account when designing the linear layer and the key-expansion
algorithm to avoid the existence of a large number of weak keys of the
encryption function. However, this weakness may be eliminated by choosing
appropriate linear (respectively, affine) layers L1 and L2 from GL8(F2).

When looking at the TU-decomposition (see, e.g., [4]) of the 8-bit S-box
π̂Kuz = α ◦ πKuz ◦ ω used in the block cipher Kuznyechik [17], where
α, ω ∈ GL8(F2) and πKuz is a permutation based on a Feistel-like struc-
ture, we have found by using the W-intersection matrix that the subspace
W1 = {(l∥0)|l ∈ V4} is invariant with respect to the action of the nonlinear
bijective transformation πKuz = ω−1 ◦ π̂Kuz ◦α−1, i.e., πKuz(W1⊕ 0xc) = W1.
However, by computing MWi

(π̂Kuz), i = 1, 2, we have checked the absence
of invariant subspaces such as W1 and W2 in the permutation π̂Kuz.
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In the above cases we have seen the important role played by the linear
layers used in those constructions, which also explain why we have inserted
these matrices into the original construction of π̂. Its purposes are not only
to break the cycle structure and eliminate the existence of fixed points, but
also circumvent the existence of invariant subspaces such as W1 and W2.

3.5. Constructing highly-nonlinear involutions

In this section we will study how to build a particular kind of permuta-
tions with strong cryptographic properties using the construction presented
in the previous section as building blocks.

Definition 16. Let ε be the identity permutation of S(Vn). A permutation
Φ ∈ S(Vn) is called an involution if Φ ◦ Φ = ε.

Involutions are of particular interest in cryptography, because in the
case of lightweight block ciphers these components are used to decrease
the implementation cost of decryption process.

Even when the function I is an involution on S(Vk) and the permutaion
h ∈ S(Vk) may be chosen to be involution too, the permutaions generated
by π are not always involutions. Taking h = I, in order to achieve the
property πψ ◦πψ = ε we have performed a search algorithm. The algorithm
take as input a randomly generated non-bijective 4-bit function ψ, and for
this ψ the resulting permutation πψ was constructed. Then the Hamming
distance χ(ε, πψ ◦πψ) was calculated. If χ(ε, πψ ◦πψ) = 0 and πψ satisfy the
set of cryptographic criteria (listed in Section 2), the algorithm stops and as
output we get a nonlinear involution. Otherwise, in an iterative process ψ is
changed randomly (in an arbitrary number of positions) until χ(ε, πψ ◦ πψ)
became to be equal to zero, which means that an involution is founded. We
repeated the above procedure until an involution πψ with the properties
listed in the set of cryptographic criteria has been founded.

We have implemented this algorithm in SAGE [45] obtaining some 8-bit
involutions πψ with #FixP(πψ) = 16 and the following cryptographic prop-
erties:

• dmin(πψ) = 7,

• rπ = 3 with r(3)πψ = 441,

• δπψ ∈ {6, 8},

• 100 ⩽ NL(πψ) ⩽ 104.

From a cryptographic point of view one need to minimize the number
of fixed points of a permutation as much as possible [25]. Moreover, it is
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well-known that any involution may be easily distinguished from a random
permutation by the number of its fixed points [6]. The results of the follow-
ing propositions may help to develop a simple method allowing to minimize
the size of FixP(Φ), if the involution Φ has more than two fixed points.

Proposition 7. Let Φ1,Φ2 be two involutions of S(Vn) having the property
Φ1 ◦ Φ2 = Φ2 ◦ Φ1 . Then Φ1 ◦ Φ2 is also an involution of S(Vn).

Proof. If Φ1,Φ2 are two involutions of S(Vn) such that Φ1 ◦Φ2 = Φ2 ◦Φ1,
then we have (Φ1 ◦ Φ2) ◦ (Φ1 ◦ Φ2) = Φ1 ◦ (Φ2 ◦ Φ2) ◦ Φ1 = Φ1 ◦ Φ1 = ε.

Proposition 8. Let Φ be an involution of S(Vn) having #FixP(Φ) ⩾ 2.
Then for any transposition τ = (α, β) ∈ S(Vn), where α, β ∈ FixP(Φ), the
permutation Φ ◦ τ is also an involution of S(Vn).

Proof. It is clear that any transposition is an involution. So for any in-
volution τ = (α, β) ∈ S(Vn) such that α, β ∈ FixP(Φ) the folowing relation
holds:

{x ∈ Vn |Φ(x) ̸= x} ∩ {x ∈ Vn | τ(x) ̸= x} = ∅, (22)

i. e., permutations τ and Φ are independentb. It is well-known that for in-
dependent permutations the following equality holds: Φ◦τ = τ ◦Φ (see [16,
Proposition 26, p. 227]), thus by Proposition 7 we conclude that permuta-
tion Φ ◦ τ is an involution in S(Vn).

Although by applying Proposition 8 to 8-bit involutions πψ with
#FixP(π) = 16 we can remove all fixed points, the cryptographic prop-
erties related to linear and differential cryptanalysis of the new involutions
slightly decrease in comparison with those generated by πψ. However, still
by using this Proposition we can find almost optimal involutions without
fixed points.

Also, we have tried to design directly involutions using our scheme as
building block. To achieve the fulfillment of condition Φ ◦ Φ = ε, our stra-
tegy was to combine our constructions into two or more rounds. Choosing
two arbitrary k-bit involutions h1 , h2 , the following construction is able to
produce 2k-bit involutions.

Figure 2 shows that the construction of π̂(invol) is a composition of three
functions π3 , π2 and π1 , where π3 and π1 have similarities with 1-round
Lai – Massey scheme. The involution property of the whole construction
may be derived from the well-known fact that if M is an involution over

bPermutations h1, h2 ∈ S(Vn) are independent if {x ∈ Vn | h1(x) ̸= x} ∩ {x ∈ Vn | h2(x) ̸= x} = ∅.
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Construction of π̂(invol)

For the input value (l∥r) ∈ V2k we define
the corresponding output value as follows

π̂(invol)(l∥r) =
(
π3 ◦ π2 ◦ π1

)
(l∥r) = l1∥r1, where

π1(l∥r) = (l ⊗ I(ψ(l ⊗ r)))
∥∥∥(r ⊗ ψ(l ⊗ r)),

π2(l∥r) = h1(l)
∥∥∥h2(r),

π3(l∥r) =
(
l ⊗ ψ(l ⊗ r)

)∥∥∥(r ⊗ I(ψ(l ⊗ r))
)
.

ψ

I

h
1

h
2

ψ

I

Fig. 2. Structure of π̂(invol)

Vn, then for any permutation G ∈ Vn the resulting transformation F =
G−1 ◦M ◦G is an involution over Vn. Here
F (l∥r) = π̂invol, G(l∥r) =

(
l ⊗ I(ψ(l ⊗ r)))

∥∥∥(l ⊗ ψ(l ⊗ r))
)
,

M(l∥r) = h1(l)∥h2(r) and G−1(l∥r) =
(
(l ⊗ ψ(l ⊗ r))∥(l ⊗ I(ψ(l ⊗ r))

)
.

It is worth to note that, in the particular case of a construction of invo-
lution of the form F = G−1 ◦M ◦ G, the nonlinear transformation F has
exactly the same number of fixed points as the middle permutation M , and
more general the same cycle structure (see [16, Theorem 34, p. 235]).

For sets W
(1)
∗ =

{
(∗∥r)

∣∣r ∈ Vk}, where ∗ ∈ {α, h1(α)
}
, and W

(2)
⋆ ={

(l∥⋆)
∣∣ l ∈ Vk}, where ⋆ ∈ {α, h2(α)

}
, the following relations hold:

M
(
W

(1)
α

)
⊆ W

(1)
h1(α)

,M
(
W

(1)
h1(α)

)
⊆ W

(1)
α ,M

(
W

(2)
α

)
⊆ W

(2)
h2(α)

,M
(
W

(2)
h2(α)

)
⊆

W
(2)
α , which means that sets W

(1)
∗ ,W

(2)
⋆ are invariant with respect to the

action of M and this is a weakness for permutation M . Moreover, some of
these sets may be presented even after composition of π3 , π2 and π1 . Indeed,
if h1(0) = 0, then for any r ∈ Vk we have π̂(invol)(0||r) = 0||r1 ∈ W

(1)
0 , and if

h2(0) = 0, then π̂(invol)(l||0) = l1||0 ∈ W
(2)
0 , so in this case W

(i)
0 , i = 1, 2, are

invariant subspaces with respect to π̂(invol) and these structures should be
taken into account when designing the linear layer and the key-expansion
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algorithm of a block cipher to avoid the existence of a large number of weak
keys for the encryption function. For this reason it is highly recommended
to perform a search over the structure of π̂(invol) using involutions h1 and
h2 without fixed points.

Using the previous construction we have performed a search based on
random generation of 4-bit involutions and 4-bit function ψ : V4 → V ∗

4

aiming to find almost optimal involutions π̂(invol) without fixed points (in
contrast to those generated by the construction of π) with the parameters

• dmin(π̂(invol)) = 7,

• rπ̂(invol) = 3 with r(3)
π̂(invol) = 441,

• δπ̂(invol) = 8,

• 100 ⩽ NL(π̂(invol)) ⩽ 102.

The possibility of having no fixed points in those involutions constructed
under the π̂(invol) scheme has some significances. In fact, the involutions pro-
duced by this construction have more finite field multiplications, this has
an impact on the masking complexity of these kind of permutations in com-
parison with those involutions generated by πψ (see Section 5). Moreover,
the cryptographic properties related to linear and differential cryptanalysis
of involutions based on π̂(invol)-construction slightly decrease in comparison
with those generated by πψ.

3.6. Searching of highly-nonlinear orthomorphisms

In this section we will study the possibility of using our algorithmic-
algebraic scheme to find a special kind of the so-called complete mappings.
Complete mapping were first introduced by Mann [33] and the term ortho-
morphisms was first used by Johnson, Dulmage and Mendelsohn [23] and
were also studied in [13, 14, 34–40, 49]. Orthomorphisms are pertinent to
the construction of mutually orthogonal Latin squares and may be used to
design check digit systems.

In Cryptography, applications of orthomorphisms of the group (Vn, ⊕)
are found in the construction of block ciphers, stream ciphers and hash func-
tions (in the Lai – Massey scheme, for example, in well-known FOX [47]
family of block ciphers, Chinese stream cipher LOISS [22] and hash func-
tion EDON-R [21]). More recently, orthomorphisms have been used to
strengthen the Even–Mansour block cipher against some cryptographic at-
tacks [20].
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Definition 17 ([37]). A permutation Φ ∈ S(Vn) is called ortomorphism
on (Vn,⊕) if the mapping Φ̃ : Vn → Vn defined as Φ̃(x) = x ⊕ Φ(x) is a
permutation of S(Vn).

The set of all ortomorphisms of the group (Vn, ⊕) is denoted by Orth(Vn).
For any permutation Φ ∈ S(Vn) we define the set

DΦ =
{
Φ̃(x)

∣∣∣x ∈ Vn

}
=

{
Φ(x)⊕ x

∣∣∣x ∈ Vn

}
. (23)

From (23) it follows that Φ ∈ Orth(Vn) if and only if #DΦ = 2n.

Proposition 9. For any Φ ∈ Orth(Vn) the following relations holds:
WΦ(a, b) = WΦ̃(a⊕ b, b) and ∆Φ(a, b) = ∆Φ̃(a, a⊕ b).

Proof. If the permutation Φ ∈ S(Vn) is an ortomorphism on Vn, then
WΦ(a, b) =

∑
x∈Vn

(−1)⟨b,Φ(x)⟩⊕⟨a,x⟩ =
∑
x∈Vn

(−1)⟨b,Φ̃(x)⟩⊕⟨a⊕b,x⟩ = WΦ̃(a ⊕ b, b)

for all a, b ∈ Vn. Analogously, we can find that ∆Φ(a, b) = ∆Φ̃(a, a⊕ b) for
all a, b ∈ Vn.

The next proposition shows that regardless of the choice of the func-
tion ψ we can not construct orthomorphisms over (Vn,⊕) using the con-
struction of πψ.

Proposition 10. Let ψ : Vk → V ∗
k be an arbitrary k-bit function. Then for

permutation πψ : V2k → V2k , πψ(l∥r) = (I(l) ⊗ ψ(l ⊗ r))∥I(r ⊗ ψ(l ⊗ r)),
the following inequality holds:

#Dπψ < 22k. (24)

Proof. Let us fix an arbitrary k-bit function ψ : Vk → V ∗
k and construct

the permutation πψ = (I(l)⊗ ψ(l ⊗ r))∥I(r ⊗ ψ(l ⊗ r)). As for any a, b ∈
F2k \ {0} the equation a ⊗ x = b has a unique solution, then for any
i ∈ {0, 1, . . . , 2k − 1} and some primitive element c ∈ F2k we have

ord c = 2k − 1 ⇒ ord c−2 = 2k − 1 ⇒ ∃i : ψ(0) = c−2i

⇒ πψ(0∥ci)⊕ (0∥ci) = πψ(0∥0)⊕ (0∥0) ⇒ #Dπψ < 22k.

Let us now consider the class of permutations
π̇ψ(l∥r) = I(r ⊗ ψ(l ⊗ r))∥(I(l)⊗ ψ(l ⊗ r)).

Proposition 11. Let ψ, ψ′ : Vk → V ∗
k be two arbitrary mappings with

χ(ψ, ψ′) = 1. Then for permutations π̇ψ, π̇ψ′ the following relations holds:
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1)
∣∣∣#Dπ̇ψ −#Dπ̇ψ′

∣∣∣ ⩽ 2 · (2k − 1), if ψ(0) ̸= ψ′(0),

2)
∣∣∣#Dπ̇ψ −#Dπ̇ψ′

∣∣∣ ⩽ 2k − 1, if ψ(i) ̸= ψ′(i) for some i ̸= 0.

Proof. Let prove the first item of the proposition. The set Dπ̇ψ′ may be
written as

Dπ̇ψ′ =
{
0
}⋃{

I(r ⊗ ψ′(0))∥r)
∣∣∣r ∈ V ∗

k

}⋃{
(l∥(I(l)⊗ ψ′(0))

∣∣∣ l ∈ V ∗
k

}
⋃{

(I(r ⊗ ψ′(l ⊗ r))∥(I(l)⊗ ψ′(l ⊗ r))⊕ (l∥r)
∣∣∣ l, r ∈ V ∗

k

}
.

According the conditions of the proposition ψ(0) ̸= ψ′(0), and ψ(j) = ψ′(j)
for any j ∈ V ∗

k . Then

Dπ̇ψ′ =
{
0
}⋃{

I(r ⊗ ψ′(0))∥r)
∣∣∣r ∈ V ∗

k

}⋃{
(l∥(I(l)⊗ ψ′(0))

∣∣∣ l ∈ V ∗
k

}
⋃{

(I(r ⊗ ψ(l ⊗ r))∥(I(l)⊗ ψ(l ⊗ r))⊕ (l∥r)
∣∣∣ l, r ∈ V ∗

k

}
,

where #
{
I(r⊗ψ′(0))∥r)

∣∣∣r ∈ V ∗
k

}
= #

{
(l∥(I(l)⊗ψ′(0))

∣∣∣ l ∈ V ∗
k

}
= 2k−1.

Since for the set Dπ̇ψ

Dπ̇ψ ⊇
{
0
}⋃{

(I(r⊗ψ(l⊗ r))∥(I(l)⊗ψ(l⊗ r))⊕ (l∥r)
∣∣∣ l ∈ V ∗

k , r ∈ V ∗
k

}
,

then

Dπ̇ψ′ ⊆ Dπ̇ψ

⋃{
I(r ⊗ ψ′(0))∥r)

∣∣∣r ∈ V ∗
k

}⋃{
(l∥(I(l)⊗ ψ′(0))

∣∣∣ l ∈ V ∗
k

}
.

Hence
#Dπ̇ψ′ ⩽ #Dπ̇ψ + 2 · (2k − 1). (25)

Analogously for Dπ̇ψ the following inequality holds:

#Dπ̇ψ ⩽ #Dπ̇ψ′ + 2 · (2k − 1). (26)

So, from (25),(26) we deduce that∣∣∣#Dπ̇ψ −#Dπ̇ψ′

∣∣∣ ⩽ 2 · (2k − 1).

Let now prove the second item of the proposition. The set Dπ̇ψ′ may be
decomposed into subsets as follows:

Dπ̇ψ′ =
{
0
}⋃{

I(r ⊗ ψ′(0))∥r)
∣∣∣r ∈ V ∗

k

}⋃{
(l∥(I(l)⊗ ψ′(0))

∣∣∣ l ∈ V ∗
k

}
⋃{

(I(r ⊗ ψ′(l ⊗ r))∥(I(l)⊗ ψ′(l ⊗ r))⊕ (l∥r)
∣∣∣ l, r ∈ V ∗

k

}
.
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According the conditions of the proposition we have ψ(i) ̸= ψ′(i) for
some i ∈ V ∗

k , and ψ(j) = ψ′(j) for any j ∈ Vk \ {i}. Then

Dπ̇ψ′ =
{
0
}⋃{

I(r ⊗ ψ(0))∥r)
∣∣∣r ∈ V ∗

k

}⋃{
(l∥(I(l)⊗ ψ(0))

∣∣∣ l ∈ V ∗
k

}
⋃{

(I(r ⊗ ψ(l ⊗ r))∥(I(l)⊗ ψ(l ⊗ r))⊕ (l∥r)
∣∣∣ l ∈ V ∗

k , r ̸= i⊗ l−1 ∈ V ∗
k

}
⋃{

(I(r ⊗ ψ′(l ⊗ r))∥(I(l)⊗ ψ′(l ⊗ r))⊕ (l∥r)
∣∣∣ l ∈ V ∗

k , r = i⊗ l−1
}
,

and it is not difficult to see that
#
{
(I(r⊗ψ′(l⊗ r))∥(I(l)⊗ψ′(l⊗ r))⊕ (l∥r)

∣∣∣ l ∈ V ∗
k , r = i⊗ l−1

}
⩽ 2k−1.

Taking into account that

Dπ̇ψ ⊇
{
0
}⋃{

I(r ⊗ ψ(0))∥r)
∣∣∣r ∈ V ∗

k

}⋃{
(l∥(I(l)⊗ ψ(0))

∣∣∣ l ∈ V ∗
k

}
⋃{

(I(r⊗ψ(l⊗ r))∥(I(l)⊗ψ(l⊗ r))⊕ (l∥r)
∣∣∣ l ∈ V ∗

k , r ̸= i⊗ l−1 ∈ V ∗
k

}
,

we find that

Dπ̇ψ′ ⊆ Dπ̇ψ

⋃{
(I(r⊗ψ′(l⊗r))∥(I(l)⊗ψ′(l⊗r))⊕(l∥r)

∣∣∣ l ∈ V ∗
k , r = i⊗l−1

}
,

which means
#Dπ̇ψ′ ⩽ #Dπ̇ψ + 2k − 1. (27)

Analogously for Dπ̇ψ the following inequality holds:

#Dπ̇ψ ⩽ #Dπ̇ψ′ + 2k − 1, (28)

and thus from (27), (28) we obtain
∣∣∣#Dπ̇ψ −#Dπ̇ψ′

∣∣∣ ⩽ 2k − 1.

Proposition 11 may be used for searching highly-nonlinear orthomor-
phisms on (V2k, ⊕). In order to achieve the property #Dπ̇ψ = 22k we have
performed a search algorithm similar to algorithm 1. The aim of this al-
gorithm is to increase the value of #Dπ̇ψ up to 22k, which means that a
nonlinear transformation of Orth(V2k) will be founded. At the same time,
according to propositions 3 and 4 it is not difficult to see that the algorithm
for searching this kind of permutations may also optimize the differential
and (non)linear properties of the initial permutation π̇ψ. So, we have im-
plemented this algorithm (which is omitted due to space limitations) in
SAGE [45] obtaining some affine nonequivalent 8-bit nonlinear transforma-
tions π̇ψ ∈ Orth(V8) having the following cryptographic parameters:
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• dmin(π̇ψ) = 7,

• rπ̇ψ = 3 with r(3)π̇ψ = 441,

• δπ̇ψ = 8,

• 100 ⩽ NL(π̇ψ) ⩽ 104.

4. Some concrete S-boxes, its Pollock representations,
column frequency tables and W-intersection matrices

We include in Table 2 some permutations generated by our method, one
ordinary permutation with the best founded cryptographic parameters, two
involutions and one of the best founded orthomophisms.

Table 2. Some constructed 8-bit S-boxes

S-box π̂1 Involution π̂2
NL(π̂1) = 104, δπ̂1 = 6, dmin(π̂1) = 7, rπ̂1 = 3, r

(3)
π̂1

= 441. NL(π̂2) = 104, δπ̂2 = 6, dmin(π̂2) = 7, rπ̂2 = 3, r
(3)
π̂2

= 441.

0x6e 0xe8 0x5f 0xa8 0x32 0x24 0xa7 0xe 0x1d 0x64 0x87 0x14 0xc3 0x6f 0x95 0x92
0xfb 0x4c 0x82 0x99 0x3d 0x19 0xac 0x45 0x9f 0xfe 0xde 0x15 0xb9 0xf9 0xe2 0x8a
0xec 0xf5 0xd 0xea 0x3a 0x77 0x47 0x12 0x11 0x1 0x97 0xc5 0x13 0x10 0x81 0x9d
0xed 0x75 0x88 0x68 0xfa 0xa4 0xc0 0xca 0xba 0xb2 0x3b 0x61 0xae 0xa 0x6c 0x65
0xd5 0x42 0x5d 0xdc 0xf2 0x85 0x9b 0xa6 0x67 0x50 0x63 0x91 0xc7 0x34 0x80 0xd7
0x96 0x1b 0x8e 0x5e 0x94 0x2f 0xb1 0xad 0xa0 0x93 0x2c 0x52 0xd0 0x29 0x7 0xc8
0x8d 0x7f 0x49 0x6b 0x36 0x2e 0xd9 0xe0 0x37 0xcd 0x83 0xaf 0x6d 0x57 0xce 0xb3
0x5c 0xc6 0x60 0xd8 0x3f 0xe4 0x4f 0xab 0x56 0xa1 0x72 0xe7 0x69 0xf1 0xdd 0x9c
0x84 0x90 0x25 0x4b 0x76 0x5a 0x6a 0xda 0xf0 0xe5 0x53 0x5b 0x7e 0x2a 0x2b 0xd3
0x35 0xa3 0x1c 0xa2 0x28 0x9e 0x30 0xa9 0xb4 0x6 0xb 0xef 0xaa 0x43 0xe9 0x7d
0xe1 0x3e 0x31 0x44 0x54 0xdb 0x79 0xc9 0x41 0xfc 0xf7 0x66 0x7a 0xb7 0x51 0x38
0xdf 0x62 0x40 0xbb 0x26 0x9 0xf3 0xcf 0xd2 0x1a 0x20 0xc 0x4 0x16 0x33 0x22
0x4e 0xa5 0x58 0x9a 0xd6 0x2 0xe6 0xcb 0xbe 0xeb 0x86 0x7b 0xbd 0xd1 0x3 0xf6
0xee 0x8f 0xf 0x55 0x8b 0x4a 0x7c 0x23 0x2d 0xb6 0x1f 0xc2 0x17 0xbf 0x73 0x8
0xcc 0x70 0x1e 0x59 0x46 0xe3 0x27 0xff 0x78 0xb8 0x18 0x21 0xd4 0xbc 0x98 0xf4
0xc1 0xc4 0x74 0x39 0x89 0xf8 0xfd 0x48 0x71 0x4d 0xb0 0x3c 0x0 0x8c 0xb5 0x5

0x0 0x10 0x90 0xe0 0xd0 0xb0 0x70 0x60 0xf0 0x20 0xc0 0x50 0xa0 0x40 0x30 0x80
0x1 0x11 0x19 0x85 0x2f 0x2c 0x8b 0xf5 0x2e 0x12 0xfa 0x9a 0x8c 0x98 0xfb 0x93
0x9 0x2d 0x4e 0x3c 0x47 0xd5 0x36 0xdc 0x3b 0x29 0xdb 0x46 0x15 0x21 0x18 0x14
0xe 0xb3 0xb8 0x64 0xb4 0x81 0x26 0x3f 0x86 0x6b 0x89 0x28 0x23 0x65 0x3e 0x37
0xd 0x87 0x8a 0x63 0x6c 0x9c 0x2b 0x24 0x66 0x4f 0x96 0x9b 0x83 0x4d 0x22 0x49
0xb 0xad 0x62 0xbe 0x61 0x5c 0xb7 0xa8 0x69 0xb2 0xa3 0x5b 0x55 0xed 0xe1 0xe9
0x7 0x54 0x52 0x43 0x33 0x3d 0x48 0x67 0xc2 0x58 0x6e 0x39 0x44 0xcc 0x6a 0xcb
0x6 0xbd 0xbf 0x7c 0xaa 0xe2 0x76 0xdf 0xa5 0xb9 0xdd 0xe4 0x73 0xee 0xde 0xa9
0xf 0x35 0xc6 0x4c 0xc3 0x13 0x38 0x41 0xc8 0x3a 0x42 0x16 0x1c 0x8e 0x8d 0x8f
0x2 0x94 0x92 0x1f 0x91 0xd7 0x4a 0xe7 0x1d 0xd3 0x1b 0x4b 0x45 0xd6 0xea 0xe5
0xc 0xc1 0xc9 0x5a 0xcd 0x78 0xab 0xf9 0x57 0x7f 0x74 0xa6 0xac 0x51 0xfd 0xff
0x5 0xc4 0x59 0x31 0x34 0xb5 0xcf 0x56 0x32 0x79 0xbb 0xba 0xce 0x71 0x53 0x72
0xa 0xa1 0x68 0x84 0xb1 0xc7 0x82 0xc5 0x88 0xa2 0xca 0x6f 0x6d 0xa4 0xbc 0xb6
0x4 0xf6 0xd8 0x99 0xd4 0x25 0x9d 0x95 0xd2 0xfc 0xfe 0x2a 0x27 0x7a 0x7e 0x77
0x3 0x5e 0x75 0xe3 0x7b 0x9f 0xe8 0x97 0xe6 0x5f 0x9e 0xf1 0xf2 0x5d 0x7d 0xf7
0x8 0xeb 0xec 0xf4 0xf3 0x17 0xd1 0xef 0xf8 0xa7 0x1a 0x1e 0xd9 0xae 0xda 0xaf

Involution π(invol)3 Orthomorphism π̇4
NL(π(invol)3 ) = 100, δ

π
(invol)
3

= 8, dmin(π
(invol)
3 ) = 7, r

π
(invol)
3

= 3, r
(3)

π
(invol)
3

= 441. NL(π̇4) = 104, δπ̇4 = 8, dmin(π̇4) = 7, rπ̇4 = 3, r
(3)
π̇4

= 441.

0x3e 0x37 0x56 0x45 0x53 0xc1 0xc8 0xe5 0x72 0x20 0xea 0xad 0xa9 0xc7 0xcf 0x5a
0xba 0x5b 0x73 0xf0 0x2f 0x83 0xdf 0xdb 0x9d 0x7c 0xb0 0x86 0xff 0x22 0xcd 0x93
0x9 0xa6 0x1d 0xe0 0xd9 0xe7 0xed 0x69 0x6c 0xb5 0xf5 0x46 0xa0 0xab 0xd6 0x14
0x6b 0x4a 0xa2 0x95 0x52 0x75 0x5d 0x1 0x9a 0x74 0xf6 0x44 0xae 0xf2 0x0 0xc5
0x8e 0x99 0xf1 0x79 0x3b 0x3 0x2b 0xfc 0xe9 0x5c 0x31 0x7e 0x50 0xca 0x98 0x55
0x4c 0x7f 0x34 0x4 0x61 0x4f 0x2 0xcc 0xdc 0x7d 0xf 0x11 0x49 0x36 0xdd 0x66
0xc6 0x54 0xb4 0xb9 0xd7 0xec 0x5f 0x8f 0xda 0x27 0x6e 0x30 0x28 0xa8 0x6a 0xe4
0xfa 0x84 0x8 0x12 0x39 0x35 0xd4 0x8b 0xce 0x43 0xe1 0x90 0x19 0x59 0x4b 0x51
0xcb 0xe2 0x85 0x15 0x71 0x82 0x1b 0xd3 0xa1 0xd1 0xeb 0x77 0xaf 0xbb 0x40 0x67
0x7b 0xe6 0xac 0x1f 0xe8 0x33 0xb3 0xd5 0x4e 0x41 0x38 0xde 0x9e 0x18 0x9c 0xbf
0x2c 0x88 0x32 0xb7 0xfb 0xbc 0x21 0xf9 0x6d 0xc 0xd0 0x2d 0x92 0xb 0x3c 0x8c
0x1a 0xef 0xee 0x96 0x62 0x29 0xbe 0xa3 0xc9 0x63 0x10 0x8d 0xa5 0xc3 0xb6 0x9f
0xfd 0x5 0xfe 0xbd 0xf7 0x3f 0x60 0xd 0x6 0xb8 0x4d 0x80 0x57 0x1e 0x78 0xe
0xaa 0x89 0xf3 0x87 0x76 0x97 0x2e 0x64 0xf4 0x24 0x68 0x17 0x58 0x5e 0x9b 0x16
0x23 0x7a 0x81 0xf8 0x6f 0x7 0x91 0x25 0x94 0x48 0xa 0x8a 0x65 0x26 0xb2 0xb1
0x13 0x42 0x3d 0xd2 0xd8 0x2a 0x3a 0xc4 0xe3 0xa7 0x70 0xa4 0x47 0xc0 0xc2 0x1c

0xe1 0x3d 0x2d 0x17 0x51 0x71 0x9b 0x1a 0x96 0xfa 0x64 0x46 0x2f 0x1b 0xe3 0x40
0x1f 0xea 0x12 0xd1 0xa2 0x11 0x5d 0x44 0xb 0xa0 0xaa 0xc9 0x5f 0x58 0xf 0x15
0x5b 0xce 0x49 0x5c 0x7d 0x8a 0xb1 0x2 0x8c 0xcc 0xc8 0xaf 0x56 0xf7 0x4b 0x95
0xa3 0xab 0xcf 0x6f 0xeb 0xd9 0x37 0xdf 0xa8 0x3c 0xbd 0xa4 0x10 0xd7 0xed 0x24
0x29 0x7b 0xe9 0x27 0x22 0x57 0xb6 0xf6 0x79 0x45 0x55 0x82 0xb4 0xc5 0x97 0x69
0x48 0xda 0x2a 0x8f 0x6 0xe2 0x80 0xfe 0xc1 0xf5 0xff 0x3b 0x8d 0x6b 0x85 0xc3
0xdc 0x23 0xca 0x1e 0x5a 0xd 0xf3 0x0 0x81 0xe5 0xc4 0x52 0x32 0x3a 0x1d 0x6d
0x6a 0x77 0x75 0xbe 0xbb 0xb0 0xfc 0xc2 0xf8 0xb2 0x4a 0x9d 0x86 0x4 0x39 0x20
0xd4 0x8 0x4c 0x42 0x94 0xad 0x70 0xa5 0xd5 0x90 0xa7 0xe4 0x3f 0x53 0xde 0x9a
0x54 0xfd 0x2c 0x7 0x5 0x76 0xb8 0xdd 0x7f 0x87 0xa1 0x16 0xd2 0x3e 0xec 0x6e
0x63 0xc 0x50 0x3 0xe8 0x4e 0x73 0x26 0x13 0x4d 0x60 0xa6 0x2e 0xdb 0x8e 0x34
0x5e 0xe7 0xb9 0x1 0xf0 0x72 0xbf 0x25 0x93 0xae 0x62 0x83 0xf4 0xe6 0x47 0x19
0x89 0x7c 0x35 0xa9 0xb5 0x7a 0xf1 0x38 0xef 0x14 0xee 0x1c 0x74 0x31 0xe 0xfb
0xf9 0x91 0x78 0x33 0x18 0xd6 0xd8 0x41 0x9e 0x7e 0xa 0xd3 0x28 0xe0 0xb3 0x21
0x66 0x9f 0xba 0x2b 0x30 0x92 0xbc 0xc6 0x8b 0x6c 0x65 0x68 0x9c 0x4f 0xf2 0x61
0x36 0x84 0xcd 0xc0 0x88 0xc7 0xb7 0x43 0x59 0x98 0xd0 0x99 0x9 0xac 0xcb 0x67

In [4] the authors suggested looking at the visual representation of the
LAT of an S-box with the goal to find some unexpected patterns, which may
be used in some sense to distinguish it from a random one. The suggested
representation is a heatmap of the LAT matrix and was called “a Jackson
Pollock representation” of the LAT.

Similarly to [4], in [46] the author illustrate the usefulness of the “Jack-
son Pollock representation” of the LAT of an S-box, defining the so-called
column frequency table, a tool which may be used to strengthen the effect
of some unexpected patterns of a given S-box.
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Definition 18 ([46]). Let A be an n × m matrix over Z. The column
frequency table of A, denoted by CF(A), is defined as

CF(A)[y, x] = #
{
ŷ ∈ {1, . . . , n}

∣∣A[ŷ, x] = A[y, x]
}
. (29)

Fig. 3. Pollock representation of the LAT of S-boxes π̂1,π̂2,π(invol)
3 and π̇4

Fig. 4. Column Frequency Tables of the LAT of S-boxes π̂1,π̂2,π(invol)
3 and π̇4

The Pollock representation and column frequency tables of the LAT of
S-boxes π̂1,π̂2,π

(invol)
3 and π̇4 listed in Table 2 are shown in Fig. 3 and 4

respectively.
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As may be observed, the existence of some visual patterns cannot be
detected for the S-box π̂1, this is due to the use of some binary linear
layers in construction of π̂1. If we remove these binary matrices, then some
patterns appear in the S-box π̂1 similar to those detected for π̂2 (second
image displayed in Fig. 3 and 4 respectively). When displaying the Pollock
representation and column frequency tables of the LAT of π(invol)

3 we don’t
find any patterns in these representations. The diagonal lines reflected in
Fig. 3 and 4 respectively for the orthomorphism π̇4 is due to the fact that
for any orthomorphism Φ ∈ Orth(Vn) the relation WΦ(a, a) = WΦ̂(0, a) = 0
holds for all a ∈ Vn.

The W-intersection matrices (see Section 3.4) of nonlinear bijective
transformations π̂1,π̂2,π

(invol)
3 and π̇4 for subspaces W1 = {(l∥0)|l ∈ V4},

W2 = {(0∥r)|r ∈ V4} of the vector space V8 are given below.

MW1
(π̂1) =



1 2 1 1 0 1 3 0 1 2 2 0 1 0 1 0
0 2 0 1 2 0 0 0 2 2 1 1 0 1 1 3
2 4 0 1 1 0 0 1 1 2 0 0 1 0 2 1
1 0 0 1 0 0 4 1 1 0 2 2 2 0 1 1
0 0 0 1 1 2 2 0 2 2 1 0 1 3 0 1
1 1 3 0 0 2 0 0 1 3 2 1 1 1 0 0
0 0 1 2 1 1 2 1 2 0 1 1 2 1 1 0
0 0 0 1 1 2 2 1 0 1 2 0 1 2 2 1
0 0 3 0 1 3 1 2 1 1 0 0 0 2 1 1
2 1 1 2 1 0 0 1 0 1 4 1 0 0 2 0
0 0 0 3 2 2 1 2 0 0 0 1 1 1 1 2
3 2 3 1 1 0 1 0 0 0 0 1 1 2 0 1
2 0 0 0 1 1 0 1 1 1 1 2 1 2 2 1
2 2 2 0 1 1 0 2 2 0 0 2 1 0 1 0
0 2 2 0 1 1 0 2 0 1 0 2 1 1 1 2
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2



,MW2
(π̂1) =



0 2 0 0 1 2 1 0 0 0 0 1 3 2 3 1
2 0 2 1 1 3 1 0 1 0 0 1 1 0 1 2
2 1 1 0 1 1 0 0 2 1 0 0 1 2 2 2
0 0 1 0 1 1 0 0 3 3 2 3 1 0 1 0
0 0 2 0 2 0 5 0 1 1 2 1 0 1 0 1
0 0 1 1 3 1 0 1 1 2 2 1 0 0 2 1
2 1 0 1 0 0 1 3 0 2 1 1 2 1 0 1
1 0 1 1 0 1 1 0 1 2 2 2 0 1 1 2
2 3 1 0 1 0 1 2 1 0 1 0 0 2 1 1
1 2 1 1 1 1 2 0 1 0 1 1 1 2 1 0
2 0 1 3 0 0 1 3 1 0 0 2 1 0 1 1
0 3 2 0 1 2 1 1 0 0 0 2 2 0 0 2
2 0 0 2 2 0 0 2 0 2 2 0 0 2 2 0
1 2 0 1 1 0 1 2 0 2 2 0 2 0 0 2
1 2 1 3 0 2 0 1 1 1 0 1 1 1 1 0
0 0 2 2 1 2 1 1 3 0 1 0 1 2 0 0



,MW1
(π̂2) =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 3 0 0 0 0 0 3 3 0 0 0 0 0 3
1 3 3 3 3 0 0 0 0 0 0 0 0 3 0 0
1 0 3 3 0 0 3 0 3 0 0 3 0 0 0 0
1 0 3 0 3 0 3 0 3 3 0 0 0 0 0 0
1 0 0 0 0 3 3 0 0 0 3 3 0 0 3 0
1 0 0 3 3 3 3 0 0 0 0 0 3 0 0 0
1 0 0 0 0 0 0 3 0 0 3 3 0 3 3 0
1 3 0 3 3 0 0 0 3 0 0 0 3 0 0 0
1 3 0 0 3 0 0 0 0 3 0 0 0 3 3 0
1 0 0 0 0 3 0 3 0 0 3 0 3 0 0 3
1 0 0 3 0 3 0 3 0 0 0 3 3 0 0 0
1 0 0 0 0 0 3 0 3 0 3 3 3 0 0 0
1 0 3 0 0 0 0 3 0 3 0 0 0 3 0 3
1 0 0 0 0 3 0 3 0 3 0 0 0 0 3 3
1 3 0 0 0 0 0 0 0 0 3 0 0 3 3 3



,MW2
(π̂2) =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 0 1 3 1 1 1 0 0 0 1 0 3 1 0
1 0 3 0 0 1 1 0 3 3 1 0 1 0 1 1
1 1 0 3 3 1 0 0 0 1 1 0 3 0 1 1
1 3 0 3 3 0 0 1 0 0 1 1 1 1 0 1
1 1 1 1 0 3 0 3 1 0 0 0 3 1 0 1
1 1 1 0 0 0 3 1 3 0 1 3 0 1 0 1
1 1 0 0 1 3 1 3 1 1 0 0 1 0 0 3
1 0 3 0 0 1 3 1 3 1 0 1 0 1 1 0
1 0 3 1 0 0 0 1 1 3 1 1 1 0 0 3
1 0 1 1 1 0 1 0 0 1 3 3 0 1 3 0
1 1 0 0 1 0 3 0 1 1 3 3 0 0 1 1
1 0 1 3 1 3 0 1 0 1 0 0 3 1 1 0
1 3 0 0 1 1 1 0 1 0 1 0 1 3 3 0
1 1 1 1 0 0 0 0 1 0 3 1 1 3 3 0
1 0 1 1 1 1 1 3 0 3 0 1 0 0 0 3



MW1
(π

(invol)
3 ) =



0 0 0 2 0 0 1 0 0 1 4 3 2 1 2 0
0 0 2 0 2 1 2 1 1 2 2 1 0 0 0 2
0 2 2 2 2 1 1 0 1 0 0 0 1 2 2 0
2 0 2 0 1 3 1 2 1 2 0 0 0 1 0 1
0 2 2 1 0 0 1 2 2 2 0 2 0 0 0 2
0 1 1 3 0 2 0 3 0 1 1 0 2 0 0 2
1 2 1 1 1 0 0 0 1 0 1 2 0 2 2 2
0 1 0 2 2 3 0 0 0 2 0 2 2 1 0 1
0 1 1 1 2 0 1 0 0 2 2 0 2 2 2 0
1 2 0 2 2 1 0 2 2 0 0 0 3 1 0 0
4 2 0 0 0 1 1 0 2 0 2 1 0 1 1 1
3 1 0 0 2 0 2 2 0 0 1 0 0 3 2 0
2 0 1 0 0 2 0 2 2 3 0 0 0 0 2 2
1 0 2 1 0 0 2 1 2 1 1 3 0 0 2 0
2 0 2 0 0 0 2 0 2 0 1 2 2 2 0 1
0 2 0 1 2 2 2 1 0 0 1 0 2 0 1 2



,MW2
(π

(invol)
3 ) =



0 0 1 2 1 3 0 1 0 0 2 0 4 0 2 0
0 0 2 0 0 1 0 2 2 2 0 2 1 2 0 2
1 2 0 0 1 0 2 0 0 0 3 1 0 2 3 1
2 0 0 0 2 2 1 2 0 2 2 0 1 0 0 2
1 0 1 2 0 3 0 2 1 2 0 0 1 0 1 2
3 1 0 2 3 0 2 2 0 0 0 0 1 2 0 0
0 0 2 1 0 2 2 0 1 0 1 2 1 2 2 0
1 2 0 2 2 2 0 0 2 1 0 0 1 1 1 1
0 2 0 0 1 0 1 2 2 0 2 1 1 2 2 0
0 2 0 2 2 0 0 1 0 2 1 2 0 2 2 0
2 0 3 2 0 0 1 0 2 1 0 2 0 1 0 2
0 2 1 0 0 0 2 0 1 2 2 2 2 0 2 0
4 1 0 1 1 1 1 1 1 0 0 2 0 0 0 3
0 2 2 0 0 2 2 1 2 2 1 0 0 0 0 2
2 0 3 0 1 0 2 1 2 2 0 2 0 0 0 1
0 2 1 2 2 0 0 1 0 0 2 0 3 2 1 0



,MW1
(π̇4) =



0 3 2 1 2 1 1 1 0 2 0 0 0 0 2 1
2 4 0 0 1 3 0 0 0 0 3 0 1 1 1 0
1 0 0 0 2 3 0 1 2 1 1 1 3 0 0 1
0 1 1 2 0 0 1 0 0 0 4 1 1 3 2 0
0 0 3 0 1 2 1 2 1 1 0 2 1 0 1 1
1 0 1 1 1 0 1 0 4 0 0 0 2 1 1 3
2 2 1 2 0 2 1 0 1 0 0 0 2 1 1 1
1 0 1 1 1 0 1 2 1 1 0 4 1 0 0 2
1 0 0 1 2 1 0 1 0 3 3 0 0 3 1 0
2 1 1 1 0 1 1 2 1 0 1 1 0 2 1 1
2 1 2 1 2 1 2 1 1 0 1 0 0 1 1 0
1 1 1 0 1 1 1 1 1 1 1 2 0 0 2 2
1 2 0 3 0 0 0 3 1 0 1 1 0 0 2 2
1 1 2 1 1 0 0 2 0 2 0 1 0 3 1 1
0 0 1 1 1 0 5 0 1 3 0 2 1 0 0 1
1 0 0 1 1 1 1 0 2 2 1 1 4 1 0 0



,MW2
(π̇4) =



0 1 0 2 2 0 2 0 1 3 1 1 1 0 1 1
0 1 0 1 1 0 0 2 1 0 2 2 2 2 1 1
1 0 1 0 0 2 0 0 1 3 3 0 2 2 0 1
1 2 1 2 0 0 0 3 0 1 0 1 1 0 2 2
2 1 2 0 1 2 1 0 3 0 1 2 0 1 0 0
1 2 3 0 0 0 2 2 0 1 2 0 0 2 1 0
2 2 0 2 0 0 1 2 2 0 0 1 2 1 0 1
1 1 2 1 1 2 3 0 1 0 1 0 0 1 1 1
0 2 0 2 0 1 1 0 2 2 0 2 1 0 1 2
2 0 1 0 1 3 0 1 1 0 1 0 3 1 2 0
2 1 1 0 2 2 0 1 1 0 3 0 0 1 1 1
0 0 2 2 2 0 3 0 1 2 0 1 1 1 0 1
1 0 2 0 3 0 2 0 1 1 0 0 1 1 1 3
1 1 0 1 1 1 1 2 1 0 1 3 1 0 1 1
0 0 1 2 0 1 0 2 0 1 0 2 1 2 3 1
2 2 0 1 2 2 0 1 0 2 1 1 0 1 1 0



.

As it may be seen, the matrices MWi
(s), i = 1, 2, where

s ∈ {π̂1, π̂2, π(invol)
3 , π̇4}, do not have any element equal to 16, which con-

firms that subspaces W1 = {(l∥0)|l ∈ V4}, W2 = {(0∥r)|r ∈ V4} of the
vector space V8 are not invariant with respect to the action of these non-
linear bijective transformations.

5. Masking complexity of 8-bit S-boxes obtained by the
scheme of πψ and π̂(invol)

In this section we study the possibility to combine our 8-bit S-boxes
with the classical masking countermeasure against SCAs in terms of its
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masking complexity. The polynomial representation of an S-box defined
by relation (7) is based on four kinds of operations over F2n : additions,
multiplications by constants (scalar multiplications), squares, and nonlin-
ear multiplications (i. e. multiplications of two different variables). Except
for the latter, all these operations are linear (respectively, affine) over Vn.
The processing of any S-box may then be performed as a sequence of func-
tions which are linear (respectively, affine) over Vn (themselves composed of
additions, squares and scalar multiplications) and of nonlinear multiplica-
tions. Hence, masking an S-box processing may be done by masking every
operation mentioned above independently. We recall hereafter the concept
of masking complexity defined as follows.

Definition 19 ([9]). The masking complexity of any n-bit S-box Φ, denoted
by MC(Φ), is the minimal number of nonlinear multiplications required to
evaluate its polynomial representation over F2n .

Denoting by Mn
k the class of exponents α such that Xα has a masking

complexity equal to k we summarizes in Table 3 the results (obtained in [9])
for the cyclotomic classes Cα = {α · 2j mod (15) |j = 0, 1, 2, 3} in M4

k.

Table 3. Cyclotomic classes for n = 4 w.r.t. the masking complexity k

k Cyclotomic classes in M4
k

0 C0 = {0}, C1 = {1, 2, 4, 8}
1 C3 = {3, 6, 12, 9}, C5 = {5, 10}
2 C7 = {7, 11, 13, 14}

Taking into account that the number of field multiplications for any
4-bit permutation and any 4-bit non-bijective function is lower bounded by
0 and upper bounded by 3, 4 respectively (see [9]), we obtain the following
bounds for 8-bit S-boxes produced by our construction:

5 ⩽ # nonlinear multiplications of πψ ⩽ 12. (30)

As we can see from (30), 8-bit S-boxes with only 5 nonlinear multiplications
over F24 may be constructed using the proposed scheme.

The number of field multiplications for those involutions obtained
by the π(invol) scheme is given by the following bound 10 ⩽
# nonlinear multiplications of π(invol) ⩽ 24. As we can see, masking these
involutions is more expensive than ordinary S-boxes produced by the con-
struction of πψ.

Finally, in Table 4 we compare our results with some candidates having
a given level of masking. As we can see, our S-boxes based on π scheme
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Table 4. Comparison of 8-bit S-boxes w.r.t. # nonl. multiplications

S-box class # nonl. multiplications
AES’s S-box [19] 4 (F28 )
AES’s S-box [26] 5 (F24 )
Clefia S-box [19] 10 (F28 )
Iceberg S-box [19] 18 (F24 )
Khazad S-box [19] 18 (F24 )
Picaro S-box [41] 4 (F24 )
Zorro S-box [19] 4 (F24 )

S-boxes based on πψ scheme [this work] 5 ⩽ # nonl. multiplications ⩽ 12

S-boxes based on π(invol) scheme [this work] 10 ⩽ # nonl. multiplications ⩽ 24

exhibits better values of field multiplications than S-boxes of Clefia, Iceberg
and Khazad respectively, having at the same time stronger cryptographic
properties but at the cost of worse number of nonlinear multiplications
compared with the AES [26], Picaro [41] and Zorro S-boxes [19].

6. Conclusion and Future Work
In this paper we have presented a new algorithmic-algebraic scheme

based on the Lai – Massey structure for constructing permutations of di-
mension n = 2k, k ⩾ 2. Compared to the best nonlinearity (108 for k = 4)
offered by the construction presented in [11] and latter generalized in [18],
the nonlinearity of permutations obtained by our scheme is slightly smaller
(equal to 104), but to the best of our knowledge the schemes presented in
[11,18] cannot produce involutions and orthomorphisms with cryptographic
properties close to the optimal ones, so we can conclude that the new struc-
ture presented in this paper is more powerful and attractive due to the
diversity of permutations that may be constructed. Interestingly, the invo-
lutions and orthomorphisms founded in our paper have comparable classical
cryptographic properties as those constructed by using spectral-linear and
spectral-differential methods [34] and the limited deficit’s method [36]. The
main advantage of our 8-bit permutations is that they may be constructed
using smaller 4-bit components which is useful for the implementation of
the S-box in hardware or using a bit-sliced approach. There are several
questions (more theoretical results, hardware and bit-sliced implementa-
tions, more efficient methods of masking) about the class of permutations
suggested in this work which are left for future work.
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