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Abstract. Nonlinear bijective transformations are crucial components
in the design of many symmetric ciphers. To construct permutations
having cryptographic properties close to the optimal ones is not a trivial
problem. We propose a new construction based on the well-known Lai —
Massey structure for generating binary permutations of dimension n = 2k,
k > 2. The main cores of our constructions are: the inversion in Fyx, an
arbitrary k-bit non-bijective function (which has no preimage for 0) and
any k-bit permutation. Combining these components with the finite field
multiplication, we provide new 8-bit permutations with high values of its
basic cryptographic parameters. Also, we show that our approach may be
used for constructing 8-bit involutions and 8-bit orthomorphisms that have
strong cryptographic properties.

Keywords: S-Box, permutation, involution, orthomorphism

IlocTtpoenune 8-OMTOBBIX IIOJCTAHOBOK, 8-OMTOBBIX WHBOJIIOIUIA
n  8-0UTOBBIX OpPTOMOP(PU3IMOB C TIIOYTH OITUMAJIBHBIMU
KpulirorpadondecKuMu napamMmeTrpamMu

P. A. ne 1a Kpyc XumeHec
Hnemumym kpunmoepaguu, Tasanckut yrnusepcumem, Kyba

Annoramusi. Heuneitabie OneKTuBHBIE TPEOOPA3OBAHUST SIBJISIIOTCS BaXK-
HBIM CTPYKTYPHBIM 3JIEMEHTOM IIPU CHHTE3€ COBPEMEHHBIX MU(pPCUCTEM.
Bazada mocrpoeHns S-O00KCOB ¢ OJIM3KUMU K ONTHUMAJIBLHBIM 3HAYEHU-
sIM KpUNTOorpaduvIecKnx mapamMeTpoB HeTpuBHasbHa. [Ipempraraercsa HoBas
KOHCTPYKIINS JJTS TIOCTPOEHUS IBONYHBIX HEJIMHEIHBIX OMEKTHBHBIX ITPe0d-
pazoBaHuii pazmeprocteii n = 2k, k > 2, ocHoBanHas Ha cxeme Jlan — Mec-
cu. OCHOBHBIE y3JIbI TIPejIaraeMoil KOHCTPYKIK — (DYHKIUsS 00paIeHust
9JIeMeHTa B KOHeYIHOM T10J1e ok, k-OuToBoe HebuekTnBHOE OTOOpazKenue 6e3
poobpasza i HyJIeBOTO djieMeHTa 1oJisd [For 1 mpousBosibHas k-OutoBas
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nojictaHoBKa. KoMOmHaImss 9TUX KOMIIOHEHTOB C OIepalfeil yMHOXKEHU
B KOHEYHOM TI0JI€ TI03BOJIAET HAiTH 8-OMTOBbLIE IOJCTAHOBKH, 8-OMTOBBIE
WHBOJIIOIUN U 8-OMTOBBIE OPTOMOP(U3MbBI, UMEIOININE BHICOKHE 3HAYEHU
OCHOBHBIX KPUIITOIPADUIECKUX TAPAMETPOB.

KoroueBbie ciioBa: S-00Kc, 10JICTAHOBKA, WHBOJIIOTHBHAS IOJCTAHOBKA,
opToMOpP(U3M

Introduction

Modern block ciphers realize iterations of several rounds. Each round
(which should depend on the key) consists of a confusion layer and a dif-
fusion layer. The confusion layers are usually formed by local nonlinear
mappings (S-Boxes) while the diffusion layers are formed by global linear
mappings mixing the output of the different S-Boxes. Block ciphers may be
built using a well-known structure such as a Feistel network and its vari-
ants (see, e.g. [1]), a Substitution-Permutation network (SPN) [1], or a Lai
— Massey structure [48|. Cryptographic properties of S-boxes deal with the
application of several logical attacks on ciphers, namely, linear attack [27],
differential attack [27], higher order differential attack [30], and algebraic
attack [10] (which is not yet efficient but represents some threat and should
be keeped in mind by designers of next generation block ciphers). For this
reason S-boxes should satisfy various criteria for providing high level of
protection against such attacks.

Besides the linear, differential and algebraic attacks, today the most
prominent attacks on the cryptographic algorithms are based on supervi-
sion of physical processes in cryptographic device. In literature, this kind
of attack has received the name of side-channel attacks (SCAs). Examples
of such attacks are: Simple Power Analysis (SPA) [28], Differential Power
Analysis (DPA) [28], Timing Analysis (TA) [29] , Correlation Power Analy-
sis (CPA) [7], Mutual Information Attack (MIA)[15]. S-boxes represent the
most vulnerable part in an implementation when considering side-channel
adversary and it is not a trivial task to construct S-boxes having good
resistive properties for classical cryptanalysis as well as for side-channel
attacks.

The known methods for constructing S-boxes may be divided into four
main classes: algebraic constructions, pseudo-random generation, heuristic
techniques and constructions from small to large S-boxes. Each approach
has its advantages and disadvantages. In this paper we propose (using the
last approach) a new construction based on the Lai — Massey structure for
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Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms 91

generating ordinary permutations, involutions and orthomorphisms with
strong cryptographic properties and therefore study the resilience of such
construction against side-channel attacks in terms of its masking complex-
ity.

This paper is structured as follows. In Section 1 we give the basic defi-
nitions. In Section 2, we present our design criteria. In section 3 we present
a new class of permutations which may be used for constructing ordinary
S-boxes, involutions and orthomorphisms with high values of its basic cryp-
tographic parameters. In this section, we also derive some properties of the
suggested class of permutations. In Section 4 we give some examples of
8-bit S-boxes constructed by our approach. The masking complexity of our
S-boxes is estimated in Section 5. We conclude in Section 6.

1. Basic definitions and notation

Let V,, be n-dimensional vector space over the field Fy and V,* = V,,\ {0}.
By S(V,,) we denote the symmetric group on V,,. The finite field of size 2" is
denoted by Fan, where Fon=F5[£]/g(§) for some irreducible polynomial ¢(¢)
of degree n. We use the notation Z/2" for the ring of integers modulo 2".
The set of all binary bijective linear maps V,, — V,, is denoted by GL, (IF3).
Given a natural number [, throughout the article we shall use the following
operations and notation:

#A - cardinality of a set A,

|u] - integer part of a real number u,

allb - concatenation of vectors a,b of V;, i.e., a vector from Vy,

0 - the null vector of V,

@ - bitwise eXclusive-OR; i.e. addition in Fy,

(a,b) - the scalar product of vectors a = (ag,...,a;-1),b = (bo,...,b_1)

from V: (a,b) = @ﬁ;(l) a;b; € Fy,
® - finite field multiplication,
AoVW - a composition of mappings, where ¥ is the first to operate,
e - the inverse transformation for some bijective mapping ¥,
X(®1,Py) - the Hamming distance between @1, &y € S(V)),
ord(a) - the multiplicative order of the element a € Fo.

There are bijective mappings between Z/2"V,, and Fa» defined by the
correspondences

ag+ ...+ an_1 -2 (ag,. .., apy) & [ao@...@an_l ®§”_1} )

Using these mapping we make no difference between vectors of V,, and
the corresponding elements in Z/2" and Fa» in what follows.
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92 R.A. de la Cruz Jiménez

We define the indicator function

1, if z=uy,
Ind(z,y) =
0, if x#uy.

Now, we introduce some basic concepts necessary to describe and analyze
S-boxes with respect to linear, differential, and algebraic attacks. For this
purpose, we consider an n-bit S-box ® as a vector of Boolean functions:

qD:(fg,...,fn,l), fZVn—>V1,7,:0,1,,n—1 (1)

For any fixed i € {0, 1,...,n—1} the Boolean function f; may be written as
a sum over V] of distinct t-order products of its arguments, 0 <t < n —1;
this representation is called the algebraic normal form (in brief, ANF) of f;.
The degree of the ANF of a Boolean function f with n variables is called the
algebraic degree of f, is defined as the maximum order of terms appeared
in its ANF [8], and is denoted by dg,(f)-

Functions f; written in (1) are called coordinate Boolean functions of the
S-box . It is well known that many the desirable cryptographic properties
of ® may be defined in terms of their linear combinations, also called S-box
component functions (see [8, p. 112]).

Definition 1 ([8]). For a,b € V,, the Walsh transform We(a, b) of an n-bit
S-box & is defined as

Wa(a,b) = Z (_1)(b,<1>(m)>63(a,m>' @)
zeV,

Definition 2 ([8]). The nonlinearity of an n-bit S-box ®, denoted by
NL(®), is defined as

NL@®) = 27 — % max [ Wa(a,b)|. (3)

b#£0,a€Vy,
From a cryptographic point of view S-boxes with small values of Walsh
coeflicients offer better resistance against linear attacks [§].

Definition 3 ([5]). The differential uniformity (also called d-uniformity)
of an n-bit S-box ®, denoted by d4, is defined as

0p = zz;g)l,l?é{‘/n A@(a’a b)) (4)

where

Ag(a,b)=#{r eV, | P(2Da)DP(x)=b} =) .\, Ind(P(zDa)Dd(x),b).
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The resistance offered by an S-box against differential attacks is related
with the highest value of 4, for this reason S-boxes must have a small value
of §-uniformity for a sufficient level of protection against this type of attacks
(see [5,8]).

Definition 4 ([8]). The algebraic degree of an n-bit S-box ®, denoted
by duy(®), is defined as the maximal algebraic degree of the component
functions ®, that is

dotg(P) = max day({a, (2))). (5)

Definition 5 ([8]). The minimum algebraic degree (often called the min-
imum degree) of an n-bit S-box ®, denoted by dp,in(P), is defined as the
minimum algebraic degree of all the component functions, that is

nin(®) = min, dug((a, D(2))). (6)

It is well-known that di,,(P) < day(P) for any permutation ® € S(V},),
and these parameters are upper bounded by n — 1 (see [8]). In general,
S-boxes should have high values of d,(+), dag(-) because S-boxes with low
values of these parameters are susceptible to algebraic attack, higher-order
differential, interpolation, cube attacks, etc. (see [8,12]).

Definition 6 ([8]). The univariate polynomial representation of an n-bit
S-box ® over Fy» is defined in a unique fashion as

o1
O(X)=> v X',v; € Fan, (7)

i=0
where coeflicients v;,7 = 0, ...,2"—1, may be obtained from the n-bit S-box

® by applying Lagrange’s Interpolation theorem (see, for example, [8]).

Definition 7 (|34]). For ¢ > 0 the Tg) parameter of an n-bit S-box @ is
defined as
7"4, = dlqu,l), (8)

where

H(l) {pEFQ[Zl,...,ZQn]

Vo € Vo, plz, ®(x)) = 0,0 < duy(p) < z}

Definition 8 ([34]). The r¢-parameter of an n-bit S-box & is defined as

re = min {i’rg) > O}. (9)
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It is well-known that there exist certain methods of analysis of block
ciphers (see [10]) exploiting the existence of polynomial relations involv-
ing the input = to the S-box ® and its output ®(z). In order to increase
the strength of a block cipher against these methods we have to minimize

parameters rg),z' =Tg,...,n, and maximize parameters d,;,(®) u re (see

124,35, 37]).

It should be pointed that in [8,43] the parameter r¢ (defined in a slightly
different way) is called graph algebraic immunity of ® and is denoted by
Al (®) in these references.

Definition 9 ([25]). An element z € V,, is called a fixed point of an n-bit
S-box ¢ if &(x) = x.

We denote by FixP(®) the set of all fixed points of ®, i.e., FixP(®) =
{z eV, | ®(x) =z}

Definition 10 ([24]). Two n-bit S-boxes ®; and P, are linear (respectively,
affine) equivalent if there exist linear (respectively, affine) mappings Ay, Az
such that &3 = Ay 0 &; 0 A;.

It is well-known (see, e.g., [8]) that the following cryptographic para-
meters: d-uniformity, nonlinearity and (minimum) algebraic degree — re-
main invariant under linear (respectively, affine) equivalence.

2. General S-box Design Criteria

Our goal is to find 2k-bit permutations constructed from k-bit ones
that satisfy the following criteria (which in what follows are called almost
optimal).

1) Maximum value of minimum degree.

2) Maximum value of r¢ with the minimum value of rg).
3) Minimum value of §-uniformity limited by parameter listed above.
)

4) Maximum value of nonlinearity limited by parameter listed above.

For example,when n = 8 an almost optimal nonlinear bijective transfor-
mation ® should satisfy the following

MATEMATNYECKNE BOIIPOCHI KPUIITOT'PA®NN



Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms 95

Set of cryptographic criteria for 8-bit permutations:

L4 dmzn(q)) - 7, L 5<I>' < 87
o 1o =3 with r{) = 441, o NL(®) > 100.

Our design criteria are basically the same as those included in the target
set of criteria for the Gradient descent method [24]. However, we concen-
trate on generating 8-bit S-boxes with almost optimal cryptographic param-
eters having good resistance properties both against classical cryptanalysis
as well as side-channel attacks with some given level of masking.

3. Construction of permutations, involutions and
orthomorphisms

Now, we present a special algorithmic-algebraic scheme based on the
well-known Lai — Massey structure which may be used not only for con-
structing permutations, but also involutions and orthomorphisms having
almost optimal cryptographic properties.

Let n = 2k be a natural number, where £ > 2. Choose:

finite field inversion function Z(z) = { x*(l)’ g i ; 8’

over Fyx,

non-bijective k-bit function 1) which has no preimage for 0,

arbitrary permutation h € S(Vj),

arbitrary bijective linear maps £; € GLog(F2),i = 1, 2.

We construct the following class of 2k-bit permutations 7 from Vo, to Vo
as follows.

2021, T. 12, Ne 3, C. 89-124
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& )
Construction of 7
For the input value (I||) € Vai, we define the i

corresponding output value 7(I||r) = (I1]|r1)
as a result of the following computations:
(Lollry) == La(lIr);

(Llry) == (Z(h) @ $(ls @ 1)) @ ¥(l @ 1)) T
(Iullre) == La(ly||re).

Fig. 1. High level structure of the
S-box @

Notice that the finite field multiplication ® in the above construction
correspond to multiplication operation in Fy:. The binary matrices £
and Lo were inserted to break the cycle structure of 7 and also to eliminate
the existence of fixed points. Defining 7 as £, 0% 0L, we can see in Fig. 1
that 7 share similarities with 1-round Lai — Massey structure replacing in
the latter the XORs by finite field multiplications. The non-bijective k-bit
function v (which has no preimage for 0) was chosen in such a way to make
the whole structure invertible. Moreover, from the following construction:

o m1(Iy]|r1) = I||r, where

L= () @Z(W(h () @L(r))),r = I(rn@Z(v(h~ ()@ Z(r)))),

we can easily derive the bijectivity of the 7 which is a necessary design cri-
teria for SPN ciphers and quite useful for Feistel and Lai — Massey ciphers.

In more detail, the nonlinear bijective transformation m may be written
as follows:

0, if l=r=0,
o’h(r@w(o)), if l=0andr#0,

m(llir) = (Z(l) ® ¢(o)) 0, if 1#0andr =0, (10)
IO eyY(ler)||h(rey(ler)), if [#0andr#0.

In what follows (and also in the remainder of this paper) we restricted
ourselves to the case when h = Z and we shall write m, instead of .
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The next well-known result is useful when studying some properties of the
suggested class of permutations.

Lemma 1 ([3,31]). For any b € V.5, a € V,,, the following inequality holds:

Z (_ 1)<b,I(x)>€a(a,x) <

eV,

122+, (11)

Proposition 1. For any mapping : Vi, — VI the following inequality
holds: .

NL(7) =28 — 227 — 1. (12)

Proof. 1t is not difficult to see that permutations =, 7 are linear equiva-

lent, hence N'L(7) = N L(my). Let us calculate the Walsh transform of the
nonlinear bijective transformation m

Walarflaz, bilb) = 3 (=1)®ilbzim@taladin

llreVag

— —1 + Z(_1)<b27 (7”®1/)(0 a27 _|_ Z blvz(l ®1/1 )> <alvl>

reVy leVy,

+ Z Z (—1)rZBeden)d e Irevian))&lahée,r)
leVy revy

Let us now estimate the Walsh transform |W;(ay||las, b1||b2)|. Directly
from Lemma 1 we can derive the following inequalities:

o Z(_1)<b2,2(7‘®¢(0))>®(a2,r) < L2§“j,
reVi

° Z(_l)<b171—(l)®w(0)>@<a1,l> g |-2§+1J
leVy

In addition, it is obvious that

Z Z b17 D)@Y (Ier))® (b2, Z(r@y(I®1)))B{a1,l)®{az,r) < (2k . 1) . (2k: . 1)
ZGV* T'GV*

Hence,

Wi (ay|az, by||ba)| < 22F — 261 4 2. |25 | + 2. (13)
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Thus, from (13) we obtain

1
NLFE) =221 2. max  |Wi(a|az, bi|bo)| > 28 — |27 — 1.
(b1,b2)€V2*k
(a1,a2)EVay

3.1. The Hamming distance between two instances of 7

In this section we are interested in the Hamming distance between two
permutations my, my € S(Vax) having non-bijective functions ¢, ' such
that x(¢,%’) = 1. In other words, the lookup-tables of ¢ and 1" differ only
in one position.

Proposition 2. Let ¢,¢": Vi, — Vi* be two arbitrary mappings with
X (¥, ¢") = 1. Then for permutations my, Ty the following relation holds:

2-(28=1), if ¥(0) #'(0),
X(Ty, Ty ) = (14)
2k — 1, if i #0: (i) # V' (4).
Proof. Consider the following possible cases:
1) If ¢(0) # ¢'(0), then my(l]|r) = my(l||r) for any l||r € V' x V7. If
[ = 0, then the inequality m,(0||) # 7wy (0]|7) holds for all r» € V;*.
Analogously, for r = 0 and any [ € V;* the output my(1]|0) # 7y (]]0).

So we have exactly 2- (2% — 1) values at which the outputs 7, and 7y
are different.

2) If there exist an element ¢ # 0 such that (i) # v/(i), then for each
fixed | € Fqr \ {0} there exist a unique r € For \ {0} such that (®@r = i,
therefore, there are exactly 2¢ — 1 values of the form (I|r) € Va, such
that 7y (U[|r) # my ({]|7).

Notice that we have exclude the case [ = r = 0 because in this situation

we always have m,(0) = my(0). So, we can conclude that x(my,Ty) €
{2F — 1,2 (2" — 1)}. O

3.2. Bounds on nonlinearity and /-uniformity of two instances
of 7

In this section, we study the nonlinearity and d-uniformity parameters
of two permutations my, my € S(Vai) for which x(¢,7’) = 1. Recall that
we have restricted ourselves to the case when h = 7.
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Proposition 3. Let ¢,¢": Vi, — V¥ be two arbitrary mappings with
X (¥, ¢") = 1. Then for permutations my, my the following inequalities holds:

1) [NL(my) = NL(mye)| <2+ (2541 ], if (0) # ¢/(0),

2) INL(my) = NL(m)| < (25 = 1), if (i) # ¥/(0) for some i # 0.

Proof. Directly by definition of nonlinearity we have

INL(my) = NL(my)]

1
=-| max |Wr,(aillaz, bi]b2)] — max Wi, (a1]laz, bi|b2)
2 | (a1,a2)€ Vs (a1,a2)€Vay
(bl,bz)GV;k (bl,bz)EVQ*k

(15)

Let us prove the first item of the proposition. From relations 1(0) # ¢'(0)
and (j) = ¢'(j) for j € {1,...,2¥ — 1} we obtain

We, (a1llaz, biflb2) = > (—1){brllez.my lir)) @an oz i)

l||reVag
— 1+ Z b2, (r@y(0)))®(az,r) 4 Z blyf(l ®1(0))B{a1,l)
reVy 1eVy,
+ Z Z 517 (D& (19r))@ (b2, I(rey’ (187)))®{a1,)) &{az,r)
leViyreVvy

Let T(ar[las billbs) = 3 3 (1)1 200V (@n)o(ba Trov/ (@r)eferielear)

eV revyy
It is not difficult to see that

T (ay|as, by ||be) = Wr,, (ay||az, by||b2) — Z(_1)(b2,I(r®1/Jl(0))>EB(a2,r>

reVi

_ Z bl,Z(l ®’(0))D(a1,l) +1.
eV

2021, T. 12, Ne 3, C. 89-124
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Hence, we can express Wy, (a1]|az, b1[|ba) by Wr , (a1]|az, b1[[b2) as follows

Wﬂw(al”a% blez)

_ (Z(_1)<b2, (r&(0)))B(az,r +Z Yo ZOEvO)e <a1,z>>

reVi leVy
_ (Z(_1)<b2, (rov! (0))@laz,r) Z (b1 0))69((11,[))
reVy 1eVy

+ W, (asas, by [bz).

Then by using Lemma 1 we find that

’Wﬂw(a1|la2,b1|\b2)| 4. L22+1J +’ (a1]lag, by||b2)| and consequently

ﬂ'w/

k
max |W7Tw(a1Ha2,ble2)} < 4. L22+1J + max W%,(alﬂag,bleg) .
(a1,a2)€Vag (a1,a2)EVay
(b1,b2) €V, (b1,b2)€VS,

Thus, from the previous relation and (15) we conclude that
INL(my) = NL(my)| < 2 2571,

Now, we prove the second item of the proposition. For each element
[ € V;7 there exist a unique element r € V,* such that [ ® r = . Then, the
Walsh transforms of permutation 7, may be expressed as follows

We,(@llaz bill) = 3= (-)itemstim)eiedts

l|reVay
— 1 + Z bQ, T®¢ a2, + Z bl7 0)>€B<a1,l)
revy levyr
+ Z Z b1, N@Y(1@r))®(b2,Z(r@y (10r)))®la,l)®(az,r)
levyreVvy

Let S(a1”a2’bl||b2 Z Z bl, (HRY(Ir))D (b2, Z(rey(Ier)))d (a1,)€B<a2ﬂ“>‘

eV revy
Then

S(ar|laz, billb2) = > T (ar||az, b [b2), (16)

levy

where T(aaz, bi[lbs) = 3 (—1) 120 w@)@ 02 TS0 (e 2 02r)
reVyr
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For each fixed [ € V¥, the term T (aq|/ag, by||b2) may be rewritten as
Tallanbilb)= 3 (1) ZO8UESETrovsn)elon)elor)
reVe\{iol—1}
+ (_1)<b1,I(l)®1/1(i))®<b2,I((i®l_1)®w(i))>@(al,l>®<a2,i®l—1>.
Substituting 7 (ai||az, b1]|b2) in (16) we obtain
Z Z (_1)(b1,I(l)®¢(l®r))@<b2,Z(r®¢(l®r))>@<a1,l>ea<a2,r>

levy rGV*\{i@l*l}

n Z bl, ® ())& (b2 Z((i@1~ )@ (0)) ) Ba1 ) (az, (i@ "))
levy
Thus,
Wﬂw (a1||a2, b1||b2) _ Z (_1)<b1||b2,7rw(l||7")>@<a1||az,l||7“)
l||7"€V2k
— 1 =+ Z bg, 7‘®1,/) az, 4 Z bl, 0))@((11,[)
rEV* ZEV*

4 Z Z (_1)(bl,I(l)®1l1(l®7“)>€9<b2,I(r®w(l®r)))®<a1,l)@(az,r)
leVy revVx\{iel—1}
+ ) (-1t TOevine (b2, Z((i01~ ) @u(0) ) a1 1)@ (a2, (1017 ))

levyr

Now, taking into account that (i) # /(i) for some i € V;, and
$(j) = ¥'(j) for any j € Vi \ {i}, we can link W, (axlas, ba[lbs) and
Wi, (a1l|az, bi][b2) as follows

Wﬂw(a1||a2, bi(|b2) = Www/(a1||a27bl||b2)

Z<_1)<b1,I(l)®¢(i))@<b2,z((i®rl)®¢(i)))@<a1,z>@(a2,(z‘®r1)>
levy

= S (—1) I TOeY (i TG0 ew () elor b (ar it ™).

levy
Hence, |Wr, (a1|az, b1[|b2)| < ‘Wﬁw,(alﬂag,bleQ) +2-(2~1) and as a
consequence
max ‘Wﬂw(alHag,b1H62)| < max W%,(alHag,bleg) +2(2k—1)
(a1,a2)€Vag (a1,a2)€Vay
(bl,bZ)EV;k (b1,b2)EV2*k
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Thus, from the previous inequality and (15) we conclude that

INL(my) — NL(myr)| < (28 —1). O

Proposition 3 may be used to increase the nonlinearity of permutation
my, Which is very useful for searching nonlinear bijective transformations
having good values of its basic cryptographic parameters.

The following proposition shows the behavior of the d-uniformity pa-
rameter of permutations my, my with x(¢,v¢") = 1.

Proposition 4. Let ¢, ¢": Vi, — Vi* be two arbitrary mappings with
X (¥, ¢") = 1. Then for permutations my, my the following inequalities holds:

1) |Or, = Or,,| <A2° = 1) if ¥(0) # ¥'(0),

T Tl'd)/

2) |0r, — O, | < 2(2F — 1) if (i) # '(i) for some i # 0.

Proof. To prove the proposition it is sufficient to bound the sums

A, (a,b) = Ind(my(z & a) & my(z),b),

xeVy,

Ar,(a,b) = Ind(my(x ® a) ® Ty (), b).

zeVy

1) Consider the case ¥(0) # 1¢'(0). According to Proposition 2 denote
by wi, t =1,...,2- (28 — 1), all points of Vy, such that my(w;) # Ty (w;).
If Ind(my(x @ a) ® my(x),b) # Ind(my (x & a) ® 7y (x),d), then x = w; or
T =w; ®a forsomet=1,...,2(2% —1). Therefore

‘Aﬂw(a, b) — A (a,b)‘ <2(2F — 1),

71’2/}/

and

Or, — Ory | <2025 = 1).

2) In the case ¥(0) = ¢/(0) the proof is quite similar to the proof of the
first item. ]

Proposition 4 tell us that under changing only one output value of ¢ the
d-uniformity of m, may decrease, which is quite useful when searching non-
linear bijective transformations with good values of its basic cryptographic
parameters based on the construction of .
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3.3. Algorithms for finding almost optimal S-boxes

By using Propositions 3 and 4 we have conducted two search algorithms
(implemented in SAGE [45]) for finding ordinary 8-bit S-boxes 7, having
the following cryptographic parameters:

® diin(my) =7, ® i, €1{6,8},
o 1y, =3 with r$) = 441, e 100 < NL(my) < 104.

The algorithms are slightly modified versions of algorithms for im-
plementing the spectral-linear and spectral-differential methods presented
in [34] and both of them operates with the following objects:

(a,b,c,d,e) € S(Vap) X Z X 7 X 7 x Zo(Vy),

where Zy(V;) denotes the set of all functions ¢: V; — V;*. On the set of
these objects we define the order relation as follows

L . b<bd<dor
< ~ LR
(a,b,¢,d,é) < (a,b,c,d,e), lf{b:b,ééc,dgd. (17)

To help fully understanding how our algorithms work, we introduce the
following concepts.

Definition 11 ([34]). The Difference Distribution Table (DDT) of an S-box
® € S(V,) is a 2" x 2" matrix, denoted by DDTg and defined as

DDTafa, 1] = o Aa(a,b) = 2%#{33 € V,|B(x @ a) & B(z)) = b}.

Definition 12 ([34]). The Linear Approximation Table (LAT) of an S-box
O € S(V,) is a 2™ x 2" matrix, denoted by LAT4 and defined as

LAT pla, ] = 23”#{:5 € Vil (a,2) = (b, B(x))} — 1.
For & € S(V,,) and numbers p; € P,_; and ps € P,_5, where
P = {2%}izo,...,2f},#zﬂj:2j+1,je (n—2,n—1},
we define the following sets:

D(®,p1) = {(a,b) € V;; x VJ[DDTo[a,b] = p1}

and

L(®,p1) ={(a,b) e VI x V¥

||_AT<1> [a, b” = pg}
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Definition 13 ([34]). The differential spectrum of S-box ® € S(V},) is
defined as

D(®) = {(p1i, #D(®,p1))|p1 € Pur}, #D(®) = 2"1 — 1. (18)

Definition 14 ([34]). The linear spectrum of an S-box ® € S(V},) is defined
as

L(®) = {(po, #L(®,p1))|p2 € Puca}, #L(®)=2"2—-1.  (19)

For a natural number n = 2k, let £ < 2%- (2% —2) € N be the size of some
list L. The algorithm for improving the differential properties is presented
below.

Making appropriate changes in Algorithm 1 we can obtain the algorithm
for optimizing the (non)linear properties of 7, which is omitted due to space
limitations. It should be pointed that in these algorithms we always assume
that the multiplication table of Fqyx is given.

Let us denote by t; the computational complexity of Algorithm 1.

Proposition 5. For n — oo we have
tl == O(n2 . 2577,)

Proof. The proof is divided in two stages. In the first stage we compute
the maximum number of of step 4 iterations of the algorithm and in the
second stage we find the complexity of step 4.

1) Let my € S(Vai). For element of a differential spectrum D(m,) we have
#D(my,p1) < (2" —1) - pil. Thus, we obtain the following expressions:

> (2”—1)-i:(2n—1) > i:(2"—1)22i,l

b1 D1

p1€P—1\{0} p1€P,—1\{0} i=1
on— 1 1
= (2" Z; 2" —1)- (In2"' +1)
17
<2 (2" = 1) - (log, 2"t + 1) =n 271 (2" — 1),

2) The estimate of complexity of Step 4 is the product of the following
values:
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Algorithm 1: Optimizing the differential properties of my

Input: Permutation Z(z) = 22" =2 over For, function ¢ : Vi, — V" and
parameter ¢ € N.
1 Construct my, = (Z() @ p(I @ )| Z(r @ (I @71)) € S(Vay).
2 For permutation 7, € S(Vax) calculate the values 0, D(my), NL(my) and set
D =y,
3 Initialize the list L:

L= {(wwﬁwu , #D(w,n,5%(71))#\/5(%(71)),zp(—l))},where 4L —=1.
4 Using the list
L= { (72, 6r s #D (T, 0n, oy ) N L (o ) 0D ) i = =1,0,.., #L — 2}

construct the new list

2 gt #0{nge ) ) )

Whereforeachi:71,0,...,#L72,j:O,...,Qkfl,t:O,..Qka,

functions Ty € S (Vo) for which X(Trw(i),ﬂw/_(i)) e {2k —1,2. (28 - 1)},
5 , ,

™ < 6%(1.) SNL(Tyw) < NE(”w;<i>>’ functions (¥, w;(? : Vip = V¥ have

X<¢(i)’¢35i)) — 1 and #D (77 w;@,aﬂw,_(i)) <#D (WW,&WU) if

Or o = On -
WD ()

5 For the list L do the following:
(I) Calculate the size #L.
(II) Sort the elements of L in the ascending order according to relation (17).
(III) Numerate the sorted list element by indexes i =0, ..., #[ -1
(IV) Calculate values my = min{#L — 1, #L— 1},me = min{l — 1, #L — 1}
6 Compare the first elements of lists L and L:

mi mi
1Y Gr 0 <D 0n,, oOr
i=0 i=0
my my
Z‘sﬁmi) = Z‘S’TW and Z #D(”w'< 0 0m )) Z #D (771/1( 05 0m >)
=0 i=0

1=0 1=0
then

(I) Clean the list L.

(IT) Copy the elements from the list L with indexes i =0, ..., mg to L.
(IIT) Assign #L =mqo+ 1.
(IV) Go to step 4.

— Otherwise, the algorithm stops.

Output: The list
L*{< Ty Om <>’#D( (i) Om <>) Nﬁ(”w“) v ))’l__ ’0""’#"_2}’
where #L\
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e the parameter /,

e the estimate of the number of all functions w(i),wﬁ?: Vie = VI
having X(Qﬁ(i),w;fi)) = 1 contained in E, which obviously cannot
exceed 2F - (28 — 2) = 27 — 25+1

e the complexity of computing V'L (7%(1-)), which is equal to ¢-22"-n,
where ¢ = const.

The computation of remaining parameters is not so difficult as just de-
scribed. Thus, the complexity of step 4 is smaller than

(-2 (2" =23t . .22,
In this way, the total complexity of the algorithm is upper bounded by
t1 <Ll-c-n®- (2" — oints+l _odn 23”+%+1) </l-c-n?-2"
O

As stated before, the Algorithm 1 is a slightly modified version of the
algorithm for implementing the spectral-differential method given in [34,
p. 102], the only essential difference with the latter is the last coordinate
of elements belonging to L and L respectively and we have reproduced
the proof of Proposition 5 (borrowed from [34]) here only for the sake of
completeness.

Analogously, using the results given in [34, p. 106] we can find the com-
putational complexity t of the algorithm similar to Algorithm 1 for op-
timizing the (non)linear properties of m,, which in this case is equal to
tg = O(n . 26n)'

Comparing the computational complexities of algorithms implementing
spectral-differential and the spectral-linear methods, which are equal to
tspect/aitt = O(n?-2"71) and tspect/iin = O(n-27*) respectively [34], we can
see that Algorithm 1 is approximately 27! times faster than the algorithm
for implementing spectral-differential method, while our algorithm for opti-
mizing the (non)linear properties is 2"~ times faster than the algorithm for
implementing spectral-linear method. However, both algorithms developed
in [34] are universal, and to the best of our knowledge may optimize any
S-box except those based on finite field inversion and affine equivalent to
it. Algorithms presented in this section may optimize only S-boxes having
the form my, = (Z()) @Y (1@ 7))||Z(r @ ¥ (I®)) and affine equivalent to 7.
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3.4. Invariant subspaces with respect to the action of 7,

Let ®:V,, — V, be any nonlinear bijective transformation. For any
W C V,, we denote by ®(W) the set containing all images of the elements
from W, that is

O(W) = {P(x) |z € W}.

Definition 15. We say that W C V,, is an invariant set with respect to the
action of ® : V,, — V,,, if §(W) CW or &(W) C V,, \ W.

In this section, we study the question about the existence of subsets
W C V, such that m,(W) C W. When these subsets are subspaces of V,,
and my(W @ a) = W & b for some fixed elements a,b € V,,, then they are
called invariant subspaces.

Invariant subspaces are used in recent cryptanalytic approaches when
mounting structural attacks on block ciphers (for example, in the so-called
invariant subspaces attacks [32]). The existence of such structures may
significantly decrease the cryptographic security of block ciphers. In [2,44]
were described some approaches for designing cryptographic primitives hav-
ing a structure, knowledge of which allows to find the encryption key with
a time complexity, significantly lower than the brute force method. Such
structure is called a backdoor, and the whole encryption algorithm — back-
doored encryption algorithm.

Another fundamental cryptanalytic method for block ciphers is the ho-
momorphism attack. The effectiveness of this approach is highly dependent
on how close the encryption function may be approximated by permutations
having the partition-preserving property. The authors of [42] studied the
possibility to approximate permutations by permutations from the wreath
product of symmetric groups in an imprimitive action, where the so-called
W-intersection matrix was proposed as a parameter characterizing the ap-
proximability of permutations by permutations from the wreath group. The
W-intersection matrix for a permutation ® of S(V},) is defined as follows

Mw(®) = ||V (D ,
we) =@
where oW, (@) = #{x ceWa a‘@(m) c W@ﬁ}, W<V, dimW = d e
{1,2,...,n—1} and Ry is the set of coset representatives for the subspace

W < V,.

The W-intersection matrix is a very useful tool to automatically verify
the invariance of a fixed subspace W with respect to the action of given
nonlinear bijective transformation.
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Proposition 6. Let Wy = {(I]|0)|l € Vi},Ws = {(0||r)|r € Vi} be two

k-dimensional subspaces of the vector space V. Then

cog (my) = cog (my) = 2°. (20)
Proof. The relations written in (20) are a direct consequence of the equal-
ity (10) for h = T. O

Example 1. Let n = 2k = 2 -4 and Fy1 = Fy[¢]/E* @ € @ 1, the 4-bit
components® 1, Z be given as follows

¢_0123456789101112131415
S\7 12 3 12 12 9 13 13 8 2 2 11 9 15 2 3)’

I—0123456789101112131415
- \01 9 14 13 11 76 152 12 5 10 4 3 8

The resulting permutation m,(l[lr) = (Z() ® »(I @ 7))
IZ(rey(ler)) e S(Vs) and its cryptographic parameters are com-
piled in the Table 1.

Table 1. The constructed permutation my € S(Vz)

S-box

NL(mwy) = 104,6,, = 6, dyin(my) = 7,7, = 3,75 = 441.

0x0 0x6 0x3 0x2 0x8 Oxf Oxl O0x7 Ox4 Oxc Oxe Oxd 0x9 Oxb Oxa 0xb
0x70 Oxca 0x37 Oxc6 Oxcb 0x95 Oxdf Oxdb 0x8a 0x21 0x26 0xb2 0x97 O0xf6 0x28 0x39
Oxa0 0x8¢ 0x65 Oxfd 0x47 Oxlc Oxde 0x13 O0x6c 0x67 O0xf5 Oxda Oxcd 0x12 0x81 Oxec
Oxc0 Ox4a Oxa2 Ox7f 0x79 O0x18 Oxfa Oxf3 0x86 0x9d Oxba Oxfb Oxae Ox4e Ox4d 0x19
0x50 0Ox3a 0x2e Oxff 0x3b Oxea 0x68 0x42 O0xe9 Ox4f 0x96 0x9b Oxf7 O0x3e O0x7b 0x94
0x40 0xc2 0x5d Oxeb 0x61 Oxe8 0x3d 0x74 O0x5e 0x9a Oxdl Oxd4 0x55 O0xc8 Oxdd 0x66
0x60 0xb54 Oxal Oxe7 Oxd4c Oxb7 O0Oxbf 0x29 Oxad 0x27 0Oxe6 0x93 Oxed5 0xd9 0x91 Ox2f
0x10 0x84 Oxed Oxc7 Oxaa 0x53 Oxe3 0x8b 0x41 Oxcl Oxel Oxed Oxa6 0x38 0x36 Oxfe
0xb0 Ox1f 0x85 0x33 0x71 Oxdc Oxee Oxad Oxed 0x87 0x24 O0x77 Oxd5 0x2d 0xd8 O0x8f
Oxe0 0x49 Oxbb 0x35 Ox6a 0x51 0xb3 0x43 Oxbc 0xd3 Oxlb Oxla 0x9¢ 0x6d 0x9c 0x44
0x20 0xb9 0x32 0x89 Oxbf O0xf2 Oxba 0xf9 0x75 0x64 Oxa8 0x73 O0xf8 0xd7 0x3c 0x63
0x80 0x15 Oxbl Oxa7 Oxaf 0x92 Oxfc 0x99 0xc9 Oxb4 Oxf4 Oxab O0x6f 0Oxc3 Oxe2 0x9f
0x30 0x52 0x2b 0Oxbd 0x59 O0x7c 0x7a 0xd2 0x7e 0xb8 O0x11 Oxce Oxd6 Oxle Oxld O0xfl
0xf0  0x98 0x8d 0x56 0xbb 0x25 0x6b 0x2c 0xcb Oxcf 0xa9 0x17 0xb8 0x82 0x88 0x16
0x90 0x69 0xb7 0x76 0x22 0x72 Oxbc 0x8c Ox6e 0x48 0x45 0xb6 0x78 0x62 Oxef 0x83
0xd0 Oxbe 0x14 Oxbb 0x3f 0x2a 0Oxa3 0x7d Oxac 0x31 Ox4b Oxad Oxcc 0x23 0x46 0x34

From Table 1 we can see that the nonlinear bijective transformation
7y € S(V3) exhibit high values of its basic cryptographic parameters and
it does not have polynomial relations of low degree.

2The component 1 has been found using the algoritmhs described in Section 3.2.
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Let us now verify the existence of some invariant subspaces with re-
spect to the action of the constructed permutation m, € S(Vg). The

. . . W, .
W-intersection matrices Mw, (7y) = ||cg 5(Ty) given by
a,ﬁERWi

[61000000000000000 [61000000000000000
0020211013300021 0032000112013201
0221130200010310 0300103020101212
001101330102020°2 0200310211201003
0210000112231003 0013211103000022
0131020120203001 0001132101002320
0103000010312122 0030121002210130
0023110103022100 0102110020203031

M= 070012 1002103250 [ Mem=| g1210002350110320 |0 (21)
0301200320101102 0201312002030110
0300223011120010 0012002210130103
0012301200230110 0100001013322012
0000132231001021 0311020300021201
0032001121010230 0220031031102001
0210002030112301 0010223321010010
0102312002001013 0123200100321100

for subspaces Wy = {(1]|0)|l € V4}, Wy = {(0]|r)|r € V4} of the vector
space Vg were found by computer calculations using SAGE [45].

From (21) we can see that CXY[} (my) = c\é\fg (my) = 16, which means that
mp(W;) = W,. Hence the subspaces W; and W, are invariant under the
action of the constructed permutation m, € S(V3).

So, despite the fact that permutation m, € S(Vs) exhibit a low value
of d-uniformity, high nonlinearity and may be described by a system of
441 polynomials equations of degree 3, it has a weakness: the existence of
some structures (subspaces W; and W;) which are invariant with respect to
the action of this nonlinear bijective transformation. If this permutation is
used as a nonlinear layer in XSL-network, then these structures should be
taken into account when designing the linear layer and the key-expansion
algorithm to avoid the existence of a large number of weak keys of the
encryption function. However, this weakness may be eliminated by choosing
appropriate linear (respectively, affine) layers £4 and Ly from GLg(Fy).

When looking at the TU-decomposition (see, e.g., [4]) of the 8-bit S-box
TKuz = @ O Ty, © w used in the block cipher Kuznyechik [17], where
a,w € GLg(Fy) and 7k, is a permutation based on a Feistel-like struc-
ture, we have found by using the W-intersection matrix that the subspace
Wi = {(1|0)|1 € V,} is invariant with respect to the action of the nonlinear
bijective transformation my,, = w0 fiky 0L, i.e., Ty (W1 B 0xc) = Wy,
However, by computing M, (7kuz),% = 1,2, we have checked the absence
of invariant subspaces such as W; and W, in the permutation 7k,,.
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In the above cases we have seen the important role played by the linear
layers used in those constructions, which also explain why we have inserted
these matrices into the original construction of 7. Its purposes are not only
to break the cycle structure and eliminate the existence of fixed points, but
also circumvent the existence of invariant subspaces such as W; and W,.

3.5. Constructing highly-nonlinear involutions

In this section we will study how to build a particular kind of permuta-
tions with strong cryptographic properties using the construction presented
in the previous section as building blocks.

Definition 16. Let ¢ be the identity permutation of S(V},). A permutation
® € S(V,) is called an involution if o & = ¢.

Involutions are of particular interest in cryptography, because in the
case of lightweight block ciphers these components are used to decrease
the implementation cost of decryption process.

Even when the function Z is an involution on S(V}) and the permutaion
h € S(Vi) may be chosen to be involution too, the permutaions generated
by 7 are not always involutions. Taking h = Z, in order to achieve the
property 7y, o my, = € we have performed a search algorithm. The algorithm
take as input a randomly generated non-bijective 4-bit function v, and for
this ¢ the resulting permutation 7, was constructed. Then the Hamming
distance x(e, my omy) was calculated. If x(e, myomy) = 0 and 7y, satisfy the
set of cryptographic criteria (listed in Section 2), the algorithm stops and as
output we get a nonlinear involution. Otherwise, in an iterative process 1 is
changed randomly (in an arbitrary number of positions) until x(e, my o my)
became to be equal to zero, which means that an involution is founded. We
repeated the above procedure until an involution 7, with the properties
listed in the set of cryptographic criteria has been founded.

We have implemented this algorithm in SAGE [45] obtaining some 8-bit
involutions m,, with #FixP(m,) = 16 and the following cryptographic prop-
erties:

o dpin(my) =7, ® 0., €1{6,8},
o = 3 with rlY) = 441, e 100 < NL(my) < 104

From a cryptographic point of view one need to minimize the number
of fixed points of a permutation as much as possible [25]. Moreover, it is
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well-known that any involution may be easily distinguished from a random
permutation by the number of its fixed points [6]. The results of the follow-
ing propositions may help to develop a simple method allowing to minimize
the size of FixP(®), if the involution ® has more than two fixed points.

Proposition 7. Let &1, &y be two involutions of S(V,,) having the property
Dy 0 Py = Dy 0 Py. Then &1 0 Py is also an involution of S(V,,).

Proof. If ®,, @, are two involutions of S(V},) such that ®; 0Py = Py0 Py,
then we have (@1 e} @2) e} (@1 o @2) = (bl e} (@2 e} @2) e} (Dl = @1 o @1 =c. 0

Proposition 8. Let ® be an involution of S(V,) having #FixP(®) > 2.
Then for any transposition 7 = («, 8) € S(V,,), where a, f € FixP(®), the
permutation ® o T is also an involution of S(V,,).

Proof. It is clear that any transposition is an involution. So for any in-
volution 7 = («, 8) € S(V,) such that «, 5 € FixP(®) the folowing relation
holds:

{z eV, |®(x)#z}n{z eV, |7(z) £ 2} =02, (22)

i.e., permutations 7 and ® are independent®. It is well-known that for in-
dependent permutations the following equality holds: ® o7 = 70 ® (see [16,
Proposition 26, p. 227]), thus by Proposition 7 we conclude that permuta-
tion ® o 7 is an involution in S(V},). O

Although by applying Proposition 8 to 8-bit involutions m,; with
#FixP(m) = 16 we can remove all fixed points, the cryptographic prop-
erties related to linear and differential cryptanalysis of the new involutions
slightly decrease in comparison with those generated by m,. However, still
by using this Proposition we can find almost optimal involutions without
fixed points.

Also, we have tried to design directly involutions using our scheme as
building block. To achieve the fulfillment of condition ® o ® = ¢, our stra-
tegy was to combine our constructions into two or more rounds. Choosing
two arbitrary k-bit involutions h,, h,, the following construction is able to
produce 2k-bit involutions.

Figure 2 shows that the construction of #("*) is a composition of three
functions m,,m, and 7, where m, and 7, have similarities with 1-round
Lai — Massey scheme. The involution property of the whole construction
may be derived from the well-known fact that if M is an involution over

PPermutations h1,ha € S(V;,) are independent if {x € V,, | h1(x) # x} N {x € Vy, | ha(z) # 2} = 2.
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Construction of 7wl
For the input value (I[|r) € Vo, we define L
'

the corresponding output value as follows

D (lr) = (m, o m, o m, ) (Ul|r) = h|ry, where

7 (l|r) = (l®I(w(l®r)))H(r®w(l®r)), () ()
m(Ulr) = ()| ha(r), ®

m ) = (1o vien)|(rezwee ).

-

(invol)

Fig. 2. Structure of 7

V,, then for any permutation G € V,, the resulting transformation ' =
G~ ' o M o @ is an involution over V,,. Here

Fllr) = finas GlIlr) = (10 W@ )| @ v @ 1)),
M(llr) = I (Dllha(r) and G-H(Ulr) = (U@ v @M@ T2 T))).

It is worth to note that, in the particular case of a construction of invo-
lution of the form F = G~! o M o G, the nonlinear transformation F has
exactly the same number of fixed points as the middle permutation M, and
more general the same cycle structure (see [16, Theorem 34, p. 235]).

For sets W) = {(x|lr)|r € Vi}, where * € {a, hi(a)}, and W =
{(U][*)|1 € Vi}, where x € {a, ho(cr) }, the following relations hold:

) (1 (1 1) @) ) )
M (W) € Wi, (Wi, ) € WED (W) € widl v (Wi ) ©

Wg, which means that sets Wil),Wg) are invariant with respect to the
action of M and this is a weakness for permutation M. Moreover, some of
these sets may be presented even after composition of 7,, 7, and , Indeed

if h1(0) = 0, then for any r € V}, we have 7 7r (invl) (0] |r) = O||7"1 E W0 , and if

hy(0) = 0, then 79D (1]|0) = [,]|0 € W0 , S0 in this case W0 ,i=1,2, are
invariant subspaces with respect to #("*) and these structures should be
taken into account when designing the linear layer and the key-expansion
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algorithm of a block cipher to avoid the existence of a large number of weak
keys for the encryption function. For this reason it is highly recommended
to perform a search over the structure of 70" using involutions hy and
ho without fixed points.

Using the previous construction we have performed a search based on
random generation of 4-bit involutions and 4-bit function ¢: V, — V)
aiming to find almost optimal involutions # (") without fixed points (in
contrast to those generated by the construction of 7) with the parameters

[ ) dmzn(’ﬁ'(ln’UOl)) — 77 [ ] 5ﬁ(inval) = 8’
o Tatmoeny =3 with 70 =441, & 100 < NL(70™D) < 102,

The possibility of having no fixed points in those involutions constructed
under the 7" scheme has some significances. In fact, the involutions pro-
duced by this construction have more finite field multiplications, this has
an impact on the masking complexity of these kind of permutations in com-
parison with those involutions generated by m, (see Section 5). Moreover,
the cryptographic properties related to linear and differential cryptanalysis
of involutions based on 7(™v°)_construction slightly decrease in comparison
with those generated by .

3.6. Searching of highly-nonlinear orthomorphisms

In this section we will study the possibility of using our algorithmic-
algebraic scheme to find a special kind of the so-called complete mappings.
Complete mapping were first introduced by Mann [33| and the term ortho-
morphisms was first used by Johnson, Dulmage and Mendelsohn [23] and
were also studied in [13, 14, 34-40,49]. Orthomorphisms are pertinent to
the construction of mutually orthogonal Latin squares and may be used to
design check digit systems.

In Cryptography, applications of orthomorphisms of the group (V,,, ®)
are found in the construction of block ciphers, stream ciphers and hash func-
tions (in the Lai — Massey scheme, for example, in well-known FOX [47]
family of block ciphers, Chinese stream cipher LOISS [22] and hash func-
tion EDON-R [21]). More recently, orthomorphisms have been used to
strengthen the Even—Mansour block cipher against some cryptographic at-
tacks [20].
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Definition 17 ([37]). A permutation ® € S(V},) is called ortomorphism
on (V,,,®) if the mapping ®: V,, — V,, defined as ®(z) = =z @ ®(z) is a
permutation of S(V},).

The set of all ortomorphisms of the group (V;,, @) is denoted by Orth(V},).
For any permutation ® € S(V;,) we define the set

Dy = {&)(x)‘xevn} = {@(m)@x‘xevn}. (23)

From (23) it follows that ® € Orth(V},,) if and only if #Dg = 2".

Proposition 9. For any ® € Orth(V,,) the following relations holds:
We(a,b) = Wz(a® b,b) and Ag(a,b) = Agz(a,a®b).

Proof. If the permutation ® € S(V,) is an ortomorphism on V;,, then
Wala,b) = T (—1)b2E@)ees) = 7 (_1)<b,¢(r)>@<a@b,w> = Wy(a @ b,b)

CIZEVn Z’GVn
for all a,b € V,,. Analogously, we can find that Ag(a,b) = Az(a,a @ b) for

all a,b € V. 0

The next proposition shows that regardless of the choice of the func-
tion ¥ we can not construct orthomorphisms over (V,,,®) using the con-
struction of .

Proposition 10. Let ¢: Vi, = V,* be an arbitrary k-bit function. Then for
permutation my: Vo, — Vai, my(lllr) = (Z(1) @ (Il @ )| Z(r @ v(I @ 1)),
the following inequality holds:

2k
#Dx, <27, (24)

Proof. Let us fix an arbitrary k-bit function ¢: Vj, — V¥ and construct
the permutation m, = (Z(I) @ Yl @ 7)) Z(r @ Y(l @ r)). As for any a,b €

For \ {0} the equation @ ® x = b has a unique solution, then for any
i €{0,1,...,2F — 1} and some primitive element ¢ € Fyx we have
ode = 2" —1=ordc?=2"-1=3i:¢0)=c?

= 7(0llc") ® (0]c") = 4 (0]]0) & (0]]0) = #Dr,, < 2.

Let us now consider the class of permutations
Ty(lllr) =Z(r@ (@ r)[|(Z1) @ vl @ 7).
Proposition 11. Let ¢, ¢': Vi, — V' be two arbitrary mappings with
X, ¢") = 1. Then for permutations ., 7ty the following relations holds:
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<2- (28 = 1), 4f (0) # ¢/(0),

2) [#Ds, = #Ds,| <2 =1, if w(i) # ¥/(0) for some i 0.

Proof. Let prove the first item of the proposition. The set D; , may be
written as

v, = (JUfErovionin]- v} U{aimo e vonliei)
U {(I(r Y (r)|Z0) ey (ler)a ()|l re Vk*}-

According the conditions of the proposition ¥(0) # ¢'(0), and ¥ (j) = ¢¥'(j)
for any 5 € V;*. Then

D, = {0}U{ztrevo)n|revi pU{ulzw o vo)|ie v}
J{@revuemnicnevien) s tln|ire v},

where #{I(r@@b’(O))Hr)‘ re V,:} - #{<z||(z(z)®¢'(0))]z € vk} — ok 1,
Since for the set Dy,

D, 2 {o}U{@revtenizoevien e wn|ie vire v},
then
Ds,, € Ds, J{Ztr 0 w0)In|r e i fU{tlzw o o)1 € vi .

Hence

1) ‘#Dm — #Ds,,

#D;, < #Ds, +2- (28— 1). (25)
Analogously for D;,, the following inequality holds:
#D;, < #Dx, +2- (28 - 1). (26)
So, from (25),(26) we deduce that
k
[#Ds, — #D5, | <20 (2 - 1),

Let now prove the second item of the proposition. The set D; ,, may be
decomposed into subsets as follows:

P, = QU Ere Ol < U0 @ von] < i)
U {(Z(r YT (ar)e (lH'f’)‘ Lre V,:‘}.
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According the conditions of the proposition we have (i) # /(i) for
some i € V¥, and ¢(j) = ¢'(j) for any j € Vi \ {i}. Then

Ds, = {0} U{ztr e v)In)|r e vi J U { o @ viop| e vy}
U{areviemianesien) e tin|ievirzior v}
U{@revieni@oeveen) e dn|ie vir=ior},

and it is not difficult to see that
#HTrewen)@Oewlen)en|ie Vi r=isit} <2 -1,
Taking into account that
D, 2 {0} U{ztr @ vopin|r e i U {ulEm e vop)|re v}
U{@eevienizoevien)en|ie v r£iorev},
we find that
Ds, € Dx, | J{ @ aem)@0e temeln|i e vi,r =iz},

which means
k
#Ds,, < #Ds, +2° — 1. (27)
Analogously for D;, the following inequality holds:

#Dr, < #Dr, + 2" — 1, (28)

and thus from (27), (28) we obtain |#Dy, — #Ds | < 2F — 1.
[

Proposition 11 may be used for searching highly-nonlinear orthomor-
phisms on (Vai, @©). In order to achieve the property #D;, = 22k we have
performed a search algorithm similar to algorithm 1. The aim of this al-
gorithm is to increase the value of #D;, up to 22k which means that a
nonlinear transformation of Orth(V5;) will be founded. At the same time,
according to propositions 3 and 4 it is not difficult to see that the algorithm
for searching this kind of permutations may also optimize the differential
and (non)linear properties of the initial permutation 7. So, we have im-
plemented this algorithm (which is omitted due to space limitations) in
SAGE [45] obtaining some affine nonequivalent 8-bit nonlinear transforma-
tions 7y € Orth(Vg) having the following cryptographic parameters:
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L4 dmzn(ﬂ-w) = 77 ® Ox, 87

o r;, = 3 with rf;) = 441, e 100 < NL(7y) < 104.

4. Some concrete S-boxes, its Pollock representations,
column frequency tables and W-intersection matrices

We include in Table 2 some permutations generated by our method, one
ordinary permutation with the best founded cryptographic parameters, two
involutions and one of the best founded orthomophisms.

Table 2. Some constructed 8-bit S-boxes

S-box 71 [nvolution 7o
NL() = 104,85, = 6, duin(fr) = To1, = 3,750 = 441 N L) = 104,05, = 6, dyin(2) = 7,75, = 3,7 = 441
Ox6e Oxe8 0x5f Oxa8 0x32 0x24 Oxa7 Ox Ox1d 0x64 0x87 0x14 Oxc3 0x0 0x10 0x90 Oxe0 O0xd0 Oxb0 0x70 0x60 0xf0 0x20 Oxc0 0x50 Oxad 0x40 0x30 0x80

Oxfb Oxfe 0x82 0x99 Ox3d 0x19 Oxac 5 0x9f Oxfe Oxde 0x15 0
Oxec Oxf5 Oxd Oxea Ox3a Ox77 0x47 Ox12 OxI11 Ox1 0x97 Oxeh 0Ox13

Ox1 0x11 0x19 0x85 Ox2f Ox2c OxSb Oxf5 Ox2e OxI12 Oxfa Ox9a Ox8c 0x98 Oxfb 0x93
0x9 0x2d Oxde Ox3c Ox47 Oxd5 0x36 Oxde 0x3b 0x29 Oxdb 0x46 0x15 0x21 O0xI8 Ox14

Oxed 0x88 0x68 Oxfa Oxad Oxc0 Oxca Oxba O0xb2 0x3b 0x61 Oxae Oxe 0xb3 0xbS 0x64 Oxbd Ox81 0x26 Ox3f OxS86 Ox6h 0x89 0x28 0 0x65 Ox3e 0x37
Oxd5 Ox5d Oxde Oxf2 0x85 0x9b Oxa6 Ox67 O0x350 0x63 0x91 Oxc? 0x63 OxGc 0x9c 0x2b 0x24 0x66 Ox4f 0x96 0xOb 0x83 Oxdd 0x22 0x49
0x96 0x8e 0x94  0x2f Oxbl Oxad Oxa0 0x03 0x2c 0x52 Oxd0 Oxbe 0x61 Ox5c Oxb7 Oxa8 0x69 0xb2 Oxa3 0x5b 0x55 Oxed Oxel Oxed
0x8d 0x49 0x36 Ox2e Oxd9 Oxed 0x37 Oxed 0x83 Oxaf OxGd Ox7 0x54 0x52 Ox43 0x33 Ox3d Ox48 0x67 Oxc2 0x38 Ox6e 0x39 Ox44 Oxce OxGa Oxch
0x5¢ 0x60  0xd8 f Oxed Ox4f Oxab 0x56 Oxal OxeT  0x69 0x6 Oxbd Oxbf Ox7c Oxaa Oxe2 ( Oxdf Oxa5 Oxb9 Oxdd Oxed 0x73 Oxee Oxde Oxa9
0x81 ( Oxdb 0x76 Ox5a Ox6a Oxda 0xf0 Oxed Ox7e Oxf 0x35 Oxc6 Oxdc 0x13 0x38 Ox41 Oxc8 Ox3a Ox42 Ox16 Oxle OxS8e OxSd OxSf
0x35 Oxle Oxa2 0x28 Ox9e 0x30 Oxad Oxbd 0x6 (xaa 0x2 0x94 0x92 OxIf 0x91 Oxd7 Oxda Oxe7 Oxld Oxd3 OxIb Oxdb Ox45 Oxd6 Oxea

Oxel 0x31 Ox44 0x54 Oxdb 0x79 Oxc9 Oxdl Oxfe OxfT 0xT7a Oxc Oxel Oxc9 Oxba Oxed 0x78 Oxab Oxf0 0x57 Ox7f Ox74 Oxa6 Oxac Ox51 Oxfd

Oxdf 0x40 Oxbb 0x26 0x9  Oxf3 Oxef Oxd2 Oxla 0x20 Oxc Oxd 0x5 Oxed 0x59 0x31 0x34 Oxbd Oxef 0x356 0x32 O0x79 Oxbb Oxba Oxce Ox71 0x53 0x72
Oxde 0x58 Ox9a Oxd6 0x2 Oxe6 Oxcb Oxbe Oxeb 0x86 0x7b Oxbd Oxa Oxal 0x68 0x84 Oxbl Oxc7 0x82 Oxcd O0x88 Oxa2 Oxca Ox6f Ox6d Oxad Oxbe 0xb6
Oxee Oxf 0x55 0x8h Oxda Ox7c 0x23 Ox2d Oxb6 OxIf Oxc2 0x17 0x99 Oxdd 0x25 0x9d 0x95 0xd2 Oxfe Oxfe 0x2a 0x27 Ox7a Ox7e OX77
Oxce Oxle 0x59 0x46 Oxed 0x27 Oxfi 0x78 Oxb8 0xI18 0x21 Oxdd Oxe3 0x7b 0xOf Oxe8 0x97 Oxe6 Ox5f Ox9e Oxfl Oxf2 Ox5d Ox7d Oxf7

et 0
Oxel Oxed 0x74 0x39 0x89 Oxf8 Oxfd 0x48 0x71 Oxdd 0xb0 Ox3c  0x0 0x8c Oxbs 0x5 Oxf4 0xf3 0x17 0xdl Oxef O0xf8 Oxa7 Oxla Oxle 0xd9 Oxae Oxda Oxaf

. invol
Involution ’/T_r(; o )

Orthomorphism 7y
NLET™) =100, 8 e = 8, dypin (75" 7) = T s

T y =441 NL (7)) = 104,05, = 8, dupin(7a) = T3, = 3,750 = 441
Ox3e 0x37 0x56 0x45 0x33 Oxcl Oxe8 Oxed 0x72 0x20 Oxea Oxad Oxa9 Oxc7 Oxef Ox5a Oxel 0x3d Ox2d 0x17 0x51 0x71 0x9b Oxla 0x96 Oxfa O0x64 Ox46 Ox2f OxIb Oxe3 0Ox40
Oxba 0x5b 0x73 Oxf0 O0x2f 0x83 Oxdf Oxdb 0x9d Oxb0  0x86  Oxff  0x22 Oxed 0x93 Ox1f Oxea 0x12 Oxdl Oxa2 OxI1l Ox5d 0x44 Oxb Oxa0 Oxaa Oxc9 Ox5f 0x38 Oxf OxI5
0x9  Oxa6 Oxld Oxe0 0xd9 Oxe7 Oxed 0x69 Ox6c Oxb5 0xf5 0x46 Oxa0 Oxab Oxd6 0x14 0x5b  Oxce 0x49 Ox5c¢ 0x7d 0x8a 0xbl 0x2 Ox8¢ Oxce Oxe8 Oxaf 0x56 Oxf7 Oxdb 0x95
0x6b Ox4a Oxa2 0x95 0x52 0x75 5d Ox1 o Ox9a 0x74 Oxf6 Ox44 Oxae Oxf2  Ox0  Oxch Oxa3 Oxab Oxcf Ox6f Oxeb Oxd9 0x37 Oxdf Oxa8 Ox3c Oxbd Oxa4 0x10 Oxd7 Oxed 0x24
OxSe 0x99 Oxfl 0x79 0x3b 0x3 Oxfe Oxe9 Oxbc O0x31 OxTe Ox30 Oxca 0x98 Ox55 | 0x20 OxTb Oxed 0x27 Ox22 Ox57 Oxb6 Oxf6 0x79 Oxd5 Ox55 0x82 Oxbd Oxc5 0x97 Ox69
Oxde Ox7f 0x34 Ox4  0x61 Oxdf 0x2  Oxce Oxde Ox7d  Oxf  Ox11 Ox49 0x36 Oxdd 0x66 0x48 Oxda Ox2a Ox8f 0x6 Oxe2 0x80 Oxfe Oxcl Oxf5 Oxff 0x3b 0x8d Ox6b 0x85 Oxc3
Oxc6 0x54 Oxbd 0xb9 Oxd7 Oxec Ox5f Ox8f Oxda 0x27 Ox6e 0x30 0x28 Oxa8 Ox6a Oxed Oxde 0x23 Oxca Oxle Ox5a Oxd O0xf3 Ox0 0x81 Oxed Oxcd 0x52 0x32 Ox3a Oxld Ox6d
Oxfa 0x84 0x8 0x12 0x39 0x35 Oxd4 0x8b Oxce 0x43 Oxel 0x90 0x19 0x59 Ox4b 0x51 0Ox6a 0x77 0x75 Oxbe Oxbb 0xb0 Oxfe Oxc2 O0xf8 0xb2 Oxda 0x9d 0x39  0x20
Oxch Oxe2 0x85 OxI15 0x71 0x82 Oxlb Oxd3 Oxal Oxdl Oxeb 0; Oxaf Oxbb  0x40 0x67 Oxd4  0x8 Oxde 0x42 0x94 Oxad 0x70 Oxa5 Oxd5 0x90 Oxa7 Oxed Oxde  0x9a
0x7h Oxe6 Oxac Ox1f OxeS 0x33 Oxb3 Oxd5 Oxde Oxdl Oxde 0x9 0xI8 Ox9c Oxbf | 0x34 Oxfd Ox2c Ox7 Ox5 Ox76 OxbS Oxdd OX7f 0x87 Oxal 0x16 Oxec OxGe
( 0xb7 Oxfb Oxbe 0x21 0xf) 0x6d Oxe Oxd0 0x2d Oxb  Ox3c  Ox8c 0x63  Oxc  0x50 0x3  Oxe8 Oxde 0x73 0x26 0x13 Oxdd 0x60 Oxa6 Ox8e  0x34
Oxee 0x96 0x62 0x29 Oxbe Oxa3 Oxc9 0x63 O0x10 0x8d Oxe3  Oxb6  0xOf Oxde Oxe7 Oxb9 Ox1  Oxf0 0x72 Oxbf 0x25 0x93 Oxae O0x62 0x83 Ix: 0x19
Oxfe Oxbd 0xf7 0x3f 0x60 Oxd 0x6 b8 Ox4d  0x30 Oxle 0x78 0x89 Ox7c 0x35 Oxa9 Oxb5 Ox7a Oxfl 0x38 Oxef 0xI4 Oxee Oxle & Oxe  Oxfb
0xf3 0x76 0x97 Ox2e Ox64 Oxf4 0x24 0x68 0x17 Ox Oxse  0x9b  0x16 0xf9 0x91 0x78 0x33 Ox18 Oxd6 Oxd8 0Ox41 0x9e OxTe Oxa Oxd3 0x28 Oxe0 Oxb3 0x21
xTa Ox81 Oxf8 Ox6f Ox7 0x01 0x25 0x04 Ox48 Oxa OxSa Ox65 0x26 Oxb2 Oxbl | Ox66 OxOf Oxba 0x2b 0x30 0x92 Oxbe Oxc6 Ox8b Ox6c 0x65 Ox68 Ox9c Oxdf Oxf2 OxG1
0x13 0x42 0x3d 0Oxd2 0xd8 Ox2a Ox3a Oxed Oxe3 Oxa7 0x70 Oxad Ox47 Oxc0 Oxc2 Oxle 0x36  0x84 Oxcd Oxc0 0x88 Oxc7 0xb7 0x43 0x59 0x98 Oxd0 0x99 0x9 Oxac Oxch 0x67

Z

In [4] the authors suggested looking at the visual representation of the
LAT of an S-box with the goal to find some unexpected patterns, which may
be used in some sense to distinguish it from a random one. The suggested
representation is a heatmap of the LAT matrix and was called “a Jackson
Pollock representation” of the LAT.

Similarly to [4], in [46] the author illustrate the usefulness of the “Jack-
son Pollock representation” of the LAT of an S-box, defining the so-called
column frequency table, a tool which may be used to strengthen the effect
of some unexpected patterns of a given S-box.

2021, T. 12, Ne 3, C. 89-124



118 R.A. de la Cruz Jiménez

Definition 18 ([46]). Let A be an n x m matrix over Z. The column
frequency table of A, denoted by CF(.A), is defined as

CR(A)y. 2] = #{5 € {1,....n} | Alg, ] = Aly, ] }. (29)

(invol

Fig. 3. Pollock representation of the LAT of S-boxes 1,72,75 ) and T4

Fig. 4. Column Frequency Tables of the LAT of S-boxes frl,frg,ﬂémml) and 74

The Pollock representation and column frequency tables of the LAT of
S-boxes ﬁl,ﬁg,wémm) and 74 listed in Table 2 are shown in Fig. 3 and 4

respectively.
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As may be observed, the existence of some visual patterns cannot be
detected for the S-box 7y, this is due to the use of some binary linear
layers in construction of ;. If we remove these binary matrices, then some
patterns appear in the S-box 7; similar to those detected for 75 (second
image displayed in Fig. 3 and 4 respectively). When displaying the Pollock
representation and column frequency tables of the LAT of 7T§mv0l) we don’t
find any patterns in these representations. The diagonal lines reflected in
Fig. 3 and 4 respectively for the orthomorphism 7, is due to the fact that
for any orthomorphism ® € Orth(V,,) the relation Weg(a,a) = Wz(0,a) =0
holds for all a € V,.

The W-intersection matrices (see Section 3.4) of nonlinear bijective

transformations #;,7,mi ") and 7, for subspaces Wy = {(1||0)|l € Vi},
Wy = {(0]|)|r € V4} of the vector space Vg are given below.

1211013012201010 0200121000013231 111111111 111111 1111111111111111
0201200022110113 2021131010011012 1330000033000003 1301311100010310
2401100112001021 2110110021001222 1333300000000300 1030011033101011
1001004110222011 0010110033231010 1033003030030000 1103310001103011
0001122022101301 0020205011210101 1030303033000000 1303300100111101
1130020013211100 0011310112210021 1000033000330030 1111030310003101
0012112120112110 2101001302112101 1003333000003000 1110003130130101
0001122101201221 ) 1011011012220112 N 1000000300330330 . 1100131311001003
Mw ™) =1 g 030131211000211 [*MR =1 o5 0101210100211 [ MW= 1303300030003000 | MW= 030013131010110
2112100101410020 1211112010111210 1300300003000330 1031000113111003
0003221200011112 2013001310021011 1000030300303003 1011101001330130
3231101000011201 0320121100022002 1003030300033000 1100103011330011
2000110111121221 2002200202200220 1000003030333000 1013130101003110
2220110220021010 1201101202202002 1030000303000303 1300111010101330
0220110201021112 1218020111011110 1000030303000033 1111000010311330
2002200220022002 0022121130101200 1300000000300333 1011111303010003
0002001001432120 0012130100204020 0321211102000021 0102202013111011
0020212112210002 0020010222021202 2400130000301110 0101100210222211
0222211010001220 1200102000310231 1000230121113001 1010020013302201
2020131212000101 2000221202201002 0112001000411320 1212000301011022
0221001222020002 1012030212001012 0030121211021011 2120121030120100
0113020301102002 3102302200001200 1011101040002113 1230002201200210
1211100010120222 0021022010121220 2212021010002111 2202001220012101

My (il _ | 0102230002022 101 | oy | 1202220021000011 0 f1011101211041002f 0 [1121125010100111
w73 0111201002202220 [ Wl 0200101220211220 [ W 1001210103300310 | W™ 0202011022021012
1202210220003100 0202200102120220 2111011210110211 2010130110103120
£200011020210111 2032001021020102 2121212110100110 2110220110300111
3100202200100320 0210002012222020 1110111111120022 0022203012011101
2010020223000022 4101111110020003 1203000310110022 1020302011001113
1021002121130020 0220022122100002 1121100202010311 1101111210131011
2020002020122201 2030102122020001 0011105013021001 0012010201021231
0201222100102012 0212200100203210 1001111022114100 2201220102110110
As it may be seen, the matrices Mw,(s),i = 1,2, where

5 € {ﬁl,ﬁz,wg"w’), 74}, do not have any element equal to 16, which con-

firms that subspaces Wy = {({[|0)|l € V4}, Wy = {(0||r)|r € Vi} of the
vector space Vg are not invariant with respect to the action of these non-
linear bijective transformations.

5. Masking complexity of 8-bit S-boxes obtained by the
scheme of 7, and #("v)

In this section we study the possibility to combine our 8-bit S-boxes
with the classical masking countermeasure against SCAs in terms of its
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masking complexity. The polynomial representation of an S-box defined
by relation (7) is based on four kinds of operations over Faon: additions,
multiplications by constants (scalar multiplications), squares, and nonlin-
ear multiplications (i.e. multiplications of two different variables). Except
for the latter, all these operations are linear (respectively, affine) over V.
The processing of any S-box may then be performed as a sequence of func-
tions which are linear (respectively, affine) over V,, (themselves composed of
additions, squares and scalar multiplications) and of nonlinear multiplica-
tions. Hence, masking an S-box processing may be done by masking every
operation mentioned above independently. We recall hereafter the concept
of masking complexity defined as follows.

Definition 19 (|9]). The masking complexity of any n-bit S-box ®, denoted
by MC(®), is the minimal number of nonlinear multiplications required to
evaluate its polynomial representation over Fon.

Denoting by M7} the class of exponents o such that X“ has a masking
complexity equal to k we summarizes in Table 3 the results (obtained in [9])
for the cyclotomic classes C, = {a -2/ mod (15)]j =0,1,2,3} in M}.

Table 3. Cyclotomic classes for n = 4 w.r.t. the masking complexity &

l

k [ Cyclotomic classes in Mé ]
0 Co ={0},C1 ={1,2,4,8}
1
2

Cs = {3,6,12,9},Cs = {5, 10}
Cr = {7,11, 13, 14}

Taking into account that the number of field multiplications for any
4-bit permutation and any 4-bit non-bijective function is lower bounded by
0 and upper bounded by 3,4 respectively (see [9]), we obtain the following
bounds for 8-bit S-boxes produced by our construction:

5 < # nonlinear multiplications of m, < 12. (30)

As we can see from (30), 8-bit S-boxes with only 5 nonlinear multiplications
over [Fo« may be constructed using the proposed scheme.

The number of field multiplications for those involutions obtained
by the 70™°) scheme is given by the following bound 10 <
# nonlinear multiplications of w0 < 24. As we can see, masking these
involutions is more expensive than ordinary S-boxes produced by the con-
struction of .

Finally, in Table 4 we compare our results with some candidates having
a given level of masking. As we can see, our S-boxes based on 7 scheme
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Table 4. Comparison of 8-bit S-boxes w.r.t. # nonl. multiplications

[ S-box class [ # nonl. multiplications
AES’s S-box [19] 4 (Fys)
AES’s S-box [26] 5 (Fga)
Clefia S-box [19] 10 (Fys)
Iceberg S-box [19] 18 (Fy4)
Khazad S-box [19] 18 (Fy4)
Picaro S-box [41] 4 (Fya)
Zorro S-box [19] 4 (Fya)
S-boxes based on m, scheme [this work] 5 < # nonl. multiplications < 12
S-boxes based on 7(("v°0) scheme [this work] 10 < # nonl. multiplications < 24

exhibits better values of field multiplications than S-boxes of Clefia, Iceberg
and Khazad respectively, having at the same time stronger cryptographic
properties but at the cost of worse number of nonlinear multiplications
compared with the AES [26], Picaro [41] and Zorro S-boxes [19].

6. Conclusion and Future Work

In this paper we have presented a new algorithmic-algebraic scheme
based on the Lai — Massey structure for constructing permutations of di-
mension n = 2k, k > 2. Compared to the best nonlinearity (108 for k = 4)
offered by the construction presented in [11] and latter generalized in [18§],
the nonlinearity of permutations obtained by our scheme is slightly smaller
(equal to 104), but to the best of our knowledge the schemes presented in
[11,18] cannot produce involutions and orthomorphisms with cryptographic
properties close to the optimal ones, so we can conclude that the new struc-
ture presented in this paper is more powerful and attractive due to the
diversity of permutations that may be constructed. Interestingly, the invo-
lutions and orthomorphisms founded in our paper have comparable classical
cryptographic properties as those constructed by using spectral-linear and
spectral-differential methods [34] and the limited deficit’s method [36]. The
main advantage of our 8-bit permutations is that they may be constructed
using smaller 4-bit components which is useful for the implementation of
the S-box in hardware or using a bit-sliced approach. There are several
questions (more theoretical results, hardware and bit-sliced implementa-
tions, more efficient methods of masking) about the class of permutations
suggested in this work which are left for future work.
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