

А. А. Егорушкин, А. Х. Пергамент, А. А. Тимонов, О математическом моделировании качества обращения волнового фронта, *Матем. моделирование*, 1991, том 3, номер 3, 3–15

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 3.149.214.28 9 января 2025 г., 14:38:33

Математическое моделирование

том 3 номер 3 / 1991

ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ В НАУКЕ И ТЕХНИКЕ

УДК 535.3+518.90

О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ КАЧЕСТВА ОБРАЩЕНИЯ ВОЛНОВОГО ФРОНТА

© А.А. Егорушкин, А.Х. Пергамент, А.А. Тимонов

Всесоюзный центр математического моделирования АН СССР, Москва

Численно исследована пространственная структура фазового волнового фронта обращенной стоксовой волны в системе ОВФ при условиях, что истощением волны накачки можно пренебречь. Дана постановка и численно решена задача "оптимизации" некоторых геометрических характеристик системы ОВФ.

THE MATHEMATICAL MODELLING OF THE QUALITY OF PHASE CONJUGATION FOR THE STATIONARY SBS WITHOUT OF EXHAUSTION OF THE INCIDENT WAVE

A.A. Egorushkin, A.H. Pergament, A.A. Timonov

In this paper the spaced structure of the front of inversing Stokes-wave in SBS-system without of exhaustion of the incident wave is researched. The problem of optimization some geometrical parameters of SBS-system is formulated and solved with the help of numerical algorithm.

Одной из важнейших задач лазерной технологии является формирование мощных и хорошо сфокусированных пучков. Для создания таких пучков используются усилители, представляющие собой оптически неоднородную (нелинейную) среду. Однако при прохождении пучка через усилительный каскад наряду с усилением мощности имеет место значительное искажение волнового фронта. Для компенсации этих искажений предложена система обращения волнового фронта (OBФ) [1], действие которой упрощенно сводится к созданию волны, комплексная амплитуда которой пропорциональна E_0^* , где E_0 — амплитуда падающей волны. Волна E_0^* подается на вход усилительной системы. При отсутствии усиления обратное прохождение волны соответствует "обращению" времени и позволяет компенсировать накопленные при первом проходе искажения волнового фронта. Однако в усилительной системе строгое обращение времени невозможно и невозможна компенсация нелинейных искажений [2]. В [1] подробно описаны различные OBФ на базе различных типов вынужденно го рассеяния.

Для компенсации искажений волнового фронта существуют и другие, идейно близкие к ОВФ подходы, например [3].

В настоящей работе рассматривается вынужденное рассеяние Мандельштамма-Бриллюэна (ВРМБ), т.е. случай, когда разность несущих частот волны накачки и стоксовой волны равна частоте гиперзвуковых собственных колебаний среды в системе ОВФ. Такой механизм вынужденного рассеяния является одним из наиболее употребительных в экспериментальных исследованиях, так как он обладает достаточно низким порогом возбуждения.

Характерной особенностью систем ОВФ является дискриминационный. механизм усиления первоначально слабой стоксовой волны. Эффективные режимы $OB\Phi$ возможны, если падающая волна E_0 имеет развитую спекл-структуру, т.е. обладает существенно неоднородным пространственным распределением фазы. В частности, это возможно, если фаза E₀ случайна. После усиления весьма желательно, чтобы комплексная амплитуда стоксовой волны была максимально близка к Е₀^{*}. Таким образом, в достаточно упрощенном виде качество системы ОВФ можно характеризовать мошностью обрашенной стоксовой волны на ее выходе, формой и близостью ее к волне накачки. В соответствие с этим в настоящей работе численно исслепуется влияние некоторых параметров волны накачки (радиуса пучка и его мошности) и геометрии системы ОВФ на пространственную структуру отраженной сток совой волны в процессе ее распространения. Заметим, что ранее подобные исследования проводились только экспериментально (см., например, [4-6]). При этом достаточно полное исследование влияния указанных параметров на качество ОВФ было затруднено или невозможно. Кроме того, не было ясно, возможно ли формализовать процесс управления качеством ОВФ. В работе делается попытка ответить на этот вопрос.

1. Математическая модель системы ОВФ для стационарного ВРМБ. Рассмотрим следующую схему ОВФ (см. рис. 1). Пусть излучение накачки E_0 представляет собой пучок импульсного одномодового лазера, прошедший фазовую пластину для того, чтобы он обладал развитой спекл-структурой. Для простоты будем полагать, что излучение накачки распространяется вдоль цилиндрического волновода радиуса R_0 . В качестве отражателя системы ОВФ рассмотрим кювету в форме параллеление да высотой L и с квадратным основанием размера 1 \times 1.

Рис. 1. Геометрия системы ОВФ

Для построения математической модели квазистационарного ВРМБ в системе ОВФ воспользуемся следующими физическими представлениями [1]. Будем считать, что сток сова волна E_1 исходно возбуждается благодаря спонтанному рассеянию волны чакачки на флуктуационных гиперзвуковых волнах, которые существуют всегда в термодинамически равновесной среде. Экспериментально установлено [1], что вблизи задней стенки кюветы на расстоянии порядка 10^{-1} см от нее образуется так называемый затравочный отраженный сигнал, который и взаимодействует с волной накачки. Это взаимодействие происходит таким образом, что мак симальное усиление ($\sim e^{30}$ раз) испытывают лишь "обращенные" (т.е. рассеянные назад относительно направления волнового вектора волны накачки) компоненты стоксовой волны. Поэтому процесс усиления затравочной сток совой отраженной волны E₁ можно представить как взаимодействие трех воли: волны накачки E_0, E_1 и гиперзвуковых колебаний. В стационарном случае интенсивность гиперзвуковой волны (точнее – число фононов) легко выражается через интенсивность падающей. При этом возникают нелинейные члены в уравнениях для E_1 и E_0 . Таким образом, процесс усиления при ВРМБ – это процесс взаимодействия главным образом волны накачки Е0 с отраженной компонентой стоксовой волны Е₁. Заметим, что в настоящей работе под термином "взаимодействие" понимается лишь распространение волновых полей и их дифракция. При $20 \le G |E_0|^2 z \le 25$, где G – стационарный коэффициент усиления отраженной сток совой волны, E_0 – комплексная амплитуда волны накачки E_0 , процесс вынужденного рассеяния идет без истощения волны накачки за счет перераспределения в сток сову волну [1]. Поэтому предположение об отсутствии истощения волны накачки, которое делается ниже, не лишено физического смысла. Наконец. поскольку отрезок [0, L] является конечным, а волна накачки распространяется в цилиндрическом волноводе, то естественно считать комплексные амплитуды E_0 — волны накачки и E_1 — отраженной сток совой волны финитными функциями с носителем, расположенным внутри указанного выше параллелепипеда. Отсюда следует, что на боковых сторонах этого параллелепипеда значения функций E_0 и Е₁ следует полагать равными нулю.

С учетом изложенного, а также воспользовавшись результатами работы [7] для квазистационарного случая, квазистационарный процесс ВРМБ будем описывать с помощью системы уравнений вида

$$-2ik \partial E_0 / \partial z + \Delta_1 E_0 + k^2 n_2 |E_1|^2 E_0 = 0,$$

$$2ik \partial E_1 / \partial z + \Delta_1 E_1 + k^2 n_2 |E_0|^2 E_1 = 0,$$
(1.1)

где $\Delta_1 = \partial^2/\partial x^2 + \partial^2/\partial y^2$ — "поперечный" лапласиан, $k = \omega \epsilon_0^{1/2}/c$ — волновое число, ω — центральная частота, $n_2 = \epsilon_2/\epsilon_0$ — коэффициент преломления, ϵ_0 , ϵ_2 — линейная и квадратичная компоненты диэлектрической проницаемости среды системы ОВФ соответственно.

Систему уравнений (1.1), определенную на множестве $G = G_{xy} \times (0, L)$, $G_{xy} = (0, X) \times (0, Y)$, рассмотрим вместе с граничными условиями:

$$E_0(x, y, L) = E_{00} \exp[i\Psi_0(x, y, L)], \qquad (1.2)$$

$$E_1(x, y, z_0) = E_{11}E_0^*(x, y, z_0), \quad E_{00} = E_{11},$$
(1.3)

$$E_0(0, y, z) = E_0(X, y, z) = E_0(x, 0, z) = E_0(x, Y, z) = 0,$$
(1.4)

$$E_1(0, y, z) = E_1(X, y, z) = E_1(x, 0, z) = E_1(x, Y, z) = 0,$$
(1.5)

$$E_{00}(x, y, L) = \begin{cases} \pi \exp\{1 - \exp[-A_0(1 - r/R_0)]\} / 4, & r < R_0, \\ 0, & r \ge R_0, \end{cases}$$
(1.6)

$$\Psi_0(x, y, L) = \begin{cases} \pi \exp\left\{1 - \exp\left[-B_0(1 - r/R_0)\right]\right\} / 4, & r < R_0, \\ 0, & r \ge R_0, \end{cases}$$
(1.7)

где $A_0 > 0, B_0 > 0$ – некоторые константы.

Заметим, что для достаточно гладких функций E_0 и E_1 из [8] следует однозначная разрешимость задачи (1.1) – (1.7). Для дальнейшего численного исследования процесса ВРМБ целесообразно перейти к безразмерным величинам, например, с помощью замены переменных:

$$\overline{E}_{0} = E_{0}/E_{00}, \quad \overline{E}_{1} = E_{1}/E_{11}, \quad N = E_{00}/E_{\kappa p} = E_{11}/E_{\kappa p}, \\ \overline{x} = x/R_{0}, \quad \overline{y} = y/R_{0}, \quad \overline{z} = z/l_{z},$$
(1.8)

где $E_{\kappa p} = 1/(kR_0 n_2^{\frac{1}{2}}), l_z = R_0/(E_{00} n_2^{\frac{1}{2}}).$ Здесь l_z – так называемая келлиевская длина [9]. Тогда система уравнений (1.1) с условиями (1.2)–(1.7) преобразуется к виду

$$\partial \overline{E}/\partial z + i \Delta \overline{E}/(2N) + iN |\overline{E}|^2 \overline{E}/2 = 0, \qquad (1.5)$$

$$\partial \overline{E}_1 / \partial z - i \Delta_1 \overline{E}_1 / (2N) + iN |\overline{E}_0|^2 \overline{E}_1 / 2 = 0, \qquad (1.9)$$

$$E_0(\overline{x}, \overline{y}, L) = \exp[i\Psi_1(\overline{x}, \overline{y}, L)], \qquad (1.10)$$

$$\overline{E}_{1}(\overline{x}, \overline{y}, \overline{z}_{0}) = \operatorname{const} \overline{E}_{0}^{*}(\overline{x}, \overline{y}, \overline{z}_{0}), \qquad (1.11)$$

$$\overline{E}_{0}(0,\overline{y},\overline{z}) = \overline{E}_{0}(\overline{X},\overline{y},\overline{z}) = \overline{E}_{0}(\overline{x},0,\overline{z}) = \overline{E}_{0}(\overline{x},\overline{Y},\overline{z}) = 0, \qquad (1.12)$$

$$\overline{E}_1(0,\overline{y},\overline{z}) = \overline{E}_1(\overline{X},\overline{y},\overline{z}) = \overline{E}_1(\overline{x},0,\overline{z}) = \overline{E}_1(\overline{x},\overline{Y},\overline{z}) = 0,$$
(1.13)

$$\Psi_{1}(\bar{x}, \bar{y}, \bar{L}) = \begin{cases} \pi \exp\{1 - \exp[-B_{0}(1 - r/R_{0})]\} / 4, & \bar{r} < 1, \\ 0, & \bar{r} \ge 1. \end{cases}$$
(1.14)

где $\overline{r}^2 = \overline{x}^2 + \overline{y}^2$.

Таким образом, процесс квазистационарного ВРМБ может быть описан с помощью соотношений (1.9) – (1.14), которые будем называть математической моделью системы ОВФ. Заметим, что при условии отсутствия истощения волны накачки в первом уравнении системы (1.9) нужно исключить член $|\overline{E}_1|^2 \overline{E}_0$.

2. Численное исследование ВРМБ. Рассмотрим математическую модель системы ОВФ при условии, что истощением волны накачки можно пренебречь. Кроме того, будем рассматривать лишь решения системы уравнений ОВФ вида

$$\overline{E}_{0}(\overline{x}, \overline{y}, \overline{z}) = \exp[ir^{2}/(4\overline{z})] f_{0}(\overline{z}),$$

$$\overline{E}(\overline{x}, \overline{y}, \overline{z}) = \exp[-ir^{2}/(4\overline{z})] f(\overline{z}),$$
(2.1)

которые могут быть получены из группового анализа указанной системы уравнений. Тогда нетрудно убедиться в том, что комплекснозначные функции $f_0(\overline{z})$ и $f_1(\overline{z})$ удовлетворяют системе обыкновенных дифференциальных уравнений 1-го порядка

$$df_{0}(\overline{z})/d\overline{z} - \{1/N + i\overline{r}^{2} [1 + 1/(2N)]/(2\overline{z})\} f_{0}(\overline{z})/(2\overline{z}) = 0, df_{1}(\overline{z})/d\overline{z} - \{1/N - i\overline{r}^{2} [1 + 1/(2N)]/(2\overline{z})\} f_{1}(\overline{z})/(2\overline{z}) - iN|f_{0}(\overline{z})|^{2}f_{1}(\overline{z}) = 0,$$
(2.2)

и граничным условиям

$$f_0(\overline{L}) = \exp\{i \left[\Psi_0(\overline{x}, \overline{y}, \overline{L}) - r^2/(4\overline{L})\right]\}, \qquad (2.3)$$

$$f_1(\bar{z}_0) = f_0^*(\bar{z}_0),$$
 (2.4)

где

$$\Psi_0(\overline{x}, \overline{y}, \overline{L}) = \begin{cases} \pi \exp\{1 - \exp[-B_0(1 - r/R_0)]\} / 4, & \overline{r} < 1, \\ 0, & \overline{r} \ge 1. \end{cases}$$

Первое уравнение системы (2.2) есть дифференциальное уравнение в полных дифференциалах. Поэтому оно может быть проинтегрировано. С учетом (2.3) получим

$$f_0(\overline{z}) = \{ \overline{L}/\overline{z} \}^{-1/(2N)} \exp(i\Psi_i), \qquad (2.5)$$

где

$$\Psi_i(\overline{x},\overline{y},\overline{z}) = [\Psi_0(\overline{x},\overline{y},\overline{L}) - \overline{r}^2/(4\overline{L})] - (\overline{L} - \overline{z})\overline{r}^2(1 + N/2)/(4\overline{z}\overline{L}).$$
(2.6)

Но тогда с учетом (2.4) будем иметь

$$f_1(\overline{z}) = (\overline{z}/\overline{L})^{1/(2N)} \exp(i\Psi_s), \qquad (2.7)$$

где

$$\Psi_{s}(\overline{z};\overline{z}_{0},\overline{L},N,\overline{r}) = (\overline{z}-\overline{z}_{0})\overline{r}^{2}(1+N/2)/(4\overline{z}_{0}\overline{z}) + N(\overline{L})^{-1/N}(\overline{z}^{1+1/N}-\overline{z}_{0}^{1+1/N})/(2+2/N) - [\Psi_{0}(\overline{x},\overline{y},\overline{L})-\overline{r}^{2}/(4\overline{L})] + (\overline{L}-\overline{z}_{0})\overline{r}^{2}[1+1/(2N)]/(4\overline{z}_{0}\overline{L}), \quad \overline{z} \in [\overline{z}_{0},\overline{L}].$$

$$(2.8)$$

Таким образом, комплексная амплитуда отраженной стоксовой волны при квазистационарном ВРМБ при отсутствии истощения волны накачки равна

$$\overline{E}_{1}(\overline{x}, \overline{y}, \overline{z}) = (\overline{z}/\overline{L})^{1/(2N)} \exp\{i[\Psi_{s} - \overline{r}^{2}/(4\overline{z})]\}.$$
(2.9)

Полученное выражение является основой для численного исследования зависимости пространственного распределения амплитуды и фазы отраженной стоксовой волны от геометрии системы ОВФ и некоторых параметров волны накачки: радиуса пучка R_0 и величины N, которую будем называть параметром критической энергии.

Поскольку все переменные в системе (2.2) являются безразмерными, то для численного исследования необходимо оценить их по порядку. Для этого воспользуемся тем, что в типичных экспериментах по ОВФ ВРМБ длина кюветы, содержащей среду-отражатель, имеет порядок 10^2 см, а длина, на которой возбуждается затравочная стоксова волна, — порядок 10^{-1} см [1]. Типичным также является и то, что келлиевская длина имеет порядок $10^2 R_0$ [см], т.е. $\overline{z} = 10^{-2} z/R_0$. Будем считать, что $\overline{X} = \overline{Y} = 1$, т.е. безразмерный радиус \overline{R}_0 пучка равен 0,5. Тогда при фиксированных \overline{X} и \overline{Y} изменение R_0 эквивалентно изменению области определения безразмерной координаты \overline{z} .

Условно можно выделить три группы волновых пучков накачки в зависимости от величины их радиуса R_0 : 1) остронаправленные, $R_0 \sim 10^{-2}$ см; 2) пучки среднего диаметра, $R_0 \sim 10^{-1}$ см; 3) пучки большого диаметра, $R_0 \sim 1$ см. Этим группам соответствуют следующие значения безразмерных координат: $\overline{z}_0 \approx 10^{-1}$, 10^{-2} , 10^{-3} и $\overline{L} \approx 10^2$, 10, 1.

Положим $B_0 = 10$ и вычислим пространственное распределение $\Psi_0(\overline{x}, \overline{y}, \overline{L})$ фазы волны накачки на входе системы ОВФ (см. рис. 2). Воспользуемся затем формулой (2.8) для численного исследования особенностей ОВФ для указанных выше групп волновых пучков накачки. На рис. 3 представлены результаты исследования для широких пучков накачки. Видно, что с увеличением \overline{z} степень искажения распределения $\Psi_{\mathbf{s}}(\bar{z})$ возрастает, хотя и незначительно. Причем наиболее сильно искажается фазовый волновой фронт отраженной стоксовой волны в достаточно малой окрестности точки пересечения оси пучка перпендикулярной ей плоскостью. Эта тенденция прослеживается также для пучков среднего диаметра (рис. 4) и остронаправленных пучков (рис. 5). Однако в этих случаях степень искажения увеличивается с уменьшением диаметра пучка. Кроме того, анализируя рис. 4 и 5, можно сделать вывод о существовании так называемой инверсной точки, т.е. точки $\overline{z_{in}}$ такой, что для $\overline{z} < \overline{z_{in}}$ в указанной выше окрестности значения $\Psi_{s}(\overline{z})$ не больше значений $\Psi_{s}(\overline{z})$ вне этой окрестности, а для $\overline{z} > \overline{z_{in}}$ – наоборот. По-видимому, инверсная точка существует и для широких пучков, но вследствие достаточно малого изменения функции $\Psi_{\mathbf{c}}(\overline{z})$ ее трудно обнаружить.

œ

Рис. 4. Пространственное распределение функции $\Psi_{\mathfrak{s}}(\overline{x}, \overline{y}, \overline{z})$ для средних пучков накачки: $a - \overline{z} = 0, 1, \overline{b} - \overline{z} = 4, \overline{s} - \overline{z} = 9; N = 2$

Рассмотрим функционал

$$\int_{0}^{1} \int_{0}^{1} |\Psi_{i} + \Psi_{s}|^{2} d\overline{x} d\overline{y},$$

где Ψ_i и Ψ_s определены соотношениями (2.6) и (2.8) соответственно. На множестве $Z \subset \mathbb{R}^3$:

$$Z = \{ z \in \mathbb{R}^3 \mid \overline{z}_{00} \leqslant \overline{z}_0 \leqslant \overline{z}_{01}, \ \overline{z}_0 \leqslant \overline{z} \leqslant \overline{z}_1, \ \overline{z}_{01} \leqslant \overline{z}_1 \leqslant L \},\$$

Рис. 5. Пространственное распределение функции $\Psi_s(\bar{x}, \bar{y}, \bar{z})$ для остронаправленных пучков накачки: $a - \bar{z} = 1, \sigma - \bar{z} = 5, \sigma - \bar{z} = 17; N = 2$

рассмотрим также задачу

$$\underset{\hat{z} \in Z}{\operatorname{arg inf}} \quad \int_{0}^{1} \int_{0}^{1} |\Psi_{i} + \Psi_{s}|^{2} d\overline{x} d\overline{y}$$

(2.10)

при фиксированных параметрах B₀ и N. Целесообразность постановки этой задачи обусловлена следующим. В [1] качество обращения волнового фронта характеризуется "степенью" близости к нулю суммы фаз волны накачки и стоксовой волны. Указанный функционал может быть использован в качестве меры такой близости, а в задаче (2.10) требуется найти z_{**} такое, что отличие суммы фаз обращенной стоксовой волны и волны накачки от нуля минимально.

Наряду с задачей (2.0) рассмотрим смежную с ней задачу

$$\underset{\hat{z} \in Z}{\operatorname{arg inf}} F\left[\Psi_{s}\right] \tag{2.11}$$

при фиксированных параметрах B_0 и N, принимающих конечные значения. Функционал $F[\Psi_s]$ имеет вид

$$F[\Psi_s] = \|\Psi_s\|_{L_2(G_{\overline{x}\,\overline{y}\,})}^2,\tag{2.12}$$

где

$$\|\Psi_{s}\|_{L_{2}(G_{\overline{xy}})}^{2} = \int_{0}^{1} \int_{0}^{1} |\Psi_{s}(\hat{z}; \overline{x}, \overline{y}, B_{0}, N)|^{2} d\overline{x} d\overline{y},$$

$$\hat{z} = (\overline{z}_{0}, \overline{z}, \overline{z}_{1}), \quad \overline{z}_{0} \leq \overline{z} \leq \overline{z}_{1}, \quad 0 < \overline{z}_{1} \leq \overline{L},$$

Существование указанных выше инверсных точек позволяет предполагать наличие интервала, в пределах которого фазовый волновой фронт является квазиплоским. Следовательно, существование экстремальной точки \hat{z}_* для функционала $F[\Psi_s]$ физически обусловлено. Формально, поскольку при фиксированных B_0 и N функционал $F[\Psi_s]$ является строго выпуклым в $L_2(G_{\overline{xy}})$, а множество Zкомпактно в R^3 , существует единственная экстремальная точка $\hat{z}_* \in Z$ такая, что

$$F[\Psi_s(\hat{z}_*)] = \inf_{\hat{z} \in \mathbb{Z}} F[\Psi_s(\hat{z})].$$

Таким образом, дальнейшее численное исследование качества ВРМБ заключается в нахождении приближенных решений задачи (2.10) и (2.11) при различных значениях параметра N. Заметим, что с точки зрения организации вычислений достаточно ограничиться случаем широких пучков (т.е. $\overline{z}_0 \approx 10^{-3}$, $\overline{L} \approx 1$), поскольку в остальных случаях множество Z будем включать в себя допустимое множество для указанного случая и, следовательно, найденное приближенное решение будет являться решением каждой из оставшихся задач (в общем случае – менее точным).

Для приближенного решения задач (2.10) и (2.11) применим один из вариантов метода случайного поиска [10], который заключается в следующем. Строим последовательность $\{\hat{z}_k\}$ по формуле

$$\hat{z}_{k+1} = \hat{z}_k + \alpha \xi, \quad k = 0, 1, \dots,$$
 (2.13)

где $\alpha = \text{const} > 0$ – параметр метода, ξ – вектор, координаты которого ξ_i являются независимыми случайными величинами, равномерно распределенными на отрезке [-1, 1]. Предположим, что k-й элемент \hat{z}_k , $k \ge 0$, указанной последовательности известен. Тогда (k+1)-й элемент строится следующим образом. Пусть для некоторого ξ и параметра α по формуле (2.13) вычисляют элемент $u_k = \hat{z}_k + \alpha \xi$. Если $u_k \in Z$ и $F[\Psi_s(u_k)] < F[\Psi_s(\hat{z}_k)]$, то полагается $\hat{z}_{k+1} = u_k$. Иначе: если $u_k \in Z$, но $F[\Psi_s(u_k)] \ge F[\Psi_s(\hat{z}_k)]$ или $u_k \notin Z$, то полагается $\hat{z}_{k+1} = \hat{z}_k$. Если для достаточно большого числа M окажается, что

$$\hat{z}_k = \hat{z}_{k+1} = \ldots = \hat{z}_{k+M},$$

то считается, что точка \hat{z}_k принадлежит достаточно малой окрестности экстремальной точки \hat{z}_* и процесс (2.13) прекращается.

При сформулированных условиях последовательность $\{F[\Psi_s(\hat{z}_k)]\},\$ соответствующая построенной по указанным правилам последовательности $\{\hat{z}_k\},\$ будет монотонно невозрастающей и ограниченной снизу для $k = 0, 1, \ldots$. В силу известной теоремы функционального анализа, в этом случае существует

$$F[\hat{\Psi}_s] = \lim_{k \to \infty} F[\Psi_s(\hat{z}_k)]$$

Но тогда, очевидно, с вероятностью, равной единице,

$$\lim_{k\to\infty}F[\Psi_s(\hat{z}_k)]=F[\Psi_s^*],$$

где

$$F[\Psi_s^*] = \inf_{\hat{z} \in Z} F[\Psi_s(\hat{z})].$$

Так как функция $\Psi_s(\hat{z})$ непрерывна, а множество Z ограниченов IR³, то из отмеченной сходимости следует, что $\lim_{k \to \infty} |\hat{z}_k - \hat{z}_*| = 0$ почти наверное. Таким образом,

регулярность метода случайного поиска применительно к рассматриваемой в этой работе задаче доказана. Строгое доказательство оценок скорости сходимости этого метода не проводилось. Однако нетрудно показать, что при L = 1 для получения приближенного решения \hat{z}_k , удовлетворяющего условию $|\hat{z}_k - \hat{z}^*| \leq \epsilon$ с вероятностью, близкой к единице, необходимо выполнить $\sim 1/\epsilon^3$ операций.

Для всех допустимых фиксированных B_0 и N значения величины $\Psi_s(\hat{z}_*)$ вычислялись при различных M и было установлено, что, начиная с $M \approx 500$, величина $|\hat{z}_{\star}(M) - \hat{z}_{\star}(M+K)|/|\hat{z}_{\star}(M)|$ не превышала 10⁻⁴. Примерно такая же по порядку относительная погрешность имела место при оценке величины функционала. Дальнейшее увеличение числа М приводит к возрастанию времени вычислений без существенного изменения относительной погрешности, что обусловлено, по-видимому, погрешностью машинных вычислений. Результаты численного решения задачи (2.11) представлены на рис. 6, из которого видно, что при изменении параметра критичности N от 1 до 10 найдется вектор \hat{z}_{*} , характеризующий геометрию системы ОВФ и обеспечивающий получение квазиплоской обращенной стоксовой волны. Заметим, однако, что кривизна фронта волны в приосевой области с увеличением N незначительно возрастает. При радиусе пучка накачки, например, в 1 см получается, что при $\hat{z}_{0*} \approx 0,1$ мм, $\hat{z}_{1*} \approx 94$ см наиболее плоский фронт обращенная стоксова волна имеет при $\hat{z}_{\star} \approx 3.5$ мм. Для всех остальных z из указанного интервала фронт этой волны будет менее плоским, хотя и удовлетворяющим практическим потребностям.

Для численного решения задачи (2.10) также использовался указанный выше метод. В ходе проведения вычислительного эксперимента при тех же условиях на допустимое множество установлено, что экстремальная точка \hat{z}_{**} принадлежит достаточно малой окрестности точки \hat{z}_{*} . Пространственное распределение $|\Psi_i + \Psi_s|^2$ при $\overline{z} = \hat{z}_{**}$ показано на рис. 7.

Задачи (2.10) и (2.11) решались и при других граничных условиях, моделирующих спекл-структуру волны накачки, а именно:

$$\Psi_{0}(\overline{x},\overline{y},\overline{L}) = \begin{cases} \alpha \cos\left[\pi B\left(\overline{x}+\overline{y}\right)\right], & \overline{r} < 1, \\ 0, & \overline{r} \ge 1, \end{cases}$$

где $\alpha = 1, B = 10.$

Рис. 6. Пространственное распределение функции $\Psi_{s}(\bar{x}, \bar{y}, \bar{z})$ при оптимальных параметрах $\bar{z}_{0*} = 7,957 \cdot 10^{-5}, \ \bar{z}_{*} = 3,476 \cdot 10^{-3}, \ \bar{z}_{1*} = 0,9367; \ a - N = 2, \ b - N = 10$

Рис. 7. Пространственное распределение функции $\Psi_s(\bar{x}, \bar{y}, \hat{z}_{**})$

График функции $\Psi_0(\bar{x}, \bar{y}, \bar{L})$ показан на рис. 8. Полученные решения мало отличаются от решений, приведенных на рис. 6.

Представляется целесообразным проанализировать зависимость величины $\operatorname{Im} g(\overline{z})$, где

$$g(\overline{z}) = \int_{0}^{1} \int_{0}^{1} E_{0}(\overline{x}, \overline{y}, \overline{z}) E_{1}(\overline{x}, \overline{y}, \overline{z}) d\overline{x} d\overline{y},$$

от \overline{z} , так как, согласно [1], величина Im $g(\overline{z})$ также может быть использована в качестве критерия качества обращения волнового фронта. На рис. 9 показана

Рис. 8. Пространственное распределение фазы Ψ_0 (см. (2.14))

Рис. 9. График функции Img (\overline{z})

одна из этих зависимостей при фиксированных значениях $\overline{z}_{0**} = 0,796 \cdot 10^{-3}$ и $\overline{z}_{1**} = 0,937$. Видно, что точка \overline{z}_{**} принадлежит достаточно малой окрестности одного из нулей функции Im $g(\overline{z})$.

Таким образом, для некоторых типов волн накачки показано, что полное обращение волнового фронта не достигается даже при развитой спекл-структуре и тем более не осуществляется при плавном изменении фазы. Меняя амплитуду $|E_0|$ и характер спекл-структуры, можно изменять взаимное расположение точек A и B (см. рис. 9), стараясь уменьшить область вблизи границы нелинейной среды, в которой E_1 заметно отличается от E_0^* . Численное исследование выбора различных режимов с целью выбора оптимальных значений $|E_0|$ и геометрии системы является основной задачей математического моделирования систем OBФ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зельдович Б.Я., Пилипецкий Н.Ф., Шкунов В.В. Обращение волного фронта. М.: Наука, 1985. 247 с.
- 2. Павлов В.И., Пергамент А.Х. О компенсации нелинейных искажений в усилительных каскадах лазерных систем с ОВФ: Препринт № 60. – М.: ИПМ им. М.В. Келдыша АН СССР. 1985.
- 3. Воронцов М.А., Шмальгаузен В.И. Принципы адаптивной оптики. М.: Наука, 1985.

- 4. Кочемасов Г.Г., Николаев В.Д. Исследование пространственных характеристик стоксова излучения при вынужденном рассеянии в режиме насыщения//Квант. электр. 1979. Т. 6. С. 1960.
- 5. Андреев Н.Ф., Беспалов В.И., Киселев А.М., Пасманик Г.А. Экспериментальное исследование пространственной структуры первой стоксовой компоненты ВКР//Квант. электр. 1980. Т. 6. С. 996.
- Белоусов В.Н., Большов А.А., Ковальский Н.Г., Низменко Ю.К. Экспериментальное исследование обращения волнового фронта при вынужденном температурном и манделыштаммбриллюэновском рассеянии в жидкостях//ЖЭТФ. – 1980. – Т. 79. – С. 2119.
- 7. *Луговой В.Н., Прохоров А.М.* Теория распространения мощного лазерного излучения в нелинейной среде//УФН. 1973. Т. 111, № 2. С. 204.
- 8. Strauss W.A. Nonlinear invariant wave equations//Invariant Wave Equations. Berlin: Springer-Verlag, 1978.
- 9. Луговой В.Н. Распространение волновых пучков в нелинейных средах//ДАН СССР. 1967. Т. 176, № 1. С. 58–61.
- 10. Васильев Ф.П. Численные методы решения экстремальных задач. М.: Наука, 1988. 546 с.

Поступила в редакцию 21.11.90